This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

One-sided Shewhart control charts for monitoring the ratio of two normal variables in Short Production Runs

K.D. Tran Institute of Research and Development, Duy Tan University, Danang, 550000 Vietnam Q.U.A Khaliq Department of Statistics Allama Iqbal Open University Islamabad, Pakistan A. A. Nadi Ecole Nationale Supérieure des Arts et Industries Textiles, GEMTEX Laboratory, BP 30329 59056 Roubaix Cedex 1, France H Tran Institute of Artificial Intelligence and Data Science, Dong A University, Danang, Vietnam K.P. Tran kim-phuc.tran@ensait.fr (corresponding author) Ecole Nationale Supérieure des Arts et Industries Textiles, GEMTEX Laboratory, BP 30329 59056 Roubaix Cedex 1, France
Abstract

Monitoring the ratio of two normal random variables plays an important role in several manufacturing environments. For short production runs, however, the control charts assumed infinite processes cannot function effectively to detect anomalies. In this paper, we tackle this problem by proposing two one-sided Shewhart-type charts to monitor the ratio of two normal random variables for a finite horizon production. The statistical performance of the proposed charts is investigated using the truncated average run length as a performance measure in short production runs. In order to help the quality practitioner to implement these control charts, we have provided ready-to-use tables of the control limit parameters. An illustrative example from the food industry is given for illustration.

Keywords: Statistical process monitoring, Ratio distribution, Short production runs, Truncated run length, Shewhart control chart.

1 Introduction

Quality control (QC) enables the manufacturer to produce high-quality products according to the needs of the customer. Its tool kit helps to improve product quality by minimizing product cost, increase the efficiency of the process by reducing product waste. Control charts are famous tools for monitoring the assignable causes, they also tell us when corrective action must be taken or timely notify us when corrective action must be taken to improve the process behavior (see Shewhart 21). With growing competition in customer markets, manufacturers extremely depend on the quality of their products and services for their survival. The short-run manufacturing production process is become quite common for achieving the satisfaction of the customers like job-shops, which are categorized by a high amount of flexibility and manufacture diversity. Therefore, the life cycle of the products is decreasing rapidly. Nowadays, the production lines in several manufacturings and engineering processes have limited. In short runs production, some sources are fixed or the time span of the product is too short, maybe one hour or day. For example, any warehouse which may be on the lease. This warehouse is operating in the short run because it has a limited place. The owner cannot extend their business or shifted it to another place. When the agreement expires, he will have in position to enlarge business or shift to a large place. The same is the case, in manufacturing industries, like robotics manufacturing industry incorporates the limited production runs of automatic parts within the flexible production cells and semiconductor industry assembly of electronic boards and in beverages industries where the high volume of production and filling of soft drinks in every 2424 to 4848 hour required the 2020 to 3030 inspection between consecutive session.

There is a myth among some manufacturing organizations, as they mostly feel that control charts are less applicable for the short-run process as the duration of their production cycle is too short. Recent studies signify control charts for the production process draw the attention of quality practitioners. Quality professionals are more concerned about the quality of the product. They are doing continuous improvement in product quality by reducing variability. The repute of any industry depends on the quality of goods or services that they offer to the customer. Quality is a major strategy that increases the productivity of any industry.

There are various SPC (statistical process control) short run control charts presented in literature to serve the purpose. Short run control charts are more effective and useful for the small lot manufacturing runs with limited production data. Ladany 12 first introduced optimized-p chart for short production run. Later on, numerous authors introduced effective designs for such economic process, see for instance Ladany and Bedi 13, Del Castillo and Montgomery 8, Del Castillo and Montgomery 9, Tagaras 22, Nenes and Tagaras 15, Nenes and Tagaras 16, Celano et al. 7, Castagliola et al. 4, Castagliola et al. 3, Amdouni et al. 2, Khatun et al. 10, Naseri et al. 14 and Khoo et al. 11.

This study is planned to design the Shewhart control chart for monitoring the ratio of two variables for a short production run. There are several production or manufacturing processes, where the quality characteristics of interest formed the ratio of two normal variables. Production strategies, where numerous components need to be blended together to get a product composition can require monitoring the ratios of random variables when quality experts are frequently interested in the relative evaluation of the same property for two-components. In fact, guaranteeing the stable ratio between different components permits the product specifications to be encountered. Automotive, aerospace, electronics, pharmaceutical, materials production, food preparation, and packaging industries are typical applications of these manufacturing environments.

Celano and Castagliola 5 designed the ratio type Shewhart control chart by using the data from the food processing company. They took the ratio of two seeds (pumpkin and flex) to meet the nutrition facts. Tran et al. 23 investigated the performance of the ratio chart using the run-rules scheme. Tran et al. 23 designed EWMA type control charts for efficient monitoring of the ratio. Tran et al. 24 assessed RZRZ chart efficiency and performance in presence of measurement error. Tran and Knoth 26 did an analysis to evaluate the steady-state ARL performance of the RZRZ chart. Tran et al. 25 designed the CUSUM control chart which was more efficient than its RZRZ setup. Nguyen et al. 17 and Nguyen, Tran and Heuchenne 18 introduced EWMA and CUSUM design for ratio type control chart at several sampling intervals. Nguyen, Tran and Goh 20 applied the variable sampling interval idea to RZRZ chart to evaluate its efficacy and performance. Nguyen and Tran 19 presented the one-sided RZRZ chart which was more efficient in case of measurement error present in the process.

The articles cited above are planned to observe the ratio over a production horizon considered as infinite. However, there are numerous situations, where the production run no longer is infinite. As far as we know, no research has been done regarding the observing of the ratio (of two normal variables) infinite horizon framework. The aim of this study is to fill this gap by introducing two one-sided RZRZ charts aiming to observe the decrease or increase in the finite runs. In the remainder of the study, they are denoted by “ShRZ+{Sh}^{+}_{RZ} Chart” for the upper sided chart and by “ShRZ{Sh}^{-}_{RZ} Chart” for the lower sided one.

The rest of the article organized as follows, Section 2 denotes the main properties of ratio distribution. Section 3 deals with the design structure of one-sided RZRZ (ShRZ+{Sh}^{+}_{RZ} and ShRZ{Sh}^{-}_{RZ}) Shewhart charts for a limited production run. The truncated run length (TRL), as the performance measure of the proposed short run charts, is briefly described in Section 4. To assess the behavior of the new charts, a numerical analysis is done in Section 5. Real-life illustration of the proposed technique presented in Section 6. Finally, conclusion and recommendation for future research are given in Section 7.

2 Derivation of properties of the ratio distribution

Suppose that XX and YY be the two normal random variables such that 𝐖=(X,Y)TN(𝝁𝐖,𝚺𝐖),\mathbf{W}=(X,Y)^{T}\sim N(\boldsymbol{\mu}_{\mathbf{W}},\boldsymbol{\Sigma}_{\mathbf{W}}), i.e. 𝐖\mathbf{W} is a bivariate normal random vector with mean vector and variance-covariance matrix as follows:

𝝁𝐖=(μXμY)and𝚺𝐖=(σX2ρσXσYρσXσYσY2)\displaystyle{\boldsymbol{\mu}}_{\mathbf{W}}=\begin{pmatrix}\mu_{X}\\ \mu_{Y}\end{pmatrix}\quad\text{and}\quad{\boldsymbol{\Sigma}}_{\mathbf{W}}=\begin{pmatrix}\sigma^{2}_{X}&\rho\sigma_{X}\sigma_{Y}\\ \rho\sigma_{X}\sigma_{Y}&{\sigma}^{2}_{Y}\end{pmatrix} (1)

where μX\mu_{X} and μY\mu_{Y} are the means of two variables and ρ\rho is the correlation coefficient between them. Coefficients of variation (γX,γY)\left(\gamma_{X},\gamma_{Y}\right) and standard-deviation ratio (ω\omega) of XX and YY are denoted by γX=σXμY\gamma_{X}=\frac{\sigma_{X}}{\mu_{Y}}, γY=σYμY\gamma_{Y}=\frac{\sigma_{Y}}{\mu_{Y}} and ω=σXσY\omega=\frac{\sigma_{X}}{\sigma_{Y}}, respectively. Let ZZ be the ratio of XX to Y(Z=X/Y)Y\left(Z={X}/{Y}\right). Celano and Castagliola 5 derived an adequate approximation for the c.d.f (cumulative distribution function) of ZZ as a function of γX,γY,ω,\gamma_{X},\gamma_{Y},\omega, and ρ\rho as:

FZ(z|γX,γY,ω,ρ)Φ(AB),\displaystyle F_{Z}(z|\gamma_{X},\gamma_{Y},\omega,\rho)\simeq\Phi\left(\frac{A}{B}\right), (2)

where

A=zγYωγX,andB=ω22ρωz+z2,\displaystyle A=\frac{z}{\gamma_{Y}}-\frac{\omega}{\gamma_{X}},\qquad\text{and}\qquad B=\sqrt{\omega^{2}-2\rho\omega z+{z}^{2}},

and Φ\Phi is the c.d.f of standard normal distribution (Sdn). After some tedious derivations, approximated p.d.f (probability density function) of the ratio ZZ is

fZ(z|γX,γY,ω,ρ)(1BγY(zρω)AB3)×ϕ(AB),\displaystyle f_{Z}(z|\gamma_{X},\gamma_{Y},\omega,\rho)\simeq\left(\frac{1}{B\gamma_{Y}}-\frac{\left(z-\rho\omega\right)A}{B^{3}}\right)\times\phi\left(\frac{A}{B}\right), (3)

where ϕ()\phi(\cdot) is the p.d.f. of Sdn. Solving the equation FZ(z|γX,γY,ω,ρ)=pF_{\mathrm{Z}}(z\left|\gamma_{X},\gamma_{Y},\omega,\rho\right)=p allows obtaining an approximate expression for the i.d.f (inverse distribution function) FZ1(p|γX,γY,ω,ρ)F^{-1}_{\mathrm{Z}}(p|\gamma_{X},\gamma_{Y},\omega,\rho). We have

FZ1(p|γX,γY,ω,ρ){C2C224C1C32C1,ifp(0,0.5],C2+C224C1C32C1,ifp[0.5,1),\displaystyle F^{-1}_{Z}(p|\gamma_{X},\gamma_{Y},\omega,\rho)\simeq\begin{cases}\frac{-C_{2}-\sqrt{C^{2}_{2}-4C_{1}C_{3}}}{2C_{1}},\quad\text{if}\quad p\in(0,0.5],\\ \frac{-C_{2}+\sqrt{C^{2}_{2}-4C_{1}C_{3}}}{2C_{1}},\quad\text{if}\quad p\in[0.5,1),\end{cases} (4)

where C1C_{1}, C2C_{2}, and C3C_{3} are functions of ω,ρ,γX,γY,p\omega,\rho,\gamma_{X},\gamma_{Y},p and they are:

C1\displaystyle C_{1} =1γY2(Φ1(p))2,\displaystyle=\frac{1}{\gamma^{2}_{Y}}-\left(\Phi^{-1}(p)\right)^{2},
C2\displaystyle C_{2} =2ω(ρ(Φ1(p))21γXγY)\displaystyle=2\omega\left(\rho\left(\Phi^{-1}(p)\right)^{2}-\frac{1}{\gamma_{X}\gamma_{Y}}\right)
C3\displaystyle C_{3} =ω2(1γX2(Φ1(p))2),\displaystyle=\omega^{2}\left(\frac{1}{\gamma^{2}_{X}}-{\left({\Phi}^{-1}\left(\mathrm{p}\right)\right)}^{2}\right),

and where Φ1()\Phi^{-1}(\cdot) is the i.d.f. of Sdn.

3 Design of two one sided Shewhart RZRZ charts for short production Runs

The production run is planned to produce small size lot having NN parts after a fixed rolling length H{H}. Let II be the number of planned inspections of rolling horizon HH and assume that no inspection takes place at the end of the run. By these settings, the sampling frequency (the time interval between two consecutive inspections) will be 𝒮h=H(I+1)\mathcal{S}_{h}={{\frac{{H}}{\left(I+1\right)}}} hours. The observed values of random variables XX and YY are used to calculate the ratio for two one sided Shewhart charts for short run. In order to monitor the ratio ZZ, samples of size nn will be taken at every sampling interval from the process and the quality characteristic 𝐖\mathbf{W} will be measured for each item. Let [𝐖i,1,𝐖i,2,,𝐖i,n][\mathbf{W}_{i,1},\mathbf{W}_{i,2},\dots,\mathbf{W}_{i,n}] be the collected sample in which the couples 𝐖i,j=(Xi,j,Yi,j)T\mathbf{W}_{i,j}=(X_{i,j},Y_{i,j})^{T} for j=1,2,nj=1,2,...n follow the bivariate normal model N(𝝁𝐖,i,𝚺𝐖,i)N(\boldsymbol{\mu}_{\mathbf{W},i},\boldsymbol{\Sigma}_{\mathbf{W},i}) where:

𝝁𝐖,i=(μX,iμY,i)and𝚺𝐖,i=(σX,i2ρσX,iσY,iρσX,iσY,iσY,i2),i=1,2,3,\displaystyle{\boldsymbol{\mu}}_{\mathbf{W},i}=\begin{pmatrix}\mu_{X,i}\\ \mu_{Y,i}\end{pmatrix}\quad\text{and}\quad{\boldsymbol{\Sigma}}_{\mathbf{W},i}=\begin{pmatrix}\sigma^{2}_{X,i}&\rho\sigma_{X,i}\sigma_{Y,i}\\ \rho\sigma_{X,i}\sigma_{Y,i}&{\sigma}^{2}_{Y,i}\end{pmatrix},\quad i=1,2,3,... (5)

To design the charts, let γX\gamma_{X} and γY\gamma_{Y} be the known and constant coefficients of variation and let z0=μX,iμY,iz_{0}=\frac{\mu_{X,i}}{\mu_{Y,i}} and ρ0\rho_{0} be the known in-control values of the ratio and the coefficient of correlation that will ensure the stability of process. We further assume that linear relationships are held between the sample standard deviation and the sample mean for both variables XX and YY, i.e., σX,i=γXμX,i\sigma_{X,i}=\gamma_{X}\mu_{X,i} and σY,i=γYμY,i\sigma_{Y,i}=\gamma_{Y}\mu_{Y,i} for every i1i\geq 1. This implies that the standard deviation of each sample can change proportionally to its mean such that their ratio remains constant. There are several quality characteristics in practice (such as weights, tensile strengths and linear dimensions) that can have a dispersion proportional to the population mean. Finally, the sample units are considered free to vary from sample to sample and thus it is possible to have 𝝁𝐖,i𝝁𝐖,k\boldsymbol{\mu}_{\mathbf{W},i}\neq\boldsymbol{\mu}_{\mathbf{W},k} and 𝚺𝐖,i𝚺𝐖,k\boldsymbol{\Sigma}_{\mathbf{W},i}\neq\boldsymbol{\Sigma}_{\mathbf{W},k}, for ik.i\neq k. The monitoring statistic of the proposed chart is the ratio of sample means that should be calculated at the inspections i=1,2,,3,i=1,2,,3,... as:

Z^i=μ^X,iμ^Y,i=X¯iY¯i=j=1nXi,jj=1nYi,j\displaystyle\hat{Z}_{i}=\frac{\hat{\mu}_{X,i}}{\hat{\mu}_{Y,i}}=\frac{\bar{X}_{i}}{\bar{Y}_{i}}=\frac{\sum_{j=1}^{n}X_{i,j}}{\sum_{j=1}^{n}Y_{i,j}} (6)

To obtain the c.d.f and i.d.f of the statistic Z^i\hat{Z}_{i}, one needs to some distributional proportions of the sample means X¯i\bar{X}_{i} and Y¯i\bar{Y}_{i}. It is easy to see that X¯iN(μX,i,σX,in)\bar{X}_{i}\sim N(\mu_{X,i},\frac{\sigma_{X,i}}{\sqrt{n}}) and Y¯iN(μY,i,σY,in)\bar{Y}_{i}\sim N(\mu_{Y,i},\frac{\sigma_{Y,i}}{\sqrt{n}}) having the constant coefficients of variation γX¯=γXn\gamma_{\bar{X}}=\frac{\gamma_{X}}{\sqrt{n}} and γY¯=γYn\gamma_{\bar{Y}}=\frac{\gamma_{Y}}{\sqrt{n}}. By the definition and the mentioned assumptions, the standard deviation ratio ωi\omega_{i} in each inspection can be calculated as:

ωi=σX,iσY,i=μX,iμY,iγXγY=z0×γXγY=ω0,\displaystyle\omega_{i}=\frac{\sigma_{X,i}}{\sigma_{Y,i}}=\frac{\mu_{X,i}}{\mu_{Y,i}}\frac{\gamma_{X}}{\gamma_{Y}}=z_{0}\times\frac{\gamma_{X}}{\gamma_{Y}}=\omega_{0}, (7)

where ω0\omega_{0} is the in-control standard deviations ratio. We are now in a position to obtain the c.d.f and i.d.f of Z^i\hat{Z}_{i} based on the c.d.f and i.d.f of ZZ in (2) and (4) as (Nguyen, Tran and Goh 20):

FZ^i(z|n,γX,γY,z0,ρ0)\displaystyle F_{\hat{Z}_{i}}(z|n,\gamma_{X},\gamma_{Y},z_{0},\rho_{0}) =FZ(z|γXn,γYn,z0γXγY,ρ0),\displaystyle=F_{Z}\left(z|\frac{\gamma_{X}}{\sqrt{n}},\frac{\gamma_{Y}}{\sqrt{n}},\frac{z_{0}\gamma_{X}}{\gamma_{Y}},\rho_{0}\right), (8)
FZ^i1(p|n,γX,γY,z0,ρ0)\displaystyle F^{-1}_{\hat{Z}_{i}}(p|n,\gamma_{X},\gamma_{Y},z_{0},\rho_{0}) =FZ1(p|γXn,γYn,z0γXγY,ρ0).\displaystyle=F^{-1}_{Z}\left(p|\frac{\gamma_{X}}{\sqrt{n}},\frac{\gamma_{Y}}{\sqrt{n}},\frac{z_{0}\gamma_{X}}{\gamma_{Y}},\rho_{0}\right). (9)

The control limits of two separate one sided ratio charts are as follows

  1. 1.

    One sided Shewhart-RZR{Z}^{-} chart (ShRZ{Sh}^{-}_{RZ} Chart) The downward ratio uses to monitor the decrease in ratio of two variables. The lower and the upper control limits LCLLCL^{-} and UCLUCL^{-} of said chart are:

    LCL\displaystyle LCL^{-} =FZ^i1(α0|n,γX,γY,z0,ρ0)\displaystyle=F^{-1}_{\hat{Z}_{i}}(\alpha_{0}|n,\gamma_{X},\gamma_{Y},z_{0},\rho_{0}) (10)
    UCL\displaystyle UCL^{-} =+.\displaystyle=+\infty. (11)

    where α0\alpha_{0} is the probability of type I error.

  2. 2.

    One sided Shewhart-RZ+R{Z}^{+} chart (ShRZ+Sh^{+}_{RZ} Chart) The upward ratio uses to monitor the increase in ratio of two variables. The lower and the upper control limits LCL+LCL^{+} and UCL+UCL^{+} of said chart are:

    LCL+\displaystyle LCL^{+} =0\displaystyle=0 (12)
    UCL+\displaystyle UCL^{+} =FZ^i1(1α0|n,γX,γY,z0,ρ0).\displaystyle=F^{-1}_{\hat{Z}_{i}}(1-\alpha_{0}|n,\gamma_{X},\gamma_{Y},z_{0},\rho_{0}). (13)

The ratio of two normal variables Z^i\hat{Z}_{i} will be plotted against the limits. We will count all points which fall outside of the limits of both charts. The process is consider to be out-of-control (occ) if Z^i\hat{Z}_{i} fulfills either of these conditions, Z^i<LCLorZ^i>UCL+\hat{Z}_{i}<LCL^{-}\,\text{or}\,\hat{Z}_{i}>UCL^{+} and assignable causes will be removed. As the production run is too small, the traditional run length will not be applicable to determine the run length properties of the control charts. To serve the purpose truncated run-length TRL and its average (TARL) will be used to determine the performance of the charts. The details and computations of TRL and TARL are provided in what follows.

4 Properties of Truncated Run Length TRL

In certain manufacturing processes, it could not be practical to gather a sufficient amount of data at the beginning of the manufacturing process for trial limits in phase-I. For example, in the aerospace industry, the production rate of huge components can be finite. It takes too much time to gather enough samples for the applying control charts. On the other hand, it is often needed that the quality control procedure starts as early as possible since the rate of each product is high. In such circumstances, traditional quality charts are not as effective. It may need more samples to create control limits until they are precise adequate to screen the whole process. Traditional run-length does not give the reliable monitoring of assignable cause for such a process in which a finite (or limited) number I of samples is available in the production horizon having finite length HH. Therefore, TRL as a modified version of traditional run length is used to determine the behavior of the process short production runs. It is define as “the number of samples until a shift is identified or until completion of process either happen first”. TRL is a discreet random variable with support TRL{1,2,,I,I+1}TRL\in\{1,2,...,I,I+1\}. The event TRL=lTRL=l for l{1,2,,I}l\in\{1,2,...,I\} means that an ooc signal is declared by the chart before the termination of the production run and TRL=I+1TRL=I+1 expresses that the run is completed without detecting any shift in II inspections. The p.m.f (probability mass function) fTRL(l)f_{TRL}(l) and the c.d.f FTRL(l)F_{TRL}(l) of TRL can be derived as follows:

fTRL(l)={p(1p)l1,ifl=1,2,,I,(1p)I,ifl=I+1,\displaystyle f_{TRL}(l)=\begin{cases}p(1-p)^{l-1},\quad\text{if}\quad l=1,2,...,I,\\ (1-p)^{I},\quad\quad\,\,\,\text{if}\quad l=I+1,\end{cases} (14)

and

FTRL(l)={1(1p)l,ifl=1,2,,I,1,ifl=I+1,\displaystyle F_{TRL}(l)=\begin{cases}1-(1-p)^{l},\quad\text{if}\quad l=1,2,...,I,\\ 1,\qquad\qquad\quad\,\,\,\,\text{if}\quad l=I+1,\end{cases} (15)

where pp is the probability of an occ signal. Let TARL be the expected value of TRL that can be used in place of the traditional ARL to evaluate the performance of the control charts in finite horizon production. Moreover, let TARL0\textit{TARL}_{0} and TARL1\textit{TARL}_{1} be the in-control and out-of-control values of TARL, respectively. Substituting pp by α\alpha (α\alpha is the probability of type I error) or 1β1-\beta (β\beta is the probability of type II error) in (14) and taking expectation over the TRL support, TARL0\textit{TARL}_{0} and TARL1\textit{TARL}_{1} will be derived as (Nenes and Tagaras 16):

TARL0\displaystyle TARL_{0} =l=1Il(1α)l1α+(I+1)(1α)I=1(1α)I+1α,\displaystyle=\sum^{I}_{l=1}l(1-\alpha)^{l-1}\alpha+(I+1)(1-\alpha)^{I}=\frac{1-(1-\alpha)^{I+1}}{\alpha}, (16)
TARL1\displaystyle TARL_{1} =l=1Ilβl1(1β)+(I+1)βI=1βI+11β.\displaystyle=\sum^{I}_{l=1}l\beta^{l-1}(1-\beta)+(I+1)\beta^{I}=\frac{1-\beta^{I+1}}{1-\beta}. (17)

The error probabilities α\alpha and β\beta can be calculated for the proposed charts by:

α={FZ^i(LCL|n,γX,γY,z0,ρ0),for 𝒮hRZ Chart1FZ^i(UCL+|n,γX,γY,z0,ρ0),for 𝒮hRZ+ Chart\displaystyle\alpha=\begin{cases}F_{\hat{Z}_{i}}(LCL^{-}|n,\gamma_{X},\gamma_{Y},z_{0},\rho_{0}),\quad\quad\,\,\,\,\text{for $\mathcal{S}h^{-}_{RZ}$ Chart}\\ 1-F_{\hat{Z}_{i}}(UCL^{+}|n,\gamma_{X},\gamma_{Y},z_{0},\rho_{0}),\quad\text{for $\mathcal{S}h^{+}_{RZ}$ Chart}\end{cases} (18)

and

β={1FZ^i(LCL|n,γX,γY,z1,ρ1),for 𝒮hRZ ChartFZ^i(UCL+|n,γX,γY,z1,ρ1),for 𝒮hRZ+ Chart\displaystyle\beta=\begin{cases}1-F_{\hat{Z}_{i}}(LCL^{-}|n,\gamma_{X},\gamma_{Y},z_{1},\rho_{1}),\quad\text{for $\mathcal{S}h^{-}_{RZ}$ Chart}\\ F_{\hat{Z}_{i}}(UCL^{+}|n,\gamma_{X},\gamma_{Y},z_{1},\rho_{1}),\quad\quad\,\,\,\,\text{for $\mathcal{S}h^{+}_{RZ}$ Chart}\end{cases} (19)

where z1=τz0(τ>0)z_{1}=\tau z_{0}\,(\tau>0) and ρ1\rho_{1} are the out-of-control values of the ratio and the coefficient of correlation, respectively. While the values of shift size τ(0,1)\tau\in(0,1) correspond to decrease of nominal ratio z0z_{0}, the values of τ>1\tau>1 correspond to an increase of nominal ratio z0z_{0}.

5 Numerical Performance Analysis

In this section, we evaluate the statistical performance of the two one-sided ShRZ{Sh}^{-}_{RZ} and ShRZ+{Sh}^{+}_{RZ} charts for the short production run. The performance of the chart is evaluated by the startup of the short run when a particular shift (τ)(\tau) happens. To serve the purpose, the TARL metric is used as the performance measure instead of using traditional ARL. Initially, let TARL0=I{TARL}_{0}=I when the process expected to be in control. Statistical performance has been calculated by considering the following parameters values.

  • z0z_{0}=1 (in-control ratio of two variables)

  • γX{0.01,0.2}andγY{0.01,0.2}\gamma_{X}\in\{0.01,0.2\}\,\text{and}\,\gamma_{Y}\in\{0.01,0.2\}

  • ρ0{0.0,±0.4,±0.8}\rho_{0}\in\{0.0,\pm 0.4,\pm 0.8\}

  • n={1,5,7,10,15}n=\{1,5,7,10,15\}

  • I={10,30,50}I=\{10,30,50\}

  • τ={0.9,0.95,0.98,0.99;forShRZchart1.01,1.02,1.05,1.1forShRZ+chart\tau=\left\{\begin{array}[]{c}0.9,0.95,0.98,0.99;\ \ \ \ \ \ for\ {Sh}^{-}_{RZ}\ chart\\ 1.01,1.02,1.05,1.1\ \ \ \ \ for\ {Sh}^{+}_{RZ}\ chart\end{array}\right.

Tables 1-3 illustrate the probability-type control limits LCLLCL^{-} and UCL+UCL^{+} values designing such that TARL0=ITARL_{0}=I (Nenes and Tagaras 15) by varying γX,γY,ρ0\gamma_{X},\gamma_{Y},\rho_{0} and nn at τ=τ0\tau=\tau_{0} (when process is in control) and z0=1z_{0}=1. Tables 4-9 exhibit the TARL1TARL_{1} values for two charts (ShRZ{Sh}^{-}_{RZ} and ShRZ+{Sh}^{+}_{RZ}) for I=10,30I=10,30 and 5050, when ρ1=ρ0\rho_{1}=\rho_{0} using n{1,5,7,15,30},γX=γY,γXγYn\in\left\{1,5,7,15,30\right\},\gamma_{X}=\gamma_{Y},\gamma_{X}\neq\gamma_{Y} and τ={0.9,0.95,0.98,0.99,1.01,1.02,1.05,1.1}\tau=\left\{0.9,0.95,0.98,0.99,1.01,1.02,1.05,1.1\right\}. Tables 10-15 demonstrate the TARL1TARL_{1} values for two charts (ShRZ{Sh}^{-}_{RZ} and ShRZ+{Sh}^{+}_{RZ}) for I=10,30I=10,30 and 5050, when ρ1ρ0\rho_{1}\neq\rho_{0} using n{1,5,7,15,30},τ={0.9,0.95,0.98,0.99,1.01,1.02,1.05,1.1},γX=γYn\in\{1,5,7,15,30\},\tau=\{0.9,0.95,0.98,0.99,1.01,1.02,1.05,1.1\},\gamma_{X}=\gamma_{Y}, and γXγY\gamma_{X}\neq\gamma_{Y}.

Table 1: Values of (LCL,UCL+)(LCL^{-},UCL^{+}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},ρ0{0.0,±0.4,±0.8},n={1,5,7,10,15}z_{0}=1,\ \gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\ \rho_{0}\in\left\{0.0,\pm 0.4,\pm 0.8\right\},\ n=\left\{1,5,7,10,15\right\} and TARL0=10.TARL_{0}=10.
γX\gamma_{X} γY\gamma_{Y} ρ0\rho_{0} n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
0.010.01 0.010.01 0.8-0.8 0.96150.9615 0.98260.9826 0.98530.9853 0.98770.9877 0.98990.9899
1.04011.0401 1.01771.0177 1.01501.0150 1.01251.0125 1.01021.0102
0.4-0.4 0.96600.9660 0.98460.9846 0.98700.9870 0.98910.9891 0.99110.9911
1.03521.0352 1.01561.0156 1.01321.0132 1.01101.0110 1.00901.0090
0.00.0 0.97120.9712 0.98700.9870 0.98900.9890 0.99080.9908 0.99250.9925
1.02971.0297 1.01321.0132 1.01111.0111 1.00931.0093 1.00761.0076
0.40.4 0.97760.9776 0.98990.9899 0.99150.9915 0.99290.9929 0.99420.9942
1.02291.0229 1.01021.0102 1.00861.0086 1.00721.0072 1.00591.0059
0.80.8 0.98700.9870 0.99420.9942 0.99510.9951 0.99590.9959 0.99660.9966
1.01321.0132 1.00591.0059 1.00501.0050 1.00411.0041 1.00341.0034
0.200.20 0.200.20 0.8-0.8 0.43260.4326 0.70080.7008 0.74130.7413 0.77890.7789 0.81580.8158
2.31162.3116 1.42691.4269 1.34901.3490 1.28381.2838 1.22581.2258
0.4-0.4 0.47540.4754 0.73060.7306 0.76780.7678 0.80210.8021 0.83560.8356
2.10342.1034 1.36871.3687 1.30251.3025 1.24671.2467 1.19671.1967
0.00.0 0.53130.5313 0.76680.7668 0.79970.7997 0.82990.8299 0.85910.8591
1.88211.8821 1.30421.3042 1.25051.2505 1.20491.2049 1.16401.1640
0.40.4 0.61080.6108 0.81390.8139 0.84090.8409 0.86550.8655 0.88900.8890
1.63731.6373 1.22871.2287 1.18921.1892 1.15551.1555 1.12491.1249
0.80.8 0.75080.7508 0.88780.8878 0.90470.9047 0.91990.9199 0.93430.9343
1.33191.3319 1.12641.1264 1.10531.1053 1.08711.0871 1.07031.0703
0.010.01 0.200.20 0.8-0.8 0.69540.6954 0.83750.8375 0.85920.8592 0.87960.8796 0.89950.8995
1.73461.7346 1.23631.2363 1.19291.1929 1.15671.1567 1.12451.1245
0.4-0.4 0.70100.7010 0.84050.8405 0.86190.8619 0.88180.8818 0.90140.9014
1.72071.7207 1.23191.2319 1.18931.1893 1.15371.1537 1.12221.1222
0.00.0 0.70680.7068 0.84360.8436 0.86450.8645 0.88410.8841 0.90330.9033
1.70671.7067 1.22741.2274 1.18561.1856 1.15081.1508 1.11981.1198
0.40.4 0.71270.7127 0.84670.8467 0.86730.8673 0.88640.8864 0.90530.9053
1.69251.6925 1.22281.2228 1.18191.1819 1.14771.1477 1.11741.1174
0.80.8 0.71880.7188 0.85000.8500 0.87010.8701 0.88880.8888 0.90730.9073
1.67811.6781 1.21811.2181 1.17811.1781 1.14461.1446 1.11491.1149
0.200.20 0.010.01 0.8-0.8 0.57650.5765 0.80890.8089 0.83830.8383 0.86450.8645 0.88930.8893
1.43811.4381 1.19411.1941 1.16381.1638 1.13691.1369 1.11171.1117
0.4-0.4 0.58120.5812 0.81180.8118 0.84080.8408 0.86670.8667 0.89110.8911
1.42661.4266 1.18981.1898 1.16031.1603 1.13401.1340 1.10941.1094
0.00.0 0.58590.5859 0.81470.8147 0.84340.8434 0.86900.8690 0.89300.8930
1.41491.4149 1.18541.1854 1.15671.1567 1.13111.1311 1.10701.1070
0.40.4 0.59080.5908 0.81780.8178 0.84610.8461 0.87130.8713 0.89500.8950
1.40321.4032 1.18101.1810 1.15311.1531 1.12811.1281 1.10461.1046
0.80.8 0.59590.5959 0.82090.8209 0.84880.8488 0.87360.8736 0.89690.8969
1.39121.3912 1.17651.1765 1.14931.1493 1.12511.1251 1.10221.1022
Table 2: Values of (LCL,UCL+)(LCL^{-},UCL^{+}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},ρ0{0.0,±0.4,±0.8},n={1,5,7,10,15}z_{0}=1,\ \gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\ \rho_{0}\in\left\{0.0,\pm 0.4,\pm 0.8\right\},\ n=\left\{1,5,7,10,15\right\} and TARL0=30.TARL_{0}=30.
γX\gamma_{X} γY\gamma_{Y} ρ0\rho_{0} n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
0.010.01 0.010.01 0.8-0.8 0.94740.9474 0.97610.9761 0.97980.9798 0.98310.9831 0.98610.9861
1.05551.0555 1.02451.0245 1.02061.0206 1.01721.0172 1.01411.0141
0.4-0.4 0.95340.9534 0.97890.9789 0.98210.9821 0.98500.9850 0.98780.9878
1.04881.0488 1.02151.0215 1.01821.0182 1.01521.0152 1.01241.0124
0.00.0 0.96050.9605 0.98210.9821 0.98490.9849 0.98730.9873 0.98970.9897
1.04111.0411 1.01821.0182 1.01531.0153 1.01281.0128 1.01051.0105
0.40.4 0.96930.9693 0.98610.9861 0.98830.9883 0.99020.9902 0.99200.9920
1.03171.0317 1.01411.0141 1.01191.0119 1.00991.0099 1.00811.0081
0.80.8 0.98210.9821 0.99200.9920 0.99320.9932 0.99430.9943 0.99540.9954
1.01821.0182 1.00811.0081 1.00681.0068 1.00571.0057 1.00471.0047
0.200.20 0.200.20 0.8-0.8 0.29080.2908 0.60970.6097 0.66010.6601 0.70770.7077 0.75490.7549
3.43903.4390 1.64021.6402 1.51491.5149 1.41311.4131 1.32481.3248
0.4-0.4 0.33180.3318 0.64570.6457 0.69290.6929 0.73690.7369 0.78020.7802
3.01363.0136 1.54861.5486 1.44331.4433 1.35701.3570 1.28171.2817
0.00.0 0.38880.3888 0.69040.6904 0.73300.7330 0.77240.7724 0.81060.8106
2.57222.5722 1.44841.4484 1.36421.3642 1.29471.2947 1.23361.2336
0.40.4 0.47610.4761 0.75000.7500 0.78590.7859 0.81850.8185 0.84980.8498
2.10052.1005 1.33331.3333 1.27251.2725 1.22181.2218 1.17671.1767
0.80.8 0.64730.6473 0.84670.8467 0.86990.8699 0.89070.8907 0.91030.9103
1.54491.5449 1.18111.1811 1.14951.1495 1.12271.1227 1.09861.0986
0.010.01 0.200.20 0.8-0.8 0.62230.6223 0.78870.7887 0.81560.8156 0.84120.8412 0.86660.8666
2.37712.3771 1.35571.3557 1.28551.2855 1.22861.2286 1.17941.1794
0.4-0.4 0.62920.6292 0.79260.7926 0.81910.8191 0.84410.8441 0.86910.8691
2.35102.3510 1.34901.3490 1.28011.2801 1.22431.2243 1.17611.1761
0.00.0 0.63640.6364 0.79660.7966 0.82260.8226 0.84710.8471 0.87160.8716
2.32462.3246 1.34221.3422 1.27471.2747 1.22001.2200 1.17261.1726
0.40.4 0.64370.6437 0.80070.8007 0.82610.8261 0.85020.8502 0.87420.8742
2.29812.2981 1.33531.3353 1.26921.2692 1.21551.2155 1.16921.1692
0.80.8 0.65130.6513 0.80500.8050 0.82980.8298 0.85340.8534 0.87680.8768
2.27122.2712 1.32831.3283 1.26351.2635 1.21101.2110 1.16561.1656
0.200.20 0.010.01 0.8-0.8 0.42070.4207 0.73760.7376 0.77790.7779 0.81390.8139 0.84790.8479
1.60691.6069 1.26791.2679 1.22601.2260 1.18881.1888 1.15401.1540
0.4-0.4 0.42540.4254 0.74130.7413 0.78120.7812 0.81680.8168 0.85030.8503
1.58931.5893 1.26161.2616 1.22091.2209 1.18471.1847 1.15071.1507
0.00.0 0.43020.4302 0.74500.7450 0.78450.7845 0.81970.8197 0.85280.8528
1.57151.5715 1.25531.2553 1.21571.2157 1.18051.1805 1.14731.1473
0.40.4 0.43510.4351 0.74890.7489 0.78790.7879 0.82270.8227 0.85530.8553
1.55351.5535 1.24881.2488 1.21051.2105 1.17621.1762 1.14391.1439
0.80.8 0.44030.4403 0.75280.7528 0.79140.7914 0.82570.8257 0.85790.8579
1.53541.5354 1.24231.2423 1.20511.2051 1.17181.1718 1.14051.1405
Table 3: Values of (LCL,UCL+)(LCL^{-},UCL^{+}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},ρ0{0.0,±0.4,±0.8},n={1,5,7,10,15}z_{0}=1,\ \gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\ \rho_{0}\in\left\{0.0,\pm 0.4,\pm 0.8\right\},\ n=\left\{1,5,7,10,15\right\} and TARL0=50.TARL_{0}=50.
γX\gamma_{X} γY\gamma_{Y} ρ0\rho_{0} n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
0.010.01 0.010.01 0.8-0.8 0.94180.9418 0.97360.9736 0.97760.9776 0.98120.9812 0.98460.9846
1.06181.0618 1.02721.0272 1.02291.0229 1.01911.0191 1.01561.0156
0.4-0.4 0.94850.9485 0.97660.9766 0.98020.9802 0.98340.9834 0.98640.9864
1.05431.0543 1.02391.0239 1.02021.0202 1.01691.0169 1.01371.0137
0.00.0 0.95630.9563 0.98020.9802 0.98330.9833 0.98600.9860 0.98850.9885
1.04571.0457 1.02021.0202 1.01701.0170 1.01421.0142 1.01161.0116
0.40.4 0.96600.9660 0.98460.9846 0.98700.9870 0.98910.9891 0.99110.9911
1.03521.0352 1.01561.0156 1.01321.0132 1.01101.0110 1.00901.0090
0.80.8 0.98020.9802 0.99110.9911 0.99250.9925 0.99370.9937 0.99490.9949
1.02021.0202 1.00901.0090 1.00761.0076 1.00631.0063 1.00521.0052
0.200.20 0.200.20 0.8-0.8 0.24110.2411 0.57600.5760 0.62980.6298 0.68090.6809 0.73170.7317
4.14794.1479 1.73611.7361 1.58771.5877 1.46871.4687 1.36661.3666
0.4-0.4 0.27940.2794 0.61390.6139 0.66470.6647 0.71220.7122 0.75900.7590
3.57873.5787 1.62881.6288 1.50451.5045 1.40421.4042 1.31751.3175
0.00.0 0.33410.3341 0.66140.6614 0.70760.7076 0.75030.7503 0.79200.7920
2.99312.9931 1.51201.5120 1.41331.4133 1.33281.3328 1.26271.2627
0.40.4 0.42100.4210 0.72530.7253 0.76450.7645 0.80030.8003 0.83460.8346
2.37532.3753 1.37871.3787 1.30801.3080 1.24961.2496 1.19821.1982
0.80.8 0.60070.6007 0.83030.8303 0.85610.8561 0.87910.8791 0.90080.9008
1.66481.6648 1.20441.2044 1.16801.1680 1.13751.1375 1.11011.1101
0.010.01 0.200.20 0.8-0.8 0.59710.5971 0.77080.7708 0.79950.7995 0.82680.8268 0.85410.8541
2.78322.7832 1.40951.4095 1.32621.3262 1.25961.2596 1.20271.2027
0.4-0.4 0.60450.6045 0.77510.7751 0.80320.8032 0.83000.8300 0.85680.8568
2.74922.7492 1.40181.4018 1.32011.3201 1.25481.2548 1.19891.1989
0.00.0 0.61210.6121 0.77940.7794 0.80700.8070 0.83330.8333 0.85960.8596
2.71512.7151 1.39401.3940 1.31391.3139 1.24981.2498 1.19511.1951
0.40.4 0.62000.6200 0.78390.7839 0.81090.8109 0.83660.8366 0.86240.8624
2.68072.6807 1.38611.3861 1.30761.3076 1.24481.2448 1.19111.1911
0.80.8 0.62810.6281 0.78840.7884 0.81490.8149 0.84010.8401 0.86530.8653
2.64602.6460 1.37801.3780 1.30111.3011 1.23971.2397 1.18711.1871
0.200.20 0.010.01 0.8-0.8 0.35930.3593 0.70950.7095 0.75400.7540 0.79390.7939 0.83150.8315
1.67461.6746 1.29731.2973 1.25081.2508 1.20951.2095 1.17081.1708
0.4-0.4 0.36370.3637 0.71340.7134 0.75750.7575 0.79700.7970 0.83410.8341
1.65421.6542 1.29021.2902 1.24501.2450 1.20481.2048 1.16711.1671
0.00.0 0.36830.3683 0.71740.7174 0.76110.7611 0.80010.8001 0.83680.8368
1.63371.6337 1.28301.2830 1.23921.2392 1.20011.2001 1.16331.1633
0.40.4 0.37300.3730 0.72150.7215 0.76480.7648 0.80330.8033 0.83950.8395
1.61301.6130 1.27571.2757 1.23321.2332 1.19531.1953 1.15951.1595
0.80.8 0.37790.3779 0.72570.7257 0.76860.7686 0.80670.8067 0.84240.8424
1.59211.5921 1.26831.2683 1.22721.2272 1.19031.1903 1.15561.1556

The findings of proposed design in Tables 1-3 are as follows:

  1. 1.

    Influence of sample size (nn) to chart performance The width of control limits decreases as sample size (nn) increases for particular values of γX,γY,ρ0\gamma_{X},\gamma_{Y},\rho_{0} and II. For example, when (γX,γY)=(0.01,0.01),n=1,I=10\left(\gamma_{X},\ \ \gamma_{Y}\right)=\left(0.01,0.01\right),\ n=1,I=10, and ρ0\rho_{0}=ρ1=0.8\rho_{1}=-0.8 we have (LCL,UCL+)=(0.9615,1.0401)(LCL^{-},UCL^{+})=(0.9615,1.0401) while for, n=15\ n=15, we have (LCL,UCL+)=(0.9899,1.0102)(LCL^{-},UCL^{+})=(0.9899,1.0102) (cf. Table 1). Similar pattern can be observed for other values.

  2. 2.

    Effect of γX{\gamma}_{X} and γY{\gamma}_{Y} values to chart performance Mostly, the control limits LCLandUCL+LCL^{-}\,\text{and}\,UCL^{+} do not hold symmetry around 1. However, symmetry approximated attained by increasing sample size (nn) for strong correlation and smaller values of (γX,γY)(\gamma_{X},\gamma_{Y}). In general, UCL+1LCLUCL^{+}\neq\frac{1}{LCL^{-}}; when γX=γY\gamma_{X}=\gamma_{Y} than UCL+=1LCLUCL^{+}=\frac{1}{LCL^{-}} hold. For example, when γX=γY=0.01\gamma_{X}=\gamma_{Y}=0.01, ρ0\rho_{0}=ρ1=0.8,n=1\rho_{1}=-0.8,n=1, and I=10I=10 the values of LCLandUCL+LCL^{-}\,\text{and}\,UCL^{+}are 0.96150.9615 and 1.04011.0401 that hold symmetry (10.9615=1.0401)\left(\frac{1}{0.9615}=1.0401\right) (cf. Table 1). Similar pattern may be observe for I=30&50(γX=γY)I=30\&50(\gamma_{X}=\gamma_{Y}) and which is accordance to Celano and Castagliola 5.

  3. 3.

    Impact of I to chart performance The number of inspections II affects the width of control limits. The values of LCLandUCL+LCL^{-}\,\text{and}\,UCL^{+}, when γX=γY=0.01\gamma_{X}=\gamma_{Y}=0.01, ρ0=ρ1=0.8\rho_{0}=\rho_{1}=-0.8 are (0.9615,1.0401)(0.9615,1.0401) for I=10I=10 (cf. Table 1), (0.9474,1.055)(0.9474,1.055) for I=30I=30 (cf. Table 2), and (0.9418,1.0618)(0.9418,1.0618) for I=50I=50 (cf. Table 3). The value of LCLandUCL+LCL^{-}\,\text{and}\,UCL^{+} using γX=0.01,γY=0.2,n=1,ρ0\gamma_{X}=0.01,\gamma_{Y}=0.2,n=1,\rho_{0}=ρ1=0.8\rho_{1}=-0.8 are (0.6954,1.7346)(0.6954,1.7346) for I=10,(0.6223,2.3771)I=10,(0.6223,2.3771) for I=30I=30, and (0.5971,2.7832)(0.5971,2.7832) for I=50I=50. Similar pattern of LCLandUCL+LCL^{-}\,\text{and}\,UCL^{+} can be observed for other values. Number of inspection widens the control limits.

Table 4: TARL1TARL_{1} values of the one-sided Shewhart RZRZ chart (ShRZSh^{-}_{RZ} and ShRZ+Sh^{+}_{RZ}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},γX=γY,ρ0{0.8,0.4,0.0,0.4,0.8},ρ1=ρ0,n={1,5,7,10,15},τ={0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1}z_{0}=1,\gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\ \gamma_{X}=\gamma_{Y},\ \rho_{0}\in\left\{-0.8,-0.4,0.0,0.4,0.8\right\},\rho_{1}=\rho_{0},n=\left\{1,5,7,10,15\right\},\tau=\left\{0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1\right\} and TARL0=10TARL_{0}=10
(γX,γY)=(0.01,0.01)(\gamma_{X},\gamma_{Y})=(0.01,0.01) (γX,γY)=(0.2,0.2)(\gamma_{X},\gamma_{Y})=(0.2,0.2)
τ\tau n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15 n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
ρ0=ρ1=0.8\rho_{0}=\rho_{1}=-0.8
0.900.90 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 9.39.3 7.87.8 7.27.2 6.46.4 5.45.4
0.950.95 1.41.4 1.01.0 1.01.0 1.01.0 1.01.0 9.79.7 9.19.1 8.98.9 8.68.6 8.28.2
0.980.98 5.45.4 1.61.6 1.31.3 1.11.1 1.01.0 9.99.9 9.79.7 9.69.6 9.69.6 9.49.4
0.990.99 8.28.2 4.84.8 3.83.8 2.92.9 2.02.0 9.99.9 9.99.9 9.89.8 9.89.8 9.79.7
1.011.01 8.28.2 4.84.8 3.93.9 2.92.9 2.12.1 9.99.9 9.99.9 9.89.8 9.89.8 9.79.7
1.021.02 5.55.5 1.71.7 1.31.3 1.11.1 1.01.0 9.99.9 9.79.7 9.79.7 9.69.6 9.59.5
1.051.05 1.41.4 1.01.0 1.01.0 1.01.0 1.01.0 9.79.7 9.29.2 9.09.0 8.78.7 8.38.3
1.101.10 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 9.49.4 8.18.1 7.67.6 6.96.9 5.95.9
ρ0=ρ1=0.4\rho_{0}=\rho_{1}=-0.4
0.900.90 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 9.39.3 7.47.4 6.76.7 5.85.8 4.74.7
0.950.95 1.21.2 1.01.0 1.01.0 1.01.0 1.01.0 9.79.7 9.09.0 8.78.7 8.48.4 7.97.9
0.980.98 4.74.7 1.41.4 1.11.1 1.01.0 1.01.0 9.99.9 9.79.7 9.69.6 9.59.5 9.49.4
0.990.99 7.87.8 4.04.0 3.13.1 2.32.3 1.71.7 9.99.9 9.89.8 9.89.8 9.89.8 9.79.7
1.011.01 7.97.9 4.14.1 3.23.2 2.32.3 1.71.7 9.99.9 9.89.8 9.89.8 9.89.8 9.79.7
1.021.02 4.84.8 1.41.4 1.21.2 1.01.0 1.01.0 9.99.9 9.79.7 9.69.6 9.59.5 9.49.4
1.051.05 1.21.2 1.01.0 1.01.0 1.01.0 1.01.0 9.79.7 9.19.1 8.88.8 8.58.5 8.08.0
1.101.10 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 9.39.3 7.77.7 7.17.1 6.36.3 5.25.2
ρ0=ρ1=0.0\rho_{0}=\rho_{1}=0.0
0.900.90 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 9.19.1 6.76.7 5.95.9 4.94.9 3.73.7
0.950.95 1.11.1 1.01.0 1.01.0 1.01.0 1.01.0 9.69.6 8.88.8 8.48.4 8.08.0 7.37.3
0.980.98 3.73.7 1.11.1 1.01.0 1.01.0 1.01.0 9.99.9 9.69.6 9.59.5 9.49.4 9.29.2
0.990.99 7.37.3 3.13.1 2.32.3 1.81.8 1.31.3 9.99.9 9.89.8 9.89.8 9.79.7 9.69.6
1.011.01 7.37.3 3.23.2 2.42.4 1.81.8 1.31.3 9.99.9 9.89.8 9.89.8 9.79.7 9.79.7
1.021.02 3.83.8 1.21.2 1.11.1 1.01.0 1.01.0 9.99.9 9.69.6 9.59.5 9.49.4 9.29.2
1.051.05 1.11.1 1.01.0 1.01.0 1.01.0 1.01.0 9.69.6 8.88.8 8.58.5 8.18.1 7.57.5
1.101.10 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 9.29.2 7.27.2 6.46.4 5.45.4 4.34.3
ρ0=ρ1=0.4\rho_{0}=\rho_{1}=0.4
0.900.90 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 8.88.8 5.55.5 4.54.5 3.43.4 2.42.4
0.950.95 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 9.59.5 8.38.3 7.87.8 7.27.2 6.36.3
0.980.98 2.42.4 1.01.0 1.01.0 1.01.0 1.01.0 9.89.8 9.59.5 9.39.3 9.29.2 8.98.9
0.990.99 6.26.2 2.02.0 1.61.6 1.31.3 1.11.1 9.99.9 9.89.8 9.79.7 9.69.6 9.59.5
1.011.01 6.26.2 2.12.1 1.61.6 1.31.3 1.11.1 9.99.9 9.89.8 9.79.7 9.69.6 9.59.5
1.021.02 2.52.5 1.01.0 1.01.0 1.01.0 1.01.0 9.89.8 9.59.5 9.39.3 9.29.2 8.98.9
1.051.05 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 9.59.5 8.48.4 7.97.9 7.47.4 6.56.5
1.101.10 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 8.98.9 6.06.0 5.15.1 4.04.0 2.92.9
ρ0=ρ1=0.8\rho_{0}=\rho_{1}=0.8
0.900.90 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 7.47.4 2.52.5 1.81.8 1.41.4 1.11.1
0.950.95 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 9.09.0 6.46.4 5.55.5 4.44.4 3.23.2
0.980.98 1.11.1 1.01.0 1.01.0 1.01.0 1.01.0 9.79.7 9.09.0 8.78.7 8.38.3 7.87.8
0.990.99 3.13.1 1.11.1 1.01.0 1.01.0 1.01.0 9.99.9 9.59.5 9.49.4 9.39.3 9.19.1
1.011.01 3.23.2 1.11.1 1.01.0 1.01.0 1.01.0 9.99.9 9.69.6 9.49.4 9.39.3 9.19.1
1.021.02 1.21.2 1.01.0 1.01.0 1.01.0 1.01.0 9.79.7 9.09.0 8.78.7 8.48.4 7.87.8
1.051.05 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 9.19.1 6.66.6 5.75.7 4.74.7 3.53.5
1.101.10 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 7.77.7 2.92.9 2.22.2 1.61.6 1.31.3
Table 5: TARL1TARL_{1} values of the one-sided Shewhart RZRZ chart (ShRZSh^{-}_{RZ} and ShRZ+Sh^{+}_{RZ}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},γXγY,ρ0{0.8,0.4,0.0,0.4,0.8},ρ1=ρ0,n={1,5,7,10,15},τ={0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1}z_{0}=1,\gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\ \gamma_{X}\neq\gamma_{Y},\ \rho_{0}\in\left\{-0.8,-0.4,0.0,0.4,0.8\right\},\ \rho_{1}=\rho_{0},\ n=\left\{1,5,7,10,15\right\},\ \tau=\left\{0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1\right\} and TARL0=10.TARL_{0}=10.
(γX,γY)=(0.01,0.2)(\gamma_{X},\gamma_{Y})=(0.01,0.2) (γX,γY)=(0.2,0.01)(\gamma_{X},\gamma_{Y})=(0.2,0.01)
τ\tau n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15 n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
ρ0=ρ1=0.8\rho_{0}=\rho_{1}=-0.8
0.900.90 7.57.5 4.44.4 3.53.5 2.72.7 2.02.0 9.09.0 5.85.8 4.74.7 3.53.5 2.42.4
0.950.95 9.09.0 7.77.7 7.27.2 6.56.5 5.65.6 9.69.6 8.58.5 8.08.0 7.37.3 6.46.4
0.980.98 9.79.7 9.39.3 9.19.1 9.09.0 8.78.7 9.99.9 9.59.5 9.49.4 9.29.2 9.09.0
0.990.99 9.89.8 9.79.7 9.69.6 9.59.5 9.49.4 9.99.9 9.89.8 9.79.7 9.79.7 9.69.6
1.011.01 9.99.9 9.89.8 9.79.7 9.79.7 9.69.6 9.89.8 9.79.7 9.69.6 9.59.5 9.49.4
1.021.02 9.99.9 9.59.5 9.49.4 9.29.2 9.09.0 9.79.7 9.39.3 9.29.2 9.09.0 8.78.7
1.051.05 9.69.6 8.68.6 8.18.1 7.57.5 6.66.6 9.09.0 7.87.8 7.37.3 6.76.7 5.85.8
1.101.10 9.29.2 6.46.4 5.35.3 4.14.1 2.92.9 7.87.8 4.94.9 4.14.1 3.23.2 2.42.4
ρ0=ρ1=0.4\rho_{0}=\rho_{1}=-0.4
0.900.90 7.47.4 4.34.3 3.43.4 2.72.7 2.02.0 9.09.0 5.85.8 4.64.6 3.43.4 2.32.3
0.950.95 9.09.0 7.67.6 7.17.1 6.46.4 5.55.5 9.69.6 8.48.4 7.97.9 7.37.3 6.36.3
0.980.98 9.69.6 9.39.3 9.19.1 8.98.9 8.68.6 9.99.9 9.59.5 9.49.4 9.29.2 8.98.9
0.990.99 9.89.8 9.79.7 9.69.6 9.59.5 9.49.4 9.99.9 9.89.8 9.79.7 9.69.6 9.59.5
1.011.01 9.99.9 9.89.8 9.79.7 9.79.7 9.59.5 9.89.8 9.79.7 9.69.6 9.59.5 9.49.4
1.021.02 9.99.9 9.59.5 9.49.4 9.29.2 9.09.0 9.79.7 9.39.3 9.19.1 9.09.0 8.78.7
1.051.05 9.69.6 8.58.5 8.18.1 7.57.5 6.56.5 9.09.0 7.77.7 7.37.3 6.66.6 5.75.7
1.101.10 9.29.2 6.36.3 5.25.2 4.04.0 2.82.8 7.77.7 4.84.8 4.04.0 3.13.1 2.32.3
ρ0=ρ1=0.0\rho_{0}=\rho_{1}=0.0
0.900.90 7.37.3 4.14.1 3.33.3 2.62.6 1.91.9 9.09.0 5.75.7 4.54.5 3.33.3 2.32.3
0.950.95 8.98.9 7.57.5 7.07.0 6.36.3 5.45.4 9.69.6 8.48.4 7.97.9 7.27.2 6.26.2
0.980.98 9.69.6 9.29.2 9.19.1 8.98.9 8.68.6 9.99.9 9.59.5 9.49.4 9.29.2 8.98.9
0.990.99 9.89.8 9.79.7 9.69.6 9.59.5 9.49.4 9.99.9 9.89.8 9.79.7 9.69.6 9.59.5
1.011.01 9.99.9 9.89.8 9.79.7 9.69.6 9.59.5 9.89.8 9.79.7 9.69.6 9.59.5 9.49.4
1.021.02 9.99.9 9.59.5 9.49.4 9.29.2 8.98.9 9.69.6 9.39.3 9.19.1 8.98.9 8.68.6
1.051.05 9.69.6 8.58.5 8.08.0 7.47.4 6.56.5 9.09.0 7.77.7 7.27.2 6.56.5 5.65.6
1.101.10 9.19.1 6.26.2 5.15.1 3.93.9 2.72.7 7.67.6 4.74.7 3.93.9 3.03.0 2.22.2
ρ0=ρ1=0.4\rho_{0}=\rho_{1}=0.4
0.900.90 7.27.2 4.04.0 3.23.2 2.52.5 1.81.8 9.09.0 5.65.6 4.44.4 3.23.2 2.22.2
0.950.95 8.98.9 7.47.4 6.96.9 6.26.2 5.25.2 9.69.6 8.48.4 7.87.8 7.17.1 6.16.1
0.980.98 9.69.6 9.29.2 9.19.1 8.98.9 8.68.6 9.99.9 9.59.5 9.49.4 9.29.2 8.98.9
0.990.99 9.89.8 9.69.6 9.69.6 9.59.5 9.49.4 9.99.9 9.89.8 9.79.7 9.69.6 9.59.5
1.011.01 9.99.9 9.89.8 9.79.7 9.69.6 9.59.5 9.89.8 9.79.7 9.69.6 9.59.5 9.49.4
1.021.02 9.99.9 9.59.5 9.49.4 9.29.2 8.98.9 9.69.6 9.29.2 9.19.1 8.98.9 8.68.6
1.051.05 9.69.6 8.58.5 8.08.0 7.37.3 6.46.4 8.98.9 7.67.6 7.17.1 6.46.4 5.55.5
1.101.10 9.19.1 6.16.1 5.05.0 3.83.8 2.62.6 7.57.5 4.64.6 3.73.7 2.92.9 2.12.1
ρ0=ρ1=0.8\rho_{0}=\rho_{1}=0.8
0.900.90 7.17.1 3.93.9 3.13.1 2.42.4 1.81.8 9.09.0 5.55.5 4.34.3 3.13.1 2.12.1
0.950.95 8.88.8 7.47.4 6.86.8 6.16.1 5.15.1 9.69.6 8.38.3 7.87.8 7.17.1 6.06.0
0.980.98 9.69.6 9.29.2 9.09.0 8.88.8 8.58.5 9.99.9 9.59.5 9.39.3 9.19.1 8.98.9
0.990.99 9.89.8 9.69.6 9.69.6 9.59.5 9.49.4 9.99.9 9.89.8 9.79.7 9.69.6 9.59.5
1.011.01 9.99.9 9.89.8 9.79.7 9.69.6 9.59.5 9.89.8 9.69.6 9.69.6 9.59.5 9.49.4
1.021.02 9.99.9 9.59.5 9.49.4 9.29.2 8.98.9 9.69.6 9.29.2 9.19.1 8.98.9 8.68.6
1.051.05 9.69.6 8.48.4 7.97.9 7.37.3 6.36.3 8.98.9 7.57.5 7.07.0 6.36.3 5.45.4
1.101.10 9.19.1 6.06.0 4.94.9 3.73.7 2.52.5 7.47.4 4.44.4 3.63.6 2.82.8 2.12.1
Table 6: TARL1TARL_{1} values of the one-sided Shewhart RZRZ chart (ShRZSh^{-}_{RZ} and ShRZ+Sh^{+}_{RZ}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},γX=γY,ρ0{0.8,0.4,0.0,0.4,0.8},ρ1=ρ0,n={1,5,7,10,15},τ={0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1}z_{0}=1,\ \gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\ \gamma_{X}=\gamma_{Y},\ \rho_{0}\in\left\{-0.8,-0.4,0.0,0.4,0.8\right\},\ \rho_{1}=\rho_{0},\ n=\left\{1,5,7,10,15\right\},\ \tau=\left\{0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1\right\} and TARL0=30.TARL_{0}=30.
(γX,γY)=(0.01,0.01)(\gamma_{X},\gamma_{Y})=(0.01,0.01) (γX,γY)=(0.2,0.2)(\gamma_{X},\gamma_{Y})=(0.2,0.2)
τ\tau n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15 n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
ρ0=ρ1=0.8\rho_{0}=\rho_{1}=-0.8
0.900.90 24.124.1 13.413.4 10.010.0 6.96.9 4.24.2 29.029.0 21.621.6 17.617.6 12.512.5 7.17.1
0.950.95 28.128.1 25.125.1 23.723.7 21.721.7 18.618.6 29.629.6 27.727.7 26.726.7 25.225.2 22.622.6
0.980.98 29.429.4 28.828.8 28.628.6 28.228.2 27.727.7 29.929.9 29.429.4 29.229.2 28.928.9 28.428.4
0.990.99 29.729.7 29.529.5 29.429.4 29.329.3 29.129.1 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4
1.011.01 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4 29.829.8 29.529.5 29.429.4 29.329.3 29.129.1
1.021.02 29.929.9 29.429.4 29.229.2 28.928.9 28.528.5 29.529.5 28.828.8 28.628.6 28.328.3 27.727.7
1.051.05 29.629.6 27.927.9 27.027.0 25.625.6 23.223.2 28.328.3 25.525.5 24.224.2 22.422.4 19.519.5
1.101.10 29.129.1 23.123.1 19.719.7 15.015.0 9.39.3 25.025.0 15.615.6 12.312.3 8.88.8 5.55.5
ρ0=ρ1=0.4\rho_{0}=\rho_{1}=-0.4
0.900.90 23.823.8 12.812.8 9.69.6 6.56.5 4.04.0 29.029.0 21.421.4 17.317.3 12.112.1 6.76.7
0.950.95 28.028.0 24.924.9 23.423.4 21.421.4 18.218.2 29.629.6 27.627.6 26.626.6 25.025.0 22.322.3
0.980.98 29.429.4 28.828.8 28.528.5 28.228.2 27.627.6 29.929.9 29.429.4 29.129.1 28.928.9 28.428.4
0.990.99 29.729.7 29.529.5 29.429.4 29.329.3 29.129.1 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4
1.011.01 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4 29.729.7 29.529.5 29.429.4 29.329.3 29.129.1
1.021.02 29.929.9 29.429.4 29.229.2 28.928.9 28.428.4 29.429.4 28.828.8 28.628.6 28.228.2 27.727.7
1.051.05 29.629.6 27.827.8 26.926.9 25.525.5 23.023.0 28.228.2 25.325.3 24.024.0 22.122.1 19.219.2
1.101.10 29.129.1 22.922.9 19.419.4 14.614.6 8.98.9 24.824.8 15.115.1 11.811.8 8.48.4 5.25.2
ρ0=ρ1=0.0\rho_{0}=\rho_{1}=0.0
0.900.90 23.523.5 12.312.3 9.19.1 6.16.1 3.83.8 29.029.0 21.121.1 16.916.9 11.611.6 6.46.4
0.950.95 28.028.0 24.624.6 23.223.2 21.021.0 17.717.7 29.629.6 27.627.6 26.526.5 24.924.9 22.122.1
0.980.98 29.429.4 28.728.7 28.528.5 28.128.1 27.527.5 29.929.9 29.329.3 29.129.1 28.828.8 28.428.4
0.990.99 29.729.7 29.529.5 29.429.4 29.329.3 29.129.1 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4
1.011.01 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4 29.729.7 29.529.5 29.429.4 29.329.3 29.129.1
1.021.02 29.929.9 29.429.4 29.229.2 28.928.9 28.428.4 29.429.4 28.828.8 28.528.5 28.228.2 27.627.6
1.051.05 29.629.6 27.827.8 26.826.8 25.325.3 22.822.8 28.128.1 25.125.1 23.723.7 21.821.8 18.718.7
1.101.10 29.129.1 22.722.7 19.119.1 14.214.2 8.58.5 24.524.5 14.614.6 11.311.3 7.97.9 4.94.9
ρ0=ρ1=0.4\rho_{0}=\rho_{1}=0.4
0.900.90 23.123.1 11.711.7 8.68.6 5.85.8 3.63.6 29.029.0 20.820.8 16.516.5 11.211.2 6.16.1
0.950.95 27.927.9 24.424.4 22.922.9 20.620.6 17.317.3 29.629.6 27.527.5 26.426.4 24.724.7 21.821.8
0.980.98 29.429.4 28.728.7 28.428.4 28.028.0 27.427.4 29.929.9 29.329.3 29.129.1 28.828.8 28.328.3
0.990.99 29.729.7 29.529.5 29.429.4 29.229.2 29.029.0 29.929.9 29.729.7 29.629.6 29.529.5 29.329.3
1.011.01 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4 29.729.7 29.529.5 29.429.4 29.229.2 29.129.1
1.021.02 29.929.9 29.329.3 29.129.1 28.828.8 28.428.4 29.429.4 28.728.7 28.528.5 28.128.1 27.527.5
1.051.05 29.629.6 27.727.7 26.726.7 25.225.2 22.622.6 28.028.0 24.924.9 23.523.5 21.421.4 18.318.3
1.101.10 29.129.1 22.422.4 18.718.7 13.713.7 8.18.1 24.224.2 14.114.1 10.810.8 7.57.5 4.64.6
ρ0=ρ1=0.8\rho_{0}=\rho_{1}=0.8
0.900.90 22.722.7 11.211.2 8.18.1 5.45.4 3.43.4 29.029.0 20.520.5 16.116.1 10.710.7 5.85.8
0.950.95 27.827.8 24.224.2 22.522.5 20.220.2 16.816.8 29.629.6 27.427.4 26.326.3 24.624.6 21.521.5
0.980.98 29.429.4 28.628.6 28.428.4 28.028.0 27.327.3 29.929.9 29.329.3 29.129.1 28.828.8 28.328.3
0.990.99 29.729.7 29.429.4 29.329.3 29.229.2 29.029.0 29.929.9 29.729.7 29.629.6 29.529.5 29.329.3
1.011.01 29.929.9 29.729.7 29.629.6 29.529.5 29.329.3 29.729.7 29.529.5 29.429.4 29.229.2 29.029.0
1.021.02 29.929.9 29.329.3 29.129.1 28.828.8 28.328.3 29.429.4 28.728.7 28.428.4 28.028.0 27.427.4
1.051.05 29.629.6 27.627.6 26.626.6 25.025.0 22.322.3 27.927.9 24.624.6 23.223.2 21.021.0 17.817.8
1.101.10 29.129.1 22.222.2 18.418.4 13.313.3 7.77.7 23.923.9 13.513.5 10.210.2 7.07.0 4.44.4
Table 7: TARL1TARL_{1} values of the one-sided Shewhart RZRZ chart (ShRZSh^{-}_{RZ} and ShRZ+Sh^{+}_{RZ}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},γXγY,ρ0{0.8,0.4,0.0,0.4,0.8},ρ1=ρ0,n={1,5,7,10,15},τ={0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1}z_{0}=1,\gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\gamma_{X}\neq\gamma_{Y},\rho_{0}\in\left\{-0.8,-0.4,0.0,0.4,0.8\right\},\rho_{1}=\rho_{0},n=\left\{1,5,7,10,15\right\},\tau=\left\{0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1\right\} and TARL0=30.TARL_{0}=30.
(γX,γY)=(0.01,0.2)(\gamma_{X},\gamma_{Y})=(0.01,0.2) (γX,γY)=(0.2,0.01)(\gamma_{X},\gamma_{Y})=(0.2,0.01)
τ\tau n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15 n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
ρ0=ρ1=0.8\rho_{0}=\rho_{1}=-0.8
0.900.90 24.124.1 13.413.4 10.010.0 6.96.9 4.24.2 29.029.0 21.621.6 17.617.6 12.512.5 7.17.1
0.950.95 28.128.1 25.125.1 23.723.7 21.721.7 18.618.6 29.629.6 27.727.7 26.726.7 25.225.2 22.622.6
0.980.98 29.429.4 28.828.8 28.628.6 28.228.2 27.727.7 29.929.9 29.429.4 29.229.2 28.928.9 28.428.4
0.990.99 29.729.7 29.529.5 29.429.4 29.329.3 29.129.1 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4
1.011.01 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4 29.829.8 29.529.5 29.429.4 29.329.3 29.129.1
1.021.02 29.929.9 29.429.4 29.229.2 28.928.9 28.528.5 29.529.5 28.828.8 28.628.6 28.328.3 27.727.7
1.051.05 29.629.6 27.927.9 27.027.0 25.625.6 23.223.2 28.328.3 25.525.5 24.224.2 22.422.4 19.519.5
1.101.10 29.129.1 23.123.1 19.719.7 15.015.0 9.39.3 25.025.0 15.615.6 12.312.3 8.88.8 5.55.5
ρ0=ρ1=0.4\rho_{0}=\rho_{1}=-0.4
0.900.90 23.823.8 12.812.8 9.69.6 6.56.5 4.04.0 29.029.0 21.421.4 17.317.3 12.112.1 6.76.7
0.950.95 28.028.0 24.924.9 23.423.4 21.421.4 18.218.2 29.629.6 27.627.6 26.626.6 25.025.0 22.322.3
0.980.98 29.429.4 28.828.8 28.528.5 28.228.2 27.627.6 29.929.9 29.429.4 29.129.1 28.928.9 28.428.4
0.990.99 29.729.7 29.529.5 29.429.4 29.329.3 29.129.1 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4
1.011.01 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4 29.729.7 29.529.5 29.429.4 29.329.3 29.129.1
1.021.02 29.929.9 29.429.4 29.229.2 28.928.9 28.428.4 29.429.4 28.828.8 28.628.6 28.228.2 27.727.7
1.051.05 29.629.6 27.827.8 26.926.9 25.525.5 23.023.0 28.228.2 25.325.3 24.024.0 22.122.1 19.219.2
1.101.10 29.129.1 22.922.9 19.419.4 14.614.6 8.98.9 24.824.8 15.115.1 11.811.8 8.48.4 5.25.2
ρ0=ρ1=0.0\rho_{0}=\rho_{1}=0.0
0.900.90 23.523.5 12.312.3 9.19.1 6.16.1 3.83.8 29.029.0 21.121.1 16.916.9 11.611.6 6.46.4
0.950.95 28.028.0 24.624.6 23.223.2 21.021.0 17.717.7 29.629.6 27.627.6 26.526.5 24.924.9 22.122.1
0.980.98 29.429.4 28.728.7 28.528.5 28.128.1 27.527.5 29.929.9 29.329.3 29.129.1 28.828.8 28.428.4
0.990.99 29.729.7 29.529.5 29.429.4 29.329.3 29.129.1 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4
1.011.01 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4 29.729.7 29.529.5 29.429.4 29.329.3 29.129.1
1.021.02 29.929.9 29.429.4 29.229.2 28.928.9 28.428.4 29.429.4 28.828.8 28.528.5 28.228.2 27.627.6
1.051.05 29.629.6 27.827.8 26.826.8 25.325.3 22.822.8 28.128.1 25.125.1 23.723.7 21.821.8 18.718.7
1.101.10 29.129.1 22.722.7 19.119.1 14.214.2 8.58.5 24.524.5 14.614.6 11.311.3 7.97.9 4.94.9
ρ0=ρ1=0.4\rho_{0}=\rho_{1}=0.4
0.900.90 23.123.1 11.711.7 8.68.6 5.85.8 3.63.6 29.029.0 20.820.8 16.516.5 11.211.2 6.16.1
0.950.95 27.927.9 24.424.4 22.922.9 20.620.6 17.317.3 29.629.6 27.527.5 26.426.4 24.724.7 21.821.8
0.980.98 29.429.4 28.728.7 28.428.4 28.028.0 27.427.4 29.929.9 29.329.3 29.129.1 28.828.8 28.328.3
0.990.99 29.729.7 29.529.5 29.429.4 29.229.2 29.029.0 29.929.9 29.729.7 29.629.6 29.529.5 29.329.3
1.011.01 29.929.9 29.729.7 29.629.6 29.529.5 29.429.4 29.729.7 29.529.5 29.429.4 29.229.2 29.129.1
1.021.02 29.929.9 29.329.3 29.129.1 28.828.8 28.428.4 29.429.4 28.728.7 28.528.5 28.128.1 27.527.5
1.051.05 29.629.6 27.727.7 26.726.7 25.225.2 22.622.6 28.028.0 24.924.9 23.523.5 21.421.4 18.318.3
1.101.10 29.129.1 22.422.4 18.718.7 13.713.7 8.18.1 24.224.2 14.114.1 10.810.8 7.57.5 4.64.6
ρ0=ρ1=0.8\rho_{0}=\rho_{1}=0.8
0.900.90 22.722.7 11.211.2 8.18.1 5.45.4 3.43.4 29.029.0 20.520.5 16.116.1 10.710.7 5.85.8
0.950.95 27.827.8 24.224.2 22.522.5 20.220.2 16.816.8 29.629.6 27.427.4 26.326.3 24.624.6 21.521.5
0.980.98 29.429.4 28.628.6 28.428.4 28.028.0 27.327.3 29.929.9 29.329.3 29.129.1 28.828.8 28.328.3
0.990.99 29.729.7 29.429.4 29.329.3 29.229.2 29.029.0 29.929.9 29.729.7 29.629.6 29.529.5 29.329.3
1.011.01 29.929.9 29.729.7 29.629.6 29.529.5 29.329.3 29.729.7 29.529.5 29.429.4 29.229.2 29.029.0
1.021.02 29.929.9 29.329.3 29.129.1 28.828.8 28.328.3 29.429.4 28.728.7 28.428.4 28.028.0 27.427.4
1.051.05 29.629.6 27.627.6 26.626.6 25.025.0 22.322.3 27.927.9 24.624.6 23.223.2 21.021.0 17.817.8
1.101.10 29.129.1 22.222.2 18.418.4 13.313.3 7.77.7 23.923.9 13.513.5 10.210.2 7.07.0 4.44.4
Table 8: TARL1TARL_{1} values of the one-sided Shewhart RZRZ chart (ShRZSh^{-}_{RZ} and ShRZ+Sh^{+}_{RZ}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},γX=γY,ρ0{0.8,0.4,0.0,0.4,0.8},ρ1=ρ0,n={1,5,7,10,15},τ={0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1}z_{0}=1,\gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\gamma_{X}=\gamma_{Y},\rho_{0}\in\left\{-0.8,-0.4,0.0,0.4,0.8\right\},\rho_{1}=\rho_{0},n=\left\{1,5,7,10,15\right\},\tau=\left\{0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1\right\} and TARL0=50.TARL_{0}=50.
(γX,γY)=(0.01,0.01)(\gamma_{X},\gamma_{Y})=(0.01,0.01) (γX,γY)=(0.2,0.2)(\gamma_{X},\gamma_{Y})=(0.2,0.2)
τ\tau n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15 n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
ρ0=ρ1=0.8\rho_{0}=\rho_{1}=-0.8
0.900.90 41.641.6 23.223.2 17.017.0 11.011.0 6.36.3 49.149.1 39.339.3 32.932.9 23.523.5 12.712.7
0.950.95 47.647.6 43.443.4 41.341.3 38.238.2 33.033.0 49.649.6 47.447.4 46.146.1 44.144.1 40.340.3
0.980.98 49.349.3 48.648.6 48.348.3 47.847.8 47.147.1 49.949.9 49.349.3 49.149.1 48.748.7 48.248.2
0.990.99 49.749.7 49.449.4 49.349.3 49.249.2 49.049.0 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3
1.011.01 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3 49.749.7 49.449.4 49.349.3 49.249.2 49.049.0
1.021.02 49.949.9 49.349.3 49.149.1 48.848.8 48.348.3 49.449.4 48.648.6 48.348.3 47.947.9 47.247.2
1.051.05 49.649.6 47.647.6 46.446.4 44.644.6 41.341.3 47.847.8 44.044.0 42.142.1 39.339.3 34.734.7
1.101.10 49.249.2 41.441.4 36.236.2 28.228.2 17.117.1 43.143.1 27.427.4 21.321.3 14.714.7 8.68.6
ρ0=ρ1=0.4\rho_{0}=\rho_{1}=-0.4
0.900.90 41.141.1 22.222.2 16.016.0 10.310.3 5.95.9 49.149.1 38.938.9 32.332.3 22.822.8 12.012.0
0.950.95 47.547.5 43.143.1 40.940.9 37.637.6 32.332.3 49.649.6 47.347.3 46.046.0 43.943.9 40.040.0
0.980.98 49.349.3 48.548.5 48.248.2 47.847.8 47.047.0 49.949.9 49.349.3 49.149.1 48.748.7 48.248.2
0.990.99 49.749.7 49.449.4 49.349.3 49.249.2 49.049.0 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3
1.011.01 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3 49.749.7 49.449.4 49.349.3 49.249.2 49.049.0
1.021.02 49.949.9 49.349.3 49.149.1 48.848.8 48.248.2 49.349.3 48.648.6 48.348.3 47.847.8 47.147.1
1.051.05 49.649.6 47.547.5 46.446.4 44.544.5 41.041.0 47.747.7 43.743.7 41.841.8 38.838.8 34.034.0
1.101.10 49.249.2 41.141.1 35.835.8 27.527.5 16.316.3 42.742.7 26.526.5 20.420.4 13.913.9 8.18.1
ρ0=ρ1=0.0\rho_{0}=\rho_{1}=0.0
0.900.90 40.640.6 21.121.1 15.115.1 9.79.7 5.55.5 49.049.0 38.638.6 31.731.7 22.022.0 11.411.4
0.950.95 47.447.4 42.742.7 40.440.4 37.037.0 31.531.5 49.649.6 47.247.2 45.945.9 43.743.7 39.639.6
0.980.98 49.349.3 48.548.5 48.148.1 47.747.7 46.946.9 49.949.9 49.349.3 49.049.0 48.748.7 48.148.1
0.990.99 49.749.7 49.449.4 49.349.3 49.149.1 48.948.9 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3
1.011.01 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3 49.749.7 49.449.4 49.349.3 49.149.1 48.948.9
1.021.02 49.949.9 49.349.3 49.149.1 48.748.7 48.248.2 49.349.3 48.548.5 48.248.2 47.747.7 47.047.0
1.051.05 49.649.6 47.547.5 46.346.3 44.344.3 40.640.6 47.647.6 43.443.4 41.441.4 38.338.3 33.233.2
1.101.10 49.249.2 40.840.8 35.335.3 26.726.7 15.515.5 42.242.2 25.525.5 19.319.3 13.013.0 7.57.5
ρ0=ρ1=0.4\rho_{0}=\rho_{1}=0.4
0.900.90 40.040.0 20.020.0 14.214.2 9.09.0 5.15.1 49.049.0 38.238.2 31.031.0 21.121.1 10.710.7
0.950.95 47.347.3 42.342.3 40.040.0 36.436.4 30.630.6 49.649.6 47.247.2 45.845.8 43.543.5 39.239.2
0.980.98 49.349.3 48.448.4 48.148.1 47.647.6 46.846.8 49.949.9 49.349.3 49.049.0 48.748.7 48.148.1
0.990.99 49.749.7 49.449.4 49.349.3 49.149.1 48.948.9 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3
1.011.01 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3 49.749.7 49.449.4 49.349.3 49.149.1 48.948.9
1.021.02 49.949.9 49.349.3 49.049.0 48.748.7 48.148.1 49.349.3 48.548.5 48.148.1 47.747.7 46.946.9
1.051.05 49.649.6 47.447.4 46.146.1 44.144.1 40.340.3 47.547.5 43.143.1 40.940.9 37.737.7 32.532.5
1.101.10 49.249.2 40.540.5 34.734.7 25.925.9 14.714.7 41.741.7 24.424.4 18.318.3 12.212.2 7.07.0
ρ0=ρ1=0.8\rho_{0}=\rho_{1}=0.8
0.900.90 39.339.3 18.918.9 13.213.2 8.48.4 4.84.8 49.049.0 37.837.8 30.430.4 20.220.2 10.110.1
0.950.95 47.147.1 41.941.9 39.439.4 35.735.7 29.729.7 49.649.6 47.147.1 45.645.6 43.243.2 38.838.8
0.980.98 49.249.2 48.448.4 48.048.0 47.547.5 46.746.7 49.949.9 49.349.3 49.049.0 48.648.6 48.048.0
0.990.99 49.749.7 49.449.4 49.249.2 49.149.1 48.848.8 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3
1.011.01 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3 49.749.7 49.449.4 49.249.2 49.149.1 48.948.9
1.021.02 49.949.9 49.349.3 49.049.0 48.748.7 48.148.1 49.249.2 48.448.4 48.148.1 47.647.6 46.846.8
1.051.05 49.649.6 47.347.3 46.046.0 43.943.9 39.939.9 47.347.3 42.742.7 40.440.4 37.137.1 31.631.6
1.101.10 49.249.2 40.240.2 34.234.2 25.125.1 13.913.9 41.241.2 23.323.3 17.217.2 11.311.3 6.56.5
Table 9: TARL1TARL_{1} values of the one-sided Shewhart RZRZ chart (ShRZSh^{-}_{RZ} and ShRZ+Sh^{+}_{RZ}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},γXγY,ρ0{0.8,0.4,0.0,0.4,0.8},ρ1=ρ0,n={1,5,7,10,15},τ={0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1}z_{0}=1,\gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\gamma_{X}\neq\gamma_{Y},\rho_{0}\in\left\{-0.8,-0.4,0.0,0.4,0.8\right\},\rho_{1}=\rho_{0},n=\left\{1,5,7,10,15\right\},\tau=\left\{0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1\right\} and TARL0=50.TARL_{0}=50.
(γX,γY)=(0.01,0.2)(\gamma_{X},\gamma_{Y})=(0.01,0.2) (γX,γY)=(0.2,0.01)(\gamma_{X},\gamma_{Y})=(0.2,0.01)
τ\tau n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15 n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
ρ0=ρ1=0.8\rho_{0}=\rho_{1}=-0.8
0.900.90 41.641.6 23.223.2 17.017.0 11.011.0 6.36.3 49.149.1 39.339.3 32.932.9 23.523.5 12.712.7
0.950.95 47.647.6 43.443.4 41.341.3 38.238.2 33.033.0 49.649.6 47.447.4 46.146.1 44.144.1 40.340.3
0.980.98 49.349.3 48.648.6 48.348.3 47.847.8 47.147.1 49.949.9 49.349.3 49.149.1 48.748.7 48.248.2
0.990.99 49.749.7 49.449.4 49.349.3 49.249.2 49.049.0 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3
1.011.01 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3 49.749.7 49.449.4 49.349.3 49.249.2 49.049.0
1.021.02 49.949.9 49.349.3 49.149.1 48.848.8 48.348.3 49.449.4 48.648.6 48.348.3 47.947.9 47.247.2
1.051.05 49.649.6 47.647.6 46.446.4 44.644.6 41.341.3 47.847.8 44.044.0 42.142.1 39.339.3 34.734.7
1.101.10 49.249.2 41.441.4 36.236.2 28.228.2 17.117.1 43.143.1 27.427.4 21.321.3 14.714.7 8.68.6
ρ0=ρ1=0.4\rho_{0}=\rho_{1}=-0.4
0.900.90 41.141.1 22.222.2 16.016.0 10.310.3 5.95.9 49.149.1 38.938.9 32.332.3 22.822.8 12.012.0
0.950.95 47.547.5 43.143.1 40.940.9 37.637.6 32.332.3 49.649.6 47.347.3 46.046.0 43.943.9 40.040.0
0.980.98 49.349.3 48.548.5 48.248.2 47.847.8 47.047.0 49.949.9 49.349.3 49.149.1 48.748.7 48.248.2
0.990.99 49.749.7 49.449.4 49.349.3 49.249.2 49.049.0 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3
1.011.01 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3 49.749.7 49.449.4 49.349.3 49.249.2 49.049.0
1.021.02 49.949.9 49.349.3 49.149.1 48.848.8 48.248.2 49.349.3 48.648.6 48.348.3 47.847.8 47.147.1
1.051.05 49.649.6 47.547.5 46.446.4 44.544.5 41.041.0 47.747.7 43.743.7 41.841.8 38.838.8 34.034.0
1.101.10 49.249.2 41.141.1 35.835.8 27.527.5 16.316.3 42.742.7 26.526.5 20.420.4 13.913.9 8.18.1
ρ0=ρ1=0.0\rho_{0}=\rho_{1}=0.0
0.900.90 40.640.6 21.121.1 15.115.1 9.79.7 5.55.5 49.049.0 38.638.6 31.731.7 22.022.0 11.411.4
0.950.95 47.447.4 42.742.7 40.440.4 37.037.0 31.531.5 49.649.6 47.247.2 45.945.9 43.743.7 39.639.6
0.980.98 49.349.3 48.548.5 48.148.1 47.747.7 46.946.9 49.949.9 49.349.3 49.049.0 48.748.7 48.148.1
0.990.99 49.749.7 49.449.4 49.349.3 49.149.1 48.948.9 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3
1.011.01 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3 49.749.7 49.449.4 49.349.3 49.149.1 48.948.9
1.021.02 49.949.9 49.349.3 49.149.1 48.748.7 48.248.2 49.349.3 48.548.5 48.248.2 47.747.7 47.047.0
1.051.05 49.649.6 47.547.5 46.346.3 44.344.3 40.640.6 47.647.6 43.443.4 41.441.4 38.338.3 33.233.2
1.101.10 49.249.2 40.840.8 35.335.3 26.726.7 15.515.5 42.242.2 25.525.5 19.319.3 13.013.0 7.57.5
ρ0=ρ1=0.4\rho_{0}=\rho_{1}=0.4
0.900.90 40.040.0 20.020.0 14.214.2 9.09.0 5.15.1 49.049.0 38.238.2 31.031.0 21.121.1 10.710.7
0.950.95 47.347.3 42.342.3 40.040.0 36.436.4 30.630.6 49.649.6 47.247.2 45.845.8 43.543.5 39.239.2
0.980.98 49.349.3 48.448.4 48.148.1 47.647.6 46.846.8 49.949.9 49.349.3 49.049.0 48.748.7 48.148.1
0.990.99 49.749.7 49.449.4 49.349.3 49.149.1 48.948.9 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3
1.011.01 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3 49.749.7 49.449.4 49.349.3 49.149.1 48.948.9
1.021.02 49.949.9 49.349.3 49.049.0 48.748.7 48.148.1 49.349.3 48.548.5 48.148.1 47.747.7 46.946.9
1.051.05 49.649.6 47.447.4 46.146.1 44.144.1 40.340.3 47.547.5 43.143.1 40.940.9 37.737.7 32.532.5
1.101.10 49.249.2 40.540.5 34.734.7 25.925.9 14.714.7 41.741.7 24.424.4 18.318.3 12.212.2 7.07.0
ρ0=ρ1=0.8\rho_{0}=\rho_{1}=0.8
0.900.90 39.339.3 18.918.9 13.213.2 8.48.4 4.84.8 49.049.0 37.837.8 30.430.4 20.220.2 10.110.1
0.950.95 47.147.1 41.941.9 39.439.4 35.735.7 29.729.7 49.649.6 47.147.1 45.645.6 43.243.2 38.838.8
0.980.98 49.249.2 48.448.4 48.048.0 47.547.5 46.746.7 49.949.9 49.349.3 49.049.0 48.648.6 48.048.0
0.990.99 49.749.7 49.449.4 49.249.2 49.149.1 48.848.8 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3
1.011.01 49.949.9 49.749.7 49.649.6 49.549.5 49.349.3 49.749.7 49.449.4 49.249.2 49.149.1 48.948.9
1.021.02 49.949.9 49.349.3 49.049.0 48.748.7 48.148.1 49.249.2 48.448.4 48.148.1 47.647.6 46.846.8
1.051.05 49.649.6 47.347.3 46.046.0 43.943.9 39.939.9 47.347.3 42.742.7 40.440.4 37.137.1 31.631.6
1.101.10 49.249.2 40.240.2 34.234.2 25.125.1 13.913.9 41.241.2 23.323.3 17.217.2 11.311.3 6.56.5

The following results can be drawn from Tables 4-9.

  1. 1.

    When shift size τ\tau decrease or increase at fixed values of I,nI,n and ρ0\rho_{0}, the TARLTARL will decrease or increase accordingly. It can be observe that TARL1<TARL0TARL_{1}<TARL_{0} in all cases. For instance, at fixed values of I=10,γX=γY=0.01,n=1,ρ1=ρ0=0.8,TARL0=10I=10,\gamma_{X}=\gamma_{Y}=0.01,n=1,\rho_{1}=\rho_{0}=-0.8,TARL_{0}=10 and for a specific τ\tau, TARL1TARL_{1} values are 1,1.4,5.4,8.2and 8.2,5.5,1.4,11,1.4,5.4,8.2\,\text{and}\,8.2,5.5,1.4,1. Similar pattern of TARL1TARL_{1} may be noted for other values of I=30,50,γX=γY,ρ1=ρ0I=30,50,\gamma_{X}=\gamma_{Y},\rho_{1}=\rho_{0}. Since, the ratio distribution is skewed but one sided Shewhart charts attain symmetry.

  2. 2.

    As sample size increases, the value of TARL1TARL{1} decreases. Sample size influences the chart performance for specific values of τ,I,γX=γY\tau,I,\gamma_{X}=\gamma_{Y}, ρ1=ρ0\rho_{1}=\rho_{0}. For example, TARL1TARL_{1} values are 8.2,4.8,3.9,2.9,2.08.2,4.8,3.9,2.9,2.0 for 𝒮hRZchart{\mathcal{S}h}^{-}_{RZ}chart with τ=0.99\tau=0.99 and are 8.2,4.8,3.8,2.9,2.18.2,4.8,3.8,2.9,2.1 for 𝒮hRZ+chart{\mathcal{S}h}^{+}_{RZ}chart with τ=1.01\tau=1.01 at n{1,5,7,15,30}n\in\left\{1,5,7,15,30\right\}, I=10I=10, and ρ1=ρ0=0.8\rho_{1}=\rho_{0}=-0.8 (cf. Table-4). 𝒮hRZchart{\mathcal{S}h}^{-}_{RZ}\ chart is more sensitive to shifts than 𝒮hRZ+chart{\mathcal{S}h}^{+}_{RZ}\ chart in ratio zz. Similar pattern may be observed for I=30and 50I=30\,\text{and}\,50.

  3. 3.

    The charts performance is strongly influenced by values of γX,γY\gamma_{X},\gamma_{Y} and I.I. Proposed design is more efficient, when γX=γY\gamma_{X}=\gamma_{Y} at TARL0=10{TARL}_{0}=10. Both charts equally performed, when TARL0=30,50{TARL}_{0}=30,50, γX=γY\gamma_{X}=\gamma_{Y} and γXγY\gamma_{X}\neq\gamma_{Y}. For example, when TARL0=10,n=1,ρ0=ρ1=0.8{TARL}_{0}=10,n=1,\rho_{0}=\rho_{1}=-0.8, τ+=1.01andτ=0.99\tau^{+}=1.01\,\text{and}\,\tau^{-}=0.99, we have TARL1{TARL}_{1} is 8.28.2 for γX=γY=0.01\gamma_{X}=\gamma_{Y}=0.01. However for γX=.01&γY=0.2{\gamma}_{X}=.01\ \&\ \gamma_{Y}=0.2, we have 9.8&9.99.8\&9.9 (cf. Table (4)). The performance of one sided Shewhart chart is identical TARL0=30& 50{TARL}_{0}=30\ \&\ 50 for all values of γX\gamma_{X} and γY\ \gamma_{Y} (cf. Table (5)) . We have TARL0=30,n=1,ρ0=ρ1=0.8,τ=1.01, 0.99,{TARL}_{0}=30,\ n=1,\ \rho_{0}=\rho_{1}=-0.8,\tau=1.01,\ 0.99, we have TARL1=29.7{TARL}_{1}=29.7 and 29.929.9 (for γX=γY=.01&γX=.01,γY=0.2)\gamma_{X}=\gamma_{Y}=.01\ \&\gamma_{X}=.01\ ,\ \gamma_{Y}=0.2) (cf. Table (4-9)).




Table 10: TARL1TARL_{1} values of the one-sided Shewhart RZRZ chart (ShRZSh^{-}_{RZ} and ShRZ+Sh^{+}_{RZ}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},γX=γY,ρ0{0.8,0.4,0.0,0.4,0.8},ρ1=ρ0,n={1,5,7,10,15},τ={0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1}z_{0}=1,\gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\gamma_{X}=\gamma_{Y},\rho_{0}\in\left\{-0.8,-0.4,0.0,0.4,0.8\right\},\rho_{1}=\rho_{0},n=\left\{1,5,7,10,15\right\},\tau=\left\{0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1\right\} and TARL0=10.TARL_{0}=10.
(γX,γY)=(0.01,0.01)(\gamma_{X},\gamma_{Y})=(0.01,0.01) (γX,γY)=(0.2,0.2)(\gamma_{X},\gamma_{Y})=(0.2,0.2)
τ\tau n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15 n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
ρ0=0.4,ρ1=0.2\rho_{0}=-0.4,\rho_{1}=-0.2
0.900.90 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 9.69.6 7.97.9 7.27.2 6.36.3 5.05.0
0.950.95 1.21.2 1.01.0 1.01.0 1.01.0 1.01.0 10.010.0 9.59.5 9.29.2 8.98.9 8.48.4
0.980.98 5.05.0 1.31.3 1.11.1 1.01.0 1.01.0 10.210.2 10.010.0 10.010.0 9.99.9 9.89.8
0.990.99 8.48.4 4.34.3 3.23.2 2.32.3 1.61.6 10.210.2 10.210.2 10.210.2 10.110.1 10.110.1
1.001.00 10.310.3 10.310.3 10.310.3 10.310.3 10.310.3 10.310.3 10.310.3 10.310.3 10.310.3 10.310.3
1.011.01 8.48.4 4.44.4 3.33.3 2.42.4 1.71.7 10.210.2 10.210.2 10.210.2 10.110.1 10.110.1
1.021.02 5.15.1 1.41.4 1.11.1 1.01.0 1.01.0 10.210.2 10.110.1 10.010.0 9.99.9 9.89.8
1.051.05 1.21.2 1.01.0 1.01.0 1.01.0 1.01.0 10.010.0 9.59.5 9.39.3 9.09.0 8.68.6
1.101.10 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 9.79.7 8.38.3 7.77.7 6.86.8 5.65.6
ρ0=0.4,ρ1=0.8\rho_{0}=-0.4,\rho_{1}=-0.8
0.900.90 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 8.58.5 6.66.6 5.95.9 5.15.1 4.24.2
0.950.95 1.21.2 1.01.0 1.01.0 1.01.0 1.01.0 9.09.0 8.18.1 7.97.9 7.57.5 7.07.0
0.980.98 4.24.2 1.41.4 1.21.2 1.11.1 1.01.0 9.39.3 8.98.9 8.88.8 8.78.7 8.58.5
0.990.99 6.96.9 3.73.7 2.92.9 2.32.3 1.71.7 9.49.4 9.19.1 9.19.1 9.09.0 8.98.9
1.001.00 9.39.3 9.39.3 9.39.3 9.39.3 9.39.3 9.49.4 9.39.3 9.39.3 9.39.3 9.39.3
1.011.01 7.07.0 3.73.7 3.03.0 2.32.3 1.71.7 9.49.4 9.19.1 9.19.1 9.09.0 9.09.0
1.021.02 4.34.3 1.41.4 1.21.2 1.11.1 1.01.0 9.39.3 8.98.9 8.88.8 8.78.7 8.58.5
1.051.05 1.31.3 1.01.0 1.01.0 1.01.0 1.01.0 9.09.0 8.28.2 8.08.0 7.67.6 7.17.1
1.101.10 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 8.68.6 6.96.9 6.36.3 5.65.6 4.74.7
ρ0=0.4,ρ1=0.2\rho_{0}=0.4,\rho_{1}=0.2
0.900.90 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 7.87.8 4.84.8 4.04.0 3.13.1 2.32.3
0.950.95 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 8.78.7 7.37.3 6.86.8 6.26.2 5.45.4
0.980.98 2.42.4 1.01.0 1.01.0 1.01.0 1.01.0 9.19.1 8.58.5 8.48.4 8.28.2 7.97.9
0.990.99 5.35.3 2.02.0 1.61.6 1.31.3 1.11.1 9.29.2 8.98.9 8.88.8 8.78.7 8.68.6
1.001.00 9.29.2 9.29.2 9.29.2 9.29.2 9.29.2 9.39.3 9.29.2 9.29.2 9.29.2 9.29.2
1.011.01 5.45.4 2.12.1 1.61.6 1.31.3 1.11.1 9.29.2 8.98.9 8.88.8 8.78.7 8.68.6
1.021.02 2.42.4 1.01.0 1.01.0 1.01.0 1.01.0 9.19.1 8.68.6 8.48.4 8.28.2 7.97.9
1.051.05 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 8.78.7 7.47.4 6.96.9 6.46.4 5.65.6
1.101.10 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 8.08.0 5.25.2 4.44.4 3.63.6 2.72.7
ρ0=0.4,ρ1=0.8\rho_{0}=0.4,\rho_{1}=0.8
0.900.90 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 10.810.8 9.19.1 7.57.5 5.25.2 2.82.8
0.950.95 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 10.910.9 10.810.8 10.710.7 10.410.4 9.99.9
0.980.98 2.82.8 1.01.0 1.01.0 1.01.0 1.01.0 10.910.9 11.011.0 10.910.9 10.910.9 10.910.9
0.990.99 9.89.8 2.02.0 1.41.4 1.11.1 1.01.0 10.910.9 11.011.0 11.011.0 11.011.0 11.011.0
1.001.00 11.011.0 11.011.0 11.011.0 11.011.0 11.011.0 10.910.9 11.011.0 11.011.0 11.011.0 11.011.0
1.011.01 9.99.9 2.12.1 1.41.4 1.11.1 1.01.0 10.910.9 11.011.0 11.011.0 11.011.0 11.011.0
1.021.02 3.03.0 1.01.0 1.01.0 1.01.0 1.01.0 10.910.9 11.011.0 11.011.0 10.910.9 10.910.9
1.051.05 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 10.910.9 10.810.8 10.710.7 10.510.5 10.110.1
1.101.10 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 10.810.8 9.69.6 8.58.5 6.66.6 3.93.9
Table 11: TARL1TARL_{1} values of the one-sided Shewhart RZRZ chart (ShRZSh^{-}_{RZ} and ShRZ+Sh^{+}_{RZ}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},γXγY,ρ0{0.8,0.4,0.0,0.4,0.8},ρ1ρ0,n={1,5,7,10,15},τ={0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1}z_{0}=1,\gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\gamma_{X}\neq\gamma_{Y},\rho_{0}\in\left\{-0.8,-0.4,0.0,0.4,0.8\right\},\rho_{1}\neq\rho_{0},n=\left\{1,5,7,10,15\right\},\tau=\left\{0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1\right\} and TARL0=10.TARL_{0}=10.
(γX,γY)=(0.01,0.2)(\gamma_{X},\gamma_{Y})=(0.01,0.2) (γX,γY)=(0.2,0.01)(\gamma_{X},\gamma_{Y})=(0.2,0.01)
τ\tau n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15 n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
ρ0=0.4,ρ1=0.2\rho_{0}=-0.4,\rho_{1}=-0.2
0.900.90 7.57.5 4.34.3 3.53.5 2.72.7 2.02.0 9.19.1 5.85.8 4.74.7 3.53.5 2.32.3
0.950.95 9.09.0 7.77.7 7.27.2 6.56.5 5.55.5 9.69.6 8.58.5 8.08.0 7.37.3 6.46.4
0.980.98 9.79.7 9.39.3 9.29.2 9.09.0 8.78.7 9.99.9 9.69.6 9.49.4 9.39.3 9.09.0
0.990.99 9.99.9 9.79.7 9.79.7 9.69.6 9.59.5 10.010.0 9.89.8 9.89.8 9.79.7 9.69.6
1.001.00 10.010.0 10.010.0 10.010.0 10.010.0 10.010.0 10.110.1 10.110.1 10.110.1 10.110.1 10.110.1
1.011.01 10.010.0 9.89.8 9.89.8 9.79.7 9.69.6 9.99.9 9.79.7 9.79.7 9.69.6 9.59.5
1.021.02 9.99.9 9.69.6 9.49.4 9.39.3 9.09.0 9.79.7 9.39.3 9.29.2 9.09.0 8.88.8
1.051.05 9.79.7 8.68.6 8.18.1 7.57.5 6.66.6 9.19.1 7.87.8 7.37.3 6.76.7 5.85.8
1.101.10 9.29.2 6.36.3 5.35.3 4.14.1 2.82.8 7.87.8 4.94.9 4.04.0 3.13.1 2.32.3
ρ0=0.4,ρ1=0.8\rho_{0}=-0.4,\rho_{1}=-0.8
0.900.90 7.27.2 4.24.2 3.43.4 2.62.6 2.02.0 9.09.0 5.75.7 4.64.6 3.43.4 2.32.3
0.950.95 8.88.8 7.47.4 6.96.9 6.36.3 5.45.4 9.59.5 8.38.3 7.87.8 7.27.2 6.26.2
0.980.98 9.59.5 9.19.1 9.09.0 8.88.8 8.58.5 9.89.8 9.49.4 9.39.3 9.19.1 8.88.8
0.990.99 9.79.7 9.59.5 9.59.5 9.49.4 9.39.3 9.99.9 9.79.7 9.69.6 9.69.6 9.49.4
1.001.00 9.99.9 9.99.9 9.99.9 9.99.9 9.99.9 9.99.9 9.99.9 9.99.9 9.99.9 9.99.9
1.011.01 9.99.9 9.79.7 9.69.6 9.69.6 9.49.4 9.79.7 9.59.5 9.59.5 9.49.4 9.39.3
1.021.02 9.89.8 9.49.4 9.39.3 9.19.1 8.98.9 9.59.5 9.19.1 9.09.0 8.88.8 8.58.5
1.051.05 9.69.6 8.48.4 8.08.0 7.37.3 6.46.4 8.88.8 7.67.6 7.17.1 6.56.5 5.65.6
1.101.10 9.19.1 6.26.2 5.15.1 4.04.0 2.82.8 7.57.5 4.74.7 3.93.9 3.13.1 2.32.3
ρ0=0.4,ρ1=0.2\rho_{0}=0.4,\rho_{1}=0.2
0.900.90 7.17.1 4.04.0 3.23.2 2.52.5 1.81.8 9.09.0 5.55.5 4.44.4 3.23.2 2.22.2
0.950.95 8.88.8 7.47.4 6.86.8 6.16.1 5.25.2 9.69.6 8.38.3 7.87.8 7.17.1 6.16.1
0.980.98 9.59.5 9.19.1 9.09.0 8.88.8 8.58.5 9.89.8 9.49.4 9.39.3 9.19.1 8.88.8
0.990.99 9.79.7 9.69.6 9.59.5 9.49.4 9.39.3 9.99.9 9.79.7 9.79.7 9.69.6 9.59.5
1.001.00 10.010.0 10.010.0 10.010.0 10.010.0 10.010.0 9.99.9 9.99.9 9.99.9 9.99.9 9.99.9
1.011.01 9.99.9 9.79.7 9.79.7 9.69.6 9.59.5 9.79.7 9.69.6 9.59.5 9.49.4 9.39.3
1.021.02 9.89.8 9.59.5 9.39.3 9.19.1 8.98.9 9.59.5 9.29.2 9.09.0 8.88.8 8.58.5
1.051.05 9.69.6 8.48.4 7.97.9 7.37.3 6.36.3 8.98.9 7.57.5 7.07.0 6.46.4 5.45.4
1.101.10 9.19.1 6.16.1 5.05.0 3.83.8 2.62.6 7.47.4 4.54.5 3.73.7 2.92.9 2.12.1
ρ0=0.4,ρ1=0.8\rho_{0}=0.4,\rho_{1}=0.8
0.900.90 7.47.4 4.14.1 3.33.3 2.52.5 1.81.8 9.19.1 5.75.7 4.54.5 3.33.3 2.22.2
0.950.95 9.19.1 7.67.6 7.17.1 6.36.3 5.45.4 9.79.7 8.58.5 8.08.0 7.37.3 6.26.2
0.980.98 9.89.8 9.49.4 9.29.2 9.09.0 8.78.7 9.99.9 9.69.6 9.59.5 9.39.3 9.09.0
0.990.99 10.010.0 9.89.8 9.79.7 9.69.6 9.59.5 10.010.0 9.99.9 9.89.8 9.79.7 9.69.6
1.001.00 10.110.1 10.110.1 10.110.1 10.110.1 10.110.1 10.110.1 10.110.1 10.110.1 10.110.1 10.110.1
1.011.01 10.010.0 9.99.9 9.89.8 9.79.7 9.69.6 10.010.0 9.89.8 9.79.7 9.79.7 9.59.5
1.021.02 9.99.9 9.69.6 9.59.5 9.39.3 9.09.0 9.89.8 9.49.4 9.29.2 9.19.1 8.88.8
1.051.05 9.79.7 8.68.6 8.18.1 7.57.5 6.56.5 9.19.1 7.87.8 7.37.3 6.66.6 5.65.6
1.101.10 9.29.2 6.26.2 5.15.1 3.93.9 2.62.6 7.77.7 4.74.7 3.83.8 2.92.9 2.12.1
Table 12: TARL1TARL_{1} values of the one-sided Shewhart RZRZ chart (ShRZSh^{-}_{RZ} and ShRZ+Sh^{+}_{RZ}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},γX=γY,ρ0{0.8,0.4,0.0,0.4,0.8},ρ1ρ0,n={1,5,7,10,15},τ={0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1}z_{0}=1,\gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\gamma_{X}=\gamma_{Y},\rho_{0}\in\left\{-0.8,-0.4,0.0,0.4,0.8\right\},\rho_{1}\neq\rho_{0},n=\left\{1,5,7,10,15\right\},\tau=\left\{0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1\right\} and TARL0=30.TARL_{0}=30.
(γX,γY)=(0.01,0.01)(\gamma_{X},\gamma_{Y})=(0.01,0.01) (γX,γY)=(0.2,0.2)(\gamma_{X},\gamma_{Y})=(0.2,0.2)
τ\tau n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15 n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
ρ0=0.4,ρ1=0.2\rho_{0}=-0.4,\rho_{1}=-0.2
0.900.90 24.224.2 13.113.1 9.89.8 6.66.6 4.04.0 29.129.1 21.621.6 17.617.6 12.312.3 6.86.8
0.950.95 28.328.3 25.225.2 23.823.8 21.721.7 18.518.5 29.629.6 27.827.8 26.826.8 25.325.3 22.622.6
0.980.98 29.629.6 29.029.0 28.728.7 28.428.4 27.827.8 29.929.9 29.429.4 29.329.3 29.029.0 28.528.5
0.990.99 29.929.9 29.629.6 29.529.5 29.429.4 29.329.3 30.030.0 29.829.8 29.729.7 29.629.6 29.529.5
1.001.00 30.030.0 30.130.1 30.130.1 30.130.1 30.130.1 30.130.1 30.130.1 30.130.1 30.130.1 30.130.1
1.011.01 30.030.0 29.829.8 29.729.7 29.629.6 29.529.5 29.929.9 29.629.6 29.529.5 29.429.4 29.329.3
1.021.02 29.929.9 29.529.5 29.329.3 29.029.0 28.628.6 29.629.6 29.029.0 28.828.8 28.428.4 27.927.9
1.051.05 29.729.7 28.028.0 27.127.1 25.725.7 23.323.3 28.428.4 25.625.6 24.324.3 22.522.5 19.519.5
1.101.10 29.229.2 23.123.1 19.719.7 14.914.9 9.09.0 25.225.2 15.515.5 12.112.1 8.58.5 5.35.3
ρ0=0.4,ρ1=0.8\rho_{0}=-0.4,\rho_{1}=-0.8
0.900.90 23.023.0 12.312.3 9.29.2 6.36.3 3.93.9 28.928.9 20.920.9 16.716.7 11.611.6 6.66.6
0.950.95 27.527.5 24.224.2 22.722.7 20.720.7 17.517.5 29.529.5 27.327.3 26.226.2 24.624.6 21.821.8
0.980.98 29.029.0 28.428.4 28.128.1 27.727.7 27.127.1 29.829.8 29.229.2 28.928.9 28.628.6 28.128.1
0.990.99 29.429.4 29.229.2 29.129.1 29.029.0 28.828.8 29.929.9 29.629.6 29.529.5 29.329.3 29.229.2
1.001.00 29.929.9 29.929.9 29.929.9 29.929.9 29.929.9 29.729.7 29.829.8 29.829.8 29.829.8 29.829.8
1.011.01 29.929.9 29.629.6 29.529.5 29.329.3 29.229.2 29.429.4 29.229.2 29.129.1 29.029.0 28.828.8
1.021.02 29.829.8 29.229.2 29.029.0 28.628.6 28.228.2 29.129.1 28.428.4 28.228.2 27.827.8 27.227.2
1.051.05 29.529.5 27.527.5 26.526.5 25.025.0 22.522.5 27.627.6 24.724.7 23.323.3 21.421.4 18.518.5
1.101.10 29.029.0 22.422.4 18.918.9 14.114.1 8.68.6 24.024.0 14.514.5 11.311.3 8.18.1 5.15.1
ρ0=0.4,ρ1=0.2\rho_{0}=0.4,\rho_{1}=0.2
0.900.90 22.622.6 11.511.5 8.48.4 5.75.7 3.53.5 28.928.9 20.620.6 16.216.2 11.011.0 6.06.0
0.950.95 27.527.5 24.024.0 22.522.5 20.220.2 16.916.9 29.529.5 27.327.3 26.226.2 24.524.5 21.521.5
0.980.98 29.229.2 28.528.5 28.228.2 27.827.8 27.227.2 29.829.8 29.229.2 29.029.0 28.728.7 28.228.2
0.990.99 29.529.5 29.329.3 29.229.2 29.129.1 28.928.9 29.929.9 29.629.6 29.529.5 29.429.4 29.229.2
1.001.00 30.030.0 29.929.9 29.929.9 29.929.9 29.929.9 29.929.9 29.929.9 29.929.9 29.929.9 29.929.9
1.011.01 29.929.9 29.629.6 29.529.5 29.429.4 29.229.2 29.529.5 29.329.3 29.229.2 29.129.1 28.928.9
1.021.02 29.829.8 29.229.2 29.029.0 28.728.7 28.228.2 29.229.2 28.528.5 28.228.2 27.927.9 27.327.3
1.051.05 29.629.6 27.527.5 26.526.5 24.924.9 22.322.3 27.727.7 24.524.5 23.123.1 21.021.0 17.917.9
1.101.10 29.029.0 22.222.2 18.418.4 13.513.5 7.97.9 23.823.8 13.713.7 10.510.5 7.47.4 4.64.6
ρ0=0.4,ρ1=0.8\rho_{0}=0.4,\rho_{1}=0.8
0.900.90 24.124.1 12.312.3 9.09.0 6.06.0 3.63.6 29.129.1 21.421.4 17.117.1 11.611.6 6.36.3
0.950.95 28.528.5 25.125.1 23.623.6 21.421.4 18.018.0 29.729.7 27.827.8 26.826.8 25.325.3 22.422.4
0.980.98 29.829.8 29.129.1 28.828.8 28.528.5 27.927.9 29.929.9 29.529.5 29.329.3 29.129.1 28.628.6
0.990.99 30.030.0 29.829.8 29.729.7 29.629.6 29.429.4 30.030.0 29.929.9 29.829.8 29.729.7 29.629.6
1.001.00 30.130.1 30.130.1 30.130.1 30.130.1 30.130.1 30.330.3 30.230.2 30.230.2 30.230.2 30.230.2
1.011.01 30.030.0 29.929.9 29.829.8 29.729.7 29.629.6 30.030.0 29.829.8 29.729.7 29.629.6 29.429.4
1.021.02 29.929.9 29.529.5 29.429.4 29.129.1 28.728.7 29.829.8 29.129.1 28.928.9 28.528.5 28.028.0
1.051.05 29.729.7 28.028.0 27.127.1 25.725.7 23.223.2 28.628.6 25.625.6 24.224.2 22.222.2 19.119.1
1.101.10 29.229.2 23.023.0 19.419.4 14.314.3 8.48.4 25.125.1 14.814.8 11.311.3 7.87.8 4.84.8
Table 13: TARL1TARL_{1} values of the one-sided Shewhart RZRZ chart (ShRZSh^{-}_{RZ} and ShRZ+Sh^{+}_{RZ}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},γXγY,ρ0{0.8,0.4,0.0,0.4,0.8},ρ1ρ0,n={1,5,7,10,15},τ={0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1}z_{0}=1,\gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\gamma_{X}\neq\gamma_{Y},\rho_{0}\in\left\{-0.8,-0.4,0.0,0.4,0.8\right\},\rho_{1}\neq\rho_{0},n=\left\{1,5,7,10,15\right\},\tau=\left\{0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1\right\} and TARL0=30.TARL_{0}=30.
(γX,γY)=(0.01,0.2)(\gamma_{X},\gamma_{Y})=(0.01,0.2) (γX,γY)=(0.2,0.01)(\gamma_{X},\gamma_{Y})=(0.2,0.01)
τ\tau n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15 n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
ρ0=0.4,ρ1=0.2\rho_{0}=-0.4,\rho_{1}=-0.2
0.900.90 24.224.2 13.113.1 9.89.8 6.66.6 4.04.0 29.129.1 21.621.6 17.617.6 12.312.3 6.86.8
0.950.95 28.328.3 25.225.2 23.823.8 21.721.7 18.518.5 29.629.6 27.827.8 26.826.8 25.325.3 22.622.6
0.980.98 29.629.6 29.029.0 28.728.7 28.428.4 27.827.8 29.929.9 29.429.4 29.329.3 29.029.0 28.528.5
0.990.99 29.929.9 29.629.6 29.529.5 29.429.4 29.329.3 30.030.0 29.829.8 29.729.7 29.629.6 29.529.5
1.001.00 30.030.0 30.130.1 30.130.1 30.130.1 30.130.1 30.130.1 30.130.1 30.130.1 30.130.1 30.130.1
1.011.01 30.030.0 29.829.8 29.729.7 29.629.6 29.529.5 29.929.9 29.629.6 29.529.5 29.429.4 29.329.3
1.021.02 29.929.9 29.529.5 29.329.3 29.029.0 28.628.6 29.629.6 29.029.0 28.828.8 28.428.4 27.927.9
1.051.05 29.729.7 28.028.0 27.127.1 25.725.7 23.323.3 28.428.4 25.625.6 24.324.3 22.522.5 19.519.5
1.101.10 29.229.2 23.123.1 19.719.7 14.914.9 9.09.0 25.225.2 15.515.5 12.112.1 8.58.5 5.35.3
ρ0=0.4,ρ1=0.8\rho_{0}=-0.4,\rho_{1}=-0.8
0.900.90 23.023.0 12.312.3 9.29.2 6.36.3 3.93.9 28.928.9 20.920.9 16.716.7 11.611.6 6.66.6
0.950.95 27.527.5 24.224.2 22.722.7 20.720.7 17.517.5 29.529.5 27.327.3 26.226.2 24.624.6 21.821.8
0.980.98 29.029.0 28.428.4 28.128.1 27.727.7 27.127.1 29.829.8 29.229.2 28.928.9 28.628.6 28.128.1
0.990.99 29.429.4 29.229.2 29.129.1 29.029.0 28.828.8 29.929.9 29.629.6 29.529.5 29.329.3 29.229.2
1.001.00 29.929.9 29.929.9 29.929.9 29.929.9 29.929.9 29.729.7 29.829.8 29.829.8 29.829.8 29.829.8
1.011.01 29.929.9 29.629.6 29.529.5 29.329.3 29.229.2 29.429.4 29.229.2 29.129.1 29.029.0 28.828.8
1.021.02 29.829.8 29.229.2 29.029.0 28.628.6 28.228.2 29.129.1 28.428.4 28.228.2 27.827.8 27.227.2
1.051.05 29.529.5 27.527.5 26.526.5 25.025.0 22.522.5 27.627.6 24.724.7 23.323.3 21.421.4 18.518.5
1.101.10 29.029.0 22.422.4 18.918.9 14.114.1 8.68.6 24.024.0 14.514.5 11.311.3 8.18.1 5.15.1
ρ0=0.4,ρ1=0.2\rho_{0}=0.4,\rho_{1}=0.2
0.900.90 22.622.6 11.511.5 8.48.4 5.75.7 3.53.5 28.928.9 20.620.6 16.216.2 11.011.0 6.06.0
0.950.95 27.527.5 24.024.0 22.522.5 20.220.2 16.916.9 29.529.5 27.327.3 26.226.2 24.524.5 21.521.5
0.980.98 29.229.2 28.528.5 28.228.2 27.827.8 27.227.2 29.829.8 29.229.2 29.029.0 28.728.7 28.228.2
0.990.99 29.529.5 29.329.3 29.229.2 29.129.1 28.928.9 29.929.9 29.629.6 29.529.5 29.429.4 29.229.2
1.001.00 30.030.0 29.929.9 29.929.9 29.929.9 29.929.9 29.929.9 29.929.9 29.929.9 29.929.9 29.929.9
1.011.01 29.929.9 29.629.6 29.529.5 29.429.4 29.229.2 29.529.5 29.329.3 29.229.2 29.129.1 28.928.9
1.021.02 29.829.8 29.229.2 29.029.0 28.728.7 28.228.2 29.229.2 28.528.5 28.228.2 27.927.9 27.327.3
1.051.05 29.629.6 27.527.5 26.526.5 24.924.9 22.322.3 27.727.7 24.524.5 23.123.1 21.021.0 17.917.9
1.101.10 29.029.0 22.222.2 18.418.4 13.513.5 7.97.9 23.823.8 13.713.7 10.510.5 7.47.4 4.64.6
ρ0=0.4,ρ1=0.8\rho_{0}=0.4,\rho_{1}=0.8
0.900.90 24.124.1 12.312.3 9.09.0 6.06.0 3.63.6 29.129.1 21.421.4 17.117.1 11.611.6 6.36.3
0.950.95 28.528.5 25.125.1 23.623.6 21.421.4 18.018.0 29.729.7 27.827.8 26.826.8 25.325.3 22.422.4
0.980.98 29.829.8 29.129.1 28.828.8 28.528.5 27.927.9 29.929.9 29.529.5 29.329.3 29.129.1 28.628.6
0.990.99 30.030.0 29.829.8 29.729.7 29.629.6 29.429.4 30.030.0 29.929.9 29.829.8 29.729.7 29.629.6
1.001.00 30.130.1 30.130.1 30.130.1 30.130.1 30.130.1 30.330.3 30.230.2 30.230.2 30.230.2 30.230.2
1.011.01 30.030.0 29.929.9 29.829.8 29.729.7 29.629.6 30.030.0 29.829.8 29.729.7 29.629.6 29.429.4
1.021.02 29.929.9 29.529.5 29.429.4 29.129.1 28.728.7 29.829.8 29.129.1 28.928.9 28.528.5 28.028.0
1.051.05 29.729.7 28.028.0 27.127.1 25.725.7 23.223.2 28.628.6 25.625.6 24.224.2 22.222.2 19.119.1
1.101.10 29.229.2 23.023.0 19.419.4 14.314.3 8.48.4 25.125.1 14.814.8 11.311.3 7.87.8 4.84.8
Table 14: TARL1TARL_{1} values of the one-sided Shewhart RZRZ chart (ShRZSh^{-}_{RZ} and ShRZ+Sh^{+}_{RZ}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},γX=γY,ρ0{0.8,0.4,0.0,0.4,0.8},ρ1ρ0,n={1,5,7,10,15},τ={0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1}z_{0}=1,\gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\gamma_{X}=\gamma_{Y},\rho_{0}\in\left\{-0.8,-0.4,0.0,0.4,0.8\right\},\rho_{1}\neq\rho_{0},n=\left\{1,5,7,10,15\right\},\tau=\left\{0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1\right\} and TARL0=50.TARL_{0}=50.
(γX,γY)=(0.01,0.01)(\gamma_{X},\gamma_{Y})=(0.01,0.01) (γX,γY)=(0.2,0.2)(\gamma_{X},\gamma_{Y})=(0.2,0.2)
τ\tau n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15 n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
ρ0=0.4,ρ1=0.2\rho_{0}=-0.4,\rho_{1}=-0.2
0.900.90 41.941.9 22.822.8 16.516.5 10.610.6 6.06.0 49.149.1 39.439.4 32.832.8 23.323.3 12.312.3
0.950.95 47.947.9 43.643.6 41.541.5 38.338.3 33.033.0 49.749.7 47.547.5 46.346.3 44.344.3 40.440.4
0.980.98 49.649.6 48.848.8 48.548.5 48.148.1 47.447.4 49.949.9 49.449.4 49.249.2 48.948.9 48.448.4
0.990.99 49.949.9 49.649.6 49.549.5 49.449.4 49.249.2 50.050.0 49.849.8 49.749.7 49.649.6 49.449.4
1.001.00 50.050.0 50.150.1 50.150.1 50.150.1 50.150.1 50.250.2 50.150.1 50.150.1 50.150.1 50.150.1
1.011.01 50.050.0 49.849.8 49.749.7 49.649.6 49.449.4 49.949.9 49.649.6 49.549.5 49.449.4 49.249.2
1.021.02 49.949.9 49.449.4 49.249.2 48.948.9 48.448.4 49.649.6 48.848.8 48.548.5 48.148.1 47.547.5
1.051.05 49.749.7 47.747.7 46.646.6 44.844.8 41.441.4 48.148.1 44.244.2 42.342.3 39.539.5 34.734.7
1.101.10 49.249.2 41.541.5 36.336.3 28.028.0 16.716.7 43.443.4 27.227.2 21.021.0 14.214.2 8.28.2
ρ0=0.4,ρ1=0.8\rho_{0}=-0.4,\rho_{1}=-0.8
0.900.90 39.639.6 20.920.9 15.215.2 9.99.9 5.75.7 48.948.9 38.038.0 31.231.2 21.821.8 11.511.5
0.950.95 46.746.7 41.941.9 39.639.6 36.336.3 30.930.9 49.549.5 46.946.9 45.445.4 43.143.1 39.039.0
0.980.98 48.848.8 48.048.0 47.647.6 47.147.1 46.346.3 49.849.8 49.149.1 48.848.8 48.448.4 47.847.8
0.990.99 49.349.3 49.049.0 48.948.9 48.748.7 48.548.5 49.949.9 49.549.5 49.449.4 49.249.2 49.049.0
1.001.00 49.949.9 49.849.8 49.849.8 49.849.8 49.849.8 49.649.6 49.749.7 49.749.7 49.749.7 49.749.7
1.011.01 49.949.9 49.549.5 49.449.4 49.249.2 49.049.0 49.349.3 49.049.0 48.948.9 48.848.8 48.548.5
1.021.02 49.849.8 49.149.1 48.848.8 48.448.4 47.847.8 48.848.8 48.048.0 47.747.7 47.247.2 46.446.4
1.051.05 49.549.5 47.147.1 45.845.8 43.843.8 40.040.0 46.946.9 42.642.6 40.540.5 37.537.5 32.632.6
1.101.10 49.049.0 40.340.3 34.734.7 26.426.4 15.615.6 41.241.2 25.125.1 19.219.2 13.213.2 7.87.8
ρ0=0.4,ρ1=0.2\rho_{0}=0.4,\rho_{1}=0.2
0.900.90 39.139.1 19.419.4 13.713.7 8.88.8 5.15.1 49.049.0 37.737.7 30.530.5 20.620.6 10.510.5
0.950.95 46.846.8 41.741.7 39.239.2 35.635.6 29.929.9 49.649.6 46.946.9 45.545.5 43.143.1 38.638.6
0.980.98 49.049.0 48.148.1 47.847.8 47.247.2 46.446.4 49.849.8 49.149.1 48.948.9 48.548.5 47.847.8
0.990.99 49.449.4 49.249.2 49.049.0 48.948.9 48.648.6 49.949.9 49.649.6 49.549.5 49.349.3 49.149.1
1.001.00 50.050.0 49.949.9 49.949.9 49.949.9 49.949.9 49.849.8 49.949.9 49.949.9 49.949.9 49.949.9
1.011.01 49.949.9 49.649.6 49.549.5 49.349.3 49.149.1 49.449.4 49.249.2 49.149.1 48.948.9 48.748.7
1.021.02 49.849.8 49.249.2 48.948.9 48.548.5 47.947.9 49.049.0 48.248.2 47.847.8 47.347.3 46.546.5
1.051.05 49.649.6 47.247.2 45.845.8 43.743.7 39.839.8 47.047.0 42.442.4 40.240.2 37.037.0 31.731.7
1.101.10 49.149.1 40.040.0 34.234.2 25.425.4 14.414.4 40.940.9 23.723.7 17.717.7 11.811.8 6.96.9
ρ0=0.4,ρ1=0.8\rho_{0}=0.4,\rho_{1}=0.8
0.900.90 41.741.7 21.421.4 15.015.0 9.49.4 5.35.3 49.249.2 39.239.2 32.332.3 22.222.2 11.211.2
0.950.95 48.248.2 43.643.6 41.441.4 37.937.9 32.232.2 49.749.7 47.647.6 46.446.4 44.344.3 40.340.3
0.980.98 49.849.8 49.049.0 48.748.7 48.248.2 47.547.5 50.050.0 49.549.5 49.349.3 49.049.0 48.548.5
0.990.99 50.150.1 49.849.8 49.749.7 49.549.5 49.349.3 50.050.0 49.949.9 49.849.8 49.749.7 49.549.5
1.001.00 50.150.1 50.250.2 50.250.2 50.250.2 50.250.2 50.350.3 50.350.3 50.350.3 50.250.2 50.250.2
1.011.01 50.050.0 49.949.9 49.849.8 49.749.7 49.649.6 50.150.1 49.849.8 49.749.7 49.549.5 49.349.3
1.021.02 50.050.0 49.549.5 49.349.3 49.049.0 48.548.5 49.849.8 49.049.0 48.748.7 48.348.3 47.647.6
1.051.05 49.749.7 47.847.8 46.746.7 44.944.9 41.341.3 48.348.3 44.344.3 42.342.3 39.239.2 34.034.0
1.101.10 49.349.3 41.441.4 35.935.9 27.127.1 15.515.5 43.343.3 26.026.0 19.519.5 12.912.9 7.37.3
Table 15: TARL1TARL_{1} values of the one-sided Shewhart RZRZ chart (ShRZSh^{-}_{RZ} and ShRZ+Sh^{+}_{RZ}) for z0=1,γX{0.01,0.2},γY{0.01,0.2},γXγY,ρ0{0.8,0.4,0.0,0.4,0.8},ρ1ρ0,n={1,5,7,10,15},τ={0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1}z_{0}=1,\gamma_{X}\in\left\{0.01,0.2\right\},\gamma_{Y}\in\left\{0.01,0.2\right\},\gamma_{X}\neq\gamma_{Y},\rho_{0}\in\left\{-0.8,-0.4,0.0,0.4,0.8\right\},\rho_{1}\neq\rho_{0},n=\left\{1,5,7,10,15\right\},\tau=\left\{0.9,0.95,0.98,0.99,1,1.01,1.02,1.05,1.1\right\} and TARL0=50.TARL_{0}=50.
(γX,γY)=(0.01,0.2)(\gamma_{X},\gamma_{Y})=(0.01,0.2) (γX,γY)=(0.2,0.01)(\gamma_{X},\gamma_{Y})=(0.2,0.01)
τ\tau n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15 n=1n=1 n=5n=5 n=7n=7 n=10n=10 n=15n=15
ρ0=0.4,ρ1=0.2\rho_{0}=-0.4,\rho_{1}=-0.2
0.900.90 41.941.9 22.822.8 16.516.5 10.610.6 6.06.0 49.149.1 39.439.4 32.832.8 23.323.3 12.312.3
0.950.95 47.947.9 43.643.6 41.541.5 38.338.3 33.033.0 49.749.7 47.547.5 46.346.3 44.344.3 40.440.4
0.980.98 49.649.6 48.848.8 48.548.5 48.148.1 47.447.4 49.949.9 49.449.4 49.249.2 48.948.9 48.448.4
0.990.99 49.949.9 49.649.6 49.549.5 49.449.4 49.249.2 50.050.0 49.849.8 49.749.7 49.649.6 49.449.4
1.001.00 50.050.0 50.150.1 50.150.1 50.150.1 50.150.1 50.250.2 50.150.1 50.150.1 50.150.1 50.150.1
1.011.01 50.050.0 49.849.8 49.749.7 49.649.6 49.449.4 49.949.9 49.649.6 49.549.5 49.449.4 49.249.2
1.021.02 49.949.9 49.449.4 49.249.2 48.948.9 48.448.4 49.649.6 48.848.8 48.548.5 48.148.1 47.547.5
1.051.05 49.749.7 47.747.7 46.646.6 44.844.8 41.441.4 48.148.1 44.244.2 42.342.3 39.539.5 34.734.7
1.101.10 49.249.2 41.541.5 36.336.3 28.028.0 16.716.7 43.443.4 27.227.2 21.021.0 14.214.2 8.28.2
ρ0=0.4,ρ1=0.8\rho_{0}=-0.4,\rho_{1}=-0.8
0.900.90 39.639.6 20.920.9 15.215.2 9.99.9 5.75.7 48.948.9 38.038.0 31.231.2 21.821.8 11.511.5
0.950.95 46.746.7 41.941.9 39.639.6 36.336.3 30.930.9 49.549.5 46.946.9 45.445.4 43.143.1 39.039.0
0.980.98 48.848.8 48.048.0 47.647.6 47.147.1 46.346.3 49.849.8 49.149.1 48.848.8 48.448.4 47.847.8
0.990.99 49.349.3 49.049.0 48.948.9 48.748.7 48.548.5 49.949.9 49.549.5 49.449.4 49.249.2 49.049.0
1.001.00 49.949.9 49.849.8 49.849.8 49.849.8 49.849.8 49.649.6 49.749.7 49.749.7 49.749.7 49.749.7
1.011.01 49.949.9 49.549.5 49.449.4 49.249.2 49.049.0 49.349.3 49.049.0 48.948.9 48.848.8 48.548.5
1.021.02 49.849.8 49.149.1 48.848.8 48.448.4 47.847.8 48.848.8 48.048.0 47.747.7 47.247.2 46.446.4
1.051.05 49.549.5 47.147.1 45.845.8 43.843.8 40.040.0 46.946.9 42.642.6 40.540.5 37.537.5 32.632.6
1.101.10 49.049.0 40.340.3 34.734.7 26.426.4 15.615.6 41.241.2 25.125.1 19.219.2 13.213.2 7.87.8
ρ0=0.4,ρ1=0.2\rho_{0}=0.4,\rho_{1}=0.2
0.900.90 39.139.1 19.419.4 13.713.7 8.88.8 5.15.1 49.049.0 37.737.7 30.530.5 20.620.6 10.510.5
0.950.95 46.846.8 41.741.7 39.239.2 35.635.6 29.929.9 49.649.6 46.946.9 45.545.5 43.143.1 38.638.6
0.980.98 49.049.0 48.148.1 47.847.8 47.247.2 46.446.4 49.849.8 49.149.1 48.948.9 48.548.5 47.847.8
0.990.99 49.449.4 49.249.2 49.049.0 48.948.9 48.648.6 49.949.9 49.649.6 49.549.5 49.349.3 49.149.1
1.001.00 50.050.0 49.949.9 49.949.9 49.949.9 49.949.9 49.849.8 49.949.9 49.949.9 49.949.9 49.949.9
1.011.01 49.949.9 49.649.6 49.549.5 49.349.3 49.149.1 49.449.4 49.249.2 49.149.1 48.948.9 48.748.7
1.021.02 49.849.8 49.249.2 48.948.9 48.548.5 47.947.9 49.049.0 48.248.2 47.847.8 47.347.3 46.546.5
1.051.05 49.649.6 47.247.2 45.845.8 43.743.7 39.839.8 47.047.0 42.442.4 40.240.2 37.037.0 31.731.7
1.101.10 49.149.1 40.040.0 34.234.2 25.425.4 14.414.4 40.940.9 23.723.7 17.717.7 11.811.8 6.96.9
ρ0=0.4,ρ1=0.8\rho_{0}=0.4,\rho_{1}=0.8
0.900.90 41.741.7 21.421.4 15.015.0 9.49.4 5.35.3 49.249.2 39.239.2 32.332.3 22.222.2 11.211.2
0.950.95 48.248.2 43.643.6 41.441.4 37.937.9 32.232.2 49.749.7 47.647.6 46.446.4 44.344.3 40.340.3
0.980.98 49.849.8 49.049.0 48.748.7 48.248.2 47.547.5 50.050.0 49.549.5 49.349.3 49.049.0 48.548.5
0.990.99 50.150.1 49.849.8 49.749.7 49.549.5 49.349.3 50.050.0 49.949.9 49.849.8 49.749.7 49.549.5
1.001.00 50.150.1 50.250.2 50.250.2 50.250.2 50.250.2 50.350.3 50.350.3 50.350.3 50.250.2 50.250.2
1.011.01 50.050.0 49.949.9 49.849.8 49.749.7 49.649.6 50.150.1 49.849.8 49.749.7 49.549.5 49.349.3
1.021.02 50.050.0 49.549.5 49.349.3 49.049.0 48.548.5 49.849.8 49.049.0 48.748.7 48.348.3 47.647.6
1.051.05 49.749.7 47.847.8 46.746.7 44.944.9 41.341.3 48.348.3 44.344.3 42.342.3 39.239.2 34.034.0
1.101.10 49.349.3 41.441.4 35.935.9 27.127.1 15.515.5 43.343.3 26.026.0 19.519.5 12.912.9 7.37.3

Tables 10-15 indicate the TARL1TARL_{1} of two 𝒮hRZ{\mathcal{S}h}^{-}_{RZ} and 𝒮hRZ+{\mathcal{S}h}^{+}_{RZ} charts for I=10, 30I=10,\ 30 and 5050, when ρ1ρ0\rho_{1}\neq\rho_{0} using n{1,5,7,15,30},γX{0.01,0.2},γY{0.01, 0.2}\ n\in\left\{1,5,7,15,30\right\},\ \gamma_{X}\in\left\{0.01,0.2\right\},\ \gamma_{Y}\in\left\{0.01,\ 0.2\right\} and τ={0.9,0.95,.98,0.99,1.01,1.02,1.05,1.1}\tau=\{0.9,0.95,.98,0.99,1.01,1.02,1.05,1.1\}. Result discussion can be summarized of Tables 10-15 as follows

  1. 1.

    Charts showed the asymmetrical performance due to biased feature of TARL1TARL_{1} for all values of n,I,γXn,I,\gamma_{X} and γY\gamma_{Y}. Since in control I=10,30I=10,30, and 5050 are not stable.

  2. 2.

    It is the worth of observing that when γX<γY\gamma_{X}<\gamma_{Y} and ρ1=ρ0\rho_{1}=\rho_{0}, the one sided 𝒮hRZ{\mathcal{S}h}^{-}_{RZ} chart showed the sensitivity towards shifts. Which is conversely true for one sided 𝒮hRZ+{\mathcal{S}h}^{+}_{RZ} chart when γY\gamma_{Y}<<γX\gamma_{X}. For example, when n=1,ρ0=0.4,ρ1=ρ02=0.2n=1,\ \rho_{0}=-0.4,\ \rho_{1}=\frac{\rho_{0}}{2}=-0.2, I=30,γX=0.01,γY=0.2,τ=.99& 1.05I=30,\ \gamma_{X}=0.01,\ \gamma_{Y}=0.2,\ \tau=.99\ \&\ 1.05, the values of TARL are 9.99.9 and 1010. However, for γX=0.2\gamma_{X}=0.2 and γY=0.01\gamma_{Y}=0.01 TARL are 1010 and 9.99.9 (cf. Table (10-15).

6 Real Life Illustration

The following example has been introduced in Celano et al. 6 for the implementation of a two-sided Shewhart control chart for monitoring the ratio of two normal variables in a long production run context and will be adapted, in this paper, to a short production run context. This example considers a real quality control problem from the food industry but with the simulation data. A muesli brand recipe is produced by using a mixture of several ingredients including sunflower oil, wildflower honey, seeds (pumpkin, flaxseeds, sesame, poppy), coconut milk powder and rolled oats. To meet the food’s nutrient composition requirements declared in the brand packaging label and to preserve the mixture taste, the recipe calls for equal weights of “pumpkin seeds” and “flaxseeds”. Furthermore, their nominal proportions to the total weight of box content are both fixed at pp=pf=0.1p_{p}=p_{f}=0.1. To satisfy the needs of customers, the brand boxes are manufactured in different sizes. According to Celano et al. 6, whichever is the package dimension, the quality practitioner wants to perform on-line SPC monitoring at regular intervals i=1,2,i=1,2,\ldots to check deviations from the in-control ratio z0=μp,iμf,i=0.10.1=1z_{0}=\frac{\mu_{p,i}}{\mu_{f,i}}=\frac{0.1}{0.1}=1 due to problems occurring at the dosing machine. Here, μp,i\mu_{p,i} and μf,i\mu_{f,i} are the mean weights for “pumpkin seeds” and “flaxseeds”, respectively. The quality practitioner collects a sample of n=5n=5 boxes every 60 minutes. Because the box size is allowed to change from one sample to another, it is possible to have μp,iμp,k\mu_{p,i}\neq\mu_{p,k} and μf,iμf,k\mu_{f,i}\neq\mu_{f,k}, ik\forall i\neq k. In the quality control laboratory, a mechanical procedure separates the “pumpkin seeds” and “flaxseeds” from the muesli mixture filling each box and the sample average weights W¯p,i=1nj=1nWp,i,j\bar{W}_{p,i}=\frac{1}{n}\sum_{j=1}^{n}W_{p,i,j} and W¯f,i=1nj=1nWf,i,j\bar{W}_{f,i}=\frac{1}{n}\sum_{j=1}^{n}W_{f,i,j} are recorded. Finally, the ratio Z^i=W¯p,iW¯f,i\hat{Z}_{i}=\frac{\bar{W}_{p,i}}{\bar{W}_{f,i}} is computed. For this example, like in Celano et al. 6, for i=1,2,,i=1,2,\ldots, and j=1,2,,nj=1,2,\ldots,n both Wp,i,jW_{p,i,j} and Wf,i,jW_{f,i,j} can be well approximated as normal variables with constant coefficients of variation γp=0.02\gamma_{p}=0.02 and γf=0.01\gamma_{f}=0.01, i.e. Wp,i,jN(μp,i,0.02×μp,i)W_{p,i,j}\sim N(\mu_{p,i},0.02\times\mu_{p,i}) and Wf,i,jN(μf,i,0.01×μf,i)W_{f,i,j}\sim N(\mu_{f,i},0.01\times\mu_{f,i}). Moreover, the in-control correlation coefficient between these two variables is ρ0=0.8\rho_{0}=0.8. The process engineer has decided to implement the 𝒮hRZ+{\mathcal{S}h}^{+}_{RZ} chart in order to monitor the ratio for a short run production of H=16H=16 hours calling for I=15I=15 inspections, i.e. an inspection every hour.

Table 16: The food industry example data
Wp,i,jW_{p,i,j} [gr] W¯p,i\bar{W}_{p,i} [gr]
Sample Box Size Wf,i,jW_{f,i,j} [gr] W¯f,i\bar{W}_{f,i} [gr] Zi^=W¯p,iW¯f,i\hat{Z_{i}}=\frac{\bar{W}_{p,i}}{\bar{W}_{f,i}}
1 250 gr 25.47925.479 25.35525.355 24.02724.027 25.79225.792 24.96024.960 25.12225.122 1.0031.003
25.21825.218 25.17125.171 24.68424.684 25.05225.052 25.10725.107 25.04625.046
2 250 gr 25.35925.359 25.17225.172 24.50824.508 25.29225.292 24.44924.449 24.95624.956 1.0031.003
25.21125.211 25.11525.115 24.67924.679 24.93324.933 24.83124.831 24.95424.954
3 250 gr 24.57424.574 24.86424.864 25.86525.865 25.10725.107 24.81124.811 25.04425.044 1.0051.005
24.78424.784 24.86824.868 25.37725.377 24.87924.879 24.73424.734 24.92924.929
4 250 gr 25.31325.313 24.48324.483 24.08824.088 25.18425.184 25.68125.681 24.95024.950 0.9990.999
25.33825.338 24.85924.859 24.30524.305 25.11525.115 25.25125.251 24.97424.974
5 250 gr 25.55725.557 24.95924.959 25.02325.023 24.48224.482 25.53125.531 25.11125.111 0.9980.998
25.27725.277 25.40225.402 25.01225.012 24.93724.937 25.14825.148 25.16325.163
6 250 gr 24.88224.882 24.47324.473 24.81424.814 25.41825.418 24.73224.732 24.86424.864 0.9970.997
24.96224.962 24.64424.644 24.81724.817 25.41925.419 24.81824.818 24.93224.932
7 500 gr 49.84849.848 48.68548.685 49.99449.994 49.91049.910 49.37449.374 49.56249.562 0.9990.999
49.99349.993 49.12849.128 49.83049.830 49.56649.566 49.42249.422 49.58849.588
8 500 gr 49.66849.668 50.33850.338 49.14949.149 47.80747.807 49.06449.064 49.20549.205 0.9900.990
49.69549.695 50.68150.681 49.64049.640 48.96948.969 49.61249.612 49.72049.720
9 500 gr 51.27351.273 48.30348.303 48.51048.510 50.59450.594 48.59148.591 49.45449.454 0.9930.993
50.36650.366 49.21049.210 49.84449.844 49.89049.890 49.59549.595 49.78149.781
10 500 gr 48.72048.720 51.56651.566 49.67749.677 50.65150.651 50.34450.344 50.19250.192 1.0021.002
49.72149.721 50.21550.215 50.17850.178 50.32450.324 50.07150.071 50.10250.102
11 500 gr 51.37251.372 51.70051.700 51.00051.000 50.88650.886 49.64149.641 50.92050.920 1.017{\bf 1.017}
50.16450.164 50.27250.272 49.88449.884 50.06150.061 49.84549.845 50.04550.045
12 500 gr 52.02052.020 53.18253.182 51.37451.374 51.34251.342 48.77148.771 51.13851.138 1.023{\bf 1.023}
50.74950.749 50.36950.369 49.69749.697 49.57549.575 49.44049.440 49.96649.966
13 500 gr 52.36052.360 49.41249.412 50.70450.704 50.37050.370 50.90150.901 50.94950.949 1.016{\bf 1.016}
50.04750.047 49.98149.981 50.29750.297 50.40850.408 50.02650.026 50.15250.152
14 500 gr 52.49852.498 50.44750.447 48.71348.713 48.57448.574 50.27550.275 50.10150.101 1.0081.008
50.06450.064 50.12450.124 49.16249.162 48.86548.865 50.34450.344 49.71249.712
15 250 gr 25.12325.123 24.65824.658 24.46824.468 25.03025.030 25.07125.071 24.87024.870 0.9960.996
25.04125.041 24.79024.790 24.83524.835 25.21125.211 25.00825.008 24.97724.977
Refer to caption
Figure 1: The 𝒮hRZ+{\mathcal{S}h}^{+}_{RZ} control chart for the food industry example

For n=5n=5 and ρ0=0.8\rho_{0}=0.8, the control limit of the 𝒮hRZ+{\mathcal{S}h}^{+}_{RZ} control chart to potentially detect unexpected increase in the ratio for a short run production is UCL=1.01421UCL=1.01421. Table -16 shows the set of simulated sample data collected from the process (based on Celano et al. 6), the corresponding box sizes 250–500 gr, and the Z^i\hat{Z}_{i} statistic. The process is assumed to run in-control up to sample #10. Then, between samples #10 and #11, Celano et al. 6 have simulated the occurrence of an assignable cause shifting z0=1z_{0}=1 to z1=1.01×z0z_{1}=1.01\times z_{0}, i.e. a ratio percentage increase equal to 1%. Figure 2 shows the 𝒮hRZ+{\mathcal{S}h}^{+}_{RZ} control chart, which signals the occurrence of the out-of-control condition by plotting point #11 above the control limit UCL+=1.01421UCL^{+}=1.01421 (see also bold values in Table -16). The process is allowed to continue, while corrective actions are started by the repair crew who find and eliminate the assignable cause after sample #14 and restore the process back to the in-control condition.

7 Conclusion and Recommendations

In this article we examined the statistical performance of two one-sided Shewhart charts (𝒮hRZ({\mathcal{S}h}^{-}_{RZ} and 𝒮hRZ+{\mathcal{S}h}^{+}_{RZ}) in monitoring the ratio of two normal variables using truncated average run length as a performance measure in short production runs. For practical consideration of quality experts, we have presented the probability limits and TARL values of both charts by varying the number of inspections. The sample size(n) and the number of inspections(M) affect the width of the control limits. Quality practitioners maybe adjust control limits according to the requirement of the production process. We observed the TARL performance of the both designs at fixed values n,ρ0,ρ1n,\rho_{0},\ \rho_{1}, γX,γY,τ\gamma_{X,\ }{\ \gamma}_{Y},\tau\ , Z0Z_{0} at pre-specified TARL0=10, 30& 50{TARL}_{0}=10,\ 30\ \&\ \ 50 . The main conclusions maybe drive from results. The performance of chart one-sided Shewhart charts (𝒮hRZ({\mathcal{S}h}^{-}_{RZ} and 𝒮hRZ+{\mathcal{S}h}^{+}_{RZ}) is depend on the values n,γX,γYn,\ {\gamma}_{X},\ \gamma_{Y} and ρ0\rho_{0}. When shift size increase or decrease the values of TRL increase or decrease accordingly. There are several extensions for future research like one-sided EWMA type and CUSUM type ratio chart for short production runs.

References

  • 1
  • Amdouni et al. 2015 Amdouni, A., Castagliola, P., Taleb, H. and Celano, G. 2015, ‘Monitoring the coefficient of variation using a variable sample size control chart in short production runs’, The International Journal of Advanced Manufacturing Technology 81(1-4), 1–14.
  • Castagliola et al. 2015 Castagliola, P., Amdouni, A., Taleb, H. and Celano, G. 2015, ‘One-sided shewhart-type charts for monitoring the coefficient of variation in short production runs’, Quality Technology & Quantitative Management 12(1), 53–67.
  • Castagliola et al. 2013 Castagliola, P., Celano, G., Fichera, S. and Nenes, G. 2013, ‘The variable sample size t control chart for monitoring short production runs’, The International Journal of Advanced Manufacturing Technology 66(9-12), 1353–1366.
  • Celano and Castagliola 2016 Celano, G. and Castagliola, P. 2016, ‘Design of a phase ii control chart for monitoring the ratio of two normal variables’, Quality and Reliability Engineering International 32(1), 291–308.
  • Celano et al. 2014 Celano, G., Castagliola, P., Faraz, A. and Fichera, S. 2014, ‘Statistical Performance of a Control Chart for Individual Observations Monitoring the Ratio of two Normal Variables’, Quality and Reliability Engineering International 30(8), 1361–1377.
  • Celano et al. 2012 Celano, G., Castagliola, P. and Trovato, E. 2012, ‘The economic performance of a cusum t control chart for monitoring short production runs’, Quality Technology & Quantitative Management 9(4), 329–354.
  • Del Castillo and Montgomery 1993 Del Castillo, E. and Montgomery, D. 1993, ‘Optimal design of control charts for monitoring short production runs’, Economic Quality Control 8(4), 225–240.
  • Del Castillo and Montgomery 1996 Del Castillo, E. and Montgomery, D. C. 1996, ‘A general model for the optimal economic design of x¯ charts used to control short or long run processes’, IIE Transactions (Institute of Industrial Engineers) 28(3), 193–201.
  • Khatun et al. 2019 Khatun, M., Khoo, M. B., Lee, M. H. and Castagliola, P. 2019, ‘One-sided control charts for monitoring the multivariate coefficient of variation in short production runs’, Transactions of the Institute of Measurement and Control 41(6), 1712–1728.
  • Khoo et al. 2020 Khoo, M. B., Saha, S., Teh, S. Y., Haq, A. and Lee, H. C. 2020, ‘The median control chart for process monitoring in short production runs’, Communications in Statistics-Simulation and Computation pp. 1–16.
  • Ladany 1973 Ladany, S. P. 1973, ‘Optimal use of control charts for controlling current production’, Management Science 19(7), 763–772.
  • Ladany and Bedi 1976 Ladany, S. P. and Bedi, D. N. 1976, ‘Selection of the optimal setup policy’, Naval Research Logistics Quarterly 23(2), 219–233.
  • Naseri et al. 2020 Naseri, H., Najafi, S. E. and Saghaei, A. 2020, ‘Statistical process control (spc) for short production run with cauchy distribution, a case study with corrected numbers approach’, Communications in Statistics-Theory and Methods 49(4), 879–893.
  • Nenes and Tagaras 2006 Nenes, G. and Tagaras, G. 2006, ‘The economically designed cusum chart for monitoring short production runs’, International Journal of Production Research 44(8), 1569–1587.
  • Nenes and Tagaras 2010 Nenes, G. and Tagaras, G. 2010, ‘Evaluation of cusum charts for finite-horizon processes’, Communications in Statistics—Simulation and Computation® 39(3), 578–597.
  • Nguyen et al. 2019 Nguyen, H. D., Tran, K. P. and Heuchenne, C. 2019, ‘Monitoring the ratio of two normal variables using variable sampling interval exponentially weighted moving average control charts’, Quality and Reliability Engineering International 35(1), 439–460.
  • Nguyen, Tran and Heuchenne 2020 Nguyen, H. D., Tran, K. P. and Heuchenne, H. L. 2020, ‘Cusum control charts with variable sampling interval for monitoring the ratio of two normal variables’, Quality and Reliability Engineering International 36(2), 474–497.
  • Nguyen and Tran 2020 Nguyen, H. and Tran, K. 2020, ‘Effect of the measurement errors on two one-sided shewhart control charts for monitoring the ratio of two normal variables’, Quality and Reliability Engineering International .
  • Nguyen, Tran and Goh 2020 Nguyen, H., Tran, K. and Goh, T. 2020, ‘Variable sampling interval control charts for monitoring the ratio of two normal variables’, Journal of Testing and Evaluation 48(3).
  • Shewhart 1931 Shewhart, W. 1931, Economic Control of Quality of Manufactured Product, Van Nostrand, New York.
  • Tagaras 1996 Tagaras, G. 1996, ‘Dynamic control charts for finite production runs’, European Journal of Operational Research 91(1), 38–55.
  • Tran et al. 2016a Tran, K. P., Castagliola, P. and Celano, G. 2016a, ‘Monitoring the ratio of two normal variables using run rules type control charts’, International Journal of Production Research 54(6), 1670–1688.
  • Tran et al. 2016b Tran, K. P., Castagliola, P. and Celano, G. 2016b, ‘The performance of the shewhart-rz control chart in the presence of measurement error’, International Journal of Production Research 54(24), 7504–7522.
  • Tran et al. 2018 Tran, K. P., Castagliola, P. and Celano, G. 2018, ‘Monitoring the ratio of population means of a bivariate normal distribution using cusum type control charts’, Statistical Papers 59(1), 387–413.
  • Tran and Knoth 2018 Tran, K. P. and Knoth, S. 2018, ‘Steady-state arl analysis of arl-unbiased ewma-rz control chart monitoring the ratio of two normal variables’, Quality and Reliability Engineering International 34(3), 377–390.