This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On Zero-Error Capacity of Graphs with One Edge

Qi Cao, Qi Chen and Baoming Bai Qi Cao (caoqi@xidian.edu.cn) is with Xidian-Guangzhou Research Institute, Xidian University, Guangzhou, China. Qi Chen (qichen@xidian.edu.cn) is with the School of Telecommunications Engineering, Xidian University, Xi’an 710071, China. Baoming Bai (bmbai@mail.xidian.eu.cn) is with the State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China.This paper was presented in part at ISIT2022[1].
Abstract

In this paper, we study the zero-error capacity of channels with memory, which are represented by graphs. We provide a method to construct code for any graph with one edge, thereby determining a lower bound on its zero-error capacity. Moreover, this code can achieve zero-error capacity when the symbols in a vertex with degree one are the same. We further apply our method to the one-edge graphs representing the binary channels with two memories. There are 28 possible graphs, which can be organized into 11 categories based on their symmetries. The code constructed by our method is proved to achieve the zero-error capacity for all these graphs except for the two graphs in Case 11.

Index Terms:
zero-error capacity, graph with one edge, channel with memory

I Introduction

Let 𝒳\mathcal{X} be a finite set. A channel with transition matrix p(z|x),x𝒳p(z|x),x\in\mathcal{X} is represented by a graph G=(𝒳,E)G=(\mathcal{X},E), where the vertex set is 𝒳\mathcal{X} and the edge set is EE with uvEuv\in E for u,v𝒳u,v\in\mathcal{X} if

{z:p(z|u)}{z:p(z|v)}=.\{z:p(z|u)\}\cap\{z:p(z|v)\}=\emptyset.

For GG, uu and vv is called distinguishable if uvEuv\in E. Any two sequences 𝒙,𝒚𝒳n\bm{x},\bm{y}\in\mathcal{X}^{n} is also called distinguishable if there exists a coordinate ii, the ii-th symbols of 𝒙\bm{x} and 𝒚\bm{y} are adjacent in GG [2, 3].

Now for a set 𝒜n𝒳n\mathcal{A}_{n}\subseteq\mathcal{X}^{n} of |𝒳||\mathcal{X}|-ary sequences, if sequences in 𝒜n\mathcal{A}_{n} are pairwise distinguishable, then messages mapping to 𝒜n\mathcal{A}_{n} can be transmitted through GG without error. The set 𝒜n\mathcal{A}_{n} is called a code of length nn for GG and 1nlog|𝒜n|\frac{1}{n}\log|\mathcal{A}_{n}| is its rate, where the base of the logarithm is 2, which is omitted throughout this paper. Let {𝒜n}\{\mathcal{A}_{n}\} be a sequence of the codes for GG. The zero-error capacity of GG is defined to be the maximum among all

limn1nlog|𝒜n|.\lim_{n\to\infty}\frac{1}{n}\log|\mathcal{A}_{n}|.
01122334401122334402203142
Figure 1: Typewriter channel.

The zero-error capacity problem was introduced by Shannon [2] in 1956. He considered a typewriter channel, as shown in Fig. 1, which can be represented by a graph with length 55, i.e., each x𝒳x\in\mathcal{X} with |𝒳|=5|\mathcal{X}|=5 is distinguishable from another two elements in 𝒳\mathcal{X}. He established a lower bound of the capacity, which was proved tight by Lovász [4] in 1979. The problem remains open even for the complement of a cycle graph with length 7.111The zero-error capacity problem is trivial for the complement of a cycle graph with even length. Due to the difficulties in solving the problem in general, in recent years, the zero-error capacity of some special graphs were investigated. In 2010, Zhao and Permuter [5] introduced a dynamic programming formulation for computing the zero-error feedback capacity of channels with state information. The zero-error capacity of some special timing channels were determined by Kovačević and Popovski [6] in 2014. In 2016, Nakano and Wadayama [7] derived a lower bound and an upper bound on the zero-error capacity of Nearest Neighbor Error channels with a multilevel alphabet.

The zero-error capacity of a channel with memory was first studied by Ahlswede et al. [8] in 1998. A channel with mm memories can be represented by GG with V(G)=𝒳m+1V(G)=\mathcal{X}^{m+1}. In [8], authors studied a binary channel with one memory i.e., a channel represented by GG with V(G)=𝒳2V(G)=\mathcal{X}^{2}, where 𝒳={0,1}\mathcal{X}=\{0,1\}, and any two vertices may or may not be distinguishable. They determined the zero-error capacity when only one pair of the vertices are distinguishable. Based on their work, Cohen et al. [9] in 2016 studied channels with 3 pairs of vertices being distinguishable. All the remaining cases were solved in 2018 by Cao et al [10].

However, when m>1m>1 or |𝒳|>2|\mathcal{X}|>2, the number of cases will explode dramatically, making it completely impossible to be solved one by one. For example, when m=1m=1 and |𝒳|=3|\mathcal{X}|=3, the number of cases is 236682^{36}\approx 68 billion. There arises a pressing demand for a generalized result. This paper considers any graph with 𝒖𝒗\bm{u}\bm{v} the only edge, where 𝒖,𝒗𝒳m+1\bm{u},\bm{v}\in\mathcal{X}^{m+1}, m1m\geq 1 and 𝒳\mathcal{X} is a finite set. This graph is denoted by G(𝒖,𝒗)G(\bm{u},\bm{v}) or G(𝒗,𝒖)G(\bm{v},\bm{u}). We devise a simple method to establish a code for G(𝒖,𝒗)G(\bm{u},\bm{v}), thus obtaining a lower bound on its zero-error capacity. For any graph GG with more than one edge, let 𝒖𝒗\bm{u}\bm{v} be one of its edges. Note that any code for G(𝒖,𝒗)G(\bm{u},\bm{v}) is also the code for GG. Our method is applicable for establishing a code for any non-empty graph, thus obtaining a general lower bound on zero-error capacity.

We apply our method to the binary channels with two memories represented by the graphs with only one edge. There are 28 possible graphs, which can be classified into 11 categories up to symmetry (see Section II for more details). The capacities of the graphs in each category are the same, so only one of them need to be considered. Table I summarizes all the solved and unsolved cases. The code constructed by our method achieves the zero-error capacity for all these graphs except for the two graphs in Case 11.

TABLE I: Zero-error capacity of binary channels with two memories
Case GG C(G)C(G) Theorems
1 G(000,001)G(000,001) logα0.551{-\log\alpha\approx 0.551}1 Theorem 3
G(000,100)G(000,100)
G(111,110)G(111,110)
G(111,011)G(111,011)
2 G(000,010)G(000,010) 12\frac{1}{2} Theorem 4
G(111,101)G(111,101)
3 G(000,011)G(000,011) logβ0.406{-\log\beta\approx 0.406}2 Theorem 5
G(000,110)G(000,110)
G(111,100)G(111,100)
G(111,001)G(111,001)
4 G(010,011)G(010,011) Theorem 6
G(010,110)G(010,110)
G(101,100)G(101,100)
G(101,001)G(101,001)
5 G(010,001)G(010,001) Theorem 7
G(010,100)G(010,100)
G(101,110)G(101,110)
G(101,011)G(101,011)
6 G(000,111)G(000,111) 13\frac{1}{3} Theorem 8
7 G(010,101)G(010,101) Theorem 9
8 G(100,011)G(100,011) Theorem 10
G(110,001)G(110,001)
9 G(000,101)G(000,101) Theorem 11
G(111,010)G(111,010)
10 G(001,011)G(001,011) Theorem 12
G(110,100)G(110,100)
11 G(001,100)G(001,100) Not Determined3 Theorem 13
G(110,011)G(110,011)
  • 1

    α\alpha is the positive root of the equation x+x3=1x+x^{3}=1.

  • 2

    β\beta is the positive root of the equation x2+x3=1x^{2}+x^{3}=1.

  • 3

    C(G)[log14110.346,logβ0.406]C(G)\in[\frac{\log 14}{11}\approx 0.346,-\log\beta\approx 0.406].

II Zero-Error Capacity Problem with Memories

For a finite set 𝒳\mathcal{X} of symbols, the channel with m1m-1 memories can be represented by a graph G=(V,E)G=(V,E), where m2m\geq 2, V=𝒳mV={{\mathcal{X}}^{m}}, and for any 𝒖,𝒗V(G)\bm{u},\bm{v}\in V(G), 𝒖𝒗E\bm{u}\bm{v}\in E if

{𝒛:p(𝒛|𝒖)}{𝒛:p(𝒛|𝒗)}=,\{\bm{z}:p(\bm{z}|\bm{u})\}\cap\{\bm{z}:p(\bm{z}|\bm{v})\}=\emptyset,

and 𝒖\bm{u} and 𝒗\bm{v} are called distinguishable for GG.

For n1,n2n_{1},n_{2}\in\mathbb{Z}, n1n2n_{1}\leq n_{2}, let [n1,n2]={i:n1in2}\mathbb{Z}[n_{1},n_{2}]=\{i\in\mathbb{Z}:n_{1}\leq i\leq n_{2}\}. For 𝒙=(x0,x1,,xn1),𝒚=(y0,y1,,yn1)𝒳n\bm{x}=(x_{0},x_{1},\ldots,x_{n-1}),\bm{y}=(y_{0},y_{1},\ldots,y_{n-1})\in\mathcal{X}^{n}, nmn\geq m, we say 𝒙\bm{x} and 𝒚\bm{y} are distinguishable for GG if there exists at least one coordinate i[0,nm1]i\in\mathbb{Z}[0,n-m-1] with

{xixi+1,,xi+m,yiyi+1,,yi+m}E(G).\{x_{i}x_{i+1},\ldots,x_{i+m},y_{i}y_{i+1},\ldots,y_{i+m}\}\in E(G).
Definition 1

Let 𝒜n\mathcal{A}_{n} be a set of length nn sequences and {𝒜n}\{\mathcal{A}_{n}\}, n=m,m+1,n=m,m+1,\ldots, be a sequence of such sets indexed by nn. The asymptotic rate of {𝒜n}\{\mathcal{A}_{n}\} is R({𝒜n})limn1nlog|𝒜n|R(\{\mathcal{A}_{n}\})\triangleq\underset{n\to\infty}{\mathop{\lim}}\,\frac{1}{n}\log|\mathcal{A}_{n}| if it exists. If the sequences in 𝒜n\mathcal{A}_{n} are pairwise distinguishable for the graph GG, then 𝒜n\mathcal{A}_{n} is called a code of length nn for GG, and the sequences in 𝒜n\mathcal{A}_{n} are called codewords.

Definition 2

Let {𝒜^n}\{\hat{\mathcal{A}}_{n}\} be a sequence of codes for the graph GG such that for all nn, 𝒜^n\hat{\mathcal{A}}_{n} achieves the largest cardinality of a code of length nn for GG. The zero-error capacity of the graph GG is defined as

C(G)=limn1nlog|𝒜^n|.C(G)=\underset{n\to\infty}{\mathop{\lim}}\,\frac{1}{n}\log|\hat{\mathcal{A}}_{n}|.

Note that the limit above always exists because log|𝒜^n|\log|\hat{\mathcal{A}}_{n}| is superadditive, i.e., log|𝒜^m+n|log|𝒜^m|+log|𝒜^n|,\log|\hat{\mathcal{A}}_{m+n}|\geq\log|\hat{\mathcal{A}}_{m}|+\log|\hat{\mathcal{A}}_{n}|, m,n0.\forall m,n\geq 0. Clearly, 0C(G)log|𝒳|0\leq C(G)\leq\log|\mathcal{X}|. A sequence of codes {𝒜n}\{{\mathcal{A}}_{n}\} is said to be asymptotically optimal for the graph GG if R({𝒜n})=C(G)R(\{{\mathcal{A}}_{n}\})=C(G).

We apply the method in [10] to construct a new code based on an existed code. Let 𝒜n{\mathcal{A}}_{n} be a set of length nn sequences and {𝒜n}\{{\mathcal{A}}_{n}\} be a sequence of such sets indexed by nn. For any nn, by adding an arbitrary prefix 𝒔p{\bm{s}}_{\mathrm{p}} of length p0p\geq 0 and an arbitrary suffix 𝒔s{\bm{s}}_{\mathrm{s}} of length l0l\geq 0 to all the sequences in 𝒜n{\mathcal{A}}_{n}, we obtain a new set of sequences of length tn+(p+l)t\triangleq n+(p+l), denoted by 𝒜t\mathcal{A}^{\prime}_{t}. Let {𝒜t}\{\mathcal{A}^{\prime}_{t}\} be a sequence of such sets indexed by tt.

Lemma 1 (Lemma 2 in [10])

R({𝒜n})=R({𝒜t})R(\{{\mathcal{A}}_{n}\})=R(\{\mathcal{A}^{\prime}_{t}\}), i.e., limn1nlog|𝒜n|=limt1tlog|𝒜t|\underset{n\to\infty}{\mathop{\lim}}\,\frac{1}{n}\log\left|{{\mathcal{A}}_{n}}\right|=\underset{t\to\infty}{\mathop{\lim}}\,\frac{1}{t}\log\left|{{\mathcal{A}}^{\prime}_{t}}\right|.

Obviously, if {𝒜n}\{{\mathcal{A}}_{n}\} is a sequence of codes for a given graph, then {𝒜t}\{\mathcal{A}^{\prime}_{t}\} is also a sequence of codes for the same graph. To the contrary, if {𝒜t}\{\mathcal{A}^{\prime}_{t}\} is a sequence of codes for a graph, then {𝒜n}\{{\mathcal{A}}_{n}\} is called a sequence of quasi-codes for the same graph.

Let 𝒃i\bm{b}_{i}, i=1,2,,Ti=1,2,\ldots,T be any string with entries in 𝒳\mathcal{X}. Let n{𝒃1,𝒃2,,𝒃T}𝒳n\mathcal{B}_{n}\triangleq\{\bm{b}_{1},\bm{b}_{2},\ldots,\bm{b}_{T}\}^{*}\cap\mathcal{X}^{n} be uniquely decomposable222For a set of strings {𝒃1,𝒃2,,𝒃T}\{\bm{b}_{1},\bm{b}_{2},\ldots,\bm{b}_{T}\} defined above, {𝒃1,𝒃2,,𝒃T}\{\bm{b}_{1},\bm{b}_{2},\ldots,\bm{b}_{T}\}^{*} denotes the family of all sequences which are concatenations of these bib_{i}, i=1,2,,Ti=1,2,...,T., i.e., any sequence in n\mathcal{B}_{n} can be uniquely decomposed into a sequence of strings in {𝒃1,𝒃2,,𝒃T}\{\bm{b}_{1},\bm{b}_{2},\ldots,\bm{b}_{T}\}. If there exists a prefix 𝒔p{\bm{s}}_{\mathrm{p}} and a suffix 𝒔s{\bm{s}}_{\mathrm{s}} such that by adding a prefix 𝒔p{\bm{s}}_{\mathrm{p}} and a suffix 𝒔s{\bm{s}}_{\mathrm{s}} to all sequences in n\mathcal{B}_{n}, we obtain a new set denoted by t\mathcal{B}^{\prime}_{t}. If {t}\{\mathcal{B}^{\prime}_{t}\} is a sequence of codes for the graph GG, then we call {n}\{{\mathcal{B}}_{n}\} a sequence of quasi TT-codes for GG. Moreover, if {n}\{\mathcal{B}_{n}\} is a sequence of codes for GG, then we call {n}\{{\mathcal{B}}_{n}\} a sequence of TT-codes for GG. For any sequence 𝒙\bm{x}, let (𝒙)\ell(\bm{x}) denote the length of 𝒙\bm{x}. By [11, Lemma 4.5], we have

R({n})=logx,R(\{{\mathcal{B}}_{n}\})=-\log x^{*},

where xx^{*} is the only positive root of

t=1Tx(𝒃t)=1.\sum_{t=1}^{T}x^{\ell(\bm{b}_{t})}=1.

Moreover, if {n}\{{\mathcal{B}}_{n}\} achieves the largest rate of a sequence of (quasi) TT-code for GG, we say that {n}\{{\mathcal{B}}_{n}\} is an asymptotically optimal (quasi) TT-code.

Now we define two kinds of mappings TrT_{\mathrm{r}} and TπT_{\pi} as follows.

  • If a graph GG^{\prime} is obtained from a graph GG by reversing the sequences representing the vertices of GG, then Tr(G)=GT_{\mathrm{r}}(G)=G^{\prime}.

  • Let π\pi be a permutation of 𝒳\mathcal{X}. Let G′′G^{\prime\prime} be a graph such that for any pair v,uv,u, uvE(G)uv\in E(G) if and only if π(u)π(v)E(G′′)\pi(u)\pi(v)\in E(G^{\prime\prime}). Then Tπ(G)=G′′T_{\pi}(G)=G^{\prime\prime}.

Two graphs G1G_{1} and G2G_{2} are called interchangeable if there exists a permutation π\pi of 𝒳\mathcal{X} such that one one of the following three conditions holds.

  1. 1.

    Tr(G1)=G2T_{\mathrm{r}}(G_{1})=G_{2}

  2. 2.

    Tπ(G1)=G2T_{\pi}(G_{1})=G_{2}

  3. 3.

    Tπ(Tr(G1))=G2T_{\pi}(T_{\mathrm{r}}(G_{1}))=G_{2}

Obviously, the zero-error capacities of two interchangeable graphs are the same. Table I lists all the graphs with one edge representing the binary channels with two memories. The graphs in each case are pairwise interchangeable. We only need to consider any one of the graphs in each case.

III Capacity of the Graphs with One Edge

In this section, we first construct an optimal quasi 2-code for any graph with one edge. Then we will show that this quasi 2-code is asymptotically optimal for a class of graphs with one edge.

III-A optimal quasi 2-code for the graph with one edge

Recall that the graph GG with only one edge is represented by G(𝒖,𝒗)G(\bm{u},\bm{v}), where 𝒖𝒗\bm{uv} is the only edge. Before we construct the optimal (quasi) 2-code for G(𝒖,𝒗)G(\bm{u},\bm{v}), we first show the three definitions following.

Definition 3

The sequence 𝐱\bm{x} is a unit of 𝐲\bm{y} if (𝐱)(𝐲)\ell(\bm{x})\leq\ell(\bm{y}) and there exists a non-negative number t<(𝐱)t<\ell(\bm{x}) such that yi=xitmod(𝐱)y_{i}=x_{i-t\bmod\ell(\bm{x})} for any i[0,(𝐲)1]i\in\mathbb{Z}[0,\ell(\bm{y})-1]. Moreover, 𝐱\bm{x} is called a prefix-unit of 𝐲\bm{y} if t=0t=0 and 𝐱\bm{x} is called a suffix-unit of 𝐲\bm{y} if t=(𝐲)mod(𝐱)t=\ell(\bm{y})\bmod\ell(\bm{x}).

Clearly, any sequence is a prefix-unit and suffix-unit of itself. To facilitate the channel capacity characterization, given G(𝒖,𝒗)G(\bm{u},\bm{v}) with 𝒖,𝒗𝒳m+1\bm{u},\bm{v}\in\mathcal{X}^{m+1}, we introduce the following notations.

  • Let pre(𝒖,𝒗)\mathrm{pre}(\bm{u},\bm{v}) and suf(𝒖,𝒗)\mathrm{suf}(\bm{u},\bm{v}) denote, respectively, the longest common prefix and suffix of 𝒖\bm{u} and 𝒗\bm{v};

  • Let p(𝒖,𝒗)(pre(𝒖,𝒗))\ell_{\mathrm{p}}(\bm{u},\bm{v})\triangleq\ell(\mathrm{pre}(\bm{u},\bm{v})) and s(𝒖,𝒗)(suf(𝒖,𝒗))\ell_{\mathrm{s}}(\bm{u},\bm{v})\triangleq\ell(\mathrm{suf}(\bm{u},\bm{v})). With a slight abuse of notation, let

    (𝒖,𝒗)max{p(𝒖,𝒗),s(𝒖,𝒗)}.\ell(\bm{u},\bm{v})\triangleq\max\{\ell_{\mathrm{p}}(\bm{u},\bm{v}),\ell_{\mathrm{s}}(\bm{u},\bm{v})\}.

    Since the zero-error capacities of G(𝒖,𝒗)G(\bm{u},\bm{v}) and Tr(G(𝒖,𝒗))T_{\mathrm{r}}(G(\bm{u},\bm{v})) are the same, we only need to consider the case that p(𝒖,𝒗)s(𝒖,𝒗)\ell_{\mathrm{p}}(\bm{u},\bm{v})\geq\ell_{\mathrm{s}}(\bm{u},\bm{v}), i.e., (𝒖,𝒗)=p(𝒖,𝒗)\ell(\bm{u},\bm{v})=\ell_{\mathrm{p}}(\bm{u},\bm{v}).

  • Let 𝒖𝒗\bm{u_{v}} denote the shortest prefix-unit of 𝒖\bm{u} such that (𝒖𝒗)m+1(𝒖,𝒗)\ell(\bm{u_{v}})\geq m+1-\ell(\bm{u},\bm{v}). Likewise, let 𝒗𝒖\bm{v_{u}} denote the shortest prefix-unit of 𝒗\bm{v} such that (𝒗𝒖)m+1(𝒖,𝒗)\ell(\bm{v_{u}})\geq m+1-\ell(\bm{u},\bm{v}).

Now we have the following theorem.

Theorem 1

For G(𝐮,𝐯)G(\bm{u},\bm{v}) with 𝐮,𝐯𝒳m+1\bm{u},\bm{v}\in\mathcal{X}^{m+1} and (𝐮,𝐯)=p(𝐮,𝐯)\ell(\bm{u},\bm{v})=\ell_{\mathrm{p}}(\bm{u},\bm{v}), the set n{𝐮𝐯,𝐯𝐮}𝒳n\mathcal{B}_{n}\triangleq\{\bm{u_{v}},\bm{v_{u}}\}^{*}\cap\mathcal{X}^{n} is an asymptotically optimal quasi 2-code. Moreover, C(G(𝐮,𝐯))logxC(G(\bm{u},\bm{v}))\geq-\log x^{*}, where xx^{*} is the only positive root of

x(𝒖𝒗)+x(𝒗𝒖)=1.x^{\ell(\bm{u_{v}})}+x^{\ell(\bm{v_{u}})}=1.

The following two lemmas will serve as stepping stones to establish Theorem 1.

Lemma 2

For 𝐮,𝐯𝒳m+1\bm{u},\bm{v}\in\mathcal{X}^{m+1}, let 𝐱{𝐮𝐯,𝐯𝐮}\bm{x}\in\{\bm{u_{v}},\bm{v_{u}}\}^{*} be an arbitrary but fixed sequence. Let 𝐲=𝐱pre(𝐮,𝐯)\bm{y}=\bm{x}\mathrm{pre}(\bm{u},\bm{v}), the concatenation of 𝐱\bm{x} and pre(𝐮,𝐯)\mathrm{pre}(\bm{u},\bm{v}). If (𝐮,𝐯)>0\ell(\bm{u},\bm{v})>0, then for any i[0,(𝐮,𝐯)1]i\in\mathbb{Z}[0,\ell(\bm{u},\bm{v})-1], we have yi=ui=viy_{i}=u_{i}=v_{i}.

Proof:

The sequence 𝒚\bm{y} can be written as 𝒙(0)𝒙(1)𝒙(N1)𝒙(N)\bm{x}^{(0)}\bm{x}^{(1)}\ldots\bm{x}^{(N-1)}\bm{x}^{(N)}, where 𝒙(n){𝒖𝒗,𝒗𝒖}\bm{x}^{(n)}\in\{\bm{u_{v}},\bm{v_{u}}\}, n[0,N1]n\in\mathbb{Z}[0,N-1], and 𝒙(N)=pre(𝒖,𝒗)\bm{x}^{(N)}=\mathrm{pre}(\bm{u},\bm{v}). Now we prove that yi=ui=viy_{i}=u_{i}=v_{i} for any i[0,(𝒖,𝒗)1]i\in\mathbb{Z}[0,\ell(\bm{u},\bm{v})-1]. Note for each yiy_{i}, i[0,(𝒖,𝒗)1]i\in\mathbb{Z}[0,\ell(\bm{u,v})-1], there exists a string 𝒙(ni)\bm{x}^{(n_{i})}, ni[0,N]n_{i}\in\mathbb{Z}[0,N] such that yi=xi~(ni)y_{i}=x^{(n_{i})}_{\tilde{i}}, an entry of 𝒙(ni)\bm{x}^{(n_{i})}. Note that

j=0ni1(𝒙j)i and j=0ni(𝒙j)>i.\sum_{j=0}^{n_{i}-1}\ell(\bm{x}_{j})\leq i\text{ and }\sum_{j=0}^{n_{i}}\ell(\bm{x}_{j})>i.

We have

ni=max{n:j=0n1(𝒙j)i}n_{i}=\max\left\{n\in\mathbb{Z}:\sum_{j=0}^{n-1}\ell(\bm{x}_{j})\leq i\right\}

and

i~=ij=0ni1(𝒙j).\tilde{i}=i-\sum_{j=0}^{n_{i}-1}\ell(\bm{x}_{j}).

Now we denote

nij=0ni1𝟙(𝒙j=𝒖𝒗)n_{i}^{\prime}\triangleq\sum_{j=0}^{n_{i}-1}\mathbbm{1}(\bm{x}_{j}=\bm{u_{v}})

and

ni′′j=0ni1𝟙(𝒙j=𝒗𝒖),n_{i}^{\prime\prime}\triangleq\sum_{j=0}^{n_{i}-1}\mathbbm{1}(\bm{x}_{j}=\bm{v_{u}}),

where 𝟙()\mathbbm{1}(\cdot) is the indicator function. Clearly, i=ni(𝒖𝒗)+ni′′(𝒗𝒖)+i~i=n_{i}^{\prime}\ell(\bm{u_{v}})+n_{i}^{\prime\prime}\ell(\bm{v_{u}})+\tilde{i}.

By the definition of 𝒖𝒗\bm{u_{v}} and 𝒗𝒖\bm{v_{u}}, for any j[0,(𝒖,𝒗)1]j\in\mathbb{Z}[0,\ell(\bm{u},\bm{v})-1], we have

uj=ujmod(𝒖𝒗)=vj=vjmod(𝒗𝒖),u_{j}=u_{j\bmod\ell(\bm{u_{v}})}=v_{j}=v_{j\bmod\ell(\bm{v_{u}})}, (1)

and for any j1,j2[0,(𝒖,𝒗)1]j_{1},j_{2}\in\mathbb{Z}[0,\ell(\bm{u},\bm{v})-1], we have

  1. 1.

    j1j2mod(𝒖𝒗)j_{1}\equiv j_{2}\bmod\ell(\bm{u_{v}}) implies uj1=uj2u_{j_{1}}=u_{j_{2}}

  2. 2.

    j1j2mod(𝒗𝒖)j_{1}\equiv j_{2}\bmod\ell(\bm{v_{u}}) implies vj1=vj2v_{j_{1}}=v_{j_{2}}.

When 𝒙ni=𝒖𝒗\bm{x}_{n_{i}}=\bm{u_{v}}, and we have

yi=xi~(ni)=(𝒖𝒗)i~=ui~=(a)ui~+ni(𝒖𝒗)=(b)vi~+ni(𝒖𝒗)=(c)vi~+ni(𝒖𝒗)+ni′′(𝒗𝒖)=vi=ui,{y}_{i}=x^{(n_{i})}_{\tilde{i}}=(\bm{u_{v}})_{\tilde{i}}=u_{\tilde{i}}\stackrel{{\scriptstyle(a)}}{{=}}u_{\tilde{i}+n_{i}^{\prime}\ell(\bm{u_{v}})}\stackrel{{\scriptstyle(b)}}{{=}}v_{\tilde{i}+n_{i}^{\prime}\ell(\bm{u_{v}})}\stackrel{{\scriptstyle(c)}}{{=}}v_{\tilde{i}+n_{i}^{\prime}\ell(\bm{u_{v}})+n_{i}^{\prime\prime}\ell(\bm{v_{u}})}=v_{i}=u_{i},

where (a)(a) and (c)(c) hold since Condition 1 and 2 above hold, and (b)(b) holds since (1) holds.

Likewise, when 𝒙ni=𝒗𝒖\bm{x}_{n_{i}}=\bm{v_{u}}. We have

yi=xi~(ni)=(𝒗𝒖)i~=vi~=vi~+ni′′(𝒗𝒖)=ui~+ni′′(𝒗𝒖)=ui~+ni(𝒖𝒗)+ni′′(𝒗𝒖)=ui=vi.{y}_{i}=x^{(n_{i})}_{\tilde{i}}=(\bm{v_{u}})_{\tilde{i}}=v_{\tilde{i}}=v_{\tilde{i}+n_{i}^{\prime\prime}\ell(\bm{v_{u}})}=u_{\tilde{i}+n_{i}^{\prime\prime}\ell(\bm{v_{u}})}=u_{\tilde{i}+n_{i}^{\prime}\ell(\bm{u_{v}})+n_{i}^{\prime\prime}\ell(\bm{v_{u}})}=u_{i}=v_{i}.

When 𝒙ni=pre(𝒖,𝒗)\bm{x}_{n_{i}}=\mathrm{pre}(\bm{u},\bm{v}), we have xi~(ni)=ui~=vi~x^{(n_{i})}_{\tilde{i}}=u_{\tilde{i}}=v_{\tilde{i}}, and thus,

yi=xi~(ni)=vi~=vi~+ni′′(𝒗𝒖)=ui~+ni′′(𝒗𝒖)=ui~+ni(𝒖𝒗)+ni′′(𝒗𝒖)=ui=vi.{y}_{i}=x^{(n_{i})}_{\tilde{i}}=v_{\tilde{i}}=v_{\tilde{i}+n_{i}^{\prime\prime}\ell(\bm{v_{u}})}=u_{\tilde{i}+n_{i}^{\prime\prime}\ell(\bm{v_{u}})}=u_{\tilde{i}+n_{i}^{\prime}\ell(\bm{u_{v}})+n_{i}^{\prime\prime}\ell(\bm{v_{u}})}=u_{i}=v_{i}.

Example 1

For G=G(001001,001000)G=G(001001,001000), we have pre(𝐮,𝐯)=00100\mathrm{pre}(\bm{u},\bm{v})=00100 and (𝐮,𝐯)=5\ell(\bm{u},\bm{v})=5. Then 𝐮𝐯=001\bm{u_{v}}=001 and 𝐯𝐮=0010\bm{v_{u}}=0010. Let 𝐲\bm{y} be an arbitrary but fixed sequence in {𝐮𝐯,𝐯𝐮}×{pre(𝐮,𝐯)}={001,0010}×{00100}\{\bm{u_{v}},\bm{v_{u}}\}^{*}\times\{\mathrm{pre}(\bm{u},\bm{v})\}=\{001,0010\}^{*}\times\{00100\}. By Lemma 2, we have yi=ui=viy_{i}=u_{i}=v_{i} for any i[0,4]i\in\mathbb{Z}[0,4], i.e., y0y1y2y3y4=00100.y_{0}y_{1}y_{2}y_{3}y_{4}=00100.

Lemma 3

Let 𝒞n={𝐜1,𝐜2,,𝐜T}𝒳n\mathcal{C}_{n}=\{\bm{c}_{1},\bm{c}_{2},\cdots,\bm{c}_{T}\}^{*}\cap\mathcal{X}^{n} for each nn, where 𝐜i\bm{c}_{i}, i=1,2,,Ti=1,2,...,T, are strings with entries in 𝒳\mathcal{X}. For G(𝐮,𝐯)G(\bm{u},\bm{v}) with 𝐮,𝐯𝒳m+1\bm{u},\bm{v}\in\mathcal{X}^{m+1} and (𝐮,𝐯)=p(𝐮,𝐯)\ell(\bm{u},\bm{v})=\ell_{\mathrm{p}}(\bm{u},\bm{v}), if {𝒞n}\{\mathcal{C}_{n}\} is a sequence of quasi codes, then any 𝐱{𝐜1,𝐜2,,𝐜T}\bm{x}\in\{\bm{c}_{1},\bm{c}_{2},\cdots,\bm{c}_{T}\} with (𝐱)m+1\ell(\bm{x})\leq m+1 is a unit of 𝐮\bm{u} or 𝐯\bm{v}. Moreover, if 𝐱\bm{x} is a unit of 𝐮\bm{u}, then (𝐱)(𝐮𝐯)\ell(\bm{x})\geq\ell(\bm{u_{v}}).

Proof:

Note that {𝒞n}\{\mathcal{C}_{n}\} is a sequence of quasi codes. We can find a prefix 𝒔p{\bm{s}}_{\mathrm{p}} and a suffix 𝒔s{\bm{s}}_{\mathrm{s}} such that for any nn, by adding 𝒔p{\bm{s}}_{\mathrm{p}} and 𝒔s{\bm{s}}_{\mathrm{s}} to all sequences in 𝒞n\mathcal{C}_{n}, we obtain a code 𝒞n\mathcal{C}^{\prime}_{n^{\prime}} for G(𝒖,𝒗)G(\bm{u},\bm{v}) with n=(𝒔p)+n+(𝒔s)n^{\prime}=\ell({\bm{s}}_{\mathrm{p}})+n+\ell({\bm{s}}_{\mathrm{s}}). Let {𝒞n}\{\mathcal{C}^{\prime}_{n^{\prime}}\} be a sequence of these codes indexed by nn^{\prime}. For any sequence 𝒔\bm{s} and positive integer ww, let 𝒔w\bm{s}^{w} denote the concatenation of 𝒔\bm{s} with itself ww times.

Now we consider n=(𝒔p)+(2m+(𝒚))(𝒙)+(𝒔s)n^{\prime}=\ell({\bm{s}}_{\mathrm{p}})+\left(2m+\ell(\bm{y})\right)\ell(\bm{x})+\ell({\bm{s}}_{\mathrm{s}}). Let

𝒄𝒔p𝒙2m+(𝒚)𝒔s and 𝒄′′𝒔p𝒙m𝒚(𝒙)𝒙m𝒔s\bm{c}^{\prime}\triangleq{\bm{s}}_{\mathrm{p}}\bm{x}^{2m+\ell(\bm{y})}{\bm{s}}_{\mathrm{s}}\text{ and }\bm{c}^{\prime\prime}\triangleq{\bm{s}}_{\mathrm{p}}\bm{x}^{m}\bm{y}^{\ell(\bm{x})}\bm{x}^{m}{\bm{s}}_{\mathrm{s}}

be two codewords in 𝒞n\mathcal{C}^{\prime}_{n^{\prime}}, where 𝒚\bm{y} is an arbitrary string in {𝒄1,𝒄2,,𝒄T}\{\bm{c}_{1},\bm{c}_{2},\cdots,\bm{c}_{T}\} with 𝒚𝒙\bm{y}\neq\bm{x}. Since 𝒄\bm{c}^{\prime} and 𝒄′′\bm{c}^{\prime\prime} are distinguishable for G(𝒖,𝒗)G(\bm{u},\bm{v}), there exists a coordinate i[0,nm1]i\in\mathbb{Z}[0,n^{\prime}-m-1] such that

{cici+1ci+m,ci′′ci+1′′ci+m′′}={𝒖,𝒗}.\{c^{\prime}_{i}c^{\prime}_{i+1}\cdots c^{\prime}_{i+m},c^{\prime\prime}_{i}c^{\prime\prime}_{i+1}\cdots c^{\prime\prime}_{i+m}\}=\{\bm{u},\bm{v}\}.

Without loss of generality, we assume 𝒖=cici+1ci+m\bm{u}=c^{\prime}_{i}c^{\prime}_{i+1}\cdots c^{\prime}_{i+m} and 𝒗=ci′′ci+1′′ci+m′′\bm{v}=c^{\prime\prime}_{i}c^{\prime\prime}_{i+1}\cdots c^{\prime\prime}_{i+m}, and we will prove that 𝒙\bm{x} is a unit of 𝒖\bm{u}.

By definition, u(𝒖,𝒗)v(𝒖,𝒗)u_{\ell(\bm{u},\bm{v})}\neq v_{\ell(\bm{u},\bm{v})}, which implies that ci+(𝒖,𝒗)ci+(𝒖,𝒗)′′c^{\prime}_{i+\ell(\bm{u},\bm{v})}\neq c^{\prime\prime}_{i+\ell(\bm{u},\bm{v})}. On the other hand, the first (𝒔p)+m×(𝒙)\ell({\bm{s}}_{\mathrm{p}})+m\times\ell(\bm{x}) and the last m×(𝒙)+(𝒔s)m\times\ell(\bm{x})+\ell({\bm{s}}_{\mathrm{s}}) bits of 𝒄\bm{c}^{\prime} and 𝒄′′\bm{c}^{\prime\prime} are respectively the same, i.e., cj=cj′′c^{\prime}_{j}=c^{\prime\prime}_{j} for j[0,(𝒔p)+m×(𝒙)1][nm×(𝒙)(𝒔s),n1]j\in\mathbb{Z}[0,\ell({\bm{s}}_{\mathrm{p}})+m\times\ell(\bm{x})-1]\cup\mathbb{Z}[n^{\prime}-m\times\ell(\bm{x})-\ell({\bm{s}}_{\mathrm{s}}),n^{\prime}-1]. Therefore,

i+(𝒖,𝒗)[(𝒔p)+m×(𝒙),nm×(𝒙)(𝒔s)1].i+\ell(\bm{u},\bm{v})\in\mathbb{Z}[\ell({\bm{s}}_{\mathrm{p}})+m\times\ell(\bm{x}),n^{\prime}-m\times\ell(\bm{x})-\ell({\bm{s}}_{\mathrm{s}})-1].

Thus,

i(𝒔p)+m×(𝒙)(𝒖,𝒗)(𝒔p)+mm=(𝒔p)i\geq\ell({\bm{s}}_{\mathrm{p}})+m\times\ell(\bm{x})-\ell(\bm{u},\bm{v})\geq\ell({\bm{s}}_{\mathrm{p}})+m-m=\ell({\bm{s}}_{\mathrm{p}})

and

i+mnm×(𝒙)(𝒔s)1+m(𝒖,𝒗)n(𝒔s)1.i+m\leq n^{\prime}-m\times\ell(\bm{x})-\ell({\bm{s}}_{\mathrm{s}})-1+m-\ell(\bm{u},\bm{v})\leq n^{\prime}-\ell({\bm{s}}_{\mathrm{s}})-1.

Recall that 𝒄=𝒔p𝒙2m+(𝒚)𝒔s\bm{c}^{\prime}={\bm{s}}_{\mathrm{p}}\bm{x}^{2m+\ell(\bm{y})}{\bm{s}}_{\mathrm{s}}. Letting \oplus denote the modulo-(𝒙)\ell(\bm{x}) addition and i=i((𝒔p))i^{\prime}=i\oplus\left(-\ell(\bm{s}_{\mathrm{p}})\right), we have

𝒖=cici+1ci+m=xixi1xim.\bm{u}=c^{\prime}_{i}c^{\prime}_{i+1}\cdots c^{\prime}_{i+m}=x_{i^{\prime}}x_{i^{\prime}\oplus 1}\cdots x_{i^{\prime}\oplus m}.

Note that (𝒙)m+1\ell(\bm{x})\leq m+1. We have 𝒙xixi1xi((𝒙)1)\bm{x}^{\prime}\triangleq x_{i^{\prime}}x_{{i^{\prime}\oplus 1}}\cdots x_{i^{\prime}\oplus(\ell(\bm{x})-1)} is a prefix-unit of 𝒖\bm{u}, and then 𝒙\bm{x} is a unit of 𝒖\bm{u}.

Now we prove that if 𝒙\bm{x} is a unit of 𝒖\bm{u}, then (𝒙)(𝒖𝒗)\ell(\bm{x})\geq\ell(\bm{u_{v}}). Assume the contrary, (𝒙)<(𝒖𝒗)\ell(\bm{x})<\ell(\bm{u_{v}}). Recall that 𝒖𝒗\bm{u_{v}} is the shortest prefix-unit of 𝒖\bm{u} such that (𝒖𝒗)m+1(𝒖,𝒗)\ell(\bm{u_{v}})\geq m+1-\ell(\bm{u},\bm{v}). As a prefix shorter than 𝒖𝒗\bm{u_{v}}, we have (𝒙)<m+1(𝒖,𝒗)m+1s(𝒖,𝒗)\ell(\bm{x})<m+1-\ell(\bm{u},\bm{v})\leq m+1-\ell_{\mathrm{s}}(\bm{u},\bm{v}), which implies (𝒖,𝒗)+(𝒙)<m+1\ell(\bm{u},\bm{v})+\ell(\bm{x})<m+1 and (𝒖,𝒗)+s(𝒙)<m+1\ell(\bm{u},\bm{v})+\ell_{\mathrm{s}}(\bm{x})<m+1. Note that (𝒖)=m+1\ell(\bm{u})=m+1. Now for u(𝒖,𝒗)+(𝒙)u_{\ell(\bm{u},\bm{v})+\ell(\bm{x})} and ums(𝒖,𝒗)(𝒙)u_{m-\ell_{\mathrm{s}}(\bm{u},\bm{v})-\ell(\bm{x})}, as 𝒙\bm{x} is a unit of 𝒖\bm{u},

u(𝒖,𝒗)+(𝒙)=u(𝒖,𝒗) and ums(𝒖,𝒗)(𝒙)=ums(𝒖,𝒗).u_{\ell(\bm{u},\bm{v})+\ell(\bm{x})}=u_{\ell(\bm{u},\bm{v})}\text{ and }u_{m-\ell_{\mathrm{s}}(\bm{u},\bm{v})-\ell(\bm{x})}=u_{m-\ell_{\mathrm{s}}(\bm{u},\bm{v})}. (2)

Now we consider n′′=(𝒔s)+(2m+1)(𝒙)+m(𝒚)+(𝒔s)n^{\prime\prime}=\ell({\bm{s}}_{\mathrm{s}})+(2m+1)\ell(\bm{x})+m\ell(\bm{y})+\ell({\bm{s}}_{\mathrm{s}}). Let

𝒅𝒔p𝒙m+1𝒚m𝒙m𝒔s and 𝒅′′𝒔p𝒙m𝒚m𝒙m+1𝒔s\bm{d}^{\prime}\triangleq{\bm{s}}_{\mathrm{p}}\bm{x}^{m+1}\bm{y}^{m}\bm{x}^{m}{\bm{s}}_{\mathrm{s}}\text{ and }\bm{d}^{\prime\prime}\triangleq{\bm{s}}_{\mathrm{p}}\bm{x}^{m}\bm{y}^{m}\bm{x}^{m+1}{\bm{s}}_{\mathrm{s}} (3)

be two codewords in 𝒞n\mathcal{C}^{\prime}_{n^{\prime}}. There exists a coordinate i[0,n′′m1]i\in\mathbb{Z}[0,n^{\prime\prime}-m-1] such that one of the following two conditions holds.

  1. 1.

    didi+1di+m=𝒖d^{\prime}_{i}d^{\prime}_{i+1}\cdots d^{\prime}_{i+m}=\bm{u} and di′′di+1′′di+m′′=𝒗d^{\prime\prime}_{i}d^{\prime\prime}_{i+1}\cdots d^{\prime\prime}_{i+m}=\bm{v};

  2. 2.

    didi+1di+m=𝒗d^{\prime}_{i}d^{\prime}_{i+1}\cdots d^{\prime}_{i+m}=\bm{v} and di′′di+1′′di+m′′=𝒖d^{\prime\prime}_{i}d^{\prime\prime}_{i+1}\cdots d^{\prime\prime}_{i+m}=\bm{u}.

Note that u(𝒖,𝒗)v(𝒖,𝒗)u_{\ell(\bm{u},\bm{v})}\neq v_{\ell(\bm{u},\bm{v})} and ums(𝒖,𝒗)vms(𝒖,𝒗)u_{m-\ell_{\mathrm{s}}(\bm{u},\bm{v})}\neq v_{m-\ell_{\mathrm{s}}(\bm{u},\bm{v})}. We have

di1di1′′ and di2di2′′,d^{\prime}_{i_{1}}\neq d^{\prime\prime}_{i_{1}}\text{ and }d^{\prime}_{i_{2}}\neq d^{\prime\prime}_{i_{2}}, (4)

where i1=i+(𝒖,𝒗)i_{1}=i+\ell(\bm{u},\bm{v}) and i2=i+ms(𝒖,𝒗)i_{2}=i+m-\ell_{\mathrm{s}}(\bm{u},\bm{v}). To simplify the notations, let I1(𝒔s)+m(𝒙)I_{1}\triangleq\ell({\bm{s}}_{\mathrm{s}})+m\ell(\bm{x}), I2I1+(𝒙)I_{2}\triangleq I_{1}+\ell(\bm{x}), I3I1+m(𝒚)I_{3}\triangleq I_{1}+m\ell(\bm{y}) and I4I1+(𝒙)+m(𝒚)I_{4}\triangleq I_{1}+\ell(\bm{x})+m\ell(\bm{y}). Clearly, i1i2i_{1}\leq i_{2} and I1<min{I2,I3}max{I2,I3}<I4I_{1}<\min\{I_{2},I_{3}\}\leq\max\{I_{2},I_{3}\}<I_{4}. If i1[0,I11][I4,n′′1]i_{1}\in\mathbb{Z}[0,I_{1}-1]\cup\mathbb{Z}[I_{4},n^{\prime\prime}-1], then di1=di1′′d^{\prime}_{i_{1}}=d^{\prime\prime}_{i_{1}} which contradicts (4). Thus i1[I1,I41].i_{1}\in\mathbb{Z}[I_{1},I_{4}-1]. Likewise, we also have i2[I1,I41].i_{2}\in\mathbb{Z}[I_{1},I_{4}-1].

We first assume that Condition 1) holds. If i1[I1,I31]i_{1}\in\mathbb{Z}[I_{1},I_{3}-1], then by (2), we have

di1=u(𝒖,𝒗)=u(𝒖,𝒗)+(𝒙)=di1+(𝒙).d^{\prime}_{i_{1}}=u_{\ell(\bm{u},\bm{v})}=u_{\ell(\bm{u},\bm{v})+\ell(\bm{x})}=d^{\prime}_{i_{1}+\ell(\bm{x})}.

Thus

di1=di1+(𝒙)=(𝒔p𝒙m+1𝒚m)i1+(𝒙)=(𝒚m)i1+(𝒙)I2=(𝒚m)i1I1=(𝒔p𝒙m𝒚m)i1=di1′′,d^{\prime}_{i_{1}}=d^{\prime}_{i_{1}+\ell(\bm{x})}=(\bm{s}_{\mathrm{p}}\bm{x}^{m+1}\bm{y}^{m})_{i_{1}+\ell(\bm{x})}=(\bm{y}^{m})_{i_{1}+\ell(\bm{x})-I_{2}}=(\bm{y}^{m})_{i_{1}-I_{1}}=(\bm{s}_{\mathrm{p}}\bm{x}^{m}\bm{y}^{m})_{i_{1}}=d^{\prime\prime}_{i_{1}},

which contradicts (4). Therefore, i1[I3,I41]i_{1}\in\mathbb{Z}[I_{3},I_{4}-1]. Recall that i2i1i_{2}\geq i_{1} and i2[I1,I41]i_{2}\in\mathbb{Z}[I_{1},I_{4}-1]. We have i2[I3,I41]i_{2}\in\mathbb{Z}[I_{3},I_{4}-1], and so

ums(𝒖,𝒗)=di2=di2(𝒙)=di2′′,u_{m-\ell_{\mathrm{s}}(\bm{u},\bm{v})}=d^{\prime}_{i_{2}}=d^{\prime}_{i_{2}-\ell(\bm{x})}=d^{\prime\prime}_{i_{2}},

which contradicts (4). Hence, there do not exist coordinates i1i_{1} and i2i_{2} such that Condition 1 holds.

Now we consider that Condition 2 holds. If i2[I2,I41]i_{2}\in\mathbb{Z}[I_{2},I_{4}-1], likewise, we can obtain that

di2′′=ums(𝒖,𝒗)=ums(𝒖,𝒗)(𝒙)=di2(𝒙)′′=(𝒔p𝒙m𝒚m𝒙)i1(𝒙)=(𝒔p𝒙m+1𝒚m)i1=di2,d^{\prime\prime}_{i_{2}}=u_{m-\ell_{\mathrm{s}}(\bm{u},\bm{v})}=u_{m-\ell_{\mathrm{s}}(\bm{u},\bm{v})-\ell(\bm{x})}=d^{\prime\prime}_{i_{2}-\ell(\bm{x})}=(\bm{s}_{\mathrm{p}}\bm{x}^{m}\bm{y}^{m}\bm{x})_{i_{1}-\ell(\bm{x})}=(\bm{s}_{\mathrm{p}}\bm{x}^{m+1}\bm{y}^{m})_{i_{1}}=d^{\prime}_{i_{2}},

which contradicts (4). Therefore, i2[I1,I21]i_{2}\in\mathbb{Z}[I_{1},I_{2}-1], and then i1[I1,I21]i_{1}\in\mathbb{Z}[I_{1},I_{2}-1], and so

u(𝒖,𝒗)=di2′′=di2(𝒙)′′=di2,u_{\ell(\bm{u},\bm{v})}=d^{\prime\prime}_{i_{2}}=d^{\prime\prime}_{i_{2}-\ell(\bm{x})}=d^{\prime}_{i_{2}},

which contradicts (4). Hence, there do not exist coordinates i1i_{1} and i2i_{2} such that Condition 2 holds. Therefore, (𝒙)(𝒖𝒗)\ell(\bm{x})\geq\ell(\bm{u_{v}}) if 𝒙\bm{x} is a unit of 𝒖\bm{u}. ∎

Corollary 1

Let {𝒞n}\{\mathcal{C}_{n}\} be a sequence of quasi codes for G(𝐮,𝐯)G(\bm{u},\bm{v}) with 𝒞n{𝐜1,𝐜2,,𝐜T}𝒳n\mathcal{C}_{n}\triangleq\{\bm{c}_{1},\bm{c}_{2},\cdots,\bm{c}_{T}\}^{*}\cap\mathcal{X}^{n}. Then (𝐜t)min{(𝐮𝐯),(𝐯𝐮)}\ell(\bm{c}_{t})\geq\min\{\ell(\bm{u_{v}}),\ell(\bm{v_{u}})\}, t=1,2,,Tt=1,2,...,T.

With the above auxiliary results, we turn to the proof of Theorem 1.

Proof:

We first prove that n\mathcal{B}_{n} is a quasi 2-code for G(𝒖,𝒗)G(\bm{u},\bm{v}). It is sufficient to prove that

n({𝒖𝒗,𝒗𝒖}𝒳n)×{pre(𝒖,𝒗)}\mathcal{B}^{\prime}_{n^{\prime}}\triangleq\left(\{\bm{u_{v}},\bm{v_{u}}\}^{*}\cap\mathcal{X}^{n}\right)\times\{\mathrm{pre}(\bm{u},\bm{v})\}

is a code for G(𝒖,𝒗)G(\bm{u},\bm{v}) with nn+p(𝒖,𝒗)n^{\prime}\triangleq n+\ell_{\mathrm{p}}(\bm{u},\bm{v}), i.e., any two different sequences 𝒃,𝒃′′n\bm{b}^{\prime},\bm{b}^{\prime\prime}\in\mathcal{B}^{\prime}_{n} are distinguishable for G(𝒖,𝒗)G(\bm{u},\bm{v}). The sequences 𝒃,𝒃′′n\bm{b}^{\prime},\bm{b}^{\prime\prime}\in\mathcal{B}^{\prime}_{n} can be written as 𝒃=𝒃0𝒃1𝒃N11𝒃N1\bm{b}^{\prime}=\bm{b}^{\prime}_{0}\bm{b}^{\prime}_{1}\ldots\bm{b}^{\prime}_{N_{1}-1}\bm{b}^{\prime}_{N_{1}} and 𝒃′′=𝒃0′′𝒃1′′𝒃N21′′𝒃N2′′\bm{b}^{\prime\prime}=\bm{b}^{\prime\prime}_{0}\bm{b}^{\prime\prime}_{1}\ldots\bm{b}^{\prime\prime}_{N_{2}-1}\bm{b}^{\prime\prime}_{N_{2}}, where 𝒃n1,𝒃n2′′{𝒖𝒗,𝒗𝒖}\bm{b}^{\prime}_{n_{1}},\bm{b}^{\prime\prime}_{n_{2}}\in\{\bm{u_{v}},\bm{v_{u}}\} for n1[0,N11]n_{1}\in\mathbb{Z}[0,N_{1}-1] and n2[0,N21]n_{2}\in\mathbb{Z}[0,N_{2}-1], and 𝒃N1=𝒃N2′′=pre(𝒖,𝒗)\bm{b}^{\prime}_{N_{1}}=\bm{b}^{\prime\prime}_{N_{2}}=\mathrm{pre}(\bm{u},\bm{v}). Let nn^{*} be the smallest index such that 𝒃n𝒃n′′\bm{b}^{\prime}_{n^{*}}\neq\bm{b}^{\prime\prime}_{n^{*}}, i.e.,

nmin{n[0,min{N1,N2}1]:𝒃n𝒃n′′}.n^{*}\triangleq\min\left\{n\in\mathbb{Z}[0,\min\{N_{1},N_{2}\}-1]:\bm{b}^{\prime}_{n}\neq\bm{b}^{\prime\prime}_{n}\right\}.

Without loss of generality, we assume that 𝒃n=𝒖𝒗\bm{b}^{\prime}_{n^{*}}=\bm{{u}_{v}} and 𝒃n′′=𝒗𝒖\bm{b}^{\prime\prime}_{n^{*}}=\bm{{v}_{u}}. Let

in=0n1(𝒃n)=n=0n1(𝒃n′′)i\triangleq\sum_{n=0}^{n^{*}-1}\ell(\bm{b}^{\prime}_{n})=\sum_{n=0}^{n^{*}-1}\ell(\bm{b}^{\prime\prime}_{n})

be the coordinate of the first symbol of 𝒃n\bm{b}^{\prime}_{n^{*}} in 𝒃\bm{b}^{\prime}.

Note that both 𝒃n+1𝒃n+2𝒃N11\bm{b}^{\prime}_{n^{*}+1}\bm{b}^{\prime}_{n^{*}+2}\ldots\bm{b}^{\prime}_{N_{1}-1} and 𝒃n+1′′𝒃n+2′′𝒃N21′′\bm{b}^{\prime\prime}_{n^{*}+1}\bm{b}^{\prime\prime}_{n^{*}+2}\ldots\bm{b}^{\prime\prime}_{N_{2}-1} are in {𝒖𝒗,𝒗𝒖}\{\bm{u_{v}},\bm{v_{u}}\}^{*}. By Lemma 2, we have

bi+(𝒖𝒗)+j=bi+(𝒗𝒖)+j′′=uj=vj,j[0,(𝒖,𝒗)1].b^{\prime}_{i+\ell(\bm{u_{v}})+j}=b^{\prime\prime}_{i+\ell(\bm{v_{u}})+j}=u_{j}=v_{j},\forall j\in\mathbb{Z}[0,\ell(\bm{u,v})-1]. (5)

On the other hand, the fact that 𝒖𝒗\bm{u_{v}} and 𝒗𝒖\bm{v_{u}} are, respectively, the prefix-unit of 𝒖\bm{u} and 𝒗\bm{v} implies that

uj=uj+(𝒖𝒗),j[0,m(𝒖𝒗)]u_{j}=u_{j+\ell(\bm{u_{v}})},\forall j\in\mathbb{Z}[0,m-\ell(\bm{u_{v}})] (6)

and

vj=vj+(𝒗𝒖),j[0,m(𝒗𝒖)].v_{j}=v_{j+\ell(\bm{v_{u}})},\forall j\in\mathbb{Z}[0,m-\ell(\bm{v_{u}})]. (7)

Recall that (𝒖𝒗),(𝒗𝒖)m+1(𝒖,𝒗)\ell(\bm{u_{v}}),\ell(\bm{v_{u}})\geq m+1-\ell(\bm{u},\bm{v}). By (5) and (6), we have

bi+(𝒖𝒗)+j=u(𝒖𝒗)+j,j[0,(𝒖,𝒗)][0,m(𝒖𝒗)]=[0,m(𝒖𝒗)].b^{\prime}_{i+\ell(\bm{u_{v}})+j}=u_{\ell(\bm{u_{v}})+j},\forall j\in\mathbb{Z}[0,\ell(\bm{u,v})]\cap\mathbb{Z}[0,m-\ell(\bm{u_{v}})]=\mathbb{Z}[0,m-\ell(\bm{u_{v}})].

Therefore,

bibi+1bi+m=bibi+1bi+(𝒖𝒗)1bi+(𝒖𝒗)bi+m=𝒃nbi+(𝒖𝒗)bi+m=𝒖𝒗u(𝒖𝒗)um=𝒖.\begin{split}&b^{\prime}_{i}b^{\prime}_{i+1}\cdots b^{\prime}_{i+m}\\ =&b^{\prime}_{i}b^{\prime}_{i+1}\cdots b^{\prime}_{i+\ell(\bm{u_{v}})-1}b^{\prime}_{i+\ell(\bm{u_{v}})}\cdots b^{\prime}_{i+m}\\ =&\bm{b}^{\prime}_{n^{*}}b^{\prime}_{i+\ell(\bm{u_{v}})}\cdots b^{\prime}_{i+m}\\ =&\bm{u_{v}}u_{\ell(\bm{u_{v}})}\cdots u_{m}\\ =&\bm{u}.\end{split}

Likewise, we can also obtain that

bi′′bi+1′′bi+m′′=𝒗.b^{\prime\prime}_{i}b^{\prime\prime}_{i+1}\cdots b^{\prime\prime}_{i+m}=\bm{v}.

Hence 𝒃,𝒃′′n\bm{b}^{\prime},\bm{b}^{\prime\prime}\in\mathcal{B}^{\prime}_{n} are distinguishable for G(𝒖,𝒗)G(\bm{u},\bm{v}), which indicates that n\mathcal{B}_{n} is a quasi 2-code for G(𝒖,𝒗)G(\bm{u},\bm{v}).

We now prove that {n}\{\mathcal{B}_{n}\} has the highest rate among all the quasi 2-codes for G(𝒖,𝒗)G(\bm{u},\bm{v}). Assume there exists a quasi 2-code

𝒞n{𝒙,𝒚}𝒳n\mathcal{C}_{n}\triangleq\{\bm{x},\bm{y}\}^{*}\cap\mathcal{X}^{n}

such that R({𝒞n})>R({n}).R(\{\mathcal{C}_{n}\})>R(\{\mathcal{B}_{n}\}). Note that R({n})=logxR(\{\mathcal{B}_{n}\})=-\log x^{*} and R({𝒞n})=logxR(\{\mathcal{C}_{n}\})=-\log x^{\prime}, where xx^{*} and xx^{\prime} satisfy, respectively, that

(x)(𝒖𝒗)+(x)(𝒗𝒖)=1(x^{*})^{\ell(\bm{u_{v}})}+(x^{*})^{\ell(\bm{v_{u}})}=1

and

(x)(𝒙)+(x)(𝒚)=1.(x^{\prime})^{\ell(\bm{x})}+(x^{\prime})^{\ell(\bm{y})}=1.

If (𝒙)(𝒖𝒗)\ell(\bm{x})\geq\ell(\bm{u_{v}}) and (𝒚)(𝒗𝒖)\ell(\bm{y})\geq\ell(\bm{v_{u}}), then xxx^{*}\geq x^{\prime}, which contradicts the assumption that R({n})<R({𝒞n}).R(\{\mathcal{B}_{n}\})<R(\{\mathcal{C}_{n}\}). Thus, (𝒙)<(𝒖𝒗)m+1\ell(\bm{x})<\ell(\bm{u_{v}})\leq m+1 or (𝒚)<(𝒗𝒖)m+1\ell(\bm{y})<\ell(\bm{v_{u}})\leq m+1. By Lemma 3, either 𝒙\bm{x} or 𝒚\bm{y} is a unit of 𝒖\bm{u} or 𝒗\bm{v}. Without loss of generality, let 𝒙\bm{x} be a unit of 𝒖\bm{u} and (𝒙)(𝒖𝒗)\ell(\bm{x})\geq\ell(\bm{u_{v}}). Moreover, since R({𝒞n})>R({n})R(\{\mathcal{C}_{n}\})>R(\{\mathcal{B}_{n}\}), we have (𝒚)<(𝒗𝒖)m+1\ell(\bm{y})<\ell(\bm{v_{u}})\leq m+1. Thus, by Lemma 3, 𝒚\bm{y} is also a unit of 𝒖\bm{u} or 𝒗\bm{v}. Considering that (𝒚)<(𝒗𝒖)\ell(\bm{y})<\ell(\bm{v_{u}}), we can obtain that 𝒚\bm{y} is a unit of 𝒖\bm{u} but not a unit of 𝒗\bm{v}, and thus (𝒖𝒗)(𝒚)<(𝒗𝒖)\ell(\bm{u_{v}})\leq\ell(\bm{y})<\ell(\bm{v_{u}}). Moreover, we can also obtain that 𝒙\bm{x} is not a unit of 𝒗\bm{v}.

We have proved that for {𝒞n}\{\mathcal{C}_{n}\}, each of 𝒙\bm{x} and 𝒚\bm{y} is a unit of 𝒖\bm{u}, and neither of them is a unit of 𝒗\bm{v}. The remaining part will prove that this statement does not hold, so that there does not exist a sequence of codes {𝒞n}\{\mathcal{C}_{n}\} whose rate would be larger than R({n})R(\{\mathcal{B}_{n}\}). This will complete the proof of this theorem.

Now we assume that the statement holds. There exists a prefix 𝒔p{\bm{s}}_{\mathrm{p}} and a suffix 𝒔s{\bm{s}}_{\mathrm{s}} such that by adding 𝒔p{\bm{s}}_{\mathrm{p}} and 𝒔s{\bm{s}}_{\mathrm{s}} to all sequences in 𝒞n\mathcal{C}_{n}, we obtain a code for G(𝒖,𝒗)G(\bm{u},\bm{v}), denoted by

𝒞t({𝒔p}×{𝒙,𝒚}×{𝒔s})𝒳t.\mathcal{C}^{\prime}_{t}\triangleq\left(\{{\bm{s}}_{\mathrm{p}}\}\times\{\bm{x},\bm{y}\}^{*}\times\{{\bm{s}}_{\mathrm{s}}\}\right)\cap\mathcal{X}^{t}.

Let

𝒄xxx𝒔p𝒙m(𝒚)𝒙m(𝒚)𝒙m(𝒚)𝒔s\bm{c}^{xxx}\triangleq{\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\bm{x}^{m\ell(\bm{y})}\bm{x}^{m\ell(\bm{y})}{\bm{s}}_{\mathrm{s}}

and

𝒄xyx𝒔p𝒙m(𝒚)𝒚m(𝒙)𝒙m(𝒚)𝒔s\bm{c}^{xyx}\triangleq{\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\bm{y}^{m\ell(\bm{x})}\bm{x}^{m\ell(\bm{y})}{\bm{s}}_{\mathrm{s}}

be sequences of length t(𝒔p)+3m(𝒙)(𝒚)+(𝒔s)t^{\prime}\triangleq\ell({\bm{s}}_{\mathrm{p}})+3m\ell(\bm{x})\ell(\bm{y})+\ell({\bm{s}}_{\mathrm{s}}). Note that these two sequences are distinguishable. There exists a coordinate ii such that

{cixxxci+1xxxci+mxxx,cixyxci+1xyxci+mxyx}={𝒖,𝒗}.\{c^{xxx}_{i}c^{xxx}_{i+1}\cdots c^{xxx}_{i+m},c^{xyx}_{i}c^{xyx}_{i+1}\cdots c^{xyx}_{i+m}\}=\{\bm{u},\bm{v}\}.

Letting ipi+(𝒖,𝒗)i_{\mathrm{p}}\triangleq i+\ell(\bm{u},\bm{v}) and isi+ms(𝒖,𝒗)i_{\mathrm{s}}\triangleq i+m-\ell_{\mathrm{s}}(\bm{u},\bm{v}), since cipxxxcipxyxc^{xxx}_{i_{\mathrm{p}}}\neq c^{xyx}_{i_{\mathrm{p}}} and cisxxxcisxyxc^{xxx}_{i_{\mathrm{s}}}\neq c^{xyx}_{i_{\mathrm{s}}}, we have

(𝒔p𝒙m(𝒚))ipis<(𝒔p𝒙m(𝒚)𝒚m(𝒙)),\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\right)\leq i_{\mathrm{p}}\leq i_{\mathrm{s}}<\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\bm{y}^{m\ell(\bm{x})}\right),

which implies

i[(𝒔p𝒙m(𝒚))(𝒖,𝒗),(𝒔p𝒙m(𝒚)𝒚m(𝒙))m+s(𝒖,𝒗)1].i\in\mathbb{Z}\left[\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\right)-\ell(\bm{u},\bm{v}),\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\bm{y}^{m\ell(\bm{x})}\right)-m+\ell_{\mathrm{s}}(\bm{u},\bm{v})-1\right]. (8)

On the other hand, as 𝒙\bm{x} is not a unit of 𝒗\bm{v}, we have cixxxci+1xxxci+mxxx=𝒖c^{xxx}_{i}c^{xxx}_{i+1}\cdots c^{xxx}_{i+m}=\bm{u} and thus cixyxci+1xyxci+mxyx=𝒗c^{xyx}_{i}c^{xyx}_{i+1}\cdots c^{xyx}_{i+m}=\bm{v}. Since 𝒚\bm{y} is neither a unit of 𝒗\bm{v}, we further have

i[(𝒔p𝒙m(𝒚)),(𝒔p𝒙m(𝒚)𝒚m(𝒙))m1].i\notin\mathbb{Z}\left[\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\right),\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\bm{y}^{m\ell(\bm{x})}\right)-m-1\right]. (9)

By (8) and (9), we can obtain that

i1[(𝒔p𝒙m(𝒚))(𝒖,𝒗),(𝒔p𝒙m(𝒚))1]i\in\mathcal{I}_{1}\triangleq\mathbb{Z}\left[\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\right)-\ell(\bm{u},\bm{v}),\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\right)-1\right]

or

i2[(𝒔p𝒙m(𝒚)𝒚m(𝒙))m,(𝒔p𝒙m(𝒚)𝒚m(𝒙))m+s(𝒖,𝒗)1].i\in\mathcal{I}_{2}\triangleq\mathbb{Z}\left[\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\bm{y}^{m\ell(\bm{x})}\right)-m,\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\bm{y}^{m\ell(\bm{x})}\right)-m+\ell_{\mathrm{s}}(\bm{u},\bm{v})-1\right].

Letting I1min{j0:xjmod(𝒙)yjmod(𝒚)}I_{1}\triangleq\min\{j\geq 0:x_{j\bmod\ell(\bm{x})}\neq y_{j\bmod\ell(\bm{y})}\}, if i1i\in\mathcal{I}_{1}, then I1(𝒖,𝒗)I_{1}\leq\ell(\bm{u,v}) and

ip=min{j(𝒔p𝒙m(𝒚)):cjxxxcjxyx}=(𝒔p𝒙m(𝒚))+I1.\begin{split}i_{\mathrm{p}}=&\min\{j\geq\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\right):c^{xxx}_{j}\neq c^{xyx}_{j}\}\\ =&\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\right)+I_{1}.\end{split}

Likewise, letting I2min{j>0:xjmod(𝒙)yjmod(𝒚)}I_{2}\triangleq\min\{j>0:x_{-j\bmod\ell(\bm{x})}\neq y_{-j\bmod\ell(\bm{y})}\}, if i2i\in\mathcal{I}_{2}, then I2s(𝒖,𝒗)I_{2}\leq\ell_{\mathrm{s}}(\bm{u,v}) and

is=max{j<(𝒔p𝒙m(𝒚)𝒚m(𝒙)):cjxxxcjxyx}=(𝒔p𝒙m(𝒚)𝒚m(𝒙))I2.\begin{split}i_{\mathrm{s}}=&\max\{j<\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\bm{y}^{m\ell(\bm{x})}\right):c^{xxx}_{j}\neq c^{xyx}_{j}\}\\ =&\ell\left({\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\bm{y}^{m\ell(\bm{x})}\right)-I_{2}.\end{split}

Consider the four cases:

  1. AA)

    𝒄p𝒙𝒙=𝒖\bm{c}_{\mathrm{p}}^{\bm{xx}}=\bm{u} and 𝒄p𝒙𝒚=𝒗\bm{c}_{\mathrm{p}}^{\bm{xy}}=\bm{v},

  2. BB)

    𝒄p𝒚𝒚=𝒖\bm{c}_{\mathrm{p}}^{\bm{yy}}=\bm{u} and 𝒄p𝒚𝒙=𝒗\bm{c}_{\mathrm{p}}^{\bm{yx}}=\bm{v},

  3. CC)

    𝒄s𝒚𝒚=𝒖\bm{c}_{\mathrm{s}}^{\bm{yy}}=\bm{u} and 𝒄s𝒙𝒚=𝒗\bm{c}_{\mathrm{s}}^{\bm{xy}}=\bm{v},

  4. DD)

    𝒄s𝒙𝒙=𝒖\bm{c}_{\mathrm{s}}^{\bm{xx}}=\bm{u} and 𝒄s𝒚𝒙=𝒗\bm{c}_{\mathrm{s}}^{\bm{yx}}=\bm{v},

where

𝒄p𝒘𝒘′′=wI1(𝒖,𝒗)mod(𝒘)w1mod(𝒘)w0mod(𝒘′′)′′wI1(𝒖,𝒗)+mmod(𝒘′′)′′,\bm{c}_{\mathrm{p}}^{\bm{w}^{\prime}\bm{w}^{\prime\prime}}=w^{\prime}_{I_{1}-\ell(\bm{u,v})\bmod\ell(\bm{w}^{\prime})}...w^{\prime}_{-1\bmod\ell(\bm{w}^{\prime})}w^{\prime\prime}_{0\bmod\ell(\bm{w}^{\prime\prime})}...w^{\prime\prime}_{I_{1}-\ell(\bm{u,v})+m\bmod\ell(\bm{w}^{\prime\prime})},

and

𝒄s𝒘𝒘′′=wI2+s(𝒖,𝒗)mmod(𝒘)w1mod(𝒘)w0mod(𝒘′′)′′wI2+s(𝒖,𝒗)mod(𝒘′′)′′,\bm{c}_{\mathrm{s}}^{\bm{w}^{\prime}\bm{w}^{\prime\prime}}=w^{\prime}_{-I_{2}+\ell_{\mathrm{s}}(\bm{u,v})-m\bmod\ell(\bm{w}^{\prime})}...w^{\prime}_{-1\bmod\ell(\bm{w}^{\prime})}w^{\prime\prime}_{0\bmod\ell(\bm{w}^{\prime\prime})}...w^{\prime\prime}_{-I_{2}+\ell_{\mathrm{s}}(\bm{u,v})\bmod\ell(\bm{w}^{\prime\prime})},

for 𝒘,𝒘′′{𝒙,𝒚}\bm{w}^{\prime},\bm{w}^{\prime\prime}\in\{\bm{x},\bm{y}\}.

We have shown that the fact that 𝒄xxx\bm{c}^{xxx} and 𝒄xyx\bm{c}^{xyx} are distinguishable implies that Case AA or DD holds. Likewise, we have the following implications.

  • 𝒄xxy𝒔p𝒙m(𝒚)𝒙m(𝒚)𝒚m(𝒙)𝒔s\bm{c}^{xxy}\triangleq{\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\bm{x}^{m\ell(\bm{y})}\bm{y}^{m\ell(\bm{x})}{\bm{s}}_{\mathrm{s}} and 𝒄xyy𝒔p𝒙m(𝒚)𝒚m(𝒙)𝒚m(𝒙)𝒔s\bm{c}^{xyy}\triangleq{\bm{s}}_{\mathrm{p}}\bm{x}^{m\ell(\bm{y})}\bm{y}^{m\ell(\bm{x})}\bm{y}^{m\ell(\bm{x})}{\bm{s}}_{\mathrm{s}} are distinguishable \implies Case AA or CC holds;

  • 𝒄yxx𝒔p𝒚m(𝒙)𝒙m(𝒚)𝒙m(𝒚)𝒔s\bm{c}^{yxx}\triangleq{\bm{s}}_{\mathrm{p}}\bm{y}^{m\ell(\bm{x})}\bm{x}^{m\ell(\bm{y})}\bm{x}^{m\ell(\bm{y})}{\bm{s}}_{\mathrm{s}} and 𝒄yyx𝒔p𝒚m(𝒙)𝒚m(𝒙)𝒙m(𝒚)𝒔s\bm{c}^{yyx}\triangleq{\bm{s}}_{\mathrm{p}}\bm{y}^{m\ell(\bm{x})}\bm{y}^{m\ell(\bm{x})}\bm{x}^{m\ell(\bm{y})}{\bm{s}}_{\mathrm{s}} are distinguishable \implies Case BB or DD holds;

  • 𝒄yxy𝒔p𝒚m(𝒙)𝒙m(𝒚)𝒚m(𝒙)𝒔s\bm{c}^{yxy}\triangleq{\bm{s}}_{\mathrm{p}}\bm{y}^{m\ell(\bm{x})}\bm{x}^{m\ell(\bm{y})}\bm{y}^{m\ell(\bm{x})}{\bm{s}}_{\mathrm{s}} and 𝒄yyy𝒔p𝒚m(𝒙)𝒚m(𝒙)𝒚m(𝒙)𝒔s\bm{c}^{yyy}\triangleq{\bm{s}}_{\mathrm{p}}\bm{y}^{m\ell(\bm{x})}\bm{y}^{m\ell(\bm{x})}\bm{y}^{m\ell(\bm{x})}{\bm{s}}_{\mathrm{s}} are distinguishable \implies Case BB or CC holds.

From all these implications, we derive that either both Cases AA and BB hold, or both Cases CC and DD hold. If Cases AA and BB hold, then 𝒄p𝒙𝒙=𝒄p𝒚𝒚\bm{c}_{\mathrm{p}}^{\bm{xx}}=\bm{c}_{\mathrm{p}}^{\bm{yy}}, and thus 𝒄p𝒙𝒙=𝒄p𝒚𝒚=𝒄p𝒚𝒙=𝒄p𝒙𝒚\bm{c}_{\mathrm{p}}^{\bm{xx}}=\bm{c}_{\mathrm{p}}^{\bm{yy}}=\bm{c}_{\mathrm{p}}^{\bm{yx}}=\bm{c}_{\mathrm{p}}^{\bm{xy}}. Hence, 𝒖=𝒄p𝒙𝒙=𝒄p𝒚𝒙=𝒗\bm{u}=\bm{c}_{\mathrm{p}}^{\bm{xx}}=\bm{c}_{\mathrm{p}}^{\bm{yx}}=\bm{v}, a contradiction. Likewise, if Cases CC and DD hold, then 𝒄s𝒙𝒙=𝒄s𝒚𝒚\bm{c}_{\mathrm{s}}^{\bm{xx}}=\bm{c}_{\mathrm{s}}^{\bm{yy}}, and thus 𝒖=𝒄s𝒙𝒙=𝒄s𝒚𝒙=𝒗\bm{u}=\bm{c}_{\mathrm{s}}^{\bm{xx}}=\bm{c}_{\mathrm{s}}^{\bm{yx}}=\bm{v}, also leads to a contradiction and the theorem is proved. ∎

III-B optimality for the quasi 2-code

For any 𝒙𝒳n\bm{x}\in\mathcal{X}^{n}, we define two string operations π𝒮{\pi}_{\mathcal{S}} and del𝒮\mathrm{del}_{\mathcal{S}}, where 𝒮[0,n1]\mathcal{S}\subset\mathbb{Z}[0,n-1]. Let

π𝒮(𝒙){𝒙𝒳n:xi=xi,i[0,n1]𝒮}.\pi_{\mathcal{S}}(\bm{x})\triangleq\left\{\bm{x}^{\prime}\in\mathcal{X}^{n}:x^{\prime}_{i}=x_{i},\,i\in\mathbb{Z}[0,n-1]\setminus\mathcal{S}\right\}.

Let del𝒮(𝒙)\mathrm{del}_{\mathcal{S}}(\bm{x}) be the string obtained by deleting each symbol of 𝒙\bm{x} whose coordinate is in 𝒮\mathcal{S}. With a slight abuse of notation, let del𝒮(𝒜n)={del𝒮(𝒙):𝒙𝒜n}\mathrm{del}_{\mathcal{S}}(\mathcal{A}_{n})=\{\mathrm{del}_{\mathcal{S}}(\bm{x}):\bm{x}\in\mathcal{A}_{n}\}. Obviously, |𝒜n||del𝒮(𝒜n)||\mathcal{A}_{n}|\geq|\mathrm{del}_{\mathcal{S}}(\mathcal{A}_{n})|. The following lemma will be used in determining the upper bound on zero-error capacity.

Lemma 4

For any graph GG representing the channel with mm memories (any vertex in V(G)V(G) is of length m+1m+1), let 𝒜n\mathcal{A}_{n} be a code for GG.

  1. 1.

    If there exists a codeword 𝒙\bm{x} and a coordinate set 𝒮[0,n1]\mathcal{S}\subset\mathbb{Z}[0,n-1] such that for any

    j𝒮mi𝒮[max{im,0},min{i,nm1}],j\in\mathcal{I}^{m}_{\mathcal{S}}\triangleq\bigcup\limits_{i\in\mathcal{S}}{\mathbb{Z}[\max\{i-m,0\},\min\{i,n-m-1\}]},

    the vertex xjxj+1xj+mx_{j}x_{j+1}\ldots x_{j+m} is of degree zero, then after replacing 𝒙\bm{x} by any sequence in π𝒮(𝒙)\pi_{\mathcal{S}}(\bm{x}), the updated 𝒜n\mathcal{A}_{n} remains a code for GG.

  2. 2.

    If there exists a set 𝒮[0,n1]\mathcal{S}\subset\mathbb{Z}[0,n-1] such that for any 𝒙,𝒚𝒜n\bm{x},\bm{y}\in\mathcal{A}_{n} and any j𝒮mj\in\mathcal{I}^{m}_{\mathcal{S}}, xjxj+1xj+mx_{j}x_{j+1}\ldots x_{j+m} and yjyj+1yj+my_{j}y_{j+1}\ldots y_{j+m} are indistinguishable, then |del𝒮(𝒜n)|=|𝒜n||\mathrm{del}_{\mathcal{S}}(\mathcal{A}_{n})|=|\mathcal{A}_{n}| and del𝒮(𝒜n)\mathrm{del}_{\mathcal{S}}(\mathcal{A}_{n}) is a code for GG.

Proof:

We first prove that when 𝒙\bm{x} is replaced by any sequence 𝒙π𝒮(𝒙)\bm{x}^{\prime}\in\pi_{\mathcal{S}}(\bm{x}), the updated 𝒜n\mathcal{A}_{n} remains a code. It is sufficient to prove that for any 𝒚𝒜n\bm{y}\in\mathcal{A}_{n}, 𝒚𝒙\bm{y}\neq\bm{x}, we have 𝒙\bm{x}^{\prime} and 𝒚\bm{y} are distinguishable. Since 𝒙\bm{x} and 𝒚\bm{y} are distinguishable, there exists a coordinate j[0,nm1]j^{\prime}\in\mathbb{Z}[0,n-m-1] such that xjxj+1xj+mx_{j^{\prime}}x_{j^{\prime}+1}\ldots x_{j^{\prime}+m} and yjyj+1yj+my_{j^{\prime}}y_{j^{\prime}+1}\ldots y_{j^{\prime}+m} are adjacent in GG, which implies that the degree of xjxj+1xj+mx_{j^{\prime}}x_{j^{\prime}+1}\ldots x_{j^{\prime}+m} is not zero, i.e., j𝒮mj^{\prime}\notin\mathcal{I}_{\mathcal{S}}^{m}. Thus,

𝒮[j,j+m]=,\mathcal{S}\cap\mathbb{Z}[j^{\prime},j^{\prime}+m]=\emptyset,

which implies that xjxj+1xj+m=xjxj+1xj+mx_{j^{\prime}}x_{j^{\prime}+1}\ldots x_{j^{\prime}+m}=x^{\prime}_{j^{\prime}}x^{\prime}_{j^{\prime}+1}\ldots x^{\prime}_{j^{\prime}+m}. Therefore, 𝒙\bm{x}^{\prime} and 𝒚\bm{y} are distinguishable.

Now we prove del𝒮(𝒜n)\mathrm{del}_{\mathcal{S}}(\mathcal{A}_{n}) is a code for GG. We only need to prove that for any codewords 𝒙,𝒚𝒜n\bm{x},\bm{y}\in\mathcal{A}_{n}, del𝒮(𝒙)\mathrm{del}_{\mathcal{S}}(\bm{x}) and del𝒮(𝒚)\mathrm{del}_{\mathcal{S}}(\bm{y}) are distinguishable. Since 𝒙\bm{x} and 𝒚\bm{y} are distinguishable, there exists a coordinate j[0,nm1]j^{\prime}\in\mathbb{Z}[0,n-m-1] such that xjxj+1xj+mx_{j^{\prime}}x_{j^{\prime}+1}\ldots x_{j^{\prime}+m} and yjyj+1yj+my_{j^{\prime}}y_{j^{\prime}+1}\ldots y_{j^{\prime}+m} are adjacent, which implies that j𝒮mj^{\prime}\notin\mathcal{I}_{\mathcal{S}}^{m} and so 𝒮[j,j+m]=\mathcal{S}\cap\mathbb{Z}[j^{\prime},j^{\prime}+m]=\emptyset. Thus, del𝒮(𝒙)\mathrm{del}_{\mathcal{S}}(\bm{x}) and del𝒮(𝒚)\mathrm{del}_{\mathcal{S}}(\bm{y}) are distinguishable. ∎

Example 2

For the graph GG in Fig. 2, let 𝐱=11001110011\bm{x}=11001110011 be a codeword in a code 𝒜11\mathcal{A}_{11} for GG. It can be seen that 𝒮={0,5,10}\mathcal{S}=\{0,5,10\} and

𝒮m=[0,0][4,5][9,9]={0,4,5,9}.\mathcal{I}^{m}_{\mathcal{S}}=\mathbb{Z}[0,0]\cup\mathbb{Z}[4,5]\cup\mathbb{Z}[9,9]=\{0,4,5,9\}.

Since the degree of the vertex 1111 is zero, when the codeword 𝐱\bm{x} is replaced by 01001010010π𝒮(𝐱)01001010010\in\pi_{\mathcal{S}}(\bm{x}), the updated 𝒜11\mathcal{A}_{11} remains a code for GG. Moreover, if all the codewords in 𝒜11\mathcal{A}_{11} start with 1111, then del{0}(𝒜11)\mathrm{del}_{\{0\}}(\mathcal{A}_{11}) is also a code.

0000010110101111
Figure 2: A graph representing the channel with one memory.

For disjoint sets 𝒜i\mathcal{A}_{i}, i=1,2,,i=1,2,..., let 𝒜1𝒜2\mathcal{A}_{1}\biguplus\mathcal{A}_{2} denote the disjoint union of 𝒜1\mathcal{A}_{1} and 𝒜2\mathcal{A}_{2}, and i𝒜i\biguplus_{i}\mathcal{A}_{i} denote the disjoint union of 𝒜i\mathcal{A}_{i}, i=1,2,i=1,2,....

Theorem 2

For G(𝐮,𝐯)G(\bm{u},\bm{v}) with 𝐮,𝐯𝒳m+1\bm{u},\bm{v}\in\mathcal{X}^{m+1} and (𝐮,𝐯)=p(𝐮,𝐯)\ell(\bm{u},\bm{v})=\ell_{\mathrm{p}}(\bm{u},\bm{v}), if all the symbols of 𝐮\bm{u} are the same, 𝐮=um+1\bm{u}=u^{m+1}, then the capacity C(G(𝐮,𝐯))=logxC(G(\bm{u},\bm{v}))=-\log x^{*}, where xx^{*} is the only positive root of

x(𝒖𝒗)+x(𝒗𝒖)=1.x^{\ell(\bm{u_{v}})}+x^{\ell(\bm{v_{u}})}=1.
Proof:

We obtain C(G(𝒖,𝒗))logxC(G(\bm{u},\bm{v}))\geq-\log x^{*} directly from Theorem 1. Now we prove that C(G(𝒖,𝒗))logxC(G(\bm{u},\bm{v}))\leq-\log x^{*}. Let u=u0u=u_{0}. By Theorem 1,

{n}{𝒖𝒗,𝒗𝒖}𝒳n\{\mathcal{B}_{n}\}\triangleq\{\bm{u_{v}},\bm{v_{u}}\}^{*}\cap\mathcal{X}^{n}

is an asymptotically optimal quasi 2-code for G(𝒖,𝒗)G(\bm{u},\bm{v}). Since each prefix of 𝒖\bm{u} is a prefix-unit of 𝒖\bm{u}, we have (𝒖𝒗)=m+1(𝒖,𝒗)\ell(\bm{u_{v}})=m+1-\ell(\bm{u},\bm{v}) and

𝒖𝒗=um+1(𝒖,𝒗).\bm{u_{v}}=u^{m+1-\ell(\bm{u},\bm{v})}.

On the other hand, since the first (𝒖,𝒗)\ell(\bm{u},\bm{v}) symbols and the last s(𝒖,𝒗)\ell_{\mathrm{s}}(\bm{u},\bm{v}) symbols of 𝒖\bm{u} and 𝒗\bm{v} are all the same, that is, ui=vi=uu_{i}=v_{i}=u for i[0,(𝒖,𝒗)1][m+1s(𝒖,𝒗),m]i\in\mathbb{Z}[0,\ell(\bm{u},\bm{v})-1]\cup\mathbb{Z}[m+1-\ell_{\mathrm{s}}(\bm{u},\bm{v}),m], we have

𝒗𝒖v0v1vms(𝒖,𝒗)\bm{v_{u}}^{\prime}\triangleq v_{0}v_{1}\cdots v_{m-\ell_{\mathrm{s}}(\bm{u},\bm{v})}

is a prefix-unit of 𝒗\bm{v}. Assume that 𝒗𝒖𝒗𝒖\bm{v_{u}}^{\prime}\neq\bm{v_{u}}. We have (𝒗𝒖)>(𝒗𝒖)\ell(\bm{v_{u}}^{\prime})>\ell(\bm{v_{u}}), and then

uv(𝒗𝒖)1=v(𝒗𝒖)1(𝒗𝒖).u\neq v_{\ell(\bm{v_{u}}^{\prime})-1}=v_{\ell(\bm{v_{u}}^{\prime})-1-\ell(\bm{v_{u}})}.

Note that vi=uv_{i}=u for i[0,(𝒖,𝒗)1]i\in\mathbb{Z}[0,\ell(\bm{u},\bm{v})-1]. We have

(𝒗𝒖)1(𝒗𝒖)(𝒖,𝒗)\ell(\bm{v_{u}}^{\prime})-1-\ell(\bm{v_{u}})\geq\ell(\bm{u},\bm{v})

and so

(𝒗𝒖)(𝒗𝒖)(𝒖,𝒗)1<m+1(𝒖,𝒗),\ell(\bm{v_{u}})\leq\ell(\bm{v_{u}}^{\prime})-\ell(\bm{u},\bm{v})-1<m+1-\ell(\bm{u},\bm{v}),

which does not hold. Therefore, 𝒗𝒖=𝒗𝒖\bm{v_{u}}=\bm{v_{u}}^{\prime} and (𝒗𝒖)=m+1s(𝒖,𝒗)\ell(\bm{v_{u}})=m+1-\ell_{\mathrm{s}}(\bm{u},\bm{v}).

Let {𝒜n}\{\mathcal{A}_{n}\} be a sequence of codes for GG such that for all nn, 𝒜n\mathcal{A}_{n} achieves the largest cardinality of a code of length nn. For any codeword 𝒙𝒜n\bm{x}\in\mathcal{A}_{n} with n>>mn>>m, let

𝒮{i[0,(𝒖,𝒗)1][ns(𝒖,𝒗),n1]:xiu}.\mathcal{S}\triangleq\{i\in\mathbb{Z}[0,\ell(\bm{u},\bm{v})-1]\cup\mathbb{Z}[n-\ell_{\mathrm{s}}(\bm{u},\bm{v}),n-1]:x_{i}\neq u\}.

We can find that for any j𝒮mj\in\mathcal{I}^{m}_{\mathcal{S}}, the vertex xjxj+1xj+mx_{j}x_{j+1}\ldots x_{j+m} is neither 𝒖\bm{u} nor 𝒗\bm{v}, i.e., this vertex is of degree zero. By Lemma 4, replacing 𝒙\bm{x} by 𝒙π𝒮(𝒙)\bm{x}^{\prime}\in\pi_{\mathcal{S}}(\bm{x}), the updated set 𝒜n\mathcal{A}_{n} remains a code, where

{xi=u,if i𝒮xi=xi,if i[0,n1]𝒮\left\{\begin{array}[]{ll}x^{\prime}_{i}=u,&\text{if }i\in\mathcal{S}\\ x^{\prime}_{i}=x_{i},&\text{if }i\in\mathbb{Z}[0,n-1]\setminus\mathcal{S}\end{array}\right.

or equivalently

{xi=u,if i[0,(𝒖,𝒗)1][ns(𝒖,𝒗),n1]xi=xi,if i[(𝒖,𝒗),n1].\left\{\begin{array}[]{ll}x^{\prime}_{i}=u,&\text{if }i\in\mathbb{Z}[0,\ell(\bm{u},\bm{v})-1]\cup\mathbb{Z}[n-\ell_{\mathrm{s}}(\bm{u},\bm{v}),n-1]\\ x^{\prime}_{i}=x_{i},&\text{if }i\in\mathbb{Z}[\ell(\bm{u},\bm{v}),n-1].\end{array}\right.

Thus, we can assume that each codeword in 𝒜n\mathcal{A}_{n} starts with u(𝒖,𝒗)u^{\ell(\bm{u},\bm{v})} and ends with us(𝒖,𝒗)u^{\ell_{\mathrm{s}}(\bm{u},\bm{v})}.

Let 𝒙un\bm{x}\neq u^{n} be an arbitrary but fixed sequence in the updated 𝒜n\mathcal{A}_{n}. Let ii be the first coordinate such that xiux_{i}\neq u. Clearly, i(𝒖,𝒗)i\geq\ell(\bm{u},\bm{v}). If one of the following two conditions holds,

  • i+m(𝒖,𝒗)ni+m-\ell(\bm{u},\bm{v})\geq n or

  • i+m(𝒖,𝒗)<ni+m-\ell(\bm{u},\bm{v})<n and

    xixi+1xi+m(𝒖,𝒗)v(𝒖,𝒗)v(𝒖,𝒗)+1vm,x_{i}x_{i+1}\cdots x_{i+m-\ell(\bm{u},\bm{v})}\neq v_{\ell(\bm{u},\bm{v})}v_{\ell(\bm{u},\bm{v})+1}\cdots v_{m},

then for any j{i}mj\in\mathcal{I}^{m}_{\{i\}}, the vertex xjxj+1xj+mx_{j}x_{j+1}\ldots x_{j+m} is neither 𝒖\bm{u} nor 𝒗\bm{v} and so of degree zero. By Lemma 4, replacing 𝒙\bm{x} by 𝒙π{i}(𝒙)\bm{x}^{\prime}\in\pi_{\{i\}}(\bm{x}), the updated set 𝒜n\mathcal{A}_{n} remains a code, where

{xi=u,if i=ixi=xi,if i[0,n1]{i}.\left\{\begin{array}[]{ll}x^{\prime}_{i^{\prime}}=u,&\text{if }i^{\prime}=i\\ x^{\prime}_{i^{\prime}}=x_{i^{\prime}},&\text{if }i^{\prime}\in\mathbb{Z}[0,n-1]\setminus\{i\}.\end{array}\right.

This replacement can be repeated until any codeword 𝒙\bm{x} in the updated 𝒜n\mathcal{A}_{n} satisfies that 𝒙=un\bm{x}=u^{n} or

xi(𝒖,𝒗)xi(𝒖,𝒗)+1xi+m(𝒖,𝒗)𝒗,x_{i-\ell(\bm{u},\bm{v})}x_{i-\ell(\bm{u},\bm{v})+1}\cdots x_{i+m-\ell(\bm{u},\bm{v})}\neq\bm{v},

where ii is the first coordinate such that xiux_{i}\neq u. Let

𝒜ni{𝒙𝒜n:xiu and xi=u,i[0,i1]}\mathcal{A}^{i}_{n}\triangleq\{\bm{x}\in\mathcal{A}_{n}:x_{i}\neq u\text{ and }x_{i^{\prime}}=u,\forall i^{\prime}\in\mathbb{Z}[0,i-1]\}

for i[(𝒖,𝒗),m]i\in\mathbb{Z}[\ell(\bm{u},\bm{v}),m] and

𝒜nm+1{𝒙𝒜n:xi=u,i[0,m]}.\mathcal{A}^{m+1}_{n}\triangleq\{\bm{x}\in\mathcal{A}_{n}:x_{i^{\prime}}=u,\forall i^{\prime}\in\mathbb{Z}[0,m]\}.

Clearly,

𝒜n=i=(𝒖,𝒗)m+1𝒜ni,\mathcal{A}_{n}=\biguplus_{i=\ell(\bm{u},\bm{v})}^{m+1}\mathcal{A}^{i}_{n},

the disjoint union of 𝒜ni\mathcal{A}^{i}_{n}, i[(𝒖,𝒗),m+1]i\in\mathbb{Z}[\ell(\bm{u},\bm{v}),m+1].

Note that all the sequences in 𝒜nm+1\mathcal{A}^{m+1}_{n} start with um+1u^{m+1}. Letting 𝒮1=[0,m(𝒖,𝒗)]\mathcal{S}_{1}=\mathbb{Z}[0,{m}-\ell(\bm{u},\bm{v})], we can see that for any 𝒙,𝒚𝒜nm+1\bm{x},\bm{y}\in\mathcal{A}^{m+1}_{n} and any j𝒮1m=𝒮1j\in\mathcal{I}^{m}_{\mathcal{S}_{1}}=\mathcal{S}_{1},

xj+(𝒖,𝒗)=yj+(𝒖,𝒗)=u.x_{j+\ell(\bm{u},\bm{v})}=y_{j+\ell(\bm{u},\bm{v})}=u.

As v(𝒖,𝒗)uv_{\ell(\bm{u},\bm{v})}\neq u, neither xjxj+1xj+mx_{j}x_{j+1}\ldots x_{j+m} nor yjyj+1yj+my_{j}y_{j+1}\ldots y_{j+m} can be 𝒗\bm{v}, and so they are indistinguishable. Therefore, by Lemma 4, we have

|𝒜nm+1|=|del𝒮1(𝒜nm+1)||𝒜n|𝒮1||=|𝒜n(m+1(𝒖,𝒗))|.|\mathcal{A}^{m+1}_{n}|=|\mathrm{del}_{\mathcal{S}_{1}}(\mathcal{A}^{m+1}_{n})|\leq|\mathcal{A}_{n-|\mathcal{S}_{1}|}|=|\mathcal{A}_{n-(m+1-\ell(\bm{u},\bm{v}))}|. (10)

Now we consider 𝒜ni=(𝒖,𝒗)m𝒜ni\mathcal{A}^{\prime}_{n}\triangleq\bigcup_{i=\ell(\bm{u},\bm{v})}^{m}\mathcal{A}^{i}_{n}. For any sequence 𝒂𝒜n\bm{a}\in\mathcal{A}^{\prime}_{n}, there exists an i[(𝒖,𝒗),m]i\in\mathbb{Z}[\ell(\bm{u},\bm{v}),m] such that 𝒂𝒜ni\bm{a}\in\mathcal{A}^{i}_{n}. Then aiua_{i}\neq u. Letting 𝒮2=[0,ms(𝒖,𝒗)]\mathcal{S}_{2}=\mathbb{Z}[0,{m}-\ell_{\mathrm{s}}(\bm{u},\bm{v})], we can see that for any j𝒮2m=𝒮2j\in\mathcal{I}^{m}_{\mathcal{S}_{2}}=\mathcal{S}_{2},

ajaj+1aj+m𝒖.a_{j}a_{j+1}\ldots a_{j+m}\neq\bm{u}.

Therefore, for any 𝒙,𝒚𝒜nm+1\bm{x},\bm{y}\in\mathcal{A}^{m+1}_{n} and any j𝒮2mj\in\mathcal{I}^{m}_{\mathcal{S}_{2}}, neither xjxj+1xj+mx_{j}x_{j+1}\ldots x_{j+m} nor yjyj+1yj+my_{j}y_{j+1}\ldots y_{j+m} can be 𝒖\bm{u}, and so they are indistinguishable. By Lemma 4, we have

|𝒜n|=|del𝒮2(𝒜n)||𝒜n|𝒮2||=|𝒜n(m+1s(𝒖,𝒗))|.|\mathcal{A}^{\prime}_{n}|=|\mathrm{del}_{\mathcal{S}_{2}}(\mathcal{A}^{\prime}_{n})|\leq|\mathcal{A}_{n-|\mathcal{S}_{2}|}|=|\mathcal{A}_{n-(m+1-\ell_{\mathrm{s}}(\bm{u},\bm{v}))}|. (11)

By (10) and (11), we have

|𝒜n||𝒜n(m+1(𝒖,𝒗))|+|𝒜n(m+1s(𝒖,𝒗))|=|𝒜n(𝒖𝒗)|+|𝒜n(𝒗𝒖)|,\begin{split}|\mathcal{A}_{n}|&\leq|\mathcal{A}_{n-(m+1-\ell(\bm{u},\bm{v}))}|+|\mathcal{A}_{n-(m+1-\ell_{\mathrm{s}}(\bm{u},\bm{v}))}|\\ &=|\mathcal{A}_{n-\ell(\bm{u_{v}})}|+|\mathcal{A}_{n-\ell(\bm{v_{u}})}|,\end{split}

which is a classic recurrence formula. We have C(G)=R({𝒜n})logxC(G)=R(\{\mathcal{A}_{n}\})\leq-\log x^{*}. ∎

IV Capacity of the Binary Channel with Two Memories

In this section, we consider all the 28 graphs with one edge, which can be classified in 11 cases and have been listed in Table I. As discussed in Section I, for each case, we only need to consider any one of the graphs therein. The zero-error capacity of the graphs in Cases 1 to 10 are solved in this paper. We will also give a lower bound and a upper bound on the zero-error capacity of the graphs in Case 11.

According to Theorem 2, Theorems 3 to 5 can be obtained immediately. The proofs are omitted.

Theorem 3

C(G)=logα0.551C(G)=-\log\alpha\approx 0.551 for G=G(000,001)G=G(000,001), where α\alpha is the only positive root of the equation

x+x3=1.x+x^{3}=1.
Theorem 4

C(G)=12C(G)=\frac{1}{2} for G=G(000,010)G=G(000,010).

Theorem 5

C(G)=logβ0.406C(G)=-\log\beta\approx 0.406 for G=G(000,011)G=G(000,011), where β\beta is the only positive root of the equation

x2+x3=1.x^{2}+x^{3}=1.

To facilitate the proofs of the following theorems, for a set of sequences 𝒜n\mathcal{A}_{n} of length nn, and a string 𝒙\bm{x} with length strictly less than nn, we denote 𝒜n𝒙\mathcal{A}_{n}^{\bm{x}} be the subset of sequences in 𝒜n\mathcal{A}_{n} starting with 𝒙\bm{x}.

Theorem 6

C(G)=logβ0.406C(G)=-\log\beta\approx 0.406 for G=G(010,011)G=G(010,011), where β\beta is the only positive root of the equation

x2+x3=1.x^{2}+x^{3}=1.
Proof:

By Theorem 1, we obtain that C(G)logβ.C(G)\geq-\log\beta.

To prove C(G)logβC(G)\leq-\log\beta, let {𝒜n}\{\mathcal{A}_{n}\} be a sequence of codes for GG such that for all nn, 𝒜n\mathcal{A}_{n} achieves the largest cardinality of a code of length nn. Flipping the first bit of any codeword in 𝒜n\mathcal{A}_{n} starting with 11, and the second bit of any codeword starting with 000000, by Lemma 4, the updated 𝒜n\mathcal{A}_{n} remains a code. Thus, WLOG, we assume that any codeword in 𝒜n\mathcal{A}_{n} starts with 011011, 010010 or 001001. Equivalently, we assume that any codeword in 𝒜n\mathcal{A}_{n} starts with 011011, 010010, 00100010 or 00110011, i.e.,

𝒜n=𝒜n011𝒜n010𝒜n0010𝒜n0011,\mathcal{A}_{n}=\mathcal{A}_{n}^{011}\biguplus\mathcal{A}_{n}^{010}\biguplus\mathcal{A}_{n}^{0010}\biguplus\mathcal{A}_{n}^{0011},

and so

|𝒜n|=|𝒜n011𝒜n0011|+|𝒜n010𝒜n0010|.|\mathcal{A}_{n}|=\left|\mathcal{A}_{n}^{011}\biguplus\mathcal{A}_{n}^{0011}\right|+\left|\mathcal{A}_{n}^{010}\biguplus\mathcal{A}_{n}^{0010}\right|. (12)

Obviously,

|𝒜n011𝒜n0011|=|del{0,1,2}(𝒜n011𝒜n0011)|,|𝒜n010𝒜n0010|=|del{0,1}(𝒜n010𝒜n0010)|,\begin{split}\left|\mathcal{A}_{n}^{011}\biguplus\mathcal{A}_{n}^{0011}\right|&=\left|\mathrm{del}_{\{0,1,2\}}\left(\mathcal{A}_{n}^{011}\biguplus\mathcal{A}_{n}^{0011}\right)\right|,\\ \left|\mathcal{A}_{n}^{010}\biguplus\mathcal{A}_{n}^{0010}\right|&=\left|\mathrm{del}_{\{0,1\}}\left(\mathcal{A}_{n}^{010}\biguplus\mathcal{A}_{n}^{0010}\right)\right|,\end{split} (13)

and by Lemma 4, both del{0,1,2}(𝒜n011𝒜n0011)\mathrm{del}_{\{0,1,2\}}\left(\mathcal{A}_{n}^{011}\biguplus\mathcal{A}_{n}^{0011}\right) and del{0,1}(𝒜n010𝒜n0010)\mathrm{del}_{\{0,1\}}\left(\mathcal{A}_{n}^{010}\biguplus\mathcal{A}_{n}^{0010}\right) are codes for GG. Note that both 𝒜n3\mathcal{A}_{n-3} and 𝒜n2\mathcal{A}_{n-2} achieve maximum cardinality for codes of lengths n3n-3 and n2n-2, respectively. We have

|del{0,1,2}(𝒜n011𝒜n0011)||𝒜n3|,|del{0,1}(𝒜n010𝒜n0010)||𝒜n2|.\begin{split}\left|\mathrm{del}_{\{0,1,2\}}\left(\mathcal{A}_{n}^{011}\biguplus\mathcal{A}_{n}^{0011}\right)\right|&\leq|\mathcal{A}_{n-3}|,\\ \left|\mathrm{del}_{\{0,1\}}\left(\mathcal{A}_{n}^{010}\biguplus\mathcal{A}_{n}^{0010}\right)\right|&\leq|\mathcal{A}_{n-2}|.\end{split} (14)

By (12)-(14), we have |𝒜n||𝒜n2|+|𝒜n3||\mathcal{A}_{n}|\leq|\mathcal{A}_{n-2}|+|\mathcal{A}_{n-3}|, which is a classic recurrence formula. Therefore, C(G)=R({𝒜n})logβC(G)=R(\{\mathcal{A}_{n}\})\leq-\log\beta. ∎

Theorem 7

C(G)=logβ0.406C(G)=-\log\beta\approx 0.406 for G=G(010,001)G=G(010,001), where β\beta is the only positive root of the equation

x2+x3=1.x^{2}+x^{3}=1.
Proof:

By Theorem 1, we obtain that C(G)logβ.C(G)\geq-\log\beta.

To prove C(G)logβC(G)\leq-\log\beta, let {𝒜n}\{\mathcal{A}_{n}\} be a sequence of codes for GG such that for all nn, 𝒜n\mathcal{A}_{n} achieves the largest cardinality of a code of length nn. Flip the first bit of any codeword in 𝒜n\mathcal{A}_{n} starting with 11. For any codeword containing 1111, replace any one of 11s by 10. By Lemma 4, the updated 𝒜n\mathcal{A}_{n} remains a code. Thus, we assume that any codeword in 𝒜n\mathcal{A}_{n} starts with 001001, 000000 or 010010, i.e.,

𝒜n=𝒜n001𝒜n000𝒜n010,\mathcal{A}_{n}=\mathcal{A}_{n}^{001}\biguplus\mathcal{A}_{n}^{000}\biguplus\mathcal{A}_{n}^{010},

and so

|𝒜n|=|𝒜n001|+|𝒜n000𝒜n010|.|\mathcal{A}_{n}|=\left|\mathcal{A}_{n}^{001}\right|+\left|\mathcal{A}_{n}^{000}\biguplus\mathcal{A}_{n}^{010}\right|.

We also have

|𝒜n001|=|del{0,1,2}(𝒜n001)||𝒜n000𝒜n010|=|del{0,1}(𝒜n000𝒜n010)|,\begin{split}\left|\mathcal{A}_{n}^{001}\right|&=|\mathrm{del}_{\{0,1,2\}}(\mathcal{A}_{n}^{001})|\\ \left|\mathcal{A}_{n}^{000}\biguplus\mathcal{A}_{n}^{010}\right|&=\left|\mathrm{del}_{\{0,1\}}(\mathcal{A}_{n}^{000}\biguplus\mathcal{A}_{n}^{010})\right|,\end{split}

and by Lemma 4, both del{0,1,2}(𝒜n001)\mathrm{del}_{\{0,1,2\}}(\mathcal{A}_{n}^{001}) and del{0,1}(𝒜n000𝒜n010)\mathrm{del}_{\{0,1\}}(\mathcal{A}_{n}^{000}\biguplus\mathcal{A}_{n}^{010}) are codes for GG. Thus, |𝒜n||𝒜n2|+|𝒜n3||\mathcal{A}_{n}|\leq|\mathcal{A}_{n-2}|+|\mathcal{A}_{n-3}|, which implies that C(G)=R({𝒜n})logβC(G)=R(\{\mathcal{A}_{n}\})\leq-\log\beta. ∎

Lemma 5

C(G)=13C(G)=\frac{1}{3} for GG containing all four edges {000,111}\{000,111\}, {010,101}\{010,101\}, {100,011}\{100,011\} and {110,001}\{110,001\}.

Proof:

We can easily obtain a sequence of codes for GG:

𝒜n{000,111}{0,1}n.\mathcal{A}_{n}^{*}\triangleq\{000,111\}^{*}\bigcap\{0,1\}^{n}.

whose rate is R({𝒜n})=13.R(\{\mathcal{A}_{n}^{*}\})=\frac{1}{3}.

Now we consider the proof of the upper bound. Let {𝒜n}\{\mathcal{A}_{n}\} be a sequence of codes for GG such that for all nn, 𝒜n\mathcal{A}_{n} achieves the largest cardinality of a code of length nn. Obviously,

|𝒜n|=i0,i1,i2{0,1}|𝒜ni0i1i2|=i2{0,1}|i0,i1{0,1}𝒜ni0i1i2|.\begin{split}|\mathcal{A}_{n}|&=\sum_{i_{0},i_{1},i_{2}\in\{0,1\}}|\mathcal{A}_{n}^{i_{0}i_{1}i_{2}}|\\ &=\sum_{i_{2}\in\{0,1\}}\left|\biguplus_{i_{0},i_{1}\in\{0,1\}}\mathcal{A}_{n}^{i_{0}i_{1}i_{2}}\right|.\end{split}

As for any i2{0,1}i_{2}\in\{0,1\}, the third bits of any two codewords in i0,i1{0,1}𝒜ni0i1i2\biguplus_{i_{0},i_{1}\in\{0,1\}}\mathcal{A}_{n}^{i_{0}i_{1}i_{2}} are the same, by Lemma 4, we see that del{0,1,2}(i0,i1{0,1}𝒜ni0i1i2)\mathrm{del}_{\{0,1,2\}}\left(\biguplus_{i_{0},i_{1}\in\{0,1\}}\mathcal{A}_{n}^{i_{0}i_{1}i_{2}}\right) is also a code for GG and

|i0,i1{0,1}𝒜ni0i1i2|=|del{0,1,2}(i0,i1{0,1}𝒜ni0i1i2)||𝒜n3|.\begin{split}\left|\biguplus_{i_{0},i_{1}\in\{0,1\}}\mathcal{A}_{n}^{i_{0}i_{1}i_{2}}\right|&=\left|\mathrm{del}_{\{0,1,2\}}\left(\biguplus_{i_{0},i_{1}\in\{0,1\}}\mathcal{A}_{n}^{i_{0}i_{1}i_{2}}\right)\right|\\ &\leq|\mathcal{A}_{n-3}|.\end{split}

Thus, |𝒜n|2|𝒜n3||\mathcal{A}_{n}|\leq 2|\mathcal{A}_{n-3}|, i.e., C(G)=R({𝒜n})1/3C(G)=R(\{\mathcal{A}_{n}\})\leq 1/3. ∎

The following lemma is evident, and so the proof is omitted.

Lemma 6

For G(𝐮,𝐯)G(\bm{u},\bm{v}) with 𝐮,𝐯𝒳m+1\bm{u},\bm{v}\in\mathcal{X}^{m+1}, {𝐮,𝐯}k\{\bm{u},\bm{v}\}^{k} is a code for each kk, and C(G)1m+1C(G)\geq\frac{1}{m+1}.

According to Lemmas 5 and 6, we can obtain Theorems 8 to 10 immediately.

Theorem 8

C(G)=13C(G)=\frac{1}{3} for G=G(000,111)G=G(000,111).

Theorem 9

C(G)=13C(G)=\frac{1}{3} for G=G(010,101)G=G(010,101).

Theorem 10

C(G)=13C(G)=\frac{1}{3} for G=G(100,011)G=G(100,011).

Theorem 11

C(G)=13C(G)=\frac{1}{3} for G=G(000,101)G=G(000,101).

Proof:

We can easily obtain a sequence of codes for GG:

𝒜n{000,101}{0,1}n\mathcal{A}_{n}^{*}\triangleq\{000,101\}^{*}\bigcap\{0,1\}^{n}

whose rate is R({𝒜n})=13.R(\{\mathcal{A}_{n}^{*}\})=\frac{1}{3}.

Let GG^{\prime} be the graph with two edges {000,101}\{000,101\} and {000,111}\{000,111\}. Since E(G)E(G)E(G)\subseteq E(G^{\prime}), we have C(G)C(G)C(G)\leq C(G^{\prime}). Let {𝒜n}\{\mathcal{A}_{n}\} be asymptotically optimal for GG^{\prime}.

If no codeword in 𝒜n\mathcal{A}_{n} contains the substrings 101101, then 𝒜n\mathcal{A}_{n} is a code for G(000,111)G(000,111). Otherwise, we perform a sequence of substring replacements. Specifically, let 𝒙𝒜n\bm{x}\in\mathcal{A}^{\prime}_{n} be an arbitrary codeword which contains the substring 111. Then replace any one of 111s by 101. The updated 𝒜n\mathcal{A}_{n} remains a code. Thus the replacement can be repeated until no codeword in the updated 𝒜n\mathcal{A}_{n} contains the substring 101, and therefore the final updated 𝒜n\mathcal{A}_{n} is a code for G(000,111)G(000,111). Thus, C(G)C(G)=R({𝒜n})C(G(000,111))=13.C(G)\leq C(G^{\prime})=R(\{\mathcal{A}_{n}\})\leq C(G(000,111))=\frac{1}{3}.

Theorem 12

C(G)=13C(G)=\frac{1}{3} for G=G(001,011)G=G(001,011).

Proof:

By Theorem 1, we obtain that C(G)logβ.C(G)\geq-\log\beta.

The proof of the upper bound is also similar to the proof of Theorem 8. Let {𝒜n}\{\mathcal{A}_{n}\} be a sequence of codes for GG such that for all nn, 𝒜n\mathcal{A}_{n} achieves the largest cardinality of a code of length nn. Flip the first bit of any codeword in 𝒜n\mathcal{A}_{n} starting with 11 and the second bit of any codeword starting with 01010101. For any codeword containing 111111 or 00000000, replace any one of 111s by 110 or 0000s by 0100. By Lemma 4(1), the final updated 𝒜n\mathcal{A}_{n} remains a code. Thus, we can assume that any codeword in 𝒜n\mathcal{A}_{n} starts with 0001, 0010, 0011, 0100 or 0110, i.e.,

𝒜n=𝒜n0001𝒜n0010𝒜n0011𝒜n0100𝒜n0110,\mathcal{A}_{n}=\mathcal{A}_{n}^{0001}\biguplus\mathcal{A}_{n}^{0010}\biguplus\mathcal{A}_{n}^{0011}\biguplus\mathcal{A}_{n}^{0100}\biguplus\mathcal{A}_{n}^{0110},

and so

|𝒜n|=|𝒜n0100𝒜n0010𝒜n0011|+|𝒜n0110𝒜n0001|.|\mathcal{A}_{n}|=\left|\mathcal{A}_{n}^{0100}\biguplus\mathcal{A}_{n}^{0010}\biguplus\mathcal{A}_{n}^{0011}\right|+\left|\mathcal{A}_{n}^{0110}\biguplus\mathcal{A}_{n}^{0001}\right|.

We also have

|𝒜n0100𝒜n0010𝒜n0011|=|del{0,1,2}(𝒜n0100𝒜n0010𝒜n0011)|\begin{split}&\left|\mathcal{A}_{n}^{0100}\biguplus\mathcal{A}_{n}^{0010}\biguplus\mathcal{A}_{n}^{0011}\right|=\\ &\left|\mathrm{del}_{\{0,1,2\}}(\mathcal{A}_{n}^{0100}\biguplus\mathcal{A}_{n}^{0010}\biguplus\mathcal{A}_{n}^{0011})\right|\end{split}

and

|𝒜n0110𝒜n0001|=|del{0,1,2}(𝒜n0110𝒜n0001)|.\left|\mathcal{A}_{n}^{0110}\biguplus\mathcal{A}_{n}^{0001}\right|=\left|\mathrm{del}_{\{0,1,2\}}(\mathcal{A}_{n}^{0110}\biguplus\mathcal{A}_{n}^{0001})\right|.

Both del{0,1,2}(𝒜n0100𝒜n0010𝒜n0011)\mathrm{del}_{\{0,1,2\}}(\mathcal{A}_{n}^{0100}\biguplus\mathcal{A}_{n}^{0010}\biguplus\mathcal{A}_{n}^{0011}) and del{0,1,2}(𝒜n0110𝒜n0001)\mathrm{del}_{\{0,1,2\}}(\mathcal{A}_{n}^{0110}\biguplus\mathcal{A}_{n}^{0001}) are codes for GG. Thus, |𝒜n|2|𝒜n3|,|\mathcal{A}_{n}|\leq 2|\mathcal{A}_{n-3}|, i.e., C(G)=R({𝒜n})13C(G)=R(\{\mathcal{A}_{n}\})\leq\frac{1}{3}. ∎

Theorem 13

log1411C(G)logβ0.406\frac{\log 14}{11}\leq C(G)\leq-\log\beta\approx 0.406 for G=G(001,100)G=G(001,100), where β\beta is the only positive root of the equation

x2+x3=1.x^{2}+x^{3}=1.
Proof:

We can obtain a sequence of codes for GG:

𝒜n={00100100100,00100101001,00100110010,00110010010,00110011001,01001001001,01001001100,01001100100,10000100001,10010010010,10010011001,10010100100,10011001001,10011001100}{0,1}n,\mathcal{A}_{n}^{*}=\{00100100100,00100101001,00100110010,00110010010,00110011001,01001001001,01001001100,\\ 01001100100,10000100001,10010010010,10010011001,10010100100,10011001001,10011001100\}^{*}\bigcap\{0,1\}^{n},

whose rate is R({𝒜n})=log1411.R(\{\mathcal{A}_{n}^{*}\})=\frac{\log 14}{11}.

The proof of the upper bound is also similar to the proof of Theorem 4. Let {𝒜n}\{\mathcal{A}_{n}\} be a sequence of codes for GG such that for all nn, 𝒜n\mathcal{A}_{n} achieves the largest cardinality of a code of length nn. Flip the first bit of any codeword in 𝒜n\mathcal{A}_{n} starting with 000000, 110110 or 101101, the second bit of any codeword starting with 011011, and the first two bits of any codeword starting with 111111. Thus, we can assume that any codeword in 𝒜n\mathcal{A}_{n} starts with 001, 010, 100, i.e.,

𝒜n=𝒜n001𝒜n010𝒜n100,\mathcal{A}_{n}=\mathcal{A}_{n}^{001}\biguplus\mathcal{A}_{n}^{010}\biguplus\mathcal{A}_{n}^{100},

and so

|𝒜n|=|𝒜n100|+|𝒜n001𝒜n010|.|\mathcal{A}_{n}|=|\mathcal{A}_{n}^{100}|+\left|\mathcal{A}_{n}^{001}\biguplus\mathcal{A}_{n}^{010}\right|.

By Lemma 4(2), we have

|𝒜n100|=|del{0,1,2}(𝒜n100)||\mathcal{A}_{n}^{100}|=|\mathrm{del}_{\{0,1,2\}}(\mathcal{A}_{n}^{100})|

and

|𝒜n001𝒜n010|=|del{0,1}(𝒜n001𝒜n010)|.\left|\mathcal{A}_{n}^{001}\biguplus\mathcal{A}_{n}^{010}\right|=\left|\mathrm{del}_{\{0,1\}}(\mathcal{A}_{n}^{001}\biguplus\mathcal{A}_{n}^{010})\right|.

Both del{0,1,2}(𝒜n100)\mathrm{del}_{\{0,1,2\}}(\mathcal{A}_{n}^{100}) and del{0,1}(𝒜n001𝒜n010)\mathrm{del}_{\{0,1\}}(\mathcal{A}_{n}^{001}\biguplus\mathcal{A}_{n}^{010}) are codes for GG. Thus,

|𝒜n||𝒜n3|+|𝒜n2|,|\mathcal{A}_{n}|\leq|\mathcal{A}_{n-3}|+|\mathcal{A}_{n-2}|,

i.e., C(G)=R({𝒜n})logβC(G)=R(\{\mathcal{A}_{n}\})\leq-\log\beta. ∎

Remark: We can see that for the graph in Cases 1 to 10, the optimal quasi 2-code constructed in Theorem 1 achieves the zero-error capacity. However, for G=G(001,100)G=G(001,100) (Case 11), the optimal quasi 2-code is {001,100}{0,1}n\{001,100\}^{*}\bigcap\{0,1\}^{n} whose rate is 13\frac{1}{3}. The capacity C(G)log1411>13C(G)\geq\frac{\log 14}{11}>\frac{1}{3}.

V Conclusion

In this paper, we have investigated the zero-error capacity of channels characterized by graphs containing a single edge. Previous works primarily focused on binary input channels with 2 or 3 memories. Our study extends the analysis to channels with |𝒳||\mathcal{X}|-ary inputs and arbitrary memories. We provide a method for constructing zero-error codes for such graphs with one edge, which offers a lower bound on the zero-error capacity. For the binary channel two memories, the zero-error codes constructed by this method have been proven to be optimal in most cases.

It could be valuable to construct a method to obtain a general upper bound for graphs with one edge. If this upper bound matches the lower bound derived in this paper, it would allow us to determine the capacity for numerous graphs of this type.

References

  • [1] Q. Cao and Q. Chen, “On zero-error capacity of ”one-edge” binary channels with two memories,” in 2022 IEEE International Symposium on Information Theory (ISIT), 2022, pp. 2762–2767.
  • [2] C. Shannon, “The zero error capacity of a noisy channel,” IRE Trans. Inf. Theory, vol. 2, no. 3, pp. 8–19, 1956.
  • [3] Q. Cao and R. W. Yeung, “Zero-error capacity regions of noisy networks,” IEEE Transactions on Information Theory, vol. 68, no. 7, pp. 4201–4223, 2022.
  • [4] L. Lovász, “On the Shannon capacity of a graph,” IEEE Trans. Inf. Theory, vol. 25, no. 1, pp. 1–7, 1979.
  • [5] L. Zhao and H. H. Permuter, “Zero-error feedback capacity of channels with state information via dynamic programming,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2640–2650, June 2010.
  • [6] M. Kovačević and P. Popovski, “Zero-error capacity of a class of timing channels,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6796–6800, Nov 2014.
  • [7] T. Nakano and T. Wadayama, “On zero error capacity of nearest neighbor error channels with multilevel alphabet,” in 2016 International Symposium on Information Theory and Its Applications (ISITA), Oct 2016, pp. 66–70.
  • [8] R. Ahlswede, N. Cai, and Z. Zhang, “Zero-error capacity for models with memory and the enlightened dictator channel,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1250–1252, May 1998.
  • [9] G. Cohen, E. Fachini, and J. Körner, “Zero-error capacity of binary channels with memory,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 3–7, Jan 2016.
  • [10] Q. Cao, N. Cai, W. Guo, and R. W. Yeung, “On zero-error capacity of binary channels with one memory,” IEEE Transactions on Information Theory, vol. 64, no. 10, pp. 6771–6778, 2018.
  • [11] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems, 2nd ed.   Cambridge University Press, 2011.