This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Unicity and the Ambiguity of Lusztig Parametrizations for Finite Classical Groups

Shu-Yen Pan Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan sypan@math.nthu.edu.tw
Abstract.

The Lusztig correspondence is a bijective mapping between the Lusztig series indexed by the conjugacy class of a semisimple element ss in the connected component (G)0(G^{*})^{0} of the dual group of GG and the set of irreducible unipotent characters of the centralizer of ss in GG^{*}. In this article we discuss the unicity and ambiguity of such a bijective correspondence. In particular, we show that the Lusztig correspondence for a classical group can be made to be unique if we require it to be compatible with the parabolic induction and the finite theta correspondence.

Key words and phrases:
rank, unipotent character, reductive dual pair
2010 Mathematics Subject Classification:
Primary: 20C33; Secondary: 22E50

1. Introduction

1.1.

Let G be a classical group defined over a finite field 𝐅q{\mathbf{F}}_{q} of odd characteristic, and let FF be the corresponding Frobenius endomorphism. Let G=GFG=\text{\bf G}^{F} denote the finite subgroup of rational points, and let (G){\mathcal{E}}(\text{\bf G}) denote the set of irreducible characters (i.e., the characters of irreducible representations) of GG.

Let RT,sGR^{\text{\bf G}}_{\text{\bf T}^{*},s} denote the Deligne-Lusztig virtual characters (cf[Car85], [GM20]) indexed by conjugacy class of pair (T,s)(\text{\bf T}^{*},s) where T\text{\bf T}^{*} is a rational maximal torus in the dual group G\text{\bf G}^{*} and ss is a rational semisimple element contained in T\text{\bf T}^{*}. Let 𝒱(G){\mathcal{V}}(\text{\bf G}) be the space of (complex valued) class function on GG, and let 𝒱(G){\mathcal{V}}(\text{\bf G})^{\sharp} denote the subspace spanned by Deligne-Lusztig virtual characters. Note that 𝒱(G){\mathcal{V}}(\text{\bf G}) is an inner product space with the inner product ,G\langle,\rangle_{\text{\bf G}} given by

f1,f2G=1|G|gGf1(g)f2(g)¯\langle f_{1},f_{2}\rangle_{\text{\bf G}}=\frac{1}{|G|}\sum_{g\in G}f_{1}(g)\overline{f_{2}(g)}

for f1,f2𝒱(G)f_{1},f_{2}\in{\mathcal{V}}(\text{\bf G}), and f2(g)¯\overline{f_{2}(g)} denotes the complex conjugate of the value f2(g)f_{2}(g). For f𝒱(G)f\in{\mathcal{V}}(\text{\bf G}) the orthogonal projection of ff onto 𝒱(G){\mathcal{V}}(\text{\bf G})^{\sharp} is denoted by ff^{\sharp} and called the uniform projection. A class function f𝒱(G)f\in{\mathcal{V}}(\text{\bf G}) is called uniform if f=ff^{\sharp}=f.

A natural question is how much an irreducible character ρ\rho of a classical group GG can be determined by its uniform projection ρ\rho^{\sharp}?

If G is a general linear group GLn{\rm GL}_{n} or a unitary group Un{\rm U}_{n}, then every irreducible character is uniform (i.e., ρ=ρ\rho=\rho^{\sharp}) and the above question is trivial. However, if G is a symplectic group or an orthogonal group, the question is more subtle. Recall that ρ(G)\rho\in{\mathcal{E}}(\text{\bf G}) is called unipotent if ρ,RT,1GG0\langle\rho,R^{\text{\bf G}}_{\text{\bf T}^{*},1}\rangle_{\text{\bf G}}\neq 0 for some T\text{\bf T}^{*}. If ρ\rho is unipotent and G is connected, it is known that ρ\rho is uniquely determined by its uniform projection, i.e., ρ=ρ\rho^{\prime\sharp}=\rho^{\sharp} if and only if ρ=ρ\rho^{\prime}=\rho (cf[DM90] proposition 6.3 and [GM20] theorem 4.4.23). If ρ\rho is unipotent and G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}, it is also known that ρ=ρ\rho^{\prime\sharp}=\rho^{\sharp} if and only if ρ=ρ\rho^{\prime}=\rho or ρ=ρsgn\rho^{\prime}=\rho\cdot{\rm sgn} (cf[Pan19b] proposition 3.6).

In this paper, the above question will be answered completely (cf. Corollary 7.5, Corollary 9.4 and Corollary 8.4) for classical groups:

Theorem 1.1.

Let G be a symplectic group or an orthogonal group, and let ρ,ρ(G)\rho,\rho^{\prime}\in{\mathcal{E}}(\text{\bf G}). Then ρ=ρ\rho^{\prime\sharp}=\rho^{\sharp} if and only of

(1.2) ρ={ρ,if G=SO2n+1;ρ,ρcif G=Sp2n;ρ,ρc,ρsgn,ρcsgnif G=O2nϵ.\rho^{\prime}=\begin{cases}\rho,&\text{if\/ $\text{\bf G}={\rm SO}_{2n+1}$};\\ \rho,\rho^{c}&\text{if\/ $\text{\bf G}={\rm Sp}_{2n}$};\\ \rho,\rho^{c},\rho\cdot{\rm sgn},\rho^{c}\cdot{\rm sgn}&\text{if\/ $\text{\bf G}={\rm O}^{\epsilon}_{2n}$}.\end{cases}

Here “sgn{\rm sgn}” denotes the sign character of an orthogonal group, and “ρc\rho^{c}” denotes the character obtained from ρ\rho by conjugating an element in the corresponding similitude group (cf[Wal04] §4.3, §4.10). Note that if ρ\rho is unipotent then ρc=ρ\rho^{c}=\rho, and then (1.2) is reduced to the above known result.

1.2.

In fact, the above theorem is a consequence of a more precise result on the ambiguity of the Lusztig parametrization of irreducible characters of finite classical groups. From now on, we assume that G is a symplectic group or an orthogonal group. It is known by Lusztig that there is a partition

(G)=(s)(G,s){\mathcal{E}}(\text{\bf G})=\bigcup_{(s)}{\mathcal{E}}(\text{\bf G},s)

where the union (s)\bigcup_{(s)} runs over conjugacy classes of semisimple elements in the connected component of the dual group GG^{*} and

(G,s)={ρ(G)ρ,RT,sGG0 for some T containing s}.{\mathcal{E}}(\text{\bf G},s)=\{\,\rho\in{\mathcal{E}}(\text{\bf G})\mid\langle\rho,R^{\text{\bf G}}_{\text{\bf T}^{*},s}\rangle_{\text{\bf G}}\neq 0\text{ for some }\text{\bf T}^{*}\text{ containing }s\,\}.

Each (G,s){\mathcal{E}}(\text{\bf G},s) is called a Lusztig series. In particular, the subset (G,1){\mathcal{E}}(\text{\bf G},1) consists of unipotent characters.

Now we first focus on the set of unipotent characters. Let 𝒱(G,1){\mathcal{V}}(\text{\bf G},1) denote the subspace spanned by elements in (G,1){\mathcal{E}}(\text{\bf G},1), and let 𝒱(G,1){\mathcal{V}}(\text{\bf G},1)^{\sharp} denote the uniform projection of 𝒱(G,1){\mathcal{V}}(\text{\bf G},1). Following from Lusztig (cf[Lus81], [Lus82]) we can define a set 𝒮G{\mathcal{S}}_{\text{\bf G}}^{\sharp} (cf. (3.7)) and class functions RΣGR_{\Sigma}^{\text{\bf G}} (cf. (3.5)) for Σ𝒮G\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp} such that the set {RΣGΣ𝒮G}\{\,R_{\Sigma}^{\text{\bf G}}\mid\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp}\,\} forms an orthonormal basis for 𝒱(G,1){\mathcal{V}}(\text{\bf G},1)^{\sharp}. Lusztig constructs a set 𝒮G{\mathcal{S}}_{\text{\bf G}} (cf. (2.7)) of similar classes of symbols and a bijective mapping 1G:𝒮G(G,1){\mathcal{L}}_{1}^{\text{\bf G}}\colon{\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) denoted by ΛρΛ\Lambda\mapsto\rho_{\Lambda} such that the value ρΛ,RΣGG\langle\rho_{\Lambda},R^{\text{\bf G}}_{\Sigma}\rangle_{\text{\bf G}} is specified (cf. Proposition 3.12). Such a mapping 1G{\mathcal{L}}_{1}^{\text{\bf G}} is called a Lusztig parametrization of unipotent characters of G. Because the uniform projection ρΛ\rho_{\Lambda}^{\sharp} can be obtained by the values ρΛ,RΣGG\langle\rho_{\Lambda},R^{\text{\bf G}}_{\Sigma}\rangle_{\text{\bf G}}, the problem of the uniqueness of 1G{\mathcal{L}}_{1}^{\text{\bf G}} is equivalent to the problem whether a unipotent character ρΛ\rho_{\Lambda} can be uniquely determined by its uniform projection ρΛ\rho_{\Lambda}^{\sharp}.

As described in Subsection 1.1, 1G{\mathcal{L}}_{1}^{\text{\bf G}} is known to be unique if G=SO2n+1\text{\bf G}={\rm SO}_{2n+1} or Sp2n{\rm Sp}_{2n}. However, due to the disconnectedness of O2nϵ{\rm O}^{\epsilon}_{2n}, the mapping 1O2nϵ{\mathcal{L}}_{1}^{{\rm O}^{\epsilon}_{2n}} is not uniquely determined. By using the result of “cells” by Lusztig, we determine how ambiguous a Lusztig parametrization 1O2nϵ{\mathcal{L}}_{1}^{{\rm O}^{\epsilon}_{2n}} could be and we show in Proposition 5.9 that 1O2nϵ{\mathcal{L}}_{1}^{{\rm O}^{\epsilon}_{2n}} can be chosen to be unique if we require it to be

  • compatible with parabolic induction and

  • compatible with theta correspondence on cuspidal characters or 𝟏O2+,sgnO2+{\bf 1}_{{\rm O}^{+}_{2}},{\rm sgn}_{{\rm O}^{+}_{2}}.

In particular, 1O2nϵ{\mathcal{L}}_{1}^{{\rm O}^{\epsilon}_{2n}} (and 1Sp2n{\mathcal{L}}_{1}^{{\rm Sp}_{2n^{\prime}}}) can be given so that (ρΛ,ρΛ)ΘG,G(\rho_{\Lambda},\rho^{\prime}_{\Lambda^{\prime}})\in\Theta_{\text{\bf G},\text{\bf G}^{\prime}} if and only if (Λ,Λ)G,G(\Lambda,\Lambda^{\prime})\in{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}} for (G,G)=(O2nϵ,Sp2n)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2n^{\prime}}) where G,G{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}} is a relation between 𝒮G{\mathcal{S}}_{\text{\bf G}} and 𝒮G{\mathcal{S}}_{\text{\bf G}^{\prime}} defined in Subsection 5.2.

1.3.

For a general Lusztig series (G,s){\mathcal{E}}(\text{\bf G},s), Lusztig shows (cf[Lus84]) that there exists a bijection

𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1)

satisfying

(1.3) ρ,ϵGRT,sGG=𝔏s(ρ),ϵCG(s)RT,1CG(s)CG(s)\langle\rho,\epsilon_{\text{\bf G}}R^{\text{\bf G}}_{\text{\bf T}^{*},s}\rangle_{\text{\bf G}}=\langle{\mathfrak{L}}_{s}(\rho),\epsilon_{C_{\text{\bf G}^{*}}(s)}R^{C_{\text{\bf G}^{*}}(s)}_{\text{\bf T}^{*},1}\rangle_{C_{\text{\bf G}^{*}}(s)}

where ϵG=(1)κ(G)\epsilon_{\text{\bf G}}=(-1)^{\kappa(\text{\bf G})}, κ(G)\kappa(\text{\bf G}) denotes the rational rank of G, and CG(s)C_{\text{\bf G}^{*}}(s) denotes the centralizer of ss in G\text{\bf G}^{*}. Such a bijection 𝔏s{\mathfrak{L}}_{s} will be called a Lusztig correspondence in this article (it is called a Jordan decomposition in [GM20]).

Now the question is to understand whether the Lusztig correspondence 𝔏s{\mathfrak{L}}_{s} is uniquely determined by (1.3). If the answer is negative, then we want to know what kind of conditions need to be enforced to make 𝔏s{\mathfrak{L}}_{s} unique. Some discussion on this problem can be founded in [GM20] appendix A.5. If G is a connected group with connected center, it is shown in [DM90] theorem 7.1 that 𝔏s{\mathfrak{L}}_{s} can be uniquely determined by (1.3) and some extra conditions.

For sGs\in G^{*}, we have a decomposition s=s(0)×s(1)×s(2)s=s^{(0)}\times s^{(1)}\times s^{(2)} where s(1)s^{(1)} (resp. s(2)s^{(2)}) is the part whose eigenvalues are all equal to 1-1 (resp. 11), and s(0)s^{(0)} is the part whose eigenvalues do not contain 11 or 1-1. Then we can define groups G(0)(s)\text{\bf G}^{(0)}(s), G()(s)\text{\bf G}^{(-)}(s) and G(+)(s)\text{\bf G}^{(+)}(s) (cf. (6.12)) so that there is a bijective mapping

(CG(s),1)(G(0)(s)×G()(s)×G(+)(s),1).{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1)\rightarrow{\mathcal{E}}(\text{\bf G}^{(0)}(s)\times\text{\bf G}^{(-)}(s)\times\text{\bf G}^{(+)}(s),1).

Combining Lusztig parametrization 1{\mathcal{L}}_{1} of unipotent characters for G(0)\text{\bf G}^{(0)}, G()(s)\text{\bf G}^{(-)}(s), G(+)(s)\text{\bf G}^{(+)}(s), and above bijection and the inverse 𝔏s1{\mathfrak{L}}_{s}^{-1} of a Lusztig correspondence, we obtain a bijective mapping

s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)(G,s){\mathcal{L}}_{s}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s)}\rightarrow{\mathcal{E}}(\text{\bf G},s)

denoted by (x,Λ1,Λ2)ρx,Λ1,Λ2(x,\Lambda_{1},\Lambda_{2})\mapsto\rho_{x,\Lambda_{1},\Lambda_{2}} which is called a modified Lusztig correspondence. Then we prove the following results on the unicity and ambiguity of s{\mathcal{L}}_{s} (or equivalently, the unicity and ambiguity of 𝔏s{\mathfrak{L}}_{s}) for classical groups:

  1. (1)

    Suppose that G=SO2n+1\text{\bf G}={\rm SO}_{2n+1}. There is a unique modified Lusztig correspondence s{\mathcal{L}}_{s} (cf. Theorem 7.1). Note that SO2n+1{\rm SO}_{2n+1} is a connected group with connected center, so this case is covered by [DM90] theorem 7.1. However, for this group, no extra condition other than (1.3) is needed to ensure the uniqueness of s{\mathcal{L}}_{s}.

  2. (2)

    Suppose that G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n} where ϵ=+\epsilon=+ or -. There exists a unique modified Lusztig correspondence s{\mathcal{L}}_{s} which is compatible with the parabolic induction and some other conditions (on basic characters). (cf. Theorem 8.12).

  3. (3)

    Suppose that G=Sp2n\text{\bf G}={\rm Sp}_{2n}. Here we provide two choices of the modified Lusztig correspondence s{\mathcal{L}}_{s}:

    1. (a)

      There exists a unique modified Lusztig correspondence s{\mathcal{L}}_{s} which is compatible with the parabolic induction and compatible with the theta correspondence for the dual pair (G,G)=(Sp2n,SO2n+1)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{2n},{\rm SO}_{2n^{\prime}+1}), i.e., we show that (ρx,Λ1,Λ2,ρx,Λ1,Λ2)ΘG,Gψ(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}})\in\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi} if and only if

      • s(0)=s(0)s^{(0)}=-s^{\prime(0)} and x=xx=x^{\prime},

      • Λ2=Λ1\Lambda_{2}=\Lambda^{\prime}_{1}, and

      • (Λ1,Λ2)G()(s),G(+)(s)(\Lambda_{1},\Lambda^{\prime}_{2})\in{\mathcal{B}}_{\text{\bf G}^{(-)}(s),\text{\bf G}^{(+)}(s^{\prime})}

      where ρx,Λ1,Λ2\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}} is given by the unique modified Lusztig correspondence in (1) (cf. Theorem 9.7 and Theorem 9.9).

    2. (b)

      There exists a unique modified Lusztig correspondence s{\mathcal{L}}_{s} which is compatible with the parabolic induction and compatible with the theta correspondence for the dual pair (G,G)=(Sp2n,O2nϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{2n},{\rm O}^{\epsilon}_{2n^{\prime}}), i.e., (ρx,Λ1,Λ2,ρx,Λ1,Λ2)ΘG,Gψ(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}})\in\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi} if and only if

      • s(0)=s(0)s^{(0)}=s^{\prime(0)} and x=xx=x^{\prime},

      • Λ1=Λ1\Lambda_{1}=\Lambda^{\prime}_{1}, and

      • (Λ2,Λ2)G(+)(s),G(+)(s)(\Lambda_{2},\Lambda^{\prime}_{2})\in{\mathcal{B}}_{\text{\bf G}^{(+)}(s),\text{\bf G}^{(+)}(s^{\prime})}

      where ρx,Λ1,Λ2\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}} is given by the unique modified Lusztig correspondence in (2) (cf. Theorem 9.11 and Theorem 9.12).

    It seems that two choices in (a) and (b) of the modified Lusztig correspondence s{\mathcal{L}}_{s} for Sp2n{\rm Sp}_{2n} should be the same. However, we do not know how to obtain the conclusion yet.

1.4.

The contents of this article are as follows. In Section 2, we recall the notion and some basic result of “symbols” and “special symbols” by Lusztig from [Lus77]. In Section 3 we first recall the notion of “almost characters” by Lusztig from [Lus81] and [Lus82]. Then we record some results of cells from [Pan19a]. In Section 4 we show the uniqueness of 1G{\mathcal{L}}_{1}^{\text{\bf G}} for G=Sp2n\text{\bf G}={\rm Sp}_{2n} and SO2n+1{\rm SO}_{2n+1} by using the results in the previous section. Moreover, we also discuss the ambiguity of 1G{\mathcal{L}}_{1}^{\text{\bf G}} for G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}. In Section 5 we discuss the relation between the theta correspondence ΘG,Gψ\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}} on unipotent characters for (G,G)=(Sp2n,O2nϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{2n},{\rm O}^{\epsilon}_{2n^{\prime}}) and Lusztig parametrizations 1G:𝒮G(G,1){\mathcal{L}}_{1}^{\text{\bf G}}\colon{\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) for G=Sp2n,O2nϵ\text{\bf G}={\rm Sp}_{2n},{\rm O}^{\epsilon}_{2n}. In Section 6 we discuss the relation between the theta correspondence ΘG,Gψ\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}} on certain Lusztig series for (G,G)=(Sp2n,SO2n+1)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{2n},{\rm SO}_{2n^{\prime}+1}) or (Sp2n,O2nϵ)({\rm Sp}_{2n},{\rm O}^{\epsilon}_{2n^{\prime}}) and the Lusztig correspondence 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1). In Section 7 we show that the Lusztig correspondence 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) is unique for G=SO2n+1\text{\bf G}={\rm SO}_{2n+1}. In Section 8 we show that 𝔏s{\mathfrak{L}}_{s} can be chosen to be unique for G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n} if we require 𝔏s{\mathfrak{L}}_{s} to be compatible with the parabolic induction and some other conditions on “basic characters”. In the final section we discuss the uniqueness of the Lusztig correspondence 𝔏s{\mathfrak{L}}_{s} for G=Sp2n\text{\bf G}={\rm Sp}_{2n}. In particular, we show that a unique 𝔏s{\mathfrak{L}}_{s} can be chosen to be compatible with the theta correspondence for the dual pair (Sp2n,SO2n+1)({\rm Sp}_{2n},{\rm SO}_{2n+1}) or for the dual pair (Sp2n,O2nϵ)({\rm Sp}_{2n},{\rm O}^{\epsilon}_{2n}).

2. Symbols and Special symbols

2.1. Irreducible characters of Weyl groups

Let 𝒫(n){\mathcal{P}}(n) denote the set partitions of nn. It is known that the set of irreducible characters (Sn){\mathcal{E}}(S_{n}) of the symmetric group SnS_{n} is parametrized by 𝒫(n){\mathcal{P}}(n). For λ𝒫(n)\lambda\in{\mathcal{P}}(n), we write |λ|=n|\lambda|=n, and the corresponding irreducible character of SnS_{n} is denoted by φλ\varphi_{\lambda}.

Let WnW_{n} denote the Coxeter group of type BnB_{n}, i.e., WnW_{n} consists of all permutations on {1,2,,n,n,(n1),,1}\{1,2,\ldots,n,n^{*},(n-1)^{*},\ldots,1^{*}\} which commutes with the involution

(1,1)(2,2)(n,n)(1,1^{*})(2,2^{*})\cdots(n,n^{*})

where (i,j)(i,j) denote the transposition of i,ji,j. For i=1,,n1i=1,\ldots,n-1, let

si=(i,i+1)(i,(i+1))andσn=(n,n).s_{i}=(i,i+1)(i^{*},(i+1)^{*})\quad\text{and}\quad\sigma_{n}=(n,n^{*}).

It is known that WnW_{n} is generated by {s1,,sn1,σn}\{s_{1},\ldots,s_{n-1},\sigma_{n}\}. Each element of WnW_{n} induces a permutation of {1,2,,n}\{1,2,\ldots,n\}. So we have a surjective homomorphism WnSnW_{n}\rightarrow S_{n} with kernel isomorphic to (/2)n({\mathbb{Z}}/2{\mathbb{Z}})^{n}. Therefore, φλ\varphi_{\lambda} can be regarded as an irreducible character of WnW_{n}.

An ordered pair [μν]\genfrac{[}{]}{0.0pt}{}{\mu}{\nu} of two partitions is called a bi-partitions. Let 𝒫2(n){\mathcal{P}}_{2}(n) denote the set of bipartitions of nn, i.e.,

𝒫2(n)={[μν]|μ|+|ν|=n}.\textstyle{\mathcal{P}}_{2}(n)=\left\{\,\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}\mid|\mu|+|\nu|=n\,\right\}.

For a bi-partition [μν]\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}, we define its transpose by [μν]t=[νμ]\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}^{\rm t}=\genfrac{[}{]}{0.0pt}{}{\nu}{\mu}. A bi-partition [μν]\genfrac{[}{]}{0.0pt}{}{\mu}{\nu} is called degenerate if μ=ν\mu=\nu, and it is called non-degenerate otherwise. For [μν]𝒫2(n)\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}\in{\mathcal{P}}_{2}(n) such that μ𝒫(k)\mu\in{\mathcal{P}}(k) and ν𝒫(l)\nu\in{\mathcal{P}}(l) where k+l=nk+l=n, we define

(2.1) φ[μν]=IndWk×WlWn(φμ(εlφν))\varphi_{\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}}={\rm Ind}^{W_{n}}_{W_{k}\times W_{l}}(\varphi_{\mu}\otimes(\varepsilon_{l}\varphi_{\nu}))

where εl:Wl{±1}\varepsilon_{l}\colon W_{l}\rightarrow\{\pm 1\} is given by si1s_{i}\mapsto 1 and σl1\sigma_{l}\mapsto-1. It is known that φ[μν]\varphi_{\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}} is an irreducible character of WnW_{n}, and the mapping 𝒫2(n)(Wn){\mathcal{P}}_{2}(n)\rightarrow{\mathcal{E}}(W_{n}) by [μν]φ[μν]\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}\mapsto\varphi_{\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}} gives a parametrization of (Wn){\mathcal{E}}(W_{n}) such that

  • φ[n]=𝟏Wn\varphi_{\genfrac{[}{]}{0.0pt}{}{n}{-}}={\bf 1}_{W_{n}}

  • φ[μν]εn=φ[νμ]\varphi_{\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}}\cdot\varepsilon_{n}=\varphi_{\genfrac{[}{]}{0.0pt}{}{\nu}{\mu}}, in particular φ[n]=εn\varphi_{\genfrac{[}{]}{0.0pt}{}{-}{n}}=\varepsilon_{n}

(cf[GP00] theorem 5.5.6).

The kernel Wn+W_{n}^{+} of εn\varepsilon_{n} is a subgroup of index two generated by {s1,,sn1,σnsn1σn}\{s_{1},\ldots,s_{n-1},\sigma_{n}s_{n-1}\sigma_{n}\}. Let Wn=WnWn+W_{n}^{-}=W_{n}\smallsetminus W_{n}^{+}. It is well known that if [μν]\genfrac{[}{]}{0.0pt}{}{\mu}{\nu} is non-degenerate, then φ[μν]|Wn+=φ[νμ]|Wn+\varphi_{\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}}|_{W_{n}^{+}}=\varphi_{\genfrac{[}{]}{0.0pt}{}{\nu}{\mu}}|_{W_{n}^{+}} which is an irreducible character of Wn+W_{n}^{+}; if [μν]\genfrac{[}{]}{0.0pt}{}{\mu}{\nu} is degenerate, then φ[μν]|Wn+\varphi_{\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}}|_{W_{n}^{+}} is a sum of two irreducible characters of Wn+W_{n}^{+}.

2.2. Lusztig’s symbols

In this subsection, we recall some basic notations of “symbols” from [Lus77]. A symbol Λ\Lambda is an ordered pair

(2.2) Λ=(AB)=(a1,a2,,am1b1,b2,,bm2)\Lambda=\binom{A}{B}=\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}}

of two finite sets A,BA,B (possibly empty) of non-negative integers. The sets A,BA,B are also denoted by Λ,Λ\Lambda^{*},\Lambda_{*} and called the first row, the second row of Λ\Lambda respectively. A symbol Λ\Lambda is called reduced if 0AB0\not\in A\cap B. If Λ=(AB)\Lambda=\binom{A}{B}, then we define its transpose by Λt=(BA)\Lambda^{\rm t}=\binom{B}{A}. We denote Λ1Λ2\Lambda_{1}\subset\Lambda_{2} and call Λ1\Lambda_{1} a subsymbol of Λ2\Lambda_{2} if both Λ1Λ2\Lambda_{1}^{*}\subset\Lambda_{2}^{*} and (Λ1)(Λ2)(\Lambda_{1})_{*}\subset(\Lambda_{2})_{*}. If Λ1Λ2\Lambda_{1}\subset\Lambda_{2}, their difference is defined by Λ2Λ1=(Λ2Λ1(Λ2)(Λ1))\Lambda_{2}\smallsetminus\Lambda_{1}=\binom{\Lambda_{2}^{*}\smallsetminus\Lambda_{1}^{*}}{(\Lambda_{2})_{*}\smallsetminus(\Lambda_{1})_{*}}. If both Λ1Λ2=\Lambda_{1}^{*}\cap\Lambda_{2}^{*}=\emptyset and (Λ1)(Λ2)=(\Lambda_{1})_{*}\cap(\Lambda_{2})_{*}=\emptyset, we define Λ1Λ2=(Λ1Λ2(Λ1)(Λ2))\Lambda_{1}\cup\Lambda_{2}=\binom{\Lambda_{1}^{*}\cup\Lambda_{2}^{*}}{(\Lambda_{1})_{*}\cup(\Lambda_{2})_{*}}.

For a symbol Λ\Lambda given in (2.2), its rank and defect are defined by

(2.3) rk(Λ)=i=1miai+j=1m2bj(|A|+|B|12)2,def(Λ)=|A||B|.\displaystyle\begin{split}{\rm rk}(\Lambda)&=\sum_{i=1}^{m_{i}}a_{i}+\sum_{j=1}^{m_{2}}b_{j}-\left\lfloor\left(\frac{|A|+|B|-1}{2}\right)^{2}\right\rfloor,\\ {\rm def}(\Lambda)&=|A|-|B|.\end{split}

From the definition, it is not difficult to check that

(2.4) rk(Λ)(def(Λ)2)2.{\rm rk}(\Lambda)\geq\left\lfloor\left(\frac{{\rm def}(\Lambda)}{2}\right)^{2}\right\rfloor.

A symbol Λ\Lambda is called degenerate if Λt=Λ\Lambda^{\rm t}=\Lambda. If Λ\Lambda is degenerate, then rk(Λ){\rm rk}(\Lambda) is even and def(Λ)=0{\rm def}(\Lambda)=0.

We define an equivalence relation “\sim” on symbols generated by

(a1,,a2,,am1b1,b2,,bm2)(a1+1,,a2+1,,am1+1,0b1+1,b2+1,,bm2+1,0).\binom{a_{1},,a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}}\sim\binom{a_{1}+1,,a_{2}+1,\ldots,a_{m_{1}}+1,0}{b_{1}+1,b_{2}+1,\ldots,b_{m_{2}}+1,0}.

If Λ1Λ2\Lambda_{1}\sim\Lambda_{2}, two symbols Λ1,Λ2\Lambda_{1},\Lambda_{2} are called similar. It is not difficult to see that two symbols in the same similar class have the same rank and the same defect, and each similar class contains a unique reduced symbol. Let 𝒮{\mathcal{S}} denote the set of similar classes of symbols, and let 𝒮n,δ𝒮{\mathcal{S}}_{n,\delta}\subset{\mathcal{S}} denote the subset of similar classes of symbols of rank nn and defect δ\delta.

A symbol Λ\Lambda is called cuspidal if (2.4) is an equality. It is not difficult to see that a symbol is cuspidal if and only if it is similar to a symbol of the forms (k,k1,,0)\binom{k,k-1,\ldots,0}{-} or (k,k1,,0)\binom{-}{k,k-1,\ldots,0} for some non-negative integer kk. Note that (A)\binom{A}{-} means that the second row of the symbol is the empty set.

A mapping Υ\Upsilon from symbols to bi-partitions is given by

(2.5) Υ:(a1,a2,,am1b1,b2,,bm2)[a1(m11),a2(m12),,am111,am1b1(m21),b2(m22),,bm21,bm2].\Upsilon\colon\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}}\mapsto\genfrac{[}{]}{0.0pt}{}{a_{1}-(m_{1}-1),a_{2}-(m_{1}-2),\ldots,a_{m_{1}-1}-1,a_{m_{1}}}{b_{1}-(m_{2}-1),b_{2}-(m_{2}-2),\ldots,b_{m_{2}}-1,b_{m_{2}}}.

If Υ(Λ)=[μν]\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}, we write Υ(Λ)=μ\Upsilon(\Lambda)^{*}=\mu and Υ(Λ)=ν\Upsilon(\Lambda)_{*}=\nu to denote the first row and the second row of the bi-partition Υ(Λ)\Upsilon(\Lambda). We can check that Υ(Λ1)=Υ(Λ2)\Upsilon(\Lambda_{1})=\Upsilon(\Lambda_{2}) if and only if Λ1Λ2\Lambda_{1}\sim\Lambda_{2}, and then Υ\Upsilon gives a bijection

(2.6) 𝒮n,δ𝒫2(n(δ2)2).{\mathcal{S}}_{n,\delta}\rightarrow{\mathcal{P}}_{2}\left(n-\bigl{\lfloor}\bigl{(}\tfrac{\delta}{2}\bigr{)}^{2}\bigr{\rfloor}\right).

Modified from Lusztig, we define

(2.7) 𝒮O2n+={Λ𝒮rk(Λ)=n,def(Λ)0(mod4)},𝒮Sp2n={Λ𝒮rk(Λ)=n,def(Λ)1(mod4)},𝒮O2n={Λ𝒮rk(Λ)=n,def(Λ)2(mod4)},𝒮SO2n+1={Λ𝒮rk(Λ)=n,def(Λ)3(mod4)}.\displaystyle\begin{split}{\mathcal{S}}_{{\rm O}^{+}_{2n}}&=\{\,\Lambda\in{\mathcal{S}}\mid{\rm rk}(\Lambda)=n,\ {\rm def}(\Lambda)\equiv 0\pmod{4}\,\},\\ {\mathcal{S}}_{{\rm Sp}_{2n}}&=\{\,\Lambda\in{\mathcal{S}}\mid{\rm rk}(\Lambda)=n,\ {\rm def}(\Lambda)\equiv 1\pmod{4}\,\},\\ {\mathcal{S}}_{{\rm O}^{-}_{2n}}&=\{\,\Lambda\in{\mathcal{S}}\mid{\rm rk}(\Lambda)=n,\ {\rm def}(\Lambda)\equiv 2\pmod{4}\,\},\\ {\mathcal{S}}_{{\rm SO}_{2n+1}}&=\{\,\Lambda\in{\mathcal{S}}\mid{\rm rk}(\Lambda)=n,\ {\rm def}(\Lambda)\equiv 3\pmod{4}\,\}.\end{split}

Note that Λ𝒮O2nϵ\Lambda\in{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}} if and only if Λt𝒮O2nϵ\Lambda^{\rm t}\in{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}} where ϵ=+\epsilon=+ or -. Then we define

(2.8) 𝒮SO2nϵ={Λ𝒮O2nϵΛΛt}/{Λ,Λt}{ΛI,ΛIIΛ𝒮O2nϵ,Λ=Λt},{\mathcal{S}}_{{\rm SO}^{\epsilon}_{2n}}=\{\,\Lambda\in{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}}\mid\Lambda\neq\Lambda^{\rm t}\,\}/\{\Lambda,\Lambda^{\rm t}\}\cup\{\,\Lambda^{\rm I},\Lambda^{\rm II}\mid\Lambda\in{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}},\ \Lambda=\Lambda^{\rm t}\,\},

i.e., in 𝒮SO2nϵ{\mathcal{S}}_{{\rm SO}^{\epsilon}_{2n}} a non-degenerate symbol is identified with its transpose, and a degenerated symbol Λ\Lambda occurs with multiplicity 22 and the two copies are denoted by ΛI,ΛII\Lambda^{\rm I},\Lambda^{\rm II} respectively. Note that 𝒮O2n{\mathcal{S}}_{{\rm O}^{-}_{2n}} does not contain any degenerate symbols and so 𝒮SO2n=𝒮O2n/{Λ,Λt}{\mathcal{S}}_{{\rm SO}^{-}_{2n}}={\mathcal{S}}_{{\rm O}^{-}_{2n}}/\{\Lambda,\Lambda^{\rm t}\}.

2.3. Special symbols

Let G=Sp2n\text{\bf G}={\rm Sp}_{2n}, SO2n+1{\rm SO}_{2n+1}, O2nϵ{\rm O}^{\epsilon}_{2n} or SO2nϵ{\rm SO}^{\epsilon}_{2n} where ϵ=+\epsilon=+ or -. A symbol Z=(a1,a2,,am+1b1,b2,,bm)Z=\binom{a_{1},a_{2},\ldots,a_{m+1}}{b_{1},b_{2},\ldots,b_{m}} of defect 11 is called special if a1b1a2b2ambmam+1a_{1}\geq b_{1}\geq a_{2}\geq b_{2}\geq\cdots\geq a_{m}\geq b_{m}\geq a_{m+1}; similarly, a symbol Z=(a1,a2,,amb1,b2,,bm)Z=\binom{a_{1},a_{2},\ldots,a_{m}}{b_{1},b_{2},\ldots,b_{m}} of defect 0 is called special if a1b1a2b2ambma_{1}\geq b_{1}\geq a_{2}\geq b_{2}\geq\cdots\geq a_{m}\geq b_{m}. Define

δ0={1,if G=Sp2n or SO2n+1;0,if G=SO2nϵ or O2nϵ.\delta_{0}=\begin{cases}1,&\text{if $\text{\bf G}={\rm Sp}_{2n}$ or ${\rm SO}_{2n+1}$};\\ 0,&\text{if $\text{\bf G}={\rm SO}^{\epsilon}_{2n}$ or ${\rm O}^{\epsilon}_{2n}$}.\end{cases}

For a special symbol ZZ of defect δ0\delta_{0}, we define

𝒮Z\displaystyle{\mathcal{S}}_{Z} ={Λ𝒮ΛΛ=ZZ,ΛΛ=ZZ},\displaystyle=\{\,\Lambda\in{\mathcal{S}}\mid\Lambda^{*}\cup\Lambda_{*}=Z^{*}\cup Z_{*},\ \Lambda^{*}\cap\Lambda_{*}=Z^{*}\cap Z_{*}\,\},
𝒮Z,δ0\displaystyle{\mathcal{S}}_{Z,\delta_{0}} ={Λ𝒮Zdef(Λ)=δ0},\displaystyle=\{\,\Lambda\in{\mathcal{S}}_{Z}\mid{\rm def}(\Lambda)=\delta_{0}\,\},
𝒮ZG\displaystyle{\mathcal{S}}_{Z}^{\text{\bf G}} =𝒮Z𝒮G,\displaystyle={\mathcal{S}}_{Z}\cap{\mathcal{S}}_{\text{\bf G}},

i.e., 𝒮Z{\mathcal{S}}_{Z} is the subset of 𝒮{\mathcal{S}} consisting of the symbols of the exactly the same entries of ZZ. Note that in the above definition of 𝒮ZG{\mathcal{S}}_{Z}^{\text{\bf G}}, the special symbol ZZ is not required to be in 𝒮G{\mathcal{S}}_{\text{\bf G}}. It is clear that

(2.9) 𝒮G=Z𝒮ZG{\mathcal{S}}_{\text{\bf G}}=\bigcup_{Z}{\mathcal{S}}_{Z}^{\text{\bf G}}

where Z\bigcup_{Z} runs over

  • special symbols of rank nn and defect 11 if G=Sp2n\text{\bf G}={\rm Sp}_{2n} or SO2n+1{\rm SO}_{2n+1};

  • special symbols of rank nn and defect 0 if G=SO2n+\text{\bf G}={\rm SO}^{+}_{2n} or O2n+{\rm O}^{+}_{2n};

  • non-degenerate special symbols of rank nn and defect 0 if G=SO2n\text{\bf G}={\rm SO}^{-}_{2n} or O2n{\rm O}^{-}_{2n}.

Example 2.10.
  1. (1)

    Suppose that Z=(10)𝒮1,0Z=\binom{1}{0}\in{\mathcal{S}}_{1,0}. Then we have

    𝒮ZO2+={(10),(01)},𝒮ZO2={(1,0),(1,0)}.\textstyle{\mathcal{S}}_{Z}^{{\rm O}^{+}_{2}}=\left\{\binom{1}{0},\binom{0}{1}\right\},\qquad{\mathcal{S}}_{Z}^{{\rm O}^{-}_{2}}=\left\{\binom{-}{1,0},\binom{1,0}{-}\right\}.
  2. (2)

    Suppose that Z=(2,01)𝒮2,1Z=\binom{2,0}{1}\in{\mathcal{S}}_{2,1}. Then we have

    𝒮ZSp4={(2,01),(2,10),(1,02),(2,1,0)},𝒮ZSO5={(12,0),(02,1),(21,0),(2,1,0)}.\textstyle{\mathcal{S}}_{Z}^{{\rm Sp}_{4}}=\left\{\binom{2,0}{1},\binom{2,1}{0},\binom{1,0}{2},\binom{-}{2,1,0}\right\},\qquad{\mathcal{S}}_{Z}^{{\rm SO}_{5}}=\left\{\binom{1}{2,0},\binom{0}{2,1},\binom{2}{1,0},\binom{2,1,0}{-}\right\}.

For a special symbol ZZ, let ZIZ_{\rm I} denote the subsymbol consisting of “singles”, i.e.,

ZI=Z(ZZZZ),Z_{\rm I}=Z\smallsetminus\binom{Z^{*}\cap Z_{*}}{Z^{*}\cap Z_{*}},

and we define the degree of ZZ by

(2.11) deg(Z)=|ZI|def(Z)2\deg(Z)=\frac{|Z_{\rm I}|-{\rm def}(Z)}{2}

where |ZI||Z_{\rm I}| denotes the number of entries in ZIZ_{\rm I}, i.e., |ZI|=|(ZI)|+|(ZI)||Z_{\rm I}|=|(Z_{\rm I})^{*}|+|(Z_{\rm I})_{*}|. Note that deg(Z)\deg(Z) is always a non-negative integer. For a subsymbol MZIM\subset Z_{\rm I}, we define a symbol ΛM𝒮Z\Lambda_{M}\in{\mathcal{S}}_{Z} by

(2.12) ΛM=(ZM)Mt.\Lambda_{M}=(Z\smallsetminus M)\cup M^{\rm t}.

It is not difficult to see that

𝒮ZG={{ΛMMZI,|M|even},if G=Sp2n and def(Z)=1;{ΛMMZI,|M|odd},if G=SO2n+1 and def(Z)=1;{ΛMMZI,|M|even},if G=O2n+ and def(Z)=0;{ΛMMZI,|M|odd},if G=O2n and def(Z)=0.{\mathcal{S}}_{Z}^{\text{\bf G}}=\begin{cases}\{\,\Lambda_{M}\mid M\subset Z_{\rm I},\ |M|\ \text{even}\,\},&\text{if $\text{\bf G}={\rm Sp}_{2n}$ and ${\rm def}(Z)=1$};\\ \{\,\Lambda_{M}\mid M\subset Z_{\rm I},\ |M|\ \text{odd}\,\},&\text{if $\text{\bf G}={\rm SO}_{2n+1}$ and ${\rm def}(Z)=1$};\\ \{\,\Lambda_{M}\mid M\subset Z_{\rm I},\ |M|\ \text{even}\,\},&\text{if $\text{\bf G}={\rm O}^{+}_{2n}$ and ${\rm def}(Z)=0$};\\ \{\,\Lambda_{M}\mid M\subset Z_{\rm I},\ |M|\ \text{odd}\,\},&\text{if $\text{\bf G}={\rm O}^{-}_{2n}$ and ${\rm def}(Z)=0$}.\end{cases}

Note that

𝒮ZSO2nϵ={{ZI,ZII},if Z is degenerate;𝒮ZO2nϵ/{Λ,Λt},if Z is non-degenerate{\mathcal{S}}_{Z}^{{\rm SO}^{\epsilon}_{2n}}=\begin{cases}\{Z^{\rm I},Z^{\rm II}\},&\text{if $Z$ is degenerate};\\ {\mathcal{S}}_{Z}^{{\rm O}^{\epsilon}_{2n}}/\{\Lambda,\Lambda^{\rm t}\},&\text{if $Z$ is non-degenerate}\end{cases}

where ZI,ZIIZ^{\rm I},Z^{\rm II} are both equal to ZZ but are regarded as two elements. Then we have

|𝒮ZG|={22deg(Z),if G=Sp2n or SO2n+1;22deg(Z)1,if G=O2nϵ and deg(Z)>0;22deg(Z)2,if G=SO2nϵ and deg(Z)>0;1,if G=O2n+ and deg(Z)=0;2,if G=SO2n+ and deg(Z)=0.|{\mathcal{S}}_{Z}^{\text{\bf G}}|=\begin{cases}2^{2\deg(Z)},&\text{if $\text{\bf G}={\rm Sp}_{2n}$ or ${\rm SO}_{2n+1}$};\\ 2^{2\deg(Z)-1},&\text{if $\text{\bf G}={\rm O}^{\epsilon}_{2n}$ and $\deg(Z)>0$};\\ 2^{2\deg(Z)-2},&\text{if $\text{\bf G}={\rm SO}^{\epsilon}_{2n}$ and $\deg(Z)>0$};\\ 1,&\text{if $\text{\bf G}={\rm O}^{+}_{2n}$ and $\deg(Z)=0$};\\ 2,&\text{if $\text{\bf G}={\rm SO}^{+}_{2n}$ and $\deg(Z)=0$}.\end{cases}

Note that the family 𝒮ZG{\mathcal{S}}_{Z}^{\text{\bf G}} is empty if G=O2n,SO2n\text{\bf G}={\rm O}^{-}_{2n},{\rm SO}^{-}_{2n} and deg(Z)=0\deg(Z)=0.

Finally we define a pairing ,:𝒮ZG×𝒮Z,δ0𝐅2\langle,\rangle\colon{\mathcal{S}}_{Z}^{\text{\bf G}}\times{\mathcal{S}}_{Z,\delta_{0}}\rightarrow{\mathbf{F}}_{2} by

(2.13) ΛM1,ΛM2=|M1M2|(mod2).\langle\Lambda_{M_{1}},\Lambda_{M_{2}}\rangle=|M_{1}\cap M_{2}|\pmod{2}.
Lemma 2.14.

Let ZZ be a special symbol of defect δ0\delta_{0}. Then for any Λ𝒮ZG\Lambda\in{\mathcal{S}}_{Z}^{\text{\bf G}} and Σ𝒮Z,δ0\Sigma\in{\mathcal{S}}_{Z,\delta_{0}}, we have

Λ,Σ\displaystyle\langle\Lambda,\Sigma\rangle =Λt,Σ,\displaystyle=\langle\Lambda^{\rm t},\Sigma\rangle,
Λ,Σ\displaystyle\langle\Lambda,\Sigma\rangle {=Λ,Σt,if G=SO2n+,O2n+;Λ,Σt,if G=SO2n,O2n.\displaystyle\begin{cases}=\langle\Lambda,\Sigma^{\rm t}\rangle,&\text{if\/ $\text{\bf G}={\rm SO}^{+}_{2n},{\rm O}^{+}_{2n}$};\\ \neq\langle\Lambda,\Sigma^{\rm t}\rangle,&\text{if\/ $\text{\bf G}={\rm SO}^{-}_{2n},{\rm O}^{-}_{2n}$}.\end{cases}
Proof.

Suppose that Λ=ΛM1\Lambda=\Lambda_{M_{1}} and Σ=ΛM2\Sigma=\Lambda_{M_{2}} for some M1,M2ZIM_{1},M_{2}\subset Z_{\rm I}. It is clear that Λt=ΛZIM1\Lambda^{\rm t}=\Lambda_{Z_{\rm I}\smallsetminus M_{1}}. The assumption Σ𝒮Z,δ0\Sigma\in{\mathcal{S}}_{Z,\delta_{0}} implies that |M2||M_{2}| is even. Then

|M1M2|+|(ZIM1)M2|=|M2|0(mod2).|M_{1}\cap M_{2}|+|(Z_{\rm I}\smallsetminus M_{1})\cap M_{2}|=|M_{2}|\equiv 0\pmod{2}.

Hence the first equality is obtained.

Now suppose that G=SO2nϵ\text{\bf G}={\rm SO}^{\epsilon}_{2n} or O2nϵ{\rm O}^{\epsilon}_{2n}. Note that |M1||M_{1}| is even if ϵ=+\epsilon=+, and |M1||M_{1}| is odd if ϵ=\epsilon=-. Then the remaining assertion is obtained by the analogous argument. ∎

3. Lusztig Parametrization of Unipotent Characters

3.1. Unipotent characters of GLn{\rm GL}_{n} or Un{\rm U}_{n}

In this subsection, let G be a general linear group GLn{\rm GL}_{n} or a unitary group Un{\rm U}_{n}. It is well known that the Weyl group WG=SnW_{\text{\bf G}}=S_{n}, and (Sn){\mathcal{E}}(S_{n}) is parametrized by 𝒫(n){\mathcal{P}}(n). For λ𝒫(n)\lambda\in{\mathcal{P}}(n), we define

RλG=1|Sn|wSnφλ(w)RTw,1GR_{\lambda}^{\text{\bf G}}=\frac{1}{|S_{n}|}\sum_{w\in S_{n}}\varphi_{\lambda}(w)R^{\text{\bf G}}_{\text{\bf T}_{w},1}

where φλ\varphi_{\lambda} denotes the irreducible character of SnS_{n} corresponding to λ\lambda. It is known that RλGR_{\lambda}^{\text{\bf G}} is an irreducible unipotent character of GG, i.e., RλG(G,1)R_{\lambda}^{\text{\bf G}}\in{\mathcal{E}}(\text{\bf G},1). Let 𝒮GLn=𝒮Un=𝒫(n){\mathcal{S}}_{{\rm GL}_{n}}={\mathcal{S}}_{{\rm U}_{n}}={\mathcal{P}}(n). Then the mapping

1:𝒮G(G,1) given by λρλ:=RλG{\mathcal{L}}_{1}\colon{\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1)\quad\text{ given by }\lambda\mapsto\rho_{\lambda}:=R_{\lambda}^{\text{\bf G}}

is a bijection. To distinguish 𝒮Un{\mathcal{S}}_{{\rm U}_{n}} from 𝒮GLn{\mathcal{S}}_{{\rm GL}_{n}}, an element in 𝒮Un{\mathcal{S}}_{{\rm U}_{n}} will be denoted by [λ¯1,,λ¯m][\bar{\lambda}_{1},\ldots,\bar{\lambda}_{m}] for [λ1,,λm]𝒫(n)[\lambda_{1},\ldots,\lambda_{m}]\in{\mathcal{P}}(n). An element of the form [k¯,k1¯,,1¯]𝒮Uk(k+1)/2[\bar{k},\bar{k-1},\ldots,\bar{1}]\in{\mathcal{S}}_{{\rm U}_{k(k+1)/2}} for some kk is called cuspidal. For a unitary group, it is well known that λ\lambda is cuspidal if and only if ρλ\rho_{\lambda} is cuspidal.

It is known that the parametrization 1{\mathcal{L}}_{1} above is compatible with the parabolic induction on unipotent characters. More precisely, let Gn=GLn\text{\bf G}_{n}={\rm GL}_{n}, U2n{\rm U}_{2n} or U2n+1{\rm U}_{2n+1}. For ρ(Gn,1)\rho\in{\mathcal{E}}(\text{\bf G}_{n},1), define

(3.1) Ω(ρ)={ρ(Gn+1,1)ρ,RGn×GL1Gn+1(ρ𝟏)Gn+10}\Omega(\rho)=\left\{\,\rho^{\prime}\in{\mathcal{E}}(\text{\bf G}_{n+1},1)\mid\left\langle\rho^{\prime},R^{\text{\bf G}_{n+1}}_{\text{\bf G}_{n}\times{\rm GL}^{\dagger}_{1}}(\rho\otimes{\bf 1})\right\rangle_{\!\text{\bf G}_{n+1}}\neq 0\,\right\}

where RGn×GL1Gn+1R^{\text{\bf G}_{n+1}}_{\text{\bf G}_{n}\times{\rm GL}^{\dagger}_{1}} is the standard parabolic induction, GL1=GL1{\rm GL}^{\dagger}_{1}={\rm GL}_{1} defined over 𝐅q{\mathbf{F}}_{q} if Gn=GLn\text{\bf G}_{n}={\rm GL}_{n}; and GL1{\rm GL}^{\dagger}_{1} is the restriction to 𝐅q{\mathbf{F}}_{q} of GL1{\rm GL}_{1} defined over a quadratic extension of 𝐅q{\mathbf{F}}_{q} if Gn=U2n\text{\bf G}_{n}={\rm U}_{2n} or U2n+1{\rm U}_{2n+1}. For λ𝒮Gn\lambda\in{\mathcal{S}}_{\text{\bf G}_{n}}, we define Ω(λ)\Omega(\lambda) to be a subset of 𝒮Gn+1{\mathcal{S}}_{\text{\bf G}_{n+1}} consisting of partitions of the following types:

  • If Gn=GLn\text{\bf G}_{n}={\rm GL}_{n} and λ𝒮Gn\lambda\in{\mathcal{S}}_{\text{\bf G}_{n}}, then Ω(λ)\Omega(\lambda) consists of all partitions λ𝒮Gn+1\lambda^{\prime}\in{\mathcal{S}}_{\text{\bf G}_{n+1}} whose Young diagrams are obtained by adding a box to the Young diagram of λ\lambda.

  • If Gn=U2n\text{\bf G}_{n}={\rm U}_{2n} or U2n+1{\rm U}_{2n+1} and λ𝒮Gn\lambda\in{\mathcal{S}}_{\text{\bf G}_{n}}, then Ω(λ)\Omega(\lambda) consists of all partitions λ𝒮Gn+1\lambda^{\prime}\in{\mathcal{S}}_{\text{\bf G}_{n+1}} whose Young diagrams are obtained by adding two boxes in the same row or in the same column to the Young diagram of λ\lambda.

Example 3.2.
  1. (1)

    Suppose that λ=[3,1,1]𝒮GL5\lambda=[3,1,1]\in{\mathcal{S}}_{{\rm GL}_{5}}. Then

    Ω(λ)={[4,1,1],[3,2,1],[3,1,1,1]}𝒮GL6.\Omega(\lambda)=\{[4,1,1],[3,2,1],[3,1,1,1]\}\subset{\mathcal{S}}_{{\rm GL}_{6}}.
  2. (2)

    Suppose that λ=[3¯,1¯,1¯]𝒮U5\lambda=[\bar{3},\bar{1},\bar{1}]\in{\mathcal{S}}_{{\rm U}_{5}}. Then

    Ω(λ)={[5¯,1¯,1¯],[3¯,3¯,1¯],[3¯,2¯,2¯],[3¯,1¯,1¯,1¯,1¯]}𝒮U7.\Omega(\lambda)=\{[\bar{5},\bar{1},\bar{1}],[\bar{3},\bar{3},\bar{1}],[\bar{3},\bar{2},\bar{2}],[\bar{3},\bar{1},\bar{1},\bar{1},\bar{1}]\}\subset{\mathcal{S}}_{{\rm U}_{7}}.

Now the parametrization 1:𝒮G(G,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) by λρλ\lambda\mapsto\rho_{\lambda} is said to be compatible with parabolic induction if the following diagram

(3.3) 𝒮GnΩ𝒮Gn+111(Gn,1)Ω(Gn+1,1)\begin{CD}{\mathcal{S}}_{\text{\bf G}_{n}}@>{\Omega}>{}>{\mathcal{S}}_{\text{\bf G}_{n+1}}\\ @V{{\mathcal{L}}_{1}}V{}V@V{}V{{\mathcal{L}}_{1}}V\\ {\mathcal{E}}(\text{\bf G}_{n},1)@>{\Omega}>{}>{\mathcal{E}}(\text{\bf G}_{n+1},1)\end{CD}

commutes, i.e., Ω(ρλ)={ρλλΩ(λ)}\Omega(\rho_{\lambda})=\{\,\rho_{\lambda^{\prime}}\mid\lambda^{\prime}\in\Omega(\lambda)\,\} for any λ𝒮Gn\lambda\in{\mathcal{S}}_{\text{\bf G}_{n}}.

3.2. Uniform almost characters

First suppose G is a connected classical group SO2n+1{\rm SO}_{2n+1}, Sp2n{\rm Sp}_{2n}, or SO2nϵ{\rm SO}^{\epsilon}_{2n}. For a rational maximal torus T\text{\bf T}^{*} in the dual group G\text{\bf G}^{*} and a rational element sTs\in T^{*}, the Deligne-Lusztig virtual characters RT,sGR^{\text{\bf G}}_{\text{\bf T}^{*},s} is defined in [DL76] (see also [Car85]). For the disconnected group O2nϵ{\rm O}^{\epsilon}_{2n}, RT,sO2nϵR^{{\rm O}^{\epsilon}_{2n}}_{\text{\bf T}^{*},s} is defined by

(3.4) RT,sO2nϵ=IndSO2nϵO2nϵRT,sSO2nϵ.R^{{\rm O}^{\epsilon}_{2n}}_{\text{\bf T}^{*},s}={\rm Ind}_{{\rm SO}^{\epsilon}_{2n}}^{{\rm O}^{\epsilon}_{2n}}R^{{\rm SO}^{\epsilon}_{2n}}_{\text{\bf T}^{*},s}.

For rational maximal tori in G, the following is well known (cf[Sri79] §3):

  • If G=Sp2n\text{\bf G}={\rm Sp}_{2n} or SO2n+1{\rm SO}_{2n+1}, it is known that any rational maximal torus in G is conjugate (under GG) to Tw\text{\bf T}_{w} for some wWnw\in W_{n}. Moreover, Tw\text{\bf T}_{w} and Tw\text{\bf T}_{w^{\prime}} are conjugate if and only if w,ww,w^{\prime} are conjugate under WnW_{n}.

  • If G=SO2nϵ\text{\bf G}={\rm SO}^{\epsilon}_{2n} or O2nϵ{\rm O}^{\epsilon}_{2n}, it is known that any rational maximal torus is conjugate (under GG) to Tw\text{\bf T}_{w} for some wWnϵw\in W_{n}^{\epsilon} (cf. Subsection 2.1). Moreover, Tw\text{\bf T}_{w} and Tw\text{\bf T}_{w^{\prime}} are conjugate if and only if w,ww,w^{\prime} are conjugate under WnW_{n}.

We recall some definitions from [Lus78] §3.17 and §3.19 (see also [Pan19b] §2.3). For Σ𝒮n,δ0\Sigma\in{\mathcal{S}}_{n,\delta_{0}} (cf. Subsection 2.3), we define a uniform unipotent class function RΣG𝒱(G,1)R_{\Sigma}^{\text{\bf G}}\in{\mathcal{V}}(\text{\bf G},1)^{\sharp} by

(3.5) RΣG={12|Wn+|wWn+φΥ(Σ)(w)RTw,1G,if G=SO2n+ and Σ degenerate;1|Wnϵ|wWnϵφΥ(Σ)(w)RTw,1G,if G=SO2nϵ and Σ non-degenerate;1|Wn|wWnφΥ(Σ)(w)RTw,1G,if G=Sp2n;1|Wn|wWnφΥ(Σt)(w)RTw,1G,if G=SO2n+1.RΣO2nϵ=12IndSO2nϵO2nϵ(RΣSO2nϵ).\displaystyle\begin{split}R^{\text{\bf G}}_{\Sigma}&=\begin{cases}\displaystyle\frac{1}{\sqrt{2}|W_{n}^{+}|}\sum_{w\in W_{n}^{+}}\varphi_{\Upsilon(\Sigma)}(w)R^{\text{\bf G}}_{\text{\bf T}_{w},1},&\text{if $\text{\bf G}={\rm SO}^{+}_{2n}$ and $\Sigma$ degenerate};\\ \displaystyle\frac{1}{|W_{n}^{\epsilon}|}\sum_{w\in W_{n}^{\epsilon}}\varphi_{\Upsilon(\Sigma)}(w)R^{\text{\bf G}}_{\text{\bf T}_{w},1},&\text{if $\text{\bf G}={\rm SO}^{\epsilon}_{2n}$ and $\Sigma$ non-degenerate};\\ \displaystyle\frac{1}{|W_{n}|}\sum_{w\in W_{n}}\varphi_{\Upsilon(\Sigma)}(w)R^{\text{\bf G}}_{\text{\bf T}_{w},1},&\text{if $\text{\bf G}={\rm Sp}_{2n}$};\\ \displaystyle\frac{1}{|W_{n}|}\sum_{w\in W_{n}}\varphi_{\Upsilon(\Sigma^{\rm t})}(w)R^{\text{\bf G}}_{\text{\bf T}_{w},1},&\text{if $\text{\bf G}={\rm SO}_{2n+1}$}.\end{cases}\\ R_{\Sigma}^{{\rm O}^{\epsilon}_{2n}}&=\frac{1}{\sqrt{2}}{\rm Ind}_{{\rm SO}^{\epsilon}_{2n}}^{{\rm O}^{\epsilon}_{2n}}(R^{{\rm SO}^{\epsilon}_{2n}}_{\Sigma}).\end{split}

Note that φΥ(Σ)\varphi_{\Upsilon(\Sigma)} is the irreducible character of WnW_{n} given in (2.1) and Υ\Upsilon is the bijection 𝒮n,δ0𝒫2(n){\mathcal{S}}_{n,\delta_{0}}\rightarrow{\mathcal{P}}_{2}(n) given in (2.6). The class function RΣGR^{\text{\bf G}}_{\Sigma} is called an almost character of GG.

Lemma 3.6.

Suppose that G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n} where ϵ=+\epsilon=+ or -. Then RΣtG=ϵRΣGR^{\text{\bf G}}_{\Sigma^{\rm t}}=\epsilon R^{\text{\bf G}}_{\Sigma} for any Σ𝒮n,0\Sigma\in{\mathcal{S}}_{n,0}.

Proof.

From (3.5), we know that

RΣtO2nϵ={12|Wn+|wWn+φΥ(Σt)(w)RTw,1O2nϵ,if ϵ=+ and Σ degenerate;12|Wnϵ|wWnϵφΥ(Σt)(w)RTw,1O2nϵ,if Σ non-degenerate.R^{{\rm O}^{\epsilon}_{2n}}_{\Sigma^{\rm t}}=\begin{cases}\displaystyle\frac{1}{2|W_{n}^{+}|}\sum_{w\in W_{n}^{+}}\varphi_{\Upsilon(\Sigma^{\rm t})}(w)R^{{\rm O}^{\epsilon}_{2n}}_{\text{\bf T}_{w},1},&\text{if $\epsilon=+$ and $\Sigma$ degenerate};\\ \displaystyle\frac{1}{\sqrt{2}|W_{n}^{\epsilon}|}\sum_{w\in W_{n}^{\epsilon}}\varphi_{\Upsilon(\Sigma^{\rm t})}(w)R^{{\rm O}^{\epsilon}_{2n}}_{\text{\bf T}_{w},1},&\text{if $\Sigma$ non-degenerate}.\end{cases}

Moreover, from Subsection 2.1, we have φΥ(Σt)(w)=ϵφΥ(Σ)(w)\varphi_{\Upsilon(\Sigma^{\rm t})}(w)=\epsilon\varphi_{\Upsilon(\Sigma)}(w) for wWnϵw\in W^{\epsilon}_{n}. Then the lemma is proved. ∎

Now we define a set 𝒮G{\mathcal{S}}_{\text{\bf G}}^{\sharp} as follows.

(3.7) 𝒮G={𝒮n,1,if G=Sp2n,SO2n+1;𝒮n,0/{Σ,Σt},if G=SO2n+,O2n+;{Σ𝒮n,0ΣΣt}/{Σ,Σt},if G=SO2n,O2n.{\mathcal{S}}_{\text{\bf G}}^{\sharp}=\begin{cases}{\mathcal{S}}_{n,1},&\text{if $\text{\bf G}={\rm Sp}_{2n},{\rm SO}_{2n+1}$};\\ {\mathcal{S}}_{n,0}/\{\Sigma,\Sigma^{\rm t}\},&\text{if $\text{\bf G}={\rm SO}^{+}_{2n},{\rm O}^{+}_{2n}$};\\ \{\,\Sigma\in{\mathcal{S}}_{n,0}\mid\Sigma\neq\Sigma^{\rm t}\,\}/\{\Sigma,\Sigma^{\rm t}\},&\text{if $\text{\bf G}={\rm SO}^{-}_{2n},{\rm O}^{-}_{2n}$}.\end{cases}

Here 𝒮n,0/{Σ,Σt}{\mathcal{S}}_{n,0}/\{\Sigma,\Sigma^{\rm t}\} means that we choose a representative for each subset {Σ,Σt}\{\Sigma,\Sigma^{\rm t}\} in 𝒮n,0{\mathcal{S}}_{n,0}.

Example 3.8.

We know that 𝒮2,0={(20),(02),(2,11,0),(1,02,1),(11)}{\mathcal{S}}_{2,0}=\left\{\binom{2}{0},\binom{0}{2},\binom{2,1}{1,0},\binom{1,0}{2,1},\binom{1}{1}\right\}. The following are all four possible choices of 𝒮SO4{\mathcal{S}}_{{\rm SO}^{-}_{4}}^{\sharp} (or 𝒮O4{\mathcal{S}}_{{\rm O}^{-}_{4}}^{\sharp}):

{(20),(2,11,0)},{(20)(1,02,1)},{(02),(2,11,0)},{(02),(1,02,1)}.\textstyle\left\{\binom{2}{0},\binom{2,1}{1,0}\right\},\quad\left\{\binom{2}{0}\binom{1,0}{2,1}\right\},\quad\left\{\binom{0}{2},\binom{2,1}{1,0}\right\},\quad\left\{\binom{0}{2},\binom{1,0}{2,1}\right\}.

Moreover, for each above choice 𝒮SO4{\mathcal{S}}_{{\rm SO}^{-}_{4}}^{\sharp}, we see that 𝒮2,0𝒮SO4{\mathcal{S}}_{2,0}\smallsetminus{\mathcal{S}}_{{\rm SO}^{-}_{4}}^{\sharp} is a choice for 𝒮SO4+{\mathcal{S}}_{{\rm SO}^{+}_{4}}^{\sharp} (or 𝒮O4+{\mathcal{S}}_{{\rm O}^{+}_{4}}^{\sharp}).

Similar to (2.9), we have the decomposition

𝒮G=Z𝒮ZG{\mathcal{S}}_{\text{\bf G}}^{\sharp}=\bigcup_{Z}{{\mathcal{S}}_{Z}^{\text{\bf G}}}^{\sharp}

where the union Z\bigcup_{Z} is as in (2.9) and

(3.9) 𝒮ZG={𝒮Z𝒮n,1,if G=Sp2n,SO2n+1;(𝒮Z𝒮n,0)/{Σ,Σt},if G=SO2nϵ,O2nϵ.{{\mathcal{S}}_{Z}^{\text{\bf G}}}^{\sharp}=\begin{cases}{\mathcal{S}}_{Z}\cap{\mathcal{S}}_{n,1},&\text{if $\text{\bf G}={\rm Sp}_{2n},{\rm SO}_{2n+1}$};\\ ({\mathcal{S}}_{Z}\cap{\mathcal{S}}_{n,0})/\{\Sigma,\Sigma^{\rm t}\},&\text{if $\text{\bf G}={\rm SO}^{\epsilon}_{2n},{\rm O}^{\epsilon}_{2n}$}.\end{cases}
Lemma 3.10.

Let G=Sp2n\text{\bf G}={\rm Sp}_{2n}, SO2n+1{\rm SO}_{2n+1}, SO2nϵ{\rm SO}^{\epsilon}_{2n} or O2nϵ{\rm O}^{\epsilon}_{2n}. Then the set {RΣGΣ𝒮G}\{\,R_{\Sigma}^{\text{\bf G}}\mid\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp}\,\} forms an orthonormal basis for 𝒱(G,1){\mathcal{V}}(\text{\bf G},1)^{\sharp}.

Proof.

First we show that the set {RΣGΣ𝒮G}\{\,R_{\Sigma}^{\text{\bf G}}\mid\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp}\,\} is orthonormal.

  1. (1)

    Suppose that G=Sp2n\text{\bf G}={\rm Sp}_{2n} or SO2n+1{\rm SO}_{2n+1}. From [Car85] proposition 7.3.6, it is not difficult to see that

    RΣG,RΣGG=φΥ(Σ),φΥ(Σ)Wn={1,if Σ=Σ;0,if ΣΣ.\langle R^{\text{\bf G}}_{\Sigma},R^{\text{\bf G}}_{\Sigma^{\prime}}\rangle_{\text{\bf G}}=\langle\varphi_{\Upsilon(\Sigma)},\varphi_{\Upsilon(\Sigma^{\prime})}\rangle_{W_{n}}=\begin{cases}1,&\text{if $\Sigma=\Sigma^{\prime}$};\\ 0,&\text{if $\Sigma\neq\Sigma^{\prime}$}.\end{cases}
  2. (2)

    Suppose that G=SO2n+\text{\bf G}={\rm SO}^{+}_{2n}. Then

    RΣG,RΣGG={φΥ(Σ),φΥ(Σ)Wn+,if both Σ,Σ are non-degenerate;12φΥ(Σ),φΥ(Σ)Wn+,if exactly one of Σ,Σ is degenerate;12φΥ(Σ),φΥ(Σ)Wn+,if both Σ,Σ are degenerate.\langle R^{\text{\bf G}}_{\Sigma},R^{\text{\bf G}}_{\Sigma^{\prime}}\rangle_{\text{\bf G}}=\begin{cases}\langle\varphi_{\Upsilon(\Sigma)},\varphi_{\Upsilon(\Sigma^{\prime})}\rangle_{W_{n}^{+}},&\text{if both $\Sigma,\Sigma^{\prime}$ are non-degenerate};\\ \frac{1}{\sqrt{2}}\langle\varphi_{\Upsilon(\Sigma)},\varphi_{\Upsilon(\Sigma^{\prime})}\rangle_{W_{n}^{+}},&\text{if exactly one of $\Sigma,\Sigma^{\prime}$ is degenerate};\\ \frac{1}{2}\langle\varphi_{\Upsilon(\Sigma)},\varphi_{\Upsilon(\Sigma^{\prime})}\rangle_{W_{n}^{+}},&\text{if both $\Sigma,\Sigma^{\prime}$ are degenerate}.\end{cases}

    We know that

    φΥ(Σ),φΥ(Σ)Wn+={1,if Σ non-degenerate;2,if Σ degenerate.\langle\varphi_{\Upsilon(\Sigma)},\varphi_{\Upsilon(\Sigma)}\rangle_{W_{n}^{+}}=\begin{cases}1,&\text{if $\Sigma$ non-degenerate};\\ 2,&\text{if $\Sigma$ degenerate}.\end{cases}

    Therefore, we conclude that

    RΣG,RΣGG={1,if Σ=Σ;0,if ΣΣ,Σt.\langle R^{\text{\bf G}}_{\Sigma},R^{\text{\bf G}}_{\Sigma^{\prime}}\rangle_{\text{\bf G}}=\begin{cases}1,&\text{if $\Sigma=\Sigma^{\prime}$};\\ 0,&\text{if $\Sigma\neq\Sigma^{\prime},\Sigma^{\prime{\rm t}}$}.\end{cases}
  3. (3)

    Suppose that G=SO2n\text{\bf G}={\rm SO}^{-}_{2n}. Fix an element σ0Wn\sigma_{0}\in W_{n}^{-}, so an element in WnW_{n}^{-} can be written as σ0w\sigma_{0}w for some wWn+w\in W_{n}^{+}. We know that φΥ(Σ)(σ0w)\varphi_{\Upsilon(\Sigma)}(\sigma_{0}w) is either equal to φΥ(Σ)(w)\varphi_{\Upsilon(\Sigma)}(w) or φΥ(Σ)(w)-\varphi_{\Upsilon(\Sigma)}(w). Therefore, by the proof in (2) we again conclude that

    RΣG,RΣGG={1,if Σ=Σ;0,if ΣΣ,Σt.\langle R^{\text{\bf G}}_{\Sigma},R^{\text{\bf G}}_{\Sigma^{\prime}}\rangle_{\text{\bf G}}=\begin{cases}1,&\text{if $\Sigma=\Sigma^{\prime}$};\\ 0,&\text{if $\Sigma\neq\Sigma^{\prime},\Sigma^{\prime{\rm t}}$}.\end{cases}
  4. (4)

    Suppose that G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}. From (3.5), we know that

    RΣO2nϵ(g)={2RΣSO2nϵ(g),if gSO2nϵ(q);0,if gO2nϵ(q)SO2nϵ(q)R^{{\rm O}^{\epsilon}_{2n}}_{\Sigma}(g)=\begin{cases}\sqrt{2}R^{{\rm SO}^{\epsilon}_{2n}}_{\Sigma}(g),&\text{if $g\in{\rm SO}^{\epsilon}_{2n}(q)$};\\ 0,&\text{if $g\in{\rm O}^{\epsilon}_{2n}(q)\smallsetminus{\rm SO}^{\epsilon}_{2n}(q)$}\end{cases}

    for any Σ𝒮G\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp}. Because |O2nϵ(q)|=2|SO2nϵ(q)||{\rm O}^{\epsilon}_{2n}(q)|=2|{\rm SO}^{\epsilon}_{2n}(q)|, we have

    RΣO2nϵ,RΣO2nϵO2nϵ=RΣSO2nϵ,RΣSO2nϵSO2nϵ.\langle R^{{\rm O}^{\epsilon}_{2n}}_{\Sigma},R^{{\rm O}^{\epsilon}_{2n}}_{\Sigma^{\prime}}\rangle_{{\rm O}^{\epsilon}_{2n}}=\langle R^{{\rm SO}^{\epsilon}_{2n}}_{\Sigma},R^{{\rm SO}^{\epsilon}_{2n}}_{\Sigma^{\prime}}\rangle_{{\rm SO}^{\epsilon}_{2n}}.

Next we show that the set {RΣGΣ𝒮G}\{\,R_{\Sigma}^{\text{\bf G}}\mid\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp}\,\} spans 𝒱(G,1){\mathcal{V}}(\text{\bf G},1)^{\sharp}. It is well known that

(3.11) φ(Wn)φ(w)¯φ(w)={|Wn||𝒪w|,if w,w are conjugate;0,if w,w are not conjugate\sum_{\varphi\in{\mathcal{E}}(W_{n})}\overline{\varphi(w)}\varphi(w^{\prime})=\begin{cases}\frac{|W_{n}|}{|{\mathcal{O}}_{w}|},&\text{if $w,w^{\prime}$ are conjugate};\\ 0,&\text{if $w,w^{\prime}$ are not conjugate}\end{cases}

where 𝒪w{\mathcal{O}}_{w} denotes the conjugacy class of ww (cf[Ser77] proposition 7).

  1. (1)

    Suppose that G=Sp2n\text{\bf G}={\rm Sp}_{2n}. For wWnw\in W_{n}, by (3.5) and (3.11) we have

    Σ𝒮GφΥ(Σ)(w)¯RΣG\displaystyle\sum_{\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp}}\overline{\varphi_{\Upsilon(\Sigma)}(w)}R^{\text{\bf G}}_{\Sigma} =1|Wn|wWn[Σ𝒮n,1φΥ(Σ)(w)¯φΥ(Σ)(w)]RTw,1G\displaystyle=\frac{1}{|W_{n}|}\sum_{w^{\prime}\in W_{n}}\left[\sum_{\Sigma\in{\mathcal{S}}_{n,1}}\overline{\varphi_{\Upsilon(\Sigma)}(w)}\varphi_{\Upsilon(\Sigma)}(w^{\prime})\right]R^{\text{\bf G}}_{\text{\bf T}_{w^{\prime}},1}
    =1|𝒪w|wWn,w conjugate to wRTw,1G\displaystyle=\frac{1}{|{\mathcal{O}}_{w}|}\sum_{w^{\prime}\in W_{n},\ w^{\prime}\text{ conjugate to }w}R^{\text{\bf G}}_{\text{\bf T}_{w^{\prime}},1}
    =RTw,1G.\displaystyle=R_{\text{\bf T}_{w},1}^{\text{\bf G}}.

    The proof for G=SO2n+1\text{\bf G}={\rm SO}_{2n+1} is similar.

  2. (2)

    Suppose that G=SO2n\text{\bf G}={\rm SO}^{-}_{2n}. For wWnw\in W_{n}^{-}, by (3.5) and (3.11) we have

    Σ𝒮GφΥ(Σ)(w)¯RΣG\displaystyle\sum_{\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp}}\overline{\varphi_{\Upsilon(\Sigma)}(w)}R^{\text{\bf G}}_{\Sigma} =12Σ𝒮n,0φΥ(Σ)(w)¯RΣG\displaystyle=\frac{1}{2}\sum_{\Sigma\in{\mathcal{S}}_{n,0}}\overline{\varphi_{\Upsilon(\Sigma)}(w)}R^{\text{\bf G}}_{\Sigma}
    =12|Wn|wWn[Σ𝒮n,0φΥ(Σ)(w)¯φΥ(Σ)(w)]RTw,1G\displaystyle=\frac{1}{2|W_{n}^{-}|}\sum_{w^{\prime}\in W_{n}^{-}}\left[\sum_{\Sigma\in{\mathcal{S}}_{n,0}}\overline{\varphi_{\Upsilon(\Sigma)}(w)}\varphi_{\Upsilon(\Sigma)}(w^{\prime})\right]R^{\text{\bf G}}_{\text{\bf T}_{w^{\prime}},1}
    =1|𝒪w|wWn,w conjugate to wRTw,1G\displaystyle=\frac{1}{|{\mathcal{O}}_{w}|}\sum_{w^{\prime}\in W_{n}^{-},\ w^{\prime}\text{ conjugate to }w}R^{\text{\bf G}}_{\text{\bf T}_{w^{\prime}},1}
    =RTw,1G.\displaystyle=R_{\text{\bf T}_{w},1}^{\text{\bf G}}.

    Note that for wWnw\in W_{n}^{-}, the whole conjugacy class 𝒪w{\mathcal{O}}_{w} is contained in WnW_{n}^{-}. The proof for G=O2n\text{\bf G}={\rm O}^{-}_{2n} is similar.

  3. (3)

    Suppose that G=SO2n+\text{\bf G}={\rm SO}^{+}_{2n}. For wWn+w\in W_{n}^{+}, we have

    Σ𝒮G,Σ non-degenerateφΥ(Σ)(w)¯RΣG+Σ𝒮G,Σ degenerate12φΥ(Σ)(w)¯RΣG\displaystyle\sum_{\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp},\ \Sigma\text{ non-degenerate}}\overline{\varphi_{\Upsilon(\Sigma)}(w)}R^{\text{\bf G}}_{\Sigma}+\sum_{\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp},\ \Sigma\text{ degenerate}}\frac{1}{\sqrt{2}}\overline{\varphi_{\Upsilon(\Sigma)}(w)}R^{\text{\bf G}}_{\Sigma}
    =12|Wn+|wWn+[Σ𝒮n,0φΥ(Σ)(w)¯φΥ(Σ)(w)]RTw,1G\displaystyle=\frac{1}{2|W_{n}^{+}|}\sum_{w^{\prime}\in W_{n}^{+}}\left[\sum_{\Sigma\in{\mathcal{S}}_{n,0}}\overline{\varphi_{\Upsilon(\Sigma)}(w)}\varphi_{\Upsilon(\Sigma)}(w^{\prime})\right]R^{\text{\bf G}}_{\text{\bf T}_{w^{\prime}},1}
    =RTw,1G.\displaystyle=R_{\text{\bf T}_{w},1}^{\text{\bf G}}.

    The proof for G=O2n+\text{\bf G}={\rm O}^{+}_{2n} is similar.

Therefore for all cases, we show that {RΣGΣ𝒮G}\{\,R_{\Sigma}^{\text{\bf G}}\mid\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp}\,\} forms an orthonormal basis for 𝒱(G,1){\mathcal{V}}(\text{\bf G},1)^{\sharp}. ∎

3.3. Lusztig’s parametrization of unipotent characters

Proposition 3.12 (Lusztig).

Let G=Sp2n\text{\bf G}={\rm Sp}_{2n}, SO2n+1{\rm SO}_{2n+1}, SO2nϵ{\rm SO}^{\epsilon}_{2n}, or O2nϵ{\rm O}^{\epsilon}_{2n} where ϵ=+\epsilon=+ or -. There exists a bijection 1=1G:𝒮G(G,1){\mathcal{L}}_{1}={\mathcal{L}}_{1}^{\text{\bf G}}\colon{\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) by ΛρΛ\Lambda\mapsto\rho_{\Lambda} satisfying

(3.13) ρΛ,RΣGG={1cZ(1)Λ,Σ,if Λ𝒮ZG,Σ𝒮ZG for some special Z;0,otherwise,\langle\rho_{\Lambda},R_{\Sigma}^{\text{\bf G}}\rangle_{\text{\bf G}}=\begin{cases}\frac{1}{c_{Z}}(-1)^{\langle\Lambda,\Sigma\rangle},&\text{if $\Lambda\in{\mathcal{S}}_{Z}^{\text{\bf G}},\Sigma\in{{\mathcal{S}}_{Z}^{\text{\bf G}}}^{\sharp}$ for some special $Z$};\\ 0,&\text{otherwise},\end{cases}

where

cZ={2deg(Z),if G=Sp2n,SO2n+1;2deg(Z),if G=O2n+ and Z degenerate;2deg(Z)+1/2,if G=SO2n+ and Z degenerate;2deg(Z)1/2,if G=SO2nϵ,O2nϵ and Z non-degenerate.c_{Z}=\begin{cases}2^{\deg(Z)},&\text{if\/ $\text{\bf G}={\rm Sp}_{2n},{\rm SO}_{2n+1}$};\\ 2^{\deg(Z)},&\text{if\/ $\text{\bf G}={\rm O}^{+}_{2n}$ and $Z$ degenerate};\\ 2^{\deg(Z)+1/2},&\text{if\/ $\text{\bf G}={\rm SO}^{+}_{2n}$ and $Z$ degenerate};\\ 2^{\deg(Z)-1/2},&\text{if\/ $\text{\bf G}={\rm SO}^{\epsilon}_{2n},{\rm O}^{\epsilon}_{2n}$ and $Z$ non-degenerate}.\end{cases}
Proof.

If G=Sp2n\text{\bf G}={\rm Sp}_{2n} SO2n+1{\rm SO}_{2n+1} or SO2nϵ{\rm SO}^{\epsilon}_{2n}, the result is from [Lus81] theorem 5.8 and [Lus82] theorem 3.15. If G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}, a proof can be found in [Pan21] proposition 3.6. Note that the definition of RΣGR^{\text{\bf G}}_{\Sigma} here is slightly different from that in [Pan21] §3.4. ∎

A bijective mapping 𝒮G(G,1){\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) satisfying (3.13) is called a Lusztig parametrization of unipotent characters of GG.

Remark 3.14.

For G=Sp2n\text{\bf G}={\rm Sp}_{2n}, our definition 𝒮G{\mathcal{S}}_{\text{\bf G}} in (2.7) is slightly different from the original definition by Lusztig in [Lus77] p.134. The definition here is more convenient for finite theta correspondence on unipotent characters. Moreover, it is easy to see that two definitions are equivalent (cf[Pan21] (3.5)).

Lemma 3.15.

Suppose that G=Sp2n\text{\bf G}={\rm Sp}_{2n}, SO2n+1{\rm SO}_{2n+1}, SO2nϵ{\rm SO}^{\epsilon}_{2n}, or O2nϵ{\rm O}^{\epsilon}_{2n} where ϵ=+\epsilon=+ or -. Let 1,1:𝒮G(G,1){\mathcal{L}}_{1},{\mathcal{L}}^{\prime}_{1}\colon{\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) be two Lusztig parametrizations of unipotent characters of GG. Then 1(Λ)=1(Λ){\mathcal{L}}_{1}(\Lambda)^{\sharp}={\mathcal{L}}^{\prime}_{1}(\Lambda)^{\sharp}.

Proof.

Write 1(Λ)=ρΛ{\mathcal{L}}_{1}(\Lambda)=\rho_{\Lambda} and 1(Λ)=ρΛ{\mathcal{L}}^{\prime}_{1}(\Lambda)=\rho^{\prime}_{\Lambda} for Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}}. From (3.13), we see that

ρΛ,RΣGG=ρΛ,RΣGG\langle\rho_{\Lambda},R^{\text{\bf G}}_{\Sigma}\rangle_{\text{\bf G}}=\langle\rho^{\prime}_{\Lambda},R^{\text{\bf G}}_{\Sigma}\rangle_{\text{\bf G}}

for any Σ𝒮G\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp}. Moreover, by Lemma 3.10 we see that

(3.16) ρΛ=Σ𝒮GρΛ,RΣGGRΣG.\rho_{\Lambda}^{\sharp}=\sum_{\Sigma\in{\mathcal{S}}_{\text{\bf G}}^{\sharp}}\langle\rho_{\Lambda},R^{\text{\bf G}}_{\Sigma}\rangle_{\text{\bf G}}R^{\text{\bf G}}_{\Sigma}.

Then the lemma is proved. ∎

Suppose that G=i=1kGi\text{\bf G}=\prod_{i=1}^{k}\text{\bf G}_{i} where each Gi\text{\bf G}_{i} is a classical group. It is clear that

(G,1)\displaystyle{\mathcal{E}}(\text{\bf G},1) ={ρ1ρkρi(Gi,1)},\displaystyle=\{\,\rho_{1}\otimes\cdots\otimes\rho_{k}\mid\rho_{i}\in{\mathcal{E}}(\text{\bf G}_{i},1)\,\},
𝒱(G,1)\displaystyle{\mathcal{V}}(\text{\bf G},1) =i=1k𝒱(Gi,1),\displaystyle=\bigotimes_{i=1}^{k}{\mathcal{V}}(\text{\bf G}_{i},1),
𝒱(G,1)\displaystyle{\mathcal{V}}(\text{\bf G},1)^{\sharp} =i=1k𝒱(Gi,1).\displaystyle=\bigotimes_{i=1}^{k}{\mathcal{V}}(\text{\bf G}_{i},1)^{\sharp}.

Then we define

𝒮G=i=1k𝒮Gi,𝒮G=i=1k𝒮Gi,{\mathcal{S}}_{\text{\bf G}}=\prod_{i=1}^{k}{\mathcal{S}}_{\text{\bf G}_{i}},\qquad{\mathcal{S}}_{\text{\bf G}}^{\sharp}=\prod_{i=1}^{k}{\mathcal{S}}_{\text{\bf G}_{i}}^{\sharp},

and then any Lusztig parametrization 1:𝒮G(G,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) is of the form

1:i=1k𝒮Gi\displaystyle{\mathcal{L}}_{1}\colon\prod_{i=1}^{k}{\mathcal{S}}_{\text{\bf G}_{i}} (i=1kGi,1)\displaystyle\rightarrow{\mathcal{E}}\Biggl{(}\prod_{i=1}^{k}\text{\bf G}_{i},1\Biggr{)}
(Λ1,,Λk)\displaystyle(\Lambda_{1},\ldots,\Lambda_{k}) ρΛ1ρΛk\displaystyle\mapsto\rho_{\Lambda_{1}}\otimes\cdots\otimes\rho_{\Lambda_{k}}

where ΛiρΛi\Lambda_{i}\mapsto\rho_{\Lambda_{i}} is given by a Lusztig parametrization 𝒮Gi(Gi,1){\mathcal{S}}_{\text{\bf G}_{i}}\rightarrow{\mathcal{E}}(\text{\bf G}_{i},1).

The parametrization 1{\mathcal{L}}_{1} given by Lusztig in Proposition 3.12 is compatible with parabolic induction as follows. Let Gn=Sp2n\text{\bf G}_{n}={\rm Sp}_{2n}, SO2n+1{\rm SO}_{2n+1}, SO2nϵ{\rm SO}^{\epsilon}_{2n} or O2nϵ{\rm O}^{\epsilon}_{2n}. For ρ(Gn,1)\rho\in{\mathcal{E}}(\text{\bf G}_{n},1), let Ω(ρ)(Gn+1,1)\Omega(\rho)\subset{\mathcal{E}}(\text{\bf G}_{n+1},1) be defined similarly as in (3.1). For Λ𝒮Gn\Lambda\in{\mathcal{S}}_{\text{\bf G}_{n}}, then Ω(Λ)\Omega(\Lambda) consists of all symbols Λ𝒮Gn+1\Lambda^{\prime}\in{\mathcal{S}}_{\text{\bf G}_{n+1}} such that

  • def(Λ)=def(Λ){\rm def}(\Lambda^{\prime})={\rm def}(\Lambda), and

  • Υ(Λ)\Upsilon(\Lambda^{\prime}) is obtained from Υ(Λ)\Upsilon(\Lambda) by adding a box to the Young diagram of Υ(Λ)\Upsilon(\Lambda)^{*} or Υ(Λ)\Upsilon(\Lambda)_{*}.

Example 3.17.

Suppose that Gn=Sp4\text{\bf G}_{n}={\rm Sp}_{4} and Λ=(2,01)\Lambda=\binom{2,0}{1}, then Υ(Λ)=[11]\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{1}{1}, and so Υ(Λ)\Upsilon(\Lambda^{\prime}) is equal to [21]\genfrac{[}{]}{0.0pt}{}{2}{1}, [1,11]\genfrac{[}{]}{0.0pt}{}{1,1}{1}, [12]\genfrac{[}{]}{0.0pt}{}{1}{2}, or [11,1]\genfrac{[}{]}{0.0pt}{}{1}{1,1}. Therefore

Ω(Λ)={(3,01),(2,11),(2,02),(3,1,02,1)}𝒮Sp6.\Omega(\Lambda)=\left\{\textstyle\binom{3,0}{1},\binom{2,1}{1},\binom{2,0}{2},\binom{3,1,0}{2,1}\right\}\subset{\mathcal{S}}_{{\rm Sp}_{6}}.

For Σ𝒮Gn\Sigma\in{\mathcal{S}}_{\text{\bf G}_{n}}^{\sharp}, it is known that (cf[GP00] §6.1.9)

IndWn×S1Wn+1(φΥ(Σ)𝟏)=ΣΩ(Σ)φΥ(Σ).{\rm Ind}_{W_{n}\times S_{1}}^{W_{n+1}}(\varphi_{\Upsilon(\Sigma)}\otimes{\bf 1})=\sum_{\Sigma^{\prime}\in\Omega(\Sigma)}\varphi_{\Upsilon(\Sigma^{\prime})}.

By direct computation (cf[Lus81] (4.6.3)), we have

RGn×GL1Gn+1(RΣGn)=ΣΩ(Σ)RΣGn+1.R_{\text{\bf G}_{n}\times{\rm GL}_{1}}^{\text{\bf G}_{n+1}}(R_{\Sigma}^{\text{\bf G}_{n}})=\sum_{\Sigma^{\prime}\in\Omega(\Sigma)}R_{\Sigma^{\prime}}^{\text{\bf G}_{n+1}}.

We say that the parametrization 1:𝒮G(G,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) is compatible with parabolic induction if the diagram analogous to (3.3) commutes, i.e.,

Ω(ρΛ)={ρΛΛΩ(Λ)}.\Omega(\rho_{\Lambda})=\{\,\rho_{\Lambda^{\prime}}\mid\Lambda^{\prime}\in\Omega(\Lambda)\,\}.

Note that def(Λ)=def(Λ){\rm def}(\Lambda^{\prime})={\rm def}(\Lambda) for any ΛΩ(Λ)\Lambda^{\prime}\in\Omega(\Lambda). This means that under the parametrization by Lusztig the defects of symbols are preserved by parabolic induction on unipotent characters. Therefore, if def(Λ)0{\rm def}(\Lambda^{\prime})\neq 0 and ΛΩ(Λ)\Lambda^{\prime}\in\Omega(\Lambda), then ΛtΩ(Λ)\Lambda^{\prime{\rm t}}\not\in\Omega(\Lambda).

Lemma 3.18.

Let Λ𝒮O2n+\Lambda\in{\mathcal{S}}_{{\rm O}^{+}_{2n}} such that def(Λ)=0{\rm def}(\Lambda)=0 and ΛΛt\Lambda\neq\Lambda^{\rm t}. Suppose that n2n\geq 2. Then there exists Λ1𝒮O2(n1)+\Lambda_{1}\in{\mathcal{S}}_{{\rm O}^{+}_{2(n-1)}} such that ΛΩ(Λ1)\Lambda\in\Omega(\Lambda_{1}) and ΛtΩ(Λ1)\Lambda^{\rm t}\not\in\Omega(\Lambda_{1}).

Proof.

Write Λ=(a1,,amb1,,bm)\Lambda=\binom{a_{1},\ldots,a_{m}}{b_{1},\ldots,b_{m}} where am,bma_{m},b_{m} are not both zero. Let ii be the largest index such that aibia_{i}\neq b_{i}. Such an index ii exists because we assume that ΛΛt\Lambda\neq\Lambda^{\rm t}. Now we consider the following cases:

  • Suppose that i=m=1i=m=1. We know that Λ(10),(01)\Lambda\neq\binom{1}{0},\binom{0}{1} because (10),(01)𝒮O2+\binom{1}{0},\binom{0}{1}\in{\mathcal{S}}_{{\rm O}^{+}_{2}} which contradicts to the assumption n2n\geq 2.

    • If either a12a_{1}\geq 2 and b1=0b_{1}=0; or b1>a11b_{1}>a_{1}\geq 1, let Λ1=(a11b1)\Lambda_{1}=\binom{a_{1}-1}{b_{1}}.

    • If either a1=0a_{1}=0 and b12b_{1}\geq 2; or a1>b11a_{1}>b_{1}\geq 1, let Λ1=(a1b11)\Lambda_{1}=\binom{a_{1}}{b_{1}-1}.

  • Suppose that i=m>1i=m>1.

    • If am>bma_{m}>b_{m} and bm1am1b_{m-1}\geq a_{m-1}, then we have bm1>bm+1b_{m-1}>b_{m}+1 and let Λ1=(a1,,amb1,,bm2,bm11,bm)\Lambda_{1}=\binom{a_{1},\ldots,a_{m}}{b_{1},\ldots,b_{m-2},b_{m-1}-1,b_{m}}.

    • If am>bma_{m}>b_{m} and am1>bm1a_{m-1}>b_{m-1}, let Λ1=(a1,,am1,am1b1,,bm)\Lambda_{1}=\binom{a_{1},\ldots,a_{m-1},a_{m}-1}{b_{1},\ldots,b_{m}}.

    • If bm>amb_{m}>a_{m} and am1bm1a_{m-1}\geq b_{m-1}, let Λ1=(a1,,am2,am11,amb1,,bm)\Lambda_{1}=\binom{a_{1},\ldots,a_{m-2},a_{m-1}-1,a_{m}}{b_{1},\ldots,b_{m}}.

    • If bm>amb_{m}>a_{m} and bm1>am1b_{m-1}>a_{m-1}, let Λ1=(a1,,amb1,,bm1,bm1)\Lambda_{1}=\binom{a_{1},\ldots,a_{m}}{b_{1},\ldots,b_{m-1},b_{m}-1}.

  • Suppose that i<mi<m.

    • If ai>bia_{i}>b_{i}, then ai>bi>bi+1=ai+1a_{i}>b_{i}>b_{i+1}=a_{i+1} and let Λ1=(a1,,ai1,ai1,ai+1,,amb1,,bm)\Lambda_{1}=\binom{a_{1},\ldots,a_{i-1},a_{i}-1,a_{i+1},\ldots,a_{m}}{b_{1},\ldots,b_{m}}.

    • If bi>aib_{i}>a_{i}, then bi>ai>ai+1=bi+1b_{i}>a_{i}>a_{i+1}=b_{i+1} and let Λ1=(a1,,amb1,,bi1,bi1,bi+1,,bm)\Lambda_{1}=\binom{a_{1},\ldots,a_{m}}{b_{1},\ldots,b_{i-1},b_{i}-1,b_{i+1},\ldots,b_{m}}.

For all cases, it is not difficult to check Λ1𝒮O2(n1)+\Lambda_{1}\in{\mathcal{S}}_{{\rm O}^{+}_{2(n-1)}}, ΛΩ(Λ1)\Lambda\in\Omega(\Lambda_{1}) and ΛtΩ(Λ1)\Lambda^{\rm t}\not\in\Omega(\Lambda_{1}). ∎

Remark 3.19.

It is obvious that the statement in above lemma is not true without the assumption n2n\geq 2. Note that Λ=(10)𝒮O2+\Lambda=\binom{1}{0}\in{\mathcal{S}}_{{\rm O}^{+}_{2}}, ΛΛt\Lambda\neq\Lambda^{\rm t}. However, 𝒮O0+={()}{\mathcal{S}}_{{\rm O}^{+}_{0}}=\bigl{\{}\binom{-}{-}\bigr{\}} and Ω(())={(10),(01)}\Omega(\binom{-}{-})=\bigl{\{}\binom{1}{0},\binom{0}{1}\bigr{\}}.

3.4. Cells in a family of unipotent characters

In this subsection, we recall some result on cells by Lusztig (cf[Lus81], [Lus82]). Some details and examples can be found in [Pan19a] §4. Let ZZ be a special symbol of rank nn. An arrangement Φ\Phi of ZZ is defined as follows:

  • if def(Z)=1{\rm def}(Z)=1, Φ\Phi is a partition of ZIZ_{\rm I} into deg(Z)\deg(Z) pairs and one isolated element such that each pair contains one element in (ZI)(Z_{\rm I})^{*} and one element in (ZI)(Z_{\rm I})_{*};

  • if def(Z)=0{\rm def}(Z)=0, Φ\Phi is a partition of ZIZ_{\rm I} into deg(Z)\deg(Z) pairs such that each pair contains one element in (ZI)(Z_{\rm I})^{*} and one element in (ZI)(Z_{\rm I})_{*}.

A subset of pairs Ψ\Psi in an arrangement Φ\Phi is denoted by ΨΦ\Psi\leq\Phi. For such an arrangement Φ\Phi and a subset of pairs Ψ\Psi, we define a subset CΦ,ΨG=CΦ,ΨC_{\Phi,\Psi}^{\text{\bf G}}=C_{\Phi,\Psi} of 𝒮G{\mathcal{S}}_{\text{\bf G}} as follows:

  • if def(Z)=1{\rm def}(Z)=1, we define

    CΦ,Ψ={ΛMMZI,|M| even,|MΨ||(ΦΨ)Ψ|(mod2) for all ΨΦ};C_{\Phi,\Psi}=\{\,\Lambda_{M}\mid M\subset Z_{\rm I},\ |M|\text{ even},\ |M\cap\Psi^{\prime}|\equiv|(\Phi\smallsetminus\Psi)\cap\Psi^{\prime*}|\pmod{2}\text{ for all }\Psi^{\prime}\leq\Phi\,\};
  • if def(Z)=0{\rm def}(Z)=0, we define

    CΦ,Ψ={ΛMMZI,|MΨ||(ΦΨ)Ψ|(mod2) for all ΨΦ}C_{\Phi,\Psi}=\{\,\Lambda_{M}\mid M\subset Z_{\rm I},\ |M\cap\Psi^{\prime}|\equiv|(\Phi\smallsetminus\Psi)\cap\Psi^{\prime*}|\pmod{2}\text{ for all }\Psi^{\prime}\leq\Phi\,\}

It is not difficult to see that for ,

CΦ,Ψ{𝒮ZSp2n,if def(Z)=1;𝒮ZO2n+,if def(Z)=0 and #(ΦΨ) even;𝒮ZO2n,if def(Z)=0 and #(ΦΨ) odd.C_{\Phi,\Psi}\subset\begin{cases}{\mathcal{S}}_{Z}^{{\rm Sp}_{2n}},&\text{if ${\rm def}(Z)=1$};\\ {\mathcal{S}}_{Z}^{{\rm O}^{+}_{2n}},&\text{if ${\rm def}(Z)=0$ and $\#(\Phi\smallsetminus\Psi)$ even};\\ {\mathcal{S}}_{Z}^{{\rm O}^{-}_{2n}},&\text{if ${\rm def}(Z)=0$ and $\#(\Phi\smallsetminus\Psi)$ odd}.\end{cases}

Here #(ΦΨ)\#(\Phi\smallsetminus\Psi) denotes the number of pairs in ΦΨ\Phi\smallsetminus\Psi. For G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}, a special symbol ZZ of rank nn and defect 0, and an arrangement Φ\Phi of ZZ, a subset of pairs Ψ\Psi is called admissible if #(ΦΨ)\#(\Phi\smallsetminus\Psi) is even when ϵ=+\epsilon=+; and #(ΦΨ)\#(\Phi\smallsetminus\Psi) is odd when ϵ=\epsilon=-.

The following lemmas are from [Pan19a] lemma 4.17, proposition 4.18, lemma 4.34, and proposition 4.35:

Lemma 3.20.

Let G=Sp2n\text{\bf G}={\rm Sp}_{2n}, and let ΛρΛ\Lambda\mapsto\rho_{\Lambda} be a Lusztig parametrization of unipotent characters. Let ZZ be a special symbol of rank nn and defect 11, Φ\Phi an arrangement of ZZ, Ψ\Psi a subset of pairs of Φ\Phi.

  1. (i)

    The class function ΛCΦ,ΨρΛ\sum_{\Lambda\in C_{\Phi,\Psi}}\rho_{\Lambda} is uniform.

  2. (ii)

    For any two distinct symbols Λ1,Λ2𝒮ZG\Lambda_{1},\Lambda_{2}\in{\mathcal{S}}_{Z}^{\text{\bf G}}, there exists an arrangement Φ\Phi of ZZ with two subsets of pairs Ψ1,Ψ2\Psi_{1},\Psi_{2} such that ΛiCΦ,Ψi\Lambda_{i}\in C_{\Phi,\Psi_{i}} for i=1,2i=1,2 and CΦ,Ψ1CΦ,Ψ2=C_{\Phi,\Psi_{1}}\cap C_{\Phi,\Psi_{2}}=\emptyset.

Lemma 3.21.

Let G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n} where ϵ=+\epsilon=+ or -, and let ΛρΛ\Lambda\mapsto\rho_{\Lambda} be a Lusztig parametrization of unipotent characters. Let ZZ be a special symbol of rank nn and defect 0, Φ\Phi an arrangement of ZZ, Ψ\Psi an admissible subset of pairs of Φ\Phi.

  1. (i)

    The class function ΛCΦ,ΨρΛ\sum_{\Lambda\in C_{\Phi,\Psi}}\rho_{\Lambda} is uniform.

  2. (ii)

    ΛCΦ,Ψ\Lambda\in C_{\Phi,\Psi} if and only if ΛtCΦ,Ψ\Lambda^{\rm t}\in C_{\Phi,\Psi}.

  3. (iii)

    For any two symbols Λ1,Λ2𝒮ZG\Lambda_{1},\Lambda_{2}\in{\mathcal{S}}_{Z}^{\text{\bf G}} such that Λ1Λ2,Λ2t\Lambda_{1}\neq\Lambda_{2},\Lambda_{2}^{\rm t}, there exists an arrangement Φ\Phi of ZZ with subsets of pairs Ψ1,Ψ2\Psi_{1},\Psi_{2} such that ΛiCΦ,Ψi\Lambda_{i}\in C_{\Phi,\Psi_{i}} for i=1,2i=1,2 and CΦ,Ψ1CΦ,Ψ2=C_{\Phi,\Psi_{1}}\cap C_{\Phi,\Psi_{2}}=\emptyset.

4. Uniqueness of the Lusztig Parametrizations

4.1. Unipotent characters of Sp2n{\rm Sp}_{2n}

In this subsection, let G=Sp2n\text{\bf G}={\rm Sp}_{2n}. The following lemma is [Pan19b] proposition 3.3. We provide a proof for the sake of completion.

Lemma 4.1.

Suppose that G=Sp2n\text{\bf G}={\rm Sp}_{2n}, and let ρ1,ρ2(G,1)\rho_{1},\rho_{2}\in{\mathcal{E}}(\text{\bf G},1). If ρ1=ρ2\rho_{1}^{\sharp}=\rho_{2}^{\sharp}, then ρ1=ρ2\rho_{1}=\rho_{2}.

Proof.

Let 1:𝒮G(G,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) be a Lusztig parametrization given in Proposition 3.12, and write ρ1=ρΛ1,ρ2=ρΛ2\rho_{1}=\rho_{\Lambda_{1}},\rho_{2}=\rho_{\Lambda_{2}} for some Λ1,Λ2𝒮G\Lambda_{1},\Lambda_{2}\in{\mathcal{S}}_{\text{\bf G}}. From (3.13), the assumption ρΛ1=ρΛ2\rho_{\Lambda_{1}}^{\sharp}=\rho_{\Lambda_{2}}^{\sharp} means that Λ1,Λ2𝒮ZG\Lambda_{1},\Lambda_{2}\in{\mathcal{S}}_{Z}^{\text{\bf G}} for some special symbol ZZ of rank nn and defect 11. For any arrangement Φ\Phi of ZZ and any subset of pairs ΨΦ\Psi\leq\Phi, we know that ΛCΦ,ΨρΛ\sum_{\Lambda\in C_{\Phi,\Psi}}\rho_{\Lambda} is uniform by Lemma 3.20, and so

ΛCΦ,ΨρΛ,ρΛ1G=ΛCΦ,ΨρΛ,ρΛ1G=ΛCΦ,ΨρΛ,ρΛ2G=ΛCΦ,ΨρΛ,ρΛ2G.\displaystyle\Biggl{\langle}\sum_{\Lambda\in C_{\Phi,\Psi}}\rho_{\Lambda},\rho_{\Lambda_{1}}\Biggr{\rangle}_{\!\!\text{\bf G}}=\Biggl{\langle}\sum_{\Lambda\in C_{\Phi,\Psi}}\rho_{\Lambda},\rho_{\Lambda_{1}}^{\sharp}\Biggr{\rangle}_{\!\!\text{\bf G}}=\Biggl{\langle}\sum_{\Lambda\in C_{\Phi,\Psi}}\rho_{\Lambda},\rho_{\Lambda_{2}}^{\sharp}\Biggr{\rangle}_{\!\!\text{\bf G}}=\Biggl{\langle}\sum_{\Lambda\in C_{\Phi,\Psi}}\rho_{\Lambda},\rho_{\Lambda_{2}}\Biggr{\rangle}_{\!\!\text{\bf G}}.

Now if Λ1Λ2\Lambda_{1}\neq\Lambda_{2}, by Lemma 3.20 we can find an arrangement Φ\Phi of ZZ and a subset of pairs ΨΦ\Psi\leq\Phi such that Λ1CΦ,Ψ\Lambda_{1}\in C_{\Phi,\Psi} and Λ2CΦ,Ψ\Lambda_{2}\not\in C_{\Phi,\Psi}, and hence

ΛCΦ,ΨρΛ,ρΛ1G=1andΛCΦ,ΨρΛ,ρΛ2G=0.\Biggl{\langle}\sum_{\Lambda\in C_{\Phi,\Psi}}\rho_{\Lambda},\rho_{\Lambda_{1}}\Biggr{\rangle}_{\!\!\text{\bf G}}=1\quad\text{and}\quad\Biggl{\langle}\sum_{\Lambda\in C_{\Phi,\Psi}}\rho_{\Lambda},\rho_{\Lambda_{2}}\Biggr{\rangle}_{\!\!\text{\bf G}}=0.

So we must have Λ1=Λ2\Lambda_{1}=\Lambda_{2}, i.e., ρ1=ρ2\rho_{1}=\rho_{2}. ∎

Proposition 4.2.

Let G be Sp2n{\rm Sp}_{2n}. Then there is a unique bijection 1:𝒮G(G,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) satisfying (3.13).

Proof.

Suppose that we have two parametrizations ΛρΛ\Lambda\mapsto\rho_{\Lambda} and ΛρΛ\Lambda\mapsto\rho^{\prime}_{\Lambda} from 𝒮G{\mathcal{S}}_{\text{\bf G}} to (G,1){\mathcal{E}}(\text{\bf G},1) satisfying (3.13). From (3.16), we see that condition (3.13) implies that (ρΛ)=(ρΛ)(\rho_{\Lambda})^{\sharp}=(\rho^{\prime}_{\Lambda})^{\sharp}. Then by Lemma 4.1, we conclude that ρΛ=ρΛ\rho_{\Lambda}=\rho^{\prime}_{\Lambda}, i.e., two parametrizations coincide. ∎

Corollary 4.3.

Let Gn=Sp2n\text{\bf G}_{n}={\rm Sp}_{2n}. Then the bijection 1:𝒮Gn(Gn,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{\text{\bf G}_{n}}\rightarrow{\mathcal{E}}(\text{\bf G}_{n},1) given in Proposition 4.2 is compatible with the parabolic induction, i.e., the diagram analogous to (3.3) commutes.

Proof.

The original construction of the bijection 𝒮Gn(Gn,1){\mathcal{S}}_{\text{\bf G}_{n}}\rightarrow{\mathcal{E}}(\text{\bf G}_{n},1) by Lusztig is compatible with the parabolic induction (cf[Lus77]). By Proposition 4.2, Lusztig’s original construction is the only bijection satisfying (3.13) and hence the corollary is obtained. ∎

For a non-negative integer kk, we define the symbol

(4.4) ΛkSp={(2k,2k1,,0),if k is even;(2k,2k1,,0),if k is odd.\Lambda_{k}^{\rm Sp}=\begin{cases}\binom{2k,2k-1,\ldots,0}{-},&\text{if $k$ is even};\\ \binom{-}{2k,2k-1,\ldots,0},&\text{if $k$ is odd}.\end{cases}

The following are easy to check:

  • rk(ΛkSp)=k(k+1){\rm rk}(\Lambda^{\rm Sp}_{k})=k(k+1) and def(ΛkSp)1(mod4){\rm def}(\Lambda^{\rm Sp}_{k})\equiv 1\pmod{4}, i.e., ΛkSp𝒮Sp2k(k+1)\Lambda_{k}^{\rm Sp}\in{\mathcal{S}}_{{\rm Sp}_{2k(k+1)}},

  • if Λ𝒮Sp2n\Lambda\in{\mathcal{S}}_{{\rm Sp}_{2n}} with n<k(k+1)n<k(k+1), then |def(Λ)|<|def(ΛkSp)||{\rm def}(\Lambda)|<|{\rm def}(\Lambda^{\rm Sp}_{k})|,

  • if Λ𝒮Sp2k(k+1)\Lambda\in{\mathcal{S}}_{{\rm Sp}_{2k(k+1)}} and ΛΛkSp\Lambda\neq\Lambda^{\rm Sp}_{k}, then |def(Λ)|<|def(ΛkSp)||{\rm def}(\Lambda)|<|{\rm def}(\Lambda^{\rm Sp}_{k})|.

Because the defects are preserved by the parabolic induction, we have the following corollary:

Corollary 4.5.

Let 1:𝒮Sp2n(Sp2n,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{{\rm Sp}_{2n}}\rightarrow{\mathcal{E}}({\rm Sp}_{2n},1) be the parametrization in Proposition 4.2. Then the unique cuspidal unipotent character ζkSp\zeta_{k}^{\rm Sp} of Sp2k(k+1)(q){\rm Sp}_{2k(k+1)}(q) is parametrized by the symbol ΛkSp\Lambda^{\rm Sp}_{k}, i.e., ζkSp=ρΛkSp\zeta^{\rm Sp}_{k}=\rho_{\Lambda^{\rm Sp}_{k}}.

Lemma 4.6.

Let 1:𝒮Sp2n(Sp2n,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{{\rm Sp}_{2n}}\rightarrow{\mathcal{E}}({\rm Sp}_{2n},1) be the parametrization in Proposition 4.2. Then

  1. (i)

    𝟏Sp2n=ρ(n){\bf 1}_{{\rm Sp}_{2n}}=\rho_{\binom{n}{-}},

  2. (ii)

    StSp2n=ρΛ{\rm St}_{{\rm Sp}_{2n}}=\rho_{\Lambda} where Λ=(n,n1,,1,0n,n1,,1)\Lambda=\binom{n,n-1,\ldots,1,0}{n,n-1,\ldots,1}.

Proof.

From [Car85] corollary 7.6.5, we know that R(n)Sp2n=𝟏Sp2nR^{{\rm Sp}_{2n}}_{\binom{n}{-}}={\bf 1}_{{\rm Sp}_{2n}}. Because now (n)\binom{n}{-} is a special symbol of degree 0, we have 𝒮(n)Sp2n={(n)}{\mathcal{S}}_{\binom{n}{-}}^{{\rm Sp}_{2n}}=\bigl{\{}\binom{n}{-}\bigr{\}}, ρ(n)=R(n)Sp2n\rho_{\binom{n}{-}}=R^{{\rm Sp}_{2n}}_{\binom{n}{-}} by (3.13), and so (i) is proved.

Write Λ=(n,n1,,1,0n,n1,,1)\Lambda=\binom{n,n-1,\ldots,1,0}{n,n-1,\ldots,1}. From [Car85] corollary 7.6.6, we see that RΛSp2n=StSp2nR^{{\rm Sp}_{2n}}_{\Lambda}={\rm St}_{{\rm Sp}_{2n}}. Again, now Λ\Lambda is a special symbol of degree 0, we have ρΛ=RΛSp2n\rho_{\Lambda}=R^{{\rm Sp}_{2n}}_{\Lambda}, and (ii) is proved. ∎

Example 4.7.

Let G=Sp4\text{\bf G}={\rm Sp}_{4}. We know that

𝒮Sp4\displaystyle{\mathcal{S}}_{{\rm Sp}_{4}} ={(2)}{(2,1,02,1)}{(2,10),(2,01),(1,02),(2,1,0)},\displaystyle=\bigl{\{}\textstyle\binom{2}{-}\bigr{\}}\cup\bigl{\{}\binom{2,1,0}{2,1}\bigr{\}}\cup\bigl{\{}\binom{2,1}{0},\binom{2,0}{1},\binom{1,0}{2},\binom{-}{2,1,0}\bigr{\}},
𝒮Sp4\displaystyle{\mathcal{S}}_{{\rm Sp}_{4}}^{\sharp} ={(2)}{(2,1,02,1)}{(2,10),(2,01),(1,02)}.\displaystyle=\bigl{\{}\textstyle\binom{2}{-}\bigr{\}}\cup\bigl{\{}\binom{2,1,0}{2,1}\bigr{\}}\cup\bigl{\{}\binom{2,1}{0},\binom{2,0}{1},\binom{1,0}{2}\bigr{\}}.

The character values of irreducible characters in (W2)={φ[μν][μν]𝒫2(2)}{\mathcal{E}}(W_{2})=\left\{\,\varphi_{\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}}\mid\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}\in{\mathcal{P}}_{2}(2)\,\right\} are given by the following table:

(w)(w) {1}\{1\} {σ2,s1σ2s1}\{\sigma_{2},s_{1}\sigma_{2}s_{1}\} {s1σ2s1σ2}\{s_{1}\sigma_{2}s_{1}\sigma_{2}\} {s1,σ2s1σ2}\{s_{1},\sigma_{2}s_{1}\sigma_{2}\} {s1σ2,σ2s1}\{s_{1}\sigma_{2},\sigma_{2}s_{1}\}
φ[20]\varphi_{\genfrac{[}{]}{0.0pt}{}{2}{0}} 11 11 11 11 11
φ[1,10]\varphi_{\genfrac{[}{]}{0.0pt}{}{1,1}{0}} 11 11 11 1-1 1-1
φ[11]\varphi_{\genfrac{[}{]}{0.0pt}{}{1}{1}} 22 0 2-2 0 0
φ[02]\varphi_{\genfrac{[}{]}{0.0pt}{}{0}{2}} 11 1-1 11 11 1-1
φ[01,1]\varphi_{\genfrac{[}{]}{0.0pt}{}{0}{1,1}} 11 1-1 11 1-1 11
Tw\text{\bf T}_{w} T1\text{\bf T}_{1} T2\text{\bf T}_{2} T3\text{\bf T}_{3} T4\text{\bf T}_{4} T5\text{\bf T}_{5}

where s1,σ2s_{1},\sigma_{2} are defined in Subsection 2.1. We can check that

RT1,1\displaystyle R_{\text{\bf T}_{1},1} =2θ9+θ11+θ12+θ13+θ0,\displaystyle=2\theta_{9}+\theta_{11}+\theta_{12}+\theta_{13}+\theta_{0},
RT2,1\displaystyle R_{\text{\bf T}_{2},1} =θ11θ12θ13+θ0,\displaystyle=\theta_{11}-\theta_{12}-\theta_{13}+\theta_{0},
RT3,1\displaystyle R_{\text{\bf T}_{3},1} =2θ10θ11θ12+θ13+θ0,\displaystyle=-2\theta_{10}-\theta_{11}-\theta_{12}+\theta_{13}+\theta_{0},
RT4,1\displaystyle R_{\text{\bf T}_{4},1} =θ11+θ12θ13+θ0,\displaystyle=-\theta_{11}+\theta_{12}-\theta_{13}+\theta_{0},
RT5,1\displaystyle R_{\text{\bf T}_{5},1} =θ9+θ10+θ13+θ0\displaystyle=-\theta_{9}+\theta_{10}+\theta_{13}+\theta_{0}

where θi\theta_{i} is the notion from [Sri68]. Therefore by (3.5), we have

R(2)G\displaystyle R^{\text{\bf G}}_{\binom{2}{-}} =18[RT1,1+2RT2,1+RT3,1+2RT4,1+2RT5,1]=θ0,\displaystyle=\frac{1}{8}\left[R_{\text{\bf T}_{1},1}+2R_{\text{\bf T}_{2},1}+R_{\text{\bf T}_{3},1}+2R_{\text{\bf T}_{4},1}+2R_{\text{\bf T}_{5},1}\right]=\theta_{0},
R(2,01)G\displaystyle R^{\text{\bf G}}_{\binom{2,0}{1}} =14[RT1,1RT3,1]=12(θ9+θ10+θ11+θ12),\displaystyle=\frac{1}{4}\left[R_{\text{\bf T}_{1},1}-R_{\text{\bf T}_{3},1}\right]=\frac{1}{2}(\theta_{9}+\theta_{10}+\theta_{11}+\theta_{12}),
R(2,10)G\displaystyle R^{\text{\bf G}}_{\binom{2,1}{0}} =18[RT1,1+2RT2,1+RT3,12RT4,12RT5,1]=12(θ9θ10+θ11θ12),\displaystyle=\frac{1}{8}\left[R_{\text{\bf T}_{1},1}+2R_{\text{\bf T}_{2},1}+R_{\text{\bf T}_{3},1}-2R_{\text{\bf T}_{4},1}-2R_{\text{\bf T}_{5},1}\right]=\frac{1}{2}(\theta_{9}-\theta_{10}+\theta_{11}-\theta_{12}),
R(1,02)G\displaystyle R^{\text{\bf G}}_{\binom{1,0}{2}} =18[RT1,12RT2,1+RT3,1+2RT4,12RT5,1]=12(θ9θ10θ11+θ12),\displaystyle=\frac{1}{8}\left[R_{\text{\bf T}_{1},1}-2R_{\text{\bf T}_{2},1}+R_{\text{\bf T}_{3},1}+2R_{\text{\bf T}_{4},1}-2R_{\text{\bf T}_{5},1}\right]=\frac{1}{2}(\theta_{9}-\theta_{10}-\theta_{11}+\theta_{12}),
R(2,1,02,1)G\displaystyle R^{\text{\bf G}}_{\binom{2,1,0}{2,1}} =18[RT1,12RT2,1+RT3,12RT4,1+2RT5,1]=θ13.\displaystyle=\frac{1}{8}\left[R_{\text{\bf T}_{1},1}-2R_{\text{\bf T}_{2},1}+R_{\text{\bf T}_{3},1}-2R_{\text{\bf T}_{4},1}+2R_{\text{\bf T}_{5},1}\right]=\theta_{13}.

It is known that θ0=𝟏Sp4=ρ(2)\theta_{0}={\bf 1}_{{\rm Sp}_{4}}=\rho_{\binom{2}{-}} and θ13=StSp4=ρ(2,1,02,1)\theta_{13}={\rm St}_{{\rm Sp}_{4}}=\rho_{\binom{2,1,0}{2,1}} by Lemma 4.6. Let Z=(2,01)Z=\binom{2,0}{1}. The table for (1)Σ,Λ(-1)^{\langle\Sigma,\Lambda\rangle} for Σ𝒮Z,1\Sigma\in{\mathcal{S}}_{Z,1} and Λ𝒮ZG\Lambda\in{\mathcal{S}}_{Z}^{\text{\bf G}} is

(2,01)\binom{2,0}{1} (2,10)\binom{2,1}{0} (1,02)\binom{1,0}{2} (2,1,0)\binom{-}{2,1,0}
(2,01)\binom{2,0}{1} 1\phantom{-}1 1\phantom{-}1 1\phantom{-}1 1\phantom{-}1
(2,10)\binom{2,1}{0} 1\phantom{-}1 1\phantom{-}1 1-1 1-1
(1,02)\binom{1,0}{2} 1\phantom{-}1 1-1 1\phantom{-}1 1-1

Then we have

ρ(2,01)\displaystyle{\rho_{\binom{2,0}{1}}}^{\sharp} =12[R(2,01)+R(2,10)+R(1,02)],\displaystyle=\frac{1}{2}\left[R_{\binom{2,0}{1}}+R_{\binom{2,1}{0}}+R_{\binom{1,0}{2}}\right], ρ(2,10)\displaystyle{\rho_{\binom{2,1}{0}}}^{\sharp} =12[R(2,01)+R(2,10)R(1,02)],\displaystyle=\frac{1}{2}\left[R_{\binom{2,0}{1}}+R_{\binom{2,1}{0}}-R_{\binom{1,0}{2}}\right],
ρ(1,02)\displaystyle{\rho_{\binom{1,0}{2}}}^{\sharp} =12[R(2,01)R(2,10)+R(1,02)],\displaystyle=\frac{1}{2}\left[R_{\binom{2,0}{1}}-R_{\binom{2,1}{0}}+R_{\binom{1,0}{2}}\right], ρ(2,1,0)\displaystyle{\rho_{\binom{-}{2,1,0}}}^{\sharp} =12[R(2,01)R(2,10)R(1,02)].\displaystyle=\frac{1}{2}\left[R_{\binom{2,0}{1}}-R_{\binom{2,1}{0}}-R_{\binom{1,0}{2}}\right].

We know that

RSp2×GL1Sp4(ρ(1)𝟏)\displaystyle R^{{\rm Sp}_{4}}_{{\rm Sp}_{2}\times{\rm GL}_{1}}(\rho_{\binom{1}{-}}\otimes{\bf 1}) =𝟏Sp4+θ11+θ9,\displaystyle={\bf 1}_{{\rm Sp}_{4}}+\theta_{11}+\theta_{9}, RSp2×GL1Sp4(ρ(1,01)𝟏)\displaystyle R^{{\rm Sp}_{4}}_{{\rm Sp}_{2}\times{\rm GL}_{1}}(\rho_{\binom{1,0}{1}}\otimes{\bf 1}) =θ9+θ12+StSp4,\displaystyle=\theta_{9}+\theta_{12}+{\rm St}_{{\rm Sp}_{4}},
Ω((1))\displaystyle\textstyle\Omega(\binom{1}{-}) ={(2),(2,10),(2,01)},\displaystyle=\textstyle\left\{\binom{2}{-},\binom{2,1}{0},\binom{2,0}{1}\right\}, Ω((1,01))\displaystyle\textstyle\Omega(\binom{1,0}{1}) ={(2,01),(1,02),(2,1,02,1)}.\displaystyle=\textstyle\left\{\binom{2,0}{1},\binom{1,0}{2},\binom{2,1,0}{2,1}\right\}.

Then by Corollary 4.3, we conclude that θ9=ρ(2,01)\theta_{9}=\rho_{\binom{2,0}{1}}, θ10=ρ(2,1,0)\theta_{10}=\rho_{\binom{-}{2,1,0}}, θ11=ρ(2,10)\theta_{11}=\rho_{\binom{2,1}{0}}, and θ12=ρ(1,02)\theta_{12}=\rho_{\binom{1,0}{2}}.

4.2. Unipotent characters of SO2n+1{\rm SO}_{2n+1}

Lemma 4.8.

Suppose that G=SO2n+1\text{\bf G}={\rm SO}_{2n+1}, and let ρ1,ρ2(G,1)\rho_{1},\rho_{2}\in{\mathcal{E}}(\text{\bf G},1). If ρ1=ρ2\rho_{1}^{\sharp}=\rho_{2}^{\sharp}, then ρ1=ρ2\rho_{1}=\rho_{2}.

Proof.

The proof is similar to that of Lemma 4.1. ∎

Proposition 4.9.

Suppose that G=SO2n+1\text{\bf G}={\rm SO}_{2n+1}. Then there is a unique bijection 𝒮G(G,1){\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) satisfying (3.13).

Proof.

The proof is similar to that of Proposition 4.2. ∎

Corollary 4.10.

Let 1:𝒮SO2n+1(SO2n+1,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{{\rm SO}_{2n+1}}\rightarrow{\mathcal{E}}({\rm SO}_{2n+1},1) be the parametrization given in Proposition 4.9. Then

  • (i)

    𝟏SO2n+1=ρ(n){\bf 1}_{{\rm SO}_{2n+1}}=\rho_{\binom{-}{n}};

  • (ii)

    StSO2n+1=ρΛ{\rm St}_{{\rm SO}_{2n+1}}=\rho_{\Lambda} where Λ=(n,n1,,1n,n1,,1,0)\Lambda=\binom{n,n-1,\ldots,1}{n,n-1,\ldots,1,0};

  • (iii)

    if n=k(k+1)n=k(k+1) for some non-negative integer kk, then the unique cuspidal unipotent character ζkSOodd\zeta^{{\rm SO}_{\rm odd}}_{k} of SO2n+1(q){\rm SO}_{2n+1}(q) is parametrized by the symbol

    ΛkSOodd={(2k,2k1,,0),if k is even;(2k,2k1,,0),if k is odd.\Lambda^{{\rm SO}_{\rm odd}}_{k}=\begin{cases}\binom{-}{2k,2k-1,\ldots,0},&\text{if $k$ is even};\\ \binom{2k,2k-1,\ldots,0}{-},&\text{if $k$ is odd}.\end{cases}
Proof.

For (i) and (ii), the proofs are analogous to that of Corollary 4.5, for (iii) the proof is analogous to that of Lemma 4.6. ∎

4.3. Unipotent characters of O2nϵ{\rm O}^{\epsilon}_{2n}

From (3.4), we know that RT,1O2nϵsgnO2nϵ=RT,1O2nϵR^{{\rm O}^{\epsilon}_{2n}}_{\text{\bf T},1}\cdot{\rm sgn}_{{\rm O}^{\epsilon}_{2n}}=R^{{\rm O}^{\epsilon}_{2n}}_{\text{\bf T},1} and then

ρ,RT,1O2nϵO2nϵ=ρsgnO2nϵ,RT,1O2nϵO2nϵ\langle\rho,R^{{\rm O}^{\epsilon}_{2n}}_{\text{\bf T},1}\rangle_{{\rm O}^{\epsilon}_{2n}}=\langle\rho\cdot{\rm sgn}_{{\rm O}^{\epsilon}_{2n}},R^{{\rm O}^{\epsilon}_{2n}}_{\text{\bf T},1}\rangle_{{\rm O}^{\epsilon}_{2n}}

for any ρ(O2nϵ,1)\rho\in{\mathcal{E}}({\rm O}^{\epsilon}_{2n},1). Therefore,

(4.11) ρ=(ρsgnO2nϵ),\rho^{\sharp}=(\rho\cdot{\rm sgn}_{{\rm O}^{\epsilon}_{2n}})^{\sharp},

i.e., two irreducible characters ρ,ρsgnO2nϵ\rho,\rho\cdot{\rm sgn}_{{\rm O}^{\epsilon}_{2n}} are not able to be distinguished by their uniform projections.

The following lemma is [Pan19b] proposition 3.5. We also provide a proof here:

Lemma 4.12.

Let 1:𝒮O2nϵ(O2nϵ,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}}\rightarrow{\mathcal{E}}({\rm O}^{\epsilon}_{2n},1) by ΛρΛ\Lambda\mapsto\rho_{\Lambda} be a Lusztig parametrization of unipotent characters. Then (ρΛ1)=(ρΛ2)(\rho_{\Lambda_{1}})^{\sharp}=(\rho_{\Lambda_{2}})^{\sharp} if and only if Λ1=Λ2\Lambda_{1}=\Lambda_{2} or Λ1=Λ2t\Lambda_{1}=\Lambda_{2}^{\rm t}.

Proof.

For Λ𝒮O2nϵ\Lambda\in{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}} and Σ𝒮O2nϵ\Sigma\in{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}}^{\sharp}, we have Λ,Σ=Λt,Σ\langle\Lambda,\Sigma\rangle=\langle\Lambda^{\rm t},\Sigma\rangle by Lemma 2.14. Then we have (ρΛt)=(ρΛ)(\rho_{\Lambda^{\rm t}})^{\sharp}=(\rho_{\Lambda})^{\sharp}. Now if Λ1Λ2,Λ2t\Lambda_{1}\neq\Lambda_{2},\Lambda_{2}^{\rm t}, by Lemma 3.21 we can find an arrangement Φ\Phi of ZZ and an admissible subset of pairs ΨΦ\Psi\leq\Phi such that Λ1CΦ,Ψ\Lambda_{1}\in C_{\Phi,\Psi} and Λ2CΦ,Ψ\Lambda_{2}\not\in C_{\Phi,\Psi}, and hence

ΛCΦ,ΨρΛ,ρΛ1G=1andΛCΦ,ΨρΛ,ρΛ2G=0.\Biggl{\langle}\sum_{\Lambda\in C_{\Phi,\Psi}}\rho_{\Lambda},\rho_{\Lambda_{1}}\Biggr{\rangle}_{\!\!\text{\bf G}}=1\quad\text{and}\quad\Biggl{\langle}\sum_{\Lambda\in C_{\Phi,\Psi}}\rho_{\Lambda},\rho_{\Lambda_{2}}\Biggr{\rangle}_{\!\!\text{\bf G}}=0.

As in the proof of Lemma 4.1, we get a contradiction. ∎

Corollary 4.13.

Let 1:𝒮O2nϵ(O2nϵ,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}}\rightarrow{\mathcal{E}}({\rm O}^{\epsilon}_{2n},1) by ΛρΛ\Lambda\mapsto\rho_{\Lambda} be a Lusztig parametrization of unipotent characters. Then ρΛt=ρΛsgnO2nϵ\rho_{\Lambda^{\rm t}}=\rho_{\Lambda}\cdot{\rm sgn}_{{\rm O}^{\epsilon}_{2n}}.

Proof.

If Λ\Lambda is degenerate, then clearly ρΛt=ρΛ=RΛO2nϵ=RΛO2nϵsgnO2nϵ=ρΛsgnO2nϵ\rho_{\Lambda^{\rm t}}=\rho_{\Lambda}=R^{{\rm O}^{\epsilon}_{2n}}_{\Lambda}=R^{{\rm O}^{\epsilon}_{2n}}_{\Lambda}\cdot{\rm sgn}_{{\rm O}^{\epsilon}_{2n}}=\rho_{\Lambda}\cdot{\rm sgn}_{{\rm O}^{\epsilon}_{2n}}. If Λ\Lambda is non-degenerate, from (4.11) we know that (ρΛsgnO2nϵ)=(ρΛ)(\rho_{\Lambda}\cdot{\rm sgn}_{{\rm O}^{\epsilon}_{2n}})^{\sharp}=(\rho_{\Lambda})^{\sharp}, and by Lemma 4.12 we conclude that ρΛsgnO2nϵ=ρΛt\rho_{\Lambda}\cdot{\rm sgn}_{{\rm O}^{\epsilon}_{2n}}=\rho_{\Lambda^{\rm t}}. ∎

Corollary 4.14.

Let ρ1,ρ2(O2nϵ,1)\rho_{1},\rho_{2}\in{\mathcal{E}}({\rm O}^{\epsilon}_{2n},1). If ρ1=ρ2\rho_{1}^{\sharp}=\rho_{2}^{\sharp}, then either ρ1=ρ2\rho_{1}=\rho_{2} or ρ1=ρ2sgnO2nϵ\rho_{1}=\rho_{2}\cdot{\rm sgn}_{{\rm O}^{\epsilon}_{2n}}.

Corollary 4.15.

Let G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}, and let ΛρΛ\Lambda\mapsto\rho_{\Lambda} be a Lusztig parametrization of unipotent characters. Then any bijective mapping 𝒮G(G,1){\mathcal{S}}_{\text{\bf G}}\mapsto{\mathcal{E}}(\text{\bf G},1) such that {Λ,Λt}{ρΛ,ρΛt}\{\Lambda,\Lambda^{\rm t}\}\rightarrow\{\rho_{\Lambda},\rho_{\Lambda^{\rm t}}\} is also a Lusztig parametrization of unipotent characters.

Proof.

Suppose that 𝒮G(G,1){\mathcal{S}}_{\text{\bf G}}\mapsto{\mathcal{E}}(\text{\bf G},1) given by ΛρΛ\Lambda\mapsto\rho^{\prime}_{\Lambda} is a bijection such that {Λ,Λt}{ρΛ,ρΛt}\{\Lambda,\Lambda^{\rm t}\}\rightarrow\{\rho_{\Lambda},\rho_{\Lambda^{\rm t}}\}, i.e., {ρΛ,ρΛt}={ρΛ,ρΛt}\{\rho^{\prime}_{\Lambda},\rho^{\prime}_{\Lambda^{\rm t}}\}=\{\rho_{\Lambda},\rho_{\Lambda^{\rm t}}\}. This implies that (ρΛ)=(ρΛt)=(ρΛ)=(ρΛt)(\rho^{\prime}_{\Lambda})^{\sharp}=(\rho^{\prime}_{\Lambda^{\rm t}})^{\sharp}=(\rho_{\Lambda})^{\sharp}=(\rho_{\Lambda^{\rm t}})^{\sharp} and hence the mapping ΛρΛ\Lambda\mapsto\rho^{\prime}_{\Lambda} satisfies (3.13), i.e., ΛρΛ\Lambda\mapsto\rho^{\prime}_{\Lambda} is also a Lusztig parametrization of unipotent characters for O2nϵ{\rm O}^{\epsilon}_{2n}. ∎

Corollary 4.16.

Let 1:𝒮O2nϵ(O2nϵ,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}}\rightarrow{\mathcal{E}}({\rm O}^{\epsilon}_{2n},1) be a Lusztig parametrization of unipotent characters.

  1. (i)

    If ϵ=+\epsilon=+, then

    1. (a)

      1:{(n0),(0n)}{𝟏O2n+,sgnO2n+}{\mathcal{L}}_{1}\colon\left\{\binom{n}{0},\binom{0}{n}\right\}\rightarrow\{{\bf 1}_{{\rm O}^{+}_{2n}},{\rm sgn}_{{\rm O}^{+}_{2n}}\},

    2. (b)

      1{\mathcal{L}}_{1} maps {(n,n1,,1n1,n2,,0),(n1,n2,,0n,n1,,1)}\bigl{\{}\binom{n,n-1,\ldots,1}{n-1,n-2,\ldots,0},\binom{n-1,n-2,\ldots,0}{n,n-1,\ldots,1}\bigr{\}} to the two Steinberg characters of O2n+{\rm O}^{+}_{2n}.

  2. (ii)

    If ϵ=\epsilon=-, then

    1. (a)

      1:{(n,0),(n,0)}{𝟏O2n,sgnO2n}{\mathcal{L}}_{1}\colon\bigl{\{}\binom{-}{n,0},\binom{n,0}{-}\bigr{\}}\rightarrow\{{\bf 1}_{{\rm O}^{-}_{2n}},{\rm sgn}_{{\rm O}^{-}_{2n}}\}

    2. (b)

      1{\mathcal{L}}_{1} maps {(n,n1,,1,0n1,n2,,1),(n1,n2,,1n,n1,,1,0)}\bigl{\{}\binom{n,n-1,\ldots,1,0}{n-1,n-2,\ldots,1},\binom{n-1,n-2,\ldots,1}{n,n-1,\ldots,1,0}\bigr{\}} to the two Steinberg characters of O2n{\rm O}^{-}_{2n}.

Proof.

First suppose that ϵ=+\epsilon=+. From [Car85] corollary 7.6.5, we know that R(n0)SO2n+=𝟏SO2n+R_{\binom{n}{0}}^{{\rm SO}_{2n}^{+}}={\bf 1}_{{\rm SO}^{+}_{2n}}. Therefore,

R(n0)O2n+=R(0n)O2n+=12(𝟏O2n++sgnO2n+)R_{\binom{n}{0}}^{{\rm O}_{2n}^{+}}=R_{\binom{0}{n}}^{{\rm O}_{2n}^{+}}=\frac{1}{\sqrt{2}}({\bf 1}_{{\rm O}^{+}_{2n}}+{\rm sgn}_{{\rm O}^{+}_{2n}})

and (i.a) is proved from (3.13). Write Λ=(n1,n2,,0n,n1,,1)\Lambda=\binom{n-1,n-2,\ldots,0}{n,n-1,\ldots,1}. From [Car85] corollary 7.6.6, we see that RΛSO2n+=StSO2n+R_{\Lambda}^{{\rm SO}^{+}_{2n}}={\rm St}_{{\rm SO}^{+}_{2n}}. Then 2RΛO2n+=2RΛtO2n+\sqrt{2}R_{\Lambda}^{{\rm O}^{+}_{2n}}=\sqrt{2}R_{\Lambda^{\rm t}}^{{\rm O}^{+}_{2n}} is the sum of two Steinberg characters of O2n+{\rm O}^{+}_{2n} and (i.b) is proved.

The proof of (ii) is similar. ∎

It is known that O2k2ϵk{\rm O}^{\epsilon_{k}}_{2k^{2}} where ϵk=(1)k\epsilon_{k}=(-1)^{k} has two cuspidal unipotent characters, denoted by ζkI\zeta_{k}^{\rm I} and ζkII\zeta_{k}^{\rm II}. Then from above we see that any Lusztig parametrization 1:𝒮O2k2ϵk(O2k2ϵk,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{{\rm O}^{\epsilon_{k}}_{2k^{2}}}\rightarrow{\mathcal{E}}({\rm O}^{\epsilon_{k}}_{2k^{2}},1) maps

{(2k1,2k2,,1,0),(2k1,2k2,,1,0)}{ζkI,ζkII}\left\{\textstyle\binom{2k-1,2k-2,\ldots,1,0}{-},\binom{-}{2k-1,2k-2,\ldots,1,0}\right\}\rightarrow\{\zeta_{k}^{\rm I},\zeta_{k}^{\rm II}\}

bijectively.

Example 4.17.

We consider the unipotent characters of O4+{\rm O}^{+}_{4} or O4{\rm O}^{-}_{4}. Let Ti\text{\bf T}_{i} be given as in Example 4.7. It is know that T1,T3,T4\text{\bf T}_{1},\text{\bf T}_{3},\text{\bf T}_{4} are maximal tori in O4+{\rm O}^{+}_{4}, and T2,T5\text{\bf T}_{2},\text{\bf T}_{5} are maximal tori in O4{\rm O}^{-}_{4}. It is know that

RT1,1O4+\displaystyle R^{{\rm O}^{+}_{4}}_{\text{\bf T}_{1},1} =𝟏O4++sgnO4++2χ2q++χq2++χq2+sgnO4+,\displaystyle={\bf 1}_{{\rm O}^{+}_{4}}+{\rm sgn}_{{\rm O}^{+}_{4}}+2\chi^{+}_{2q}+\chi^{+}_{q^{2}}+\chi^{+}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{+}_{4}},
RT3,1O4+\displaystyle R^{{\rm O}^{+}_{4}}_{\text{\bf T}_{3},1} =𝟏O4++sgnO4+2χ2q++χq2++χq2+sgnO4+,\displaystyle={\bf 1}_{{\rm O}^{+}_{4}}+{\rm sgn}_{{\rm O}^{+}_{4}}-2\chi^{+}_{2q}+\chi^{+}_{q^{2}}+\chi^{+}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{+}_{4}},
RT4,1O4+\displaystyle R^{{\rm O}^{+}_{4}}_{\text{\bf T}_{4},1} =𝟏O4++sgnO4+χq2+χq2+sgnO4+,\displaystyle={\bf 1}_{{\rm O}^{+}_{4}}+{\rm sgn}_{{\rm O}^{+}_{4}}-\chi^{+}_{q^{2}}-\chi^{+}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{+}_{4}},
RT2,1O4\displaystyle R^{{\rm O}^{-}_{4}}_{\text{\bf T}_{2},1} =𝟏O4+sgnO4+χq2+χq2sgnO4,\displaystyle={\bf 1}_{{\rm O}^{-}_{4}}+{\rm sgn}_{{\rm O}^{-}_{4}}+\chi^{-}_{q^{2}}+\chi^{-}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{-}_{4}},
RT5,1O4\displaystyle R^{{\rm O}^{-}_{4}}_{\text{\bf T}_{5},1} =𝟏O4+sgnO4χq2χq2sgnO4\displaystyle={\bf 1}_{{\rm O}^{-}_{4}}+{\rm sgn}_{{\rm O}^{-}_{4}}-\chi^{-}_{q^{2}}-\chi^{-}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{-}_{4}}

where χ2q+,χq2+\chi_{2q}^{+},\chi_{q^{2}}^{+} are irreducible characters of O4+(q){\rm O}^{+}_{4}(q) of degrees 2q,q22q,q^{2} respectively; similarly χq2\chi_{q^{2}}^{-} is an irreducible character of O4(q){\rm O}^{-}_{4}(q) of degree q2q^{2}. And so we have

(O4+,1)\displaystyle{\mathcal{E}}({\rm O}^{+}_{4},1) ={𝟏O4+,sgnO4+,χ2q+,χq2+,χq2+sgnO4+},\displaystyle=\{{\bf 1}_{{\rm O}^{+}_{4}},{\rm sgn}_{{\rm O}^{+}_{4}},\chi^{+}_{2q},\chi^{+}_{q^{2}},\chi^{+}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{+}_{4}}\},
(O4,1)\displaystyle{\mathcal{E}}({\rm O}^{-}_{4},1) ={𝟏O4,sgnO4,χq2,χq2sgnO4}.\displaystyle=\{{\bf 1}_{{\rm O}^{-}_{4}},{\rm sgn}_{{\rm O}^{-}_{4}},\chi^{-}_{q^{2}},\chi^{-}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{-}_{4}}\}.

We know that

𝒮O4+={(20),(02),(2,11,0),(1,02,1),(11)},𝒮O4={(2,0),(2,0),(12,1,0),(2,1,01)}.\textstyle{\mathcal{S}}_{{\rm O}^{+}_{4}}=\left\{\binom{2}{0},\binom{0}{2},\binom{2,1}{1,0},\binom{1,0}{2,1},\binom{1}{1}\right\},\quad{\mathcal{S}}_{{\rm O}^{-}_{4}}=\left\{\binom{-}{2,0},\binom{2,0}{-},\binom{1}{2,1,0},\binom{2,1,0}{1}\right\}.

Suppose we choose 𝒮O4+={(20),(2,11,0),(11)}{\mathcal{S}}_{{\rm O}^{+}_{4}}^{\sharp}=\left\{\binom{2}{0},\binom{2,1}{1,0},\binom{1}{1}\right\}, and 𝒮O4={(02),(1,02,1)}{\mathcal{S}}_{{\rm O}^{-}_{4}}^{\sharp}=\left\{\binom{0}{2},\binom{1,0}{2,1}\right\}. Then we have

R(20)O4+\displaystyle R^{{\rm O}^{+}_{4}}_{\binom{2}{0}} =142[RT1,1O4++RT3,1O4++2RT4,1O4+]=12[𝟏O4++sgnO4+],\displaystyle=\frac{1}{4\sqrt{2}}\left[R^{{\rm O}^{+}_{4}}_{\text{\bf T}_{1},1}+R^{{\rm O}^{+}_{4}}_{\text{\bf T}_{3},1}+2R^{{\rm O}^{+}_{4}}_{\text{\bf T}_{4},1}\right]=\frac{1}{\sqrt{2}}\left[{\bf 1}_{{\rm O}^{+}_{4}}+{\rm sgn}_{{\rm O}^{+}_{4}}\right],
R(11)O4+\displaystyle R^{{\rm O}^{+}_{4}}_{\binom{1}{1}} =14[RT1,1O4+RT3,1O4+]=χ2q+,\displaystyle=\frac{1}{4}\left[R^{{\rm O}^{+}_{4}}_{\text{\bf T}_{1},1}-R^{{\rm O}^{+}_{4}}_{\text{\bf T}_{3},1}\right]=\chi^{+}_{2q},
R(2,11,0)O4+\displaystyle R^{{\rm O}^{+}_{4}}_{\binom{2,1}{1,0}} =142[RT1,1O4++RT3,1O4+2RT4,1O4+]=12[χq2++χq2+sgnO4+],\displaystyle=\frac{1}{4\sqrt{2}}\left[R^{{\rm O}^{+}_{4}}_{\text{\bf T}_{1},1}+R^{{\rm O}^{+}_{4}}_{\text{\bf T}_{3},1}-2R^{{\rm O}^{+}_{4}}_{\text{\bf T}_{4},1}\right]=\frac{1}{\sqrt{2}}\left[\chi^{+}_{q^{2}}+\chi^{+}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{+}_{4}}\right],
R(02)O4\displaystyle R^{{\rm O}^{-}_{4}}_{\binom{0}{2}} =122[RT2,1O4RT5,1O4]=12[𝟏O4sgnO4],\displaystyle=\frac{1}{2\sqrt{2}}\left[-R^{{\rm O}^{-}_{4}}_{\text{\bf T}_{2},1}-R^{{\rm O}^{-}_{4}}_{\text{\bf T}_{5},1}\right]=\frac{1}{\sqrt{2}}\left[-{\bf 1}_{{\rm O}^{-}_{4}}-{\rm sgn}_{{\rm O}^{-}_{4}}\right],
R(1,02,1)O4\displaystyle R^{{\rm O}^{-}_{4}}_{\binom{1,0}{2,1}} =122[RT2,1O4+RT5,1O4]=12[χq2χq2sgnO4].\displaystyle=\frac{1}{2\sqrt{2}}\left[-R^{{\rm O}^{-}_{4}}_{\text{\bf T}_{2},1}+R^{{\rm O}^{-}_{4}}_{\text{\bf T}_{5},1}\right]=\frac{1}{\sqrt{2}}\left[-\chi^{-}_{q^{2}}-\chi^{-}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{-}_{4}}\right].

From (2.13), we know that

(20),(20)=(02),(20)=(2,11,0),(2,11,0)=(1,02,1),(2,11,0)\displaystyle\textstyle\bigl{\langle}\binom{2}{0},\binom{2}{0}\bigr{\rangle}=\bigl{\langle}\binom{0}{2},\binom{2}{0}\bigr{\rangle}=\bigl{\langle}\binom{2,1}{1,0},\binom{2,1}{1,0}\bigr{\rangle}=\bigl{\langle}\binom{1,0}{2,1},\binom{2,1}{1,0}\bigr{\rangle} 0(mod2),\displaystyle\equiv 0\pmod{2},
(2,0),(02)=(2,0),(02)=(12,1,0),(1,02,1)=(2,1,01),(1,02,1)\displaystyle\textstyle\bigl{\langle}\binom{-}{2,0},\binom{0}{2}\bigr{\rangle}=\bigl{\langle}\binom{2,0}{-},\binom{0}{2}\bigr{\rangle}=\bigl{\langle}\binom{1}{2,1,0},\binom{1,0}{2,1}\bigr{\rangle}=\bigl{\langle}\binom{2,1,0}{1},\binom{1,0}{2,1}\bigr{\rangle} 1(mod2).\displaystyle\equiv 1\pmod{2}.

By (3.13), we have

(𝟏O4+)=(sgnO4+)\displaystyle({\bf 1}_{{\rm O}^{+}_{4}})^{\sharp}=({\rm sgn}_{{\rm O}^{+}_{4}})^{\sharp} =12R(20)O4+=12(𝟏O4++sgnO4+),\displaystyle=\frac{1}{\sqrt{2}}R^{{\rm O}^{+}_{4}}_{\binom{2}{0}}=\frac{1}{2}({\bf 1}_{{\rm O}^{+}_{4}}+{\rm sgn}_{{\rm O}^{+}_{4}}),
(χq2+)=(χq2+sgnO4+)\displaystyle(\chi^{+}_{q^{2}})^{\sharp}=(\chi^{+}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{+}_{4}})^{\sharp} =12R(2,11,0)O4+=12(χq2++χq2+sgnO4+),\displaystyle=\frac{1}{\sqrt{2}}R^{{\rm O}^{+}_{4}}_{\binom{2,1}{1,0}}=\frac{1}{2}(\chi^{+}_{q^{2}}+\chi^{+}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{+}_{4}}),
χ2q+\displaystyle\chi^{+}_{2q} =R(11)O4+,\displaystyle=R^{{\rm O}^{+}_{4}}_{\binom{1}{1}},
(𝟏O4)=(sgnO4)\displaystyle({\bf 1}_{{\rm O}^{-}_{4}})^{\sharp}=({\rm sgn}_{{\rm O}^{-}_{4}})^{\sharp} =12R(02)O4=12(𝟏O4+sgnO4),\displaystyle=-\frac{1}{\sqrt{2}}R^{{\rm O}^{-}_{4}}_{\binom{0}{2}}=\frac{1}{2}({\bf 1}_{{\rm O}^{-}_{4}}+{\rm sgn}_{{\rm O}^{-}_{4}}),
(χq2)=(χq2sgnO4)\displaystyle(\chi^{-}_{q^{2}})^{\sharp}=(\chi^{-}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{-}_{4}})^{\sharp} =12R(1,02,1)O4=12(χq2+χq2sgnO4).\displaystyle=-\frac{1}{\sqrt{2}}R^{{\rm O}^{-}_{4}}_{\binom{1,0}{2,1}}=\frac{1}{2}(\chi^{-}_{q^{2}}+\chi^{-}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{-}_{4}}).

Therefore any bijection 𝒮O4+(O4+,1){\mathcal{S}}_{{\rm O}^{+}_{4}}\rightarrow{\mathcal{E}}({\rm O}^{+}_{4},1) such that

{(20),(02)}\displaystyle\bigl{\{}\textstyle\binom{2}{0},\binom{0}{2}\bigr{\}} {𝟏O4+,sgnO4+},\displaystyle\mapsto\{{\bf 1}_{{\rm O}^{+}_{4}},{\rm sgn}_{{\rm O}^{+}_{4}}\},
(11)\displaystyle\textstyle\binom{1}{1} χ2q+,\displaystyle\mapsto\chi^{+}_{2q},
{(2,11,0),(1,02,1)}\displaystyle\bigl{\{}\textstyle\binom{2,1}{1,0},\binom{1,0}{2,1}\bigr{\}} {χq2+,χq2+sgnO4+}\displaystyle\mapsto\{\chi^{+}_{q^{2}},\chi^{+}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{+}_{4}}\}

is a Lusztig parametrization for O4+{\rm O}^{+}_{4}, and any bijection 𝒮O4(O4,1){\mathcal{S}}_{{\rm O}^{-}_{4}}\rightarrow{\mathcal{E}}({\rm O}^{-}_{4},1) such that

{(2,0),(2,0)}\displaystyle\bigl{\{}\textstyle\binom{-}{2,0},\binom{2,0}{-}\bigr{\}} {𝟏O4,sgnO4},\displaystyle\mapsto\{{\bf 1}_{{\rm O}^{-}_{4}},{\rm sgn}_{{\rm O}^{-}_{4}}\},
{(12,1,0),(2,1,01)}\displaystyle\bigl{\{}\textstyle\binom{1}{2,1,0},\binom{2,1,0}{1}\bigr{\}} {χq2,χq2sgnO4}\displaystyle\mapsto\{\chi^{-}_{q^{2}},\chi^{-}_{q^{2}}\cdot{\rm sgn}_{{\rm O}^{-}_{4}}\}

is a Lusztig parametrization for O4{\rm O}^{-}_{4}.

5. Finite Theta Correspondence of Unipotent Characters

In this section we want to purpose several conditions to enforce the parametrization 𝒮G(G,1){\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) for G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n} to be unique.

5.1. Finite theta correspondence on unipotent characters

For a nontrivial additive character ψ\psi of 𝐅q{\mathbf{F}}_{q}, let ωSp(W)ψ\omega^{\psi}_{{\rm Sp}(W)} denote the (character of the ) Weil representation of the finite symplectic group Sp(W){\rm Sp}(W) with respect to ψ\psi.

Let (G,G)(\text{\bf G},\text{\bf G}^{\prime}) be a reductive dual pair of the form (Sp2n,SO2n+1)({\rm Sp}_{2n},{\rm SO}_{2n^{\prime}+1}) or (O2nϵ,Sp2n)({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2n^{\prime}}) where ϵ=+\epsilon=+ or -. The restriction ωG,Gψ\omega^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}} of the Weil character to G×GG\times G^{\prime} gives a decomposition

(5.1) ωG,Gψ=ρ(G),ρ(G)mρ,ρρρ\omega_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi}=\sum_{\rho\in{\mathcal{E}}(\text{\bf G}),\ \rho^{\prime}\in{\mathcal{E}}(\text{\bf G}^{\prime})}m_{\rho,\rho^{\prime}}\rho\otimes\rho^{\prime}

where the multiplicity mρ,ρm_{\rho,\rho^{\prime}} is 11 or 0. Then we have a relation

ΘG,Gψ={(ρ,ρ)(G)×(G)mρ,ρ0}\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}}=\{\,(\rho,\rho^{\prime})\in{\mathcal{E}}(\text{\bf G})\times{\mathcal{E}}(\text{\bf G}^{\prime})\mid m_{\rho,\rho^{\prime}}\neq 0\,\}

between (G){\mathcal{E}}(\text{\bf G}) and (G){\mathcal{E}}(\text{\bf G}^{\prime}) called the finite theta correspondence (or Howe duality) for the dual pair (G,G)(\text{\bf G},\text{\bf G}^{\prime}). We say that an irreducible character ρ(G)\rho\in{\mathcal{E}}(\text{\bf G}) occurs in ΘG,Gψ\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}} if there exists ρ(G)\rho^{\prime}\in{\mathcal{E}}(\text{\bf G}^{\prime}) such that (ρ,ρ)ΘG,Gψ(\rho,\rho^{\prime})\in\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}}.

For a symplectic space VV over 𝐅q{\mathbf{F}}_{q}, we have the symplectic similitude group

GSp(V)={gGL(V)gv,gw=kgv,w for some kg𝐅q× and any v,wV}.{\rm GSp}(V)=\{\,g\in{\rm GL}(V)\mid\langle gv,gw\rangle=k_{g}\langle v,w\rangle\text{ for some }k_{g}\in{\mathbf{F}}_{q}^{\times}\text{ and any }v,w\in V\,\}.

Note that GSp(V){\rm GSp}(V) normalizes the symplectic group Sp(V){\rm Sp}(V). Choose an element hGSp2n(q)h\in{\rm GSp}_{2n}(q) such that khk_{h} is a non-square element in 𝐅q×{\mathbf{F}}_{q}^{\times}. For ρ(Sp2n)\rho\in{\mathcal{E}}({\rm Sp}_{2n}), we define the conjugate character ρc(Sp2n)\rho^{c}\in{\mathcal{E}}({\rm Sp}_{2n}) by ρc(g)=ρ(hgh1)\rho^{c}(g)=\rho(hgh^{-1}) for any gSp2n(q)g\in{\rm Sp}_{2n}(q).

Lemma 5.2.

Suppose that (G,G)=(Sp2n,SO2n+1)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{2n},{\rm SO}_{2n^{\prime}+1}). If (ρ,ρ)ΘG,Gψ(\rho,\rho^{\prime})\in\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}}, then (ρc,ρ)ΘG,Gψa(\rho^{c},\rho^{\prime})\in\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi_{a}} where ψa\psi_{a} is another additive character of 𝐅q{\mathbf{F}}_{q} given by ψa(x):=ψ(ax)\psi_{a}(x):=\psi(ax) and aa is a non-square element in 𝐅q×{\mathbf{F}}_{q}^{\times}.

Proof.

Suppose that G=Sp(V)G={\rm Sp}(V) and G=SO(V)G^{\prime}={\rm SO}(V^{\prime}) for a 2n2n-dimensional symplectic space VV and a (2n+1)(2n+1)-dimensional orthogonal space VV^{\prime}, and write ωG,Gψ\omega^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}} as in (5.1). Choose hGSp(V)h\in{\rm GSp}(V) such that khk_{h} is a non-square element in 𝐅q×{\mathbf{F}}_{q}^{\times}, and let h~=ι(h,1)GSp(VV)\widetilde{h}=\iota(h,1)\in{\rm GSp}(V\otimes V^{\prime}) where

ι:GSp(V)×SO(V)GSp(VV).\iota\colon{\rm GSp}(V)\times{\rm SO}(V^{\prime})\rightarrow{\rm GSp}(V\otimes V^{\prime}).

Now clearly kh~=khk_{\widetilde{h}}=k_{h}, and then by [Sze98] proposition 11 we have ωSp(VV)ψAdh~=ωSp(VV)ψa\omega^{\psi}_{{\rm Sp}(V\otimes V^{\prime})}\circ{\rm Ad}_{\widetilde{h}}=\omega^{\psi_{a}}_{{\rm Sp}(V\otimes V^{\prime})}. Therefore,

ωG,Gψa=ρ(G),ρ(G)mρ,ρ(ρAdh)ρ=ρ(G),ρ(G)mρ,ρρcρ.\omega^{\psi_{a}}_{\text{\bf G},\text{\bf G}^{\prime}}=\sum_{\rho\in{\mathcal{E}}(\text{\bf G}),\ \rho^{\prime}\in{\mathcal{E}}(\text{\bf G}^{\prime})}m_{\rho,\rho^{\prime}}(\rho\circ{\rm Ad}_{h})\otimes\rho^{\prime}=\sum_{\rho\in{\mathcal{E}}(\text{\bf G}),\ \rho^{\prime}\in{\mathcal{E}}(\text{\bf G}^{\prime})}m_{\rho,\rho^{\prime}}\rho^{c}\otimes\rho^{\prime}.

Thus the lemma is proved. ∎

For ρ(O2nϵ)\rho\in{\mathcal{E}}({\rm O}^{\epsilon}_{2n}), we can define the conjugate character ρc(O2nϵ)\rho^{c}\in{\mathcal{E}}({\rm O}^{\epsilon}_{2n}) as we did for a symplectic group given above.

Lemma 5.3.

Suppose that (G,G)=(O2nϵ,Sp2n)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2n^{\prime}}). If (ρ,ρ)ΘG,Gψ(\rho,\rho^{\prime})\in\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}}, then (ρc,ρc)ΘG,Gψ(\rho^{c},\rho^{\prime c})\in\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi}, and (ρc,ρ),(ρ,ρc)ΘG,Gψa(\rho^{c},\rho^{\prime}),(\rho,\rho^{\prime c})\in\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi_{a}} where aa is a non-square element in 𝐅q×{\mathbf{F}}_{q}^{\times}.

Proof.

Suppose that G=O(V)G={\rm O}(V) and G=Sp(V)G^{\prime}={\rm Sp}(V^{\prime}) for a 2n2n-dimensional orthogonal space VV and a 2n2n^{\prime}-dimensional symplectic space VV^{\prime}, and write ωG,Gψ\omega^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}} as in (5.1). Choose hGO(V)h\in{\rm GO}(V) (the orthogonal similitude group) and hGSp(V)h^{\prime}\in{\rm GSp}(V^{\prime}) such that both kh,khk_{h},k_{h^{\prime}} are non-square elements in 𝐅q×{\mathbf{F}}_{q}^{\times} and let h~=ι(h,h)GSp(VV)\widetilde{h}=\iota(h,h^{\prime})\in{\rm GSp}(V\otimes V^{\prime}) where

ι:GO(V)×GSp(V)GSp(VV).\iota\colon{\rm GO}(V)\times{\rm GSp}(V^{\prime})\rightarrow{\rm GSp}(V\otimes V^{\prime}).

Now kh~=khkhk_{\widetilde{h}}=k_{h}k_{h^{\prime}} becomes a square element in 𝐅q×{\mathbf{F}}_{q}^{\times} and therefore

ωG,Gψ=ωG,GψAdh~\displaystyle\omega^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}}=\omega^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}}\circ{\rm Ad}_{\widetilde{h}} =ρ(G),ρ(G)mρ,ρ(ρAdh)(ρAdh)\displaystyle=\sum_{\rho\in{\mathcal{E}}(\text{\bf G}),\ \rho^{\prime}\in{\mathcal{E}}(\text{\bf G}^{\prime})}m_{\rho,\rho^{\prime}}(\rho\circ{\rm Ad}_{h})\otimes(\rho^{\prime}\circ{\rm Ad}_{h^{\prime}})
=ρ(G),ρ(G)mρ,ρρcρc.\displaystyle=\sum_{\rho\in{\mathcal{E}}(\text{\bf G}),\ \rho^{\prime}\in{\mathcal{E}}(\text{\bf G}^{\prime})}m_{\rho,\rho^{\prime}}\rho^{c}\otimes\rho^{\prime c}.

So we have shown that (ρ,ρ)ΘG,Gψ(\rho,\rho^{\prime})\in\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}} implies that (ρc,ρc)ΘG,Gψ(\rho^{c},\rho^{\prime c})\in\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi}. The other assertions can be proved by an analogous argument in the proof of Lemma 5.2. ∎

Let Gn\text{\bf G}^{\prime}_{n^{\prime}} denote SO2n+1{\rm SO}_{2n^{\prime}+1}, Sp2n{\rm Sp}_{2n^{\prime}}, or O2nϵ{\rm O}^{\epsilon}_{2n^{\prime}}. For ρ(G)\rho\in{\mathcal{E}}(\text{\bf G}), it is well known that if ρ\rho occurs in ΘG,Gnψ\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}_{n^{\prime}}}, then it also occurs in ΘG,Gn′′ψ\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}_{n^{\prime\prime}}} for any n′′nn^{\prime\prime}\geq n^{\prime}. We say that ρ\rho first occurs in ΘG,Gnψ\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}_{n^{\prime}}} if it occurs in ΘG,Gnψ\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}_{n^{\prime}}} and does not occur in ΘG,Gn1ψ\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}_{n^{\prime}-1}}.

5.2. Finite theta correspondence on unipotent characters

If (G,G)=(O2nϵ,Sp2n)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2n^{\prime}}), then the unipotent characters are preserved by ΘG,Gψ\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi} (cf[AM93] theorem 3.5), i.e., we can write

ωG,G,1ψ\displaystyle\omega^{\psi}_{\text{\bf G},\text{\bf G}^{\prime},1} =ρ(G,1),ρ(G,1)mρ,ρρρ\displaystyle=\sum_{\rho\in{\mathcal{E}}(\text{\bf G},1),\ \rho^{\prime}\in{\mathcal{E}}(\text{\bf G}^{\prime},1)}m_{\rho,\rho^{\prime}}\rho\otimes\rho^{\prime}
ΘG,G,1ψ\displaystyle\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime},1} =ΘG,Gψ((G,1)×(G,1))\displaystyle=\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}}\cap({\mathcal{E}}(\text{\bf G},1)\times{\mathcal{E}}(\text{\bf G}^{\prime},1))

where ωG,G,1ψ\omega^{\psi}_{\text{\bf G},\text{\bf G}^{\prime},1} denotes the unipotent part of ωG,Gψ\omega^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}}. For the theta correspondence on unipotent characters, the following are well-known (cf[AM93] theorem 5.2):

  • 𝟏O2+{\bf 1}_{{\rm O}^{+}_{2}} first occurs in the correspondence for the pair (O2+,Sp0)({\rm O}^{+}_{2},{\rm Sp}_{0}),

  • sgnO2+{\rm sgn}_{{\rm O}^{+}_{2}} first occurs in the correspondence for the pair (O2+,Sp2)({\rm O}^{+}_{2},{\rm Sp}_{2}),

  • ζkI\zeta_{k}^{\rm I} first occurs in the correspondence for the pair (O2k2ϵk,Sp2k(k1))({\rm O}^{\epsilon_{k}}_{2k^{2}},{\rm Sp}_{2k(k-1)}),

  • ζkII\zeta_{k}^{\rm II} first occurs in the correspondence for the pair (O2k2ϵk,Sp2k(k+1))({\rm O}^{\epsilon_{k}}_{2k^{2}},{\rm Sp}_{2k(k+1)})

where ϵk=(1)k\epsilon_{k}=(-1)^{k}, and ζkI,ζkII\zeta_{k}^{\rm I},\zeta_{k}^{\rm II} are the unipotent cuspidal characters of O2k2ϵk(q){\rm O}^{\epsilon_{k}}_{2k^{2}}(q) given in Subsection 4.3.

Now we recall some results on ΘG,G,1ψ\Theta_{\text{\bf G},\text{\bf G}^{\prime},1}^{\psi} from [Pan19a]. For any two partitions λ=[λ1,λ2,]\lambda=[\lambda_{1},\lambda_{2},\ldots] (with λ1λ2\lambda_{1}\geq\lambda_{2}\geq\cdots), μ=[μ1,μ2,]\mu=[\mu_{1},\mu_{2},\ldots] (with μ1μ2\mu_{1}\geq\mu_{2}\geq\cdots), we define a relation

(5.4) λμif μ1λ1μ2λ2μ3λ3.\lambda\preccurlyeq\mu\qquad\text{if }\mu_{1}\geq\lambda_{1}\geq\mu_{2}\geq\lambda_{2}\geq\mu_{3}\geq\lambda_{3}\geq\cdots.

And then we define a relation G,G{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}} between 𝒮G{\mathcal{S}}_{\text{\bf G}} and 𝒮G{\mathcal{S}}_{\text{\bf G}^{\prime}} for (G,G)=(O2nϵ,Sp2n)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2n^{\prime}}) as follows:

  • If ϵ=+\epsilon=+, let G,G{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}} be the set consisting of pairs (Λ,Λ)(\Lambda,\Lambda^{\prime}) of symbols such that

    • Υ(Λ)Υ(Λ)\Upsilon(\Lambda)_{*}\preccurlyeq\Upsilon(\Lambda^{\prime})^{*} and Υ(Λ)Υ(Λ)\Upsilon(\Lambda^{\prime})_{*}\preccurlyeq\Upsilon(\Lambda)^{*},

    • def(Λ)=def(Λ)+1{\rm def}(\Lambda^{\prime})=-{\rm def}(\Lambda)+1;

  • if ϵ=\epsilon=-, let G,G{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}} be the set consisting of pairs (Λ,Λ)(\Lambda,\Lambda^{\prime}) of symbols such that

    • Υ(Λ)Υ(Λ)\Upsilon(\Lambda)^{*}\preccurlyeq\Upsilon(\Lambda^{\prime})_{*} and Υ(Λ)Υ(Λ)\Upsilon(\Lambda^{\prime})^{*}\preccurlyeq\Upsilon(\Lambda)_{*},

    • def(Λ)=def(Λ)1{\rm def}(\Lambda^{\prime})=-{\rm def}(\Lambda)-1.

We say that a symbol Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}} occurs in G,G{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}} if there is Λ𝒮G\Lambda^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{\prime}} such that (Λ,Λ)G,G(\Lambda,\Lambda^{\prime})\in{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}}. For Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}}, it is not difficult to see that if Λ\Lambda occurs in G,Gn{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}_{n^{\prime}}}, then it also occurs in G,Gn′′{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}_{n^{\prime\prime}}} for any n′′nn^{\prime\prime}\geq n^{\prime}. We say that Λ\Lambda first occurs in G,Gn{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}_{n^{\prime}}} if it occurs in G,Gn{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}_{n^{\prime}}} and does not occur in G,Gn1{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}_{n^{\prime}-1}}.

Example 5.5.
  1. (1)

    We have (10),(01)𝒮O2+\binom{1}{0},\binom{0}{1}\in{\mathcal{S}}_{{\rm O}^{+}_{2}}, (0)𝒮Sp0\binom{0}{-}\in{\mathcal{S}}_{{\rm Sp}_{0}}, and (1)𝒮Sp2\binom{1}{-}\in{\mathcal{S}}_{{\rm Sp}_{2}}. Now Υ((10))=[10]\Upsilon(\binom{1}{0})=\genfrac{[}{]}{0.0pt}{}{1}{0}, Υ((01))=[01]\Upsilon(\binom{0}{1})=\genfrac{[}{]}{0.0pt}{}{0}{1}, Υ((0))=[00]\Upsilon(\binom{0}{-})=\genfrac{[}{]}{0.0pt}{}{0}{0}, and Υ((1))=[10]\Upsilon(\binom{1}{-})=\genfrac{[}{]}{0.0pt}{}{1}{0}, and so (10)\binom{1}{0} first occurs in O2+,Sp0{\mathcal{B}}_{{\rm O}^{+}_{2},{\rm Sp}_{0}} and (01)\binom{0}{1} first occurs in O2+,Sp2{\mathcal{B}}_{{\rm O}^{+}_{2},{\rm Sp}_{2}}.

  2. (2)

    Suppose that kk is even, and let ΛkI=(2k1,2k2,,0)\Lambda_{k}^{\rm I}=\binom{2k-1,2k-2,\ldots,0}{-}. Then ΛkI𝒮O2k2+\Lambda_{k}^{\rm I}\in{\mathcal{S}}_{{\rm O}^{+}_{2k^{2}}}, def(ΛkI)=2k{\rm def}(\Lambda_{k}^{\rm I})=2k and Υ(ΛkI)=[00]\Upsilon(\Lambda_{k}^{\rm I})=\genfrac{[}{]}{0.0pt}{}{0}{0}. Therefore, if ΛkI\Lambda_{k}^{\rm I} occurs in O2k2+,Sp2n{\mathcal{B}}_{{\rm O}^{+}_{2k^{2}},{\rm Sp}_{2n^{\prime}}}, then 𝒮Sp2n{\mathcal{S}}_{{\rm Sp}_{2n^{\prime}}} contains a symbol of defect 2k+1-2k+1. By (2.4), we have nk(k1)n^{\prime}\geq k(k-1), i.e., ΛkI\Lambda_{k}^{\rm I} first occurs in O2k2+,Sp2(k2k){\mathcal{B}}_{{\rm O}^{+}_{2k^{2}},{\rm Sp}_{2(k^{2}-k)}}.

  3. (3)

    Suppose that kk is odd, and let ΛkI=(2k1,2k2,,0)\Lambda_{k}^{\rm I}=\binom{-}{2k-1,2k-2,\ldots,0}. Then ΛkI𝒮O2k2\Lambda_{k}^{\rm I}\in{\mathcal{S}}_{{\rm O}^{-}_{2k^{2}}}, def(ΛkI)=2k{\rm def}(\Lambda_{k}^{\rm I})=-2k and Υ(ΛkI)=[00]\Upsilon(\Lambda_{k}^{\rm I})=\genfrac{[}{]}{0.0pt}{}{0}{0}. This means that if ΛkI\Lambda_{k}^{\rm I} occurs in O2k2,Sp2n{\mathcal{B}}_{{\rm O}^{-}_{2k^{2}},{\rm Sp}_{2n^{\prime}}}, then 𝒮Sp2n{\mathcal{S}}_{{\rm Sp}_{2n^{\prime}}} contains a symbol of defect 2k12k-1. By (2.4), we have nk(k1)n^{\prime}\geq k(k-1), i.e., ΛkI\Lambda_{k}^{\rm I} first occurs in O2k2,Sp2(k2k){\mathcal{B}}_{{\rm O}^{-}_{2k^{2}},{\rm Sp}_{2(k^{2}-k)}}.

The following proposition is from [Pan19a] corollary 5.36:

Proposition 5.6.

Let (G,G)=(O2nϵ,Sp2n)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2n^{\prime}}) where ϵ=+\epsilon=+ or -. Let 1:𝒮G(G,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) by ΛρΛ\Lambda\mapsto\rho_{\Lambda} and 1:𝒮G(G,1){\mathcal{L}}^{\prime}_{1}\colon{\mathcal{S}}_{\text{\bf G}^{\prime}}\rightarrow{\mathcal{E}}(\text{\bf G}^{\prime},1) by ΛρΛ\Lambda^{\prime}\mapsto\rho_{\Lambda^{\prime}} be any Lusztig parametrizations for G,G\text{\bf G},\text{\bf G}^{\prime} respectively. Then (ρΛ,ρΛ)(\rho_{\Lambda},\rho_{\Lambda^{\prime}}) or (ρΛt,ρΛ)(\rho_{\Lambda^{\rm t}},\rho_{\Lambda^{\prime}}) occurs in ΘG,G,1ψ\Theta_{\text{\bf G},\text{\bf G}^{\prime},1}^{\psi} if and only if (Λ,Λ)(\Lambda,\Lambda^{\prime}) or (Λt,Λ)(\Lambda^{\rm t},\Lambda^{\prime}) occurs in G,G{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}}.

Remark 5.7.

Note that the parametrization 1{\mathcal{L}}^{\prime}_{1} is unique by Corollary 4.5 but 1{\mathcal{L}}_{1} is not. So we want to enforce more conditions on 1{\mathcal{L}}_{1} so that 1{\mathcal{L}}_{1} is unique and eliminate the ambiguity in the above proposition.

5.3. On the uniqueness of Lusztig parametrization for even orthogonal groups

Now we want to enforce extra conditions on the Lusztig parametrization 1:𝒮O2nϵ(O2nϵ,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}}\rightarrow{\mathcal{E}}({\rm O}^{\epsilon}_{2n},1) to make it be uniquely determined.

  1. (I)

    We require that 1{\mathcal{L}}_{1} by ΛρΛ\Lambda\mapsto\rho_{\Lambda} is compatible with the parabolic induction on unipotent characters, i.e., we require that Ω(ρΛ)={ρΛΛΩ(Λ)}\Omega(\rho_{\Lambda})=\{\,\rho_{\Lambda^{\prime}}\mid\Lambda^{\prime}\in\Omega(\Lambda)\,\} where Ω(ρΛ)\Omega(\rho_{\Lambda}) and Ω(Λ)\Omega(\Lambda) are defined as in Subsection 3.3.

  2. (II)

    We require that

    • for k1k\geq 1, 1(ΛkI)=ζkI{\mathcal{L}}_{1}(\Lambda_{k}^{\rm I})=\zeta_{k}^{\rm I} and 1(ΛkII)=ζkII{\mathcal{L}}_{1}(\Lambda_{k}^{\rm II})=\zeta_{k}^{\rm II}, i.e., ζkI=ρΛkI\zeta_{k}^{\rm I}=\rho_{\Lambda_{k}^{\rm I}} and ζkII=ρΛkII\zeta_{k}^{\rm II}=\rho_{\Lambda_{k}^{\rm II}} where

      (5.8) ΛkI={(2k1,2k2,,1,0),if k is even;(2k1,2k2,,1,0),if k is odd,ΛkII=(ΛkI)t\displaystyle\begin{split}\Lambda_{k}^{\rm I}&=\begin{cases}\binom{2k-1,2k-2,\ldots,1,0}{-},&\text{if $k$ is even};\\ \binom{-}{2k-1,2k-2,\ldots,1,0},&\text{if $k$ is odd},\end{cases}\\ \Lambda_{k}^{\rm II}&=(\Lambda_{k}^{\rm I})^{\rm t}\end{split}

      and ξkI,ξkII\xi_{k}^{\rm I},\xi_{k}^{\rm II} the two cuspidal unipotent characters of O2k2ϵk{\rm O}^{\epsilon_{k}}_{2k^{2}} given in the previous subsection and ϵk=(1)k\epsilon_{k}=(-1)^{k};

    • 1((10))=𝟏O2+{\mathcal{L}}_{1}(\binom{1}{0})={\bf 1}_{{\rm O}^{+}_{2}} and 1((01))=sgnO2+{\mathcal{L}}_{1}(\binom{0}{1})={\rm sgn}_{{\rm O}^{+}_{2}}, i.e., ρ(10)=𝟏O2+\rho_{\binom{1}{0}}={\bf 1}_{{\rm O}^{+}_{2}} and ρ(01)=sgnO2+\rho_{\binom{0}{1}}={\rm sgn}_{{\rm O}^{+}_{2}}.

Note that in addition to the specification of 1{\mathcal{L}}_{1} on cuspidal symbols, due to Remark 3.19 we also need to assign the image of 1{\mathcal{L}}_{1} at (10)\binom{1}{0} or (01)\binom{0}{1}.

By Corollary 4.15, a Lusztig parametrization 1:𝒮O2nϵ(O2nϵ,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}}\rightarrow{\mathcal{E}}({\rm O}^{\epsilon}_{2n},1) satisfying both (I) and (II) clearly exists.

Proposition 5.9.

There is a unique bijective parametrization 𝒮O2nϵ(O2nϵ,1){\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}}\rightarrow{\mathcal{E}}({\rm O}^{\epsilon}_{2n},1) where ϵ=+\epsilon=+ or - satisfying (3.13), and (I), (II) above.

Proof.

The existence of such a bijection 1{\mathcal{L}}_{1} is obvious, so now we consider the uniqueness. Let 1,1:𝒮O2nϵ(O2nϵ,1){\mathcal{L}}_{1},{\mathcal{L}}^{\prime}_{1}\colon{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}}\rightarrow{\mathcal{E}}({\rm O}^{\epsilon}_{2n},1) be two Lusztig parametrizations of unipotent characters for O2nϵ{\rm O}^{\epsilon}_{2n}. Moreover, suppose that 1,1{\mathcal{L}}_{1},{\mathcal{L}}^{\prime}_{1} both satisfy (I) and (II) above. For Λ𝒮O2nϵ\Lambda\in{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}}, we know that 1(Λ)=1(Λ){\mathcal{L}}_{1}(\Lambda)^{\sharp}={\mathcal{L}}_{1}^{\prime}(\Lambda)^{\sharp} by Lemma 3.15, and hence by Corollary 4.14 either

1(Λ)=1(Λ) or 1(Λ)=1(Λ)sgnO2nϵ=1(Λt),{\mathcal{L}}_{1}(\Lambda)={\mathcal{L}}_{1}^{\prime}(\Lambda)\quad\text{ or }\quad{\mathcal{L}}_{1}(\Lambda)={\mathcal{L}}_{1}^{\prime}(\Lambda)\cdot{\rm sgn}_{{\rm O}^{\epsilon}_{2n}}={\mathcal{L}}^{\prime}_{1}(\Lambda^{\rm t}),

i.e., if 1(Λ)=1(Λ){\mathcal{L}}_{1}(\Lambda)={\mathcal{L}}^{\prime}_{1}(\Lambda^{\prime}), then either Λ=Λ\Lambda^{\prime}=\Lambda or Λ=Λt\Lambda^{\prime}=\Lambda^{\rm t}. Now we suppose that 1(Λ)=1(Λ){\mathcal{L}}_{1}(\Lambda)={\mathcal{L}}_{1}^{\prime}(\Lambda^{\prime}) and consider the following three cases:

  1. (1)

    Suppose that Λ\Lambda is degenerate, i.e., Λ=Λt\Lambda=\Lambda^{\rm t}. Then 1(Λ)=1(Λ){\mathcal{L}}_{1}(\Lambda)={\mathcal{L}}_{1}^{\prime}(\Lambda^{\prime}) implies that 1(Λ)=1(Λ){\mathcal{L}}_{1}(\Lambda)={\mathcal{L}}_{1}^{\prime}(\Lambda) immediately.

  2. (2)

    Suppose that def(Λ)0{\rm def}(\Lambda)\neq 0. Suppose that the unipotent character 1(Λ)=1(Λ){\mathcal{L}}_{1}(\Lambda)={\mathcal{L}}^{\prime}_{1}(\Lambda^{\prime}) where Λ=Λ\Lambda^{\prime}=\Lambda or Λt\Lambda^{\rm t} is in the Harish-Chandra series initiated by some unipotent cuspidal character ζ\zeta. Because def(Λ)0{\rm def}(\Lambda)\neq 0, we have ζζsgn\zeta\neq\zeta\cdot{\rm sgn}. By the requirement in (II), we have 1(Λ0)=ζ=1(Λ0){\mathcal{L}}_{1}(\Lambda_{0})=\zeta={\mathcal{L}}^{\prime}_{1}(\Lambda_{0}) for some cuspidal symbol Λ0\Lambda_{0} such that def(Λ0)0{\rm def}(\Lambda_{0})\neq 0. By (I), we must have def(Λ)=def(Λ){\rm def}(\Lambda)={\rm def}(\Lambda^{\prime}), and then we conclude that Λ=Λ\Lambda^{\prime}=\Lambda, i.e., 1(Λ)=1(Λ){\mathcal{L}}_{1}(\Lambda)={\mathcal{L}}^{\prime}_{1}(\Lambda).

  3. (3)

    Suppose that Λ\Lambda is non-degenerate and def(Λ)=0{\rm def}(\Lambda)=0, i.e, Λ𝒮O2n+\Lambda\in{\mathcal{S}}_{{\rm O}^{+}_{2n}} for some nn. Now we are going to prove this case by induction on nn. For n=1n=1, the equality 1(Λ)=1(Λ){\mathcal{L}}_{1}(\Lambda)={\mathcal{L}}^{\prime}_{1}(\Lambda) is enforced by (II) above. Now suppose that n2n\geq 2. Because now ΛtΛ\Lambda^{\rm t}\neq\Lambda, by Lemma 3.18, there exists Λ1𝒮O2(n1)+\Lambda_{1}\in{\mathcal{S}}_{{\rm O}^{+}_{2(n-1)}} such that ΛΩ(Λ1)\Lambda\in\Omega(\Lambda_{1}) and ΛtΩ(Λ1)\Lambda^{\rm t}\not\in\Omega(\Lambda_{1}). By (I) and the induction hypothesis, we have

    1(Λ)Ω(1(Λ1))=Ω(1(Λ1))∌1(Λt).{\mathcal{L}}_{1}(\Lambda)\in\Omega({\mathcal{L}}_{1}(\Lambda_{1}))=\Omega({\mathcal{L}}_{1}^{\prime}(\Lambda_{1}))\not\ni{\mathcal{L}}^{\prime}_{1}(\Lambda^{\rm t}).

    Now 1(Λt)1(Λ){\mathcal{L}}^{\prime}_{1}(\Lambda^{\rm t})\neq{\mathcal{L}}_{1}(\Lambda) implies that 1(Λ)=1(Λ){\mathcal{L}}^{\prime}_{1}(\Lambda)={\mathcal{L}}_{1}(\Lambda).

Hence the proposition is proved. ∎

Corollary 5.10.

Let G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}, and let ΛρΛ\Lambda\mapsto\rho_{\Lambda} be the Lusztig parametrization in Proposition 5.9. Then

  1. (i)

    𝟏O2n=ρ(n,0){\bf 1}_{{\rm O}^{-}_{2n}}=\rho_{\binom{-}{n,0}} and sgnO2n=ρ(n,0){\rm sgn}_{{\rm O}^{-}_{2n}}=\rho_{\binom{n,0}{-}};

  2. (ii)

    𝟏O2n+=ρ(n0){\bf 1}_{{\rm O}^{+}_{2n}}=\rho_{\binom{n}{0}} and sgnO2n+=ρ(0n){\rm sgn}_{{\rm O}^{+}_{2n}}=\rho_{\binom{0}{n}}

Proof.

Let ΛρΛ\Lambda\mapsto\rho_{\Lambda} be the parametrization for O2nϵ{\rm O}^{\epsilon}_{2n} satisfying (3.13) and (I), (II) above. We know that 𝟏O2{\bf 1}_{{\rm O}^{-}_{2}} (resp. sgnO2{\rm sgn}_{{\rm O}^{-}_{2}}) first occurs in the correspondence for the pair (O2,Sp0)({\rm O}^{-}_{2},{\rm Sp}_{0}) (resp. (O2,Sp4)({\rm O}^{-}_{2},{\rm Sp}_{4})). Therefore by the requirement in (II) above, we have 𝟏O2=ζ1I=ρ(1,0){\bf 1}_{{\rm O}^{-}_{2}}=\zeta^{\rm I}_{1}=\rho_{\binom{-}{1,0}} (resp. sgnO2=ζ1II=ρ(1,0){\rm sgn}_{{\rm O}^{-}_{2}}=\zeta^{\rm II}_{1}=\rho_{\binom{1,0}{-}}). Write 𝟏O2n=ρΛ{\bf 1}_{{\rm O}^{-}_{2n}}=\rho_{\Lambda} for some Λ𝒮O2n\Lambda\in{\mathcal{S}}_{{\rm O}^{-}_{2n}}. By Corollary 4.16 we know that Λ\Lambda is either (n,0)\binom{-}{n,0} or (n,0)\binom{n,0}{-}. Because 𝟏O2n{\bf 1}_{{\rm O}^{-}_{2n}} is an irreducible constituent of RO2×GL1n1O2n(ρ(1,0)𝟏)R^{{\rm O}^{-}_{2n}}_{{\rm O}^{-}_{2}\times{\rm GL}_{1}^{n-1}}(\rho_{\binom{-}{1,0}}\otimes{\bf 1}). By (I) above, we must have def(Λ)=def((1,0))=2{\rm def}(\Lambda)={\rm def}(\binom{-}{1,0})=-2, and so we conclude that 𝟏O2n=ρ(n,0){\bf 1}_{{\rm O}^{-}_{2n}}=\rho_{\binom{-}{n,0}} and hence sgnO2n=ρ(n,0){\rm sgn}_{{\rm O}^{-}_{2n}}=\rho_{\binom{n,0}{-}}.

Now we are going to prove case (ii) by induction on nn. By (II) above, we have ρ(10)=𝟏O2+\rho_{\binom{1}{0}}={\bf 1}_{{\rm O}^{+}_{2}} and ρ(01)=sgnO2+\rho_{\binom{0}{1}}={\rm sgn}_{{\rm O}^{+}_{2}}. Now by the induction hypothesis, for n2n\geq 2, we assume that 𝟏O2(n1)+=ρ(n10){\bf 1}_{{\rm O}^{+}_{2(n-1)}}=\rho_{\binom{n-1}{0}} and sgnO2(n1)+=ρ(0n1){\rm sgn}_{{\rm O}^{+}_{2(n-1)}}=\rho_{\binom{0}{n-1}}. Suppose that 𝟏O2n+=ρΛ{\bf 1}_{{\rm O}^{+}_{2n}}=\rho_{\Lambda} for some Λ𝒮O2n+\Lambda\in{\mathcal{S}}_{{\rm O}^{+}_{2n}}. Then we know that either Λ=(n0)\Lambda=\binom{n}{0} or Λ=(0n)\Lambda=\binom{0}{n} by Corollary 4.16. Because 𝟏O2n+Ω(𝟏O2(n1)+){\bf 1}_{{\rm O}^{+}_{2n}}\in\Omega({\bf 1}_{{\rm O}^{+}_{2(n-1)}}), by (II) we see that ΛΩ((n10))\Lambda\in\Omega(\binom{n-1}{0}) and therefore Λ\Lambda must be (n0)\binom{n}{0}, i.e., we conclude that 𝟏O2n+=ρ(n0){\bf 1}_{{\rm O}^{+}_{2n}}=\rho_{\binom{n}{0}} and sgnO2n+=ρ(0n){\rm sgn}_{{\rm O}^{+}_{2n}}=\rho_{\binom{0}{n}}. ∎

Example 5.11.

Keep the notation in Example 4.17. Suppose that ρ1,ρ2(O4,1)\rho_{1},\rho_{2}\in{\mathcal{E}}({\rm O}^{-}_{4},1) are the two irreducible characters of degree q2q^{2} satisfying

RO2×GL1O4(𝟏O2𝟏)=𝟏O4+ρ1,RO2×GL1O4(sgnO2𝟏)=sgnO4+ρ2.R_{{\rm O}^{-}_{2}\times{\rm GL}_{1}}^{{\rm O}^{-}_{4}}({\bf 1}_{{\rm O}^{-}_{2}}\otimes{\bf 1})={\bf 1}_{{\rm O}^{-}_{4}}+\rho_{1},\qquad R_{{\rm O}^{-}_{2}\times{\rm GL}_{1}}^{{\rm O}^{-}_{4}}({\rm sgn}_{{\rm O}^{-}_{2}}\otimes{\bf 1})={\rm sgn}_{{\rm O}^{-}_{4}}+\rho_{2}.

Now (II) implies that 𝟏O2=ρ(1,0){\bf 1}_{{\rm O}^{-}_{2}}=\rho_{\binom{-}{1,0}} and sgnO2=ρ(1,0){\rm sgn}_{{\rm O}^{-}_{2}}=\rho_{\binom{1,0}{-}}. Therefore the parametrization 𝒮O4(O4,1){\mathcal{S}}_{{\rm O}^{-}_{4}}\rightarrow{\mathcal{E}}({\rm O}^{-}_{4},1) satisfying (I), (II) above must be

ρ(2,0)=𝟏O4,ρ(2,0)=sgnO4,ρ(12,1,0)=ρ1,ρ(2,1,01)=ρ2.\rho_{\binom{-}{2,0}}={\bf 1}_{{\rm O}^{-}_{4}},\qquad\rho_{\binom{2,0}{-}}={\rm sgn}_{{\rm O}^{-}_{4}},\qquad\rho_{\binom{1}{2,1,0}}=\rho_{1},\qquad\rho_{\binom{2,1,0}{1}}=\rho_{2}.

The following proposition which justifies our choice of 1{\mathcal{L}}_{1} in Proposition 5.9 is from [Pan19a] theorem 1.8.

Proposition 5.12.

Let (G,G)=(O2nϵ,Sp2n)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{2n^{\prime}},{\rm Sp}_{2n}) where ϵ=+\epsilon=+ or -. Let 1:𝒮G(G,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{\text{\bf G}}\rightarrow{\mathcal{E}}(\text{\bf G},1) and 1:𝒮G(G,1){\mathcal{L}}^{\prime}_{1}\colon{\mathcal{S}}_{\text{\bf G}^{\prime}}\rightarrow{\mathcal{E}}(\text{\bf G}^{\prime},1) be the unique Lusztig parametrizations given in Proposition 5.9 and Proposition 4.2 respectively. Then the diagram

𝒮GG,G𝒮G11(G,1)ΘG,G,1ψ(G,1)\begin{CD}{\mathcal{S}}_{\text{\bf G}}@>{{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}}}>{}>{\mathcal{S}}_{\text{\bf G}^{\prime}}\\ @V{{\mathcal{L}}_{1}}V{}V@V{}V{{\mathcal{L}}^{\prime}_{1}}V\\ {\mathcal{E}}(\text{\bf G},1)@>{\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime},1}}>{}>{\mathcal{E}}(\text{\bf G}^{\prime},1)\\ \end{CD}

commutes, i.e., (ρΛ,ρΛ)(\rho_{\Lambda},\rho_{\Lambda^{\prime}}) occurs in ΘG,G,1ψ\Theta_{\text{\bf G},\text{\bf G}^{\prime},1}^{\psi} if and only if (Λ,Λ)G,G(\Lambda,\Lambda^{\prime})\in{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}}.

When both Λ,Λ\Lambda,\Lambda^{\prime} are cuspidal, the commutativity of the above diagram can be seen by the requirement (II) (cf. Example 5.5). For general Λ,Λ\Lambda,\Lambda^{\prime}, the commutativity follows from the fact that both the correspondence ΘG,Gψ\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi} and the parametrizations 1,1{\mathcal{L}}_{1},{\mathcal{L}}^{\prime}_{1} are compatible with the parabolic induction. Details of the proof can be found in [Pan19a].

Example 5.13.

Let 1:𝒮O2nϵ(O2nϵ,1){\mathcal{L}}_{1}\colon{\mathcal{S}}_{{\rm O}^{\epsilon}_{2n}}\rightarrow{\mathcal{E}}({\rm O}^{\epsilon}_{2n},1) by ΛρΛ\Lambda\mapsto\rho_{\Lambda} be the parametrization in Proposition 5.9. Then by Corollary 4.16 the two Steinberg characters of O2nϵ{\rm O}^{\epsilon}_{2n} are parametrized by the symbols

{(n,n1,,1n1,n2,,0),(n1,n2,,0n,n1,,1),if ϵ=+;(n,n1,,0n1,n2,,1),(n1,n2,,1n,n1,,0),if ϵ=.\begin{cases}\binom{n,n-1,\ldots,1}{n-1,n-2,\ldots,0},\binom{n-1,n-2,\ldots,0}{n,n-1,\ldots,1},&\text{if $\epsilon=+$};\\ \binom{n,n-1,\ldots,0}{n-1,n-2,\ldots,1},\binom{n-1,n-2,\ldots,1}{n,n-1,\ldots,0},&\text{if $\epsilon=-$}.\end{cases}
  1. (1)

    If ϵ=+\epsilon=+, then one of the Steinberg characters of O2n+{\rm O}^{+}_{2n} first occurs in the correspondence ΘO2n+,Sp2(n1),1ψ\Theta^{\psi}_{{\rm O}^{+}_{2n},{\rm Sp}_{2(n-1)},1} and is paired with StSp2(n1){\rm St}_{{\rm Sp}_{2(n-1)}}, and this Steinberg character is parametrized by the symbol (n,n1,,1n1,n2,,0)\binom{n,n-1,\ldots,1}{n-1,n-2,\ldots,0}.

  2. (2)

    If ϵ=\epsilon=-, then one of the Steinberg characters of O2n{\rm O}^{-}_{2n} first occurs in the correspondence ΘO2n,Sp2(n1),1ψ\Theta^{\psi}_{{\rm O}^{-}_{2n},{\rm Sp}_{2(n-1)},1} and is paired with StSp2(n1){\rm St}_{{\rm Sp}_{2(n-1)}}, and this Steinberg character is parametrized by the symbol (n1,n2,,1n,n1,,0)\binom{n-1,n-2,\ldots,1}{n,n-1,\ldots,0}.

6. Lusztig Correspondence and Finite Theta Correspondence

6.1. Lusztig correspondences

Let G be a classical group, and let ss be a semisimple element in the connected component (G)0(G^{*})^{0} of GG^{*}. A rational maximal torus T\text{\bf T}^{*} in G\text{\bf G}^{*} contains ss if and only if it is a rational maximal torus in CG(s)C_{\text{\bf G}^{*}}(s). From [Car85] theorem 7.3.4, it is known that

RT,sG,RT,sGG=RT,1CG(s),RT,1CG(s)CG(s)\langle R^{\text{\bf G}}_{\text{\bf T}^{*},s},R^{\text{\bf G}}_{\text{\bf T}^{\prime*},s}\rangle_{\text{\bf G}}=\langle R^{C_{\text{\bf G}^{*}}(s)}_{\text{\bf T}^{*},1},R^{C_{\text{\bf G}^{*}}(s)}_{\text{\bf T}^{\prime*},1}\rangle_{C_{\text{\bf G}^{*}}(s)}

for any rational maximal tori T,T\text{\bf T}^{*},\text{\bf T}^{\prime*} of G\text{\bf G}^{*} containing ss. Then the mapping

ϵGRT,sGϵCG(s)RT,1CG(s)\epsilon_{\text{\bf G}}R^{\text{\bf G}}_{\text{\bf T}^{*},s}\mapsto\epsilon_{C_{\text{\bf G}^{*}}(s)}R_{\text{\bf T}^{*},1}^{C_{\text{\bf G}^{*}}(s)}

for any T\text{\bf T}^{*} containing ss can be extended uniquely to an isometry from 𝒱(G,s){\mathcal{V}}(\text{\bf G},s)^{\sharp} onto 𝒱(CG,1){\mathcal{V}}(C_{\text{\bf G}^{*}},1)^{\sharp}. Now a Lusztig correspondence 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1), i.e., a bijective mapping satisfying (1.3), can be extended linearly to be an isometry, still denoted by 𝔏s{\mathfrak{L}}_{s}, of inner product spaces

(6.1) 𝔏s:𝒱(G,s)𝒱(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{V}}(\text{\bf G},s)\longrightarrow{\mathcal{V}}(C_{\text{\bf G}^{*}}(s),1)

whose restriction to 𝒱(G,s){\mathcal{V}}(\text{\bf G},s)^{\sharp} is uniquely determined.

Suppose that G=i=1kGk\text{\bf G}=\prod_{i=1}^{k}\text{\bf G}_{k}. Then G=i=1kGi\text{\bf G}^{*}=\prod_{i=1}^{k}\text{\bf G}^{*}_{i} where Gi\text{\bf G}_{i}^{*} is the dual group of Gi\text{\bf G}_{i}. If sGs\in G^{*} semisimple, the we can write s=(s1,,sk)s=(s_{1},\ldots,s_{k}) where each siGis_{i}\in G^{*}_{i} is semisimple, and then CG(s)=i=1kCGi(si)C_{\text{\bf G}^{*}}(s)=\prod_{i=1}^{k}C_{\text{\bf G}^{*}_{i}}(s_{i}). Now a rational maximal torus T\text{\bf T}^{*} containing ss can be written as T=i=1kTi\text{\bf T}^{*}=\prod_{i=1}^{k}\text{\bf T}^{*}_{i} where Ti\text{\bf T}^{*}_{i} is a rational maximal torus in Gi\text{\bf G}^{*}_{i}. Therefore, we have RT,sG=i=1kRTi,siGiR^{\text{\bf G}}_{\text{\bf T}^{*},s}=\bigotimes_{i=1}^{k}R^{\text{\bf G}_{i}}_{\text{\bf T}^{*}_{i},s_{i}}.

Corollary 6.2.

Then a bijection 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) is a Lusztig correspondence if and only if 𝔏s=i=1k𝔏si{\mathfrak{L}}_{s}=\prod_{i=1}^{k}{\mathfrak{L}}_{s_{i}} where each 𝔏si:(Gi,si)(CGi(si),1){\mathfrak{L}}_{s_{i}}\colon{\mathcal{E}}(\text{\bf G}_{i},s_{i})\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}_{i}}(s_{i}),1) is a Lusztig correspondence.

Proof.

This is obvious. ∎

For s(G)0s\in(G^{*})^{0}, we define

(6.3) G(0)=G(0)(s)=λ{λ1,,λn},λ±1G[λ](s);G(1)=G(1)(s)=G[1](s);G(2)=G(2)(s)=G[1](s)\displaystyle\begin{split}\text{\bf G}^{(0)}=\text{\bf G}^{(0)}(s)&=\prod_{\langle\lambda\rangle\subset\{\lambda_{1},\ldots,\lambda_{n}\},\ \lambda\neq\pm 1}\text{\bf G}_{[\lambda]}(s);\\ \text{\bf G}^{(1)}=\text{\bf G}^{(1)}(s)&=\text{\bf G}_{[-1]}(s);\\ \text{\bf G}^{(2)}=\text{\bf G}^{(2)}(s)&=\text{\bf G}_{[1]}(s)\end{split}

where G[λ](s)\text{\bf G}_{[\lambda]}(s) is given in [AMR96] subsection 1.B (see also [Pan19b] subsection 2.2). We know that

CG(s)G(0)×G(1)×G(2),C_{\text{\bf G}^{*}}(s)\simeq\text{\bf G}^{(0)}\times\text{\bf G}^{(1)}\times\text{\bf G}^{(2)},

and G(0)\text{\bf G}^{(0)} is a product of general linear groups or unitary group, and

(6.4) (G(1),G(2))={(Sp2n(1),Sp2n(2)),if G=SO2n+1;(O2n(1)ϵ(1),SO2n(2)+1),if G=Sp2n;(O2n(1)ϵ(1),O2n(2)ϵ(2)),if G=O2nϵ(\text{\bf G}^{(1)},\text{\bf G}^{(2)})=\begin{cases}({\rm Sp}_{2n^{(1)}},{\rm Sp}_{2n^{(2)}}),&\text{if $\text{\bf G}={\rm SO}_{2n+1}$};\\ ({\rm O}^{\epsilon^{(1)}}_{2n^{(1)}},{\rm SO}_{2n^{(2)}+1}),&\text{if $\text{\bf G}={\rm Sp}_{2n}$};\\ ({\rm O}^{\epsilon^{(1)}}_{2n^{(1)}},{\rm O}^{\epsilon^{(2)}}_{2n^{(2)}}),&\text{if $\text{\bf G}={\rm O}^{\epsilon}_{2n}$}\end{cases}

for some non-negative integers n(1),n(2)n^{(1)},n^{(2)} depending on ss, and some ϵ(1),ϵ(2)\epsilon^{(1)},\epsilon^{(2)}. Note that if G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}, then ϵ(1),ϵ(2)\epsilon^{(1)},\epsilon^{(2)} also depend on ss (and ϵ\epsilon), if G=Sp2n\text{\bf G}={\rm Sp}_{2n}, then ϵ(1)\epsilon^{(1)} can be ++ or - for each ss such that n(1)1n^{(1)}\geq 1. The element ss can be written as

(6.5) s=s(0)×s(1)×s(2)s=s^{(0)}\times s^{(1)}\times s^{(2)}

where s(1)s^{(1)} (resp. s(2)s^{(2)}) is the part whose eigenvalues are all equal to 1-1 (resp. 11), and s(0)s^{(0)} is the part whose eigenvalues do not contain 11 or 1-1. In particular, s(j)s^{(j)} is in the center of G(j)\text{\bf G}^{(j)}. Then a Lusztig correspondence

(6.6) 𝔏s:(G,s)(G(0)×G(1)×G(2),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(\text{\bf G}^{(0)}\times\text{\bf G}^{(1)}\times\text{\bf G}^{(2)},1)

can be written as

(6.7) 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)}

where ρ(j)(G(j),1)\rho^{(j)}\in{\mathcal{E}}(\text{\bf G}^{(j)},1) for j=0,1,2j=0,1,2. It is known that ρ\rho is cuspidal if and only if G(0)\text{\bf G}^{(0)} is a product of unitary groups (i.e., no general linear groups) and each ρ(j)\rho^{(j)} is cuspidal.

Now 𝒮CG(s)=𝒮G(0)×𝒮G(1)×𝒮G(2){\mathcal{S}}_{C_{\text{\bf G}^{*}}(s)}^{\sharp}={\mathcal{S}}_{\text{\bf G}^{(0)}}^{\sharp}\times{\mathcal{S}}_{\text{\bf G}^{(1)}}^{\sharp}\times{\mathcal{S}}_{\text{\bf G}^{(2)}}^{\sharp} and

RΣCG(s)=RxG(0)RΣ(1)G(1)RΣ(2)G(2)𝒱(CG(s),1)R_{\Sigma}^{C_{\text{\bf G}^{*}}(s)}=R^{\text{\bf G}^{(0)}}_{x}\otimes R^{\text{\bf G}^{(1)}}_{\Sigma^{(1)}}\otimes R^{\text{\bf G}^{(2)}}_{\Sigma^{(2)}}\in{\mathcal{V}}(C_{\text{\bf G}^{*}}(s),1)^{\sharp}

for Σ=(x,Σ(1),Σ(2))𝒮CG(s)\Sigma=(x,\Sigma^{(1)},\Sigma^{(2)})\in{\mathcal{S}}^{\sharp}_{C_{\text{\bf G}^{*}}(s)}. We define

(6.8) RΣG=𝔏s1(RΣCG(s))𝒱(G,s).R_{\Sigma}^{\text{\bf G}}={\mathfrak{L}}_{s}^{-1}(R_{\Sigma}^{C_{\text{\bf G}^{*}}(s)})\in{\mathcal{V}}(\text{\bf G},s)^{\sharp}.

Because {RΣCG(s)Σ𝒮CG(s)}\{\,R_{\Sigma}^{C_{\text{\bf G}^{*}}(s)}\mid\Sigma\in{\mathcal{S}}^{\sharp}_{C_{\text{\bf G}^{*}}(s)}\,\} is an orthonormal basis for 𝒱(CG(s),1){\mathcal{V}}(C_{\text{\bf G}^{*}}(s),1)^{\sharp} and

𝔏s:𝒱(G,s)𝒱(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{V}}(\text{\bf G},s)\rightarrow{\mathcal{V}}(C_{\text{\bf G}^{*}}(s),1)

is an isometry which maps 𝒱(G,s){\mathcal{V}}(\text{\bf G},s)^{\sharp} onto 𝒱(CG(s),1){\mathcal{V}}(C_{\text{\bf G}^{*}}(s),1)^{\sharp}, we see that {RΣGΣ𝒮CG(s)}\{\,R_{\Sigma}^{\text{\bf G}}\mid\Sigma\in{\mathcal{S}}^{\sharp}_{C_{\text{\bf G}^{*}}(s)}\,\} forms an orthonormal basis for the space 𝒱(G,s){\mathcal{V}}(\text{\bf G},s)^{\sharp}. For ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s), we have

(6.9) ρ=Σ𝒮CG(s)ρ,RΣGGRΣG,𝔏s(ρ)=Σ𝒮CG(s)𝔏s(ρ),RΣCG(s)CG(s)RΣCG(s).\displaystyle\begin{split}\rho^{\sharp}&=\sum_{\Sigma\in{\mathcal{S}}_{C_{\text{\bf G}^{*}}(s)}^{\sharp}}\langle\rho,R_{\Sigma}^{\text{\bf G}}\rangle_{\text{\bf G}}R_{\Sigma}^{\text{\bf G}},\\ {\mathfrak{L}}_{s}(\rho)^{\sharp}&=\sum_{\Sigma\in{\mathcal{S}}_{C_{\text{\bf G}^{*}}(s)}^{\sharp}}\langle{\mathfrak{L}}_{s}(\rho),R_{\Sigma}^{C_{\text{\bf G}^{*}}(s)}\rangle_{C_{\text{\bf G}^{*}}(s)}R_{\Sigma}^{C_{\text{\bf G}^{*}}(s)}.\end{split}

Therefore we have 𝔏s(ρ)=𝔏s(ρ){\mathfrak{L}}_{s}(\rho^{\sharp})={\mathfrak{L}}_{s}(\rho)^{\sharp} for any ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s).

Lemma 6.10.

Let 𝔏s,𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s},{\mathfrak{L}}^{\prime}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) be two Lusztig correspondences, and write 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)}, 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}^{\prime}_{s}(\rho)=\rho^{\prime(0)}\otimes\rho^{\prime(1)}\otimes\rho^{\prime(2)}. Then

ρ(0)=ρ(0),(ρ(1))=(ρ(1)),(ρ(2))=(ρ(2)).\rho^{(0)}=\rho^{\prime(0)},\qquad(\rho^{(1)})^{\sharp}=(\rho^{\prime(1)})^{\sharp},\qquad(\rho^{(2)})^{\sharp}=(\rho^{\prime(2)})^{\sharp}.
Proof.

Because 𝔏s(ρ)=𝔏s(ρ){\mathfrak{L}}_{s}(\rho^{\sharp})={\mathfrak{L}}_{s}(\rho)^{\sharp}, we have

𝔏s(ρ)=(ρ(0))(ρ(1))(ρ(2)),𝔏s(ρ)=(ρ(0))(ρ(1))(ρ(2)).{\mathfrak{L}}_{s}(\rho^{\sharp})=(\rho^{(0)})^{\sharp}\otimes(\rho^{(1)})^{\sharp}\otimes(\rho^{(2)})^{\sharp},\qquad{\mathfrak{L}}^{\prime}_{s}(\rho^{\sharp})=(\rho^{\prime(0)})^{\sharp}\otimes(\rho^{\prime(1)})^{\sharp}\otimes(\rho^{\prime(2)})^{\sharp}.

Because the restrictions of 𝔏s{\mathfrak{L}}_{s} and 𝔏s{\mathfrak{L}}^{\prime}_{s} to 𝒱(G,s){\mathcal{V}}(\text{\bf G},s)^{\sharp} are the same, i.e., 𝔏s(ρ)=𝔏s(ρ){\mathfrak{L}}_{s}(\rho^{\sharp})={\mathfrak{L}}_{s}^{\prime}(\rho^{\sharp}), we have (ρ(0))=(ρ(0))(\rho^{(0)})^{\sharp}=(\rho^{\prime(0)})^{\sharp}, (ρ(1))=(ρ(1))(\rho^{(1)})^{\sharp}=(\rho^{\prime(1)})^{\sharp}, (ρ(2))=(ρ(2))(\rho^{(2)})^{\sharp}=(\rho^{\prime(2)})^{\sharp}. Now G(0)\text{\bf G}^{(0)} is a product of general linear groups or unitary groups, so we have ρ(0)=(ρ(0))=(ρ(0))=ρ(0)\rho^{(0)}=(\rho^{(0)})^{\sharp}=(\rho^{\prime(0)})^{\sharp}=\rho^{\prime(0)}. ∎

6.2. Lusztig correspondence and parabolic induction

Let Gn=SO2n+1\text{\bf G}_{n}={\rm SO}_{2n+1}, Sp2n{\rm Sp}_{2n} or O2nϵ{\rm O}^{\epsilon}_{2n} where ϵ=+\epsilon=+ or 1-1. The group Gn×GLl\text{\bf G}_{n}\times{\rm GL}_{l} is the Levi factor of a parabolic subgroup of Gn+l\text{\bf G}_{n+l}. Let σ\sigma be an irreducible cuspidal character of GLl{\rm GL}_{l}, and so σ(GLl,t)\sigma\in{\mathcal{E}}({\rm GL}_{l},t) for some semisimple element tGLl(q)t\in{\rm GL}_{l}(q). For ρ(Gn,s)\rho\in{\mathcal{E}}(\text{\bf G}_{n},s), an irreducible constituent of RGn×GLlGn+l(ρσ)R^{\text{\bf G}_{n+l}}_{\text{\bf G}_{n}\times{\rm GL}_{l}}(\rho\otimes\sigma) is in (Gn+l,s){\mathcal{E}}(\text{\bf G}_{n+l},s^{\prime}) where s=(s,t)s^{\prime}=(s,t) is regarded as an element in (Gn+l)0(G_{n+l}^{*})^{0}. Then we define a relation Ωt:(Gn,s)(Gn+l,s)\Omega_{t}\colon{\mathcal{E}}(\text{\bf G}_{n},s)\rightarrow{\mathcal{E}}(\text{\bf G}_{n+l},s^{\prime}) by

Ωt(ρ)={ρ(Gn+l,s)ρ,RGn×GLlGn+l(ρσ)Gn+l0}.\Omega_{t}(\rho)=\left\{\,\rho^{\prime}\in{\mathcal{E}}(\text{\bf G}_{n+l},s^{\prime})\mid\left\langle\rho^{\prime},R^{\text{\bf G}_{n+l}}_{\text{\bf G}_{n}\times{\rm GL}_{l}}(\rho\otimes\sigma)\right\rangle_{\!\text{\bf G}_{n+l}}\neq 0\,\right\}.

Because we assume that σ\sigma is cuspidal, one can see that CGn(s)×GL1C_{\text{\bf G}_{n}^{*}}(s)\times{\rm GL}_{1}^{\dagger} is a Levi subgroup of CGn+l(s)C_{\text{\bf G}_{n+l}^{*}}(s^{\prime}) where GL1{\rm GL}_{1}^{\dagger} denotes the restriction to 𝐅q{\mathbf{F}}_{q} of GL1{\rm GL}_{1} defined over a finite extension (depending on tt) of 𝐅q{\mathbf{F}}_{q}. Suppose that ρΩt(ρ)\rho^{\prime}\in\Omega_{t}(\rho), it is clear that ρcΩt(ρc)\rho^{\prime c}\in\Omega_{t}(\rho^{c}) for Gn=Sp2n,O2nϵ\text{\bf G}_{n}={\rm Sp}_{2n},{\rm O}^{\epsilon}_{2n} (cf[Wal04] §4.4), and ρsgnGn+lΩt(ρsgnGn)\rho^{\prime}\cdot{\rm sgn}_{\text{\bf G}_{n+l}}\in\Omega_{t}(\rho\cdot{\rm sgn}_{\text{\bf G}_{n}}) for Gn=O2nϵ\text{\bf G}_{n}={\rm O}^{\epsilon}_{2n}.

We define the relation Ω:(CGn(s),1)(CGn+l(s),1)\Omega\colon{\mathcal{E}}(C_{\text{\bf G}_{n}^{*}}(s),1)\rightarrow{\mathcal{E}}(C_{\text{\bf G}_{n+l}^{*}}(s^{\prime}),1) as in (3.1), i.e.,

Ω(ρ)={ρ(CGn+l(s),1)ρ,RCGn(s)×GL1CGn+l(s)(ρ𝟏)CGn+l(s)0}\Omega(\rho)=\Biggl{\{}\,\rho^{\prime}\in{\mathcal{E}}(C_{\text{\bf G}_{n+l}^{*}}(s^{\prime}),1)\mid\left\langle\rho^{\prime},R^{C_{\text{\bf G}_{n+l}^{*}}(s^{\prime})}_{C_{\text{\bf G}_{n}^{*}}(s)\times{\rm GL}_{1}^{\dagger}}(\rho\otimes{\bf 1})\right\rangle_{\!C_{\text{\bf G}_{n+l}^{*}}(s^{\prime})}\neq 0\,\Biggr{\}}

for ρ(CGn(s),1)\rho\in{\mathcal{E}}(C_{\text{\bf G}_{n}^{*}}(s),1). Then we say that a Lusztig correspondence

𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1)

is compatible with the parabolic induction if the following diagram

(6.11) (Gn,s)Ωt(Gn+l,s)𝔏s𝔏s(CGn(s),1)Ω(CGn+l(s),1)\begin{CD}{\mathcal{E}}(\text{\bf G}_{n},s)@>{\Omega_{t}}>{}>{\mathcal{E}}(\text{\bf G}_{n+l},s^{\prime})\\ @V{{\mathfrak{L}}_{s}}V{}V@V{}V{{\mathfrak{L}}_{s^{\prime}}}V\\ {\mathcal{E}}(C_{\text{\bf G}^{*}_{n}}(s),1)@>{\Omega}>{}>{\mathcal{E}}(C_{\text{\bf G}_{n+l}^{*}}(s^{\prime}),1)\end{CD}

commutes for any ss and s=(s,t)s^{\prime}=(s,t) given as above. Now write

CGn(s)=G(0)(s)×G(1)(s)×G(2)(s),CGn+l(s)=G(0)(s)×G(1)(s)×G(2)(s)C_{\text{\bf G}^{*}_{n}}(s)=\text{\bf G}^{(0)}(s)\times\text{\bf G}^{(1)}(s)\times\text{\bf G}^{(2)}(s),\qquad C_{\text{\bf G}_{n+l}^{*}}(s^{\prime})=\text{\bf G}^{(0)}(s^{\prime})\times\text{\bf G}^{(1)}(s^{\prime})\times\text{\bf G}^{(2)}(s^{\prime})

and 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)} as in (6.7). Then the diagram (6.11) can be described more precisely according to the following three cases:

  1. (1)

    If t=1t=1 and so l=1l=1, then G(0)(s)=G(0)(s)\text{\bf G}^{(0)}(s)=\text{\bf G}^{(0)}(s^{\prime}) and G(1)(s)=G(1)(s)\text{\bf G}^{(1)}(s)=\text{\bf G}^{(1)}(s^{\prime}), and then the relation Ω\Omega is given by

    Ω(ρ(0)ρ(1)ρ(2))=ρ(0)ρ(1)Ω(ρ(2))\Omega(\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)})=\rho^{(0)}\otimes\rho^{(1)}\otimes\Omega(\rho^{(2)})

    where Ω(ρ(2))\Omega(\rho^{(2)}) is defined as in (3.1).

  2. (2)

    If t=1t=-1 and so l=1l=1, then G(0)(s)=G(0)(s)\text{\bf G}^{(0)}(s)=\text{\bf G}^{(0)}(s^{\prime}) and G(2)(s)=G(2)(s)\text{\bf G}^{(2)}(s)=\text{\bf G}^{(2)}(s^{\prime}), and then

    Ω(ρ(0)ρ(1)ρ(2))=ρ(0)Ω(ρ(1))ρ(2)\Omega(\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)})=\rho^{(0)}\otimes\Omega(\rho^{(1)})\otimes\rho^{(2)}

    where Ω(ρ(1))\Omega(\rho^{(1)}) is defined as in (3.1).

  3. (3)

    If t±1t\neq\pm 1, then G(1)(s)=G(1)(s)\text{\bf G}^{(1)}(s)=\text{\bf G}^{(1)}(s^{\prime}) and G(2)(s)=G(2)(s)\text{\bf G}^{(2)}(s)=\text{\bf G}^{(2)}(s^{\prime}), and then

    Ω(ρ(0)ρ(1)ρ(2))=Ω(ρ(0))ρ(1)ρ(2)\Omega(\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)})=\Omega(\rho^{(0)})\otimes\rho^{(1)}\otimes\rho^{(2)}

    where Ω(ρ(0))\Omega(\rho^{(0)}) is defined as in (3.1).

6.3. Modified Lusztig correspondence

For a semisimple element sGs\in G^{*}, we define

(6.12) G()=G(1),G(+)={G(2),if G=SO2n+1 or O2nϵ;(G(2)),if G=Sp2n.\text{\bf G}^{(-)}=\text{\bf G}^{(1)},\qquad\text{\bf G}^{(+)}=\begin{cases}\text{\bf G}^{(2)},&\text{if $\text{\bf G}={\rm SO}_{2n+1}$ or ${\rm O}^{\epsilon}_{2n}$};\\ (\text{\bf G}^{(2)})^{*},&\text{if $\text{\bf G}={\rm Sp}_{2n}$}.\end{cases}

Combining 1{\mathcal{L}}_{1} in Proposition 3.12 (for G(0)×G()×G(+)\text{\bf G}^{(0)}\times\text{\bf G}^{(-)}\times\text{\bf G}^{(+)}) and the inverse of 𝔏s{\mathfrak{L}}_{s} in (6.6), we obtain a bijection

(6.13) s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)(G,s)(x,Λ1,Λ2)ρx,Λ1,Λ2=ρx,Λ1,Λ2G.\displaystyle\begin{split}{\mathcal{L}}_{s}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s)}&\rightarrow{\mathcal{E}}(\text{\bf G},s)\\ (x,\Lambda_{1},\Lambda_{2})&\mapsto\rho_{x,\Lambda_{1},\Lambda_{2}}=\rho^{\text{\bf G}}_{x,\Lambda_{1},\Lambda_{2}}.\end{split}

Note that from Proposition 4.2, Lemma 4.12 and Lemma 6.10, we have

  1. (1)

    (ρx,Λ1,Λ2Sp2n)=(ρx,Λ1,Λ2Sp2n)(\rho^{{\rm Sp}_{2n}}_{x,\Lambda_{1},\Lambda_{2}})^{\sharp}=(\rho^{{\rm Sp}_{2n}}_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}})^{\sharp} if and only if

    • x=xx^{\prime}=x,

    • Λ1=Λ1,Λ1t\Lambda_{1}^{\prime}=\Lambda_{1},\Lambda_{1}^{\rm t},

    • Λ2=Λ2\Lambda^{\prime}_{2}=\Lambda_{2};

  2. (2)

    (ρx,Λ1,Λ2O2nϵ)=(ρx,Λ1,Λ2O2nϵ)(\rho^{{\rm O}^{\epsilon}_{2n}}_{x,\Lambda_{1},\Lambda_{2}})^{\sharp}=(\rho^{{\rm O}^{\epsilon}_{2n}}_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}})^{\sharp} if and only if

    • x=xx^{\prime}=x,

    • Λ1=Λ1,Λ1t\Lambda_{1}^{\prime}=\Lambda_{1},\Lambda_{1}^{\rm t},

    • Λ2=Λ2,Λ2t\Lambda^{\prime}_{2}=\Lambda_{2},\Lambda_{2}^{\rm t}.

Moreover, diagram (6.11) becomes

(6.14) 𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)Ω𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)ss(Gn,s)Ωt(Gn+l,s)\begin{CD}{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s)}@>{\Omega}>{}>{\mathcal{S}}_{\text{\bf G}^{(0)}(s^{\prime})}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s^{\prime})}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s^{\prime})}\\ @V{{\mathcal{L}}_{s}}V{}V@V{}V{{\mathcal{L}}_{s^{\prime}}}V\\ {\mathcal{E}}(\text{\bf G}_{n},s)@>{\Omega_{t}}>{}>{\mathcal{E}}(\text{\bf G}_{n+l},s^{\prime})\end{CD}

where the relation Ω\Omega is given as in Subsection 3.1 or Subsection 3.3.

Remark 6.15.

If ss is a semisimple element in (G)0(G^{*})^{0} such that G(0)(s)\text{\bf G}^{(0)}(s) is trivial, then an irreducible character ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) is called quadratic unipotent. A Lusztig correspondence s:(Λ1,Λ2)ρΛ1,Λ2{\mathcal{L}}_{s}\colon(\Lambda_{1},\Lambda_{2})\mapsto\rho_{\Lambda_{1},\Lambda_{2}} of quadratic unipotent characters for G=Sp2n\text{\bf G}={\rm Sp}_{2n}, SO2n+1{\rm SO}_{2n+1} or O2nϵ{\rm O}^{\epsilon}_{2n} is given in [Wal04] §4.11, §4.8, §4.4 respectively.

6.4. Theta correspondence and modified Lusztig correspondence

First suppose that (G,G)=(Sp2n,SO2n+1)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{2n},{\rm SO}_{2n^{\prime}+1}), and sGs\in G^{*}, sGs^{\prime}\in G^{\prime*} semisimple. Then G()=O2n()ϵ()\text{\bf G}^{(-)}={\rm O}^{\epsilon^{(-)}}_{2n^{(-)}}, G(+)=Sp2n(+)\text{\bf G}^{(+)}={\rm Sp}_{2n^{(+)}}, G()=Sp2n()\text{\bf G}^{\prime(-)}={\rm Sp}_{2n^{\prime(-)}}, and G(+)=Sp2n(+)\text{\bf G}^{\prime(+)}={\rm Sp}_{2n^{\prime(+)}}, for some ϵ()\epsilon^{(-)} and some n()n^{(-)}, n(+)n^{(+)}, n()n^{\prime(-)}, n(+)n^{\prime(+)}. The following proposition is from [Pan19b] Proposition 8.3:

Proposition 6.16.

Let (G,G)=(Sp2n,SO2n+1)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{2n},{\rm SO}_{2n^{\prime}+1}), and sGs\in G^{*}, sGs^{\prime}\in G^{\prime*} semisimple. Let

s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)\displaystyle{\mathcal{L}}_{s}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s)} (G,s)\displaystyle\rightarrow{\mathcal{E}}(\text{\bf G},s)
s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)\displaystyle{\mathcal{L}}_{s^{\prime}}\colon{\mathcal{S}}_{\text{\bf G}^{\prime(0)}(s^{\prime})}\times{\mathcal{S}}_{\text{\bf G}^{\prime(-)}(s^{\prime})}\times{\mathcal{S}}_{\text{\bf G}^{\prime(+)}(s^{\prime})} (G,s)\displaystyle\rightarrow{\mathcal{E}}(\text{\bf G}^{\prime},s^{\prime})

be any modified Lusztig correspondences for G and G\text{\bf G}^{\prime} respectively. Then one of

(ρx,Λ1,Λ2,ρx,Λ1,Λ2),(ρx,Λ1t,Λ2,ρx,Λ1,Λ2)(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}}),\quad(\rho_{x,\Lambda_{1}^{\rm t},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}})

occurs in ΘG,Gψ\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi} if and only if

  • s(0)=s(0)s^{(0)}=-s^{\prime(0)} (up to conjugation) and x=xx=x^{\prime},

  • Λ2=Λ1\Lambda_{2}=\Lambda^{\prime}_{1}, and

  • (Λ1,Λ2)(\Lambda_{1},\Lambda^{\prime}_{2}) or (Λ1t,Λ2)(\Lambda_{1}^{\rm t},\Lambda^{\prime}_{2}) is in G()(s),G(+)(s){\mathcal{B}}_{\text{\bf G}^{(-)}(s),\text{\bf G}^{\prime(+)}(s^{\prime})}.

Remark 6.17.

We shall see in Theorem 7.1 that the modified Lusztig correspondence s{\mathcal{L}}_{s^{\prime}} for SO2n+1{\rm SO}_{2n+1} is unique.

Next suppose that (G,G)=(Sp2n,O2nϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{2n},{\rm O}_{2n^{\prime}}^{\epsilon}) where ϵ=+\epsilon=+ or -, and sGs\in G^{*}, s(G)0s^{\prime}\in(G^{\prime*})^{0} semisimple. Then G()=O2n()ϵ()\text{\bf G}^{(-)}={\rm O}^{\epsilon^{(-)}}_{2n^{(-)}}, and G(+)=Sp2n(+)\text{\bf G}^{(+)}={\rm Sp}_{2n^{(+)}}, G()=O2n()ϵ()\text{\bf G}^{\prime(-)}={\rm O}^{\epsilon^{\prime(-)}}_{2n^{\prime(-)}}, G(+)=O2n(+)ϵ(+)\text{\bf G}^{\prime(+)}={\rm O}^{\epsilon^{\prime(+)}}_{2n^{\prime(+)}}, for some ϵ()\epsilon^{(-)}, ϵ()\epsilon^{\prime(-)}, ϵ(+)\epsilon^{\prime(+)}, and some n()n^{(-)}, n(+)n^{(+)}, n()n^{\prime(-)}, n(+)n^{\prime(+)}. The following proposition is from [Pan19b] proposition 8.1:

Proposition 6.18.

Let (G,G)=(Sp2n,O2nϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{2n},{\rm O}_{2n^{\prime}}^{\epsilon}) where ϵ=+\epsilon=+ or -, and sGs\in G^{*}, s(G)0s^{\prime}\in(G^{\prime*})^{0} semisimple. Let

s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)\displaystyle{\mathcal{L}}_{s}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s)} (G,s)\displaystyle\rightarrow{\mathcal{E}}(\text{\bf G},s)
s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)\displaystyle{\mathcal{L}}_{s^{\prime}}\colon{\mathcal{S}}_{\text{\bf G}^{\prime(0)}(s^{\prime})}\times{\mathcal{S}}_{\text{\bf G}^{\prime(-)}(s^{\prime})}\times{\mathcal{S}}_{\text{\bf G}^{\prime(+)}(s^{\prime})} (G,s)\displaystyle\rightarrow{\mathcal{E}}(\text{\bf G}^{\prime},s^{\prime})

be any modified Lusztig correspondences for G and G\text{\bf G}^{\prime} respectively. Then one of

(ρx,Λ1,Λ2,ρx,Λ1,Λ2),(ρx,Λ1,Λ2,ρx,Λ1t,Λ2),(ρx,Λ1,Λ2,ρx,Λ1,Λ2t),(ρx,Λ1,Λ2,ρx,Λ1t,Λ2t)(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}}),\quad(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime{\rm t}},\Lambda_{2}^{\prime}}),\quad(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime{\rm t}}}),\quad(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime{\rm t}},\Lambda_{2}^{\prime{\rm t}}})

occurs in ΘG,Gψ\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi} if and only if

  • s(0)=s(0)s^{(0)}=s^{\prime(0)} (up to conjugation) and x=xx=x^{\prime},

  • Λ1=Λ1,Λ1t\Lambda_{1}=\Lambda^{\prime}_{1},\Lambda_{1}^{\prime{\rm t}}, and

  • (Λ2,Λ2)(\Lambda_{2},\Lambda^{\prime}_{2}) or (Λ2,Λ2t)(\Lambda_{2},\Lambda_{2}^{\prime{\rm t}}) is in G(+)(s),G(+)(s){\mathcal{B}}_{\text{\bf G}^{(+)}(s),\text{\bf G}^{\prime(+)}(s^{\prime})}.

7. Lusztig Correspondences for SO2n+1{\rm SO}_{2n+1}

7.1. Lusztig correspondence for SO2n+1{\rm SO}_{2n+1}

Let G=SO2n+1\text{\bf G}={\rm SO}_{2n+1}. For a semisimple element sGs\in G^{*}, recall that (cf. (6.6), (6.7)) we have

𝔏s:(G,s)\displaystyle{\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s) (G(0)(s)×G(1)(s)×G(2)(s),1).\displaystyle\rightarrow{\mathcal{E}}(\text{\bf G}^{(0)}(s)\times\text{\bf G}^{(1)}(s)\times\text{\bf G}^{(2)}(s),1).
ρ\displaystyle\rho ρ(0)ρ(1)ρ(2).\displaystyle\mapsto\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)}.

Now we know that G(1)(s)=Sp2n(1)\text{\bf G}^{(1)}(s)={\rm Sp}_{2n^{(1)}} and G(2)(s)=Sp2n(2)\text{\bf G}^{(2)}(s)={\rm Sp}_{2n^{(2)}} for some non-negative integers n(1),n(2)n^{(1)},n^{(2)} depending on ss.

Theorem 7.1.

Let G=SO2n+1\text{\bf G}={\rm SO}_{2n+1} and sGs\in G^{*}. There exists a unique bijection 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) satisfying (1.3), i.e., the Lusztig correspondence is unique.

Proof.

Let G=SO2n+1\text{\bf G}={\rm SO}_{2n+1} and sGs\in G^{*}, and let 𝔏s,𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s},{\mathfrak{L}}^{\prime}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) be two Lusztig correspondences, and write

𝔏s(ρ)=ρ(0)ρ(1)ρ(2),𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)},\qquad{\mathfrak{L}}^{\prime}_{s}(\rho)=\rho^{\prime(0)}\otimes\rho^{\prime(1)}\otimes\rho^{\prime(2)}

as in (6.7). Then by Lemma 6.10, we know that ρ(0)=ρ(0)\rho^{(0)}=\rho^{\prime(0)}, (ρ(1))=(ρ(1))(\rho^{(1)})^{\sharp}=(\rho^{\prime(1)})^{\sharp}, (ρ(2))=(ρ(2))(\rho^{(2)})^{\sharp}=(\rho^{\prime(2)})^{\sharp}. Because now G=SO2n+1\text{\bf G}={\rm SO}_{2n+1}, we know that both G(1)\text{\bf G}^{(1)} and G(2)\text{\bf G}^{(2)} are symplectic groups. Then we have ρ(1)=ρ(1)\rho^{(1)}=\rho^{\prime(1)} and ρ(2)=ρ(2)\rho^{(2)}=\rho^{\prime(2)} by Lemma 4.1, i.e., 𝔏s(ρ)=𝔏s(ρ){\mathfrak{L}}_{s}(\rho)={\mathfrak{L}}^{\prime}_{s}(\rho) for any ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s). ∎

Remark 7.2.

SO2n+1{\rm SO}_{2n+1} is a connected group with connected center, so the above result is considered in [DM90] theorem 7.1. However, no extra condition is other than (1.3) in fact needed to make the Lusztig correspondence 𝔏s{\mathfrak{L}}_{s} unique for this case.

Remark 7.3.

The Lusztig correspondence 𝔏s{\mathfrak{L}}_{s} given in the theorem satisfies the commutativity of the diagram in (6.11). This is a special case of [GM20] theorem 4.7.5.

Corollary 7.4.

Let G=SO2n+1\text{\bf G}={\rm SO}_{2n+1} and sGs\in G^{*}. Then there is a unique modified Lusztig correspondence s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)(G,s){\mathcal{L}}_{s}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s)}\rightarrow{\mathcal{E}}(\text{\bf G},s).

Corollary 7.5.

For ρ,ρ(SO2n+1)\rho,\rho^{\prime}\in{\mathcal{E}}({\rm SO}_{2n+1}), then ρ=ρ\rho^{\prime\sharp}=\rho^{\sharp} if and only if ρ=ρ\rho^{\prime}=\rho.

Proof.

Let G=SO2n+1\text{\bf G}={\rm SO}_{2n+1}, and let ρ,ρ(G)\rho,\rho^{\prime}\in{\mathcal{E}}(\text{\bf G}). It is obvious that ρ=ρ\rho=\rho^{\prime} implies that ρ=ρ\rho^{\sharp}=\rho^{\prime\sharp}. Now we suppose that ρ=ρ\rho^{\sharp}=\rho^{\prime\sharp} and ρ\rho is in (G,s){\mathcal{E}}(\text{\bf G},s) for some sGs\in G^{*}. Because 𝒱(G)=(s)𝒱(G,s){\mathcal{V}}(\text{\bf G})=\bigoplus_{(s)}{\mathcal{V}}(\text{\bf G},s)^{\sharp} and ρ=ρ\rho^{\sharp}=\rho^{\prime\sharp}, we see that ρ\rho^{\prime} is also in (G,s){\mathcal{E}}(\text{\bf G},s). Write 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)} and 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho^{\prime})=\rho^{\prime(0)}\otimes\rho^{\prime(1)}\otimes\rho^{\prime(2)} where 𝔏s{\mathfrak{L}}_{s} is given as in Theorem 7.1. Then we know that

(ρ(0))(ρ(1))(ρ(2))=𝔏s(ρ)=𝔏s(ρ)=(ρ(0))(ρ(1))(ρ(2)),(\rho^{(0)})^{\sharp}\otimes(\rho^{(1)})^{\sharp}\otimes(\rho^{(2)})^{\sharp}={\mathfrak{L}}_{s}(\rho^{\sharp})={\mathfrak{L}}_{s}(\rho^{\prime\sharp})=(\rho^{\prime(0)})^{\sharp}\otimes(\rho^{\prime(1)})^{\sharp}\otimes(\rho^{\prime(2)})^{\sharp},

i.e., (ρ(0))=(ρ(0))(\rho^{(0)})^{\sharp}=(\rho^{\prime(0)})^{\sharp}, (ρ(1))=(ρ(1))(\rho^{(1)})^{\sharp}=(\rho^{\prime(1)})^{\sharp}, (ρ(2))=(ρ(2))(\rho^{(2)})^{\sharp}=(\rho^{\prime(2)})^{\sharp}. As in the proof of Theorem 7.1, we have ρ(0)=ρ(0)\rho^{(0)}=\rho^{\prime(0)}, ρ(1)=ρ(1)\rho^{(1)}=\rho^{\prime(1)}, ρ(2)=ρ(2)\rho^{(2)}=\rho^{\prime(2)}. Because 𝔏s{\mathfrak{L}}_{s} is a bijection, we conclude that ρ=ρ\rho=\rho^{\prime}. ∎

Corollary 7.6.

The bijection 𝔏1:(SO2n+1,1)(Sp2n,1){\mathfrak{L}}_{1}\colon{\mathcal{E}}({\rm SO}_{2n+1},1)\rightarrow{\mathcal{E}}({\rm Sp}_{2n},1) is given by ρΛρΛt\rho_{\Lambda}\mapsto\rho_{\Lambda^{\rm t}} for Λ𝒮SO2n+1\Lambda\in{\mathcal{S}}_{{\rm SO}_{2n+1}}, i.e., the diagram

𝒮SO2n+1𝒮Sp2n11(SO2n+1,1)𝔏1(Sp2n,1)\begin{CD}{\mathcal{S}}_{{\rm SO}_{2n+1}}@>{}>{}>{\mathcal{S}}_{{\rm Sp}_{2n}}\\ @V{{\mathcal{L}}_{1}}V{}V@V{}V{{\mathcal{L}}_{1}}V\\ {\mathcal{E}}({\rm SO}_{2n+1},1)@>{{\mathfrak{L}}_{1}}>{}>{\mathcal{E}}({\rm Sp}_{2n},1)\end{CD}

commutes where the mapping on the top is given by ΛΛt\Lambda\mapsto\Lambda^{\rm t}.

Proof.

Recall that Wn=WSO2n+1=WSp2nW_{n}=W_{{\rm SO}_{2n+1}}=W_{{\rm Sp}_{2n}} and 𝔏1:RTw,1SO2n+1RTw,1Sp2n{\mathfrak{L}}_{1}\colon R_{\text{\bf T}^{*}_{w},1}^{{\rm SO}_{2n+1}}\mapsto R_{\text{\bf T}^{*}_{w},1}^{{\rm Sp}_{2n}} for wWnw\in W_{n}. From (3.5), we see that the isometry

𝔏1:𝒱(SO2n+1,1)𝒱(Sp2n,1){\mathfrak{L}}_{1}\colon{\mathcal{V}}({\rm SO}_{2n+1},1)\rightarrow{\mathcal{V}}({\rm Sp}_{2n},1)

maps RΣSO2n+1RΣtSp2nR_{\Sigma}^{{\rm SO}_{2n+1}}\mapsto R_{\Sigma^{\rm t}}^{{\rm Sp}_{2n}} for Σ𝒮SO2n+1\Sigma\in{\mathcal{S}}_{{\rm SO}_{2n+1}}^{\sharp}. Then we see that 𝔏1(ρΛ)=(ρΛt){\mathfrak{L}}_{1}(\rho_{\Lambda})^{\sharp}=(\rho_{\Lambda^{\rm t}})^{\sharp} for any Λ𝒮SO2n+1\Lambda\in{\mathcal{S}}_{{\rm SO}_{2n+1}}. By Proposition 7.1, we conclude that 𝔏1(ρΛ)=ρΛt{\mathfrak{L}}_{1}(\rho_{\Lambda})=\rho_{\Lambda^{\rm t}} and hence the lemma is proved. ∎

Lemma 7.7.

Let G=SO2n+1\text{\bf G}={\rm SO}_{2n+1}, and let s{\mathcal{L}}_{s} be the Lusztig correspondence given in Corollary 7.4. Then

(7.8) ρx,Λ1,Λ2χG=ρx,Λ2,Λ1\rho_{x,\Lambda_{1},\Lambda_{2}}\chi_{\text{\bf G}}=\rho_{x,\Lambda_{2},\Lambda_{1}}

where χG\chi_{\text{\bf G}} denotes the spinor character of G.

Proof.

It is known that χGRT,sG=RT,sG\chi_{\text{\bf G}}R^{\text{\bf G}}_{\text{\bf T}^{*},s}=R^{\text{\bf G}}_{\text{\bf T}^{*},-s} for each pair (T,s)(\text{\bf T}^{*},s), and G(0)(s)=G(0)(s)\text{\bf G}^{(0)}(-s)=\text{\bf G}^{(0)}(s), G()(s)=G(+)(s)\text{\bf G}^{(-)}(-s)=\text{\bf G}^{(+)}(s) and G(+)(s)=G()(s)\text{\bf G}^{(+)}(-s)=\text{\bf G}^{(-)}(s). Then the mapping RT,sGχGRT,sGR^{\text{\bf G}}_{\text{\bf T}^{*},s}\mapsto\chi_{\text{\bf G}}R^{\text{\bf G}}_{\text{\bf T}^{*},s} induces an isometry 𝒱(G,s)𝒱(G,s){\mathcal{V}}(\text{\bf G},s)^{\sharp}\rightarrow{\mathcal{V}}(\text{\bf G},-s)^{\sharp} such that Rx,Σ1,Σ2GRx,Σ2,Σ1GR^{\text{\bf G}}_{x,\Sigma_{1},\Sigma_{2}}\mapsto R^{\text{\bf G}}_{x,\Sigma_{2},\Sigma_{1}} where (x,Σ1,Σ2)𝒮G(s)(x,\Sigma_{1},\Sigma_{2})\in{\mathcal{S}}_{\text{\bf G}^{*}(s)}^{\sharp} (cf. (6.8)). This means that (ρx,Λ1,Λ2χG)=(ρx,Λ2,Λ1)(\rho_{x,\Lambda_{1},\Lambda_{2}}\chi_{\text{\bf G}})^{\sharp}=(\rho_{x,\Lambda_{2},\Lambda_{1}})^{\sharp} for any x𝒮G(0)(s)x\in{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}, Λ1𝒮G()(s)\Lambda_{1}\in{\mathcal{S}}_{\text{\bf G}^{(-)}(s)} and Λ2𝒮G(+)(s)\Lambda_{2}\in{\mathcal{S}}_{\text{\bf G}^{(+)}(s)}. Then we conclude that ρx,Λ1,Λ2χG=ρx,Λ2,Λ1\rho_{x,\Lambda_{1},\Lambda_{2}}\chi_{\text{\bf G}}=\rho_{x,\Lambda_{2},\Lambda_{1}} by Corollary 7.5. ∎

Remark 7.9.

For the case that G(0)(s)\text{\bf G}^{(0)}(s) is trivial, (7.8) is also given in [Wal04] proposition 4.8.

Example 7.10.

Let G=SO3\text{\bf G}={\rm SO}_{3}. Then the unique modified Lusztig correspondence

s:𝒮G(0)×𝒮G()×𝒮G(+)\displaystyle{\mathcal{L}}_{s}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}}\times{\mathcal{S}}_{\text{\bf G}^{(-)}}\times{\mathcal{S}}_{\text{\bf G}^{(+)}} (G,s)\displaystyle\rightarrow{\mathcal{E}}(\text{\bf G},s)
(x,Λ1,Λ2)\displaystyle(x,\Lambda_{1},\Lambda_{2}) ρx,Λ1,Λ2\displaystyle\mapsto\rho_{x,\Lambda_{1},\Lambda_{2}}

are given in the following table:

G(0)G^{(0)} G()G^{(-)} G(+)G^{(+)} (G,s){\mathcal{E}}(\text{\bf G},s) ρx,Λ1,Λ2\rho_{x,\Lambda_{1},\Lambda_{2}} number cuspidality
Sp2(q){\rm Sp}_{2}(q) 𝟏SO3{\bf 1}_{{\rm SO}_{3}} ρ,,(1)\rho_{-,-,\binom{1}{-}}
StSO3{\rm St}_{{\rm SO}_{3}} ρ,,(1,01)\rho_{-,-,\binom{1,0}{1}}
Sp2(q){\rm Sp}_{2}(q) χSO3\chi_{{\rm SO}_{3}} ρ,(1),\rho_{-,\binom{1}{-},-}
StSO3χSO3{\rm St}_{{\rm SO}_{3}}\chi_{{\rm SO}_{3}} ρ,(1,01),\rho_{-,\binom{1,0}{1},-}
GL1(q){\rm GL}_{1}(q) ρ[1],,\rho_{[1],-,-} q32\frac{q-3}{2}
U1(q){\rm U}_{1}(q) ρ[1¯],,\rho_{[\bar{1}],-,-} q12\frac{q-1}{2} \checkmark

8. Lusztig Correspondence for O2nϵ{\rm O}^{\epsilon}_{2n}

8.1. Lusztig correspondence for O2nϵ{\rm O}^{\epsilon}_{2n}

Let G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n} where ϵ=+\epsilon=+ or -. For a semisimple element s(G)0s\in(G^{*})^{0}, recall that (cf. (6.6), (6.7)) we have

𝔏s:(G,s)\displaystyle{\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s) (G(0)(s)×G(1)(s)×G(2)(s),1).\displaystyle\rightarrow{\mathcal{E}}(\text{\bf G}^{(0)}(s)\times\text{\bf G}^{(1)}(s)\times\text{\bf G}^{(2)}(s),1).
ρ\displaystyle\rho ρ(0)ρ(1)ρ(2).\displaystyle\mapsto\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)}.

Now we know that G(1)(s)=O2n(1)ϵ(1)\text{\bf G}^{(1)}(s)={\rm O}^{\epsilon^{(1)}}_{2n^{(1)}} and G(2)(s)=O2n(2)ϵ(2)\text{\bf G}^{(2)}(s)={\rm O}^{\epsilon^{(2)}}_{2n^{(2)}} for some non-negative integers n(1),n(2)n^{(1)},n^{(2)} and some ϵ(1),ϵ(2)\epsilon^{(1)},\epsilon^{(2)} depending on ss such that ϵ(1)ϵ(2)=ϵ\epsilon^{(1)}\epsilon^{(2)}=\epsilon.

Lemma 8.1.

Let G=O2nϵ\text{\bf G}={\rm O}_{2n}^{\epsilon} where ϵ=+\epsilon=+ or -, and let s(G)0s\in(G^{*})^{0}. Let 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) be a Lusztig correspondence and write 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)}. Moreover, let 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}^{\prime}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) be a bijective mapping and write 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}^{\prime}_{s}(\rho)=\rho^{\prime(0)}\otimes\rho^{\prime(1)}\otimes\rho^{\prime(2)}. Then 𝔏s{\mathfrak{L}}^{\prime}_{s} is a Lusztig correspondence if and only if

  • ρ(0)=ρ(0)\rho^{\prime(0)}=\rho^{(0)};

  • ρ(1)=ρ(1),ρ(1)sgn\rho^{\prime(1)}=\rho^{(1)},\rho^{(1)}\cdot{\rm sgn};

  • ρ(2)=ρ(2),ρ(2)sgn\rho^{\prime(2)}=\rho^{(2)},\rho^{(2)}\cdot{\rm sgn}.

Proof.

First suppose that 𝔏s{\mathfrak{L}}^{\prime}_{s} is a Lusztig correspondence. By Lemma 6.10, we know that 𝔏s(ρ)=𝔏s(ρ){\mathfrak{L}}_{s}(\rho)^{\sharp}={\mathfrak{L}}^{\prime}_{s}(\rho)^{\sharp}, i.e., ρ(0)=ρ(0)\rho^{(0)}=\rho^{\prime(0)}, (ρ(1))=(ρ(1))(\rho^{(1)})^{\sharp}=(\rho^{\prime(1)})^{\sharp}, (ρ(2))=(ρ(2))(\rho^{(2)})^{\sharp}=(\rho^{\prime(2)})^{\sharp}. Now G(0)\text{\bf G}^{(0)} is a product of general linear groups or unitary groups; G(1)\text{\bf G}^{(1)} and G(2)\text{\bf G}^{(2)} are even orthogonal groups. Then by Corollary 4.14, we have ρ(0)=ρ(0)\rho^{\prime(0)}=\rho^{(0)}, and ρ(i)=ρ(i)\rho^{\prime(i)}=\rho^{(i)} or ρ(i)=ρ(i)sgn\rho^{\prime(i)}=\rho^{(i)}\cdot{\rm sgn} for i=1,2i=1,2.

Next suppose that ρ(0)=ρ(0)\rho^{\prime(0)}=\rho^{(0)}, and ρ(i)=ρ(i)\rho^{\prime(i)}=\rho^{(i)} or ρ(i)=ρ(i)sgn\rho^{\prime(i)}=\rho^{(i)}\cdot{\rm sgn} for i=1,2i=1,2. Then we have (ρ(1))=(ρ(1))(\rho^{(1)})^{\sharp}=(\rho^{\prime(1)})^{\sharp}, (ρ(2))=(ρ(2))(\rho^{(2)})^{\sharp}=(\rho^{\prime(2)})^{\sharp}, i.e., 𝔏s(ρ)=𝔏s(ρ){\mathfrak{L}}_{s}(\rho)^{\sharp}={\mathfrak{L}}^{\prime}_{s}(\rho)^{\sharp} for any ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s). This means that 𝔏s{\mathfrak{L}}^{\prime}_{s} also satisfies (1.3), i.e., 𝔏s{\mathfrak{L}}^{\prime}_{s} is also a Lusztig correspondence. ∎

Recall that for ρ(G)\rho\in{\mathcal{E}}(\text{\bf G}) the character ρc\rho^{c} is defined in Subsection 5.1.

Lemma 8.2.

Let G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}, s(G)0s\in(G^{*})^{0}, and let 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) be a Lusztig correspondence. Suppose that ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) and write 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)}. Then we have ρc(G,s)\rho^{c}\in{\mathcal{E}}(\text{\bf G},s) and

𝔏s(ρc)=ρ(0)(ρ(1)sgn)ρ(2).{\mathfrak{L}}_{s}(\rho^{c})=\rho^{(0)}\otimes(\rho^{(1)}\cdot{\rm sgn})\otimes\rho^{(2)}.
Proof.

When G(0)\text{\bf G}^{(0)} is trivial, i.e., when ρ\rho is quadratic unipotent, the result is proved in [Wal04] §4.4. The same argument still works here. ∎

Corollary 8.3.

Let G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}, s(G)0s\in(G^{*})^{0}. Suppose that ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) and ρ=ρx,Λ1,Λ2\rho=\rho_{x,\Lambda_{1},\Lambda_{2}} under a modified Lusztig correspondence s{\mathcal{L}}_{s}. Then ρc=ρx,Λ1t,Λ2\rho^{c}=\rho_{x,\Lambda_{1}^{\rm t},\Lambda_{2}}.

Proof.

This follows from Lemma 8.2 and Corollary 4.13 immediately. ∎

Corollary 8.4.

For ρ,ρ(O2nϵ)\rho,\rho^{\prime}\in{\mathcal{E}}({\rm O}^{\epsilon}_{2n}), then ρ=ρ\rho^{\prime\sharp}=\rho^{\sharp} if and only if ρ=ρ,ρc,ρsgn,ρcsgn\rho^{\prime}=\rho,\rho^{c},\rho\cdot{\rm sgn},\rho^{c}\cdot{\rm sgn}.

Proof.

Let G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}, and let ρ,ρ(G)\rho,\rho^{\prime}\in{\mathcal{E}}(\text{\bf G}). By Lemma 8.2, Lemma 6.10 and (4.11), we have (ρc)=ρ(\rho^{c})^{\sharp}=\rho^{\sharp}. Moreover, because of (3.4), we have RT,sO2nϵsgn=RT,sO2nϵR^{{\rm O}^{\epsilon}_{2n}}_{\text{\bf T}^{*},s}\cdot{\rm sgn}=R^{{\rm O}^{\epsilon}_{2n}}_{\text{\bf T}^{*},s} and then (ρsgn)=ρ(\rho\cdot{\rm sgn})^{\sharp}=\rho^{\sharp}. Therefore, if ρ=ρ\rho^{\prime}=\rho, ρc\rho^{c}, ρsgn\rho\cdot{\rm sgn}, or ρcsgn\rho^{c}\cdot{\rm sgn}, we have ρ=ρ\rho^{\prime\sharp}=\rho^{\sharp}.

Next we suppose that ρ=ρ\rho^{\sharp}=\rho^{\prime\sharp} and ρ\rho is in (G,s){\mathcal{E}}(\text{\bf G},s) for some s(G)0s\in(G^{*})^{0}. As in proof of Corollary 7.5, we also have ρ(G,s)\rho^{\prime}\in{\mathcal{E}}(\text{\bf G},s). Write 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)} and 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho^{\prime})=\rho^{\prime(0)}\otimes\rho^{\prime(1)}\otimes\rho^{\prime(2)}. By (6.9), we have

(ρ(0))(ρ(1))(ρ(2))=𝔏s(ρ)=𝔏s(ρ)=(ρ(0))(ρ(1))(ρ(2)),(\rho^{(0)})^{\sharp}\otimes(\rho^{(1)})^{\sharp}\otimes(\rho^{(2)})^{\sharp}={\mathfrak{L}}_{s}(\rho^{\sharp})={\mathfrak{L}}_{s}(\rho^{\prime\sharp})=(\rho^{\prime(0)})^{\sharp}\otimes(\rho^{\prime(1)})^{\sharp}\otimes(\rho^{\prime(2)})^{\sharp},

i.e., ρ(0)=ρ(0)\rho^{\prime(0)}=\rho^{(0)}, ρ(1)=ρ(1),ρ(1)sgn\rho^{\prime(1)}=\rho^{(1)},\rho^{(1)}\cdot{\rm sgn}, and ρ(2)=ρ(2),ρ(2)sgn\rho^{\prime(2)}=\rho^{(2)},\rho^{(2)}\cdot{\rm sgn}. Now two sets {ρ,ρc,ρsgn,ρcsgn}\{\rho,\rho^{c},\rho\cdot{\rm sgn},\rho^{c}\cdot{\rm sgn}\} and

{ρ(0)ρ(1)ρ(2),ρ(0)(ρ(1)sgn)ρ(2),ρ(0)ρ(1)(ρ(2)sgn),ρ(0)(ρ(1)sgn)(ρ(2)sgn)}\left\{\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)},\rho^{(0)}\otimes(\rho^{(1)}\cdot{\rm sgn})\otimes\rho^{(2)},\right.\\ \left.\rho^{(0)}\otimes\rho^{(1)}\otimes(\rho^{(2)}\cdot{\rm sgn}),\rho^{(0)}\otimes(\rho^{(1)}\cdot{\rm sgn})\otimes(\rho^{(2)}\cdot{\rm sgn})\right\}

have the same cardinality. We see that if ρ=ρ\rho^{\prime\sharp}=\rho^{\sharp}, then ρ\rho^{\prime} must be one of ρ\rho, ρc\rho^{c}, ρsgn\rho\cdot{\rm sgn}, or ρcsgn\rho^{c}\cdot{\rm sgn}. ∎

8.2. Basic characters of O2nϵ{\rm O}^{\epsilon}_{2n}

Let G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}. For a semisimple element s(G)0s\in(G^{*})^{0}, let ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) and write 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)} for some Lusztig correspondence 𝔏s{\mathfrak{L}}_{s}. Assume that both G(1)(s),G(2)(s)\text{\bf G}^{(1)}(s),\text{\bf G}^{(2)}(s) are not trivial, by Lemma 8.1 and Corollary 8.4 we know that any Lusztig correspondence gives a bijection between {ρ,ρc,ρsgn,ρcsgn}\{\rho,\rho^{c},\rho\cdot{\rm sgn},\rho^{c}\cdot{\rm sgn}\} and

{ρ(0)ρ(1)ρ(2),ρ(0)(ρ(1)sgn)ρ(2),ρ(0)ρ(1)(ρ(2)sgn),ρ(0)(ρ(1)sgn)(ρ(2)sgn)}.\left\{\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)},\rho^{(0)}\otimes(\rho^{(1)}\cdot{\rm sgn})\otimes\rho^{(2)},\right.\\ \left.\rho^{(0)}\otimes\rho^{(1)}\otimes(\rho^{(2)}\cdot{\rm sgn}),\rho^{(0)}\otimes(\rho^{(1)}\cdot{\rm sgn})\otimes(\rho^{(2)}\cdot{\rm sgn})\right\}.

Now we consider the situation where

  • G(0)(s)\text{\bf G}^{(0)}(s) is a product of unitary groups, and ρ(0)\rho^{(0)} is cuspidal; and

  • each of ρ(1),ρ(2)\rho^{(1)},\rho^{(2)} is either cuspidal (i.e., is ζkI,ζkII\zeta_{k}^{\rm I},\zeta_{k}^{\rm II} for some kk), or is 𝟏O2+,sgnO2+{\bf 1}_{{\rm O}^{+}_{2}},{\rm sgn}_{{\rm O}^{+}_{2}}.

An irreducible character ρ\rho satisfies the above conditions is call basic. Note that the class of basic characters is slightly larger than the class of cuspidal characters.

Now we denote the set {ρ,ρc,ρsgn,ρcsgn}\{\rho,\rho^{c},\rho\cdot{\rm sgn},\rho^{c}\cdot{\rm sgn}\} by {ρ1,ρ2,ρ3,ρ4}\{\rho_{1},\rho_{2},\rho_{3},\rho_{4}\}. From Proposition 6.18 and the result in Subsection 5.2, we know that exactly two elements (says ρ1,ρ2\rho_{1},\rho_{2}) in {ρ1,ρ2,ρ3,ρ4}\{\rho_{1},\rho_{2},\rho_{3},\rho_{4}\} first occur in the correspondence for the pair (G,G)=(O2nϵ,Sp2(nk))(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n-k^{\prime})}) where

(8.5) k={k,if ρ(2)=ζkI,ζkII;1,if ρ(2)=𝟏O2+,sgnO2+.k^{\prime}=\begin{cases}k,&\text{if $\rho^{(2)}=\zeta_{k}^{\rm I},\zeta_{k}^{\rm II}$};\\ 1,&\text{if $\rho^{(2)}={\bf 1}_{{\rm O}^{+}_{2}},{\rm sgn}_{{\rm O}^{+}_{2}}$}.\end{cases}

Then we know that {ρ3,ρ4}={ρ1sgn,ρ2sgn}\{\rho_{3},\rho_{4}\}=\{\rho_{1}\cdot{\rm sgn},\rho_{2}\cdot{\rm sgn}\} and ρ2=ρ1c\rho_{2}=\rho_{1}^{c}.

We know that ρiχG(G,s)\rho_{i}\chi_{\text{\bf G}}\in{\mathcal{E}}(\text{\bf G},-s) for =1,2,3,4=1,2,3,4 where χG\chi_{\text{\bf G}} denotes the spinor character (cf. Lemma 7.7), and any Lusztig correspondence

𝔏s:(G,s)(CG(s),1)=(G(0)(s)×G(2)(s)×G(1)(s),1){\mathfrak{L}}_{-s}\colon{\mathcal{E}}(\text{\bf G},-s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(-s),1)={\mathcal{E}}(\text{\bf G}^{(0)}(s)\times\text{\bf G}^{(2)}(s)\times\text{\bf G}^{(1)}(s),1)

gives a bijection between {ρ1χG,ρ2χG,ρ3χG,ρ4χG}\{\rho_{1}\chi_{\text{\bf G}},\rho_{2}\chi_{\text{\bf G}},\rho_{3}\chi_{\text{\bf G}},\rho_{4}\chi_{\text{\bf G}}\} and

{ρ(0)ρ(2)ρ(1),ρ(0)(ρ(2)sgn)ρ(1),ρ(0)ρ(2)(ρ(1)sgn),ρ(0)(ρ(2)sgn)(ρ(1)sgn)}.\left\{\rho^{(0)}\otimes\rho^{(2)}\otimes\rho^{(1)},\rho^{(0)}\otimes(\rho^{(2)}\cdot{\rm sgn})\otimes\rho^{(1)},\right.\\ \left.\rho^{(0)}\otimes\rho^{(2)}\otimes(\rho^{(1)}\cdot{\rm sgn}),\rho^{(0)}\otimes(\rho^{(2)}\cdot{\rm sgn})\otimes(\rho^{(1)}\cdot{\rm sgn})\right\}.

Again, we know that there are exactly two elements in {ρ1χG,ρ2χG,ρ3χG,ρ4χG}\{\rho_{1}\chi_{\text{\bf G}},\rho_{2}\chi_{\text{\bf G}},\rho_{3}\chi_{\text{\bf G}},\rho_{4}\chi_{\text{\bf G}}\} first occur in the correspondence for the pair (O2nϵ,Sp2(nh))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n-h^{\prime})}) where

(8.6) h={h,if ρ(1)=ζhI,ζhII;1,if ρ(1)=𝟏O2+,sgnO2+.h^{\prime}=\begin{cases}h,&\text{if $\rho^{(1)}=\zeta_{h}^{\rm I},\zeta_{h}^{\rm II}$};\\ 1,&\text{if $\rho^{(1)}={\bf 1}_{{\rm O}^{+}_{2}},{\rm sgn}_{{\rm O}^{+}_{2}}$}.\end{cases}
Lemma 8.7.

Keep the above settings. There exists a unique character ρ\rho in {ρ1,ρ2,ρ3,ρ4}\{\rho_{1},\rho_{2},\rho_{3},\rho_{4}\} above such that

  • ρ\rho first occurs in the correspondence for (O2nϵ,Sp2(nk))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n-k^{\prime})}), and

  • ρχG\rho\chi_{\text{\bf G}} first occurs in the correspondence for (O2nϵ,Sp2(nh))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n-h^{\prime})})

where k,hk^{\prime},h^{\prime} are given as in (8.5) and (8.6).

Proof.

We know that there exists ρ,ρ′′\rho^{\prime},\rho^{\prime\prime} in {ρ1,ρ2,ρ3,ρ4}\{\rho_{1},\rho_{2},\rho_{3},\rho_{4}\} such that

  • ρ,ρc\rho^{\prime},\rho^{\prime c} first occurs in the correspondence for (O2nϵ,Sp2(nk))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n-k^{\prime})}), and

  • ρ′′χG,(ρ′′χG)c\rho^{\prime\prime}\chi_{\text{\bf G}},(\rho^{\prime\prime}\chi_{\text{\bf G}})^{c} first occurs in the correspondence for (O2nϵ,Sp2(nh))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n-h^{\prime})}).

Moreover, we have

{ρ1,ρ2,ρ3,ρ4}\displaystyle\{\rho_{1},\rho_{2},\rho_{3},\rho_{4}\} ={ρ,ρc,ρsgn,ρcsgn},\displaystyle=\{\rho^{\prime},\rho^{\prime c},\rho^{\prime}\cdot{\rm sgn},\rho^{\prime c}\cdot{\rm sgn}\},
{ρ1χG,ρ2χG,ρ3χG,ρ4χG}\displaystyle\{\rho_{1}\chi_{\text{\bf G}},\rho_{2}\chi_{\text{\bf G}},\rho_{3}\chi_{\text{\bf G}},\rho_{4}\chi_{\text{\bf G}}\} ={ρ′′χG,(ρ′′χG)c,ρ′′χGsgn,(ρ′′χG)csgn}.\displaystyle=\{\rho^{\prime\prime}\chi_{\text{\bf G}},(\rho^{\prime\prime}\chi_{\text{\bf G}})^{c},\rho^{\prime\prime}\chi_{\text{\bf G}}\cdot{\rm sgn},(\rho^{\prime\prime}\chi_{\text{\bf G}})^{c}\cdot{\rm sgn}\}.

By [Wal04] (1) in §4.3, we know that (ρ′′χG)c=ρ′′cχGsgn(\rho^{\prime\prime}\chi_{\text{\bf G}})^{c}=\rho^{\prime\prime c}\chi_{\text{\bf G}}\cdot{\rm sgn}, and so the intersection

{ρ,ρc}{ρ′′,ρ′′csgn}\{\rho^{\prime},\rho^{\prime c}\}\cap\{\rho^{\prime\prime},\rho^{\prime\prime c}\cdot{\rm sgn}\}

clearly contains exactly one element. ∎

Remark 8.8.

Let ρ\rho be the character given in Lemma 8.7. Then

  • ρc\rho^{c} first occurs in the correspondence for (O2nϵ,Sp2(nk))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n-k^{\prime})}),

  • ρcχG\rho^{c}\chi_{\text{\bf G}} first occurs in the correspondence for (O2nϵ,Sp2(n+h))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n+h^{\prime})}),

  • ρcsgn\rho^{c}\cdot{\rm sgn} first occurs in the correspondence for (O2nϵ,Sp2(n+k))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n+k^{\prime})}),

  • (ρcsgn)χG(\rho^{c}\cdot{\rm sgn})\chi_{\text{\bf G}} first occurs in the correspondence for (O2nϵ,Sp2(nh))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n-h^{\prime})}),

  • ρsgn\rho\cdot{\rm sgn} first occurs in the correspondence for (O2nϵ,Sp2(n+k))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n+k^{\prime})}),

  • (ρsgn)χG(\rho\cdot{\rm sgn})\chi_{\text{\bf G}} first occurs in the correspondence for (O2nϵ,Sp2(n+h))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n+h^{\prime})})

where k,hk^{\prime},h^{\prime} are given in (8.5) and (8.6) respectively.

Remark 8.9.

If G(1)(s)\text{\bf G}^{(1)}(s) or G(2)(s)\text{\bf G}^{(2)}(s) is trivial, the situation is easier as follows.

  1. (1)

    If G(1)(s)\text{\bf G}^{(1)}(s) is trivial and G(2)(s)\text{\bf G}^{(2)}(s) is not, then ρ=ρc\rho=\rho^{c}, and ρ,ρsgn\rho,\rho\cdot{\rm sgn} are the only two irreducible characters whose uniform projection is equal to ρ\rho^{\sharp}. And it is clear that exactly one of them first occurs in the correspondence for the pair (O2nϵ,Sp2(nk))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n-k^{\prime})}).

  2. (2)

    If G(2)(s)\text{\bf G}^{(2)}(s) is trivial and G(1)(s)\text{\bf G}^{(1)}(s) is not, then ρc=ρsgn\rho^{c}=\rho\cdot{\rm sgn}, and ρ,ρc\rho,\rho^{c} are the only two irreducible characters whose uniform projection is equal to ρ\rho^{\sharp}. Moreover, there is a unique element ρ1\rho_{1} in {ρ,ρc}\{\rho,\rho^{c}\} such that ρ1χG\rho_{1}\chi_{\text{\bf G}} first occurs in the correspondence for the pair (O2nϵ,Sp2(nh))({\rm O}^{\epsilon}_{2n},{\rm Sp}_{2(n-h^{\prime})}).

  3. (3)

    If both G(1)(s),G(2)(s)\text{\bf G}^{(1)}(s),\text{\bf G}^{(2)}(s) are trivial, then ρ=ρc=ρsgn\rho=\rho^{c}=\rho\cdot{\rm sgn}, and so ρ\rho is uniquely determined by its uniform projection.

8.3. A uniqueness choice of s{\mathcal{L}}_{s}

To make a modified Lusztig correspondence

s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)(G,s){\mathcal{L}}_{s}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s)}\rightarrow{\mathcal{E}}(\text{\bf G},s)

uniquely determined for G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}, we follow the same idea used in Subsection 5.3 and consider the following requirements:

  1. (I)

    s{\mathcal{L}}_{s} is compatible with the parabolic induction as in (6.14).

  2. (II)

    Suppose ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) is the unique basic character given in Lemma 8.7 (or in Remark 8.9), then s{\mathcal{L}}_{s} is required that

    (8.10) ρ=ρx,Λ1,Λ2,ρc=ρx,Λ1t,Λ2,ρcsgn=ρx,Λ1,Λ2t,ρsgn=ρx,Λ1t,Λ2t\rho=\rho_{x,\Lambda_{1},\Lambda_{2}},\quad\rho^{c}=\rho_{x,\Lambda_{1}^{\rm t},\Lambda_{2}},\quad\rho^{c}\cdot{\rm sgn}=\rho_{x,\Lambda_{1},\Lambda_{2}^{\rm t}},\quad\rho\cdot{\rm sgn}=\rho_{x,\Lambda_{1}^{\rm t},\Lambda_{2}^{\rm t}}

    where

    • x𝒮G(0)(s)x\in{\mathcal{S}}_{\text{\bf G}^{(0)}(s)} is determined by ρ(0)\rho^{(0)} (cf. Subsection 3.1),

    • Λ1𝒮G()(s)\Lambda_{1}\in{\mathcal{S}}_{\text{\bf G}^{(-)}(s)} is given by

      Λ1={ΛhI,if ρ(1)=ζhI,ζhII;(10),if ρ(1)=𝟏O2+,sgnO2+,\Lambda_{1}=\begin{cases}\Lambda_{h}^{\rm I},&\text{if $\rho^{(1)}=\zeta_{h}^{\rm I},\zeta_{h}^{\rm II}$};\\ \binom{1}{0},&\text{if $\rho^{(1)}={\bf 1}_{{\rm O}^{+}_{2}},{\rm sgn}_{{\rm O}^{+}_{2}}$},\end{cases}
    • Λ2𝒮G(+)(s)\Lambda_{2}\in{\mathcal{S}}_{\text{\bf G}^{(+)}(s)} is given by

      Λ2={ΛkI,if ρ(2)=ζkI,ζkII;(10),if ρ(2)=𝟏O2+,sgnO2+.\Lambda_{2}=\begin{cases}\Lambda_{k}^{\rm I},&\text{if $\rho^{(2)}=\zeta_{k}^{\rm I},\zeta_{k}^{\rm II}$};\\ \binom{1}{0},&\text{if $\rho^{(2)}={\bf 1}_{{\rm O}^{+}_{2}},{\rm sgn}_{{\rm O}^{+}_{2}}$}.\end{cases}
Example 8.11.

Let G=O2\text{\bf G}={\rm O}^{-}_{2}. By (8.10), we have the following parametrization of irreducible characters in various Lusztig series of O2{\rm O}^{-}_{2}:

G(0)G^{(0)} G()G^{(-)} G(+)G^{(+)} ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) ρx,Λ1,Λ2\rho_{x,\Lambda_{1},\Lambda_{2}} number cuspidality
O2(q){\rm O}^{-}_{2}(q) 𝟏O2{\bf 1}_{{\rm O}^{-}_{2}} ρ,,(1,0)\rho_{-,-,\binom{-}{1,0}} \checkmark
sgnO2{\rm sgn}_{{\rm O}^{-}_{2}} ρ,,(1,0)\rho_{-,-,\binom{1,0}{-}} \checkmark
O2(q){\rm O}^{-}_{2}(q) χO2\chi_{{\rm O}^{-}_{2}} ρ,(1,0),\rho_{-,\binom{-}{1,0},-} \checkmark
χO2sgnO2\chi_{{\rm O}^{-}_{2}}\cdot{\rm sgn}_{{\rm O}^{-}_{2}} ρ,(1,0),\rho_{-,\binom{1,0}{-},-} \checkmark
U1(q){\rm U}_{1}(q) χ(k)\chi^{(k)} ρ[1¯],,\rho_{[\bar{1}],-,-} q12\frac{q-1}{2} \checkmark

Here each χ(k)\chi^{(k)} is an irreducible character of degree 22.

Theorem 8.12.

Let G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n} where ϵ=+\epsilon=+ or -, and let s(G)0s\in(G^{*})^{0} be semisimple. There exists a unique bijection 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) satisfying (1.3) and (I), (II) above.

Proof.

For s(G)0s\in(G^{*})^{0}, let 𝔏s,𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s},{\mathfrak{L}}^{\prime}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) be two Lusztig correspondences satisfying (I) and (II) above. Let

s,s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)(G,s){\mathcal{L}}_{s},{\mathcal{L}}^{\prime}_{s}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s)}\rightarrow{\mathcal{E}}(\text{\bf G},s)

be the corresponding modified Lusztig correspondences. Suppose that s(x,Λ1,Λ2)=s(x,Λ1,Λ2){\mathcal{L}}_{s}(x,\Lambda_{1},\Lambda_{2})={\mathcal{L}}^{\prime}_{s}(x^{\prime},\Lambda^{\prime}_{1},\Lambda^{\prime}_{2}) for some x,x𝒮G(0)(s)x,x^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}, Λ1,Λ1𝒮G()(s)\Lambda_{1},\Lambda_{1}^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}, Λ2,Λ2𝒮G(+)(s)\Lambda_{2},\Lambda_{2}^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{(+)}(s)}. Then by Lemma 8.1 we know that x=xx=x^{\prime}, Λ1=Λ1,Λ1t\Lambda_{1}=\Lambda^{\prime}_{1},\Lambda_{1}^{\prime{\rm t}}, and Λ2=Λ2,Λ2t\Lambda_{2}=\Lambda^{\prime}_{2},\Lambda_{2}^{\prime{\rm t}}. So we need to show that Λ1=Λ1\Lambda_{1}=\Lambda_{1}^{\prime} and Λ2=Λ2\Lambda_{2}=\Lambda_{2}^{\prime}.

For Λ1\Lambda_{1}, we consider the following two situations:

  1. (1)

    Suppose that Λ1\Lambda_{1} is degenerate, i.e., Λ1=Λ1t\Lambda_{1}=\Lambda_{1}^{\rm t}. This implies that Λ1=Λ1\Lambda_{1}=\Lambda^{\prime}_{1} immediately.

  2. (2)

    Next we consider the case that Λ1\Lambda_{1} is non-degenerate. Suppose that ρ\rho is an irreducible constituent of the parabolic induced character RO2n0ϵ×𝐋O2nϵ(ζσ)R^{{\rm O}^{\epsilon}_{2n}}_{{\rm O}^{\epsilon}_{2n_{0}}\times{\mathbf{L}}}(\zeta\otimes\sigma) where ζ\zeta is a cuspidal character of O2n0ϵ(q){\rm O}^{\epsilon}_{2n_{0}}(q) for some n0nn_{0}\leq n, 𝐋{\mathbf{L}} is a product of general linear groups, and σ\sigma is a cuspidal character of 𝐋{\mathbf{L}}. Suppose that ζ(O2n0ϵ,s0)\zeta\in{\mathcal{E}}({\rm O}^{\epsilon}_{2n_{0}},s_{0}) and write

    ζ=s0(x0,Λ0,1,Λ0,2)=s0(x0,Λ0,1,Λ0,2)\zeta={\mathcal{L}}_{s_{0}}(x_{0},\Lambda_{0,1},\Lambda_{0,2})={\mathcal{L}}^{\prime}_{s_{0}}(x^{\prime}_{0},\Lambda^{\prime}_{0,1},\Lambda^{\prime}_{0,2})

    for some x0,x0𝒮G(0)(s0)x_{0},x^{\prime}_{0}\in{\mathcal{S}}_{\text{\bf G}^{(0)}(s_{0})}, Λ0,1,Λ0,1𝒮G()(s0)\Lambda_{0,1},\Lambda_{0,1}^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{(-)}(s_{0})} and Λ0,2,Λ0,2𝒮G(+)(s0)\Lambda_{0,2},\Lambda_{0,2}^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{(+)}(s_{0})}. By condition (II) above, we know that x0=x0x_{0}=x^{\prime}_{0}, Λ0,1=Λ0,1\Lambda_{0,1}=\Lambda^{\prime}_{0,1}, and Λ0,2=Λ0,2\Lambda_{0,2}=\Lambda^{\prime}_{0,2}.

    1. (a)

      Suppose that def(Λ1)0{\rm def}(\Lambda_{1})\neq 0. By condition (I), we have

      def(Λ1)=def(Λ0,1)=def(Λ0,1)=def(Λ1)def(Λ1t).{\rm def}(\Lambda_{1})={\rm def}(\Lambda_{0,1})={\rm def}(\Lambda^{\prime}_{0,1})={\rm def}(\Lambda^{\prime}_{1})\neq{\rm def}(\Lambda_{1}^{\prime{\rm t}}).

      This means that Λ1=Λ1\Lambda_{1}=\Lambda^{\prime}_{1}.

    2. (b)

      Suppose that Λ1\Lambda_{1} is non-degenerate and def(Λ1)=0{\rm def}(\Lambda_{1})=0, i.e., Λ1,Λ1𝒮O2n()+\Lambda_{1},\Lambda_{1}^{\prime}\in{\mathcal{S}}_{{\rm O}^{+}_{2n^{(-)}}} for some n()n^{(-)}. Note that for this case, Λ0,1=Λ0,1=()\Lambda_{0,1}=\Lambda_{0,1}^{\prime}=\binom{-}{-}. Now we are going to prove this case by induction on n()n^{(-)}. For n()=1n^{(-)}=1, the equality Λ1=Λ1\Lambda_{1}=\Lambda^{\prime}_{1} is enforced by (II) above. Next suppose that n()2n^{(-)}\geq 2. Because now Λ1tΛ1\Lambda_{1}^{\rm t}\neq\Lambda_{1}, by Lemma 3.18, there exists Λ1,1𝒮O2(n()1)+\Lambda_{1,1}\in{\mathcal{S}}_{{\rm O}^{+}_{2(n^{(-)}-1)}} such that Λ1Ω(Λ1,1)\Lambda_{1}\in\Omega(\Lambda_{1,1}) and Λ1tΩ(Λ1,1)\Lambda_{1}^{\rm t}\not\in\Omega(\Lambda_{1,1}). By the induction hypothesis and condition (I) above, we have

      s(x,Λ1,Λ2)Ω(s1(x,Λ1,1,Λ2))=Ω(s1(x,Λ1,1,Λ2))∌s(x,Λ1t,Λ2).{\mathcal{L}}_{s}(x,\Lambda_{1},\Lambda_{2})\in\Omega({\mathcal{L}}_{s_{1}}(x,\Lambda_{1,1},\Lambda_{2}))=\Omega({\mathcal{L}}_{s_{1}}^{\prime}(x,\Lambda_{1,1},\Lambda_{2}))\not\ni{\mathcal{L}}^{\prime}_{s}(x,\Lambda_{1}^{\rm t},\Lambda_{2}).

      Now s(x,Λ1t,Λ2)s(x,Λ1,Λ2){\mathcal{L}}^{\prime}_{s}(x,\Lambda_{1}^{\rm t},\Lambda_{2})\neq{\mathcal{L}}_{s}(x,\Lambda_{1},\Lambda_{2}) implies that Λ1=Λ1\Lambda_{1}=\Lambda^{\prime}_{1}.

By the same argument we can also show that Λ2=Λ2\Lambda_{2}=\Lambda^{\prime}_{2}. And then we conclude that s{\mathcal{L}}_{s} (and hence 𝔏s{\mathfrak{L}}_{s}) is uniquely determined by (1.3) and (I),(II). ∎

Corollary 8.13.

Let G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}, and let s{\mathcal{L}}_{s} be the modified Lusztig correspondence given in Theorem 8.12. Then ρx,Λ1,Λ2sgn=ρx,Λ1t,Λ2t\rho_{x,\Lambda_{1},\Lambda_{2}}\cdot{\rm sgn}=\rho_{x,\Lambda_{1}^{\rm t},\Lambda_{2}^{\rm t}}.

Proof.

From (8.10) we see that the assertion is true if ρ\rho is basic, i.e., if

  • G(0)\text{\bf G}^{(0)} is a product of unitary groups, and xx is cuspidal; and

  • each of Λ1,Λ2\Lambda_{1},\Lambda_{2} is either cuspidal, or is (10),(01)\binom{1}{0},\binom{0}{1}.

In general, suppose that ρΩt(ρ)\rho^{\prime}\in\Omega_{t}(\rho) for some tt corresponding a cuspidal character of a general linear group (cf. Subsection 6.2). Then we have ρsgnΩt(ρsgn)\rho^{\prime}\cdot{\rm sgn}\in\Omega_{t}(\rho\cdot{\rm sgn}). Then the corollary can be proved by induction on the rank of G via the similar argument in the proof of Theorem 8.12. ∎

Corollary 8.14.

Let G=O2nϵ\text{\bf G}={\rm O}^{\epsilon}_{2n}, and let s{\mathcal{L}}_{s} be the modified Lusztig correspondence given in Theorem 8.12. Then ρx,Λ1,Λ2χG=ρx,Λ2,Λ1\rho_{x,\Lambda_{1},\Lambda_{2}}\chi_{\text{\bf G}}=\rho_{x,\Lambda_{2},\Lambda_{1}} where χG\chi_{\text{\bf G}} denotes the spinor character.

Proof.

Suppose that ρx,Λ1,Λ2(G,s)\rho_{x,\Lambda_{1},\Lambda_{2}}\in{\mathcal{E}}(\text{\bf G},s). By the same argument in the proof of Lemma 7.7, we know that ρx,Λ1,Λ2χG(G,s)\rho_{x,\Lambda_{1},\Lambda_{2}}\chi_{\text{\bf G}}\in{\mathcal{E}}(\text{\bf G},-s) and (ρx,Λ1,Λ2χG)=(ρx,Λ2,Λ1)(\rho_{x,\Lambda_{1},\Lambda_{2}}\chi_{\text{\bf G}})^{\sharp}=(\rho_{x,\Lambda_{2},\Lambda_{1}})^{\sharp}. From Lemma 8.7, Remark 8.8 and (8.10), we see that the assertion is true if ρ\rho is basic. Then the remaining proof is similar to that of Corollary 8.13. ∎

9. Lusztig Correspondences for Sp2n{\rm Sp}_{2n}

9.1. Lusztig correspondence for Sp2n{\rm Sp}_{2n}

Let G=Sp2n\text{\bf G}={\rm Sp}_{2n}. For a semisimple element sG=SO2n+1(q)s\in G^{*}={\rm SO}_{2n+1}(q), recall that (cf. (6.6), (6.7)) we have

𝔏s:(G,s)\displaystyle{\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s) (G(0)(s)×G(1)(s)×G(2)(s),1).\displaystyle\rightarrow{\mathcal{E}}(\text{\bf G}^{(0)}(s)\times\text{\bf G}^{(1)}(s)\times\text{\bf G}^{(2)}(s),1).
ρ\displaystyle\rho ρ(0)ρ(1)ρ(2).\displaystyle\mapsto\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)}.

Now we know that G(1)(s)=O2n(1)ϵ(1)\text{\bf G}^{(1)}(s)={\rm O}^{\epsilon^{(1)}}_{2n^{(1)}} and G(2)(s)=SO2n(2)+1\text{\bf G}^{(2)}(s)={\rm SO}_{2n^{(2)}+1} for some ϵ(1)=+\epsilon^{(1)}=+ or -, and some non-negative integers n(1),n(2)n^{(1)},n^{(2)} depending on ss.

Lemma 9.1.

Let G=Sp2n\text{\bf G}={\rm Sp}_{2n} and sGs\in G^{*}. Let 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) be a Lusztig correspondence and write 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)}. Moreover, let 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}^{\prime}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) be a bijective mapping and write 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}^{\prime}_{s}(\rho)=\rho^{\prime(0)}\otimes\rho^{\prime(1)}\otimes\rho^{\prime(2)}. Then 𝔏s{\mathfrak{L}}^{\prime}_{s} is a Lusztig correspondence if and only if

  • ρ(0)=ρ(0)\rho^{\prime(0)}=\rho^{(0)};

  • ρ(1)=ρ(1),ρ(1)sgn\rho^{\prime(1)}=\rho^{(1)},\rho^{(1)}\cdot{\rm sgn};

  • ρ(2)=ρ(2)\rho^{\prime(2)}=\rho^{(2)}.

Proof.

The proof is similar to that of Lemma 8.1. ∎

Lemma 9.2.

Let G=Sp2n\text{\bf G}={\rm Sp}_{2n}, sGs\in G^{*}, and let 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) be a Lusztig correspondence. Suppose that ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) and write 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)}. Then we have ρc(G,s)\rho^{c}\in{\mathcal{E}}(\text{\bf G},s) and

𝔏s(ρc)=ρ(0)(ρ(1)sgn)ρ(2).{\mathfrak{L}}_{s}(\rho^{c})=\rho^{(0)}\otimes(\rho^{(1)}\cdot{\rm sgn})\otimes\rho^{(2)}.
Proof.

When G(0)\text{\bf G}^{(0)} is trivial, i.e., when ρ\rho is quadratic unipotent, the result is proved in [Wal04] §4.11. The same argument still works here. ∎

Corollary 9.3.

Let G=Sp2n\text{\bf G}={\rm Sp}_{2n}, sGs\in G^{*}. Suppose that ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) and ρ=ρx,Λ1,Λ2\rho=\rho_{x,\Lambda_{1},\Lambda_{2}} under a modified Lusztig correspondence s{\mathcal{L}}_{s}. Then ρc=ρx,Λ1t,Λ2\rho^{c}=\rho_{x,\Lambda_{1}^{\rm t},\Lambda_{2}}.

Proof.

The proof is similar to that of Corollary 8.3. ∎

Corollary 9.4.

For ρ,ρ(Sp2n)\rho,\rho^{\prime}\in{\mathcal{E}}({\rm Sp}_{2n}), then ρ=ρ\rho^{\prime\sharp}=\rho^{\sharp} if and only if ρ=ρ,ρc\rho^{\prime}=\rho,\rho^{c}.

Proof.

Let G=Sp2n\text{\bf G}={\rm Sp}_{2n}, and let ρ,ρ(G)\rho,\rho^{\prime}\in{\mathcal{E}}(\text{\bf G}). By Lemma 9.2, ρ=ρ,ρc\rho^{\prime}=\rho,\rho^{c} implies that ρ=ρ\rho^{\prime\sharp}=\rho^{\sharp}. Then remaining proof is similar to that of Corollary 8.4. ∎

Example 9.5.

Let G=Sp4\text{\bf G}={\rm Sp}_{4}. Now we follow the notations in [Sri68].

  1. (1)

    Let s1SO5(q)s_{1}\in{\rm SO}_{5}(q) such that CSO5(s1)O4+C_{{\rm SO}_{5}}(s_{1})\simeq{\rm O}^{+}_{4}. Then we can check that

    (Sp4,s1)={θ1,θ2,Φ9,θ3,θ4},(O4+,1)={ρ(20),ρ(02),ρ(11),ρ(2,11,0),ρ(1,02,1)}{\mathcal{E}}({\rm Sp}_{4},s_{1})=\{\theta_{1},\theta_{2},\Phi_{9},\theta_{3},\theta_{4}\},\qquad{\mathcal{E}}({\rm O}^{+}_{4},1)=\bigl{\{}\rho_{\binom{2}{0}},\rho_{\binom{0}{2}},\rho_{\binom{1}{1}},\rho_{\binom{2,1}{1,0}},\rho_{\binom{1,0}{2,1}}\bigr{\}}

    where ρ(20)=𝟏O4+\rho_{\binom{2}{0}}={\bf 1}_{{\rm O}^{+}_{4}}, ρ(02)=sgnO4+\rho_{\binom{0}{2}}={\rm sgn}_{{\rm O}^{+}_{4}}. Now 𝔏s1:(Sp4,s1)(O4+,1){\mathfrak{L}}_{s_{1}}\colon{\mathcal{E}}({\rm Sp}_{4},s_{1})\rightarrow{\mathcal{E}}({\rm O}^{+}_{4},1) is a bijection such that

    {θ3,θ4}\displaystyle\{\theta_{3},\theta_{4}\} {ρ(20),ρ(02)},\displaystyle\rightarrow\bigl{\{}\rho_{\binom{2}{0}},\rho_{\binom{0}{2}}\bigr{\}},
    {Φ9}\displaystyle\{\Phi_{9}\} {ρ(11)},\displaystyle\rightarrow\bigl{\{}\rho_{\binom{1}{1}}\bigr{\}},
    {θ1,θ2}\displaystyle\{\theta_{1},\theta_{2}\} {ρ(2,11,0),ρ(1,02,1)}.\displaystyle\rightarrow\bigl{\{}\rho_{\binom{2,1}{1,0}},\rho_{\binom{1,0}{2,1}}\bigr{\}}.
  2. (2)

    Let s2SO5(q)s_{2}\in{\rm SO}_{5}(q) such that CSO5(s2)O4C_{{\rm SO}_{5}}(s_{2})\simeq{\rm O}^{-}_{4}. Then we can check that

    (Sp4,s2)={θ5,θ6,θ7,θ8},(O4,1)={ρ(2,0),ρ(2,0),ρ(12,1,0),ρ(2,1,01)}{\mathcal{E}}({\rm Sp}_{4},s_{2})=\{\theta_{5},\theta_{6},\theta_{7},\theta_{8}\},\qquad{\mathcal{E}}({\rm O}^{-}_{4},1)=\bigl{\{}\rho_{\binom{-}{2,0}},\rho_{\binom{2,0}{-}},\rho_{\binom{1}{2,1,0}},\rho_{\binom{2,1,0}{1}}\bigr{\}}

    where ρ(2,0)=𝟏O4\rho_{\binom{-}{2,0}}={\bf 1}_{{\rm O}^{-}_{4}}, ρ(2,0)=sgnO4\rho_{\binom{2,0}{-}}={\rm sgn}_{{\rm O}^{-}_{4}}. Now 𝔏s2:(Sp4,s2)(O4,1){\mathfrak{L}}_{s_{2}}\colon{\mathcal{E}}({\rm Sp}_{4},s_{2})\rightarrow{\mathcal{E}}({\rm O}^{-}_{4},1) is a bijection such that

    {θ7,θ8}\displaystyle\{\theta_{7},\theta_{8}\} {ρ(2,0),ρ(2,0)},\displaystyle\rightarrow\bigl{\{}\rho_{\binom{-}{2,0}},\rho_{\binom{2,0}{-}}\bigr{\}},
    {θ5,θ6}\displaystyle\{\theta_{5},\theta_{6}\} {ρ(12,1,0),ρ(2,1,01)}.\displaystyle\rightarrow\bigl{\{}\rho_{\binom{1}{2,1,0}},\rho_{\binom{2,1,0}{1}}\bigr{\}}.

9.2. Basic characters of Sp2n{\rm Sp}_{2n}

Let G=Sp2n\text{\bf G}={\rm Sp}_{2n}. For a semisimple element ss in GG^{*}, let ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) and write 𝔏s(ρ)=ρ(0)ρ(1)ρ(2){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)} for a Lusztig correspondence 𝔏s{\mathfrak{L}}_{s}. Assume that G(1)(s)\text{\bf G}^{(1)}(s) is not trivial, we know that any Lusztig correspondence gives a bijection between {ρ,ρc}\{\rho,\rho^{c}\} and

{ρ(0)ρ(1)ρ(2),ρ(0)(ρ(1)sgn)ρ(2)}.\left\{\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)},\rho^{(0)}\otimes(\rho^{(1)}\cdot{\rm sgn})\otimes\rho^{(2)}\right\}.

Now we consider the situation where

  • G(0)\text{\bf G}^{(0)} is a product of unitary groups, and ρ(0)\rho^{(0)} is cuspidal; and

  • ρ(1)\rho^{(1)} is either cuspidal (i.e., is ζkI,ζkII\zeta_{k}^{\rm I},\zeta_{k}^{\rm II} for some kk), or is 𝟏O2+,sgnO2+{\bf 1}_{{\rm O}^{+}_{2}},{\rm sgn}_{{\rm O}^{+}_{2}}; and

  • ρ(2)\rho^{(2)} is cuspidal.

An irreducible character ρ\rho satisfies the above conditions is call basic. From Proposition 6.18 and the result in Subsection 5.2, we know that exactly one element in {ρ,ρc}\{\rho,\rho^{c}\} first occurs in the correspondence for the pair (Sp2n,SO2(nk)+1)({\rm Sp}_{2n},{\rm SO}_{2(n-k^{\prime})+1}) where

k={k,if ρ(1)=ζkI,ζkII;1,if ρ(1)=𝟏O2+,sgnO2+.k^{\prime}=\begin{cases}k,&\text{if $\rho^{(1)}=\zeta_{k}^{\rm I},\zeta_{k}^{\rm II}$};\\ 1,&\text{if $\rho^{(1)}={\bf 1}_{{\rm O}^{+}_{2}},{\rm sgn}_{{\rm O}^{+}_{2}}$}.\end{cases}

9.3. The choice of s{\mathcal{L}}_{s} with respect to (Sp2n,SO2n+1)({\rm Sp}_{2n},{\rm SO}_{2n^{\prime}+1})

To make a modified Lusztig correspondence

s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)(G,s){\mathcal{L}}_{s}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s)}\rightarrow{\mathcal{E}}(\text{\bf G},s)

for Sp2n{\rm Sp}_{2n} with respect to the dual pair (Sp2n,SO2n+1)({\rm Sp}_{2n},{\rm SO}_{2n^{\prime}+1}) we consider the following requirements:

  1. (I)

    We require that s{\mathcal{L}}_{s} is compatible with the parabolic induction as in (6.14).

  2. (II)

    Suppose ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) is the unique irreducible basic character which first occurs in the correspondence for (Sp2n,SO2(nk)+1)({\rm Sp}_{2n},{\rm SO}_{2(n-k^{\prime})+1}). Then s{\mathcal{L}}_{s} is required that

    (9.6) ρ=ρx,Λ1,Λ2,ρc=ρx,Λ1t,Λ2\rho=\rho_{x,\Lambda_{1},\Lambda_{2}},\quad\rho^{c}=\rho_{x,\Lambda_{1}^{\rm t},\Lambda_{2}}

    where

    • x𝒮G(0)(s)x\in{\mathcal{S}}_{\text{\bf G}^{(0)}(s)} is uniquely determined by ρ(0)\rho^{(0)} (cf. Subsection 3.1),

    • Λ1𝒮G()(s)\Lambda_{1}\in{\mathcal{S}}_{\text{\bf G}^{(-)}(s)} given by

      Λ1={ΛkI,if ρ(1)=ζkI,ζkII;(10),if ρ(1)=𝟏O2+,sgnO2+,\Lambda_{1}=\begin{cases}\Lambda_{k}^{\rm I},&\text{if $\rho^{(1)}=\zeta_{k}^{\rm I},\zeta_{k}^{\rm II}$};\\ \binom{1}{0},&\text{if $\rho^{(1)}={\bf 1}_{{\rm O}^{+}_{2}},{\rm sgn}_{{\rm O}^{+}_{2}}$},\end{cases}
    • Λ2𝒮G(+)(s)\Lambda_{2}\in{\mathcal{S}}_{\text{\bf G}^{(+)}(s)} is uniquely determined by ρ(2)\rho^{(2)}, i.e., ρ(2)=ρΛ2t\rho^{(2)}=\rho_{\Lambda_{2}^{\rm t}} (cf. (6.12) and Corollary 7.6).

Theorem 9.7.

Let G=Sp2n\text{\bf G}={\rm Sp}_{2n} and sGs\in G^{*} semisimple. There exists a unique bijection 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) satisfying (1.3) and (I), (II) above.

Proof.

The proof is similar to that of Proposition 5.9. For sGs\in G^{*}, let 𝔏s,𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s},{\mathfrak{L}}^{\prime}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) be two Lusztig correspondence satisfying (I) and (II) above. Let

s,s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)(G,s){\mathcal{L}}_{s},{\mathcal{L}}^{\prime}_{s}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s)}\rightarrow{\mathcal{E}}(\text{\bf G},s)

be the corresponding modified Lusztig correspondences. Let ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) and suppose that

ρ=s(x,Λ1,Λ2)=s(x,Λ1,Λ2)\rho={\mathcal{L}}_{s}(x,\Lambda_{1},\Lambda_{2})={\mathcal{L}}^{\prime}_{s}(x^{\prime},\Lambda^{\prime}_{1},\Lambda^{\prime}_{2})

for some x,x𝒮G(0)(s)x,x^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}, Λ1,Λ1𝒮G()(s)\Lambda_{1},\Lambda_{1}^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}, Λ2,Λ2𝒮G(+)(s)\Lambda_{2},\Lambda_{2}^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{(+)}(s)}. Then by Lemma 9.1 we know that x=xx=x^{\prime}, Λ2=Λ2\Lambda_{2}=\Lambda^{\prime}_{2}, and Λ1=Λ1,Λ1t\Lambda_{1}=\Lambda^{\prime}_{1},\Lambda_{1}^{\prime{\rm t}}. So our goal is to prove that Λ1=Λ1\Lambda_{1}=\Lambda_{1}^{\prime}. Now we consider the following situations:

  1. (1)

    Suppose that Λ1\Lambda_{1} is degenerate, i.e., Λ1=Λ1t\Lambda_{1}=\Lambda_{1}^{\rm t}. This of course implies that Λ1=Λ1\Lambda_{1}=\Lambda^{\prime}_{1}.

  2. (2)

    Next suppose that Λ1\Lambda_{1} is non-degenerate. Suppose that ρ\rho is an irreducible constituent of the parabolic induced character RSp2n0×𝐋Sp2n(ζσ)R^{{\rm Sp}_{2n}}_{{\rm Sp}_{2n_{0}}\times{\mathbf{L}}}(\zeta\otimes\sigma) where ζ\zeta is a cuspidal character of Sp2n0(q){\rm Sp}_{2n_{0}}(q) for some n0nn_{0}\leq n, 𝐋{\mathbf{L}} is a product of general linear groups, and σ\sigma is a cuspidal character of 𝐋{\mathbf{L}}. Suppose that ζ(Sp2n0,s0)\zeta\in{\mathcal{E}}({\rm Sp}_{2n_{0}},s_{0}) for some s0s_{0} and write

    ζ=s0(x0,Λ0,1,Λ0,2)=s0(x0,Λ0,1,Λ0,2)\zeta={\mathcal{L}}_{s_{0}}(x_{0},\Lambda_{0,1},\Lambda_{0,2})={\mathcal{L}}^{\prime}_{s_{0}}(x^{\prime}_{0},\Lambda^{\prime}_{0,1},\Lambda^{\prime}_{0,2})

    for some x0,x0𝒮G(0)(s0)x_{0},x^{\prime}_{0}\in{\mathcal{S}}_{\text{\bf G}^{(0)}(s_{0})}, Λ0,1,Λ0,1𝒮G()(s0)\Lambda_{0,1},\Lambda_{0,1}^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{(-)}(s_{0})} and Λ0,2,Λ0,2𝒮G(+)(s0)\Lambda_{0,2},\Lambda_{0,2}^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{(+)}(s_{0})}. By (II) above, we know that Λ0,1=Λ0,1\Lambda_{0,1}=\Lambda_{0,1}^{\prime}. By the same argument as in the proof of Theorem 8.12, we conclude that Λ1=Λ1\Lambda_{1}=\Lambda^{\prime}_{1}.

Therefore the theorem is proved. ∎

Remark 9.8.

Note that the modified Lusztig correspondence s{\mathcal{L}}_{s} in the theorem depends on the theta correspondence ΘG,Gψ\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi}, in particular, it depends on the choice of ψ\psi. Let s{\mathcal{L}}^{\prime}_{s} be the corresponding modified Lusztig correspondence with respect to another character ψ=ψa\psi^{\prime}=\psi_{a} where a𝐅q×a\in{\mathbf{F}}_{q}^{\times} is a non-square element. Then by Lemma 5.2 and Lemma 9.2 we see that

s(x,Λ1,Λ2)=s(x,Λ1t,Λ2){\mathcal{L}}_{s}(x,\Lambda_{1},\Lambda_{2})={\mathcal{L}}^{\prime}_{s}(x,\Lambda_{1}^{\rm t},\Lambda_{2})

for x𝒮G(0)(s)x\in{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}, Λ1𝒮G()(s)\Lambda_{1}\in{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}, Λ2𝒮G(+)(s)\Lambda_{2}\in{\mathcal{S}}_{\text{\bf G}^{(+)}(s)}.

To justify the choice of s{\mathcal{L}}_{s} in the above theorem, we have the following result which refines Proposition 6.16 .

Theorem 9.9.

Let (G,G)=(Sp2n,SO2n+1)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{2n},{\rm SO}_{2n^{\prime}+1}), and sGs\in G^{*}, sGs^{\prime}\in G^{\prime*} semisimple. Let

s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)\displaystyle{\mathcal{L}}_{s}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s)} (G,s)\displaystyle\rightarrow{\mathcal{E}}(\text{\bf G},s)
s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)\displaystyle{\mathcal{L}}_{s^{\prime}}\colon{\mathcal{S}}_{\text{\bf G}^{\prime(0)}(s^{\prime})}\times{\mathcal{S}}_{\text{\bf G}^{\prime(-)}(s^{\prime})}\times{\mathcal{S}}_{\text{\bf G}^{\prime(+)}(s^{\prime})} (G,s)\displaystyle\rightarrow{\mathcal{E}}(\text{\bf G}^{\prime},s^{\prime})

be the modified Lusztig correspondence for G given in Theorem 9.7, and the Lusztig correspondence for G\text{\bf G}^{\prime} given by Theorem 7.1 respectively. Then (ρx,Λ1,Λ2,ρx,Λ1,Λ2)ΘG,Gψ(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}})\in\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi} if and only if

  • s(0)=s(0)s^{(0)}=-s^{\prime(0)} (up to conjugation) and x=xx=x^{\prime},

  • Λ2=Λ1\Lambda_{2}=\Lambda^{\prime}_{1}, and

  • (Λ1,Λ2)G()(s),G(+)(s)(\Lambda_{1},\Lambda^{\prime}_{2})\in{\mathcal{B}}_{\text{\bf G}^{(-)}(s),\text{\bf G}^{(+)}(s^{\prime})}.

Proof.

Suppose that (ρx,Λ1,Λ2,ρx,Λ1,Λ2)ΘG,Gψ(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}})\in\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi}. Then by Proposition 6.16, we have

  • s(0)=s(0)s^{(0)}=-s^{\prime(0)} and x=xx=x^{\prime},

  • Λ2=Λ1\Lambda_{2}=\Lambda^{\prime}_{1}, and

  • (Λ1,Λ2)(\Lambda_{1},\Lambda^{\prime}_{2}) or (Λ1t,Λ2)(\Lambda_{1}^{\rm t},\Lambda^{\prime}_{2}) is in G(1)(s),G(2)(s){\mathcal{B}}_{\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime})}.

Now we want to show that in fact (Λ1,Λ2)G(1)(s),G(2)(s)(\Lambda_{1},\Lambda^{\prime}_{2})\in{\mathcal{B}}_{\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime})}. Note that (G(1)(s),G(2)(s))=(O2n(1)ϵ(1),Sp2n(2))(\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime}))=({\rm O}^{\epsilon^{(1)}}_{2n^{(1)}},{\rm Sp}_{2n^{\prime(2)}}) for some ϵ(1)\epsilon^{(1)}, and some n(1),n(2)n^{(1)},n^{\prime(2)}. Now we consider the following situations:

  1. (1)

    Suppose that def(Λ1)0{\rm def}(\Lambda_{1})\neq 0. First we consider the case that both Λ1,Λ2\Lambda_{1},\Lambda_{2}^{\prime} are cuspidal.

    1. (a)

      Suppose that (ρx,Λ1,Λ2,ρx,Λ1,Λ2)(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}}) first occurs in the correspondence for the pair (Sp2n,SO2(nk)+1)({\rm Sp}_{2n},{\rm SO}_{2(n-k)+1}) for some kk, i.e., (G(1)(s),G(2)(s))=(O2k2ϵk,Sp2k(k1))(\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime}))=({\rm O}^{\epsilon_{k}}_{2k^{2}},{\rm Sp}_{2k(k-1)}). From our choice of s{\mathcal{L}}_{s} (cf. (9.6)) and s{\mathcal{L}}_{s^{\prime}}, we know that Λ1=ΛkI\Lambda_{1}=\Lambda_{k}^{\rm I} (cf. (5.8)) and Λ2=Λk1Sp\Lambda_{2}^{\prime}=\Lambda_{k-1}^{{\rm Sp}} (cf. (4.4)), and it is clearly that (Λ1,Λ2)G(1)(s),G(2)(s)(\Lambda_{1},\Lambda^{\prime}_{2})\in{\mathcal{B}}_{\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime})}.

    2. (b)

      Suppose that (ρx,Λ1,Λ2,ρx,Λ1,Λ2)(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}}) first occurs in the correspondence for the pair (Sp2n,SO2(n+k)+1)({\rm Sp}_{2n},{\rm SO}_{2(n+k)+1}), i.e., (G(1)(s),G(2)(s))=(O2k2ϵk,Sp2k(k+1))(\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime}))=({\rm O}^{\epsilon_{k}}_{2k^{2}},{\rm Sp}_{2k(k+1)}). Now we have Λ1=ΛkII\Lambda_{1}=\Lambda_{k}^{\rm II} and Λ2=ΛkSp\Lambda_{2}^{\prime}=\Lambda_{k}^{{\rm Sp}}, and again (Λ1,Λ2)G(1)(s),G(2)(s)(\Lambda_{1},\Lambda^{\prime}_{2})\in{\mathcal{B}}_{\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime})}.

    Now if Λ1\Lambda_{1} or Λ2\Lambda_{2}^{\prime} is not cuspidal, by the same argument in the proof of [Pan19a] proposition 6.4 we still conclude that (Λ1,Λ2)G(1)(s),G(2)(s)(\Lambda_{1},\Lambda^{\prime}_{2})\in{\mathcal{B}}_{\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime})}.

  2. (2)

    Suppose that def(Λ1)=0{\rm def}(\Lambda_{1})=0. Then def(Λ2)=1{\rm def}(\Lambda_{2}^{\prime})=1.

    1. (a)

      Suppose that Λ1=()\Lambda_{1}=\binom{-}{-}, i.e., (G(1)(s),G(2)(s))=(O0+,Sp2n(2))(\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime}))=({\rm O}^{+}_{0},{\rm Sp}_{2n^{\prime(2)}}). This case is obvious.

    2. (b)

      Suppose that Λ1=(10)\Lambda_{1}=\binom{1}{0} or (01)\binom{0}{1}. If (ρx,Λ1,Λ2,ρx,Λ1,Λ2)(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}}) first occurs in the correspondence for the pair (Sp2n,SO2n1)({\rm Sp}_{2n},{\rm SO}_{2n-1}), then Λ1=(10)\Lambda_{1}=\binom{1}{0}, (G(1)(s),G(2)(s))=(O2+,Sp0)(\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime}))=({\rm O}^{+}_{2},{\rm Sp}_{0}), and Λ2=(0)\Lambda_{2}^{\prime}=\binom{0}{-}. If (ρx,Λ1,Λ2,ρx,Λ1,Λ2)(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}}) first occurs in the correspondence for (Sp2n,SO2n+1)({\rm Sp}_{2n},{\rm SO}_{2n+1}), then Λ1=(01)\Lambda_{1}=\binom{0}{1}, (G(1)(s),G(2)(s))=(O2+,Sp2)(\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime}))=({\rm O}^{+}_{2},{\rm Sp}_{2}), and Λ2=(1)\Lambda_{2}^{\prime}=\binom{1}{-}. We have (Λ1,Λ2)G(1)(s),G(2)(s)(\Lambda_{1},\Lambda^{\prime}_{2})\in{\mathcal{B}}_{\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime})} for both situations.

    Now for general Λ1\Lambda_{1} and Λ2\Lambda_{2}^{\prime}, we can use the same argument in [Pan19a] §6 (in particular the proof of proposition 6.20) and conclude that (Λ1,Λ2)G(1)(s),G(2)(s)(\Lambda_{1},\Lambda^{\prime}_{2})\in{\mathcal{B}}_{\text{\bf G}^{(1)}(s),\text{\bf G}^{\prime(2)}(s^{\prime})}.

Therefore, the theorem is proved. ∎

9.4. The choice of s{\mathcal{L}}_{s} with respect to (Sp2n,O2nϵ)({\rm Sp}_{2n},{\rm O}^{\epsilon}_{2n^{\prime}})

Keep the settings in Subsection 9.2. Now any Lusztig correspondence gives a bijection

{ρ,ρc}{ρ(0)ρ(1)ρ(2),ρ(0)(ρ(1)sgn)ρ(2)}\{\rho,\rho^{c}\}\rightarrow\left\{\rho^{(0)}\otimes\rho^{(1)}\otimes\rho^{(2)},\rho^{(0)}\otimes(\rho^{(1)}\cdot{\rm sgn})\otimes\rho^{(2)}\right\}

where ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) is a basic character. Now ρ(2)\rho^{(2)} is a cuspidal character of SO2n(2)+1{\rm SO}_{2n^{(2)}+1}, so we assume that ρ(2)=ζkSOodd\rho^{(2)}=\zeta^{{\rm SO}_{\rm odd}}_{k} for some kk. By Proposition 6.18, we know that both ρ,ρc\rho,\rho^{c} first occur in the correspondence for the pair (G,G)=(Sp2n,O2(nk)ϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{2n},{\rm O}^{\epsilon}_{2(n-k)}) for some ϵ\epsilon. Suppose that (ρ,ρ)ΘG,Gψ(\rho,\rho^{\prime})\in\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}} for some unique ρ(G,s)\rho^{\prime}\in{\mathcal{E}}(\text{\bf G}^{\prime},s^{\prime}) and write ρ=ρx,Λ1,Λ2\rho^{\prime}=\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda^{\prime}_{2}} where s{\mathcal{L}}_{s^{\prime}} is given in Theorem 8.12. Note that (ρc,ρc)(\rho^{c},\rho^{\prime c}) also occurs in ΘG,Gψ\Theta^{\psi}_{\text{\bf G},\text{\bf G}^{\prime}} by Lemma 5.3.

Now besides the condition (I) given in Subsection 9.3, we also consider the following requirement:

  1. (III)

    Suppose ρ(G,s)\rho\in{\mathcal{E}}(\text{\bf G},s) is a basic character given above. Then s{\mathcal{L}}_{s} is required that

    (9.10) ρ=ρx,Λ1,Λ2,ρc=ρx,Λ1t,Λ2\rho=\rho_{x,\Lambda_{1},\Lambda_{2}},\quad\rho^{c}=\rho_{x,\Lambda_{1}^{\rm t},\Lambda_{2}}

    where

    • x𝒮G(0)(s)x\in{\mathcal{S}}_{\text{\bf G}^{(0)}(s)} is uniquely determined by ρ(0)\rho^{(0)},

    • Λ1𝒮G()(s)\Lambda_{1}\in{\mathcal{S}}_{\text{\bf G}^{(-)}(s)} given by Λ1=Λ1\Lambda_{1}=\Lambda^{\prime}_{1} where Λ1\Lambda^{\prime}_{1} is determined by ρ\rho^{\prime} as above,

    • Λ2𝒮G(+)(s)\Lambda_{2}\in{\mathcal{S}}_{\text{\bf G}^{(+)}(s)} is uniquely determined by ρ(2)\rho^{(2)}, i.e., ρ(2)=ρΛ2t\rho^{(2)}=\rho_{\Lambda_{2}^{\rm t}} (cf. (6.12) and Corollary 7.6).

Theorem 9.11.

Let G=Sp2n\text{\bf G}={\rm Sp}_{2n} and sGs\in G^{*} semisimple. There exists a unique bijection 𝔏s:(G,s)(CG(s),1){\mathfrak{L}}_{s}\colon{\mathcal{E}}(\text{\bf G},s)\rightarrow{\mathcal{E}}(C_{\text{\bf G}^{*}}(s),1) satisfying (1.3), (I) in Subsection 9.3, and (III) above.

Proof.

The proof is analogous to that of Theorem 9.7. ∎

Now we have the following result which refines Proposition 6.18 .

Theorem 9.12.

Let (G,G)=(Sp2n,O2nϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{2n},{\rm O}_{2n^{\prime}}^{\epsilon}) where ϵ=+\epsilon=+ or -, and sGs\in G^{*}, s(G)0s^{\prime}\in(G^{\prime*})^{0} semisimple. Let

s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)\displaystyle{\mathcal{L}}_{s}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s)}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s)} (G,s)\displaystyle\rightarrow{\mathcal{E}}(\text{\bf G},s)
s:𝒮G(0)(s)×𝒮G()(s)×𝒮G(+)(s)\displaystyle{\mathcal{L}}_{s^{\prime}}\colon{\mathcal{S}}_{\text{\bf G}^{(0)}(s^{\prime})}\times{\mathcal{S}}_{\text{\bf G}^{(-)}(s^{\prime})}\times{\mathcal{S}}_{\text{\bf G}^{(+)}(s^{\prime})} (G,s)\displaystyle\rightarrow{\mathcal{E}}(\text{\bf G}^{\prime},s^{\prime})

be the modified Lusztig correspondence for G given in Theorem 9.11, and the modified Lusztig correspondence for G\text{\bf G}^{\prime} given by Theorem 8.12 respectively. Then (ρx,Λ1,Λ2,ρx,Λ1,Λ2)ΘG,Gψ(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}})\in\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi} if and only if

  • s(0)=s(0)s^{(0)}=s^{\prime(0)} (up to conjugation) and x=xx=x^{\prime},

  • Λ1=Λ1\Lambda_{1}=\Lambda^{\prime}_{1}, and

  • (Λ2,Λ2)G(+)(s),G(+)(s)(\Lambda_{2},\Lambda^{\prime}_{2})\in{\mathcal{B}}_{\text{\bf G}^{(+)}(s),\text{\bf G}^{(+)}(s^{\prime})}.

Proof.

Suppose that (ρx,Λ1,Λ2,ρx,Λ1,Λ2)ΘG,Gψ(\rho_{x,\Lambda_{1},\Lambda_{2}},\rho_{x^{\prime},\Lambda_{1}^{\prime},\Lambda_{2}^{\prime}})\in\Theta_{\text{\bf G},\text{\bf G}^{\prime}}^{\psi}. Then by Proposition 6.18, we have

  • s(0)=s(0)s^{(0)}=s^{\prime(0)} and x=xx=x^{\prime},

  • Λ1=Λ1,Λ1t\Lambda_{1}=\Lambda^{\prime}_{1},\Lambda_{1}^{\prime{\rm t}}, and

  • (Λ2,Λ2)(\Lambda_{2},\Lambda^{\prime}_{2}) or (Λ2t,Λ2)(\Lambda_{2}^{\rm t},\Lambda^{\prime}_{2}) is in G(+)(s),G(+)(s){\mathcal{B}}_{\text{\bf G}^{(+)}(s),\text{\bf G}^{\prime(+)}(s^{\prime})}.

Note that (G(+)(s),G(+)(s))=(Sp2n(+),O2n(+)ϵ(+))(\text{\bf G}^{(+)}(s),\text{\bf G}^{\prime(+)}(s^{\prime}))=({\rm Sp}_{2n^{(+)}},{\rm O}^{\epsilon^{\prime(+)}}_{2n^{\prime(+)}}) for some n(+),ϵ(+),n(+)n^{(+)},\epsilon^{\prime(+)},n^{\prime(+)}. By the same argument in the proof of Theorem 9.9, we can conclude that (Λ2,Λ2)G(+)(s),G(+)(s)(\Lambda_{2},\Lambda^{\prime}_{2})\in{\mathcal{B}}_{\text{\bf G}^{(+)}(s),\text{\bf G}^{\prime(+)}(s^{\prime})}.

Next we want to show that Λ1=Λ1\Lambda_{1}=\Lambda^{\prime}_{1}. If Λ1\Lambda_{1} is cuspidal or is equal to (10),(01)\binom{1}{0},\binom{0}{1}, and Λ2\Lambda_{2} is cuspidal, we have Λ1=Λ1\Lambda_{1}=\Lambda_{1}^{\prime} by the requirement of s{\mathcal{L}}_{s} in (9.10). Then by the same argument in the proof of Proposition 5.9, we can conclude that Λ1=Λ1\Lambda_{1}=\Lambda_{1}^{\prime} for general Λ1\Lambda_{1}. ∎

References

  • [AM93] J. Adams and A. Moy, Unipotent representations and reductive dual pairs over finite fields, Trans. Amer. Math. Soc. 340 (1993), 309–321.
  • [AMR96] A.-M. Aubert, J. Michel, and R. Rouquier, Correspondance de Howe pour les groupes réductifs sur les corps finis, Duke Math. J. 83 (1996), 353–397.
  • [Car85] R. Carter, Finite groups of Lie type, conjugacy classes and complex characters, John Wiley & Sons, England, 1985.
  • [DL76] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103–161.
  • [DM90] F. Digne and J. Michel, On Lusztig’s parametrization of characters of finite groups of Lie type, Astérisque 181–182 (1990), 113–156.
  • [GM20] M. Geck and G. Malle, The character theory of finite groups of Lie type—a guided tour, Cambridge Studies in Advanced Mathematics, no. 187, Cambridge University Press, Cambridge, 2020.
  • [GP00] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, Oxford University Press, New York, 2000.
  • [Lus77] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), 125–175.
  • [Lus78] by same author, Representations of finite Chevalley groups, C.B.M.S. Regional Conference Series in Math., no. 39, American Mathematical Society, Providence, 1978.
  • [Lus81] by same author, Unipotent characters of the symplectic and odd orthogonal groups over a finite field, Invent. Math. 64 (1981), 263–296.
  • [Lus82] by same author, Unipotent characters of the even orthogonal groups over a finite field, Trans. Amer. Math. Soc. 272 (1982), 733–751.
  • [Lus84] by same author, Characters of reductive groups over a finite field, Ann. Math. Stud., no. 107, Princeton University Press, Princeton, 1984.
  • [Pan19a] S.-Y. Pan, Howe correspondence of unipotent characters for a finite symplectic/even-orthogonal dual pair, arXiv:1901.00623 (2019).
  • [Pan19b] by same author, Lusztig correspondence and Howe correspondence for finite reductive dual pairs, arXiv:1906.01158 (2019).
  • [Pan21] by same author, Uniform projection of the Weil character, Adv. Math. 381 (2021), 107624, 80 pp.
  • [Ser77] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
  • [Sri68] B. Srinivasan, The characters of the finite symplectic group Sp(4,q){\rm Sp}(4,q), Trans. Amer. Math. Soc. 131 (1968), 488–525.
  • [Sri79] by same author, Weil representations of finite classical groups, Invent. Math. 51 (1979), 143–153.
  • [Sze98] F. Szechtman, Weil representations of the symplectic group, J. Algebra 208 (1998), no. 2, 662–686.
  • [Wal04] J.-L. Waldspurger, Une conjecture de Lusztig pour les groupes classiques, Mém. Soc. Math. Fr. (N.S.) (2004), no. 96, vi+166 pp.