This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

On the Sundman-Sperling estimates for the restricted one-center-two-body problem

Abstract.

In the past two decades, since the discovery of the figure-8 orbit by Chenciner and Montgomery, the variational method has became one of the most popular tools for constructing new solutions of the NN-body problem and its extended problems. However, finding solutions to the restricted three-body problem, in particular, the two primaries form a collision Kepler system, remains a great difficulty. One of the major reasons is the essential differences between two-body collisions and three-body collisions.

In this paper, we consider a similar three-body system with less difficulty, i.e. the restricted one-center-two-body system, that is involving a massless particle and a collision Kepler system with one body fixed. It is an intermediate system between the restricted three-body problem and the two-center problem. By an in-depth analysis of the asymptotic behavior of the minimizer, and an argument of critical and infliction points, we prove the Sundman-Sperling estimates near the three-body collision for the minimizers. With these estimates, we provide a class of collision-free solutions with prescribed boundary angles. Finally, under the extended collision Kepler system from Gordon, we constructed a family of periodic and quasi-periodic solutions.

2020 Mathematics Subject Classification. 70F07, 70F15, 70F16, 70G75, 70M20.
E-mail: s9921803@m99.nthu.edu.tw, liulei30@email.sdu.edu.cn.
Keywords: variational method, restricted one-center-two-body problem, asymptotic estimates, three-body collision.

Ku-Jung Hsu1 and Lei Liu2


1 School of Mathematical Sciences, Huaqiao University

2School of Mathematics, Shandong University

1. Introduction

In 2000, Chenciner and Montgomery [6] showed the existence of a remarkable periodic solution (called figure-eight solution) of three-body problem. Since then, inspired by this work, various new solutions of the NN-body problems and NN-center problems are constructed by variational methods, see [2, 3, 7, 8, 15, 22] and the references therein. The most crucial step to prove the existence of solutions for NN-body problems through variational methods is to exclude the collisions of the minimizers.

The currently known methods are mainly the level estimates and the local deformation method. The former is to estimate the minimal action of all the collision paths, then find a test path with action lower than the previous minimal action. The latter is to locally perturb the collision paths near the colliding moments, such that their actions strictly decrease. It is well-known that, the local deformation method is based on the asymptotic estimates of the paths near their collisions.

The asymptotic estimates of multi-body collisions have been studied by Sundman [18] since 1913, who provided estimates of the moment of inertia for the collision clusters. Another analogous estimates for two-body collisions was proved by Sperling [16, 17] in 1969, independently. Venturelli [20], Ferrario and Terracini [7] provided a general criterion for the Sundman estimates, which also fits the two-body collision. Unfortunately, in restricted multi-body problem, acquiring asymptotic behaviors of multi-body collisions might create more technical difficulties. To our best knowledge, there are no such estimates of multi-body collisions in the restricted multi-body problems. This might be the main reason that only few results regard the restricted multi-body problems by using variational methods, see [11, 12, 13].

The simplest restricted NN-body problem is the restricted one-center-one-body problem (or the Kepler problem). It involves a fixed particle cc (called a center) at the origin with mass μ\mu and a moving particle qq\in\mathbb{C} (called a primary) with mass mm. The motion of qq is subjected to Newton’s universal gravitational law:

(1) q¨=μq|q|3.\displaystyle\ddot{q}=-\frac{\mu q}{\lvert q\rvert^{3}}.

The solutions of (1) are either conics or straight lines, and the latter are the only solutions with collision. According to the results in [18], every solution of (1) satisfies the Sundman-Sperling estimates near their collision. We refer some well-known applications of the Sundman-Sperling estimates to [4, 7, 11, 19, 20, 21] and the references theirin.

However, the restricted three-body problems include huge complexities, especially in the analysis of asymptotic behavior near the three-body collisions. There are several difficulties for this. Firstly, it is unclear that the massless particle satisfies Sundman-Sperling estimates. Secondly, the solutions might spin infinitely or with an oscillation near the three-body collisions. Thirdly, there are two singularities that close to one another, and it remains unclear whether such singularities in a restricted multi-body system can be regularized.

In this paper, to reduce the difficulties, we consider the Sundman-Sperling estimates of the three-body collisions in a simplified restricted three-body problems, which involves a collision Kepler system (q,c)(q,c) and a massless particle zz\in\mathbb{C}. The motion of zz is governed by the following equation:

(2) z¨=μz|z|3m(zq(t))|zq(t)|3=zU(z,t),\displaystyle\ddot{z}=-\frac{\mu z}{\lvert z\rvert^{3}}-\frac{m(z-q(t))}{\lvert z-q(t)\rvert^{3}}=\frac{\partial}{\partial z}U(z,t),

where U(z,t)U(z,t) is the time-dependent potential defined by

(3) U(z,t)=μ|z|+m|zq(t)|.\displaystyle U(z,t)=\frac{\mu}{\lvert z\rvert}+\frac{m}{\lvert z-q(t)\rvert}.

In fact, this is an intermediate problem between the restricted three-body problem and the Euler’s problem with two fixed centers. Since it involves the interaction of one center, one primary and one massless particle, we refer to it as the restricted one-center-two-body problem.

According to the fact (see [9]) that the collision moments of the collision Kepler system (q,c)(q,c) are isolated, without loss of generality, for some T>0T>0, we set

  • (Q1)(Q1)

    qq collides with cc at moment 0, i.e. q(0)=0q(0)=0.

  • (Q2)(Q2)

    qq doesn’t collide with cc on [T,0)(0,T][-T,0)\cup(0,T], i.e. q(t)0q(t)\neq 0 on [T,0)(0,T][-T,0)\cup(0,T].

  • (Q3)(Q3)

    qq lies on the negative real axis on [T,T][-T,T], i.e. q|[T,T]:=(,0]q|_{[-T,T]}\subset\mathbb{R}^{-}:=(-\infty,0].

In this setting, we allow |q˙||\dot{q}| to be nonzero at moment ±T\pm T so that the energy of qq could be even zero or positive. Moreover, one can see that the system (1) with conditions (Q1)(Q3)(Q1)-(Q3) is symmetric with respect to

(4) q(t)=q(t), for all [T,T],\displaystyle q(t)=q(-t),\quad\text{ for all }\ [-T,T],

and (2) is symmetric with respect to the complex conjugation. Therefore, z(t)z(t), z¯(t)\bar{z}(t), z(t)z(-t) and z¯(t)\bar{z}(-t) solve the equation (2) at the same time. In fact, for any a<ba<b, the equation (2) is the Euler-Lagrange equation of the action functional

(5) 𝒜a,b(z)=ab12|z˙|2+U(z,t)dt.\displaystyle\mathcal{A}_{a,b}(z)=\int_{a}^{b}\frac{1}{2}|\dot{z}|^{2}+U(z,t)dt.

Consider the path space ΩA,Ba,b={xH1([a,b],):x(a)A,x(b)B},\Omega^{a,b}_{A,B}=\{x\subset H^{1}([a,b],\mathbb{C}):x(a)\in A,x(b)\in B\}, where A,B+={x+iy:y0}A,B\subset\mathbb{C}^{+}=\{x+iy\in\mathbb{C}:y\geq 0\} are closed disjoint subsets. If the minimizer z(t)z(t) of 𝒜a,b\mathcal{A}_{a,b} exists on ΩA,Ba,b\Omega^{a,b}_{A,B}, then z(t)z(t) is a weak solution of the restricted one-center-two-body problem (2) for t[a,b]t\in[a,b]. We note that the minimizer z(t)z(t) becomes a classical solution if it does not include any collision. Now, we introduce our main theorem as follows.

Theorem 1.1.

Given T>0T>0, a collision Kepler system (q,c)(q,c) satisfying (1) and (Q1)(Q3)(Q1)-(Q3), and an action functional 𝒜T,0\mathcal{A}_{-T,0} (𝒜0,T)(\mathcal{A}_{0,T}) as in (5). Assume z(t)=r(t)eθ(t)iz(t)=r(t)e^{\theta(t)i} is a minimizer of 𝒜T,0\mathcal{A}_{-T,0} (𝒜0,T)(\mathcal{A}_{0,T}) on ΩA,A0T,0\Omega^{-T,0}_{A,A_{0}} (ΩA0,A0,T)(\Omega^{0,T}_{A_{0},A}) with 0A00\in A_{0}. If zz admits a three-body collision, i.e. z(0)=0z(0)=0, then

  • (a)(a)

    The argument θ(t)\theta(t) is either a constant function θ(t){0,π}\theta(t)\equiv\{0,\pi\} or a strictly decreasing function on (T,0)((-T,0)\ (strictly increasing function on (0,T))(0,T)). Moreover, the limit angles θ±:=limt0±θ(t)\theta_{*}^{\pm}:=\lim_{t\rightarrow 0^{\pm}}\theta(t) exist and θ±{0,π}\theta_{*}^{\pm}\in\{0,\pi\}.

  • (b)(b)

    As t0±t\rightarrow 0^{\pm}, there exists an α>0\alpha_{*}>0 such that

    (6) r(t)\displaystyle r(t) =α|q(t)|+o(|t|23)=αλμ|t|23+o(|t|23),\displaystyle=\ \alpha_{*}\lvert q(t)\rvert+o(\lvert t\rvert^{\frac{2}{3}})=\ \alpha_{*}\lambda_{\mu}\lvert t\rvert^{\frac{2}{3}}+o(\lvert t\rvert^{\frac{2}{3}}),
    r˙(t)\displaystyle\dot{r}(t) =αddt|q(t)|+o(|t|13)=±23αλμ|t|13+o(|t|13),\displaystyle=\ \alpha_{*}\frac{d}{dt}\lvert q(t)\rvert+o(\lvert t\rvert^{-\frac{1}{3}})=\pm\frac{2}{3}\alpha_{*}\lambda_{\mu}\lvert t\rvert^{-\frac{1}{3}}+o(\lvert t\rvert^{-\frac{1}{3}}),
    r¨(t)\displaystyle\ddot{r}(t) =αd2dt2|q(t)|+o(|t|43)=29αλμ|t|43+o(|t|43),\displaystyle=\ \alpha_{*}\frac{d^{2}}{dt^{2}}\lvert q(t)\rvert+o(\lvert t\rvert^{-\frac{4}{3}})=-\frac{2}{9}\alpha_{*}\lambda_{\mu}\lvert t\rvert^{-\frac{4}{3}}+o(\lvert t\rvert^{-\frac{4}{3}}),

    where λμ=(9μ/2)1/3\lambda_{\mu}=(9\mu/2)^{1/3}.

    • (b1)(b_{1})

      If θ=0\theta_{*}^{-}=0 (θ+=0\theta_{*}^{+}=0), then α=α2>1\alpha_{*}=\alpha_{2}>1, which is the unique solution of

      (7) a31mμa2(a+1)2=0ona[0,+).a^{3}-1-\frac{m}{\mu}\frac{a^{2}}{(a+1)^{2}}=0\quad\text{on}\quad a\in[0,+\infty).
    • (b2)(b_{2})

      If θ=π\theta_{*}^{-}=\pi (θ+=π\theta_{*}^{+}=\pi), then α=α1(0,1)\alpha_{*}=\alpha_{1}\in(0,1) or α=α3(1,+)\alpha_{*}=\alpha_{3}\in(1,+\infty), where α1,α3\alpha_{1},\alpha_{3} are the unique two solutions of

      (8) a31mμa2(a1)2=0ona[0,+).a^{3}-1-\frac{m}{\mu}\frac{a^{2}}{(a-1)^{2}}=0\quad\text{on}\quad a\in[0,+\infty).

      Moreover, the former case occurs if z(t)(q(t),0)z(t)\in(q(t),0) and the latter case occurs if z(t)(,q(t))z(t)\in(-\infty,q(t)), for any t[T,0)(t(0,T])t\in[-T,0)\ (t\in(0,T]).

This theorem mainly characterizes the asymptotic behaviours of the minimizer z(t)z(t) near the three-body collision. Term (a)(a) describes the behaviour of the argument function θ(t)\theta(t). Term (b)(b) describes the behaviours of the norm r(t)r(t), which is so-called the Sundman-Sperling estimates for the minimizer z(t)z(t). The main technique of the proof is the analysis of critical and inflection points together with the properties of the minimizer.

Generally, for any restricted multi-body system, we believe that the Theorem 1.1 remains valid, provided the collision involves one center, one primary, and one massless particle. This is because when the massless particle approaches the three-body collision, the effect of the other non-colliding particles is negligible.

Notice that, the montonicity of θ(t)\theta(t) for the minimizer z(t)z(t) is the most fundamental property in the restricted one-center-two-body problem. It highly relies on the monotonicity of the potential function U(z,t)U(z,t), i.e. the potential UU is strictly decreasing from θ=π\theta=\pi to θ=0\theta=0 for any fixed r>0r>0. However, the potential function possesses no such monotonicity in the restricted three-body problem, which leads to great difficulties in the analysis.

As an application, we consider the existence of collision-free solutions in the restricted one-center-two-body problem for all precribed boundary angles (ϕ1,ϕ2)[0,π]×[0,π](\phi_{1},\phi_{2})\in[0,\pi]\times[0,\pi] with ϕ1ϕ2\phi_{1}\neq\phi_{2}, which is a solution z(t)z(t) jointing from the ray eϕ1i+e^{\phi_{1}i}\mathbb{R}^{+} to eϕ2i+e^{\phi_{2}i}\mathbb{R}^{+} in t[T,0]t\in[-T,0] (t[0,T]t\in[0,T]). In the one center problem, it is well-known that the collision-free solutions exist for all (ϕ1,ϕ2)(\phi_{1},\phi_{2}) with |ϕ1ϕ2|(0,π)|\phi_{1}-\phi_{2}|\in(0,\pi), see [1], [2, Prop.3]. In this paper, by using the natures of the minimizers and Theorem 1.1, we obtain the following results.

Theorem 1.2.

Given T>0T>0 and a collision Kepler system (q,c)(q,c) which satisfies (1) and (Q1)(Q3)(Q1)-(Q3). For any (ϕ,ϕ0)[0,π)×[0,π/2](\phi,\phi_{0})\in[0,\pi)\times[0,\pi/2] with ϕϕ0\phi\neq\phi_{0}, the restricted one-center-two-body problem (2) with system (q,c)(q,c) possesses a solution z(t)=r(t)eθ(t)iz(t)=r(t)e^{\theta(t)i} satisfying the following properties:

  • (a)(a)

    zz is collision-free on [T,0][-T,0].

  • (b)(b)

    θ(T)=ϕ\theta(-T)=\phi and θ(0)=ϕ0\theta(0)=\phi_{0}.

  • (c)(c)

    There is a unique t[T,0]t_{*}\in[-T,0] such that θ(t)[0,min{ϕ,ϕ0}]\theta(t_{*})\in[0,\min\{\phi,\phi_{0}\}] and θ(t)\theta(t) is strictly decreasing on [T,t][-T,t_{*}] and strictly increasing on [t,0][t_{*},0]. Especially, if min{ϕ,ϕ0}=0\min\{\phi,\phi_{0}\}=0, θ(t)\theta(t) is strictly monotone on [T,0][-T,0].

  • (d)(d)

    z˙\dot{z} is orthogonal to the ray eϕi+e^{\phi i}\mathbb{R}^{+} at z(T)z(-T) and orthogonal to the ray eϕ0i+e^{\phi_{0}i}\mathbb{R}^{+} at z(0)z(0).

According to the symmetry (4), a similar result as Theorem 1.2 holds after the collision moment t=0t=0 between qq and cc.

Theorem 1.3.

Given T>0T>0 and a collision Kepler system (q,c)(q,c) which satisfies (1) and (Q1)(Q3)(Q1)-(Q3). For any (ϕ,ϕ0)[0,π)×[0,π/2](\phi,\phi_{0})\in[0,\pi)\times[0,\pi/2] with ϕϕ0\phi\neq\phi_{0}, the restricted one-center-two-body problem (2) with system (q,c)(q,c) possesses a solution z(t)=r(t)eθ(t)iz(t)=r(t)e^{\theta(t)i} satisfying the following properties:

  • (a)(a)

    zz is collision-free on [0,T][0,T].

  • (b)(b)

    θ(0)=ϕ0\theta(0)=\phi_{0} and θ(T)=ϕ\theta(T)=\phi.

  • (c)(c)

    there is a unique t[0,T]t_{*}\in[0,T] such that θ(t)[0,min{ϕ,ϕ0}]\theta(t_{*})\in[0,\min\{\phi,\phi_{0}\}] and θ(t)\theta(t) is strictly decreasing on [0,t][0,t_{*}] and strictly increasing on [t,T][t_{*},T]. In particular, if min{ϕ,ϕ0}=0\min\{\phi,\phi_{0}\}=0, then θ(t)\theta(t) is strictly monotone on [0,T][0,T].

  • (d)(d)

    z˙\dot{z} is orthogonal to eϕ0i+e^{\phi_{0}i}\mathbb{R}^{+} at z(0)z(0) and orthogonal to eϕi+e^{\phi i}\mathbb{R}^{+} at z(T)z(T).

As a conclusion, we have the following corollaries.

Remark 1.4.

When ϕ0=0\phi_{0}=0, it follows from Theorem 1.2, 1.3 that the argument θ(t)\theta(t) of the collision-free solution z(t)z(t) is strictly decreasing on [T,0][-T,0] and strictly increasing on [0,T][0,T].

Theorem 1.2, 1.3 show the existence of the collision-free solution of (2)(\ref{eqn:1+1+1-body}) for any choice of masses μ,m>0\mu,m>0 and boundary angles (ϕ,ϕ0)[0,π)×[0,π/2](\phi,\phi_{0})\in[0,\pi)\times[0,\pi/2] with ϕϕ0\phi\neq\phi_{0}. In the classical restricted three-body problem, different energy on the two primaries will alter the nature of the problem, significantly. It is worth noting that Theorem 1.2, 1.3 are independent of the choice of energy on the two-body system (q,c)(q,c).

Notice that, in restricted multi-body problem, almost all two-body collisions of minimizers can be excluded by local deformation. However, there is also a lack of asymptotic estimates for the three-body collisions, such as the Sundman-Sperling estimates. This makes the exclusion of the three-body collisions much more challenging.

In Theorem 1.2, 1.3, as an application of Theorem 1.1, we successfully exclude the three-body collision for the minimizer in the restricted one-center-two-body problem. Unfortunately, there is no regularization to the three-body collisions in our problem, unlike the Levi-Civita regularization in the two-body collisions. This causes that the action of the local deformation paths are highly difficult to estimate under the behavior of the two singularities, and then the boundary angle ϕ0\phi_{0} can only be choosed in [0,π/2][0,\pi/2] rather than [0,π][0,\pi]. More specifically, the regularization method requests more regularity than we have.

Based on our results above, although the restricted one-center-two-body problem is not the classical restricted three-body problem, the authors believe that the methods in this paper and the extension of Sundman-Sperling estimates for three-body collisions will be useful in advancing the study of collisions in celestial mechanics, and provides a promising direction for future investigations into general three-body collisions or even multi-body collisions.

Remark 1.5.

For the sake of intuition, several numerical examples of the solution z(t)z(t) are listed in Figure 2 including different masses (μ,m)(\mu,m) and boundary angles (ϕ,ϕ0)(\phi,\phi_{0}), in which the collision Kepler system (q,c)(q,c) satisfies the boundary conditions q(±T)=1q(\pm T)=-1 and q˙(±T)=0\dot{q}(\pm T)=0. In Figure 2, we also provide an example for Theorem 1.2(c), 1.3(c), where the argument θ(t)\theta(t) of the solution is not monotonic.

Refer to caption
Figure 1. The solutions in Theorem 1.2, 1.3 with different choice of masses and boundary angles.
Refer to caption
Figure 2. An example of Theorem 1.2(c), in which qq satisfies (q(T),q˙(T))=(0.05,1)(q(-T),\dot{q}(-T))=(-0.05,1) and qq is much heavier than cc.

This paper is organized as follows. In Section 2, we recall the Sundman-Sperling estimates for the two-body collisions, and introduce a classical approach for the exclusion of the two-body collisions. In Section 3, we show some important monotonicities for both potential function UU and action minimizers of the restricted one-center-two-body problem. In Section 4, by analysing the asymptotic behaviors for the three-body collision, we prove the Sundman-Sperling estimates for the action minimizers (Theorem 1.1). In Section 5, as an application of Theorem 1.1, we prove the existence of the collision-free solutions with prescribed boundary angles in the restricted one-center-two-body problem (Theorem 1.2, 1.3). Finally, in Appendix 6, we construct a class of periodic and quasi-periodic orbits under the extended collision Kepler system.

2. Preliminaries

2.1. Asymptotic behavior near two-body collision

This subsection will review the asymptotic analysis near a two-body collision. Given a collision Kepler system (q,c)(q,c) which satisfies (1) and (Q1)(Q3)(Q1)-(Q3), and let zz be a solution of the restricted one-center-two-body problem (2). In this problem, there are three possibilities of two-body collisions: collisions between qq and cc, zz and cc, and zz and qq. The collision moments between qq and cc are clearly isolated, and the following lemma shows that the collision moments are isolated for the other two types of two-body collisions. The proof is based on the regularization method, which we refer to [5, Sec.3.3], [20, Sec.4.1] and the proof is omitted here.

Lemma 2.1.

The sets of two-body collision moments c(q)={t:q(t)=0andz(t)0}\triangle_{c}(q)=\{t\in\mathbb{R}:q(t)=0\ \text{and}\ z(t)\neq 0\}, c(z):={t:z(t)=c and z(t)q(t)}\triangle_{c}(z):=\{t\in\mathbb{R}:z(t)=c\text{ and }z(t)\neq q(t)\} and q(z):={t:z(t)=q(t) and z(t)c}\triangle_{q}(z):=\{t\in\mathbb{R}:z(t)=q(t)\text{ and }z(t)\neq c\} are isolated.

Next, we introduce a famous work of Sperling [16], in which the asymptotic behaviors of a particle near two-body collisions are given in the perturbed Kepler problem. As an application, we can obtain the asymptotic behaviors of the aforementioned three types of two-body collisions in the restricted one-center-two-body problem.

Proposition 2.2.

[16] Consider the perturbed Kepler problem

(9) u¨=μ^u|u|3+P(u,t),\displaystyle\ddot{u}=-\hat{\mu}\frac{u}{\lvert u\rvert^{3}}+P(u,t),

where μ^>0\hat{\mu}>0 and P(u,t)P(u,t) is a bounded and continuous function near 0. Assume the solution uu of (9) has a collision at τ\tau, that is u(τ)=0u(\tau)=0, then there exist λ=(9μ^/2)1/3\lambda=(9\hat{\mu}/2)^{1/3} and η±𝕊:={x:|x|=1}\eta^{\pm}\in\mathbb{S}:=\{x\in\mathbb{C}:\ \lvert x\rvert=1\} such that

  1. (a)(a)

    |u(t)|=λ|tτ|23+o(|tτ|23)\lvert u(t)\rvert=\lambda\lvert t-\tau\rvert^{\frac{2}{3}}+o(\lvert t-\tau\rvert^{\frac{2}{3}}) as tτ±t\rightarrow\tau^{\pm}.

  2. (b)(b)

    ddt|u(t)|=±23λ|tτ|13+o(|tτ|13)\frac{d}{dt}\lvert u(t)\rvert=\pm\frac{2}{3}\lambda\lvert t-\tau\rvert^{-\frac{1}{3}}+o(\lvert t-\tau\rvert^{-\frac{1}{3}}) as tτ±t\rightarrow\tau^{\pm}.

  3. (c)(c)

    d2dt2|u(t)|=29λ|tτ|43+o(|tτ|43)\frac{d^{2}}{dt^{2}}\lvert u(t)\rvert=-\frac{2}{9}\lambda\lvert t-\tau\rvert^{-\frac{4}{3}}+o(\lvert t-\tau\rvert^{-\frac{4}{3}}) as tτ±t\rightarrow\tau^{\pm}.

  4. (d)(d)

    limtτ±u(t)|u(t)|=η±\lim_{t\rightarrow\tau^{\pm}}\frac{u(t)}{\lvert u(t)\rvert}=\eta^{\pm} exist.

The properties (a)(a) - (c)(c) demonstrate that the asymptotic positions, velocities and accelerations of colliding particles satisfy the Sundman-Sperling estimates (see [16, 17, 18]); the property (d)(d) further reveals the existence of the asymptotic angles for colliding particles.

In system (q,c)(q,c), the motions of qq, zz and zqz-q satisfy the equations (1)(\ref{eqn:newton}), (2)(\ref{eqn:1+1+1-body}) and

d2dt2(zq)=m(zq)|zq|3+μq|q|3μz|z|3,\displaystyle\frac{d^{2}}{dt^{2}}(z-q)=-\frac{m(z-q)}{\lvert z-q\rvert^{3}}+\frac{\mu q}{\lvert q\rvert^{3}}-\frac{\mu z}{\lvert z\rvert^{3}},

respectively. We can also rewrite these equations as the perturbed Kepler systems (9)(\ref{eqn:sperling}):

q¨=μq|q|3+P0(q,t),\displaystyle\ddot{q}=-\frac{\mu q}{\lvert q\rvert^{3}}+P_{0}(q,t),\quad\quad\quad\quad\ \ whereP0(u,t)0,\displaystyle\text{where}\ \ P_{0}(u,t)\equiv 0,
z¨=μz|z|3+P1(z,t),\displaystyle\ddot{z}=-\frac{\mu z}{\lvert z\rvert^{3}}+P_{1}(z,t),\quad\quad\quad\quad\ \ whereP1(u,t)=m(uq(t))|uq(t)|3,\displaystyle\text{where}\ \ P_{1}(u,t)=-\frac{m(u-q(t))}{\lvert u-q(t)\rvert^{3}},
d2dt2(zq)=m(zq)|zq|3+P2(zq,t),\displaystyle\frac{d^{2}}{dt^{2}}(z-q)=-\frac{m(z-q)}{\lvert z-q\rvert^{3}}+P_{2}(z-q,t),\ \ whereP2(u,t)=μ(u+q(t))|u+q(t)|3+μq(t)|q(t)|3.\displaystyle\text{where}\ \ P_{2}(u,t)=-\frac{\mu(u+q(t))}{\lvert u+q(t)\rvert^{3}}+\frac{\mu q(t)}{\lvert q(t)\rvert^{3}}.

Since P0,P1,P2P_{0},P_{1},P_{2} are bounded and continuous near the collision moment sets c(q)\triangle_{c}(q), c(z)\triangle_{c}(z) and q(z)\triangle_{q}(z), as an application of Proposition 2.2, we obtain the Sundman-Sperling estimates for q,zq,z and zqz-q as follows.

Proposition 2.3.

There exists λμ=(9μ/2)1/3\lambda_{\mu}=(9\mu/2)^{1/3} such that

  1. (a)(a)

    |q(t)|=λμ|t|2/3+o(|t|2/3)\lvert q(t)\rvert=\lambda_{\mu}\lvert t\rvert^{2/3}+o(\lvert t\rvert^{2/3})  as t0±t\rightarrow 0^{\pm}.

  2. (b)(b)

    ddt|q(t)|=±23λμ|t|1/3+o(|t|1/3)\frac{d}{dt}\lvert q(t)\rvert=\pm\frac{2}{3}\lambda_{\mu}\lvert t\rvert^{-1/3}+o(\lvert t\rvert^{-1/3})  as t0±t\rightarrow 0^{\pm}.

  3. (c)(c)

    d2dt2|q(t)|=29λμ|t|4/3+o(|t|4/3)\frac{d^{2}}{dt^{2}}\lvert q(t)\rvert=-\frac{2}{9}\lambda_{\mu}\lvert t\rvert^{-4/3}+o(\lvert t\rvert^{-4/3})  as t0±t\rightarrow 0^{\pm}.

Proposition 2.4.

Assume τc(z)\tau\in\triangle_{c}(z), there exist λμ=(9μ/2)1/3\lambda_{\mu}=(9\mu/2)^{1/3} and θc,τ±\theta^{\pm}_{c,\tau}\in\mathbb{R} such that

  1. (a)(a)

    |z(t)|=λμ|tτ|2/3+o(|tτ|2/3)\lvert z(t)\rvert=\lambda_{\mu}\lvert t-\tau\rvert^{2/3}+o(\lvert t-\tau\rvert^{2/3})  as tτ±t\rightarrow\tau^{\pm}.

  2. (b)(b)

    ddt|z(t)|=±23λμ|tτ|1/3+o(|tτ|1/3)\frac{d}{dt}\lvert z(t)\rvert=\pm\frac{2}{3}\lambda_{\mu}\lvert t-\tau\rvert^{-1/3}+o(\lvert t-\tau\rvert^{-1/3})  as tτ±t\rightarrow\tau^{\pm}.

  3. (c)(c)

    d2dt2|z(t)|=29λμ|tτ|4/3+o(|tτ|4/3)\frac{d^{2}}{dt^{2}}\lvert z(t)\rvert=-\frac{2}{9}\lambda_{\mu}\lvert t-\tau\rvert^{-4/3}+o(\lvert t-\tau\rvert^{-4/3})  as tτ±t\rightarrow\tau^{\pm}.

  4. (d)(d)

    limtτ±z(t)|z(t)|=eiθc,τ±\lim_{t\rightarrow\tau^{\pm}}\frac{z(t)}{\lvert z(t)\rvert}=e^{i\theta^{\pm}_{c,\tau}} exist.

Proposition 2.5.

Assume τq(z)\tau\in\triangle_{q}(z), there exist λm=(9m/2)1/3\lambda_{m}=(9m/2)^{1/3} and θq,τ±\theta^{\pm}_{q,\tau}\in\mathbb{R} such that

  1. (a)(a)

    |z(t)q(t)|=λm|tτ|2/3+o(|tτ|2/3)\lvert z(t)-q(t)\rvert=\lambda_{m}\lvert t-\tau\rvert^{2/3}+o(\lvert t-\tau\rvert^{2/3})  as tτ±t\rightarrow\tau^{\pm}.

  2. (b)(b)

    ddt|z(t)q(t)|=±23λm|tτ|1/3+o(|tτ|1/3)\frac{d}{dt}\lvert z(t)-q(t)\rvert=\pm\frac{2}{3}\lambda_{m}\lvert t-\tau\rvert^{-1/3}+o(\lvert t-\tau\rvert^{-1/3})  as tτ±t\rightarrow\tau^{\pm}.

  3. (c)(c)

    d2dt2|z(t)q(t)|=29λm|tτ|4/3+o(|tτ|4/3)\frac{d^{2}}{dt^{2}}\lvert z(t)-q(t)\rvert=-\frac{2}{9}\lambda_{m}\lvert t-\tau\rvert^{-4/3}+o(\lvert t-\tau\rvert^{-4/3})  as tτ±t\rightarrow\tau^{\pm}.

  4. (d)(d)

    limtτ±z(t)q(t)|z(t)q(t)|=eiθq,τ±\lim_{t\rightarrow\tau^{\pm}}\frac{z(t)-q(t)}{\lvert z(t)-q(t)\rvert}=e^{i\theta^{\pm}_{q,\tau}} exist.

2.2. Exclusion of two-body collisions for minimizers

In this subsection, we follow the local deformation method, which is one of the main approaches to excluding two-body collisions for minimizers, see [3, 15, 22]. More precisely, under the blow-up technique, we can construct a new path without any two-body collision, and its action is strictly below the original colliding path, so that the minimizer does not involve any two-body collision.

We first list some useful results. For details of the proofs, we refer to [8, 10, 14, 22].

Given an action functional 𝒜a,b\mathcal{A}_{a,b} on ΩA,Ba,b\Omega^{a,b}_{A,B} as in (5). Consider a colliding path z(t)z(t) of the restricted one-center-two-body problem (2) with Δξ(z)(τδ,τ+δ)={τ}\Delta_{\xi}(z)\cap(\tau-\delta,\tau+\delta)=\{\tau\}, ξ{c,q}\xi\in\{c,q\}, for some δ>0\delta>0.

Proposition 2.6.

If |θξ,τ+θξ,τ|<2π\lvert\theta_{\xi,\tau}^{+}-\theta_{\xi,\tau}^{-}\rvert<2\pi where θξ,τ±\theta_{\xi,\tau}^{\pm} is given by Proposition 2.4, 2.5, then for any δ>0\delta^{*}>0 sufficiently small, there exists an ϵ=ϵ(δ)>0\epsilon=\epsilon(\delta^{*})>0 with limδ0ϵ(δ)=0\lim_{\delta^{*}\rightarrow 0}\epsilon(\delta^{*})=0 and a collision-free path ηH1([τδ,τ+δ],)\eta\in H^{1}([\tau-\delta,\tau+\delta],\mathbb{C}) such that

  1. (a)(a)

    η(t)=z(t)\eta(t)=z(t) for any t[τδ,τ+δ]\[τδ,τ+δ]t\in[\tau-\delta,\tau+\delta]\backslash[\tau-\delta^{*},\tau+\delta^{*}].

  2. (b)(b)

    |η(t)ξ(t)|ϵ\lvert\eta(t)-\xi(t)\rvert\leq\epsilon for any t[τδ,τ+δ]t\in[\tau-\delta^{*},\tau+\delta^{*}].

  3. (c)(c)

    Arg(η(τ±δ)ξ(τ±δ))=Arg(z(τ±δ)ξ(τ±δ))Arg(\eta(\tau\pm\delta^{*})-\xi(\tau\pm\delta^{*}))=Arg(z(\tau\pm\delta^{*})-\xi(\tau\pm\delta^{*})).

  4. (d)(d)

    𝒜τδ,τ+δ(η)<𝒜τδ,τ+δ(z)\mathcal{A}_{\tau-\delta,\tau+\delta}(\eta)<\mathcal{A}_{\tau-\delta,\tau+\delta}(z).

For a colliding path z(t)z(t) of (2) with Δξ(z)[τ,τ+δ)={τ}\Delta_{\xi}(z)\cap[\tau,\tau+\delta)=\{\tau\} or Δξ(z)(τδ,τ]={τ}\Delta_{\xi}(z)\cap(\tau-\delta,\tau]=\{\tau\}, ξ{c,q}\xi\in\{c,q\}, for some δ>0\delta>0, we have the following results.

Proposition 2.7.

Given θ0\theta_{0}\in\mathbb{R}. If |θξ,τ+θ0|<π\lvert\theta_{\xi,\tau}^{+}-\theta_{0}\rvert<\pi, where θξ,τ+\theta_{\xi,\tau}^{+} is given by Proposition 2.4, 2.5, then for any δ>0\delta^{*}>0 sufficiently small, there exists an ϵ=ϵ(δ)>0\epsilon=\epsilon(\delta^{*})>0 with limδ0ϵ(δ)=0\lim_{\delta^{*}\rightarrow 0}\epsilon(\delta^{*})=0 and a collision-free path ηH1([τ,τ+δ],)\eta\in H^{1}([\tau,\tau+\delta],\mathbb{C}) such that

  1. (a)(a)

    η(t)=z(t)\eta(t)=z(t) for any t[τ+δ,τ+δ]t\in[\tau+\delta^{*},\tau+\delta].

  2. (b)(b)

    |η(t)ξ(t)|ϵ\lvert\eta(t)-\xi(t)\rvert\leq\epsilon for any t[τ,τ+δ]t\in[\tau,\tau+\delta^{*}].

  3. (c)(c)

    Arg(η(τ)ξ(τ))=θ0Arg(\eta(\tau)-\xi(\tau))=\theta_{0} and Arg(η(τ+δ)ξ(τ+δ))=Arg(z(τ+δ)ξ(τ+δ))Arg(\eta(\tau+\delta^{*})-\xi(\tau+\delta^{*}))=Arg(z(\tau+\delta^{*})-\xi(\tau+\delta^{*})).

  4. (d)(d)

    𝒜τ,τ+δ(η)<𝒜τ,τ+δ(z)\mathcal{A}_{\tau,\tau+\delta}(\eta)<\mathcal{A}_{\tau,\tau+\delta}(z).

Proposition 2.8.

Given θ0\theta_{0}\in\mathbb{R}. If |θξ,τθ0|<π\lvert\theta_{\xi,\tau}^{-}-\theta_{0}\rvert<\pi, where θξ,τ\theta_{\xi,\tau}^{-} is given by Proposition 2.4, 2.5, then for any δ>0\delta^{*}>0 sufficiently small, there exists an ϵ=ϵ(δ)>0\epsilon=\epsilon(\delta^{*})>0 with limδ0ϵ(δ)=0\lim_{\delta^{*}\rightarrow 0}\epsilon(\delta^{*})=0 and a collision-free path ηH1([τδ,τ],)\eta\in H^{1}([\tau-\delta,\tau],\mathbb{C}) such that

  1. (a)(a)

    η(t)=z(t)\eta(t)=z(t) for any t[τδ,τδ]t\in[\tau-\delta,\tau-\delta^{*}].

  2. (b)(b)

    |η(t)ξ(t)|ϵ\lvert\eta(t)-\xi(t)\rvert\leq\epsilon for any t[τδ,τ]t\in[\tau-\delta^{*},\tau].

  3. (c)(c)

    Arg(η(τ)ξ(τ))=θ0Arg(\eta(\tau)-\xi(\tau))=\theta_{0} and Arg(η(τδ)ξ(τδ))=Arg(z(τδ)ξ(τδ))Arg(\eta(\tau-\delta^{*})-\xi(\tau-\delta^{*}))=Arg(z(\tau-\delta^{*})-\xi(\tau-\delta^{*})).

  4. (d)(d)

    𝒜τδ,τ(η)<𝒜τδ,τ(z)\mathcal{A}_{\tau-\delta,\tau}(\eta)<\mathcal{A}_{\tau-\delta,\tau}(z).

As an application, we prove the following result.

Theorem 2.9.

Given T>0T>0, a collision Kepler system (q,c)(q,c) satisfying (1) and (Q1)(Q3)(Q1)-(Q3). Let 𝒜T,0(𝒜0,T)\mathcal{A}_{-T,0}\ (\mathcal{A}_{0,T}) be an action functional on ΩA,A0T,0(ΩA0,A0,T)\Omega^{-T,0}_{A,A_{0}}\ (\Omega^{0,T}_{A_{0},A}) as in (5) and assume z(t)z(t) is an associated minimizer. Then z(t)z(t) possesses no two-body collision on (T,0](or[0,T))(-T,0]\ (\text{or}\ [0,T)).

Proof.

According to the reversibility of (2), it sufficient to prove for any t(T,0]t\in(-T,0]. Since (2) is also symmetric with respect to the real axis, without loss of generality, we assume z(t)=r(t)eiθ(t)z(t)=r(t)e^{i\theta(t)} satisfies θ(t)[0,π]\theta(t)\in[0,\pi] for all t[T,0]t\in[-T,0].

Suppose Δq(z)Δc(z)\Delta_{q}(z)\cup\Delta_{c}(z)\neq\emptyset. Choose a collision moment τΔξ(z)\tau\in\Delta_{\xi}(z) with ξ{c,q}\xi\in\{c,q\}. We first observe that zz is impossible to experience a two-body collision with ξ\xi at t=0t=0 since q=c=0q=c=0 at t=0t=0. This tells us that τ0\tau\neq 0.

If τ(T,0)\tau\in(-T,0), by Proposition 2.4, 2.5 and the assumption θ[0,π]\theta\in[0,\pi], the limit angles θξ,τ±[0,π]\theta^{\pm}_{\xi,\tau}\in[0,\pi] exist. According to Proposition 2.6, we get a contradiction to the assumption that zz is a minimizer. ∎

3. Monotonicities in restricted one-center-two-body problem

In restricted one-center-two-body problem, we explore several monotonicities for both the potential function UU and the action minimizer zz. Based on these important properties, it is available to prove Sundman-Sperling estimates for the action minimizer of this problem, i.e. Theorem 1.1.

3.1. Monotonicity of the potential function UU

In this subsection, to characterize the restricted one-center-two-body problem (2), we firstly reveal the monotonicity of the potential U(z,t)U(z,t), which is one of the fundamental property in this problem. With this monotonicity, a series of nontrivial conclusions can be proven in the later sections.

Lemma 3.1.

Given potential UU as in (3). For any fixed tt\in\mathbb{R} and r+r\in\mathbb{R}^{+}, we have

U(reiθ1,t)<U(reiθ2,t), 0|θ1|<|θ2|π.U(re^{i\theta_{1}},t)<U(re^{i\theta_{2}},t),\ \forall\ 0\leq|\theta_{1}|<|\theta_{2}|\leq\pi.

In particular, for any η[π,π]\{0}\eta\in[-\pi,\pi]\backslash\{0\}, we have U(r,t)<U(reiη,t)U(r,t)<U(re^{i\eta},t).

Proof.

Let tt\in\mathbb{R} and u=reiθu=re^{i\theta} with r+r\in\mathbb{R}^{+} and θ[π,0]\theta\in[-\pi,0] (resp. [0,π][0,\pi]), then we can write U(u,t)U(u,t) as

U(u,t)=μ|u|+m|uq(t)|=μr+m(r2+|q(t)|2+2r|q(t)|cosθ)1/2.\displaystyle U(u,t)=\frac{\mu}{\lvert u\rvert}+\frac{m}{\lvert u-q(t)\rvert}=\frac{\mu}{r}+\frac{m}{\left(r^{2}+\lvert q(t)\rvert^{2}+2r\lvert q(t)\rvert\cos\theta\right)^{1/2}}.

We see that U(u,t)U(u,t) is strictly increasing (resp. strictly decreasing) on [0,π][0,\pi] (resp. [π,0][-\pi,0]) with respect to θ\theta. Hence, the lemma holds. ∎

3.2. Monotonicity of the arguments for an action minimizer zz and z˙\dot{z}

Based on the monotonicity of the potential function UU in Lemma 3.1, we can further explore the monotonicity of the argument for the action minimizer.

Given T>0T>0. Assume z(t)z(t) is the action minimizer of 𝒜T,0\mathcal{A}_{-T,0} (5) on the path space ΩA,A0T,0H1([T,0],)\Omega^{-T,0}_{A,A_{0}}\subset H^{1}([-T,0],\mathbb{C}). By Lemma 2.1, there exists a t0(0,T)t_{0}\in(0,T) such that z(t)z(t) is smooth on [t0,0)[-t_{0},0) (resp. (0,t0](0,t_{0}]). Next, we consider the following two cases: z(0)0z(0)\neq 0 and z(0)=0z(0)=0. For the later case, we need to assume 0A00\in A_{0}. The former means there is no three-body collision at moment 0. Therefore, we can write θ(0)=limt0θ(t)\theta(0)=\lim_{t\rightarrow 0^{-}}\theta(t) (resp. θ(0)=limt0+θ(t)\theta(0)=\lim_{t\rightarrow 0^{+}}\theta(t)). The latter means there is a three-body collision at moment 0. Since these two cases have different nature, in this subsection, we will deal with them separately.

Firstly, we assume z(0)0z(0)\neq 0. Since the restricted one-center-two-body problem (2) satisfies the symmetry (4), we only need to consider z(t)z(t) in t[t0,0]t\in[-t_{0},0]. Moreover, since the potential UU is symmetric with respect to the real axis, without loss of generality, we also assume θ(t0)[0,π]\theta(-t_{0})\in[0,\pi], that is z(t0)+:={x+iy:y0}{0}z(-t_{0})\in\mathbb{C}^{+}_{*}:=\{x+iy\in\mathbb{C}:y\geq 0\}\setminus\{0\}. Then we prove the monotonicity of the argument θ(t)\theta(t) as follows.

Lemma 3.2.

Given a t0(0,T]t_{0}\in(0,T] and an action minimizer z(t)=r(t)eθ(t)iz(t)=r(t)e^{\theta(t)i} of 𝒜T,0\mathcal{A}_{-T,0} on ΩA,A0T,0\Omega^{-T,0}_{A,A_{0}}. Assume z(t)z(t) is smooth on (t0,0)(-t_{0},0), z(0)0z(0)\neq 0 and z(t0)+z(-t_{0})\in\mathbb{C}^{+}_{*}, then

  1. (a)(a)

    the argument θ(t)\theta(t) has no local maximum in {t(t0,0):θ(t)(0,π)}\{t\in(-t_{0},0):\theta(t)\in(0,\pi)\}. In particular, θ¨(t)0\ddot{\theta}(t)\geq 0 if θ˙(t)=0\dot{\theta}(t)=0.

  2. (b)(b)

    the argument θ(t)\theta(t) has no local minimum in {t(t0,0):θ(t)(π,0)}\{t\in(-t_{0},0):\theta(t)\in(-\pi,0)\}. In particular, θ¨(t)0\ddot{\theta}(t)\leq 0 if θ˙(t)=0\dot{\theta}(t)=0.

  3. (c)(c)

    if there exists a moment t~(t0,0)\tilde{t}\in(-t_{0},0) such that θ˙(t~)=0\dot{\theta}(\tilde{t})=0 and θ¨(t~)=0\ddot{\theta}(\tilde{t})=0, then the argument θ(t)0\theta(t)\equiv 0 or θ(t)π\theta(t)\equiv\pi.

Proof.

To prove (a). By contradiction, there exists t^,t^1,t^2(t0,0)\hat{t},\hat{t}_{1},\hat{t}_{2}\in(-t_{0},0) and ϵ>0\epsilon>0 with t^1<t^ϵ<t^<t^+ϵ<t^2\hat{t}_{1}<\hat{t}-\epsilon<\hat{t}<\hat{t}+\epsilon<\hat{t}_{2} such that θ(t^1)=θ(t^2)<θ(t)\theta(\hat{t}_{1})=\theta(\hat{t}_{2})<\theta(t) for t(t^ϵ,t^+ϵ)t\in(\hat{t}-\epsilon,\hat{t}+\epsilon). Define θ^(t):=θ(t^1)\hat{\theta}(t):=\theta(\hat{t}_{1}) on [t^1,t^2][\hat{t}_{1},\hat{t}_{2}] and θ^(t):=θ(t)\hat{\theta}(t):=\theta(t) on [T,0]\[t^1,t^2][-T,0]\backslash[\hat{t}_{1},\hat{t}_{2}], and let z^(t)=r(t)eiθ^(t)\hat{z}(t)=r(t)e^{i\hat{\theta}(t)}. Note that, by Lemma 3.1, U(z,t)U(z^,t)U(z,t)\geq U(\hat{z},t) and θ^˙(t)=0\dot{\hat{\theta}}(t)=0 on (t^1,t^2)(\hat{t}_{1},\hat{t}_{2}), and U(z,t)>U(z^,t)U(z,t)>U(\hat{z},t) on (t^ϵ,t^+ϵ)(\hat{t}-\epsilon,\hat{t}+\epsilon). Then

𝒜T,0(z)𝒜T,0(z^)\displaystyle\mathcal{A}_{-T,0}(z)-\mathcal{A}_{-T,0}(\hat{z}) =t^1t^2r2θ˙2(t)r2θ^˙2(t)+U(z,t)U(z^,t)dt\displaystyle=\int^{\hat{t}_{2}}_{\hat{t}_{1}}r^{2}\dot{\theta}^{2}(t)-r^{2}\dot{\hat{\theta}}^{2}(t)+U(z,t)-U(\hat{z},t)dt
t^ϵt^+ϵr2θ˙2(t)+U(z,t)U(z^,t)dt>0.\displaystyle\geq\int^{\hat{t}+\epsilon}_{\hat{t}-\epsilon}r^{2}\dot{\theta}^{2}(t)+U(z,t)-U(\hat{z},t)dt>0.

This gives a contradiction to the minimizer zz, (a) holds. Since 𝒜T,0\mathcal{A}_{-T,0} is invariant under the complex conjugation, we can also prove (b), similarly.

To prove (c). If the moment t~(t0,0)\tilde{t}\in(-t_{0},0) satisfies θ˙(t~)=θ¨(t~)=0\dot{\theta}(\tilde{t})=\ddot{\theta}(\tilde{t})=0, then we have

z¨(t~)=(r¨(t~)r(t~)θ˙(t~)2)eiθ(t~)+(2r˙(t~)θ˙(t~)+r(t~)θ¨(t~))ei(θ(t~)+π2)=r¨(t~)eiθ(t~).\displaystyle\ddot{z}(\tilde{t})=\left(\ddot{r}(\tilde{t})-r(\tilde{t})\dot{\theta}(\tilde{t})^{2}\right)e^{i\theta(\tilde{t})}+\left(2\dot{r}(\tilde{t})\dot{\theta}(\tilde{t})+r(\tilde{t})\ddot{\theta}(\tilde{t})\right)e^{i\left(\theta(\tilde{t})+\frac{\pi}{2}\right)}=\ddot{r}(\tilde{t})e^{i\theta(\tilde{t})}.

This implies θ(t~){0,π}\theta(\tilde{t})\in\{0,\pi\} since the force of z(t~)z(\tilde{t}) never points to the original unless z(t~){0}z(\tilde{t})\in\mathbb{R}\setminus\{0\}. By the existence and uniqueness theorem, the minimizer zz lies on the real axis on [T,0][-T,0]. This implies (c). ∎

Corollary 3.3.

Given a t0(0,T]t_{0}\in(0,T] and an action minimizer z(t)=r(t)eθ(t)iz(t)=r(t)e^{\theta(t)i} of 𝒜T,0\mathcal{A}_{-T,0} on ΩA,A0T,0\Omega^{-T,0}_{A,A_{0}}. Assume z(t)+z(t)\in\mathbb{C}^{+}_{*} is smooth on (t0,0)(-t_{0},0), then one of the following situations must happen.

  1. (a)(a)

    the argument θ(t)0\theta(t)\equiv 0 on [t0,0][-t_{0},0].

  2. (b)(b)

    there is a unique t[t0,0]t_{*}\in[-t_{0},0] such that θ(t)0\theta(t_{*})\geq 0, θ\theta is strictly decreasing on [t0,t][-t_{0},t_{*}] and strictly increasing on [t,0][t_{*},0].

  3. (c)(c)

    the argument θ(t)π\theta(t)\equiv\pi on [t0,0][-t_{0},0].

Proof.

By assumption, for any t~(t0,0)\tilde{t}\in(-t_{0},0) with θ˙(t~)=0\dot{\theta}(\tilde{t})=0, Lemma 3.2(a) implies that θ¨(t~)0\ddot{\theta}(\tilde{t})\geq 0. If there is a t~0\tilde{t}_{0} such that θ¨(t~0)=0\ddot{\theta}(\tilde{t}_{0})=0, then by Lemma 3.2(c), (a) or (c) must happen. Otherwise, θ¨(t~)>0\ddot{\theta}(\tilde{t})>0 for all critical point t~\tilde{t}. If there exists two moments t~1<t~2(t0,0)\tilde{t}_{1}<\tilde{t}_{2}\in(-t_{0},0) such that θ¨(t~i)>0\ddot{\theta}(\tilde{t}_{i})>0, i=1,2i=1,2, then by continuity, there must be a moment t^(t~1,t~2)\hat{t}\in(\tilde{t}_{1},\tilde{t}_{2}) such that θ˙(t^)=0\dot{\theta}(\hat{t})=0 and θ¨(t^)0\ddot{\theta}(\hat{t})\leq 0, which contradicts the argument above. Therefore, the number of the critical points is at most one, which is a local minimum. This implies (b). ∎

Now, we assume 0A00\in A_{0} and z(0)=0z(0)=0, i.e. the three-body collision occurs at moment 0. Due to the same reason, it is sufficient to consider z(t)z(t) with z(t0)+z(-t_{0})\in\mathbb{C}^{+}_{*} in t[t0,0)t\in[-t_{0},0). Then we prove the following monotonicity for the argument θ(t)\theta(t).

Lemma 3.4.

Given a t0(0,T)t_{0}\in(0,T) and an action minimizer z(t)=r(t)eθ(t)iz(t)=r(t)e^{\theta(t)i} of 𝒜T,0\mathcal{A}_{-T,0} on ΩA,A0T,0\Omega^{-T,0}_{A,A_{0}}. Assume z(t)z(t) is smooth on (t0,0)(-t_{0},0), z(0)=0z(0)=0 and z(t0)+z(-t_{0})\in\mathbb{C}^{+}_{*}, then one of the following situations must happen.

  1. (a)(a)

    the argument θ(t)0\theta(t)\equiv 0 on [t0,0)[-t_{0},0).

  2. (b)(b)

    the argument θ(t)\theta(t) is strictly decreasing on [t0,0)[-t_{0},0) and the limit angle θ=limt0θ(t)\theta^{-}_{*}=\lim_{t\rightarrow 0^{-}}\theta(t) exists in [0,π)[0,\pi).

  3. (c)(c)

    the argument θ(t)π\theta(t)\equiv\pi on [t0,0)[-t_{0},0).

Proof.

Let I={t(t0,0):θ(t)(π,0)}I=\{t\in(-t_{0},0):\theta(t)\in(-\pi,0)\}. We define θ^1(t)=0\hat{\theta}_{1}(t)=0 on II and θ^1(t)=θ(t)\hat{\theta}_{1}(t)=\theta(t) on [T,0)I[-T,0)\setminus I and let z^1(t)=r(t)eiθ^1(t)\hat{z}_{1}(t)=r(t)e^{i\hat{\theta}_{1}(t)}. By Lemma 3.1, U(z,t)>U(z^1,t)U(z,t)>U(\hat{z}_{1},t) and θ^˙1(t)=0\dot{\hat{\theta}}_{1}(t)=0 on II. Similar to the proof of Lemma 3.2(a), we obtain 𝒜T,0(z)>𝒜T,0(z^1)\mathcal{A}_{-T,0}(z)>\mathcal{A}_{-T,0}(\hat{z}_{1}), which is a contradiction to minimizer zz. Then z(t)+z(t)\in\mathbb{C}^{+}_{*} on [t0,0)[-t_{0},0).

Applying the approaches in Lemma 3.2 and Corollary 3.3, we can similarly show that if both (a) and (c) do not happen on (t0,0)(-t_{0},0), then there exists t[t0,0]t_{*}\in[-t_{0},0], such that θ(t)\theta(t) is strictly decreasing in [t0,t][-t_{0},t_{*}] and strictly increasing in [t,0][t_{*},0]. Define another path z^2(t)=r(t)eiθ^2(t)\hat{z}_{2}(t)=r(t)e^{i\hat{\theta}_{2}(t)} with θ^2(t)=θ(t)\hat{\theta}_{2}(t)=\theta(t) on [T,t][-T,t_{*}] and θ^2(t)=θ(t)\hat{\theta}_{2}(t)=\theta(t_{*}) on [t,0][t_{*},0]. If t<0t_{*}<0, by using Lemma 3.1 again, U(z,t)>U(z^2,t)U(z,t)>U(\hat{z}_{2},t) and θ^˙2=0\dot{\hat{\theta}}_{2}=0 on (t,0)(t_{*},0). Then we have

𝒜T,0(z)𝒜T,0(z^2)t0r2θ˙2(t)+U(z,t)U(z^2,t)dt>0.\displaystyle\mathcal{A}_{-T,0}(z)-\mathcal{A}_{-T,0}(\hat{z}_{2})\geq\int^{0}_{t_{*}}r^{2}\dot{\theta}^{2}(t)+U(z,t)-U(\hat{z}_{2},t)dt>0.

This leads to a contradiction to minimizer zz and implies (b), i.e. t=0t_{*}=0. The proof is completed. ∎

Under the assumption z(0)=0z(0)=0, we can further prove the monotonicity of the argument for the velocity z˙(t)\dot{z}(t). We first put z˙\dot{z} in the polar coordinates, z˙(t)=rd(t)eθd(t)i\dot{z}(t)=r_{d}(t)e^{\theta_{d}(t)i}, with rd+r_{d}\in\mathbb{R}^{+} and θd[π,π)\theta_{d}\in[-\pi,\pi). Before we explore the monotonicity of θd\theta_{d}, we introduce the following lemma.

Lemma 3.5.

The derivative of argument θd(t)\theta_{d}(t) is

(10) θ˙d(t)=1rd(t)z¨(t)ei(θd(t)+π2).\dot{\theta}_{d}(t)=\frac{1}{r_{d}(t)}\ddot{z}(t)\cdot e^{i(\theta_{d}(t)+\frac{\pi}{2})}.

Moreover,

  • (a)(a)

    if θd(t)(arg(z¨(t)),arg(z¨(t))+π)\theta_{d}(t)\in(\arg(\ddot{z}(t)),\arg(\ddot{z}(t))+\pi), then θ˙d(t)<0\dot{\theta}_{d}(t)<0.

  • (b)(b)

    if θd(t)(arg(z¨(t))π,arg(z¨(t)))\theta_{d}(t)\in(\arg(\ddot{z}(t))-\pi,\arg(\ddot{z}(t))), then θ˙d(t)>0\dot{\theta}_{d}(t)>0.

Proof.

Since eiθd(t)=z˙(t)rd(t)e^{i\theta_{d}(t)}=\frac{\dot{z}(t)}{r_{d}(t)}, by differentiating tt on both sides, we have

θ˙d(t)ei(θd(t)+π2)=z¨(t)rd(t)r˙d(t)rd(t)2z˙(t).\dot{\theta}_{d}(t)e^{i(\theta_{d}(t)+\frac{\pi}{2})}=\frac{\ddot{z}(t)}{r_{d}(t)}-\frac{\dot{r}_{d}(t)}{r_{d}(t)^{2}}\dot{z}(t).

Then taking the inner product with ei(θd(t)+π2)e^{i(\theta_{d}(t)+\frac{\pi}{2})} on both sides, we obtain (10). Moreover, (a) and (b) follow from the fact that θ˙d(t)<0\dot{\theta}_{d}(t)<0 (resp. >0>0) if and only if

θd(t)+π2(argz¨(t)+π2,argz¨(t)+3π2)(resp.(argz¨(t)π2,argz¨(t)+π2)).\theta_{d}(t)+\frac{\pi}{2}\in\left(\arg\ddot{z}(t)+\frac{\pi}{2},\ \arg\ddot{z}(t)+\frac{3\pi}{2}\right)\ \left(\mathrm{resp.}\left(\arg\ddot{z}(t)-\frac{\pi}{2},\ \arg\ddot{z}(t)+\frac{\pi}{2}\right)\right).

Now we are ready to prove the following lemma.

Lemma 3.6.

Given a t0(0,T)t_{0}\in(0,T) and an action minimizer z(t)=r(t)eθ(t)iz(t)=r(t)e^{\theta(t)i} of 𝒜T,0\mathcal{A}_{-T,0} on ΩA,A0T,0\Omega^{-T,0}_{A,A_{0}}. Assume z(t)z(t) is smooth on (t0,0)(-t_{0},0), z(0)=0z(0)=0, and z(t0)+z(-t_{0})\in\mathbb{C}^{+}_{*}. Then the argument θd(t)\theta_{d}(t) satisfies the following properties:

  1. (a)(a)

    if θ(t0)=0\theta(-t_{0})=0, then there exists an ϵ(0,t0)\epsilon\in(0,t_{0}) such that the argument θd(t)π\theta_{d}(t)\equiv\pi for all t(ϵ,0)t\in(-\epsilon,0).

  2. (b)(b)

    if θ(t0)(0,π)\theta(-t_{0})\in(0,\pi), there exists an ϵ(0,t0)\epsilon\in(0,t_{0}) such that the argument θd(t)\theta_{d}(t) is strictly decreasing on (ϵ,0)(-\epsilon,0).

  3. (c)(c)

    if θ(t0)=π\theta(-t_{0})=\pi, then the argument θd(t)\theta_{d}(t) either satisfies θd(t){0,π}\theta_{d}(t)\in\{0,\pi\} on {t(t0,0):z˙(t)0}\{t\in(-t_{0},0):\dot{z}(t)\neq 0\} or there exists an ϵ(0,t0)\epsilon\in(0,t_{0}) such that θd(t)\theta_{d}(t) is strictly decreasing on (ϵ,0)(-\epsilon,0).

Moreover, if θ(t)π\theta(t)\not\equiv\pi on (t0,0)(-t_{0},0), then the limit limt0|θ(t)θd(t)|=π\lim_{t\rightarrow 0^{-}}\lvert\theta(t)-\theta_{d}(t)\rvert=\pi for any θ(t0)[0,π]\theta(-t_{0})\in[0,\pi].

Proof.

Firstly, (a) follows from Lemma 3.4 and the assumption z(0)=0z(0)=0 directly.

To prove (b). By Lemma 3.5 (a), it is sufficient to show that there exists an ϵ>0\epsilon>0 sufficiently small such that θd(t)(arg(z¨(t)),arg(z¨(t))+π)\theta_{d}(t)\in(\arg(\ddot{z}(t)),\arg(\ddot{z}(t))+\pi) for all t(ϵ,0)t\in(-\epsilon,0). From Lemma 3.4(b)(b), θ(t)\theta(t) is strictly decreasing to θ0\theta^{-}_{*}\geq 0 on (t0,0)(-t_{0},0), which implies that

(11) θ(t)(0,π)andθd(t)(θ(t)π,θ(t)),t(t0,0).\theta(t)\in(0,\pi)\quad\mathrm{and}\quad\theta_{d}(t)\in(\theta(t)-\pi,\theta(t)),\ \forall t\in(-t_{0},0).

We see that y(t)>0y(t)>0 (z(t)=x(t)+iy(t)z(t)=x(t)+iy(t)) for any t(t0,0)t\in(-t_{0},0). Since the force is always pointing downward, then we have

(12) argz¨(t)(π,θ(t)π),t(t0,0).\arg\ddot{z}(t)\in(-\pi,\theta(t)-\pi),\ \forall t\in(-t_{0},0).

Moreover, there exists an ϵ(0,t0)\epsilon\in(0,t_{0}) such that y(t)y(t) is strictly decrease to 0 during t(ϵ,0)t\in(-\epsilon,0), i.e.

(13) θd(t)(π,0),t(ϵ,0),\theta_{d}(t)\in(-\pi,0),\ \forall t\in(-\epsilon,0),

Combining (11), (12) and (13), we have

θd(t)(θ(t)π,0)(argz¨(t),argz¨(t)+π),t[ϵ,0),\theta_{d}(t)\in(\theta(t)-\pi,0)\subset(\arg\ddot{z}(t),\arg\ddot{z}(t)+\pi),\ \forall t\in[-\epsilon,0),

and prove that θ˙d(t)<0\dot{\theta}_{d}(t)<0 on (ϵ,0)(-\epsilon,0).

To prove (c). By Lemma 3.4, θ(t)\theta(t) is either identically π\pi or strictly decreasing to θ0\theta_{*}^{-}\geq 0. The former case implies that θ(t){0,π}\theta(t)\in\{0,\pi\} on {t(t0,0):z˙0}\{t\in(-t_{0},0):\dot{z}\neq 0\}. For the latter case, we have θ(t)(0,π)\theta(t)\in(0,\pi) for any t(t0,0)t\in(-t_{0},0). Then the proof is similar to the case (b).

To see limt0|θ(t)θd(t)|=π\lim_{t\rightarrow 0^{-}}|\theta(t)-\theta_{d}(t)|=\pi. According to the assumption z(0)=0z(0)=0, for any sequence of moments tk0t_{k}\rightarrow 0^{-}, there exists a sequence tk(tk,0)t_{k}^{\prime}\in(t_{k},0) such that

z˙(tk)=|tk|1(z(0)z(tk))=|tk|1z(tk)=r(tk)|tk|ei(θ(tk)+π).\dot{z}(t_{k}^{\prime})=\lvert t_{k}\rvert^{-1}(z(0)-z(t_{k}))=-\lvert t_{k}\rvert^{-1}z(t_{k})=\frac{r(t_{k})}{\lvert t_{k}\rvert}e^{i(\theta(t_{k})+\pi)}.

By Lemma 3.4, the argument θ(t)\theta(t) is always non-increasing and converging to θ0\theta_{*}^{-}\geq 0 as t0t\rightarrow 0^{-}, then we have limk+θd(tk)=limk+θ(tk)+π=θ+π\lim_{k\rightarrow+\infty}\theta_{d}(t_{k}^{\prime})=\lim_{k\rightarrow+\infty}\theta(t_{k})+\pi=\theta_{*}^{-}+\pi. Finally, by the assumption θ(t)π\theta(t)\not\equiv\pi and (a)(c)(a)-(c), there exists an ϵ(0,t0)\epsilon\in(0,t_{0}) such that the argument θd(t)\theta_{d}(t) is monotonic in (ϵ,0)(-\epsilon,0), then we have limt0θd(t)=limk+θd(tk)=θ+π\lim_{t\rightarrow 0^{-}}\theta_{d}(t)=\lim_{k\rightarrow+\infty}\theta_{d}(t_{k}^{\prime})=\theta_{*}^{-}+\pi. The proof is now complete. ∎

From the previous lemmas, we obtain some monotonicities for the minimizer of 𝒜T,0\mathcal{A}_{-T,0} on ΩA,A0T,0\Omega^{-T,0}_{A,A_{0}}. By the reversibility of (2), we have the following analog results for the minimizer of 𝒜0,T\mathcal{A}_{0,T} on ΩA0,A0,T\Omega^{0,T}_{A_{0},A}.

Lemma 3.7.

Given a t0(0,T)t_{0}\in(0,T) and an action minimizer z(t)=r(t)eθ(t)iz(t)=r(t)e^{\theta(t)i} of 𝒜0,T\mathcal{A}_{0,T} on ΩA0,A0,T\Omega^{0,T}_{A_{0},A}. Assume z(t)+z(t)\in\mathbb{C}^{+}_{*} is smooth on (0,t0)(0,t_{0}), then one of the following situations must happen.

  1. (a)(a)

    the argument θ(t)0\theta(t)\equiv 0 on [0,t0][0,t_{0}].

  2. (b)(b)

    there is a unique t[0,t0]t_{*}\in[0,t_{0}] such that θ(t)0\theta(t_{*})\geq 0, θ\theta is strictly decreasing on [0,t0][0,t_{0}] and strictly increasing on [t,t0][t_{*},t_{0}].

  3. (c)(c)

    the argument θ(t)π\theta(t)\equiv\pi on [0,t0][0,t_{0}].

Lemma 3.8.

Given a t0(0,T)t_{0}\in(0,T) and an action minimizer z(t)=r(t)eθ(t)iz(t)=r(t)e^{\theta(t)i} of 𝒜0,T\mathcal{A}_{0,T} on ΩA0,A0,T\Omega^{0,T}_{A_{0},A}. Assume z(t)z(t) is smooth on (0,t0)(0,t_{0}), z(0)=0z(0)=0 and z(t0)+z(t_{0})\in\mathbb{C}^{+}_{*}, then one of the following situations must happen.

  1. (a)(a)

    the argument θ(t)0\theta(t)\equiv 0 on (0,t0](0,t_{0}].

  2. (b)(b)

    the argument θ(t)\theta(t) is strictly increasing on (0,t0](0,t_{0}] and the limit angle θ+=limt0+θ(t)\theta^{+}_{*}=\lim_{t\rightarrow 0^{+}}\theta(t) exists and non-negative.

  3. (c)(c)

    the argument θ(t)π\theta(t)\equiv\pi on (0,t0](0,t_{0}].

Lemma 3.9.

Given a t0(0,T)t_{0}\in(0,T) and an action minimizer z(t)=r(t)eθ(t)iz(t)=r(t)e^{\theta(t)i} of 𝒜0,T\mathcal{A}_{0,T} on ΩA0,A0,T\Omega^{0,T}_{A_{0},A}. Assume z(t)z(t) is smooth on (0,t0)(0,t_{0}), z(0)=0z(0)=0, and z(t0)+z(t_{0})\in\mathbb{C}^{+}_{*}. Then the argument θd(t)\theta_{d}(t) satisfies the following properties:

  1. (a)(a)

    if θ(t0)=0\theta(t_{0})=0, then the argument θd(t)π\theta_{d}(t)\equiv\pi for all t(0,t0)t\in(0,t_{0}).

  2. (b)(b)

    if θ(t0)(0,π)\theta(t_{0})\in(0,\pi), there exists an ϵ(0,t0)\epsilon\in(0,t_{0}) such that the argument θd(t)\theta_{d}(t) is strictly increasing on (0,ϵ)(0,\epsilon).

  3. (c)(c)

    if θ(t0)=π\theta(t_{0})=\pi, then the argument θd(t)\theta_{d}(t) is either θd(t)0\theta_{d}(t)\equiv 0 on (0,t0)(0,t_{0}) or there exists an ϵ(0,t0)\epsilon\in(0,t_{0}) such that θd(t)\theta_{d}(t) is strictly increasing on (0,ϵ)(0,\epsilon).

Moreover, the limit limt0+|θ(t)θd(t)|=π\lim_{t\rightarrow 0^{+}}\lvert\theta(t)-\theta_{d}(t)\rvert=\pi for any θ(t0)[0,π]\theta(t_{0})\in[0,\pi].

4. Asymptotic properties of minimizer near the three-body collision

Given T>0T>0 and a collision Kepler system (q,c)(q,c) which satisfies (1) and (Q1)(Q3)(Q1)-(Q3). Since the restricted one-center-two-body problem (2) is reversible, it is sufficient to consider our problem on [T,0][-T,0]. Let z(t)=r(t)eiθ(t)z(t)=r(t)e^{i\theta(t)} be the action minimizer of 𝒜T,0\mathcal{A}_{-T,0} on ΩA,A0T,0\Omega^{-T,0}_{A,A_{0}} with 0A00\in A_{0}. In this section, we aim to prove the Theorem 1.1, i.e. the Sundman-Sperling estimates of the minimizer zz near the three-body collision. The proof includes the following three steps:

  • By using the technique of critical and infliction points, we first show that the ratio a(t)=r(t)/|q(t)|a(t)=r(t)/|q(t)| admits both positive upper and lower bound, see Section 4.1.

  • By using the properties of a(t)a(t), we prove that the asymptotic limit θ\theta_{*}^{-} of θ(t)\theta(t) can only be 0 or π\pi near the three-body collision, see Section 4.2.

  • Based on the result θ{0,π}\theta_{*}^{-}\in\{0,\pi\} above, we can further improve the estimates of a(t)a(t) by using the technique of critical and infliction points again. This enhanced estimates are enough for us to complete the proof of Theorem 1.1, see Section 4.3.

Throughout this section, we assume z(0)=0z(0)=0. Without loss of generality, we further assume z(t)z(t) is smooth on [t0,0)[-t_{0},0) and z(t0)+z(-t_{0})\in\mathbb{C}^{+}_{*} for some t0(0,T]t_{0}\in(0,T], since 𝒜T,0\mathcal{A}_{-T,0} is invariant under the complex conjugation.

4.1. Asymptotic behavior of |z||z| near the three-body collision

In this section, we aim to prove Theorem 4.1, i.e. the ratio a(t)=r(t)/|q(t)|a(t)=r(t)/|q(t)| is both bounded from above and below by two positive numbers near t=0t=0.

Theorem 4.1.

Let z(t)=r(t)eiθ(t)z(t)=r(t)e^{i\theta(t)} be an action minimizer of 𝒜T,0\mathcal{A}_{-T,0} on ΩA,A0T,0\Omega^{-T,0}_{A,A_{0}}. If z(0)=0z(0)=0, then there exist an ϵ(0,T)\epsilon\in(0,T) and 0<ca<Ca<+0<c_{a}<C_{a}<+\infty such that ca<a(t)<Cac_{a}<a(t)<C_{a} for all t(ϵ,0)t\in(-\epsilon,0).

The following lemma is immediately obtained from Proposition 2.3, and provides more convenience to the later discussions.

Lemma 4.2.

There exist a δ>0\delta>0 small and 0<cq<Cq<+0<c_{q}<C_{q}<+\infty such that for any t(δ,0)t\in(-\delta,0), we have

(14) |q(t)|(cq|t|23,Cq|t|23),|q˙(t)|(cq|t|13,Cq|t|13)and|q¨(t)|(cq|t|43,Cq|t|43).\displaystyle\lvert q(t)\rvert\in(c_{q}\lvert t\rvert^{\frac{2}{3}},C_{q}\lvert t\rvert^{\frac{2}{3}}),\quad\lvert\dot{q}(t)\rvert\in(c_{q}\lvert t\rvert^{-\frac{1}{3}},C_{q}\lvert t\rvert^{-\frac{1}{3}})\quad\text{and}\quad\lvert\ddot{q}(t)\rvert\in(c_{q}\lvert t\rvert^{-\frac{4}{3}},C_{q}\lvert t\rvert^{-\frac{4}{3}}).

We first show the positive upper bound for a(t)a(t) near t=0t=0.

Lemma 4.3.

There exist δ>0\delta>0 and C^>0\hat{C}>0 such that r(t)C^|t|23r(t)\leq\hat{C}|t|^{\frac{2}{3}} for all t(δ,0)t\in(-\delta,0). Moreover, a(t)<C^/cqa(t)<\hat{C}/c_{q} for all t(δ,0)t\in(-\delta,0).

Proof.

We prove this lemma in two situations: θ(t)π\theta(t)\equiv\pi and θ(t)π\theta(t)\not\equiv\pi for any t[t0,0)t\in[-t_{0},0).

To the former case, if r(t0)(0,|q(t0)|)r(-t_{0})\in(0,|q(-t_{0})|), then by Lemma 4.2, we have r(t)|q(t)|<Cq|t|23r(t)\leq|q(t)|<C_{q}|t|^{\frac{2}{3}} for all t[t0,0)t\in[-t_{0},0), then this lemma follows.

If r(t0)(|q(t0)|,+)r(-t_{0})\in(|q(-t_{0})|,+\infty), then we define a (z^,q^)(\hat{z},\hat{q})-system, where q^(t):=q(t)\hat{q}(t):=q(t) on (t0,0)(-t_{0},0) with mass m+μm+\mu, and z^(t)\hat{z}(t) satisfies z^˙(t0)=z˙(t0)\dot{\hat{z}}(-t_{0})=\dot{z}(-t_{0}) and z^(0)=0\hat{z}(0)=0. Since (z^,q^)(\hat{z},\hat{q}) also forms a Kepler system, relatively, according to Proposition 2.3, we have

|z^(t)|=|z^(t)q(t)|+|q(t)|<(λm+μ+λμ)|t|2/3+o(|t|2/3),|\hat{z}(t)|=|\hat{z}(t)-q(t)|+|q(t)|<(\lambda_{m+\mu}+\lambda_{\mu})|t|^{2/3}+o(|t|^{2/3}),

where λm+μ=(9(m+μ)/2)1/3\lambda_{m+\mu}=(9(m+\mu)/2)^{1/3}. We claim that |z^(t)|>|z(t)||\hat{z}(t)|>|z(t)| for any t[t0,0)t\in[-t_{0},0). Otherwise, assume there exists a moment t^[t0,0)\hat{t}\in[-t_{0},0) such that z^(t^)=z(t^)\hat{z}(\hat{t})=z(\hat{t}) and z^˙(t^)z˙(t^)\dot{\hat{z}}(\hat{t})\geq\dot{z}(\hat{t}). Since the total force of z^\hat{z} in (z^,q^)(\hat{z},\hat{q})-system is always greater than the total force of zz in (q,c)(q,c)-system, whenever they are at the position, then z^(t)\hat{z}(t) reaches 0 earlier than z(t)z(t). This contradicts to the assumption that z^(0)=0\hat{z}(0)=0. Therefore, this claim holds. Finally, combing the arguments above, we conclude that |z(t)|<|z^(t)|<(λm+μ+λμ)|t|2/3+o(|t|2/3)|z(t)|<|\hat{z}(t)|<(\lambda_{m+\mu}+\lambda_{\mu})|t|^{2/3}+o(|t|^{2/3}) for any t(t0,0)t\in(-t_{0},0).

To prove the latter case. Fix any t1(0,t0)t_{1}\in(0,t_{0}). Since θ(t)π\theta(t)\not\equiv\pi, then by Lemma 3.4 (b), θ(t1)(θ,π)\theta(-t_{1})\in(\theta_{*}^{-},\pi) and θ(t)θ(t1)\theta(t)\leq\theta(-t_{1}) for any t(t1,0)t\in(-t_{1},0). Since zz˙=rr˙z\cdot\dot{z}=r\dot{r}, then rr¨zz¨=|z˙|2r˙20r\ddot{r}-z\cdot\ddot{z}=\lvert\dot{z}\rvert^{2}-\dot{r}^{2}\geq 0, which implies that rr¨zz¨r|z¨|r\ddot{r}\geq z\cdot\ddot{z}\geq-r\lvert\ddot{z}\rvert. By (2), we have

(15) r¨(t)|z¨(t)|μ|z(t)|2+m|z(t)q(t)|22max{μ|z(t)|2,m|z(t)q(t)|2}.-\ddot{r}(t)\leq\lvert\ddot{z}(t)\rvert\leq\frac{\mu}{\lvert z(t)\rvert^{2}}+\frac{m}{\lvert z(t)-q(t)\rvert^{2}}\leq 2\max\left\{\frac{\mu}{\lvert z(t)\rvert^{2}},\frac{m}{\lvert z(t)-q(t)\rvert^{2}}\right\}.

If r(t)|q(t)|r(t)\leq\lvert q(t)\rvert, then we obtain the desired result immediately by Lemma 4.2.

If r(t)>|q(t)|r(t)>\lvert q(t)\rvert, then due to the facts that a2(t)+1+2a(t)cosθ(t)1a^{2}(t)+1+2a(t)\cos\theta(t)\geq 1 for any θ(t)[0,π/2]\theta(t)\in[0,\pi/2] and a2(t)+1+2a(t)cosθ(t)sin2θ(t1)>0a^{2}(t)+1+2a(t)\cos\theta(t)\geq\sin^{2}\theta(-t_{1})>0 for any θ(t)(π/2,θ(t1))\theta(t)\in(\pi/2,\theta(-t_{1})), providing θ(t1)>π/2\theta(-t_{1})>\pi/2. Then we have

(16) m|z(t)q(t)|2=m(a(t)2+1+2a(t)cosθ(t))|q(t)|2msin2θ(t1)|q(t)|2.\frac{m}{\lvert z(t)-q(t)\rvert^{2}}=\frac{m}{(a(t)^{2}+1+2a(t)\cos\theta(t))\lvert q(t)\rvert^{2}}\leq\frac{m}{\sin^{2}\theta(-t_{1})\lvert q(t)\rvert^{2}}.

According to Lemma 4.2, (15) and (16), there exists a δ(0,t0)\delta\in(0,t_{0}) such that

(17) r¨(t)C|t|43,t(δ,0),-\ddot{r}(t)\leq C|t|^{-\frac{4}{3}},\quad\forall t\in(-\delta,0),

where C=2max{μ/cq2,m/(cqsinθ(t1))2,Cq}C=2\max\{\mu/c_{q}^{2},\ m/(c_{q}\sin\theta(-t_{1}))^{2},\ C_{q}\}.

Denote Δ:={t(δ,0),r(t)>|q(t)|}\Delta:=\{t\in(-\delta,0),\ r(t)>\lvert q(t)\rvert\}. Since Δ(δ,0)\Delta\subset(-\delta,0) is open, then we can write Δ=k1(ak,bk)\Delta=\cup_{k\geq 1}(a_{k},b_{k}), where r(ak)=|q(ak)|r(a_{k})=\lvert q(a_{k})\rvert and r(bk)=|q(bk)|r(b_{k})=\lvert q(b_{k})\rvert. Since r(ak)=|q(ak)|r(a_{k})=\lvert q(a_{k})\rvert and r(t)>|q(t)|r(t)>\lvert q(t)\rvert for any t(ak,bk)t\in(a_{k},b_{k}) and kk, by (14)(\ref{eqn:sundman}), we have

(18) 0<r˙(ak)ddt|q(ak)|Cq|ak|13.\displaystyle 0<-\dot{r}(a_{k})\leq-\frac{d}{dt}\lvert q(a_{k})\rvert\leq C_{q}\lvert a_{k}\rvert^{-\frac{1}{3}}.

By integration, for any t(ak,bk)t\in(a_{k},b_{k}), from (17)(\ref{eqn:-ddot r leq 2}) and (18)(\ref{eqn:-dot r a_k}), we compute that

r(t)\displaystyle r(t) =\displaystyle= r(bk)+tbk(r˙(ak)aksr¨(τ)𝑑τ)𝑑s\displaystyle r(b_{k})+\int^{b_{k}}_{t}\left(-\dot{r}(a_{k})-\int^{s}_{a_{k}}\ddot{r}(\tau)d\tau\right)ds
\displaystyle\leq Cq|bk|23+tbk(Cq|ak|13+aksC|τ|43𝑑τ)𝑑s\displaystyle C_{q}\lvert b_{k}\rvert^{\frac{2}{3}}+\int^{b_{k}}_{t}\left(C_{q}\lvert a_{k}\rvert^{-\frac{1}{3}}+\int^{s}_{a_{k}}C\lvert\tau\rvert^{-\frac{4}{3}}d\tau\right)ds
=\displaystyle= Cq|bk|23+(bkt)Cq|ak|13+tbk3C(|s|13|ak|13)𝑑s\displaystyle C_{q}\lvert b_{k}\rvert^{\frac{2}{3}}+(b_{k}-t)C_{q}\lvert a_{k}\rvert^{-\frac{1}{3}}+\int^{b_{k}}_{t}3C\left(\lvert s\rvert^{-\frac{1}{3}}-\lvert a_{k}\rvert^{-\frac{1}{3}}\right)ds
=\displaystyle= Cq|bk|23+(bkt)Cq|ak|13+3C(32(|t|23|bk|23)(bkt)|ak|13)\displaystyle C_{q}\lvert b_{k}\rvert^{\frac{2}{3}}+(b_{k}-t)C_{q}\lvert a_{k}\rvert^{-\frac{1}{3}}+3C\left(\frac{3}{2}\left(\lvert t\rvert^{\frac{2}{3}}-\lvert b_{k}\rvert^{\frac{2}{3}}\right)-(b_{k}-t)\lvert a_{k}\rvert^{-\frac{1}{3}}\right)
=\displaystyle= 92C|t|23(92CCq)|bk|23(3CCq)(bkt)|ak|13\displaystyle\frac{9}{2}C\lvert t\rvert^{\frac{2}{3}}-\left(\frac{9}{2}C-C_{q}\right)\lvert b_{k}\rvert^{\frac{2}{3}}-\left(3C-C_{q}\right)(b_{k}-t)\lvert a_{k}\rvert^{-\frac{1}{3}}
<\displaystyle< 92C|t|23,\displaystyle\frac{9}{2}C\lvert t\rvert^{\frac{2}{3}},

the last inequality is obtained by C2CqC\geq 2C_{q}. Hence, by taking C^=9C/2\hat{C}=9C/2, the lemma follows. ∎

Next, we show that a(t)a(t) also possesses a positive lower bound. We first introduce the following function

(19) hm/μ(a,θ):=a31mμa2(a+cosθ)(a2+1+2acosθ)32,(a,θ)+×[0,π],h_{m/\mu}(a,\theta):=a^{3}-1-\frac{m}{\mu}\frac{a^{2}(a+\cos\theta)}{(a^{2}+1+2a\cos\theta)^{\frac{3}{2}}},\quad\forall\ (a,\theta)\in\mathbb{R}^{+}\times\mathbb{[}0,\pi],

and study the relation between hm/μ(a(t),θ(t))h_{m/\mu}(a(t),\theta(t)) and a¨(t)\ddot{a}(t).

Lemma 4.4.

Assume t^(t0,0)\hat{t}\in(-t_{0},0) is a critical point of a(t)a(t), then a¨(t^)>0\ddot{a}(\hat{t})>0 (resp. <0<0) if and only if

hm/μ(a(t^),θ(t^))+1μtan2(η(t^))r˙2(t^)r(t^)>0(resp.<0),h_{m/\mu}(a(\hat{t}),\theta(\hat{t}))+\frac{1}{\mu}\tan^{2}(\eta(\hat{t}))\dot{r}^{2}(\hat{t})r(\hat{t})>0\ (\mathrm{resp.<0}),

where η(t)\eta(t) denotes the angle from z(t)z(t) to z˙(t)\dot{z}(t). In particular, a¨(t^)=0\ddot{a}(\hat{t})=0 is equivalent to the case with equality.

Proof.

By definition of a()a(\cdot), we have

(20) a˙(t^)=(r˙(t^)a(t^)ddt|q(t^)|)1|q(t^)|=0,a¨(t^)=(r¨(t^)a(t^)d2dt2|q(t^)|)1|q(t^)|.\dot{a}(\hat{t})=\left(\dot{r}(\hat{t})-a(\hat{t})\frac{d}{dt}\lvert q(\hat{t})\rvert\right)\frac{1}{\lvert q(\hat{t})\rvert}=0,\ \ \ddot{a}(\hat{t})=\left(\ddot{r}(\hat{t})-a(\hat{t})\frac{d^{2}}{dt^{2}}\lvert q(\hat{t})\rvert\right)\frac{1}{\lvert q(\hat{t})\rvert}.

According to identities |z˙|2=r˙2+r2θ˙2\lvert\dot{z}\rvert^{2}=\dot{r}^{2}+r^{2}\dot{\theta}^{2} and |z˙|2+zz¨=r˙2+rr¨\lvert\dot{z}\rvert^{2}+z\cdot\ddot{z}={\dot{r}}^{2}+r\ddot{r}, one can show that

(21) r¨=μr2mz(zq)r|zq|3+θ˙2r=μr2m(a+cosθ)(a2+1+2acosθ)32|q|2+θ˙2r.\displaystyle\ddot{r}=-\frac{\mu}{r^{2}}-\frac{mz\cdot(z-q)}{r\lvert z-q\rvert^{3}}+{\dot{\theta}}^{2}r=-\frac{\mu}{r^{2}}-\frac{m(a+\cos\theta)}{(a^{2}+1+2a\cos\theta)^{\frac{3}{2}}\lvert q\rvert^{2}}+{\dot{\theta}}^{2}r.

Then we have

(22) r¨(t)a(t)d2dt2|q(t)|\displaystyle\ddot{r}(t)-a(t)\frac{d^{2}}{dt^{2}}\lvert q(t)\rvert =μr2(t)m(a(t)+cosθ(t))(a2(t)+1+2a(t)cosθ(t))32|q(t)|2+θ˙2(t)r(t)+a(t)μ|q(t)|2\displaystyle=-\frac{\mu}{r^{2}(t)}-\frac{m(a(t)+\cos\theta(t))}{(a^{2}(t)+1+2a(t)\cos\theta(t))^{\frac{3}{2}}\lvert q(t)\rvert^{2}}+\dot{\theta}^{2}(t)r(t)+a(t)\frac{\mu}{\lvert q(t)\rvert^{2}}
=(a(t)1a2(t)mμ(a(t)+cosθ(t))(a2(t)+1+2a(t)cosθ(t))32)μ|q(t)|2+θ˙2(t)r(t)\displaystyle=\left(a(t)-\frac{1}{a^{2}(t)}-\frac{m}{\mu}\frac{(a(t)+\cos\theta(t))}{(a^{2}(t)+1+2a(t)\cos\theta(t))^{\frac{3}{2}}}\right)\frac{\mu}{\lvert q(t)\rvert^{2}}+\dot{\theta}^{2}(t)r(t)
=(hm/μ(a(t),θ(t))+1μθ˙2(t)r3(t))μr2(t)\displaystyle=\left(h_{m/\mu}(a(t),\theta(t))+\frac{1}{\mu}\dot{\theta}^{2}(t)r^{3}(t)\right)\frac{\mu}{r^{2}(t)}
=(hm/μ(a(t),θ(t))+1μtan2(η(t))r˙2(t)r(t))μr2(t).\displaystyle=\left(h_{m/\mu}(a(t),\theta(t))+\frac{1}{\mu}\tan^{2}(\eta(t))\dot{r}^{2}(t)r(t)\right)\frac{\mu}{r^{2}(t)}.

The last equality follows from tanη(t)=r(t)θ˙(t)r˙(t)\tan\eta(t)=\frac{r(t)\dot{\theta}(t)}{\dot{r}(t)}, since cos(η(t))|z(t)||z˙(t)|=z(t)z˙(t)=r(t)r˙(t)\cos(\eta(t))\lvert z(t)\rvert\lvert\dot{z}(t)\rvert=z(t)\cdot\dot{z}(t)=r(t)\dot{r}(t) and sin(η(t))|z(t)||z˙(t)|=z(t)×z˙(t)=r2(t)θ˙(t)\sin(\eta(t))\lvert z(t)\rvert\lvert\dot{z}(t)\rvert=z(t)\times\dot{z}(t)=r^{2}(t)\dot{\theta}(t). The lemma holds. ∎

The following lemma introduces the zero set 𝒮\mathcal{S} of hm/μ(a,θ)h_{m/\mu}(a,\theta). See Figure 3 for the simulation of 𝒮\mathcal{S} with m/μ=1m/\mu=1.

Lemma 4.5.

Given hm/μ(a,θ)h_{m/\mu}(a,\theta) as in (19). Let 𝒮:={(a,θ):hm/μ(a,θ)=0}\mathcal{S}:=\{(a,\theta):h_{m/\mu}(a,\theta)=0\}, we have

  1. (a)(a)

    if θ=π\theta=\pi, there exist unique two α1,α3\alpha_{1},\alpha_{3} with α1<1<α3\alpha_{1}<1<\alpha_{3} such that (α1,π),(α3,π)𝒮(\alpha_{1},\pi),(\alpha_{3},\pi)\in\mathcal{S}.

  2. (b)(b)

    if θ=0\theta=0, there exists a unique α2\alpha_{2} with 1<α2<α31<\alpha_{2}<\alpha_{3} such that (α2,0)𝒮(\alpha_{2},0)\in\mathcal{S}.

  3. (c)(c)

    for each a[α1,1)[α2,α3]a\in[\alpha_{1},1)\cup[\alpha_{2},\alpha_{3}], there are exactly one zero θa\theta_{a} such that (a,θa)𝒮(a,\theta_{a})\in\mathcal{S}.

  4. (d)(d)

    for any a[0,α1)[1,α2)(α3,+)a\in[0,\alpha_{1})\cup[1,\alpha_{2})\cup(\alpha_{3},+\infty), (a,θ)𝒮(a,\theta)\notin\mathcal{S} for all θ[0,π]\theta\in[0,\pi].


Refer to caption
Figure 3. The white area and the gray area indicate the collection of (a,θ)(a,\theta) satisfying hm/μ(a,θ)>0h_{m/\mu}(a,\theta)>0 and hm/μ(a,θ)<0h_{m/\mu}(a,\theta)<0 respectively, and the intersection curve between them is the zero set 𝒮\mathcal{S} of h(a,)h(a,\cdot). The arrows are pointing to the direction in which h(a,)h(a,\cdot) increases. Finally, hh has a singular point (1,π)(1,\pi).
Proof.

First of all, we compute the partial differential with respect to θ\theta of function hm/μ(a,θ)h_{m/\mu}(a,\theta),

(23) θhm/μ(a,θ):=mμa2sinθ(12a2acosθ)(a2+1+2acosθ)52.\displaystyle\frac{\partial}{\partial\theta}h_{m/\mu}(a,\theta):=\frac{\frac{m}{\mu}a^{2}\sin\theta(1-2a^{2}-a\cos\theta)}{(a^{2}+1+2a\cos\theta)^{\frac{5}{2}}}.

Next, according to the range of aa, we divide the proof into 3 cases:

Case 1: a=1a=1.

Since

hm/μ(1,θ)=mμ1+cosθ(2+2cosθ)32=mμ12(2+2cosθ)12h_{m/\mu}(1,\theta)=-\frac{m}{\mu}\frac{1+\cos\theta}{(2+2\cos\theta)^{\frac{3}{2}}}=-\frac{m}{\mu}\frac{1}{2(2+2\cos\theta)^{\frac{1}{2}}}

is decreasing on [0,π][0,\pi] from m/(4μ)-m/(4\mu) to -\infty with respect to θ\theta, we know that {(a,θ)𝒮:a=1}=\{(a,\theta)\in\mathcal{S}:a=1\}=\emptyset.

Case 2: 0a<10\leq a<1.

We first assume (a,θ)𝒮(a_{*},\theta_{*})\in\mathcal{S} and 0a<10\leq a_{*}<1, then θ(π/2,π]\theta_{*}\in(\pi/2,\pi] and a(0,cosθ)a_{*}\in(0,-\cos\theta). This implies the set {(a,θ)𝒮:0a<1}D1\{(a,\theta)\in\mathcal{S}:0\leq a<1\}\subset D_{1} where D1D_{1} denotes the area surrounded by the lines a=0a=0, θ=π\theta=\pi and curve {(a,θ)[0,1]×[0,π]:a=cosθ}\{(a,\theta)\in[0,1]\times[0,\pi]:a=-\cos\theta\} (see the upper left part of Figure 3).

In the area D1D_{1}, we have 12a2acosθ>01-2a^{2}-a\cos\theta>0 and then, by (23), θhm/μ(a,θ)>0\frac{\partial}{\partial\theta}h_{m/\mu}(a,\theta)>0. This means that, when aa is fixed, the function hm/μ(a,)h_{m/\mu}(a,\cdot) is strictly increasing.

On the line θ=π\theta=\pi. The equations

hm/μ(a,π)=a31mμa2(1a)2 and ddahm/μ(a,π)=3a2+mμ2a(1a)3>0\displaystyle h_{m/\mu}(a,\pi)=a^{3}-1-\frac{m}{\mu}\frac{a^{2}}{(1-a)^{2}}\quad\ \text{ and }\ \quad\frac{d}{da}h_{m/\mu}(a,\pi)=3a^{2}+\frac{m}{\mu}\frac{2a}{(1-a)^{3}}>0

imply that hm/μ(,π)h_{m/\mu}(\cdot,\pi) is strictly increasing on [0,1][0,1] from 1-1 to ++\infty. Then there is a unique α1\alpha_{1} satisfying hm/μ(α1,π)=0h_{m/\mu}(\alpha_{1},\pi)=0, hm/μ(a,π)<0h_{m/\mu}(a,\pi)<0 if a[0,α1)a\in[0,\alpha_{1}) and hm/μ(a,π)>0h_{m/\mu}(a,\pi)>0 if a(α1,1)a\in(\alpha_{1},1).

On the curve {(a,θ)[0,1]×[0,π]:a=cosθ}\{(a,\theta)\in[0,1]\times[0,\pi]:a=-\cos\theta\}, it is easy to check that hm/μ(a,θ)<0h_{m/\mu}(a,\theta)<0.

According to the monotonicity of hm/μ(a,)h_{m/\mu}(a,\cdot) and the signs of hm/μ(a,θ)h_{m/\mu}(a,\theta) on line θ=π\theta=\pi and on curve {(a,θ)[0,1]×[0,π]:a=cosθ}\{(a,\theta)\in[0,1]\times[0,\pi]:a=-\cos\theta\}, we demonstrate that, for each a[α1,1)a\in[\alpha_{1},1), there exists exactly one θa[π/2,π]\theta_{a}\in[\pi/2,\pi] satisfying (a,θa)S(a,\theta_{a})\in S and, for any a[0,α1)a\in[0,\alpha_{1}), (a,θa)S(a,\theta_{a})\notin S for all θ[0,π]\theta\in[0,\pi], that is {(a,θ)𝒮:0a<1}={(a,θa):α1a<1}\{(a,\theta)\in\mathcal{S}:0\leq a<1\}=\{(a,\theta_{a}):\alpha_{1}\leq a<1\}.

Case 3: a>1a>1.

Let D2:={(a,θ):1<a<+,0θπ}D_{2}:=\{(a,\theta):1<a<+\infty,0\leq\theta\leq\pi\}, similar to Case 2, we discuss the monotonicity of hm/μ(a,)h_{m/\mu}(a,\cdot) in D2D_{2} and the signs of hm/μ(a,θ)h_{m/\mu}(a,\theta) on lines θ=0\theta=0 and θ=π\theta=\pi.

In the area D2D_{2}, we have 12a2acosθ<01-2a^{2}-a\cos\theta<0 and then, by (23), θhm/μ(a,θ)<0\frac{\partial}{\partial\theta}h_{m/\mu}(a,\theta)<0. This means that, when aa is fixed, the function hm/μ(a,)h_{m/\mu}(a,\cdot) is strictly decreasing.

On the line θ=0\theta=0. The equations

hm/μ(a,0)=a31mμa2(a+1)2 and ddahm/μ(a,0)=2a(a+1)3(32a(a+1)3mμ)\displaystyle h_{m/\mu}(a,0)=a^{3}-1-\frac{m}{\mu}\frac{a^{2}}{(a+1)^{2}}\quad\ \text{ and }\ \quad\frac{d}{da}h_{m/\mu}(a,0)=\frac{2a}{(a+1)^{3}}\left(\frac{3}{2}a(a+1)^{3}-\frac{m}{\mu}\right)

implies that hm/μ(,0)h_{m/\mu}(\cdot,0) is either strictly increasing from m/(4μ)-m/(4\mu) to ++\infty or strictly decreasing from m/(4μ)-m/(4\mu) to some negative value C<0-C<0 and then strictly increasing to ++\infty. For both of these cases, there are only one α2>1\alpha_{2}>1 such that hm/μ(α2,0)=0h_{m/\mu}(\alpha_{2},0)=0, hm/μ(a,0)<0h_{m/\mu}(a,0)<0 if a(1,α2)a\in(1,\alpha_{2}) and hm/μ(a,0)>0h_{m/\mu}(a,0)>0 if a(α2,+)a\in(\alpha_{2},+\infty).

On the line θ=π\theta=\pi. The equations

hm/μ(a,π)=a31mμa2(a1)2 and ddahm/μ(a,π)=3a2+mμ2a(a1)3>0\displaystyle h_{m/\mu}(a,\pi)=a^{3}-1-\frac{m}{\mu}\frac{a^{2}}{(a-1)^{2}}\quad\ \text{ and }\ \quad\frac{d}{da}h_{m/\mu}(a,\pi)=3a^{2}+\frac{m}{\mu}\frac{2a}{(a-1)^{3}}>0

imply that hm/μ(,π)h_{m/\mu}(\cdot,\pi) is strictly increasing on (1,+)(1,+\infty) from -\infty to ++\infty. Then there is a unique α3\alpha_{3} satisfying hm/μ(α3,π)=0h_{m/\mu}(\alpha_{3},\pi)=0, hm/μ(a,π)<0h_{m/\mu}(a,\pi)<0 if a(1,α3)a\in(1,\alpha_{3}) and hm/μ(a,π)>0h_{m/\mu}(a,\pi)>0 if a(α3,+)a\in(\alpha_{3},+\infty). Note that α2<α3\alpha_{2}<\alpha_{3} because hm/μ(α2,π)<hm/μ(α2,0)=0h_{m/\mu}(\alpha_{2},\pi)<h_{m/\mu}(\alpha_{2},0)=0.

Summarize the above discussions, we demonstrate that, for each a[α2,α3]a\in[\alpha_{2},\alpha_{3}], there exists exactly one θa[0,π]\theta_{a}\in[0,\pi] satisfying (a,θa)S(a,\theta_{a})\in S and, for any a(1,α2)(α3,+)a\in(1,\alpha_{2})\cup(\alpha_{3},+\infty), (a,θ)S(a,\theta)\notin S for all θ[0,π]\theta\in[0,\pi] (see the right part of Figure 3), that is {(a,θ)𝒮:a>1}={(a,θa):α2aα3}\{(a,\theta)\in\mathcal{S}:a>1\}=\{(a,\theta_{a}):\alpha_{2}\leq a\leq\alpha_{3}\}. This completes the proof. ∎

By using Lemma 4.5, we further obtain the following properties for hm/μ(a,θ)h_{m/\mu}(a,\theta).

Lemma 4.6.

Given α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3} as in Lemma 4.5. Then we have

  • (a)

    if a>α3a>\alpha_{3}, hm/μ(a,θ)>0h_{m/\mu}(a,\theta)>0 for any θ[0,π]\theta\in[0,\pi].

  • (b)

    if a<α1a<\alpha_{1}, hm/μ(a,θ)<0h_{m/\mu}(a,\theta)<0 for any θ[0,π]\theta\in[0,\pi].

  • (c)

    if a<α2a<\alpha_{2} (resp. a>α2a>\alpha_{2}), hm/μ(a,0)<0h_{m/\mu}(a,0)<0 (resp. hm/μ(a,0)>0h_{m/\mu}(a,0)>0).

  • (d)

    if a[0,α1)(1,α3)a\in[0,\alpha_{1})\cup(1,\alpha_{3}) (resp. a(α1,1)(α3,+)a\in(\alpha_{1},1)\cup(\alpha_{3},+\infty)), hm/μ(a,π)<0h_{m/\mu}(a,\pi)<0 (resp. hm/μ(a,π)>0h_{m/\mu}(a,\pi)>0).

Based on the results above, we now delve into the study of asymptotic behavior of a(t)a(t) as t0t\rightarrow 0^{-}. Let a¯=lim inft0a(t)\underline{a}^{-}=\liminf_{t\rightarrow 0^{-}}a(t) and a¯=lim supt0a(t)\bar{a}^{-}=\limsup_{t\rightarrow 0^{-}}a(t).

Proposition 4.7.

Given α1\alpha_{1} as in Lemma 4.5, we have

  • (a)

    if a¯α1\bar{a}^{-}\leq\alpha_{1}, then a¯=a¯=:a\bar{a}^{-}=\underline{a}^{-}=:a^{*}, i.e. a(t)a(t) is convergent as t0t\rightarrow 0^{-}.

  • (b)

    if a¯>α1\bar{a}^{-}>\alpha_{1}, then a¯α1\underline{a}^{-}\geq\alpha_{1}.

Proof.

To show (a). Assume a¯>a¯\bar{a}^{-}>\underline{a}^{-}. From a¯<α1\underline{a}^{-}<\alpha_{1}, there exists a sequence tk0t_{k}\rightarrow 0^{-} such that

(24) a(tk)<α1,a˙(tk)=0 and a¨(tk)0.a(t_{k})<\alpha_{1},\ \ \dot{a}(t_{k})=0\ \text{ and }\ \ddot{a}(t_{k})\geq 0.

By (20) and Lemma 4.4, (24) implies that r˙(tk)=a(tk)ddt|q(tk)|\dot{r}(t_{k})=a(t_{k})\frac{d}{dt}\lvert q(t_{k})\rvert and

(25) hm/μ(a(tk),θ(tk))+tan2η(tk)μa3(tk)(ddt|q(tk)|)2|q(tk)|0,h_{m/\mu}(a(t_{k}),\theta(t_{k}))+\frac{\tan^{2}\eta(t_{k})}{\mu}a^{3}(t_{k})\left(\frac{d}{dt}\lvert q(t_{k})\rvert\right)^{2}\lvert q(t_{k})\rvert\geq 0,

where η(t)\eta(t) denotes the angle from z(t)z(t) to z˙(t)\dot{z}(t). Up to a subsequence, we assume the sequence {a(tk)}\{a(t_{k})\} is convergent and a^:=limk+a(tk)α1+a¯2<α1\hat{a}:=\lim_{k\rightarrow+\infty}a(t_{k})\leq\frac{\alpha_{1}+\underline{a}^{-}}{2}<\alpha_{1}. Then by Lemma 4.6(b), we have

limk+hm/μ(a(tk),θ(tk))=hm/μ(a^,θ)<ϵ,\displaystyle\lim_{k\rightarrow+\infty}h_{m/\mu}(a(t_{k}),\theta(t_{k}))=h_{m/\mu}(\hat{a},\theta_{*}^{-})<-\epsilon,

for some ϵ>0\epsilon>0 sufficiently small. Since a(tk)a(t_{k}) and

(ddt|q(tk)|)2|q(tk)|Cq2|tk|23Cq|tk|23=Cq3\left(\frac{d}{dt}\lvert q(t_{k})\rvert\right)^{2}\lvert q(t_{k})\rvert\leq C_{q}^{2}\lvert t_{k}\rvert^{-\frac{2}{3}}C_{q}\lvert t_{k}\rvert^{\frac{2}{3}}=C_{q}^{3}

are bounded by (14)(\ref{eqn:sundman}) and (24)(\ref{eqn:moment tk}), and tan2η(tk)\tan^{2}\eta(t_{k}) is converging to 0 by Lemma 3.6, the left side of (25) is negative when kk is large enough, which is a contradiction. Hence, (a) follows.

To show (b). If a¯>α1\bar{a}^{-}>\alpha_{1}, but a¯<α1\underline{a}^{-}<\alpha_{1}, then there also exist a sequence tk0t_{k}\rightarrow 0^{-} with satisfying (24). By following the argument in (a), we obtain a similar contradiction. The proof is completed. ∎

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1.

According to Lemma 4.3 and Proposition 4.7, it is sufficient to prove a>0a^{*}>0, where a=limt0a(t)a^{*}=\lim_{t\rightarrow 0^{-}}a(t) providing a¯=a¯α1\bar{a}^{-}=\underline{a}^{-}\leq\alpha_{1}. By contradiction, we assume a=0a^{*}=0. The proof is separated in two cases: θ(t)π\theta(t)\not\equiv\pi and θ(t)π\theta(t)\equiv\pi on [t0,0)[-t_{0},0).

To the former case, we first introduce the following two claims.

Claim 1: There exists a sequence {tk}\{t^{\prime}_{k}\} with tk0t^{\prime}_{k}\rightarrow 0^{-} as k+k\rightarrow+\infty such that 0<|r˙(tk)|<C^|tk|130<\lvert\dot{r}(t^{\prime}_{k})\rvert<\hat{C}\lvert t^{\prime}_{k}\rvert^{-\frac{1}{3}}, for all kk, where C^>0\hat{C}>0 is given in Lemma 4.3.

Indeed. Recall that η(t)\eta(t) is the angle between z(t)=r(t)eiθ(t)z(t)=r(t)e^{i\theta(t)} and z˙(t)=rd(t)eiθd(t)\dot{z}(t)=r_{d}(t)e^{i\theta_{d}(t)}. From Lemma 3.4 and Lemma 3.6, as t0t\rightarrow 0^{-}, we have

(26) η(t)π,tanη(t)0andr˙(t)<0, if θ(t)0;\displaystyle\eta(t)\rightarrow\pi,\quad\tan\eta(t)\rightarrow 0\ \mathrm{and}\ \dot{r}(t)<0,\quad\text{ if }\theta(t)\not\equiv 0;
η(t)π,tanη(t)=0andr˙(t)<0, if θ(t)0.\displaystyle\eta(t)\equiv\pi,\quad\tan\eta(t)=0\ \mathrm{and}\ \dot{r}(t)<0,\quad\text{ if }\theta(t)\equiv 0.

Given δ,C^>0\delta,\hat{C}>0 as in Lemma 4.3 and a convergent sequence {tk}(δ,0)\{t_{k}\}\subset(-\delta,0) with tk0t_{k}\rightarrow 0^{-} as k+k\rightarrow+\infty. For each kk, by mean value theorem, there exists a moment tk(tk,0)t^{\prime}_{k}\in(t_{k},0) such that

(27) |r˙(tk)|=|r(tk)r(0)||tk0|=|r(tk)||tk|<C^|tk|13<C^|tk|13.\displaystyle\lvert\dot{r}(t^{\prime}_{k})\rvert=\frac{\lvert r(t_{k})-r(0)\rvert}{\lvert t_{k}-0\rvert}=\frac{\lvert r(t_{k})\rvert}{\lvert t_{k}\rvert}<\hat{C}\lvert t_{k}\rvert^{-\frac{1}{3}}<\hat{C}\lvert t^{\prime}_{k}\rvert^{-\frac{1}{3}}.

By (26) and (27), {tk}\{t^{\prime}_{k}\} is the desired sequence in Claim 1.

Claim 2: There exists an ϵ>0\epsilon>0 small, such that 0<|r˙(t)|<C^|t|130<\lvert\dot{r}(t)\rvert<\hat{C}\lvert t\rvert^{-\frac{1}{3}}, for all t(ϵ,0)t\in(-\epsilon,0).

Write β(t)=|r˙(t)||t|13\beta(t)=\lvert\dot{r}(t)\rvert\cdot\lvert t\rvert^{\frac{1}{3}}. It is sufficient to prove β(t)<C^\beta(t)<\hat{C} for any t(ϵ,0)t\in(-\epsilon,0). If not, there is a sequence of moments t¯k0\bar{t}_{k}\rightarrow 0^{-} such that β(t¯k)C^\beta(\bar{t}_{k})\geq\hat{C}. For each tkt^{\prime}_{k} as in Claim 1, there exists jkj_{k} such that tk(t¯jk,t¯jk+1)t_{k}^{\prime}\in(\bar{t}_{j_{k}},\bar{t}_{j_{k}+1}), then the inequalities β(tk)<C^\beta(t_{k}^{\prime})<\hat{C}, β(t¯jk)C^\beta(\bar{t}_{j_{k}})\geq\hat{C} and β(t¯jk+1)C^\beta(\bar{t}_{j_{k}+1})\geq\hat{C} imply that there is a moment sk(t¯jk,t¯jk+1)s_{k}\in(\bar{t}_{j_{k}},\bar{t}_{j_{k}+1}) such that β(sk)<C^\beta(s_{k})<\hat{C} and β˙(sk)=0\dot{\beta}(s_{k})=0. On the one hand, we can conclude that

(28) r¨(sk)=β˙(sk)|sk|1313β(sk)|sk|43=13β(sk)|sk|43>13C^|sk|43.\ddot{r}(s_{k})=-\dot{\beta}(s_{k})\lvert s_{k}\rvert^{-\frac{1}{3}}-\frac{1}{3}\beta(s_{k})\lvert s_{k}\rvert^{-\frac{4}{3}}=-\frac{1}{3}\beta(s_{k})\lvert s_{k}\rvert^{-\frac{4}{3}}>-\frac{1}{3}\hat{C}\lvert s_{k}\rvert^{-\frac{4}{3}}.

On the other hand, combining (2), |z˙|2=r˙2+θ˙2r2\lvert\dot{z}\rvert^{2}=\dot{r}^{2}+\dot{\theta}^{2}r^{2}, |z˙|2+zz¨=r˙2+rr¨\lvert\dot{z}\rvert^{2}+z\cdot\ddot{z}={\dot{r}}^{2}+r\ddot{r} and tanη(t)=r(t)θ˙(t)r˙(t)\tan\eta(t)=\frac{r(t)\dot{\theta}(t)}{\dot{r}(t)}, one can show that

(29) r¨=μr2mz(zq)r|zq|3+θ˙2r=μr2m(a+cosθ)(a2+1+2acosθ)32|q|2+tan2ηr˙2r.\ddot{r}=-\frac{\mu}{r^{2}}-\frac{mz\cdot(z-q)}{r\lvert z-q\rvert^{3}}+{\dot{\theta}}^{2}r=-\frac{\mu}{r^{2}}-\frac{m(a+\cos\theta)}{(a^{2}+1+2a\cos\theta)^{\frac{3}{2}}\lvert q\rvert^{2}}+\tan^{2}\eta\frac{\dot{r}^{2}}{r}.

By using (29), we can further conclude that, for kk sufficiently large,

(30) r¨(sk)\displaystyle\ddot{r}(s_{k}) =(μa2(sk)m(a(sk)+cosθ(sk))(a2(sk)+1+2a(sk)cosθ(sk))32+tan2η(sk)β2(sk)|q(sk)|a(sk)|sk|23)1|q(sk)|2\displaystyle=\left(-\frac{\mu}{a^{2}(s_{k})}-\frac{m(a(s_{k})+\cos\theta(s_{k}))}{\left(a^{2}(s_{k})+1+2a(s_{k})\cos\theta(s_{k})\right)^{\frac{3}{2}}}+\tan^{2}\eta(s_{k})\frac{\beta^{2}(s_{k})\lvert q(s_{k})\rvert}{a(s_{k})\lvert s_{k}\rvert^{\frac{2}{3}}}\right)\frac{1}{\lvert q(s_{k})\rvert^{2}}
(μa2(sk)+m|a2(sk)+1+2a(sk)cosθ(sk)|+tan2η(sk)C^2Cqa(sk))1|q(sk)|2\displaystyle\leq\left(-\frac{\mu}{a^{2}(s_{k})}+\frac{m}{\lvert a^{2}(s_{k})+1+2a(s_{k})\cos\theta(s_{k})\rvert}+\tan^{2}\eta(s_{k})\frac{\hat{C}^{2}C_{q}}{a(s_{k})}\right)\frac{1}{\lvert q(s_{k})\rvert^{2}}
<μ2a2(sk)1|q(sk)|2<μ2a2(sk)Cq2|sk|43.\displaystyle<-\frac{\mu}{2a^{2}(s_{k})}\frac{1}{\lvert q(s_{k})\rvert^{2}}<-\frac{\mu}{2a^{2}(s_{k})C_{q}^{2}}\lvert s_{k}\rvert^{-\frac{4}{3}}.

The last two inequalities above follow by (14), β(sk)<C^\beta(s_{k})<\hat{C}, limk+a(sk)=a=0\lim_{k\rightarrow+\infty}a(s_{k})=a^{*}=0 and limt0tanη(t)=0\lim_{t\rightarrow 0^{-}}\tan\eta(t)=0, since the term μa2(sk)-\mu a^{-2}(s_{k}) is the dominate term in (30), for kk sufficiently large. From (28) and (30), we observe

13C^<r¨(sk)|sk|43<μ2a2(sk)Cq2,-\frac{1}{3}\hat{C}<\ddot{r}(s_{k})\lvert s_{k}\rvert^{\frac{4}{3}}<-\frac{\mu}{2a^{2}(s_{k})C_{q}^{2}},

which gives a contradiction since the right hand side is smaller than the left hand side, as k+k\rightarrow+\infty. Hence, Claim 2 holds.

Now to the latter case, i.e. θ(t)π\theta(t)\equiv\pi on [t0,0)[-t_{0},0), we prove a similar claim as before.

Claim 3: There exists an ϵ>0\epsilon>0 small, such that |r˙(t)|<C^|t|13|\dot{r}(t)|<\hat{C}|t|^{\frac{1}{3}} for any t(ϵ,0)t\in(-\epsilon,0).

By contradiction, we assume there exists a sequence t¯k0\bar{t}_{k}\rightarrow 0^{-} such that β(t¯k)=|r˙(t¯k)||t¯k|13C^\beta(\bar{t}_{k})=|\dot{r}(\bar{t}_{k})|\cdot|\bar{t}_{k}|^{\frac{1}{3}}\geq\hat{C}. Similar to Claim 1, by taking δ>0\delta>0 as in Lemma 4.3 and a sequence tk0t_{k}\rightarrow 0^{-}, there exists another sequence tk0t_{k}^{\prime}\rightarrow 0 such that |β(tk)|<C^|\beta(t_{k}^{\prime})|<\hat{C} for any kk. Similar to Claim 2, due to the properties of t¯k\bar{t}_{k} and tkt_{k}^{\prime}, there also exists a sequence sk0s_{k}\rightarrow 0^{-} such that β(sk)<C^\beta(s_{k})<\hat{C} and β˙(sk)=0\dot{\beta}(s_{k})=0. On the one hand, by (28), we have r¨(sk)>13C^|sk|43\ddot{r}(s_{k})>-\frac{1}{3}\hat{C}|s_{k}|^{-\frac{4}{3}}. On the other hand, since a=0a^{*}=0, for any t(ϵ,0)t\in(-\epsilon,0) sufficiently small, by (14), we have

(31) r¨=μr2mz(zq)r|zq|3=μr2+m(1a)2|q|2=(μa2+m(1a)2)1|q|2μ2a2Cq2|t|43.\ddot{r}=-\frac{\mu}{r^{2}}-\frac{mz\cdot(z-q)}{r\lvert z-q\rvert^{3}}=-\frac{\mu}{r^{2}}+\frac{m}{(1-a)^{2}|q|^{2}}=(-\frac{\mu}{a^{2}}+\frac{m}{(1-a)^{2}})\frac{1}{|q|^{2}}\leq-\frac{\mu}{2a^{2}C_{q}^{2}}|t|^{-\frac{4}{3}}.

This contradicts to r¨(sk)>13C^|sk|43\ddot{r}(s_{k})>-\frac{1}{3}\hat{C}|s_{k}|^{-\frac{4}{3}} for kk sufficiently large. Therefore, Claim 3 holds.

Now we complete the proof for both two cases. Since a=limt0a(t)=0a^{*}=\lim_{t\rightarrow 0^{-}}a(t)=0, then there is a sequence {tk}\{t_{k}\} with tk0t_{k}\rightarrow 0^{-} as k+k\rightarrow+\infty such that a˙(tk)<0\dot{a}(t_{k})<0 and a(tk)0a(t_{k})\rightarrow 0 as k+k\rightarrow+\infty, then

r˙(tk)=a˙(tk)|q(tk)|+a(tk)ddt|q(tk)|<a(tk)ddt|q(tk)|.\dot{r}(t_{k})=\dot{a}(t_{k})\lvert q(t_{k})\rvert+a(t_{k})\frac{d}{dt}\lvert q(t_{k})\rvert<a(t_{k})\frac{d}{dt}\lvert q(t_{k})\rvert.

Write fk(t)=r(t)a(tk)|q(t)|f_{k}(t)=r(t)-a(t_{k})\lvert q(t)\rvert, then fk(0)=fk(tk)=0f_{k}(0)=f_{k}(t_{k})=0 and f˙k(tk)<0\dot{f}_{k}(t_{k})<0. Similar to (30) and (31), we have r¨(t)<μ2a2(t)Cq2|t|43\ddot{r}(t)<-\frac{\mu}{2a^{2}(t)C_{q}^{2}}\lvert t\rvert^{-\frac{4}{3}}. Together with (14), we have

f¨k(t)=r¨(t)a(tk)d2dt2|q(t)|(μ2a2(t)Cq2+a(tk)Cq)|t|43<0.\ddot{f}_{k}(t)=\ddot{r}(t)-a(t_{k})\frac{d^{2}}{dt^{2}}\lvert q(t)\rvert\leq\left(-\frac{\mu}{2a^{2}(t)C_{q}^{2}}+a(t_{k})C_{q}\right)\lvert t\rvert^{-\frac{4}{3}}<0.

Furthermore, if kk is large enough, we have f˙k(t)=f˙k(tk)+tktf¨k(s)𝑑s<0,t(tk,0)\dot{f}_{k}(t)=\dot{f}_{k}(t_{k})+\int^{t}_{t_{k}}\ddot{f}_{k}(s)ds<0,\ \forall t\in(t_{k},0). This means that fkf_{k} is strictly decreasing on (tk,0)(t_{k},0). However, this is impossible since fk(tk)=fk(0)=0f_{k}(t_{k})=f_{k}(0)=0, contradiction. This completes the proof. ∎

4.2. Asymptotic behavior of argz\mathrm{arg}z near the three-body collision

In this subsection, we devote our attention to proving Theorem 4.8.

Based on Lemma 3.4, we know that when the minimizer z=reiθz=re^{i\theta} experiences the three-body collision, the asymptotic angle θ:=limt0θ(t)\theta_{*}^{-}:=\lim_{t\rightarrow 0^{-}}\theta(t) exists. In the following, we further reveal that the asymptotic angle θ\theta_{*}^{-} must be 0 or π\pi.

Theorem 4.8.

Let z(t)=r(t)eiθ(t)z(t)=r(t)e^{i\theta(t)} be the action minimizer of 𝒜T,0\mathcal{A}_{-T,0} on ΩA,A0T,0\Omega^{-T,0}_{A,A_{0}}. If z(0)=0z(0)=0, then the limit angle θ{0,π}\theta_{*}^{-}\in\{0,\pi\}. More precisely, if θ(t)π\theta(t)\not\equiv\pi (resp. θ(t)π\theta(t)\equiv\pi), then we always have θ=0\theta_{*}^{-}=0 (resp. θ=π\theta_{*}^{-}=\pi).

Firstly, we recall that z(0)=0z(0)=0, z(t)z(t) is smooth on [t0,0)[-t_{0},0) and z(t0)+z(-t_{0})\in\mathbb{C}^{+}_{*} for some t0(0,T]t_{0}\in(0,T]. By Lemma 3.4, we have θ(t)[0,π]\theta(t)\in[0,\pi] on [t0,0][-t_{0},0]. To prove this theorem, we need to estimate the angular momentum J(t):=z(t)×z˙(t)=r2(t)θ˙(t)J(t):=z(t)\times\dot{z}(t)=r^{2}(t)\dot{\theta}(t), which is non-positive since θ˙(t)0\dot{\theta}(t)\leq 0 on t[t0,0)t\in[-t_{0},0).

Lemma 4.9.

Assume θ(0,π)\theta_{*}^{-}\in(0,\pi). Then there exists an ϵ>0\epsilon>0 small and a pair of constants cJ,CJ>0c_{J},C_{J}>0 such that cJ|t|13<|J(t)|<CJ|t|13c_{J}|t|^{\frac{1}{3}}<|J(t)|<C_{J}|t|^{\frac{1}{3}} for all t(ϵ,0)t\in(-\epsilon,0).

Proof.

To show the upper bounded of J(t)J(t). According to Lemma 4.24.3, we can choose a δ>0\delta>0 which makes (14) and Lemma 4.3 hold simultaneously. By Lemma 4.3, we have

(32) J(t)2=r4(t)θ˙2(t)r2(t)|z˙(t)|2C^2|t|43|z˙(t)|2, for all t(δ,0).J(t)^{2}=r^{4}(t)\dot{\theta}^{2}(t)\leq r^{2}(t)\lvert\dot{z}(t)\rvert^{2}\leq\hat{C}^{2}\lvert t\rvert^{\frac{4}{3}}\lvert\dot{z}(t)\rvert^{2},\quad\text{ for all }t\in(-\delta,0).

To estimate |z˙(t)|2\lvert\dot{z}(t)\rvert^{2}, we consider the following. By (2), for t(δ,0)t\in(-\delta,0), we have

(33) 12|z˙(t)|2\displaystyle\frac{1}{2}\lvert\dot{z}(t)\rvert^{2} =12|z˙(δ)|2+δtz˙(s)z¨(s)𝑑s\displaystyle=\frac{1}{2}\lvert\dot{z}(-\delta)\rvert^{2}+\int^{t}_{-\delta}\dot{z}(s)\cdot\ddot{z}(s)ds
=12|z˙(δ)|2+δtz˙(s)(μz(s)|z(s)|3m(z(s)q(s))|z(s)q(s)|3)𝑑s\displaystyle=\frac{1}{2}\lvert\dot{z}(-\delta)\rvert^{2}+\int^{t}_{-\delta}\dot{z}(s)\cdot\left(-\frac{\mu z(s)}{\lvert z(s)\rvert^{3}}-\frac{m(z(s)-q(s))}{\lvert z(s)-q(s)\rvert^{3}}\right)ds
=12|z˙(δ)|2+δt(z˙(s)μz(s)|z(s)|3)((z˙(s)q˙(s)+q˙(s))m(z(s)q(s))|z(s)q(s)|3)ds\displaystyle=\frac{1}{2}\lvert\dot{z}(-\delta)\rvert^{2}+\int^{t}_{-\delta}-\left(\dot{z}(s)\cdot\frac{\mu z(s)}{\lvert z(s)\rvert^{3}}\right)-\left(\left(\dot{z}(s)-\dot{q}(s)+\dot{q}(s)\right)\cdot\frac{m(z(s)-q(s))}{\lvert z(s)-q(s)\rvert^{3}}\right)ds
=C1,δ+μr(t)+m|z(t)q(t)|δtmcosψ(s)|q˙(s)||z(s)q(s)|2𝑑s,\displaystyle=C_{1,\delta}+\frac{\mu}{r(t)}+\frac{m}{\lvert z(t)-q(t)\rvert}-\int^{t}_{-\delta}\frac{m\cos\psi(s)\lvert\dot{q}(s)\rvert}{\lvert z(s)-q(s)\rvert^{2}}ds,

where C1,δ=12|z˙(δ)|2(μr(δ)+m|z(δ)q(δ)|)C_{1,\delta}=\frac{1}{2}\lvert\dot{z}(-\delta)\rvert^{2}-(\frac{\mu}{r(-\delta)}+\frac{m}{\lvert z(-\delta)-q(-\delta)\rvert}) and ψ(s)\psi(s) denotes the angle between z(s)q(s)z(s)-q(s) and q˙(s)\dot{q}(s). By Theorem 4.1, we know that a(t)>caa(t)>c_{a} for some constant ca>0c_{a}>0. Then, applying (14) and (16), we have

(34) μr(t)+m|z(t)q(t)|\displaystyle\frac{\mu}{r(t)}+\frac{m}{\lvert z(t)-q(t)\rvert} =(μa(t)+m(a2(t)+1+2a(t)cosθ(t))12)1|q(t)|\displaystyle=\left(\frac{\mu}{a(t)}+\frac{m}{(a^{2}(t)+1+2a(t)\cos\theta(t))^{\frac{1}{2}}}\right)\frac{1}{\lvert q(t)\rvert}
<(μcqca+mcqsinθ(δ))|t|23.\displaystyle<\left(\frac{\mu}{c_{q}c_{a}}+\frac{m}{c_{q}\sin\theta(-\delta)}\right)\lvert t\rvert^{-\frac{2}{3}}.

For the last term of (33), by (14) and (16) again, we can further obtain that

(35) |δtmcosψ(t)|q˙(t)||z(t)q(t)|2𝑑t|\displaystyle\left\lvert\int^{t}_{-\delta}\frac{m\cos\psi(t)\lvert\dot{q}(t)\rvert}{\lvert z(t)-q(t)\rvert^{2}}dt\right\rvert δtm|cosψ(t)||q˙(t)|(a2(t)+1+2a(t)cosθ(t))|q(t)|2𝑑t\displaystyle\leq\int^{t}_{-\delta}\frac{m\lvert\cos\psi(t)\rvert\left\lvert\dot{q}(t)\right\rvert}{(a^{2}(t)+1+2a(t)\cos\theta(t))\lvert q(t)\rvert^{2}}dt
δtmCqcq2sin2θ(δ)|t|53𝑑t\displaystyle\leq\int^{t}_{-\delta}\frac{mC_{q}}{c_{q}^{2}\sin^{2}\theta(-\delta)}\lvert t\rvert^{-\frac{5}{3}}dt
=3mCq2cq2sin2θ(δ)|t|23C2,δ,\displaystyle=\frac{3mC_{q}}{2c_{q}^{2}\sin^{2}\theta(-\delta)}\lvert t\rvert^{-\frac{2}{3}}-C_{2,\delta},

where C2,δ=3mCq2cq2sin2θ(δ)|δ|23C_{2,\delta}=\frac{3mC_{q}}{2c_{q}^{2}\sin^{2}\theta(-\delta)}\lvert\delta\rvert^{-\frac{2}{3}}.

Then, combining (33), (34) and (35), we obtain that

(36) |z˙(t)|2C3,δ|t|23+C4,δ,\lvert\dot{z}(t)\rvert^{2}\leq C_{3,\delta}\lvert t\rvert^{-\frac{2}{3}}+C_{4,\delta},

where

C3,δ=2(μcacq+mcqsinθ(δ))+3mCqcq2sin2θ(δ)>0and C4,δ=2C1,δ2C2,δ.C_{3,\delta}=2\left(\frac{\mu}{c_{a}c_{q}}+\frac{m}{c_{q}\sin\theta(-\delta)}\right)+\frac{3mC_{q}}{c_{q}^{2}\sin^{2}\theta(-\delta)}>0\quad\text{and }\quad C_{4,\delta}=2C_{1,\delta}-2C_{2,\delta}.

Therefore, by (32) and (36), we have

(37) J(t)2C^2(C3,δ+2C4,δ|t|23)|t|23.J(t)^{2}\leq\hat{C}^{2}\left(C_{3,\delta}+2C_{4,\delta}\lvert t\rvert^{\frac{2}{3}}\right)\lvert t\rvert^{\frac{2}{3}}.

Hence, CJ>0C_{J}>0 exists.

To show the lower of J(t)J(t). From (2), (14) and Theorem 4.1, for t(δ,0)t\in(-\delta,0), we have

J˙(t)=z(t)×z¨(t)\displaystyle\dot{J}(t)=z(t)\times\ddot{z}(t) =mz(t)×q(t)|z(t)q(t)|3=ma(t)|q(t)|2sinθ(t)(a2(t)+1+2a(t)cosθ(t))32|q(t)|3\displaystyle=\frac{mz(t)\times q(t)}{\lvert z(t)-q(t)\rvert^{3}}=\frac{ma(t)\lvert q(t)\rvert^{2}\sin\theta(t)}{(a^{2}(t)+1+2a(t)\cos\theta(t))^{\frac{3}{2}}\lvert q(t)\rvert^{3}}
ma(t)sinθ(t)(a(t)+1)3Cq|t|23mcasinθ(t)(Ca+1)3Cq|t|23,\displaystyle\geq\frac{ma(t)\sin\theta(t)}{(a(t)+1)^{3}C_{q}}\lvert t\rvert^{-\frac{2}{3}}\geq\frac{mc_{a}\sin\theta(t)}{(C_{a}+1)^{3}C_{q}}\lvert t\rvert^{-\frac{2}{3}},

which is always positive. Then due to the assumption θ(0,π)\theta_{*}^{-}\in(0,\pi), there exists ϵ(0,δ)\epsilon\in(0,\delta) sufficiently small such that, for t(ϵ,0)t\in(-\epsilon,0),

J˙(t)Cˇ|t|23, where Cˇ=mcamin{sinθ,sinθ(ϵ)}2(Ca+1)3Cq>0.\displaystyle\dot{J}(t)\geq\check{C}\lvert t\rvert^{-\frac{2}{3}},\quad\text{ where }\ \check{C}=\frac{mc_{a}\min\{\sin\theta_{*}^{-},\sin\theta(-\epsilon)\}}{2(C_{a}+1)^{3}C_{q}}>0.

Moreover, we observe that J(t)<0J(t)<0 since θ(0,π)\theta_{*}^{-}\in(0,\pi) and θ˙(t)<0\dot{\theta}(t)<0 by Lemma 3.4. Then, for t(ϵ,0)t\in(-\epsilon,0),

|J(t)|=J(t)=J(0)+t0J˙(s)𝑑st0Cˇ|s|23𝑑s=3Cˇ|t|13,\lvert J(t)\rvert=-J(t)=-J(0)+\int^{0}_{t}\dot{J}(s)ds\geq\int^{0}_{t}\check{C}\lvert s\rvert^{-\frac{2}{3}}ds=3\check{C}\lvert t\rvert^{\frac{1}{3}},

where J(0)=0J(0)=0 by (37). Hence, cJ>0c_{J}>0 exists and the lemma holds. ∎

Now we are ready to prove Theorem 4.8.

Proof of Theorem 4.8.

By contradiction, we assume θ(0,π)\theta_{*}^{-}\in(0,\pi). Since z(0)=0z(0)=0, by using Lemma 4.9 and Theorem 4.1, we see that

(38) cJCq2|t|1<|θ˙(t)|<CJcq2|t|1,t(ϵ,0).\displaystyle c_{J}C_{q}^{-2}|t|^{-1}<|\dot{\theta}(t)|<C_{J}c_{q}^{-2}|t|^{-1},\ \forall t\in(-\epsilon,0).

Combining (38) with the monotonicity of θ(t)\theta(t), see Lemma 3.4, we conclude that

θ(ϵ)θ(0)=ϵ0θ˙(t)dt=ϵ0|θ˙(t)|𝑑t=.\theta(-\epsilon)-\theta(0)=\int^{0}_{-\epsilon}-\dot{\theta}(t)dt=\int^{0}_{-\epsilon}|\dot{\theta}(t)|dt=\infty.

This provides a contradiction, since the left hand side is finite. Therefore, θ{0,π}\theta_{*}^{-}\in\{0,\pi\}. Moreover, if θ(t)π\theta(t)\not\equiv\pi, by Lemma 3.4 and the conclusion above, θ=0\theta_{*}^{-}=0 must happens. Hence, the proof is done. ∎

4.3. Sundman-Sperling estimates

In this section, we aim to prove Theorem 1.1 completely, which involves the Sundman-Sperling estimates near the three-body collision in the restricted one-center-two-body problem. For general restricted multi-body problem, once there exists a three-body collision, which is composed of a fixed particle, a moving primary and a massless particle, we believe the minimizer will also satisfy the Sundman-Sperling estimates near the three-body collision, since the impact of non-colliding particles is negligible.

The main steps of this proof is as follows:

  • We first prove Lemma 4.10, i.e. the limit a=limt0a(t)a^{*}=\lim_{t\rightarrow 0^{-}}a(t) exists, by using Theorem 4.1 and Theorem 4.8. The technique of inflection and critical points is needed.

  • By using Lemma 4.6, together with the technique of inflection and critical points, we prove that a{α1,α2,α3}a^{*}\in\{\alpha_{1},\alpha_{2},\alpha_{3}\}, see Lemma 4.12, 4.13.

  • To complete the proof of Theorem 1.1, it is sufficient to show that both b(t)=r˙(t)/ddt|q(t)|b(t)=\dot{r}(t)/\frac{d}{dt}|q(t)| and c(t)=r¨(t)/d2dt2|q(t)|c(t)=\ddot{r}(t)/\frac{d^{2}}{dt^{2}}|q(t)| are converging into {α1,α2,α3}\{\alpha_{1},\alpha_{2},\alpha_{3}\} as t0t\rightarrow 0^{-}. We prove the former case in Lemma 4.14 and left the latter in the proof of Theorem 1.1.

Recall that z(t)=r(t)eiθ(t)z(t)=r(t)e^{i\theta(t)} is the action minimizer of 𝒜T,0\mathcal{A}_{-T,0} on ΩA,A0T,0\Omega^{-T,0}_{A,A_{0}}. By assumption, we have z(0)=0z(0)=0, z(t)z(t) is smooth on [t0,0)[-t_{0},0) and z(t0)+z(-t_{0})\in\mathbb{C}^{+}_{*} for some t0(0,T]t_{0}\in(0,T]. Based on the previous results, we have the following lemma.

Lemma 4.10.

a:=limt0a(t)(0,+)a^{*}:=\lim_{t\rightarrow 0^{-}}a(t)\in(0,+\infty).

Proof.

According to Theorem 4.8, the proof will be divided into two cases: θ=0\theta_{*}^{-}=0 and θ=π\theta_{*}^{-}=\pi. We first denote that a¯=lim inft0a(t)\underline{a}=\liminf_{t\rightarrow 0^{-}}a(t) and a¯=lim supt0a(t)\overline{a}=\limsup_{t\rightarrow 0^{-}}a(t). By Theorem 4.1, we see that ca<a¯a¯<Cac_{a}<\underline{a}\leq\overline{a}<C_{a} for some ca,Ca(0,+)c_{a},C_{a}\in(0,+\infty).

By contradiction, we assume a¯<a¯\underline{a}<\overline{a}.

Case 1: Assume θ=0\theta_{*}^{-}=0.

If a¯<α2\underline{a}<\alpha_{2}, on the one hand, there exists a sequence of moments {tk}\{t_{k}\} with tk0t_{k}\rightarrow 0^{-} such that

(39) a(tk)<(a¯+α2)/2,a˙(tk)=0 and a¨(tk)0.\displaystyle a(t_{k})<(\underline{a}+\alpha_{2})/2,\ \ \dot{a}(t_{k})=0\ \text{ and }\ \ddot{a}(t_{k})\geq 0.

By (20)(\ref{eqn:dot a and ddot a}) and Lemma 4.4, (39)(\ref{eqn:assume1}) implies that r˙(tk)=a(tk)ddt|q(tk)|\dot{r}(t_{k})=a(t_{k})\frac{d}{dt}|q(t_{k})| and

(40) hm/μ(a(tk),θ(tk))+tan2η(tk)μa3(tk)(ddt|q(tk)|)2|q(tk)|0,h_{m/\mu}(a(t_{k}),\theta(t_{k}))+\frac{\tan^{2}\eta(t_{k})}{\mu}a^{3}(t_{k})\left(\frac{d}{dt}\lvert q(t_{k})\rvert\right)^{2}\lvert q(t_{k})\rvert\geq 0,

where η(t)\eta(t) denotes the angle from z(t)z(t) to z˙(t)\dot{z}(t).

On the other hand, up to a subsequence, we assume the limit limka(tk)=a^\lim_{k\rightarrow}a(t_{k})=\hat{a} exists. Then, since a^(a¯+α2)/2<α2\hat{a}\leq(\underline{a}+\alpha_{2})/2<\alpha_{2}, together with Lemma 4.6(c) and θ=0\theta_{*}^{-}=0, we have

limk+hm/μ(a(tk),θ(tk))=hm/μ(a^,0)<ϵ,\displaystyle\lim_{k\rightarrow+\infty}h_{m/\mu}(a(t_{k}),\theta(t_{k}))=h_{m/\mu}(\hat{a},0)<-\epsilon,

for some ϵ>0\epsilon>0 sufficiently small. Moreover, by Theorem 4.1 and (14)(\ref{eqn:sundman}), we conclude that both a(tk)a(t_{k}) and (ddt|q(tk)|)2|q(tk)|Cq2|tk|23Cq|tk|23=Cq3\left(\frac{d}{dt}\lvert q(t_{k})\rvert\right)^{2}\lvert q(t_{k})\rvert\leq C_{q}^{2}\lvert t_{k}\rvert^{-\frac{2}{3}}C_{q}\lvert t_{k}\rvert^{\frac{2}{3}}=C_{q}^{3} are bounded. As k+k\rightarrow+\infty, by using Lemma 3.6, that is tan2η(tk)0\tan^{2}\eta(t_{k})\rightarrow 0, we conclude that the left side of (40) is strictly negative when kk is large enough, which gives a contradiction.

If a¯α2\underline{a}\geq\alpha_{2}. Then we see that a¯>α2\bar{a}>\alpha_{2}. Analog to the situation before, there exists a sequence {sk}\{s_{k}\} with sk0s_{k}\rightarrow 0^{-} such that

(41) a(sk)>(a¯+a¯)/2,a˙(sk)=0 and a¨(sk)0.\displaystyle a(s_{k})>(\underline{a}+\bar{a})/2,\ \ \dot{a}(s_{k})=0\ \text{ and }\ \ddot{a}(s_{k})\leq 0.

By (20)(\ref{eqn:dot a and ddot a}) and Lemma 4.4 again, (41)(\ref{eqn:assume2}) implies that r˙(sk)=a(sk)ddt|q(sk)|\dot{r}(s_{k})=a(s_{k})\frac{d}{dt}|q(s_{k})| and

(42) hm/μ(a(sk),θ(sk))+tan2η(sk)μa3(sk)(ddt|q(sk)|)2|q(sk)|0.h_{m/\mu}(a(s_{k}),\theta(s_{k}))+\frac{\tan^{2}\eta(s_{k})}{\mu}a^{3}(s_{k})\left(\frac{d}{dt}\lvert q(s_{k})\rvert\right)^{2}\lvert q(s_{k})\rvert\leq 0.

Up to a subsequence, we assume the limit limk+a(sk)=aˇ\lim_{k\rightarrow+\infty}a(s_{k})=\check{a} exists. Then, since aˇ(a¯+a¯)/2>α2\check{a}\geq(\underline{a}+\overline{a})/2>\alpha_{2}, same as the situation before, we can conclude that the left side of (42) is strictly positive when kk is large enough, which leads to another contradiction. Hence, the limit aa^{*} exists. The proof of Case 1 is completed.

Case 2: Assume θ=π\theta_{*}^{-}=\pi. By Lemma 3.4, the solution satisfies z(t)(,q(t))z(t)\in(-\infty,q(t)) or z(t)(q(t),0)z(t)\in(q(t),0) for any t[t0,0)t\in[-t_{0},0). For the former case, we see that a(t)>1a(t)>1 for any t[t0,0)t\in[-t_{0},0). This implies that a¯>a¯1\overline{a}>\underline{a}\geq 1. Same as in Case 1, when a¯[1,α3)\underline{a}\in[1,\alpha_{3}), one can find a sequence tkt_{k} such that (40) holds for any kk. However, as kk sufficiently large, one can choose a subsequence, also denote by tkt_{k}, such that a(tk)a^[1+,α3)a(t_{k})\rightarrow\hat{a}\in[1^{+},\alpha_{3}). Since Lemma 4.6, we see that hm/μ(a,π)<0h_{m/\mu}(a,\pi)<0 for any a(1,α3)a\in(1,\alpha_{3}) and hm/μ(a,π)>0h_{m/\mu}(a,\pi)>0 for any a(α3,+)a\in(\alpha_{3},+\infty). In particular, as a1+a\rightarrow 1^{+}, hm/μ(a,π)h_{m/\mu}(a,\pi)\rightarrow-\infty. Therefore, for sufficiently large kk, (40) become negative, which is a contradiction. Moreover, when a¯(α3,+)\underline{a}\in(\alpha_{3},+\infty), by following the previous argument, we also obtain a contradiction. Hence, the limit aa^{*} exists. Similarly, by using the same strategy for a¯(0,α1)\underline{a}\in(0,\alpha_{1}) and a¯(α1,1)\underline{a}\in(\alpha_{1},1), the latter case also lead to a contradiction. The proof of Case 2 is completed.

In order to characterize the limit aa^{*}, we first provide the following asymptotic estimates of r˙\dot{r}.

Lemma 4.11.

Assume θ{0,π}\theta_{*}^{-}\in\{0,\pi\}. There exist ϵ>0\epsilon>0 and 0<cd<Cd<0<c_{d}<C_{d}<\infty such that

cd|t|13<|r˙(t)|<Cd|t|13,t(ϵ,0).c_{d}|t|^{\frac{1}{3}}<|\dot{r}(t)|<C_{d}|t|^{\frac{1}{3}},\quad\forall\ t\in(-\epsilon,0).
Proof.

Firstly, we introduce the following useful identity

(43) r¨(t)=(μa2(t)m(a(t)+cosθ(t))(a2(t)+1+2a(t)cosθ(t))32)|q(t)|2+tan2η(t)r˙2(t)r(t),\displaystyle\ddot{r}(t)=\left(-\frac{\mu}{a^{2}(t)}-\frac{m(a(t)+\cos\theta(t))}{(a^{2}(t)+1+2a(t)\cos\theta(t))^{\frac{3}{2}}}\right)|q(t)|^{-2}+\tan^{2}\eta(t)\frac{\dot{r}^{2}(t)}{r(t)},

where η(t)\eta(t) denotes the angle from z(t)z(t) to z˙(t)\dot{z}(t). The computation can be found in (21) and (22). We split the proof in two cases.

Case 1: Assume θ=0\theta_{*}^{-}=0.

By Lemma 4.10, for any ϵ>0\epsilon>0, we see that

(44) |(μa2(t)m(a(t)+cosθ(t))a2(t)+1+2a(t)cosθ(t)32)(μ(a)2m(a+1)2)|<ϵ,\displaystyle\left|\left(-\frac{\mu}{a^{2}(t)}-\frac{m(a(t)+\cos\theta(t))}{a^{2}(t)+1+2a(t)\cos\theta(t)^{\frac{3}{2}}}\right)-\left(-\frac{\mu}{(a^{*})^{2}}-\frac{m}{(a^{*}+1)^{2}}\right)\right|<\epsilon,

for |t|>0|t|>0 sufficiently small.

On the one hand, fixing a t0<0t_{0}<0 near 0. By using (14), (43) and (44), we have

r˙(t)r˙(t0)=t0tr¨(s)𝑑s\displaystyle\dot{r}(t)-\dot{r}(t_{0})=\int_{t_{0}}^{t}\ddot{r}(s)ds t0t(μa2(s)m(a(s)+cosθ(s))(a2(s)+1+2a(s)cosθ(s))32)|q(s)|2𝑑s\displaystyle\geq\int_{t_{0}}^{t}\left(-\frac{\mu}{a^{2}(s)}-\frac{m(a(s)+\cos\theta(s))}{(a^{2}(s)+1+2a(s)\cos\theta(s))^{\frac{3}{2}}}\right)|q(s)|^{-2}ds
t0t(μ(a)2m(a+1)2ϵ)cq2|s|43𝑑s\displaystyle\geq\int_{t_{0}}^{t}\left(-\frac{\mu}{(a^{*})^{2}}-\frac{m}{(a^{*}+1)^{2}}-\epsilon\right)c_{q}^{-2}|s|^{-\frac{4}{3}}ds
=Cd(|t|13|t0|13),\displaystyle=-C^{\prime}_{d}\left(|t|^{-\frac{1}{3}}-|t_{0}|^{-\frac{1}{3}}\right),

where Cd:=3cq2(μ(a)2+m(a+1)2+ϵ)>0C^{\prime}_{d}:=3c_{q}^{-2}\left(\frac{\mu}{(a^{*})^{2}}+\frac{m}{(a^{*}+1)^{2}}+\epsilon\right)>0. Then, by slightly enlarging CdC^{\prime}_{d}, we derive the lower bound for r˙\dot{r}: for some Cd>CdC_{d}>C^{\prime}_{d},

(45) r˙(t)Cd|t|13+Cd|t0|13+r˙(t0)>Cd|t|13,\displaystyle\dot{r}(t)\geq-C^{\prime}_{d}|t|^{-\frac{1}{3}}+C^{\prime}_{d}|t_{0}|^{-\frac{1}{3}}+\dot{r}(t_{0})>-C_{d}|t|^{-\frac{1}{3}},

for |t||t| sufficiently small.

On the other hand, due to inequalities (14), (45), Lemma 3.6 and Lemma 4.10, as tt tends to 00^{-}, r˙2(t)|q(t)|a1(t)\dot{r}^{2}(t)|q(t)|a^{-1}(t) is bounded and tan2η(t)\tan^{2}\eta(t) tends to 0. Then, fixing a t0<0t_{0}<0 near 0 again, by a similar computation as above, we have

r˙(t)r˙(t0)\displaystyle\dot{r}(t)-\dot{r}(t_{0}) =t0t(μa2(s)m(a(s)+cosθ(s))(a2(s)+1+2a(s)cosθ(s))32+tan2η(s)r˙2(s)a(s)|q(s)|)|q(s)|2𝑑s\displaystyle=\int_{t_{0}}^{t}\left(-\frac{\mu}{a^{2}(s)}-\frac{m(a(s)+\cos\theta(s))}{(a^{2}(s)+1+2a(s)\cos\theta(s))^{\frac{3}{2}}}+\tan^{2}\eta(s)\frac{\dot{r}^{2}(s)}{a(s)}|q(s)|\right)|q(s)|^{-2}\ ds
t0t(μ(a)2m(a+1)2+2ϵ)Cq2|s|43𝑑s\displaystyle\leq\int_{t_{0}}^{t}\left(-\frac{\mu}{(a^{*})^{2}}-\frac{m}{(a^{*}+1)^{2}}+2\epsilon\right)C_{q}^{-2}|s|^{-\frac{4}{3}}ds
=cd(|t|13|t0|13),\displaystyle=-c^{\prime}_{d}\left(|t|^{-\frac{1}{3}}-|t_{0}|^{-\frac{1}{3}}\right),

where cd:=3Cq2(μ(a)2+m(a+1)22ϵ)>0c^{\prime}_{d}:=3C_{q}^{-2}\left(\frac{\mu}{(a^{*})^{2}}+\frac{m}{(a^{*}+1)^{2}}-2\epsilon\right)>0. Finally, after reducing cdc^{\prime}_{d} slightly, we derive the upper bound of r˙\dot{r}: for some cd<cdc_{d}<c^{\prime}_{d},

r˙(t)cd|t|13+cd|t0|13+r˙(t0)<cd|t|13,\displaystyle\dot{r}(t)\leq-c^{\prime}_{d}|t|^{-\frac{1}{3}}+c^{\prime}_{d}|t_{0}|^{-\frac{1}{3}}+\dot{r}(t_{0})<-c_{d}|t|^{-\frac{1}{3}},

for |t||t| sufficiently small. This proves the lemma in Case 1.

Case 2. Assume θ=π\theta_{*}^{-}=\pi.

By Lemma 3.4, we know that θ(t)π\theta(t)\equiv\pi for any t(t0,0)t\in(-t_{0},0). Since the angle η(t)\eta(t) between z(t)z(t) and z˙(t)\dot{z}(t) is either 0 or π\pi if r˙0\dot{r}\neq 0, then tanη(t)r˙(t)r(t)0\tan\eta(t)\frac{\dot{r}(t)}{r(t)}\equiv 0 for every t(t0,0)t\in(-t_{0},0). By Lemma 4.10, for any ϵ>0\epsilon>0, we have

(46) |(μa2(t)m(a(t)+cosθ(t))a2(t)+1+2a(t)cosθ(t)32)(μ(a)2m(a1)2)|<ϵ,\displaystyle\left|\left(-\frac{\mu}{a^{2}(t)}-\frac{m(a(t)+\cos\theta(t))}{a^{2}(t)+1+2a(t)\cos\theta(t)^{\frac{3}{2}}}\right)-\left(-\frac{\mu}{(a^{*})^{2}}-\frac{m}{(a^{*}-1)^{2}}\right)\right|<\epsilon,

for |t||t| sufficiently small. Following the previous strategy. Fixing a t0<0t_{0}<0 near 0. By using (14), (43) and (46), we have

r˙(t)r˙(t0)=t0tr¨(s)𝑑s\displaystyle\dot{r}(t)-\dot{r}(t_{0})=\int_{t_{0}}^{t}\ddot{r}(s)ds =t0t(μa2(s)m(a(s)+cosθ(s))(a2(s)+1+2a(s)cosθ(s))32)|q(s)|2𝑑s\displaystyle=\int_{t_{0}}^{t}\left(-\frac{\mu}{a^{2}(s)}-\frac{m(a(s)+\cos\theta(s))}{(a^{2}(s)+1+2a(s)\cos\theta(s))^{\frac{3}{2}}}\right)|q(s)|^{-2}ds
t0t(μ(a)2m(a1)2ϵ)cq2|s|43𝑑s\displaystyle\geq\int_{t_{0}}^{t}\left(-\frac{\mu}{(a^{*})^{2}}-\frac{m}{(a^{*}-1)^{2}}-\epsilon\right)c_{q}^{-2}|s|^{-\frac{4}{3}}ds
=Cd′′(|t|13|t0|13),\displaystyle=-C^{\prime\prime}_{d}\left(|t|^{-\frac{1}{3}}-|t_{0}|^{-\frac{1}{3}}\right),

where Cd′′:=3cq2(μ(a)2+m(a1)2+ϵ)>0C^{\prime\prime}_{d}:=3c_{q}^{-2}\left(\frac{\mu}{(a^{*})^{2}}+\frac{m}{(a^{*}-1)^{2}}+\epsilon\right)>0. Moreover, same as before, we also obtain that

r˙(t)r˙(t0)\displaystyle\dot{r}(t)-\dot{r}(t_{0}) =t0t(μa2(s)m(a(s)+cosθ(s))(a2(s)+1+2a(s)cosθ(s))32)|q(s)|2𝑑s\displaystyle=\int_{t_{0}}^{t}\left(-\frac{\mu}{a^{2}(s)}-\frac{m(a(s)+\cos\theta(s))}{(a^{2}(s)+1+2a(s)\cos\theta(s))^{\frac{3}{2}}}\right)|q(s)|^{-2}\ ds
t0t(μ(a)2m(a1)2+ϵ)Cq2|s|43𝑑s\displaystyle\leq\int_{t_{0}}^{t}\left(-\frac{\mu}{(a^{*})^{2}}-\frac{m}{(a^{*}-1)^{2}}+\epsilon\right)C_{q}^{-2}|s|^{-\frac{4}{3}}ds
=cd′′(|t|13|t0|13),\displaystyle=-c^{\prime\prime}_{d}\left(|t|^{-\frac{1}{3}}-|t_{0}|^{-\frac{1}{3}}\right),

where cd′′:=3Cq2(μ(a)2+m(a1)2ϵ)>0c^{\prime\prime}_{d}:=3C_{q}^{-2}\left(\frac{\mu}{(a^{*})^{2}}+\frac{m}{(a^{*}-1)^{2}}-\epsilon\right)>0. By choosing ϵ>0\epsilon>0 sufficiently small, both Cd′′C^{\prime\prime}_{d} and cd′′c^{\prime\prime}_{d} are positive. Then by enlarging Cd′′C^{\prime\prime}_{d} and reducing cd′′c^{\prime\prime}_{d} as before, we obtain the lower and upper bound for r˙\dot{r}, no matter α=α1\alpha^{*}=\alpha_{1} or α3\alpha_{3}. This proves the lemma in Case 2 and the proof is now completed. ∎

Now we introduce the following lemma, i.e. when the limiting angle θ=0\theta_{*}^{-}=0, then rr and |q||q| tend to be proportional near the three-body collision. Moreover, the limiting ratio can be determined only by the mass ratio m/μm/\mu.

Lemma 4.12.

Assume θ=0\theta_{*}^{-}=0, then a=α2a^{*}=\alpha_{2}, where α2\alpha_{2} is the unique zero of (7) in (1,+)(1,+\infty).

Proof.

To show aα2a^{*}\leq\alpha_{2}. Assume not, that is a>α2a^{*}>\alpha_{2}. Let ϵ>0\epsilon>0 and aϵ=aϵa_{\epsilon}=a^{*}-\epsilon. Since a(t)a(t) is convergent at t=0t=0, see Lemma 4.10, we know that a(t)aϵ>0a(t)-a_{\epsilon}>0 for |t|>0|t|>0 sufficiently small. Moreover, combining (14), Lemma 3.6, Lemma 4.6(c) and Lemma  4.10, 4.11, we have

limt0hm/μ(a(t),θ(t))=hm/μ(a,0)>0 and limt0tan2η(t)r˙2(t)a(t)|q(t)|=0.\displaystyle\lim_{t\rightarrow 0^{-}}h_{m/\mu}(a(t),\theta(t))=h_{m/\mu}(a^{*},0)>0\quad\text{ and }\quad\lim_{t\rightarrow 0^{-}}\tan^{2}\eta(t)\frac{\dot{r}^{2}(t)}{a(t)}|q(t)|=0.

Then by (22) and d2dt2|q(t)|=μ|q(t)|2\frac{d^{2}}{dt^{2}}|q(t)|=-\frac{\mu}{|q(t)|^{2}}, we compute that, for |t|>0|t|>0 sufficiently small,

(47) r¨(t)aϵd2dt2|q(t)|\displaystyle\ddot{r}(t)-a_{\epsilon}\frac{d^{2}}{dt^{2}}|q(t)| =(r¨(t)a(t)d2dt2|q(t)|)+(a(t)aϵ)d2dt2|q(t)|\displaystyle=\left(\ddot{r}(t)-a(t)\frac{d^{2}}{dt^{2}}|q(t)|\right)+\left(a(t)-a_{\epsilon}\right)\frac{d^{2}}{dt^{2}}|q(t)|
=(hm/μ(a(t),θ(t))+tan2η(t)μr˙2(t)r(t)a2(t)(a(t)aϵ))μr2(t)\displaystyle=\left(h_{m/\mu}(a(t),\theta(t))+\frac{\tan^{2}\eta(t)}{\mu}\dot{r}^{2}(t)r(t)-a^{2}(t)(a(t)-a_{\epsilon})\right)\frac{\mu}{r^{2}(t)}
(hm/μ(a,0)ϵa2(t)2ϵ)μr2(t)\displaystyle\geq\left(h_{m/\mu}(a^{*},0)-\epsilon-a^{2}(t)\cdot 2\epsilon\right)\frac{\mu}{r^{2}(t)}
>(12(a)2hm/μ(a,0)2ϵ(a)22ϵ)μ|q(t)|2=cϵ|q(t)|2,\displaystyle>\left(\frac{1}{2(a^{*})^{2}}h_{m/\mu}(a^{*},0)-\frac{2\epsilon}{(a^{*})^{2}}-2\epsilon\right)\frac{\mu}{|q(t)|^{2}}=c_{\epsilon}|q(t)|^{-2},

where cϵ:=(12(a)2hm/μ(a,0)2ϵ(a)22ϵ)μ.c_{\epsilon}:=\left(\frac{1}{2(a^{*})^{2}}h_{m/\mu}(a^{*},0)-\frac{2\epsilon}{(a^{*})^{2}}-2\epsilon\right)\mu. Since ϵ>0\epsilon>0 is arbitrary, we choose ϵ>0\epsilon>0 sufficiently small such that cϵ>0c_{\epsilon}>0.

Fix a t0<0t_{0}<0 near 0. By integration and Lemma 4.2, we have, for t(t0,0)t\in(t_{0},0),

r˙(t)aϵddt|q(t)|\displaystyle\dot{r}(t)-a_{\epsilon}\frac{d}{dt}|q(t)| =c0+t0tr¨(s)aϵd2dt2|q(s)|dsc0+t0tcϵ|q(s)|2𝑑s\displaystyle=c_{0}+\int_{t_{0}}^{t}\ddot{r}(s)-a_{\epsilon}\frac{d^{2}}{dt^{2}}|q(s)|\ ds\geq c_{0}+\int_{t_{0}}^{t}c_{\epsilon}|q(s)|^{-2}\ ds
c0+3cϵCq2(|t|13|t0|13)=3cϵCq2|t|13+c1,\displaystyle\geq c_{0}+\frac{3c_{\epsilon}}{C_{q}^{2}}\left(|t|^{-\frac{1}{3}}-|t_{0}|^{-\frac{1}{3}}\right)=\frac{3c_{\epsilon}}{C_{q}^{2}}|t|^{-\frac{1}{3}}+c_{1},

where c0:=r˙(t0)aϵddt|q(t0)|c_{0}:=\dot{r}(t_{0})-a_{\epsilon}\frac{d}{dt}|q(t_{0})| and c1:=c03cϵCq2|t0|13c_{1}:=c_{0}-\frac{3c_{\epsilon}}{C_{q}^{2}}|t_{0}|^{-\frac{1}{3}}. By integration again, we obtain

0\displaystyle 0 >(a(t)aϵ)|q(t)|=(r(t)aϵ|q(t)|)\displaystyle>-(a(t)-a_{\epsilon})|q(t)|=-(r(t)-a_{\epsilon}|q(t)|)
=t0r˙(s)aϵddt|q(s)|dst03cϵCq2|s|13+c1ds=(9cϵ2Cq2+c1|t|13)|t|23>0,\displaystyle=\int_{t}^{0}\dot{r}(s)-a_{\epsilon}\frac{d}{dt}|q(s)|\ ds\geq\int_{t}^{0}\frac{3c_{\epsilon}}{C_{q}^{2}}|s|^{-\frac{1}{3}}+c_{1}\ ds=\left(\frac{9c_{\epsilon}}{2C_{q}^{2}}+c_{1}|t|^{\frac{1}{3}}\right)|t|^{\frac{2}{3}}>0,

for |t|>0|t|>0 sufficiently small. Then, we obtain a contradiction and we conclude that aα2a^{*}\leq\alpha_{2}.

To prove aα2a^{*}\geq\alpha_{2}. By contradiction, we assume a<α2a^{*}<\alpha_{2}. Let ϵ>0\epsilon>0 and aϵ=a+ϵa_{\epsilon}=a^{*}+\epsilon. By Lemma 4.10 again, we have a(t)aϵ(2ϵ,0)a(t)-a_{\epsilon}\in(-2\epsilon,0) for |t|>0|t|>0 sufficiently small. Similar to the previous case, we have

(48) limt0hm/μ(a(t),θ(t))=hm/μ(a,0)<0 and limt0tan2η(t)r˙2(t)a(t)|q(t)|=0,\displaystyle\lim_{t\rightarrow 0^{-}}h_{m/\mu}(a(t),\theta(t))=h_{m/\mu}(a^{*},0)<0\quad\text{ and }\quad\lim_{t\rightarrow 0^{-}}\tan^{2}\eta(t)\frac{\dot{r}^{2}(t)}{a(t)}|q(t)|=0,

Then similar to the estimates in (47), for |t|>0|t|>0 sufficiently small, we compute that

(49) r¨(t)aϵd2dt2|q(t)|\displaystyle\ddot{r}(t)-a_{\epsilon}\frac{d^{2}}{dt^{2}}|q(t)| =(hm/μ(a(t),θ(t))+tan2η(t)μr˙2(t)r(t)a2(t)(a(t)aϵ))μr2(t)\displaystyle=\left(h_{m/\mu}(a(t),\theta(t))+\frac{\tan^{2}\eta(t)}{\mu}\dot{r}^{2}(t)r(t)-a^{2}(t)(a(t)-a_{\epsilon})\right)\frac{\mu}{r^{2}(t)}
(hm/μ(a,0)+2ϵ+a2(t)2ϵ)μr2(t)\displaystyle\leq\left(h_{m/\mu}(a^{*},0)+2\epsilon+a^{2}(t)\cdot 2\epsilon\right)\frac{\mu}{r^{2}(t)}
<(12(a)2hm/μ(a,0)+3ϵ(a)2+2ϵ)μ|q(t)|2=Cϵ|q(t)|2,\displaystyle<\left(\frac{1}{2(a^{*})^{2}}h_{m/\mu}(a^{*},0)+\frac{3\epsilon}{(a^{*})^{2}}+2\epsilon\right)\frac{\mu}{|q(t)|^{2}}=-C_{\epsilon}|q(t)|^{-2},

where Cϵ:=(12(a)2hm/μ(a,0)+3ϵ(a)2+2ϵ)μC_{\epsilon}:=-\left(\frac{1}{2(a^{*})^{2}}h_{m/\mu}(a^{*},0)+\frac{3\epsilon}{(a^{*})^{2}}+2\epsilon\right)\mu. Since ϵ>0\epsilon>0 is also arbitrary, we can choose ϵ>0\epsilon>0 sufficiently small such that Cϵ>0C_{\epsilon}>0.

Next, we fix a t0<0t_{0}<0 near 0. By integration and Lemma 4.2, for any t(t0,0)t\in(t_{0},0), we have

r˙(t)aϵddt|q(t)|\displaystyle\dot{r}(t)-a_{\epsilon}\frac{d}{dt}|q(t)| =C0+t0tr¨(s)aϵd2dt2|q(s)|dsC0t0tCϵ|q(s)|2𝑑s\displaystyle=C_{0}+\int_{t_{0}}^{t}\ddot{r}(s)-a_{\epsilon}\frac{d^{2}}{dt^{2}}|q(s)|\ ds\leq C_{0}-\int_{t_{0}}^{t}C_{\epsilon}|q(s)|^{-2}\ ds
C03CϵCq2(|t|13|t0|13)=3CϵCq2|t|13+C1,\displaystyle\leq C_{0}-\frac{3C_{\epsilon}}{C_{q}^{2}}\left(|t|^{-\frac{1}{3}}-|t_{0}|^{-\frac{1}{3}}\right)=-\frac{3C_{\epsilon}}{C_{q}^{2}}|t|^{-\frac{1}{3}}+C_{1},

where C0:=r˙(t0)aϵddt|q(t0)|C_{0}:=\dot{r}(t_{0})-a_{\epsilon}\frac{d}{dt}|q(t_{0})| and C1:=C0+3CϵCq2|t0|13C_{1}:=C_{0}+\frac{3C_{\epsilon}}{C_{q}^{2}}|t_{0}|^{-\frac{1}{3}}. By integration again, we obtain

0\displaystyle 0 <(a(t)aϵ)|q(t)|=(r(t)aϵ|q(t)|)\displaystyle<-(a(t)-a_{\epsilon})|q(t)|=-(r(t)-a_{\epsilon}|q(t)|)
=t0r˙(s)aϵddt|q(s)|dst03CϵCq2|s|13+C1ds=(9Cϵ2Cq2+C1|t|13)|t|23<0,\displaystyle=\int_{t}^{0}\dot{r}(s)-a_{\epsilon}\frac{d}{dt}|q(s)|\ ds\leq\int_{t}^{0}-\frac{3C_{\epsilon}}{C_{q}^{2}}|s|^{-\frac{1}{3}}+C_{1}\ ds=\left(-\frac{9C_{\epsilon}}{2C_{q}^{2}}+C_{1}|t|^{\frac{1}{3}}\right)|t|^{\frac{2}{3}}<0,

for |t|>0|t|>0 sufficiently small. Then, we obtain a contradiction and prove that aα2a^{*}\geq\alpha_{2}. The proof is now completed. ∎

Near the three-body collision, the ratio of |z||z| and |q||q| has been characterized in the case θ=0\theta_{*}^{-}=0. Now we consider the case θ=π\theta_{*}^{-}=\pi.

Lemma 4.13.

Assume θ=π\theta_{*}^{-}=\pi, then a{α1,α3}a^{*}\in\{\alpha_{1},\alpha_{3}\}, where α1<1<α3\alpha_{1}<1<\alpha_{3} are the unique two zeros of (8) in (0,1)(1,+)(0,1)\cup(1,+\infty).

Proof.

Since θ(t)π\theta(t)\equiv\pi on (t0,0)(-t_{0},0), there are only two possibilities, i.e. z(t)(,q(t))z(t)\in(-\infty,q(t)) and z(t)(q(t),0)z(t)\in(q(t),0). We aim to show that, a=α1a^{*}=\alpha_{1} for the form case, and a=α3a^{*}=\alpha_{3} for the latter case. Since the proof is similar to Lemma 4.12, then we only sketch the proof for a=α1a^{*}=\alpha_{1} and omit the proof for a=α3a^{*}=\alpha_{3}.

We split the proof in two situations: to show the contradictions for a(0,α1)a^{*}\in(0,\alpha_{1}) and a(α1,1]a^{*}\in(\alpha_{1},1].

Assume a(α1,1]a^{*}\in(\alpha_{1},1]. Let ϵ>0\epsilon>0 and aϵ=aϵa_{\epsilon}=a^{*}-\epsilon. By Lemma 4.10, we know that a(t)aϵ>0a(t)-a_{\epsilon}>0 for |t|>0|t|>0 sufficiently small. Moreover, since θ(t)π\theta(t)\equiv\pi, the angle η(t)\eta(t) from z(t)z(t) to z˙(t)\dot{z}(t) is 0 or π\pi if r˙(t)0\dot{r}(t)\neq 0. Then by Lemma 4.6(c), we have

limt0hm/μ(a(t),θ(t))=hm/μ(a,0)>0 and tan2(η(t))r˙2(t)r(t)=0,t(t0,0).\displaystyle\lim_{t\rightarrow 0^{-}}h_{m/\mu}(a(t),\theta(t))=h_{m/\mu}(a^{*},0)>0\quad\text{ and }\quad\tan^{2}(\eta(t))\dot{r}^{2}(t)r(t)=0,\quad\forall t\in(-t_{0},0).

By the computation in (47), for |t|>0|t|>0 sufficiently small, we have

r¨(t)aϵd2dt2|q(t)|\displaystyle\ddot{r}(t)-a_{\epsilon}\frac{d^{2}}{dt^{2}}|q(t)| =(hm/μ(a(t),θ(t))a2(t)(a(t)aϵ))μr2(t)\displaystyle=\left(h_{m/\mu}(a(t),\theta(t))-a^{2}(t)(a(t)-a_{\epsilon})\right)\frac{\mu}{r^{2}(t)}
>(12(a)2hm/μ(a,0)2ϵ(a)22ϵ)μ|q(t)|2=cϵ|q(t)|2,\displaystyle>\left(\frac{1}{2(a^{*})^{2}}h_{m/\mu}(a^{*},0)-\frac{2\epsilon}{(a^{*})^{2}}-2\epsilon\right)\frac{\mu}{|q(t)|^{2}}=c_{\epsilon}|q(t)|^{-2},

where cϵ:=(12(a)2hm/μ(a,0)2ϵ(a)22ϵ)μ.c_{\epsilon}:=\left(\frac{1}{2(a^{*})^{2}}h_{m/\mu}(a^{*},0)-\frac{2\epsilon}{(a^{*})^{2}}-2\epsilon\right)\mu. Since ϵ>0\epsilon>0 is arbitrary, we choose ϵ>0\epsilon>0 sufficiently small such that cϵ>0c_{\epsilon}>0. On the other hand, fix a t0<0t_{0}<0 near 0. By following exactly the argument in Lemma 4.12, we obtain a contradiction that 0>(a(t)aϵ)|q(t)|>00>-(a(t)-a_{\epsilon})|q(t)|>0 and we have aα1a^{*}\leq\alpha_{1}.

Assume a(0,α1)a^{*}\in(0,\alpha_{1}). Let ϵ>0\epsilon>0 and aϵ=a+ϵa_{\epsilon}=a^{*}+\epsilon. By Lemma 4.10 again, we have a(t)aϵ(2ϵ,0)a(t)-a_{\epsilon}\in(-2\epsilon,0) for |t|>0|t|>0 sufficiently small. Similar to the previous case, we have

limt0hm/μ(a(t),θ(t))=hm/μ(a,0)<0 and tan2η(t)r˙2(t)r(t)=0,\displaystyle\lim_{t\rightarrow 0^{-}}h_{m/\mu}(a(t),\theta(t))=h_{m/\mu}(a^{*},0)<0\quad\text{ and }\quad\tan^{2}\eta(t)\dot{r}^{2}(t)r(t)=0,

Similar to the estimates (49), for |t|>0|t|>0 sufficiently small, we compute that

r¨(t)aϵd2dt2|q(t)|\displaystyle\ddot{r}(t)-a_{\epsilon}\frac{d^{2}}{dt^{2}}|q(t)| =(hm/μ(a(t),θ(t))a2(t)(a(t)aϵ))μr2(t)\displaystyle=\left(h_{m/\mu}(a(t),\theta(t))-a^{2}(t)(a(t)-a_{\epsilon})\right)\frac{\mu}{r^{2}(t)}
<(12(a)2hm/μ(a,0)+3ϵ(a)2+2ϵ)μ|q(t)|2=Cϵ|q(t)|2,\displaystyle<\left(\frac{1}{2(a^{*})^{2}}h_{m/\mu}(a^{*},0)+\frac{3\epsilon}{(a^{*})^{2}}+2\epsilon\right)\frac{\mu}{|q(t)|^{2}}=-C_{\epsilon}|q(t)|^{-2},

where Cϵ:=(12(a)2hm/μ(a,0)+3ϵ(a)2+2ϵ)μC_{\epsilon}:=-\left(\frac{1}{2(a^{*})^{2}}h_{m/\mu}(a^{*},0)+\frac{3\epsilon}{(a^{*})^{2}}+2\epsilon\right)\mu. Since ϵ>0\epsilon>0 is also arbitrary, we can choose ϵ>0\epsilon>0 sufficiently small such that Cϵ>0C_{\epsilon}>0. Next, we fix a t0<0t_{0}<0 near 0. By using the same strategy as in Lemma 4.13, we obtain a similar contradiction, 0<(a(t)aϵ)|q(t)|<00<-(a(t)-a_{\epsilon})|q(t)|<0. This means aα1a^{*}\geq\alpha_{1}. The proof is now completed. ∎

To further prove the Sundman-Sperling estimates for the three-body collision, we study the ratio of velocities for zz and qq, based on the characterization of the ratio of positions.

Lemma 4.14.

Let b(t)=r˙(t)/ddt|q(t)|b(t)=\dot{r}(t)/\frac{d}{dt}|q(t)|. Then we have b:=limt0b(t)b^{*}:=\lim_{t\rightarrow 0^{-}}b(t) exists. Moreover,

  1. (a)(a)

    if θ=0\theta_{*}^{-}=0, then b=α2b^{*}=\alpha_{2},

  2. (b)(b)

    if θ=π\theta_{*}^{-}=\pi, then b{α1,α3}b^{*}\in\{\alpha_{1},\alpha_{3}\},

where α2\alpha_{2} solves (7) and α1,α3\alpha_{1},\alpha_{3} solve (8).

Proof.

To show (a). Following the strategy of Lemma 4.12. We first prove the existence of bb^{*}, then prove b=α2b^{*}=\alpha_{2}. Denote b¯=lim inft0b(t)\underline{b}^{-}=\liminf_{t\rightarrow 0^{-}}b(t) and b¯=lim supt0b(t)\overline{b}^{-}=\limsup_{t\rightarrow 0^{-}}b(t). Unlike behavior of a(t)a(t), b¯\underline{b}^{-} and b¯\overline{b}^{-} might be ±\pm\infty.

To show bb^{*} exists. By contradiction, we assume b¯<b¯\underline{b}^{-}<\overline{b}^{-}.

Case 1: Assume b¯<α2\underline{b}^{-}<\alpha_{2}. There exists an ϵ>0\epsilon>0 small and a sequence of moments {tk}\{t_{k}\} with tk0t_{k}\rightarrow 0^{-} such that

(50) b(tk)<α2ϵ, and b˙(tk)=r¨(tk)b(tk)d2dt2|q(tk)|ddt|q(tk)|0,\displaystyle b(t_{k})<\alpha_{2}-\epsilon,\quad\text{ and }\quad\dot{b}(t_{k})=\frac{\ddot{r}(t_{k})-b(t_{k})\frac{d^{2}}{dt^{2}}|q(t_{k})|}{\frac{d}{dt}|q(t_{k})|}\leq 0,

for any kk sufficiently large.

From Lemma 4.12, it is clear that a(tk)b(tk)ϵ/2a(t_{k})-b(t_{k})\geq\epsilon/2 for sufficiently large kk. By similar arguments in (48) and (49), together with the fact that hm/μ(α2,0)=0h_{m/\mu}(\alpha_{2},0)=0, we conclude that

(51) r¨(tk)\displaystyle\ddot{r}(t_{k}) b(tk)d2dt2|q(tk)|\displaystyle-b(t_{k})\frac{d^{2}}{dt^{2}}|q(t_{k})|
=(hm/μ(a(tk),θ(tk))+tan2η(tk)μr˙2(tk)r(tk)a2(tk)(a(tk)b(tk)))μr2(tk)\displaystyle=\left(h_{m/\mu}(a(t_{k}),\theta(t_{k}))+\frac{\tan^{2}\eta(t_{k})}{\mu}\dot{r}^{2}(t_{k})r(t_{k})-a^{2}(t_{k})(a(t_{k})-b(t_{k}))\right)\frac{\mu}{r^{2}(t_{k})}
(hm/μ(α2,0)ϵ4a2(tk))μr2(tk)<0,\displaystyle\leq\left(h_{m/\mu}(\alpha_{2},0)-\frac{\epsilon}{4}a^{2}(t_{k})\right)\frac{\mu}{r^{2}(t_{k})}<0,

for kk sufficiently large. This contradicts to (50) since b˙(tk)0\dot{b}(t_{k})\leq 0 and ddt|q(tk)|<0\frac{d}{dt}|q(t_{k})|<0.

Case 2: Assume b¯α2\underline{b}^{-}\geq\alpha_{2}. There also exists an ϵ>0\epsilon>0 and a sequence {sk}\{s_{k}\} with sk0s_{k}\rightarrow 0^{-} such that

(52) b(sk)>α2+ϵ, and b˙(sk)=r¨(sk)b(sk)d2dt2|q(sk)|ddt|q(sk)|0,\displaystyle b(s_{k})>\alpha_{2}+\epsilon,\quad\text{ and }\quad\dot{b}(s_{k})=\frac{\ddot{r}(s_{k})-b(s_{k})\frac{d^{2}}{dt^{2}}|q(s_{k})|}{\frac{d}{dt}|q(s_{k})|}\geq 0,

for kk sufficiently large.

From Lemma 4.12 again, it is clear that a(tk)b(tk)ϵ/2a(t_{k})-b(t_{k})\leq-\epsilon/2 for sufficiently large kk. By a similar argument in (51), for kk sufficiently large, we have

r¨(tk)b(tk)d2dt2|q(tk)|(hm/μ(α2,0)+ϵ4a2(tk))μr2(tk)>0,\displaystyle\ddot{r}(t_{k})-b(t_{k})\frac{d^{2}}{dt^{2}}|q(t_{k})|\geq\left(h_{m/\mu}(\alpha_{2},0)+\frac{\epsilon}{4}a^{2}(t_{k})\right)\frac{\mu}{r^{2}(t_{k})}>0,

which leads to a contradiction with (52). Therefore, the limit b¯=b¯=b\underline{b}^{-}=\overline{b}^{-}=b^{*} exists.

To show b=α2b^{*}=\alpha_{2}. By contradiction, we assume bα2b^{*}\neq\alpha_{2}. Let ϵ=12|bα2|>0\epsilon=\frac{1}{2}|b^{*}-\alpha_{2}|>0, then for |t||t| sufficiently small, we have

(53) |a(t/2)a(t)|\displaystyle\left|a(t/2)-a(t)\right| =|tt/2a˙(s)𝑑s|=|tt/2r˙(s)|q(s)|r(s)ddt|q(s)||q(s)|2𝑑s|\displaystyle=\left|\int_{t}^{t/2}\dot{a}(s)ds\right|=\left|\int_{t}^{t/2}\frac{\dot{r}(s)|q(s)|-r(s)\frac{d}{dt}|q(s)|}{|q(s)|^{2}}ds\right|
=|tt/2(b(s)a(s))ddt|q(s)||q(s)|𝑑s|tt/2(|bα2|ϵ)ddt|q(s)||q(s)|𝑑s\displaystyle=\left|\int_{t}^{t/2}\frac{(b(s)-a(s))\frac{d}{dt}|q(s)|}{|q(s)|}ds\right|\geq\int_{t}^{t/2}(|b^{*}-\alpha_{2}|-\epsilon)\frac{\frac{d}{dt}|q(s)|}{|q(s)|}ds
|bα2|2tt/2cqCq|s|1𝑑s=cq2Cq|bα2|ln2>0.\displaystyle\geq\frac{|b^{*}-\alpha_{2}|}{2}\int_{t}^{t/2}\frac{c_{q}}{C_{q}}|s|^{-1}ds=\frac{c_{q}}{2C_{q}}|b^{*}-\alpha_{2}|\ln 2>0.

The first inequality above follows from the fact that (b(s)a(s))ddt|q(s)|(b(s)-a(s))\frac{d}{dt}|q(s)| does not change the sign when |s||s| is sufficiently small, and the second inequality follows from (14)(\ref{eqn:sundman}). However, from the fact that a(t)a(t) is convergent, we observe that limt0|a(t/2)a(t)|=0\lim_{t\rightarrow 0^{-}}|a(t/2)-a(t)|=0, which contradicts (53). The proof of (a) is completed.

To show (b). By Lemma 3.4, we know that θ(t)π\theta(t)\equiv\pi for any t(t0,0)t\in(-t_{0},0). Since the angle η(t)\eta(t) between z(t)z(t) and z˙(t)\dot{z}(t) is either 0 or π\pi if r˙0\dot{r}\neq 0, then tanη(t)r˙(t)r(t)0\tan\eta(t)\frac{\dot{r}(t)}{r(t)}\equiv 0 for every t(t0,0)t\in(-t_{0},0). Similar to Lemma 4.13, we first prove that bb^{*} exists, then prove b=α1b^{*}=\alpha_{1} or b=α3b^{*}=\alpha_{3}.

Since the proof of b=α1b^{*}=\alpha_{1} and b=α3b^{*}=\alpha_{3} are similar, we only sketch the proof for b=α1b^{*}=\alpha_{1}. By contradiction, assume b¯<b¯\underline{b}^{-}<\overline{b}^{-}, where b¯\underline{b}^{-} and b¯\overline{b}^{-} might be ±\pm\infty. Similar as (a), we will show that both b¯<α1\underline{b}^{-}<\alpha_{1} and b¯α1\underline{b}^{-}\geq\alpha_{1} will lead to a contradiction.

Case 1: When b¯<α1\underline{b}^{-}<\alpha_{1}, there exists an ϵ>0\epsilon>0 small and a sequence of moments {tk}\{t_{k}\} with tk0t_{k}\rightarrow 0^{-} such that, for kk sufficiently large, we have

(54) b(tk)<α1ϵ, and b˙(tk)=r¨(tk)b(tk)d2dt2|q(tk)|ddt|q(tk)|0.\displaystyle b(t_{k})<\alpha_{1}-\epsilon,\quad\text{ and }\quad\dot{b}(t_{k})=\frac{\ddot{r}(t_{k})-b(t_{k})\frac{d^{2}}{dt^{2}}|q(t_{k})|}{\frac{d}{dt}|q(t_{k})|}\leq 0.

From Lemma 4.13, it is clear that a(tk)b(tk)>ϵ/2a(t_{k})-b(t_{k})>\epsilon/2. Same as the proof of (a), together with the fact that hm/μ(α1,0)=0h_{m/\mu}(\alpha_{1},0)=0, we have

(55) r¨(tk)b(tk)d2dt2|q(tk)|\displaystyle\ddot{r}(t_{k})-b(t_{k})\frac{d^{2}}{dt^{2}}|q(t_{k})| =(hm/μ(a(tk),θ(tk))a2(tk)(a(tk)b(tk)))μr2(tk)\displaystyle=\left(h_{m/\mu}(a(t_{k}),\theta(t_{k}))-a^{2}(t_{k})(a(t_{k})-b(t_{k}))\right)\frac{\mu}{r^{2}(t_{k})}
(hm/μ(α1,0)ϵ4a2(tk))μr2(t)<0,\displaystyle\leq\left(h_{m/\mu}(\alpha_{1},0)-\frac{\epsilon}{4}a^{2}(t_{k})\right)\frac{\mu}{r^{2}(t)}<0,

for kk sufficiently large. This contradicts to (54) since b˙(tk)0\dot{b}(t_{k})\leq 0 and ddt|q(tk)|<0\frac{d}{dt}|q(t_{k})|<0.

Case 2: When b¯α1\underline{b}^{-}\geq\alpha_{1}, there exists an ϵ>0\epsilon>0 small and a sequence {sk}\{s_{k}\} with sk0s_{k}\rightarrow 0^{-} such that, for kk sufficiently large, we have

(56) b(sk)>α1+ϵ, and b˙(sk)=r¨(sk)b(sk)d2dt2|q(sk)|ddt|q(sk)|0.\displaystyle b(s_{k})>\alpha_{1}+\epsilon,\quad\text{ and }\quad\dot{b}(s_{k})=\frac{\ddot{r}(s_{k})-b(s_{k})\frac{d^{2}}{dt^{2}}|q(s_{k})|}{\frac{d}{dt}|q(s_{k})|}\geq 0.

This means that a(sk)b(sk)<ϵ/2a(s_{k})-b(s_{k})<-\epsilon/2. Similar to the argument in (55), we have

r¨(tk)b(tk)d2dt2|q(tk)|(hm/μ(α1,0)+ϵ4a2(tk))μr2(t)>0,\displaystyle\ddot{r}(t_{k})-b(t_{k})\frac{d^{2}}{dt^{2}}|q(t_{k})|\geq\left(h_{m/\mu}(\alpha_{1},0)+\frac{\epsilon}{4}a^{2}(t_{k})\right)\frac{\mu}{r^{2}(t)}>0,

for kk sufficiently large. This also leads to a contradiction with (56). Hence, the limit b¯=b¯=b\underline{b}^{-}=\overline{b}^{-}=b^{*} exists.

To show b=α1b^{*}=\alpha_{1}. By contradiction, we assume bα1b^{*}\neq\alpha_{1}. Let ϵ=12|bα1|>0\epsilon=\frac{1}{2}|b^{*}-\alpha_{1}|>0, then same as the computation in (a), we conclude that, for |t||t| sufficiently small,

(57) |a(t/2)a(t)|=cq2Cq|bα1|ln2>0.\displaystyle\left|a(t/2)-a(t)\right|=\frac{c_{q}}{2C_{q}}|b^{*}-\alpha_{1}|\ln 2>0.

However, limt0|a(t/2)a(t)|=0\lim_{t\rightarrow 0^{-}}|a(t/2)-a(t)|=0, since a(t)a(t) is convergent. This contradicts to (57). Therefore, (b) holds as we expected. The proof is now completed. ∎

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1.

Recall that the restricted one-center-two-body problem (2) is symmetric with respect to the real axis, and the action functional 𝒜\mathcal{A} is invariant under the complex conjugation. Therefore, it is sufficient to prove this theorem on [T,0][-T,0]. Moreover, by Lemma 2.1, there exists a moment t0(0,T]t_{0}\in(0,T], such that z(t)z(t) is smooth on (t0,0)(-t_{0},0), z(t0)+z(-t_{0})\in\mathbb{C}^{+}_{*} and z(0)=0z(0)=0.

To prove (a). By Theorem 2.9, since z(t)z(t) is a minimizer, there exists no two-body collision on [T,0)[-T,0). Then by taking t0=Tt_{0}=T, we see that (a) is a direct conclusion of Lemma 3.4 and Lemma 4.8.

To prove (b). The first two estimates of (6) follow from Lemma 4.12 - 4.14. To show the third estimate. Let c(t)=r¨(t)/d2dt2|q(t)|c(t)=\ddot{r}(t)/\frac{d^{2}}{dt^{2}}|q(t)|. According to (22) and (1), we have

(58) c(t)a(t)\displaystyle c(t)-a(t) =1a2(t)(hm/μ(a(t),θ(t))+1μtan2(η(t))r˙2(t)r(t)).\displaystyle=-\frac{1}{a^{2}(t)}\left(h_{m/\mu}(a(t),\theta(t))+\frac{1}{\mu}\tan^{2}(\eta(t))\dot{r}^{2}(t)r(t)\right).

Combing Lemma 4.12, 4.13, Lemma 4.6 and Lemma 3.6, we have a=limt0a(t){αi}i=13a_{*}=\lim_{t\rightarrow 0^{-}}a(t)\in\{\alpha_{i}\}_{i=1}^{3},

limt0hm/μ(a(t),θ(t))=hm/μ(α,0)=0andlimt0tan2η(t)r˙2(t)a(t)|q(t)|=0.\lim_{t\rightarrow 0^{-}}h_{m/\mu}(a(t),\theta(t))=h_{m/\mu}(\alpha_{*},0)=0\quad\mathrm{and}\quad\lim_{t\rightarrow 0^{-}}\tan^{2}\eta(t)\frac{\dot{r}^{2}(t)}{a(t)}|q(t)|=0.

Then as t0t\rightarrow 0^{-}, we obtain from (58) that limt0c(t)=a{αi}i=13\lim_{t\rightarrow 0^{-}}c(t)=a_{*}\in\{\alpha_{i}\}_{i=1}^{3}. In particular, (b1)(b_{1}) and (b2)(b_{2}) follow. The proof is now completed. ∎

5. Application: Classical solutions with prescribed boundary angles

In this section, as an application of Theorem 1.1, i.e. the Sundman-Sperling estimates to the restricted one-center-two-body problem (2), we aim to prove Theorem 1.2, i.e. the existence of the collision-free solutions z(t)z(t) jointing from the ray eϕi+e^{\phi i}\mathbb{R}^{+} to eϕ0i+e^{\phi_{0}i}\mathbb{R}^{+} in t[T,0]t\in[-T,0], where (ϕ,ϕ0)[0,π]×[0,π](\phi,\phi_{0})\in[0,\pi]\times[0,\pi] with ϕϕ0\phi\neq\phi_{0}. Similar in [0,T][0,T] with ϕ,ϕ0\phi,\phi_{0} switched. The strategy of this proof is first to apply Theorem 2.9 to exclude the two-body collisions, then apply Theorem 1.1 and the local deformation method to exclude the three-body collision for prescribed boundary angles ϕ,ϕ0\phi,\phi_{0}.

Recall from (5) that the action functional

𝒜a,b(z)=ab12|z˙|2+U(z,t)dt,zH1([a,b],),\displaystyle\mathcal{A}_{a,b}(z)=\int_{a}^{b}\frac{1}{2}|\dot{z}|^{2}+U(z,t)dt,\quad\forall z\in H^{1}([a,b],\mathbb{C}),

where the potential U(z,t)U(z,t) is given in (3). It is well-known that for any a<ba<b, 𝒜a,b\mathcal{A}_{a,b} is a weakly lower semi-continuous on H1([a,b],)H^{1}([a,b],\mathbb{C}) and the equation (2) is the Euler-Lagrange equation of 𝒜a,b\mathcal{A}_{a,b}. This implies that the critical points of 𝒜a,b\mathcal{A}_{a,b} in H1([a,b],)H^{1}([a,b],\mathbb{C}) are weak solutions of the restricted one-center-two-body problem (2) on t[a,b]t\in[a,b].

Consider the path space

Ωϕ1,ϕ2a,b={x=reθiH1([a,b],):r+,θ(a)=ϕ1,θ(b)=ϕ2}.\displaystyle\Omega^{a,b}_{\phi_{1},\phi_{2}}=\{x=re^{\theta i}\in H^{1}([a,b],\mathbb{C}):\ r\in\mathbb{R}^{+},\ \theta(a)=\phi_{1},\ \theta(b)=\phi_{2}\}.

We can obtain the following lemma.

Lemma 5.1.

Given T>0T>0 and a collision Kepler system (q,c)(q,c) which satisfies (1) and (Q1)(Q3)(Q1)-(Q3). For any ϕ,ϕ0[0,π)\phi,\phi_{0}\in[0,\pi) with ϕϕ0\phi\neq\phi_{0}, the action functional 𝒜T,0\mathcal{A}_{-T,0} (resp. 𝒜0,T\mathcal{A}_{0,T}) attains its infimum on Ωϕ,ϕ0T,0\Omega^{-T,0}_{\phi,\phi_{0}} (resp. Ωϕ0,ϕ0,T\Omega^{0,T}_{\phi_{0},\phi}).

Proof.

Here, because of the reversibility of (2), we only show the existence of minimizer of 𝒜T,0\mathcal{A}_{-T,0} on Ωϕ,ϕ0T,0\Omega^{-T,0}_{\phi,\phi_{0}} and omit the case for 𝒜0,T\mathcal{A}_{0,T} on Ωϕ0,ϕ0,T\Omega^{0,T}_{\phi_{0},\phi}.

Since 𝒜T,0\mathcal{A}_{-T,0} is weakly lower semi-continuous on H1([a,b],)H^{1}([a,b],\mathbb{C}), it is sufficient to show 𝒜T,0\mathcal{A}_{-T,0} is coercive in Ωϕ,ϕ0T,0\Omega^{-T,0}_{\phi,\phi_{0}}, that is 𝒜T,0(z)+aszL2([T,0],)+\mathcal{A}_{-T,0}(z)\rightarrow+\infty\ \text{as}\ \|z\|_{L^{2}([-T,0],\mathbb{C})}\rightarrow+\infty.

Let z=reθiΩϕ,ϕ0T,0z=re^{\theta i}\in\Omega^{-T,0}_{\phi,\phi_{0}}. Since θ(T)=ϕ\theta(-T)=\phi and θ(0)=ϕ0\theta(0)=\phi_{0}, we have

|sin(ϕθ(t))||z(t)||z(t)z(T)|and|sin(ϕ0θ(t))||z(t)||z(t)z(0)|,\displaystyle\lvert\sin(\phi-\theta(t))\rvert\cdot\lvert z(t)\rvert\leq\lvert z(t)-z(-T)\rvert\ \ \text{and}\ \ \lvert\sin(\phi_{0}-\theta(t))\rvert\cdot\lvert z(t)\rvert\leq\lvert z(t)-z(0)\rvert,

for t[T,0]t\in[-T,0].

By Holder’s inequality, we further obtain that

|sin(ϕθ(t))|2|z(t)|2|z(t)z(T)|2(Tt|z˙(s)|𝑑s)2(t+T)Tt|z˙(s)|2𝑑s,\displaystyle\lvert\sin(\phi-\theta(t))\rvert^{2}\lvert z(t)\rvert^{2}\leq\lvert z(t)-z(-T)\rvert^{2}\leq\left(\int_{-T}^{t}\lvert\dot{z}(s)\rvert ds\right)^{2}\leq(t+T)\int_{-T}^{t}\lvert\dot{z}(s)\rvert^{2}ds,
|sin(ϕ0θ(t))|2|z(t)|2|z(t)z(0)|2(t0|z˙(s)|𝑑s)2(t)t0|z˙(s)|2𝑑s.\displaystyle\lvert\sin(\phi_{0}-\theta(t))\rvert^{2}\lvert z(t)\rvert^{2}\leq\lvert z(t)-z(0)\rvert^{2}\leq\left(\int_{t}^{0}\lvert\dot{z}(s)\rvert ds\right)^{2}\leq(-t)\int_{t}^{0}\lvert\dot{z}(s)\rvert^{2}ds.

for t[T,0]t\in[-T,0]. Then we compute that

z˙L2([T,0],)2\displaystyle\|\dot{z}\|^{2}_{L^{2}([-T,0],\mathbb{C})} (|sin(ϕθ(t))|2t+T+|sin(ϕ0θ(t))|2t)|z(t)|2\displaystyle\geq\left(\frac{\lvert\sin(\phi-\theta(t))\rvert^{2}}{t+T}+\frac{\lvert\sin(\phi_{0}-\theta(t))\rvert^{2}}{-t}\right)\lvert z(t)\rvert^{2}
1T(|sin(ϕθ(t))|2+|sin(ϕ0θ(t))|2)|z(t)|2\displaystyle\geq\frac{1}{T}\left(\lvert\sin(\phi-\theta(t))\rvert^{2}+\lvert\sin(\phi_{0}-\theta(t))\rvert^{2}\right)\lvert z(t)\rvert^{2}
2TCϕ,ϕ0|z(t)|2,\displaystyle\geq\frac{2}{T}C_{\phi,\phi_{0}}\lvert z(t)\rvert^{2},

where

Cϕ,ϕ0:=min{sin2(ϕϕ02),cos2(ϕϕ02)}>0,ϕ,ϕ0[0,π),\displaystyle C_{\phi,\phi_{0}}:=\min\left\{\sin^{2}\left(\frac{\phi-\phi_{0}}{2}\right),\cos^{2}\left(\frac{\phi-\phi_{0}}{2}\right)\right\}>0,\quad\forall\phi,\phi_{0}\in[0,\pi),

and the last inequality can be checked by using direct computation. Therefore, we have

zL2([T,0],)T2Cϕ,ϕ0z˙L2([T.0],).\displaystyle\|z\|_{L^{2}([-T,0],\mathbb{C})}\leq\frac{T}{\sqrt{2C_{\phi,\phi_{0}}}}\|\dot{z}\|_{L^{2}([-T.0],\mathbb{C})}.

Since 𝒜T,0(z)12z˙L2([T,0])2\mathcal{A}_{-T,0}(z)\geq\frac{1}{2}\|\dot{z}\|^{2}_{L^{2}([-T,0])}, we conclude that

𝒜T,0(z)+aszL2([T,0],)+.\displaystyle\mathcal{A}_{-T,0}(z)\rightarrow+\infty\quad\text{as}\quad\|z\|_{L^{2}([-T,0],\mathbb{C})}\rightarrow+\infty.

This completes the proof. ∎

As previously stated, the minimizer obtained in Lemma 5.1 is a weak solution of the restricted one-center-two-body problem (2). It becomes a classical solution if it does not encounter any collisions. Therefore, to prove Theorem 1.2, it is sufficient to exclude the two-body and three-body collisions in the minimizer of 𝒜T,0\mathcal{A}_{-T,0} on Ωϕ,ϕ0T,0\Omega_{\phi,\phi_{0}}^{-T,0}. The proof on t[0,T]t\in[0,T] is similar.

We first exclude the two-body collisions in the following theorem.

Theorem 5.2.

Given T>0T>0 and a collision Kepler system (q,c)(q,c) satisfying (1) and (Q1)(Q3)(Q1)-(Q3). Let 𝒜T,0(𝒜0,T)\mathcal{A}_{-T,0}\ (\mathcal{A}_{0,T}) be an action functional on Ωϕ,ϕ0T,0(Ωϕ,ϕ00,T)\Omega^{-T,0}_{\phi,\phi_{0}}\ (\Omega^{0,T}_{\phi,\phi_{0}}) as in (5) and assume z(t)z(t) is an associated minimizer. Then z(t)z(t) possesses no two-body collision on [T,0](or[0,T])[-T,0]\ (\text{or}\ [0,T]).

Proof.

We only prove this theorem for 𝒜T,0\mathcal{A}_{-T,0} on Ωϕ,ϕ0T,0\Omega_{\phi,\phi_{0}}^{-T,0}. By applying Theorem 2.9, it is sufficient to consider the case τ=T\tau=-T.

Firstly, without loss of generality, we can assume z(t)+z(t)\in\mathbb{C}^{+}_{*} is smooth on (T,0)(-T,0) by using conjugation and Theorem 2.9. By assumption that ϕ[0,π)\phi\in[0,\pi), the two-body collision at t=Tt=-T must be between zz and cc. When the situation ϕ0\phi\neq 0 or the situation ϕ=0\phi=0 with θc,T+π\theta_{c,-T}^{+}\neq\pi occurs, we have |θ(T)θc,T+|<π\lvert\theta(-T)-\theta_{c,-T}^{+}\rvert<\pi. Then by using Proposition 2.7, we get a contradiction to the assume that zz is a minimizer.

When the situation ϕ=0\phi=0 with θc,T+=π\theta_{c,-T}^{+}=\pi occurs, the particle zz will lie on the negative real axis until next collision happens (at τ(T,0]\tau^{\prime}\in(-T,0]). By Theorem 2.9, we only need to consider the case τ=0\tau^{\prime}=0. In this situation, z(T)=z(0)=0z(-T)=z(0)=0 and z(t)(q(t),0)(,0)z(t)\in(q(t),0)\subset(-\infty,0) on (T,0)(-T,0). It is clear that zΩϕ,ϕ0T,0-z\in\Omega^{-T,0}_{\phi,\phi_{0}} and 𝒜T,0(z)<𝒜T,0(z)\mathcal{A}_{-T,0}(-z)<\mathcal{A}_{-T,0}(z) since z-z has same kinetic energy with zz and less potential energy than zz. This causes a contradiction and the proof now is completed. ∎

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2.

According to Lemma 5.1 and Theorem 5.2, we know that 𝒜T,0\mathcal{A}_{-T,0} admits a minimizer z(t)z(t) on Ωϕ,ϕ0T,0\Omega^{-T,0}_{\phi,\phi_{0}} with no two-body collision on [T,0][-T,0]. By the properties of minimizer, it is sufficient to prove (a), (c) and (d).

As in the proof of Theorem 5.2, we can assume z(t)+z(t)\in\mathbb{C}^{+}_{*} is smooth for all t(T,0)t\in(-T,0).

To show (a). It is sufficient to exclude the three-body collision of zz, i.e. z(0)0z(0)\neq 0. Assume z(0)=0z(0)=0 by contradiction. Since ϕ0,ϕπ\phi_{0},\phi\neq\pi, by Theorem 1.1 (c.f. Theorem 4.8), we have θ=0\theta_{*}^{-}=0. Consider the following two cases.

Case 1: ϕ0=0\phi_{0}=0. Write z(t)=x(t)+iy(t)z(t)=x(t)+iy(t). Choose an ϵ>0\epsilon>0 sufficiently small. We define a new path z^ϵ(t)=x^ϵ(t)+iy^ϵ(t)\hat{z}_{\epsilon}(t)=\hat{x}_{\epsilon}(t)+i\hat{y}_{\epsilon}(t) by

x^ϵ(t):={x(t),if t[T,ϵ],x(ϵ),if t[ϵ,0],y^ϵ(t)=y(t), for all t[T,0],\displaystyle\hat{x}_{\epsilon}(t):=\left\{\begin{array}[]{ll}\ x(t),&\text{if $t\in[-T,-\epsilon]$},\vspace{1ex}\\ x(-\epsilon),&\text{if $t\in[-\epsilon,0]$},\vspace{1ex}\\ \end{array}\right.\quad\quad\hat{y}_{\epsilon}(t)=y(t),\quad\text{ for all $t\in[-T,0]$},

see the left picture in Figure 4. It is easy to check that z^ϵΩϕ,0T,0\hat{z}_{\epsilon}\in\Omega^{-T,0}_{\phi,0}. Since θ=0\theta_{*}^{-}=0, for any ϵ>0\epsilon>0 sufficiently small, we have 0<x(t)<x(ϵ)0<x(t)<x(-\epsilon) for every t(ϵ,0)t\in(-\epsilon,0). Then for any t(ϵ,0)t\in(-\epsilon,0), we conclude that

|z˙(t)|2|z^˙ϵ(t)|2\displaystyle\lvert\dot{z}(t)\rvert^{2}-\lvert\dot{\hat{z}}_{\epsilon}(t)\rvert^{2} =x˙2(t)0,\displaystyle=\dot{x}^{2}(t)\geq 0,
μ|z(t)|μ|z^ϵ(t)|=μx2(t)+y2(t)μx2(ϵ)+y2(t)>0,\displaystyle\frac{\mu}{\lvert z(t)\rvert}-\frac{\mu}{\lvert\hat{z}_{\epsilon}(t)\rvert}=\frac{\mu}{\sqrt{x^{2}(t)+y^{2}(t)}}-\frac{\mu}{\sqrt{x^{2}(-\epsilon)+y^{2}(t)}}>0,

and

m|z(t)q(t)|m|z^ϵ(t)q(t)|=μ(x(t)q(t))2+y2(t)μ(x(ϵ)q(t))2+y2(t)>0.\displaystyle\frac{m}{\lvert z(t)-q(t)\rvert}-\frac{m}{\lvert\hat{z}_{\epsilon}(t)-q(t)\rvert}=\frac{\mu}{\sqrt{(x(t)-q(t))^{2}+y^{2}(t)}}-\frac{\mu}{\sqrt{(x(-\epsilon)-q(t))^{2}+y^{2}(t)}}>0.

These inequalities show that 𝒜T,0(z)𝒜T,0(z^ϵ)>0\mathcal{A}_{-T,0}(z)-\mathcal{A}_{-T,0}(\hat{z}_{\epsilon})>0. This leads to a contradiction to the minimizer. Case 1 is proved.

Case 2: ϕ0(0,π/2]\phi_{0}\in(0,\pi/2]. Choose an ϵ>0\epsilon>0 sufficiently small and define z~ϵ(t)=x~ϵ(t)+iy~ϵ(t)\tilde{z}_{\epsilon}(t)=\tilde{x}_{\epsilon}(t)+i\tilde{y}_{\epsilon}(t) by

x~ϵ(t):={x(t),if t[T,ϵ],x(t),if t(ϵ,tϵ],x(tϵ),if t(tϵ,0],y~ϵ(t):={y(t),if t[T,ϵ],y(ϵ),if t(ϵ,tϵ],y(ϵ),if t(tϵ,0],\displaystyle\tilde{x}_{\epsilon}(t):=\left\{\begin{array}[]{ll}x(t),&\text{if $t\in[-T,-\epsilon]$},\vspace{1ex}\\ x(t),&\text{if $t\in(-\epsilon,t_{\epsilon}]$},\vspace{1ex}\\ x(t_{\epsilon}),&\text{if $t\in(t_{\epsilon},0]$},\vspace{1ex}\\ \end{array}\right.\quad\quad\tilde{y}_{\epsilon}(t):=\left\{\begin{array}[]{ll}\ y(t),&\text{if $t\in[-T,-\epsilon]$},\vspace{1ex}\\ y(-\epsilon),&\text{if $t\in(-\epsilon,t_{\epsilon}]$},\vspace{1ex}\\ y(-\epsilon),&\text{if $t\in(t_{\epsilon},0]$},\vspace{1ex}\\ \end{array}\right.

see the right picture in Figure 4. where tϵ(ϵ,0]t_{\epsilon}\in(-\epsilon,0] is a moment with x(tϵ)+iy(ϵ)eϕ0i+x(t_{\epsilon})+iy(-\epsilon)\in e^{\phi_{0}i}\mathbb{R}^{+}. Since θ=0\theta_{*}^{-}=0, for ϵ>0\epsilon>0 sufficiently small, we have θ(ϵ)<ϕ0\theta(-\epsilon)<\phi_{0}, then the moment tϵt_{\epsilon} exists. We see that z~ϵΩϕ,ϕ0T,0\tilde{z}_{\epsilon}\in\Omega^{-T,0}_{\phi,\phi_{0}}. Moreover, for ϵ>0\epsilon>0 sufficiently small, we have

0<x(t)x~ϵ(t)and0<y(t)<y~ϵ(t),\displaystyle 0<x(t)\leq\tilde{x}_{\epsilon}(t)\quad\text{and}\quad 0<y(t)<\tilde{y}_{\epsilon}(t),  for all t(ϵ,0).\displaystyle\quad\text{ for all }t\in(-\epsilon,0).

Then for t(ϵ,0)t\in(-\epsilon,0), we conclude that

|z˙(t)|2|z~˙ϵ(t)|2\displaystyle\lvert\dot{z}(t)\rvert^{2}-\lvert\dot{\tilde{z}}_{\epsilon}(t)\rvert^{2} y˙2(t)0,\displaystyle\geq\dot{y}^{2}(t)\geq 0,
μ|z(t)|μ|z~ϵ(t)|=μx2(t)+y2(t)μx~ϵ2(t)+y~ϵ2(t)>0,\displaystyle\frac{\mu}{\lvert z(t)\rvert}-\frac{\mu}{\lvert\tilde{z}_{\epsilon}(t)\rvert}=\frac{\mu}{\sqrt{x^{2}(t)+y^{2}(t)}}-\frac{\mu}{\sqrt{\tilde{x}_{\epsilon}^{2}(t)+\tilde{y}_{\epsilon}^{2}(t)}}>0,

and

m|z(t)q(t)|m|z~ϵ(t)q(t)|=μ(x(t)q(t))2+y2(t)μ(x~ϵ(t)q(t))2+y~ϵ2(t)>0.\displaystyle\frac{m}{\lvert z(t)-q(t)\rvert}-\frac{m}{\lvert\tilde{z}_{\epsilon}(t)-q(t)\rvert}=\frac{\mu}{\sqrt{(x(t)-q(t))^{2}+y^{2}(t)}}-\frac{\mu}{\sqrt{(\tilde{x}_{\epsilon}(t)-q(t))^{2}+\tilde{y}_{\epsilon}^{2}(t)}}>0.

These inequalities implies that 𝒜T,0(z)𝒜T,0(z~ϵ)>0\mathcal{A}_{-T,0}(z)-\mathcal{A}_{-T,0}(\tilde{z}_{\epsilon})>0. This leads to a contradiction to the minimizer. Case 2 is proved and the proof of (a) is completed.

To show (c). Recall that z(t)z(t) is smooth on (T,0)(-T,0). By Corollary 3.3, if (c) is false, then either z(t)+z(t)\in\mathbb{R}^{+} or z(t)z(t)\in\mathbb{R}^{-}. However, since z(T)0z(0)z(-T)\neq 0\neq z(0) by (a), ϕ[0,π)\phi\in[0,\pi) and ϕϕ0\phi\neq\phi_{0}, neither of them happens. This gives a contradiction. Moreover, if min{ϕ,ϕ0}=0\min\{\phi,\phi_{0}\}=0, then θ(t)\theta(t) must be strictly monotone on [T,0][-T,0], i.e. t{0,π}t_{*}\in\{0,\pi\}. Otherwise, if t(T,0)t_{*}\in(-T,0), then θ(t)=0\theta(t_{*})=0, which contradicts to the strictness of the monotonicity for θ(t)\theta(t) on [T,t][-T,t_{*}] and [t,0][t_{*},0]. Hence, (c) holds.

Finally, (d) follows directly from the variational computation of 𝒜T,0\mathcal{A}_{-T,0} on Ωϕ,ϕ0T,0\Omega^{-T,0}_{\phi,\phi_{0}} at the collision-free minimizer z|[T,0]z|_{[-T,0]}. ∎

Remark 5.3.

When ϕ0(π/2,π)\phi_{0}\in(\pi/2,\pi), the three-body collision is difficult to exclude. In fact, unlike the case of two-body collisions, the three-body collision involving two different singularities, which are asymptotic to each other as t0±t\rightarrow 0^{\pm}. The behavior of these two singularities highly impact the action of the local deformation pathes. This causes a huge difficulty to the exclusion of the three-body collision.

Refer to caption
Figure 4. Local deformation paths.

6. Appendix: Periodic and quasi-periodic solutions

In one of the pioneer work [9] of variational method to the NN-body problem, Gordon mentioned a class of extended Kepler collision solution with negative energy which allow the bodies bounce towards arbitrary directions after collisions.

Let ψ(π,π)\psi\in(-\pi,\pi) and c0c\equiv 0. In this appendix, we consider a special class of extended Kepler collision solution qψq_{\psi} of (1) which has negative energy and reflect a fixed angle ψ\psi after each collision. Notice that qψq_{\psi} is periodic (ψ/π\psi/\pi\in\mathbb{Q}) or quasi-periodic (ψ/π\psi/\pi\notin\mathbb{Q}) since the energy of qψq_{\psi} is constant except the moment of collision [5, Sec.3.3].

More precisely, without loss of generality, we assume the extended Kepler collision orbit qψq_{\psi} satisfies the following conditions:

  1. (Q1ψ)(Q1_{\psi})

    qψq_{\psi} collides with cc at moment t=2kTt=2kT for each kk\in\mathbb{Z}.

  2. (Q2ψ)(Q2_{\psi})

    qψq_{\psi} is smooth on (2kT,2(k+1)T)(2kT,2(k+1)T), that is qψ0q_{\psi}\neq 0 on (2kT,2(k+1)T)(2kT,2(k+1)T), for each kk\in\mathbb{Z}.

  3. (Q3ψ)(Q3_{\psi})

    qψ|(2kT,2(k+1)T)q_{\psi}|_{(2kT,2(k+1)T)} lies on the ray e(πkψ)i+e^{(\pi-k\psi)i}\mathbb{R}^{+}, for each kk\in\mathbb{Z}.

According to assumptions (Q1ψ)(Q3ψ)(Q1_{\psi})-(Q3_{\psi}), we obtain the following properties:

  1. (Q4ψ)(Q4_{\psi})

    qψ((2k+1)Tt)=qψ((2k+1)T+t)q_{\psi}((2k+1)T-t)=q_{\psi}((2k+1)T+t) on [0,T][0,T], for each kk\in\mathbb{Z}.

  2. (Q5ψ)(Q5_{\psi})

    q˙ψ((2k+1)T)=0\dot{q}_{\psi}((2k+1)T)=0, for each kk\in\mathbb{Z}.

Refer to caption
Figure 5. Extended Kepler collision orbit q4π/5q_{-4\pi/5} and the solution z4π/5z_{-4\pi/5}.

Consider the extended Kepler collision system (qψ,c)(q_{\psi},c) which satisfies (Q1ψ)(Q3ψ)(Q1_{\psi})-(Q3_{\psi}). According to Theroem 1.2 and  1.3, there exists two collision-free solutions zψ|[0,T]Ωψ/2,00,Tz_{\psi}|_{[0,T]}\in\Omega^{0,T}_{\psi/2,0} and zψ|[T,2T]Ω0,ψ/2T,2Tz_{\psi}|_{[T,2T]}\in\Omega^{T,2T}_{0,-\psi/2} of the restricted one-center-two-body problem (2) satisfying (see Figure 5)

  1. \bullet

    zψ(t)=z¯ψ(2Tt)z_{\psi}(t)=\bar{z}_{\psi}(2T-t) on [0,T][0,T] and zψz_{\psi} is smooth at t=Tt=T.

  2. \bullet

    zψ(0)eψi/2+,zψ(T)+z_{\psi}(0)\in e^{\psi i/2}\mathbb{R}^{+},z_{\psi}(T)\in\mathbb{R}^{+} and zψ(2T)eψi/2+z_{\psi}(2T)\in e^{-\psi i/2}\mathbb{R}^{+}.

  3. \bullet

    zψz_{\psi} is orthogonal to eψi/2+e^{\psi i/2}\mathbb{R}^{+}, +\mathbb{R}^{+} and eψi/2+e^{-\psi i/2}\mathbb{R}^{+} at moment t=0,T,2Tt=0,T,2T, respectively.

Moreover, by the symmetry of qϕq_{\phi}, the domain of solution zψ|[0,2T]z_{\psi}|_{[0,2T]} can be extended to \mathbb{R} by choosing zψz_{\psi} as following (see Figure 5)

zψ(t)=zψ(t^)ekψi, where k,t^[0,2T)witht=2kT+t^.\displaystyle z_{\psi}(t)=z_{\psi}(\hat{t})e^{-k\psi i},\quad\text{ where }k\in\mathbb{Z},\ \hat{t}\in[0,2T)\ \text{with}\ t=2kT+\hat{t}.

Note that zψ(t)z_{\psi}(t) is well-defined on \mathbb{R}. For each kk\in\mathbb{Z}, zψz_{\psi} is smooth and orthogonal to e(1/2k)ψi+e^{\left(1/2-k\right)\psi i}\mathbb{R}^{+} at t=2kTt=2kT. In particular, the three bodies (zψ,qψ,c)(z_{\psi},q_{\psi},c) form a periodic (ψ/π\psi/\pi\in\mathbb{Q}) or quasi-periodic (ψ/π\psi/\pi\notin\mathbb{Q}) of the restricted one-center-two-body system.

Data Availability Statement.

All data needed to evaluate the conclusions in the paper are present in the paper. Additional data related to this paper may be requested from the authors.

Declaration of Interest Statement.

The authors declare that they have no conflict of interests.

Acknowledgements.

It is a pleasure to thank K.C. Chen and W.T. Kuang for discussions. Hsu is supported by National Natural Science Foundation of China under grant (12101363, 12271300), Natural Science Foundation of Shandong Province, China under grant (ZR2020QA013), National Science Foundation for Young Scientists of Fujian Province under grant (2023J01123) and Scientific Research Funds of Huaqiao University under grant (22BS101). Liu is supported by National Natural Science Foundation of China under grants (12071255, 12171281).

References

  • [1] Chen, K.C.: Variational methods on periodic and quasi-periodic solutions for the N-body problem. Ergod. Theor. Dyn. Syst., 23(6):1691–1715 (2003).
  • [2] Chen, K.C.: Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses. Ann. Math., 167:325–348 (2008).
  • [3] Chen, K.C., Yu, G.: Syzygy sequences of the NN-center problem. Ergod. Theor. Dyn. Syst., 38(2):566–582 (2018).
  • [4] Chenciner, A.: Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des nn corps. Regul. Chaotic Dyn., 3:93–106 (1998)
  • [5] Chenciner, A.: Action minimizing solutions of the Newtonian n-body problem: from homology to symmetry. In Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), pages 279–294. Higher Ed. Press, Beijing (2002).
  • [6] Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math., 152:881–901 (2000).
  • [7] Ferrario, D.L., Terracini, S.: On the existence of collisionless equivariant minimizers for the classical nn-body problem. Invent. Math., 155(2):305–362 (2004).
  • [8] Fusco, G., Gronchi, G.F., Negrini, P.: Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem. Invent. Math., 185(2):283–332 (2011).
  • [9] Gordon, W.B.: A minimizing property of Keplerian orbits. Amer. J. Math., 99:961–971 (1977).
  • [10] Hsu, K.J.: Binary-Syzygy sequence of restricted few-body-few-center problem with symmetric primaries. Celest. Mech. Dyn. Astron., 134(2):1–24 (2022).
  • [11] Kajihara, Y., Shibayama, M.: Variational existence proof for multiple periodic orbits in the planar circular restricted three-body problem. Nonlinearity, 35(3):1431–1446 (2022).
  • [12] Moeckel, R.: A variational proof of existence of transit orbits in the restricted three-body problem. Dynam. Syst. , 20(1):45–58 (2005).
  • [13] Shibayama, M.: Variational construction of orbits realizing symbolic sequences in the planar Sitnikov problem. Regul. Chaotic Dyn., 24(2):202–211 (2019).
  • [14] Soave, N., Terracini, S.: Symbolic dynamics for the NN-centre problem at negative energies. Discrete Contin. Dyn. Syst. Ser.-A, 32:3245–3301 (2012).
  • [15] Soave, N., Terracini, S.: Avoiding collisions under topological constraints in variational problems coming from celestial mechanics. J. Fixed Point Theory Appl., 14(2):457–501 (2013).
  • [16] Sperling, H.J.: The collision singularity in a perturbed two-body problem. Celestial Mech., 1(2):213–221 (1969).
  • [17] Sperling, H.J.: On the real singularities of the n-body problem. J. Reine Angew. Math., 245:15–40 (1970).
  • [18] Sundman, K.F.: Mémoire sur le problème des trois corps. Acta Math., 36(1):105–179 (1913).
  • [19] Terracini N., Venturelli A.: Symmetric trajectories for the 2N2N-body problem with equal masses. Arch. Ration. Mech. Anal., 184(3):465-493.(2007).
  • [20] Venturelli, A.: Application de la Minimisation de L’action au Problme des N Corps dans le plan et dans L’espace. Pd.D. Thesis, Paris 7. (2002).
  • [21] Wintner A.: The analytical foundations of celestial mechanics. Princeton Mathematical Series, vol. 5, Princeton University Press, Princeton, N.J. (1941).
  • [22] Yu, G.: Periodic solutions of the planar N-center problem with topological constraints. Discrete Contin. Dyn. Syst. Ser.-A, 36(9):5131–5162 (2016).