This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimal convergence rate of modified Milstein scheme
for SDEs with rough fractional diffusions

Chuying Huang College of Mathematics and Informatics & FJKLMAA, Fujian Normal University, Fuzhou 350117, PR China huangchuying@fjnu.edu.cn; huangchuying@lsec.cc.ac.cn
Abstract.

We combine the rough path theory and stochastic backward error analysis to develop a new framework for error analysis on numerical schemes. Based on our approach, we prove that the almost sure convergence rate of the modified Milstein scheme for stochastic differential equations driven by multiplicative multidimensional fractional Brownian motion with Hurst parameter H(14,12)H\in(\frac{1}{4},\frac{1}{2}) is (2H12)(2H-\frac{1}{2})^{-} for sufficiently smooth coefficients, which is optimal in the sense that it is consistent with the result of the corresponding implementable approximation of the Lévy area of fractional Brownian motion. Our result gives a positive answer to the conjecture proposed in [11] for the case H(13,12)H\in(\frac{1}{3},\frac{1}{2}), and reveals for the first time that numerical schemes constructed by a second-order Taylor expansion do converge for the case H(14,13]H\in(\frac{1}{4},\frac{1}{3}].

Key words and phrases:
fractional Brownian motion, modified Milstein scheme, optimal convergence rate, rough path theory, stochastic backward error analysis
2010 Mathematics Subject Classification:
Primary 60H35; secondary 60H10, 60L20; 65C30

1. Introduction

In this article, we study the stochastic differential equation (SDE) driven by multiplicative multidimensional fractional Brownian motion (fBm)

{dYt=σ(Yt)dBt,t(0,T],Y0=zm,\displaystyle\left\{\begin{aligned} {\rm d}Y_{t}&=\sigma(Y_{t}){\rm d}B_{t},\quad t\in(0,T],\\ Y_{0}&=z\in\mathbb{R}^{m},\end{aligned}

where σ=(σ1,,σd):mL(d,m)\sigma=(\sigma_{1},\cdots,\sigma_{d}):\mathbb{R}^{m}\rightarrow L(\mathbb{R}^{d},\mathbb{R}^{m}), and B=(B1,,Bd)B=(B^{1},\cdots,B^{d}) is a dd-dimensional fractional Brownian motion with Hurst parameter H(14,12)H\in(\frac{1}{4},\frac{1}{2}). More precisely, BB is a continuous centered Gaussian process characterized by the covariance function

𝔼[BtiBsj]=12[t2H+s2H|ts|2H]𝟙{i=j},s,t[0,T],i,j=1,,d.\displaystyle\mathbb{E}\Big{[}B^{i}_{t}B^{j}_{s}\Big{]}=\frac{1}{2}\Big{[}t^{2H}+s^{2H}-|t-s|^{2H}\Big{]}\mathds{1}_{\{i=j\}},\quad s,t\in[0,T],\quad i,j=1,\cdots,d.

The properties for self-similarity, stationary increments and short-range dependence of fBm with Hurst parameter H(14,12)H\in(\frac{1}{4},\frac{1}{2}) lead to considerable practical applications of SDE (1) such as the models for interest rates, stochastic oscillators, circuit simulations, flows in porous media and so on; see e.g. [5, 10, 12, 13, 14, 22, 25, 30].

Under this setting, since fBm is not a martingale and the exponent of Hölder continuity of sample paths is H<12H^{-}<\frac{1}{2}, we interprete the SDE in the sense of rough path developed in [15, 17, 19, 29], instead of the stochastic Itô integral for the case H=12H=\frac{1}{2} or the pathwise fractional calculus for the case H(12,1)H\in(\frac{1}{2},1). Based on the rough path theory, the well-posedness and robustness of pathwise solutions of equations driven by signals with 1p\frac{1}{p}-Hölder regularity is established by smoothing the rough driving signal and applying the Taylor expansion up to [p][p]th-order, where [p][p] is the integer part of p1p\geq 1. At the level of theoretical analysis, the robustness of solutions with respect to driving signals is fundamental for researches about the density and ergodicity of SDEs driven by non-Markovian stochastic processes [6, 7, 20]. At the level of numerical approximation, it suggests intuitively that schemes constructed by a [p][p]th-order Taylor expansion converge for equations driven by signals with 1p\frac{1}{p}-Hölder regularity. For instance, schemes constructed by a second-order Taylor expansion converge for the case H(13,12)H\in(\frac{1}{3},\frac{1}{2}) and schemes constructed by a third-order Taylor expansion converge for the case H(14,13]H\in(\frac{1}{4},\frac{1}{3}]. This motivates us to investigate the optimal convergence rate of numerical schemes, to prove which it needs to develop new strategies since the probabilistic properties of fBm are essentially different from those of standard Brownian motion.

Consider a simple equation

{dXt1=dBt1,t(0,T],dXt2=Xt1dBt2,X01=X02=0,\displaystyle\left\{\begin{aligned} {\rm d}X^{1}_{t}&={\rm d}B^{1}_{t},\quad t\in(0,T],\\ {\rm d}X^{2}_{t}&=X^{1}_{t}{\rm d}B^{2}_{t},\quad X^{1}_{0}=X^{2}_{0}=0,\end{aligned}

whose exact solution

Xt1=Bt1,Xt2=0t0udBv1dBu2,X^{1}_{t}=B^{1}_{t},\quad X^{2}_{t}=\int_{0}^{t}\int_{0}^{u}{\rm d}B^{1}_{v}{\rm d}B^{2}_{u},

shows the Lévy area of B1B^{1} and B2B^{2}. Based on a uniform gird tk=kht_{k}=kh, n+n\in\mathbb{N}_{+}, h=Tnh=\frac{T}{n}, a second-order Taylor expansion leads to the Milstein scheme

Ztk+1n,2=\displaystyle Z^{n,2}_{t_{k+1}}= Ztkn,2+tktk+1Ztkn,1dBu2+tktk+1tkudBv1dBu2\displaystyle Z^{n,2}_{t_{k}}+\int_{t_{k}}^{t_{k+1}}Z^{n,1}_{t_{k}}{\rm d}B^{2}_{u}+\int_{t_{k}}^{t_{k+1}}\int_{t_{k}}^{u}{\rm d}B^{1}_{v}{\rm d}B^{2}_{u}
=\displaystyle= Ztkn,2+Btk1(Btk+12Btk2)+tktk+1tkudBv1dBu2,k=0,,n1,\displaystyle Z^{n,2}_{t_{k}}+B^{1}_{t_{k}}\big{(}B^{2}_{t_{k+1}}-B^{2}_{t_{k}}\big{)}+\int_{t_{k}}^{t_{k+1}}\int_{t_{k}}^{u}{\rm d}B^{1}_{v}{\rm d}B^{2}_{u},\quad k=0,\cdots,n-1,

which includes iterated integrals of fBm. However, due to the dependency of increments of fBm, the simulation for iterated integrals is rather difficult. One implementable method for numerical simulation is to substitute (B1,B2)(B^{1},B^{2}) by a piecewise linear interpolation with time step size hh to construct a modified version

Z~tk+1n,2=\displaystyle\tilde{Z}^{n,2}_{t_{k+1}}= Z~tkn,2+Btk1(Btk+12Btk2)+12(Btk+11Btk1)(Btk+12Btk2)\displaystyle\tilde{Z}^{n,2}_{t_{k}}+B^{1}_{t_{k}}\big{(}B^{2}_{t_{k+1}}-B^{2}_{t_{k}}\big{)}+\frac{1}{2}\big{(}B^{1}_{t_{k+1}}-B^{1}_{t_{k}}\big{)}\big{(}B^{2}_{t_{k+1}}-B^{2}_{t_{k}}\big{)}
(1.1) =\displaystyle= Z~tkn,2+12(Btk+11+Btk1)(Btk+12Btk2),k=0,,n1.\displaystyle\tilde{Z}^{n,2}_{t_{k}}+\frac{1}{2}\big{(}B^{1}_{t_{k+1}}+B^{1}_{t_{k}}\big{)}\big{(}B^{2}_{t_{k+1}}-B^{2}_{t_{k}}\big{)},\quad k=0,\cdots,n-1.

In [32], the authors prove for H(14,1)H\in(\frac{1}{4},1) that the mean-square convergence rate of the modified Milstein scheme is 2H122H-\frac{1}{2}. It is then natural to ask whether the same convergence rate of the modified Milstein scheme

(1.2) Ytk+1n=Ytkn+σ(Ytkn)ΔBk+1+12σ(Ytkn)σ(Ytkn)ΔBk+12,k=0,,n1,\displaystyle Y^{n}_{t_{k+1}}=Y^{n}_{t_{k}}+\sigma(Y^{n}_{t_{k}})\Delta B_{{k+1}}+\frac{1}{2}\sigma^{\prime}(Y^{n}_{t_{k}})\sigma(Y^{n}_{t_{k}})\Delta B_{{k+1}}^{\otimes 2},\quad k=0,\cdots,n-1,

holds for the general SDE (1), where ΔBk+1=Btk+1Btk\Delta B_{{k+1}}=B_{t_{k+1}}-B_{t_{k}}. If H(12,1)H\in(\frac{1}{2},1), the question has already been solved in [21] with the equation being understood by fractional calculus. If H=12H=\frac{1}{2}, it is actually a classical numerical conclusion for Itô SDEs driven by standard Brownian motion; see e.g. [31]. The contribution of this article is to fill this picture for H(14,12)H\in(\frac{1}{4},\frac{1}{2}).

The main difficulty in this topic is the low regularity of fBm as well as the solution of SDE (1). One alternative way is to use the Wong–Zakai approximation to turn the problem into a random ordinary differential equation. Then the local error of numerical schemes constructed by a second-order Taylor expansion is 3H3H^{-}, that is, three times the exponent of Hölder continuity. Moreover, the robustness of solutions with respect to initial data in rough path theory derives that the pathwise global error is (3H1)(3H-1)^{-}, which leads to a convergent situation for the case H>13H>\frac{1}{3}. To prove the optimal convergence rate, in this article, we combine the stochastic backward error analysis to further decompose the error between the numerical solution YnY^{n} and the exact solution of the Wong–Zakai approximation into two parts. The first part is the error between YnY^{n} and the exact solution of the associated truncated stochastic modified equation proposed in [8], which is proved to have arbitrary high order, by choosing the truncation number large enough. The second part is the error between the exact solutions of the associated truncated stochastic modified equation and the Wong–Zakai approximation. We rewrite the associated truncated stochastic modified equation as an equivalent equation driven by rough path lifted by a new stochastic process X~n\tilde{X}^{n} so that extra stochastic cancellation effects in error propagation are explored. Then together with the discrete sewing lemma and the robustness of solutions with respect to the driving signals in rough path theory, we obtain our main result for the whole situation H(14,12)H\in(\frac{1}{4},\frac{1}{2}).

Theorem 1.1.

Let 1/4<H<1/21/4<H<1/2 and γ>3+1H\gamma>3+\frac{1}{H}. If σLipγ\sigma\in Lip^{\gamma}, then for any sufficiently small ϵ>0\epsilon>0, there exists a random variable G=G(ϵ)G=G(\epsilon) independent of the time step size hh such that

maxk=1,,nYtkYtknGhmin{2H1/2,H1/γ}ϵ,a.s.,\displaystyle\max_{k=1,\cdots,n}\big{\|}Y_{t_{k}}-Y^{n}_{t_{k}}\big{\|}\leq Gh^{\min\{2H-1/2,H-1/\gamma\}-\epsilon},\quad a.s.,

where YY is the exact solution of (1) in the sense of rough path and YnY^{n} is the numerical solution given by the modified Milstein scheme (1.2).

Here and in the rest of this article, we denote by \|\cdot\| the Euclidean norm of d\mathbb{R}^{d}. We use CC as a generic positive constant and GG as a generic positive random variable, which may be different from line to line and are all independent of the time step size hh. Based on Theorem 1.1, we obtain that the almost sure convergence rate of the modified Milstein scheme is (2H12)(2H-\frac{1}{2})^{-} for sufficiently smooth σ\sigma. It is optimal in the sense that the convergence rate corresponds to that of scheme (1) for approximating the Lévy area of fBm. This gives a positive answer to the optimal convergence rate conjecture in [11] for the case H(13,12)H\in(\frac{1}{3},\frac{1}{2}). The more surprising thing is that the modified Milstein scheme is proved for the first time to be convergent for the case H(14,13]H\in(\frac{1}{4},\frac{1}{3}], and maintain the same convergence rate as that of third-order Taylor schemes. Indeed, our result holds for any implementable schemes constructed by a second-order Taylor expansion and for SDEs with drift terms. Moreover, we believe that our framework is applicable for SDEs driven by general rough signals.

From our procedure, we present a novel application for stochastic backward error analysis in stochastic forward error analysis. For SDEs driven by standard Brownian motion, there are several types of weak stochastic modified equations with many applications, such as constructing high weak order numerical schemes, studying invariant measures of numerical schemes and investigating the mathematical mechanism of stochastic symplectic methods for stochastic Hamiltonian systems. We refer to [1, 2, 9, 26, 27, 35, 36, 37] for interested readers. As to numerical schemes constructed by a third-order Taylor expansion for SDEs driven by fBm, the remainder term of the local error between YY and YnY^{n} has higher regularity, and the optimal strong convergence rate is obtained in [3] for H(14,12)H\in(\frac{1}{4},\frac{1}{2}). For the modified Euler scheme, the optimal strong convergence rate when H(12,1)H\in(\frac{1}{2},1) and the optimal almost sure convergence rate when H(13,12)H\in(\frac{1}{3},\frac{1}{2}) are proved in [23] and [28], respectively. The optimal strong convergence rate of modified Milstein scheme and modified Euler scheme for rough case H<12H<\frac{1}{2} is still an open problem. Besides, since the Lévy area of fBm diverges if H14H\leq\frac{1}{4}, the well-posedness of SDEs in this case is unsolved.

The remainder of the article is structured as follows. The rough path theory and the stochastic backward error analysis are briefly introduced in Section 2. The core framwork for proving Theorem 1.1 is given in Section 3. Technique estimates for the new process X~n\tilde{X}^{n} are proved in Section 4.

2. Preliminaries

In Section 2.1, we review the rough path theory developed in [15, 17, 19, 29] and illustrate the solution of SDE (1) in the sense of rough path. In Section 2.2, we introduce the stochastic backward error analysis proposed in [8], which constructs stochastic modified equations utilized in the proof of our main theorem.

2.1. Rough path theory

Let [p][p] be the integer part of p1p\geq 1. Denote by 𝒞1-var([0,T];d)\mathcal{C}^{1\text{-}var}\big{(}[0,T];\mathbb{R}^{d}\big{)} the space of all continuous paths x:[0,T]dx:[0,T]\rightarrow\mathbb{R}^{d} with bounded variation. We define the signature of x𝒞1-var([0,T];d)x\in\mathcal{C}^{1\text{-}var}\big{(}[0,T];\mathbb{R}^{d}\big{)} by

S[p](x)t=(1,0u1tdxu1,,0u1<<u[p]tdxu1dxu[p])(i=1[p](d)i)\displaystyle S_{[p]}(x)_{t}=\left(1,\int_{0\leq u_{1}\leq t}{\rm d}x_{u_{1}},\cdots,\int_{0\leq u_{1}<\cdots<u_{[p]}\leq t}{\rm d}x_{u_{1}}\otimes\cdots\otimes{\rm d}x_{u_{[p]}}\right)\in\mathbb{R}\oplus\Big{(}\oplus_{i=1}^{[p]}(\mathbb{R}^{d})^{\otimes i}\Big{)}

and the space of all terminal values of signatures by

G[p](d)={S[p](x)T:x𝒞1-var([0,T];d)}.\displaystyle G^{[p]}(\mathbb{R}^{d})=\Big{\{}S_{[p]}(x)_{T}:x\in\mathcal{C}^{1\text{-}var}\big{(}[0,T];\mathbb{R}^{d}\big{)}\Big{\}}.

For any 𝐚=(𝐚0,𝐚1,,𝐚[p]),𝐛=(𝐛0,𝐛1,,𝐛[p])G[p](d)\mathbf{a}=(\mathbf{a}^{0},\mathbf{a}^{1},\cdots,\mathbf{a}^{[p]}),\mathbf{b}=(\mathbf{b}^{0},\mathbf{b}^{1},\cdots,\mathbf{b}^{[p]})\in G^{[p]}(\mathbb{R}^{d}), the multiplication of 𝐚\mathbf{a} and 𝐛\mathbf{b} is given by

𝐚𝐛=(𝐜0,𝐜1,,𝐜[p])G[p](d),𝐜i=k=0i𝐚k𝐛ik,i=0,,[p].\displaystyle\mathbf{a}\otimes\mathbf{b}=(\mathbf{c}^{0},\mathbf{c}^{1},\cdots,\mathbf{c}^{[p]})\in G^{[p]}(\mathbb{R}^{d}),~{}\mathbf{c}^{i}=\sum_{k=0}^{i}\mathbf{a}^{k}\otimes\mathbf{b}^{i-k},\quad i=0,\cdots,[p].

If 𝐚𝐛=(1,𝟎,,𝟎)\mathbf{a}\otimes\mathbf{b}=(1,\mathbf{0},\cdots,\mathbf{0}), then 𝐛\mathbf{b} is the inverse of 𝐚\mathbf{a} and denoted by 𝐛=𝐚1\mathbf{b}=\mathbf{a}^{-1}. In particular,

(2.1) (S[p](x)s)1S[p](x)t=(1,su1tdxu1,,su1<<u[p]tdxu1dxu[p]).\displaystyle(S_{[p]}(x)_{s})^{-1}\otimes S_{[p]}(x)_{t}=\left(1,\int_{s\leq u_{1}\leq t}{\rm d}x_{u_{1}},\cdots,\int_{s\leq u_{1}<\cdots<u_{[p]}\leq t}{\rm d}x_{u_{1}}\otimes\cdots\otimes{\rm d}x_{u_{[p]}}\right).

Indeed, G[p](d)G^{[p]}(\mathbb{R}^{d}) is the free step-[p][p] nilpotent Lie group of d\mathbb{R}^{d}, for which we refer to [17, Chapter 7] for more details.

Definition 2.1.

If a continuous path 𝐗:[0,T]G[p](d)\mathbf{X}:[0,T]\rightarrow G^{[p]}(\mathbb{R}^{d}) satisfies

𝐗p-var;[0,T]:=sup{tk:k=0,,K}𝔻([0,T])(k=0K1maxi=1,,[p](𝐗tk1𝐗tk+1)ipi)1p<,\displaystyle\|\mathbf{X}\|_{p\text{-}var;[0,T]}:=\sup_{\{t_{k}:k=0,\cdots,K\}\in\mathbb{D}([0,T])}\left(\sum_{k=0}^{K-1}\max_{i=1,\cdots,[p]}\big{\|}(\mathbf{X}^{-1}_{t_{k}}\otimes\mathbf{X}_{t_{k+1}})^{i}\big{\|}^{\frac{p}{i}}\right)^{\frac{1}{p}}<\infty,

where 𝔻([0,T])\mathbb{D}([0,T]) is the set of all partitions of [0,T][0,T], then we denote 𝐗𝒞p-var([0,T];G[p](d))\mathbf{X}\in\mathcal{C}^{p\text{-}var}\big{(}[0,T];G^{[p]}(\mathbb{R}^{d})\big{)} and 𝐗\mathbf{X} is called a rough path. Furthermore, a rough path 𝐗\mathbf{X} is of Hölder-type, if

𝐗1p;[0,T]:=sup0s<tTmaxi=1,,[p](𝐗s1𝐗t)i1i|ts|1p<.\displaystyle\|\mathbf{X}\|_{\frac{1}{p};[0,T]}:=\sup_{0\leq s<t\leq T}\frac{\max_{i=1,\cdots,[p]}\big{\|}(\mathbf{X}^{-1}_{s}\otimes\mathbf{X}_{t})^{i}\big{\|}^{\frac{1}{i}}}{|t-s|^{\frac{1}{p}}}<\infty.

Since the rough path takes value in G[p](d)G^{[p]}(\mathbb{R}^{d}) instead of d\mathbb{R}^{d}, it provides enough information to determine the well-posedness and robustness of solutions of equations with less regular driving signals. More precisely, for the rough differential equation (RDE)

{dYt=σ(Yt)d𝐗t,t(0,T],Y0=zm,\displaystyle\left\{\begin{aligned} {\rm d}Y_{t}&=\sigma(Y_{t}){\rm d}\mathbf{X}_{t},\quad t\in(0,T],\\ Y_{0}&=z\in\mathbb{R}^{m},\end{aligned}

the definition, well-posedness and robustness of its solution are stated as follows.

Definition 2.2.

Let 𝐗𝒞p-var([0,T];G[p](d))\mathbf{X}\in\mathcal{C}^{p\text{-}var}\big{(}[0,T];G^{[p]}(\mathbb{R}^{d})\big{)}. Suppose that for n+n\in\mathbb{N}_{+} and xn𝒞1-var([0,T];d)x^{n}\in\mathcal{C}^{1\text{-}var}\big{(}[0,T];\mathbb{R}^{d}\big{)}, yny^{n} is the solution of

{dytn=σ(ytn)dxtn,t(0,T],y0n=z,\displaystyle\left\{\begin{aligned} {\rm d}y^{n}_{t}&=\sigma(y^{n}_{t}){\rm d}x^{n}_{t},\quad t\in(0,T],\\ y^{n}_{0}&=z,\end{aligned}

in the sense of Riemann–Stieltjes integral. If it holds that

(2.2) limnsup0tTytnYt=0,\displaystyle\lim_{n\rightarrow\infty}\sup_{0\leq t\leq T}\|y^{n}_{t}-Y_{t}\|=0,
(2.3) supn+S[p](xn)p-var;[0,T]<,\displaystyle\sup_{n\in\mathbb{N}_{+}}\|S_{[p]}(x^{n})\|_{p\text{-}var;[0,T]}<\infty,
(2.4) limnsup0s<tTmaxi=1,,[p](S[p](xn)t1S[p](xn)s𝐗s1𝐗t)i1i=0,\displaystyle\lim_{n\rightarrow\infty}\sup_{0\leq s<t\leq T}\max_{i=1,\cdots,[p]}\big{\|}(S_{[p]}(x^{n})^{-1}_{t}\otimes S_{[p]}(x^{n})_{s}\otimes\mathbf{X}^{-1}_{s}\otimes\mathbf{X}_{t})^{i}\big{\|}^{\frac{1}{i}}=0,

then YY is called a solution of RDE (2.1).

Remark 2.1.

For equations driven by paths in 𝒞1-var([0,T];d)\mathcal{C}^{1\text{-}var}\big{(}[0,T];\mathbb{R}^{d}\big{)}, the solution defined in Definition 2.2 equals to that in the sense of Riemann–Stieltjes integral.

Definition 2.3.

Let γ>0\gamma>0. Denote by γ\lfloor\gamma\rfloor the largest integer such that γ<γ\lfloor\gamma\rfloor<\gamma. If σ\sigma is γ\lfloor\gamma\rfloor-order differentiable, and there exists a constant CC such that

{σ(k)(y)C,k=0,,γ,ym,σ(γ)(y1)σ(γ)(y2)Cy1y2γγ,y1,y2m,\displaystyle\left\{\begin{aligned} &\big{\|}\sigma^{(k)}(y)\big{\|}\leq C,\quad k=0,\cdots,\lfloor\gamma\rfloor,~{}\ y\in\mathbb{R}^{m},\\ &\big{\|}\sigma^{(\lfloor\gamma\rfloor)}(y_{1})-\sigma^{(\lfloor\gamma\rfloor)}(y_{2})\big{\|}\leq C\|y_{1}-y_{2}\|^{\gamma-\lfloor\gamma\rfloor},\quad y_{1},y_{2}\in\mathbb{R}^{m},\end{aligned}\right.

where σ(k)\sigma^{(k)} is the kkth derivative of σ\sigma, then we say σLipγ\sigma\in Lip^{\gamma} and denote by σLipγ\|\sigma\|_{Lip^{\gamma}} the smallest constant satisfying the above inequalities.

Lemma 2.1.

([17, Theorem 10.26]). Let 𝐗𝒞p-var([0,T];G[p](d))\mathbf{X}\in\mathcal{C}^{p\text{-}var}\big{(}[0,T];G^{[p]}(\mathbb{R}^{d})\big{)} and {xn}n=1𝒞1-var([0,T];d)\{x^{n}\}_{n=1}^{\infty}\subseteq\mathcal{C}^{1\text{-}var}\big{(}[0,T];\mathbb{R}^{d}\big{)} satisfy (2.3)-(2.4). If σLipγ\sigma\in Lip^{\gamma}, γ>p\gamma>p, then RDE (2.1) admits a unique solution. Moreover, given another RDE

{dY~t=σ~(Y~t)d𝐗~t,Y~0=z~,\displaystyle\left\{\begin{aligned} {\rm d}\tilde{Y}_{t}&=\tilde{\sigma}(\tilde{Y}_{t}){\rm d}\tilde{\mathbf{X}}_{t},\\ \tilde{Y}_{0}&=\tilde{z},\end{aligned}

with 𝐗~𝒞p-var([0,T];G[p](d))\tilde{\mathbf{X}}\in\mathcal{C}^{p\text{-}var}\big{(}[0,T];G^{[p]}(\mathbb{R}^{d})\big{)} and σ~Lipγ\tilde{\sigma}\in Lip^{\gamma}, we have

sup0tTYtY~tCexp{Cω(0,T)}[zz~+σσ~Lipγ1+U(𝐗,𝐗~)],\displaystyle\sup_{0\leq t\leq T}\|Y_{t}-\tilde{Y}_{t}\|\leq C\exp\big{\{}C\omega(0,T)\big{\}}\Big{[}\|z-\tilde{z}\|+\|\sigma-\tilde{\sigma}\|_{Lip^{\gamma-1}}+U(\mathbf{X},\tilde{\mathbf{X}})\Big{]},

where C=C(γ,p,T,σLipγ,σ~Lipγ)C=C(\gamma,p,T,\|\sigma\|_{Lip^{\gamma}},\|\tilde{\sigma}\|_{Lip^{\gamma}}), ω(s,t)=𝐗p-var;[s,t]p+𝐗~p-var;[s,t]p\omega(s,t)=\|\mathbf{X}\|^{p}_{p\text{-}var;[s,t]}+\|\tilde{\mathbf{X}}\|^{p}_{p\text{-}var;[s,t]} and

U(𝐗,𝐗~)=maxi=1,,[p]sup0s<tT(𝐗s1𝐗t)i(𝐗~s1𝐗~t)iω(s,t)ip.\displaystyle U(\mathbf{X},\tilde{\mathbf{X}})=\max_{i=1,\cdots,[p]}\sup_{0\leq s<t\leq T}\frac{\big{\|}(\mathbf{X}^{-1}_{s}\otimes\mathbf{X}_{t})^{i}-(\tilde{\mathbf{X}}^{-1}_{s}\otimes\tilde{\mathbf{X}}_{t})^{i}\big{\|}}{\omega(s,t)^{\frac{i}{p}}}.

For fBm with H(14,12)H\in(\frac{1}{4},\frac{1}{2}), let {xn}n=1\{x^{n}\}_{n=1}^{\infty} be a sequence of piecewise linear interpolations of BB, i.e.,

(2.5) xtn=xtkn+(ttk)h1ΔBk+1,h=Tn,t(tk,tk+1],k=0,,n1.\displaystyle x^{n}_{t}=x^{n}_{t_{k}}+(t-t_{k})h^{-1}\Delta B_{k+1},\quad h=\frac{T}{n},\quad t\in(t_{k},t_{k+1}],\quad k=0,\cdots,n-1.

Then BB is naturally lifted to a rough path 𝐁\mathbf{B} as a limit of S3(xn)S_{3}(x^{n}), which is showed in the next lemma.

Lemma 2.2.

([17, Proposition 15.5 and Theorem 15.33]). Let 1/4<H<1/21/4<H<1/2. Then for any p>1/Hp>1/H, the piecewise linear interpolations {xn}n=1\{x^{n}\}_{n=1}^{\infty} of BB, which are defined in (2.5), satisfy

(2.6) supn+S3(xn)1p;[0,T]<,a.s.\displaystyle\sup_{n\in\mathbb{N}_{+}}\|S_{3}(x^{n})\|_{\frac{1}{p};[0,T]}<\infty,\quad a.s.

Moreover, there exists a 𝒞p-var([0,T];G[p](d))\mathcal{C}^{p\text{-}var}\big{(}[0,T];G^{[p]}(\mathbb{R}^{d})\big{)}-valued random variable 𝐁\mathbf{B} of Hölder-type such that

(2.7) limnsup{tk:k=0,,K}𝔻([0,T])(k=0K1maxi=1,,3(S3(xn)tk+11S3(xn)tk𝐁tk1𝐁tk+1)ipi)1p=0,a.s.\displaystyle\lim_{n\rightarrow\infty}\sup_{\{t_{k}:k=0,\cdots,K\}\in\mathbb{D}([0,T])}\left(\sum_{k=0}^{K-1}\max_{i=1,\cdots,3}\big{\|}(S_{3}(x^{n})^{-1}_{t_{k+1}}\otimes S_{3}(x^{n})_{t_{k}}\otimes\mathbf{B}^{-1}_{t_{k}}\otimes\mathbf{B}_{t_{k+1}})^{i}\big{\|}^{\frac{p}{i}}\right)^{\frac{1}{p}}=0,\quad a.s.

As a consequence, for almost all sample paths, we interprete the solution of SDE (1) as that of the following RDE

{dYt=σ(Yt)d𝐁t,t(0,T],Y0=zm.\displaystyle\left\{\begin{aligned} {\rm d}Y_{t}&=\sigma(Y_{t}){\rm d}\mathbf{B}_{t},\quad t\in(0,T],\\ Y_{0}&=z\in\mathbb{R}^{m}.\end{aligned}

Furthermore, since (2.6)-(2.7) implies (2.3)-(2.4), it is motivated to investigate the convergence of the solution of the Wong–Zakai approximation

{dytn=σ(ytn)dxtn,t(0,T],y0n=zm,\displaystyle\left\{\begin{aligned} {\rm d}y^{n}_{t}&=\sigma(y^{n}_{t}){\rm d}x^{n}_{t},\quad t\in(0,T],\\ y^{n}_{0}&=z\in\mathbb{R}^{m},\end{aligned}

where xnx^{n} is defined by (2.5).

Lemma 2.3.

([16, Theorem 6 and Corollary 8]). Let 1/4<H<1/21/4<H<1/2 and γ>1/H\gamma>1/H. If σLipγ\sigma\in Lip^{\gamma}, then for any sufficiently small ϵ>0\epsilon>0, there exists a random variable G=G(ϵ)G=G(\epsilon) independent of the time step hh such that

sup0tTYtytnGhmin{2H1/2,H1/γ}ϵ,a.s.,\displaystyle\sup_{0\leq t\leq T}\big{\|}Y_{t}-y^{n}_{t}\big{\|}\leq Gh^{\min\{2H-1/2,H-1/\gamma\}-\epsilon},\quad a.s.,

where YY and yny^{n} are the exact solutions of SDE (1) and the Wong–Zakai approximation (2.1), respectively.

2.2. Stochastic backward error analysis

After applying certain numerical scheme to SDE (1) and fixing the numerical solution YnY^{n}, the goal of the stochastic backward error analysis is to evaluate the properties of YnY^{n} via a stochastic modified equation whose exact solution is much more close to YnY^{n} than YY. To this end, we assume that the numerical solution satisfies the expansion

(2.8) Ytk+1n=Ytk+1n+|α|=1gα(Ytkn)(ΔBk+11)α1(ΔBk+1d)αd,\displaystyle Y^{n}_{t_{k+1}}=Y^{n}_{t_{k+1}}+\sum_{|\alpha|=1}^{\infty}g_{\alpha}(Y^{n}_{t_{k}})(\Delta B^{1}_{k+1})^{\alpha_{1}}\cdots(\Delta B^{d}_{k+1})^{\alpha_{d}},

where α=(α1,,αd)(+)d\alpha=(\alpha_{1},\cdots,\alpha_{d})\in(\mathbb{N}_{+})^{d} and |α|=α1++αd|\alpha|=\alpha_{1}+\cdots+\alpha_{d}. In [8], we construct the stochastic modified equation in the form of

(2.9) {y~˙tn=|α|=1fα(y~tn)h1(ΔBk+11)α1(ΔBk+1d)αd,y~0n=z,t(tk,tk+1],k=0,,n1,\displaystyle\left\{\begin{aligned} \dot{\tilde{y}}^{n}_{t}&=\sum_{|\alpha|=1}^{\infty}f_{\alpha}(\tilde{y}^{n}_{t})h^{-1}(\Delta B^{1}_{k+1})^{\alpha_{1}}\cdots(\Delta B^{d}_{k+1})^{\alpha_{d}},\\ \tilde{y}^{n}_{0}&=z,\quad t\in(t_{k},t_{k+1}],\quad k=0,\cdots,n-1,\end{aligned}\right.

with the solution y~\tilde{y} continuous on [0,T][0,T]. The coefficients fαf_{\alpha}, |α|=1|\alpha|=1 are defined by an equivalent form of the Wong–Zakai approximation, which is

(2.10) {y˙tn=l=1dσl(ytn)dxtn,l=:|α|=1fα(ytn)h1(ΔBk+11)α1(ΔBk+1d)αd,y0n=z,t(tk,tk+1],,k=0,,n1.\displaystyle\left\{\begin{aligned} \dot{y}^{n}_{t}&=\sum_{l=1}^{d}\sigma_{l}(y^{n}_{t}){\rm d}x^{n,l}_{t}=:\sum_{|\alpha|=1}f_{\alpha}(y^{n}_{t})h^{-1}(\Delta B^{1}_{k+1})^{\alpha_{1}}\cdots(\Delta B^{d}_{k+1})^{\alpha_{d}},\\ y^{n}_{0}&=z,\quad t\in(t_{k},t_{k+1}],,\quad k=0,\cdots,n-1.\end{aligned}\right.

The coefficients fαf_{\alpha}, |α|2|\alpha|\geq 2 are determined by the iteration

(2.11) fα(y)\displaystyle f_{\alpha}(y) =gα(y)i=2|α|1i!(ki,1,,ki,i)Oiα(Dki,1Dki,i1fki,i)(y),|α|2,\displaystyle=g_{\alpha}(y)-\sum_{i=2}^{|\alpha|}\frac{1}{i!}\sum_{(k^{i,1},\cdots,k^{i,i})\in O^{\alpha}_{i}}(D_{k^{i,1}}\cdots D_{k^{i,i-1}}f_{k^{i,i}})(y),\quad|\alpha|\geq 2,

where

(Dki1,i2u)(y)=u(y)fki1,i2(y),ki1,i2=(k1i1,i2,,kdi1,i2)d,|ki1,i2|1,(D_{k^{i_{1},i_{2}}}u)(y)=u^{\prime}(y)f_{k^{i_{1},i_{2}}}(y),\quad k^{i_{1},i_{2}}=(k^{i_{1},i_{2}}_{1},\cdots,k^{i_{1},i_{2}}_{d})\in\mathbb{N}^{d},\quad|k^{i_{1},i_{2}}|\geq 1,

and

Oiα={(ki,1,,ki,i):\displaystyle O^{\alpha}_{i}=\Big{\{}(k^{i,1},\cdots,k^{i,i}): ki,1,,ki,id,|ki,1|,,|ki,i|1,\displaystyle k^{i,1},\cdots,k^{i,i}\in\mathbb{N}^{d},~{}|k^{i,1}|,\cdots,|k^{i,i}|\geq 1,
kli,1++kli,i=αl,l=1,,d}.\displaystyle k^{i,1}_{l}+\cdots+k^{i,i}_{l}=\alpha_{l},~{}l=1,\cdots,d\Big{\}}.

Then by comparing the Taylor expansion of y~˙tkn\dot{\tilde{y}}^{n}_{t_{k}} and YtknY^{n}_{t_{k}}, we have

y~˙tkn=Ytkn,a.s.\dot{\tilde{y}}^{n}_{t_{k}}=Y^{n}_{t_{k}},\quad a.s.

Furthermore, given a fixed truncation number N+N\in\mathbb{N}_{+}, the truncated stochastic modified equation is defined by

(2.12) {Y~˙tn=|α|=1Nfα(Y~tn)h1(ΔBk+11)α1(ΔBk+1d)αd,Y~0n=z,t(tk,tk+1],k=0,,n1,\displaystyle\left\{\begin{aligned} \dot{\tilde{Y}}^{n}_{t}&=\sum_{|\alpha|=1}^{N}f_{\alpha}(\tilde{Y}^{n}_{t})h^{-1}(\Delta B^{1}_{k+1})^{\alpha_{1}}\cdots(\Delta B^{d}_{k+1})^{\alpha_{d}},\\ \tilde{Y}^{n}_{0}&=z,\quad t\in(t_{k},t_{k+1}],\quad k=0,\cdots,n-1,\end{aligned}\right.

with the solution Y~n\tilde{Y}^{n} continuous on [0,T][0,T].

Lemma 2.4.

([8, Theorem 4.1]). Let 1/4<H<1/21/4<H<1/2, N>1H1N>\frac{1}{H}-1 and γ>N+1/H\gamma>N+1/H. If σLipγ\sigma\in Lip^{\gamma}, then for any sufficiently small ϵ>0\epsilon>0, there exists a random variable G=G(ϵ)G=G(\epsilon) independent of the time step hh such that

maxk=1,,nYtknY~˙tknGh(N+1)H1ϵ,a.s.,\displaystyle\max_{k=1,\cdots,n}\big{\|}Y^{n}_{t_{k}}-\dot{\tilde{Y}}^{n}_{t_{k}}\big{\|}\leq Gh^{(N+1)H-1-\epsilon},\quad a.s.,

where YnY^{n} is obtained by applying a numerical scheme to SDE (1) such that (2.8) holds, and Y~˙n\dot{\tilde{Y}}^{n} is the exact solution of the associated truncated stochastic modified equation (2.12).

3. Proof of Theorem 1.1

Proof.

Noticing that the numerical solution YnY^{n} given by the modified Milstein scheme (1.2) has the formulation (2.8), which is

Ytk+1n\displaystyle Y^{n}_{t_{k+1}} =Ytkn+l=1dσl(Ytkn)ΔBk+1l+12l1,l2=1dσl1(Ytkn)σl2(Ytkn)ΔBk+1l1ΔBk+1l2\displaystyle=Y^{n}_{t_{k}}+\sum_{l=1}^{d}\sigma_{l}(Y^{n}_{t_{k}})\Delta B^{l}_{{k+1}}+\frac{1}{2}\sum_{l_{1},l_{2}=1}^{d}\sigma_{l_{1}}^{\prime}(Y^{n}_{t_{k}})\sigma_{l_{2}}(Y^{n}_{t_{k}})\Delta B^{l_{1}}_{{k+1}}\Delta B^{l_{2}}_{{k+1}}
=:Ytk+1n+|α|=1gα(Ytkn)(ΔBk+11)α1(ΔBk+1d)αd+|α|=2gα(Ytkn)(ΔBk+11)α1(ΔBk+1d)αd\displaystyle=:Y^{n}_{t_{k+1}}+\sum_{|\alpha|=1}g_{\alpha}(Y^{n}_{t_{k}})(\Delta B^{1}_{k+1})^{\alpha_{1}}\cdots(\Delta B^{d}_{k+1})^{\alpha_{d}}+\sum_{|\alpha|=2}g_{\alpha}(Y^{n}_{t_{k}})(\Delta B^{1}_{k+1})^{\alpha_{1}}\cdots(\Delta B^{d}_{k+1})^{\alpha_{d}}
(3.1) =:Ytk+1n+|α|=1gα(Ytkn)(ΔBk+11)α1(ΔBk+1d)αd,\displaystyle=:Y^{n}_{t_{k+1}}+\sum_{|\alpha|=1}^{\infty}g_{\alpha}(Y^{n}_{t_{k}})(\Delta B^{1}_{k+1})^{\alpha_{1}}\cdots(\Delta B^{d}_{k+1})^{\alpha_{d}},

we decomposite the error by

maxk=1,,nYtkYtknsup0tTYtytn+sup0tTytnY~tn+maxk=1,,nY~tknYtkn,\displaystyle\max_{k=1,\cdots,n}\big{\|}Y_{t_{k}}-Y^{n}_{t_{k}}\big{\|}\leq\sup_{0\leq t\leq T}\big{\|}Y_{t}-y^{n}_{t}\big{\|}+\sup_{0\leq t\leq T}\big{\|}y^{n}_{t}-\tilde{Y}^{n}_{t}\big{\|}+\max_{k=1,\cdots,n}\big{\|}\tilde{Y}^{n}_{t_{k}}-Y^{n}_{t_{k}}\big{\|},

where yny^{n} is the exact solution of the Wong–Zakai approximation (2.1) and Y~n\tilde{Y}^{n} is the exact solution of the truncated stochastic modified equation (2.12) with truncation number N=3N=3. Applying the iteration (2.11), we obtain the coefficients of the truncated stochastic modified equation (2.12):

{|α|=1,αl=1:fα(y)=σl(y),|α|=2:fα(y)=0,|α|=3:fα(y)=16α1+α2+α3=α[fα1′′(y)fα2(y)fα3(y)+fα1(y)fα2(y)fα3(y)].\displaystyle\left\{\begin{aligned} |\alpha|=1,~{}\alpha_{l}=1:~{}f_{\alpha}(y)&=\sigma_{l}(y),\\ |\alpha|=2:~{}f_{\alpha}(y)&=0,\\ |\alpha|=3:~{}f_{\alpha}(y)&=-\frac{1}{6}\sum_{\alpha^{1}+\alpha^{2}+\alpha^{3}=\alpha}\Big{[}f^{\prime\prime}_{\alpha^{1}}(y)f_{\alpha^{2}}(y)f_{\alpha^{3}}(y)+f^{\prime}_{\alpha^{1}}(y)f^{\prime}_{\alpha^{2}}(y)f_{\alpha^{3}}(y)\Big{]}.\end{aligned}\right.

Based on Lemmas 2.3-2.4, for any ϵ>0\epsilon>0, there exists a random variable G=G(ϵ)G=G(\epsilon) independent of hh such that

sup0tTYtytnGhmin{2H1/2,H1/γ}ϵ,a.s.,\displaystyle\sup_{0\leq t\leq T}\big{\|}Y_{t}-y^{n}_{t}\big{\|}\leq Gh^{\min\{2H-1/2,H-1/\gamma\}-\epsilon},\quad a.s.,

and

maxk=1,,nYtknY~˙tknGh4H1ϵ,a.s.\displaystyle\max_{k=1,\cdots,n}\big{\|}Y^{n}_{t_{k}}-\dot{\tilde{Y}}^{n}_{t_{k}}\big{\|}\leq Gh^{4H-1-\epsilon},\quad a.s.

In the following, we aim to prove

(3.2) sup0tTytnY~tnGh2H12ϵ,a.s.\displaystyle\sup_{0\leq t\leq T}\big{\|}y^{n}_{t}-\tilde{Y}^{n}_{t}\big{\|}\leq Gh^{2H-\frac{1}{2}-\epsilon},\quad a.s.

For α=(α1,,αd)(+)d\alpha=(\alpha_{1},\cdots,\alpha_{d})\in(\mathbb{N}_{+})^{d}, denote by x~n,α\tilde{x}^{n,\alpha} an \mathbb{R}-valued stochastic process on [0,T][0,T] such that

(3.3) x~tn,α=x~tkn,α+(ttk)h1(ΔBk+11)α1(ΔBk+1d)αd,h=Tn,t(tk,tk+1],k=0,,n1.\displaystyle\tilde{x}^{n,\alpha}_{t}=\tilde{x}^{n,\alpha}_{t_{k}}+(t-t_{k})h^{-1}(\Delta B^{1}_{k+1})^{\alpha_{1}}\cdots(\Delta B^{d}_{k+1})^{\alpha_{d}},\quad h=\frac{T}{n},\quad t\in(t_{k},t_{k+1}],\quad k=0,\cdots,n-1.

Note that if |α|=1|\alpha|=1 with αl=1\alpha_{l}=1, then x~n,α\tilde{x}^{n,\alpha} is the llth component of the piecewise linear interpolation xnx^{n} of BB defined in (2.5). We construct a new multidimensional stochastic process X~n\tilde{X}^{n} which satisfies that its first dd components are x~n,α\tilde{x}^{n,\alpha} for |α|=1|\alpha|=1 with αl=1\alpha_{l}=1, l=1,,dl=1,\cdots,d, and that the other components are x~n,α\tilde{x}^{n,\alpha} with |α|=3|\alpha|=3. By means of this process, the truncated stochastic modified equation (2.12) with N=3N=3 is equivalent to an equation driven by X~n\tilde{X}^{n}, i.e.,

{dY~tn=|α|=1,3fα(Y~tn)dx~tn,α=:V(Y~tn)dX~tn,t(0,T],Y~0n=z.\displaystyle\left\{\begin{aligned} {\rm d}\tilde{Y}^{n}_{t}&=\sum_{|\alpha|=1,3}f_{\alpha}(\tilde{Y}^{n}_{t}){\rm d}\tilde{x}^{n,\alpha}_{t}=:V(\tilde{Y}^{n}_{t}){\rm d}\tilde{X}^{n}_{t},\quad t\in(0,T],\\ \tilde{Y}^{n}_{0}&=z.\end{aligned}

Meanwhile, we rewrite the Wong–Zakai approximation (2.1) as

{dytn=V(ytn)dX¯tn,t(0,T],y0n=z,\displaystyle\left\{\begin{aligned} {\rm d}y^{n}_{t}&=V(y^{n}_{t}){\rm d}\bar{X}^{n}_{t},\quad t\in(0,T],\\ y^{n}_{0}&=z,\end{aligned}

where the dimension of X¯n=(xn,0,0,0,0)\bar{X}^{n}=(x^{n},0,0...,0,0) is the same as that of X~n\tilde{X}^{n} and their first dd components are the same. Since X~n\tilde{X}^{n} and X¯n\bar{X}^{n} both have bounded variations for almost all sample paths, equations (3)-(3) can be interpreted in the sense of RDEs driven by S3(X~n)S_{3}(\tilde{X}^{n}) and S3(X¯n)S_{3}(\bar{X}^{n}), respectively. Moreover, according to Lemma 2.2, we have for any 0<β<H0<\beta<H that

supn+S3(X¯n)β;[0,T]<,a.s.\displaystyle\sup_{n\in\mathbb{N}_{+}}\|S_{3}(\bar{X}^{n})\|_{\beta;[0,T]}<\infty,\quad a.s.

Together with Lemma 2.1, a sufficient condition for (3.2) is

maxi=1,2,3sup0s<tT(S3(X~n)s1S3(X~n)t)i(S3(X¯n)s1S3(X¯n)t)i|ts|iβGh2H1/2ϵ,a.s.\displaystyle\max_{i=1,2,3}\sup_{0\leq s<t\leq T}\frac{\Big{\|}\big{(}S_{3}(\tilde{X}^{n})^{-1}_{s}\otimes S_{3}(\tilde{X}^{n})_{t}\big{)}^{i}-\big{(}S_{3}(\bar{X}^{n})^{-1}_{s}\otimes S_{3}(\bar{X}^{n})_{t}\big{)}^{i}\Big{\|}}{|t-s|^{i\beta}}\leq Gh^{2H-1/2-\epsilon},\quad a.s.

Based on the formula (2.1), it remains to require the following inequalities

sup0s<tT|stdx~u1n,α||ts|βGh2H1/2ϵ,|α|=3,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}{\rm d}\tilde{x}^{n,\alpha}_{u_{1}}\right|}{|t-s|^{\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha|=3,
sup0s<tT|stsu1dx~u2n,α2dx~u1n,α1||ts|2βGh2H1/2ϵ,|α1|=1,|α2|=3,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{2\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=1,~{}|\alpha^{2}|=3,
sup0s<tT|stsu1dx~u2n,α2dx~u1n,α1||ts|2βGh2H1/2ϵ,|α1|=3,|α2|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{2\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=3,~{}|\alpha^{2}|=1,
sup0s<tT|stsu1dx~u2n,α2dx~u1n,α1||ts|2βGh2H1/2ϵ,|α1|=|α2|=3,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{2\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=|\alpha^{2}|=3,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α1|=|α2|=3,|α3|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=|\alpha^{2}|=3,~{}|\alpha^{3}|=1,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α2|=|α3|=3,|α1|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{2}|=|\alpha^{3}|=3,~{}|\alpha^{1}|=1,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α1|=|α3|=3,|α2|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=|\alpha^{3}|=3,~{}|\alpha^{2}|=1,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α1|=3,|α2|=|α3|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=3,~{}|\alpha^{2}|=|\alpha^{3}|=1,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α2|=3,|α1|=|α3|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{2}|=3,~{}|\alpha^{1}|=|\alpha^{3}|=1,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α3|=3,|α1|=|α2|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{3}|=3,~{}|\alpha^{1}|=|\alpha^{2}|=1,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α1|=|α2|=|α3|=3,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=|\alpha^{2}|=|\alpha^{3}|=3,

which are proved in Propositions 4.1-4.3 in the next section. Therefore, we conclude

(3.4) maxk=1,,nYtkYtknGhmin{2H1/2,H1/γ}ϵ,a.s.,\displaystyle\max_{k=1,\cdots,n}\big{\|}Y_{t_{k}}-Y^{n}_{t_{k}}\big{\|}\leq Gh^{\min\{2H-1/2,H-1/\gamma\}-\epsilon},\quad a.s.,

where the random variable GG is independent of hh. ∎

Remark 3.1.

If σLiplocγ\sigma\in Lip^{\gamma}_{{\rm loc}}, the result in Theorem 1.1 holds with a localization argument as long as the pathwise solution does not explode.

Remark 3.2.

For numerical schemes constructed by a second-order Taylor expansion, such as the Crank–Nicolson scheme in [24] and the midpoint scheme in [22], since the associated coefficients of the stochastic modified equation satisfy fα(y)=0f_{\alpha}(y)=0, |α|=2|\alpha|=2, we obtain immediately from the proof of Theorem 1.1 that the convergence rate of these schemes are the same. In other words, the error estimate (3.4) holds for these schemes.

Remark 3.3.

Based on the fact that the regularity of drift terms is better than that of diffusion terms so that the convergence rates for multiple integrals X~n\tilde{X}^{n} showed in Propositions 4.1-4.3 do not decrease, Theorem 1.1 can be extended to SDEs with drift terms. Moreover, the framework presented in the proof of Theorem 1.1 is valid for SDEs driven by general signals, once convergence rates for multiple integrals X~n\tilde{X}^{n} and piecewise linear appromation xnx^{n} are established.

4. Technical estimates

In this section, we first introduce several lemmas and then prove the estimates for multiple integrals of X~n\tilde{X}^{n} in Propositions 4.1-4.3, which are crucial in the proof of the main theorem.

Lemma 4.1.

(Besov–Hölder embedding; see e.g. [16, Corollary A.2]). Let q>1q>1 and 1q<α<1\frac{1}{q}<\alpha<1. For a continuous function x:[0,T]dx:[0,T]\rightarrow\mathbb{R}^{d} and 0s<tT0\leq s<t\leq T, it holds that

xα1q;[s,t]:=supsu<vtxuxv|uv|α1qC(α,q)(ststxuxvq|uv|1+αqdudv)1q.\displaystyle\|x\|_{\alpha-\frac{1}{q};[s,t]}:=\sup_{s\leq u<v\leq t}\frac{\|x_{u}-x_{v}\|}{|u-v|^{\alpha-\frac{1}{q}}}\leq C(\alpha,q)\bigg{(}\int_{s}^{t}\int_{s}^{t}\frac{\|x_{u}-x_{v}\|^{q}}{|u-v|^{1+\alpha q}}{\rm d}u{\rm d}v\bigg{)}^{\frac{1}{q}}.
Lemma 4.2.

Let 0<α10<\alpha\leq 1. If for all q1q\geq 1, a sequence of d\mathbb{R}^{d}-valued stochastic processes {gn}n=1\{g^{n}\}_{n=1}^{\infty} on [0,T][0,T] satisfies

sup0s<tTgtngsnLq(Ω;d)|ts|αCnγ\displaystyle\sup_{0\leq s<t\leq T}\frac{\|g^{n}_{t}-g^{n}_{s}\|_{L^{q}(\Omega;\mathbb{R}^{d})}}{|t-s|^{\alpha}}\leq Cn^{-\gamma}

with C=C(q)C=C(q) independent of nn, then for any 0<δ<α0<\delta<\alpha and q1q\geq 1, there exists a constant C=C(δ,α,q,T)C=C(\delta,\alpha,q,T) independent of nn such that

sup0s<tTgtngsn|ts|αδLq(Ω)Cnγ.\displaystyle\left\|\sup_{0\leq s<t\leq T}\frac{\|g^{n}_{t}-g^{n}_{s}\|}{|t-s|^{\alpha-\delta}}\right\|_{L^{q}(\Omega)}\leq Cn^{-\gamma}.

Moreover, for any 0<ϵ<γ0<\epsilon<\gamma, there exists a random variable G=G(ϵ,δ,α,T)G=G(\epsilon,\delta,\alpha,T) independent of nn such that

sup0s<tTgtngsn|ts|αδGn(γϵ).\displaystyle\sup_{0\leq s<t\leq T}\frac{\|g^{n}_{t}-g^{n}_{s}\|}{|t-s|^{\alpha-\delta}}\leq Gn^{-(\gamma-\epsilon)}.
Proof.

Let q=2δq=\frac{2}{\delta} so that αδ=(α1/q)1/q\alpha-\delta=(\alpha-1/q)-1/q. Based on Lemma 4.1, we have

𝔼[(sup0s<tTgtngsn|ts|αδ)q]=\displaystyle\mathbb{E}\Bigg{[}\bigg{(}\sup_{0\leq s<t\leq T}\frac{\|g^{n}_{t}-g^{n}_{s}\|}{|t-s|^{\alpha-\delta}}\bigg{)}^{q}\Bigg{]}= gn(α1q)1q;[0,T]Lq(Ω)q\displaystyle\Big{\|}\|g^{n}\|_{(\alpha-\frac{1}{q})-\frac{1}{q};[0,T]}\Big{\|}_{L^{q}(\Omega)}^{q}
\displaystyle\leq C0T0T𝔼[gungvnq]|uv|1+(α1/q)qdudv\displaystyle C\int_{0}^{T}\int_{0}^{T}\frac{\mathbb{E}\big{[}\|g^{n}_{u}-g^{n}_{v}\|^{q}\big{]}}{|u-v|^{1+(\alpha-1/q)q}}{\rm d}u{\rm d}v
\displaystyle\leq C0T0T|uv|αqnγq|uv|1+(α1/q)q𝑑u𝑑v\displaystyle C\int_{0}^{T}\int_{0}^{T}\frac{|u-v|^{\alpha q}n^{-\gamma q}}{|u-v|^{1+(\alpha-1/q)q}}dudv
\displaystyle\leq Cnγq.\displaystyle Cn^{-\gamma q}.

Taking q>1q>1 such that ϵq>1\epsilon q>1, we obtain

𝔼[supnn(γϵ)qgnαδ;[0,T]q]n=1𝔼[n(γϵ)qgnαδ;[0,T]q]Cn=1nϵqC,\displaystyle\mathbb{E}\bigg{[}\sup_{n\in\mathbb{N}}\|n^{(\gamma-\epsilon)q}g^{n}\|^{q}_{\alpha-\delta;[0,T]}\bigg{]}\leq\sum_{n=1}^{\infty}\mathbb{E}\bigg{[}\|n^{(\gamma-\epsilon)q}g^{n}\|^{q}_{\alpha-\delta;[0,T]}\bigg{]}\leq C\sum_{n=1}^{\infty}n^{-\epsilon q}\leq C,

which impies the conclusion. ∎

Lemma 4.3.

Let 0<H<10<H<1. Given positive integers m,i,j,km,i,j,k satisfying m1m\geq 1, 1id1\leq i\leq d and 0j<kn=Th0\leq j<k\leq n=\frac{T}{h}. We have that

l=j+1k(ΔBli)mL2(Ω)\displaystyle\bigg{\|}\sum_{l=j+1}^{k}(\Delta B^{i}_{l})^{m}\bigg{\|}_{L^{2}(\Omega)} ChmH1/2|tktj|1/2,ifmisodd,\displaystyle\leq Ch^{mH-1/2}|t_{k}-t_{j}|^{1/2},\quad if~{}m~{}is~{}odd,
l=j+1k(ΔBli)mL2(Ω)\displaystyle\bigg{\|}\sum_{l=j+1}^{k}(\Delta B^{i}_{l})^{m}\bigg{\|}_{L^{2}(\Omega)} ChmH1|tktj|,ifmiseven,\displaystyle\leq Ch^{mH-1}|t_{k}-t_{j}|,~{}~{}~{}\quad\quad if~{}m~{}is~{}even,

where C=C(m)C=C(m) independent of i,k,j,hi,k,j,h.

Proof.

Based on the asymptotical behavior of the covariance of increments of fBm given in [33, Section 7.4], we apply [4, Theorem 1] to the random variables Al=ΔBlihHA_{l}=\frac{\Delta B^{i}_{l}}{{h^{H}}}, l=j+1,,kl=j+1,\cdots,k, which have zero mean and unit variance, and obtain that

limn𝔼[(|tktj|12h12l=j+1k𝐇m(Al))2]=C,\displaystyle\lim_{n\rightarrow\infty}\mathbb{E}\bigg{[}\Big{(}|t_{k}-t_{j}|^{-\frac{1}{2}}h^{\frac{1}{2}}\sum_{l=j+1}^{k}\mathbf{H}_{m}(A_{l})\Big{)}^{2}\bigg{]}=C,

where 𝐇m\mathbf{H}_{m} are mmth monic Hermite polynomial. Noticing that if mm is odd, then the degrees of the terms in 𝐇m(x)\mathbf{H}_{m}(x) are all odd, then we have

l=j+1k(ΔBli)mL2(Ω)ChmH1/2|tktj|1/2.\displaystyle\bigg{\|}\sum_{l=j+1}^{k}(\Delta B^{i}_{l})^{m}\bigg{\|}_{L^{2}(\Omega)}\leq Ch^{mH-1/2}|t_{k}-t_{j}|^{1/2}.

If mm is even, then the degrees of the terms in 𝐇m(x)\mathbf{H}_{m}(x) are all even. In this case, we combine

limn𝔼[(|tktj|1hl=j+1k1)2]=C\displaystyle\lim_{n\rightarrow\infty}\mathbb{E}\bigg{[}\Big{(}|t_{k}-t_{j}|^{-1}h\sum_{l=j+1}^{k}1\Big{)}^{2}\bigg{]}=C

to get

l=j+1k(ΔBli)mL2(Ω)ChmH1|tktj|,\displaystyle\bigg{\|}\sum_{l=j+1}^{k}(\Delta B^{i}_{l})^{m}\bigg{\|}_{L^{2}(\Omega)}\leq Ch^{mH-1}|t_{k}-t_{j}|,

which finishes the proof. ∎

Lemma 4.4.

For centered Gaussian random vectors AA and A~\tilde{A}, it holds that

𝔼[A2A~2]\displaystyle\mathbb{E}[A^{2}\tilde{A}^{2}] =𝔼[A2]𝔼[A~2]+2(𝔼[AA~])2,\displaystyle=\mathbb{E}[A^{2}]\mathbb{E}[\tilde{A}^{2}]+2\big{(}\mathbb{E}[A\tilde{A}]\big{)}^{2},
𝔼[A3A~3]\displaystyle\mathbb{E}[A^{3}\tilde{A}^{3}] =6(𝔼[AA~])3+9𝔼[AA~]𝔼[A2]𝔼[A~2].\displaystyle=6\big{(}\mathbb{E}[A\tilde{A}]\big{)}^{3}+9\mathbb{E}[A\tilde{A}]\mathbb{E}[A^{2}]\mathbb{E}[\tilde{A}^{2}].
Proof.

We refer to [34, Lemma 3.7] for the first formula and to [18, Proposition 2.3] for the second one. ∎

Lemma 4.5.

(Discrete sewing lemma; see e.g. [28, Lemma 2.5]). Assume that ftj,tkf_{t_{j},t_{k}} is a function defined on {(tj,tk):0tj=jh<tk=khT}\{(t_{j},t_{k}):0\leq t_{j}=jh<t_{k}=kh\leq T\}. If ftj,tj+1=0f_{t_{j},t_{j+1}}=0, j=0,,n1j=0,...,n-1, and there exists a constant μ>1\mu>1 such that

sup(tj,tk,tl)ftj,tlftj,tkftk,tl|tjtl|μC0,\displaystyle\sup_{(t_{j},t_{k},t_{l})}\frac{\big{\|}f_{t_{j},t_{l}}-f_{t_{j},t_{k}}-f_{t_{k},t_{l}}\big{\|}}{|t_{j}-t_{l}|^{\mu}}\leq C_{0},

then

sup(tj,tk)ftj,tk|tjtk|μC(μ)C0.\displaystyle\sup_{(t_{j},t_{k})}\frac{\|f_{t_{j},t_{k}}\|}{|t_{j}-t_{k}|^{\mu}}\leq C(\mu)C_{0}.
Proposition 4.1.

Under the assumptions in Theorem 1.1 and the definition of x~n,α\tilde{x}^{n,\alpha} in (3.3), then for any 0<δ<120<\delta<\frac{1}{2} and 0<ϵ<3H120<\epsilon<3H-\frac{1}{2}, there exists a random variable G=G(δ,ϵ)G=G(\delta,\epsilon) independent of h=Tnh=\frac{T}{n} such that

sup0s<tT|stdx~u1n,α||ts|12δGh3H1/2ϵ,α=(α1,,αd),|α|=3.\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}{\rm d}\tilde{x}^{n,\alpha}_{u_{1}}\right|}{|t-s|^{\frac{1}{2}-\delta}}\leq Gh^{3H-1/2-\epsilon},\quad\alpha=(\alpha_{1},\cdots,\alpha_{d}),\quad|\alpha|=3.
Proof.

According to Lemma 4.2 and hypercontractivity property, it suffices to prove

x~tn,αx~sn,αL2(Ω)Ch3H12|ts|12,α=(α1,,αd),|α|=3.\displaystyle\big{\|}\tilde{x}^{n,\alpha}_{t}-\tilde{x}^{n,\alpha}_{s}\big{\|}_{L^{2}(\Omega)}\leq Ch^{3H-\frac{1}{2}}|t-s|^{\frac{1}{2}},\quad\alpha=(\alpha_{1},\cdots,\alpha_{d}),\quad|\alpha|=3.

For tjs<ttj+1t_{j}\leq s<t\leq t_{j+1}, we have from |ts|h|t-s|\leq h that

x~tn,αx~sn,αL2(Ω)=tsh(ΔBk+11)α1(ΔBk+1d)αdL2(Ω)C(tsh)12h3HCh3H12|ts|12.\displaystyle\big{\|}\tilde{x}^{n,\alpha}_{t}-\tilde{x}^{n,\alpha}_{s}\big{\|}_{L^{2}(\Omega)}=\frac{t-s}{h}\bigg{\|}(\Delta B^{1}_{k+1})^{\alpha_{1}}\cdots(\Delta B^{d}_{k+1})^{\alpha_{d}}\bigg{\|}_{L^{2}(\Omega)}\leq C\bigg{(}\frac{t-s}{h}\bigg{)}^{\frac{1}{2}}h^{3H}\leq Ch^{3H-\frac{1}{2}}|t-s|^{\frac{1}{2}}.

For tj1<stjtkt<tk+1t_{j-1}<s\leq t_{j}\leq t_{k}\leq t<t_{k+1}, based on the previous estimate and the fact

|x~tn,αx~sn,α||x~tn,αx~tkn,α|+|x~tkn,αx~tjn,α|+|x~tjn,αx~sn,α|,\displaystyle\big{|}\tilde{x}^{n,\alpha}_{t}-\tilde{x}^{n,\alpha}_{s}\big{|}\leq\big{|}\tilde{x}^{n,\alpha}_{t}-\tilde{x}^{n,\alpha}_{t_{k}}\big{|}+\big{|}\tilde{x}^{n,\alpha}_{t_{k}}-\tilde{x}^{n,\alpha}_{t_{j}}\big{|}+\big{|}\tilde{x}^{n,\alpha}_{t_{j}}-\tilde{x}^{n,\alpha}_{s}\big{|},

it suffices to consider the case s=tj<tk=ts=t_{j}<t_{k}=t. If there exists an integer i{1,,d}i\in\{1,\cdots,d\} such that αi=3\alpha_{i}=3, then Lemma 4.3 leads to

x~tn,αx~sn,αL2(Ω)=l=j+1k(ΔBli1)3L2(Ω)Ch3H12|ts|12.\displaystyle\big{\|}\tilde{x}^{n,\alpha}_{t}-\tilde{x}^{n,\alpha}_{s}\big{\|}_{L^{2}(\Omega)}=\bigg{\|}\sum_{l=j+1}^{k}\big{(}\Delta B^{i_{1}}_{l}\big{)}^{3}\bigg{\|}_{L^{2}(\Omega)}\leq Ch^{3H-\frac{1}{2}}|t-s|^{\frac{1}{2}}.

If there exist three distinct integers i1,i2,i3{1,,d}i_{1},i_{2},i_{3}\in\{1,\cdots,d\} such that αi1=αi2=αi3=1\alpha_{i_{1}}=\alpha_{i_{2}}=\alpha_{i_{3}}=1, then Lemmas 4.3-4.4 produce

0\displaystyle 0\leq x~tn,αx~sn,αL2(Ω)2\displaystyle\big{\|}\tilde{x}^{n,\alpha}_{t}-\tilde{x}^{n,\alpha}_{s}\big{\|}^{2}_{L^{2}(\Omega)}
=\displaystyle= 𝔼[(l=j+1k(ΔBli1)(ΔBli2)(ΔBli3))(r=j+1k(ΔBri1)(ΔBri2)(ΔBri3))]\displaystyle\mathbb{E}\Bigg{[}\Bigg{(}\sum_{l=j+1}^{k}\big{(}\Delta B^{i_{1}}_{l}\big{)}\big{(}\Delta B^{i_{2}}_{l}\big{)}\big{(}\Delta B^{i_{3}}_{l}\big{)}\Bigg{)}\Bigg{(}\sum_{r=j+1}^{k}\big{(}\Delta B^{i_{1}}_{r}\big{)}\big{(}\Delta B^{i_{2}}_{r}\big{)}\big{(}\Delta B^{i_{3}}_{r}\big{)}\Bigg{)}\Bigg{]}
=\displaystyle= l=j+1kr=j+1k𝔼[(ΔBli1)(ΔBri1)]𝔼[(ΔBli2)(ΔBri2)]𝔼[(ΔBli3)(ΔBri3)]\displaystyle\sum_{l=j+1}^{k}\sum_{r=j+1}^{k}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{1}}_{l}\big{)}\big{(}\Delta B^{i_{1}}_{r}\big{)}\Big{]}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{2}}_{l}\big{)}\big{(}\Delta B^{i_{2}}_{r}\big{)}\Big{]}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{3}}_{l}\big{)}\big{(}\Delta B^{i_{3}}_{r}\big{)}\Big{]}
=\displaystyle= l=j+1kr=j+1k(𝔼[(ΔBli1)(ΔBri1)])3\displaystyle\sum_{l=j+1}^{k}\sum_{r=j+1}^{k}\Big{(}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{1}}_{l}\big{)}(\Delta B^{i_{1}}_{r})\Big{]}\Big{)}^{3}
=\displaystyle= 16l=j+1kr=j+1k(𝔼[(ΔBli1)3(ΔBri1)3]9𝔼[(ΔBli1)(ΔBri1)]𝔼[(ΔBli1)2]𝔼[(ΔBri1)2])\displaystyle\frac{1}{6}\sum_{l=j+1}^{k}\sum_{r=j+1}^{k}\bigg{(}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{1}}_{l}\big{)}^{3}(\Delta B^{i_{1}}_{r})^{3}\Big{]}-9\mathbb{E}\Big{[}\big{(}\Delta B^{i_{1}}_{l}\big{)}(\Delta B^{i_{1}}_{r})\Big{]}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{1}}_{l}\big{)}^{2}\Big{]}\mathbb{E}\Big{[}(\Delta B^{i_{1}}_{r})^{2}\Big{]}\bigg{)}
=\displaystyle= 16l=j+1kr=j+1k𝔼[(ΔBli1)3(ΔBri1)3]32h4H|ts|2H\displaystyle\frac{1}{6}\sum_{l=j+1}^{k}\sum_{r=j+1}^{k}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{1}}_{l}\big{)}^{3}(\Delta B^{i_{1}}_{r})^{3}\Big{]}-\frac{3}{2}h^{4H}|t-s|^{2H}
\displaystyle\leq C𝔼[(l=j+1k(ΔBli1)3)2]Ch6H1|ts|.\displaystyle C\mathbb{E}\Bigg{[}\bigg{(}\sum_{l=j+1}^{k}\big{(}\Delta B^{i_{1}}_{l}\big{)}^{3}\bigg{)}^{2}\Bigg{]}\leq Ch^{6H-1}|t-s|.

Similarly, if there exist two distinct integers i1,i2{1,,d}i_{1},i_{2}\in\{1,\cdots,d\} such that αi1=2\alpha_{i_{1}}=2 and αi2=1\alpha_{i_{2}}=1, then we have from Lemmas 4.3-4.4 that

0\displaystyle 0\leq x~tn,αx~sn,αL2(Ω)2\displaystyle\big{\|}\tilde{x}^{n,\alpha}_{t}-\tilde{x}^{n,\alpha}_{s}\big{\|}^{2}_{L^{2}(\Omega)}
=\displaystyle= 𝔼[(l=j+1k(ΔBli1)2(ΔBli2))(r=j+1k(ΔBri1)2(ΔBri2))]\displaystyle\mathbb{E}\Bigg{[}\Bigg{(}\sum_{l=j+1}^{k}\big{(}\Delta B^{i_{1}}_{l}\big{)}^{2}\big{(}\Delta B^{i_{2}}_{l}\big{)}\Bigg{)}\Bigg{(}\sum_{r=j+1}^{k}\big{(}\Delta B^{i_{1}}_{r}\big{)}^{2}\big{(}\Delta B^{i_{2}}_{r}\big{)}\Bigg{)}\Bigg{]}
=\displaystyle= l=j+1kr=j+1k𝔼[(ΔBli1)2(ΔBri1)2]𝔼[(ΔBli2)(ΔBri2)]\displaystyle\sum_{l=j+1}^{k}\sum_{r=j+1}^{k}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{1}}_{l}\big{)}^{2}\big{(}\Delta B^{i_{1}}_{r}\big{)}^{2}\Big{]}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{2}}_{l}\big{)}\big{(}\Delta B^{i_{2}}_{r}\big{)}\Big{]}
=\displaystyle= l=j+1kr=j+1k(𝔼[(ΔBli1)2]𝔼[(ΔBri1)2]+2(𝔼[(ΔBli1)(ΔBri1)])2)𝔼[(ΔBli2)(ΔBri2)]\displaystyle\sum_{l=j+1}^{k}\sum_{r=j+1}^{k}\bigg{(}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{1}}_{l}\big{)}^{2}\Big{]}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{1}}_{r}\big{)}^{2}\Big{]}+2\Big{(}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{1}}_{l}\big{)}\big{(}\Delta B^{i_{1}}_{r}\big{)}\Big{]}\Big{)}^{2}\bigg{)}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{2}}_{l}\big{)}\big{(}\Delta B^{i_{2}}_{r}\big{)}\Big{]}
=\displaystyle= l=j+1kr=j+1k(h4H+2(𝔼[(ΔBli1)(ΔBri1)])2)𝔼[(ΔBli2)(ΔBri2)]\displaystyle\sum_{l=j+1}^{k}\sum_{r=j+1}^{k}\left(h^{4H}+2\Big{(}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{1}}_{l}\big{)}\big{(}\Delta B^{i_{1}}_{r}\big{)}\Big{]}\Big{)}^{2}\right)\mathbb{E}\left[\big{(}\Delta B^{i_{2}}_{l}\big{)}\big{(}\Delta B^{i_{2}}_{r}\big{)}\right]
=\displaystyle= |ts|2Hh4H+2l=j+1kr=j+1k(𝔼[(ΔBli1)(ΔBri1)])3Ch6H1|ts|,\displaystyle|t-s|^{2H}h^{4H}+2\sum_{l=j+1}^{k}\sum_{r=j+1}^{k}\Big{(}\mathbb{E}\Big{[}\big{(}\Delta B^{i_{1}}_{l}\big{)}\big{(}\Delta B^{i_{1}}_{r}\big{)}\Big{]}\Big{)}^{3}\leq Ch^{6H-1}|t-s|,

where |ts|h|t-s|\geq h and H<12H<\frac{1}{2} are used in the last inequality. Collecting the above estimates, we conclude the statement. ∎

Proposition 4.2.

Under the assumptions in Theorem 1.1 and the definition of x~n,α\tilde{x}^{n,\alpha} in (3.3), then for any 0<β<H0<\beta<H and 0<ϵ<2H120<\epsilon<2H-\frac{1}{2}, there exists a random variable G=G(β,ϵ)G=G(\beta,\epsilon) independent of h=Tnh=\frac{T}{n} such that

sup0s<tT|stsu1dx~u2n,α2dx~u1n,α1||ts|2βGh2H1/2ϵ,|α1|=1,|α2|=3,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{2\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=1,~{}|\alpha^{2}|=3,
sup0s<tT|stsu1dx~u2n,α2dx~u1n,α1||ts|2βGh2H1/2ϵ,|α1|=3,|α2|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{2\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=3,~{}|\alpha^{2}|=1,
sup0s<tT|stsu1dx~u2n,α2dx~u1n,α1||ts|2βGh2H1/2ϵ,|α1|=|α2|=3.\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{2\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=|\alpha^{2}|=3.
Proof.

Denote α1=(α11,,αd1)\alpha^{1}=(\alpha^{1}_{1},\cdots,\alpha^{1}_{d}) and α2=(α12,,αd2)\alpha^{2}=(\alpha^{2}_{1},\cdots,\alpha^{2}_{d}). Due to the upper bounds |ts|T|t-s|\leq T and h1h\leq 1, it is essential to consider the case that ϵ\epsilon and HβH-\beta are sufficiently small in the proof.

First, assume tjs<ttj+1t_{j}\leq s<t\leq t_{j+1}. It holds for H14<β<HH-\frac{1}{4}<\beta<H that

|stsu1dx~u2n,α2dx~u1n,α1|=\displaystyle\left|\int_{s}^{t}\int_{s}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|= stsu1du2du1|(ΔBj+11)α11+α12(ΔBj+1d)αd1+αd2|h2\displaystyle\int_{s}^{t}\int_{s}^{u_{1}}{\rm d}u_{2}{\rm d}u_{1}\left|(\Delta B^{1}_{j+1})^{\alpha^{1}_{1}+\alpha^{2}_{1}}\cdots(\Delta B^{d}_{j+1})^{\alpha^{1}_{d}+\alpha^{2}_{d}}\right|h^{-2}
\displaystyle\leq C(ts)22h2|(ΔBj+11)α11+α12(ΔBj+1d)αd1+αd2|\displaystyle C\frac{(t-s)^{2}}{2h^{2}}\left|(\Delta B^{1}_{j+1})^{\alpha^{1}_{1}+\alpha^{2}_{1}}\cdots(\Delta B^{d}_{j+1})^{\alpha^{1}_{d}+\alpha^{2}_{d}}\right|
\displaystyle\leq G(tsh)2βh4βGh2H12ϵ|ts|2β.\displaystyle G\Big{(}\frac{t-s}{h}\Big{)}^{2\beta}h^{4\beta}\leq Gh^{2H-\frac{1}{2}-\epsilon}|t-s|^{2\beta}.

Second, assume tj1<stjt<tj+1t_{j-1}<s\leq t_{j}\leq t<t_{j+1}. Then for H14<β<HH-\frac{1}{4}<\beta<H, we have

|stsu1dx~u2n,α2dx~u1n,α1|\displaystyle\left|\int_{s}^{t}\int_{s}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|\leq |stjsu1dx~u2n,α2dx~u1n,α1|+|tjtstjdx~u2n,α2dx~u1n,α1|+|tjttju1dx~u2n,α2dx~u1n,α1|\displaystyle\left|\int_{s}^{t_{j}}\int_{s}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|+\left|\int_{t_{j}}^{t}\int_{s}^{t_{j}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|+\left|\int_{t_{j}}^{t}\int_{t_{j}}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|
\displaystyle\leq Gh2H12ϵ(|tjs|2β+|ttj|β|tjs|β+|ttj|2β)\displaystyle Gh^{2H-\frac{1}{2}-\epsilon}\Big{(}|t_{j}-s|^{2\beta}+|t-t_{j}|^{\beta}|t_{j}-s|^{\beta}+|t-t_{j}|^{2\beta}\Big{)}
\displaystyle\leq Gh2H12ϵ|ts|2β.\displaystyle Gh^{2H-\frac{1}{2}-\epsilon}|t-s|^{2\beta}.

Next, we assume tj1<stj<tkt<tk+1t_{j-1}<s\leq t_{j}<t_{k}\leq t<t_{k+1} and divide the domain of the integral into six parts by

stsu1\displaystyle\int_{s}^{t}\int_{s}^{u_{1}} =stjsu1+tjtkstj+tjtktj[u1/n]h+tjtk[u1/n]hu1+tktstk+tkttku1\displaystyle=\int_{s}^{t_{j}}\int_{s}^{u_{1}}+\int_{t_{j}}^{t_{k}}\int_{s}^{t_{j}}+\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{[u_{1}/n]h}+\int_{t_{j}}^{t_{k}}\int_{[u_{1}/n]h}^{u_{1}}+\int_{t_{k}}^{t}\int_{s}^{t_{k}}+\int_{t_{k}}^{t}\int_{t_{k}}^{u_{1}}
=:D1+D2+D3+D4+D5+D6,\displaystyle=:\int_{D_{1}}+\int_{D_{2}}+\int_{D_{3}}+\int_{D_{4}}+\int_{D_{5}}+\int_{D_{6}},

where [u1/n][u_{1}/n] denotes the integer part of u1/nu_{1}/n.

Suppose |α1|=1|\alpha^{1}|=1 and |α2|=3|\alpha^{2}|=3. The facts 0|tjs|h0\leq|t_{j}-s|\leq h and 0|ttk|h0\leq|t-t_{k}|\leq h yield

|D1dx~u2n,α2dx~u1n,α1|+|D6dx~u2n,α2dx~u1n,α1|Gh4β.\displaystyle\bigg{|}\int_{D_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}+\bigg{|}\int_{D_{6}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq Gh^{4\beta}.

Based on Lemma 2.2 and Lemma 4.3, we have for 0<δ<120<\delta<\frac{1}{2} that

|D2dx~u2n,α2dx~u1n,α1|+|D5dx~u2n,α2dx~u1n,α1|\displaystyle\bigg{|}\int_{D_{2}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}+\bigg{|}\int_{D_{5}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}
\displaystyle\leq |tjtkx~u1n,α1||stjdx~u2n,α2|+|tktx~u1n,α1||stkdx~u2n,α2|\displaystyle\bigg{|}\int_{t_{j}}^{t_{k}}\tilde{x}_{u_{1}}^{n,\alpha^{1}}\bigg{|}\bigg{|}\int_{s}^{t_{j}}{\rm d}\tilde{x}^{n,\alpha^{2}}_{u_{2}}\bigg{|}+\bigg{|}\int_{t_{k}}^{t}\tilde{x}_{u_{1}}^{n,\alpha^{1}}\bigg{|}\bigg{|}\int_{s}^{t_{k}}{\rm d}\tilde{x}^{n,\alpha^{2}}_{u_{2}}\bigg{|}
\displaystyle\leq G|tktj|β(tjsh)h3β+G(ttkh)hβh3H12ϵ|tks|12δ\displaystyle G|t_{k}-t_{j}|^{\beta}\Big{(}\frac{t_{j}-s}{h}\Big{)}h^{3\beta}+G\Big{(}\frac{t-t_{k}}{h}\Big{)}h^{\beta}h^{3H-\frac{1}{2}-\epsilon}|t_{k}-s|^{\frac{1}{2}-\delta}
\displaystyle\leq Gh3β|ts|β+Gh3H+β12ϵ|ts|12δ,\displaystyle Gh^{3\beta}|t-s|^{\beta}+Gh^{3H+\beta-\frac{1}{2}-\epsilon}|t-s|^{\frac{1}{2}-\delta},

and

|D4dx~u2n,α2dx~u1n,α1|l=j+1k|tl1tltl1u1dx~u2n,α2dx~u1n,α1|G(tktjh)h4βGh4H1ϵ|ts|.\displaystyle\bigg{|}\int_{D_{4}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq\sum_{l=j+1}^{k}\bigg{|}\int_{t_{l-1}}^{t_{l}}\int_{t_{l-1}}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq G\Big{(}\frac{t_{k}-t_{j}}{h}\Big{)}h^{4\beta}\leq Gh^{4H-1-\epsilon}|t-s|.

For the part of D3dx~u2n,α2dx~u1n,α1\int_{D_{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}, define ftj,tk=tjtktj[u1/n]hdx~u2n,α2dx~u1n,α1f_{t_{j},t_{k}}=\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{[u_{1}/n]h}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}. Then ftj,tj+1=0f_{t_{j},t_{j+1}}=0, j=0,,n1j=0,\cdots,n-1, and

|ftj,tlftj,tkftk,tl|\displaystyle\big{|}f_{t_{j},t_{l}}-f_{t_{j},t_{k}}-f_{t_{k},t_{l}}\big{|}
=\displaystyle= |tjtltj[u1/n]hdx~u2n,α2dx~u1n,α1tjtktj[u1/n]hdx~u2n,α2dx~u1n,α1tktltk[u1/n]hdx~u2n,α2dx~u1n,α1|\displaystyle\bigg{|}\int_{t_{j}}^{t_{l}}\int_{t_{j}}^{[u_{1}/n]h}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}-\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{[u_{1}/n]h}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}-\int_{t_{k}}^{t_{l}}\int_{t_{k}}^{[u_{1}/n]h}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}
=\displaystyle= |tktltjtkdx~u2n,α2dx~u1n,α1||tktlx~u1n,α1||tjtkdx~u2n,α2|\displaystyle\bigg{|}\int_{t_{k}}^{t_{l}}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq\bigg{|}\int_{t_{k}}^{t_{l}}\tilde{x}_{u_{1}}^{n,\alpha^{1}}\bigg{|}\bigg{|}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}^{n,\alpha^{2}}_{u_{2}}\bigg{|}
\displaystyle\leq G|tltk|βh3H1/2ϵ|tktj|1/2δ,\displaystyle G|t_{l}-t_{k}|^{\beta}h^{3H-1/2-\epsilon}|t_{k}-t_{j}|^{1/2-\delta},
\displaystyle\leq Gh2H1/2ϵ|tltj|1/2+H+βδ,j<k<l.\displaystyle Gh^{2H-1/2-\epsilon}|t_{l}-t_{j}|^{1/2+H+\beta-\delta},\quad j<k<l.

Taking 0<δ<Hβ0<\delta<H-\beta and 14<β<H\frac{1}{4}<\beta<H such that 1/2+H+βδ>11/2+H+\beta-\delta>1, we apply Lemma 4.5 to derive

|D3dx~u2n,α2dx~u1n,α1|=|ftj,tk|Gh2H1/2ϵ|ts|1/2+H+βδ.\displaystyle\bigg{|}\int_{D_{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}=\big{|}f_{t_{j},t_{k}}\big{|}\leq Gh^{2H-1/2-\epsilon}|t-s|^{1/2+H+\beta-\delta}.

Using |ts|h|t-s|\geq h, we obtain

(4.1) |tjtktju1dx~u2n,α2dx~u1n,α1||D3dx~u2n,α2dx~u1n,α1|+|D4dx~u2n,α2dx~u1n,α1|Gh2H1/2ϵ|ts|.\displaystyle\bigg{|}\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq\bigg{|}\int_{D_{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}+\bigg{|}\int_{D_{4}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq Gh^{2H-1/2-\epsilon}|t-s|.

The above estimates produce

sup0s<tT|stsu1dx~u2n,α2dx~u1n,α1||ts|2βGh2H1/2ϵ,|α1|=1,|α2|=3.\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{2\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=1,~{}|\alpha^{2}|=3.

Similarly, we have

sup0s<tT|stsu1dx~u2n,α2dx~u1n,α1||ts|2βGh2H1/2ϵ,|α1|=3,|α2|=1.\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{2\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=3,~{}|\alpha^{2}|=1.

As to the case |α1|=3|\alpha^{1}|=3 and |α2|=3|\alpha^{2}|=3, repeating the techniques above, we have

|D1dx~u2n,α2dx~u1n,α1|+|D6dx~u2n,α2dx~u1n,α1|Gh6β,\displaystyle\bigg{|}\int_{D_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}+\bigg{|}\int_{D_{6}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq Gh^{6\beta},
|D2dx~u2n,α2dx~u1n,α1|+|D5dx~u2n,α2dx~u1n,α1|Gh6H12ϵ|ts|12δ,0<δ<12,\displaystyle\bigg{|}\int_{D_{2}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}+\bigg{|}\int_{D_{5}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq Gh^{6H-\frac{1}{2}-\epsilon}|t-s|^{\frac{1}{2}-\delta},\quad 0<\delta<\frac{1}{2},
|D4dx~u2n,α2dx~u1n,α1|Gh6H1ϵ|ts|.\displaystyle\bigg{|}\int_{D_{4}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq Gh^{6H-1-\epsilon}|t-s|.

Moreover, using

|ftj,tlftj,tkftk,tl||tktlx~u1n,α1||tjtkdx~u2n,α2|Gh6H1ϵ2|ts|12δ,j<k<l,\displaystyle\big{|}f_{t_{j},t_{l}}-f_{t_{j},t_{k}}-f_{t_{k},t_{l}}\big{|}\leq\bigg{|}\int_{t_{k}}^{t_{l}}\tilde{x}_{u_{1}}^{n,\alpha^{1}}\bigg{|}\bigg{|}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}^{n,\alpha^{2}}_{u_{2}}\bigg{|}\leq Gh^{6H-1-\frac{\epsilon}{2}}|t-s|^{1-2\delta},\quad j<k<l,

and letting 0<δ<ϵ40<\delta<\frac{\epsilon}{4} so that 12δ+ϵ2>11-2\delta+\frac{\epsilon}{2}>1, we deduce from Lemma 4.5 that

|D3dx~u2n,α2dx~u1n,α1|=|ftj,tk|Gh6H1ϵ|ts|12δ+ϵ2.\displaystyle\bigg{|}\int_{D_{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}=\big{|}f_{t_{j},t_{k}}\big{|}\leq Gh^{6H-1-\epsilon}|t-s|^{1-2\delta+\frac{\epsilon}{2}}.

Therefore, we have

(4.2) |tjtktju1dx~u2n,α2dx~u1n,α1||D3dx~u2n,α2dx~u1n,α1|+|D4dx~u2n,α2dx~u1n,α1|Gh6H1ϵ|ts|.\displaystyle\bigg{|}\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq\bigg{|}\int_{D_{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}+\bigg{|}\int_{D_{4}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq Gh^{6H-1-\epsilon}|t-s|.

These inequalities imply

sup0s<tT|stsu1dx~u2n,α2dx~u1n,α1||ts|2βGh2H1/2ϵ,|α1|=3,|α2|=3.\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{2\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=3,~{}|\alpha^{2}|=3.

Proposition 4.3.

Under the assumptions in Theorem 1.1 and the definition of x~n,α\tilde{x}^{n,\alpha} in (3.3), then for any 0<β<H0<\beta<H and 0<ϵ<2H120<\epsilon<2H-\frac{1}{2}, there exists a random variable G=G(β,ϵ)G=G(\beta,\epsilon) independent of h=Tnh=\frac{T}{n} such that

sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α1|=|α2|=|α3|=3,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=|\alpha^{2}|=|\alpha^{3}|=3,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α1|=|α2|=3,|α3|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=|\alpha^{2}|=3,~{}|\alpha^{3}|=1,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α2|=|α3|=3,|α1|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{2}|=|\alpha^{3}|=3,~{}|\alpha^{1}|=1,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α1|=|α3|=3,|α2|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=|\alpha^{3}|=3,~{}|\alpha^{2}|=1,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α1|=3,|α2|=|α3|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{1}|=3,~{}|\alpha^{2}|=|\alpha^{3}|=1,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α2|=3,|α1|=|α3|=1,\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{2}|=3,~{}|\alpha^{1}|=|\alpha^{3}|=1,
sup0s<tT|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1||ts|3βGh2H1/2ϵ,|α3|=3,|α1|=|α2|=1.\displaystyle\sup_{0\leq s<t\leq T}\frac{\left|\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|}{|t-s|^{3\beta}}\leq Gh^{2H-1/2-\epsilon},\quad|\alpha^{3}|=3,~{}|\alpha^{1}|=|\alpha^{2}|=1.
Proof.

According to smilar arguments as in Propositions 4.1-4.2, without loss of generality, we regard ϵ\epsilon and HβH-\beta as sufficiently small parameters in the proof, and focus on the case tj1<stj<tkt<tk+1t_{j-1}<s\leq t_{j}<t_{k}\leq t<t_{k+1}.

If (|α1|,|α2|,|α3|){(3,3,3),(3,3,1),(1,3,3),(3,1,3),(3,1,1),(1,3,1)}(|\alpha^{1}|,|\alpha^{2}|,|\alpha^{3}|)\in\{(3,3,3),(3,3,1),(1,3,3),(3,1,3),(3,1,1),(1,3,1)\}, we decompose the domain of the integral into

stsu1su2=\displaystyle\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}= stjsu1su2+tjtkstjsu2+tjtktj[u1/n]htju2\displaystyle\int_{s}^{t_{j}}\int_{s}^{u_{1}}\int_{s}^{u_{2}}+\int_{t_{j}}^{t_{k}}\int_{s}^{t_{j}}\int_{s}^{u_{2}}+\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{[u_{1}/n]h}\int_{t_{j}}^{u_{2}}
+tjtk[u1/n]hu1tju2+tjtktju1stj+tktsu1su2\displaystyle+\int_{t_{j}}^{t_{k}}\int_{[u_{1}/n]h}^{u_{1}}\int_{t_{j}}^{u_{2}}+\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{u_{1}}\int_{s}^{t_{j}}+\int_{t_{k}}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}
=\displaystyle= :D1+D2+D3+D4+D5+D6,\displaystyle:\int_{D_{1}}+\int_{D_{2}}+\int_{D_{3}}+\int_{D_{4}}+\int_{D_{5}}+\int_{D_{6}},

where [u1/n][u_{1}/n] denotes the integer part of u1/nu_{1}/n. Let H14<β<HH-\frac{1}{4}<\beta<H. Then we get

|D1dx~u3n,α3dx~u2n,α2dx~u1n,α1|Gh5βGh2H1/2ϵ|ts|3β.\displaystyle\left|\int_{D_{1}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|\leq Gh^{5\beta}\leq Gh^{2H-1/2-\epsilon}|t-s|^{3\beta}.

Together with Propositions 4.1-4.2 and Lemma 2.2, we deduce

|D2dx~u3n,α3dx~u2n,α2dx~u1n,α1|=\displaystyle\left|\int_{D_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|= |tjtkdx~u1n,α1||stjsu2dx~u3n,α3dx~u2n,α2|\displaystyle\bigg{|}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\bigg{|}\int_{s}^{t_{j}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}\bigg{|}
\displaystyle\leq Gh2H1/2ϵ|tktj|β|tjs|2β\displaystyle Gh^{2H-1/2-\epsilon}|t_{k}-t_{j}|^{\beta}|t_{j}-s|^{2\beta}
\displaystyle\leq Gh2H1/2ϵ|ts|3β,\displaystyle Gh^{2H-1/2-\epsilon}|t-s|^{3\beta},

and

|D5dx~u3n,α3dx~u2n,α2dx~u1n,α1|=\displaystyle\left|\int_{D_{5}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|= |tjtktju1dx~u2n,α2dx~u1n,α1||stjdx~u3n,α3|\displaystyle\bigg{|}\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}\bigg{|}\bigg{|}\int_{s}^{t_{j}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\bigg{|}
\displaystyle\leq Gh2H1/2ϵ|tktj|2β|tjs|β\displaystyle Gh^{2H-1/2-\epsilon}|t_{k}-t_{j}|^{2\beta}|t_{j}-s|^{\beta}
\displaystyle\leq Gh2H1/2ϵ|ts|3β.\displaystyle Gh^{2H-1/2-\epsilon}|t-s|^{3\beta}.

Meanwhile, it holds that

|D6dx~u3n,α3dx~u2n,α2dx~u1n,α1|\displaystyle\left|\int_{D_{6}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|\leq tktsuptk<u1<t|su1su2dx~u3n,α3dx~u2n,α2|d|x~u1n,α1|\displaystyle\int_{t_{k}}^{t}\sup_{t_{k}<u_{1}<t}\bigg{|}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}\bigg{|}{\rm d}\big{|}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\big{|}
\displaystyle\leq {G|ts|2β(ttkh)h3β,(|α1|,|α2|,|α3|)=(3,1,1)Gh2H1/2ϵ|ts|2β(ttkh)hβ,else\displaystyle\left\{\begin{aligned} &G|t-s|^{2\beta}\Big{(}\frac{t-t_{k}}{h}\Big{)}h^{3\beta},\qquad(|\alpha^{1}|,|\alpha^{2}|,|\alpha^{3}|)=(3,1,1)\\ &Gh^{2H-1/2-\epsilon}|t-s|^{2\beta}\Big{(}\frac{t-t_{k}}{h}\Big{)}h^{\beta},\quad{\rm else}\\ \end{aligned}\right.
\displaystyle\leq Gh2H1/2ϵ|ts|3β.\displaystyle Gh^{2H-1/2-\epsilon}|t-s|^{3\beta}.

To estimate D4dx~u3n,α3dx~u2n,α2dx~u1n,α1\int_{D_{4}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}, noticing [u2/n]=[u1/n][u_{2}/n]=[u_{1}/n] for [u1/n]h<u2<u1[u_{1}/n]h<u_{2}<u_{1}, we consider

|D4dx~u3n,α3dx~u2n,α2dx~u1n,α1|\displaystyle\left|\int_{D_{4}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|
\displaystyle\leq |tjtk[u1/n]hu1tj[u1/n]hdx~u3n,α3dx~u2n,α2dx~u1n,α1|+|tjtk[u1/n]hu1[u1/n]hu2dx~u3n,α3dx~u2n,α2dx~u1n,α1|.\displaystyle\left|\int_{t_{j}}^{t_{k}}\int_{[u_{1}/n]h}^{u_{1}}\int_{t_{j}}^{[u_{1}/n]h}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|+\left|\int_{t_{j}}^{t_{k}}\int_{[u_{1}/n]h}^{u_{1}}\int_{[u_{1}/n]h}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|.

For any 12H+18<β<H\frac{1}{2}H+\frac{1}{8}<\beta<H, we get

|tjtk[u1/n]hu1tj[u1/n]hdx~u3n,α3dx~u2n,α2dx~u1n,α1|\displaystyle\left|\int_{t_{j}}^{t_{k}}\int_{[u_{1}/n]h}^{u_{1}}\int_{t_{j}}^{[u_{1}/n]h}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|
\displaystyle\leq l=j+1ktl1tlsuptl1<u1<tl|[u1/n]hu1dx~u2n,α2||tj[u1/n]hdx~u3n,α3|d|x~u1n,α1|\displaystyle\sum_{l=j+1}^{k}\int_{t_{l-1}}^{t_{l}}\sup_{t_{l-1}<u_{1}<t_{l}}\bigg{|}\int_{[u_{1}/n]h}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}\bigg{|}\bigg{|}\int_{t_{j}}^{[u_{1}/n]h}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}\bigg{|}{\rm d}\big{|}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\big{|}
\displaystyle\leq G(tktjh)h4β|tktj|βGh2H12ϵ|ts|,\displaystyle G\Big{(}\frac{t_{k}-t_{j}}{h}\Big{)}h^{4\beta}\big{|}t_{k}-t_{j}\big{|}^{\beta}\leq Gh^{2H-\frac{1}{2}-\epsilon}|t-s|,

and

|tjtk[u1/n]hu1[u1/n]hu2dx~u3n,α3dx~u2n,α2dx~u1n,α1|\displaystyle\left|\int_{t_{j}}^{t_{k}}\int_{[u_{1}/n]h}^{u_{1}}\int_{[u_{1}/n]h}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|
\displaystyle\leq l=j+1ktl1tlsuptl1<u1<tl|[u1/n]hu1[u1/n]hu2dx~u3n,α3dx~u2n,α2|d|x~u1n,α1|\displaystyle\sum_{l=j+1}^{k}\int_{t_{l-1}}^{t_{l}}\sup_{t_{l-1}<u_{1}<t_{l}}\bigg{|}\int_{[u_{1}/n]h}^{u_{1}}\int_{[u_{1}/n]h}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}\bigg{|}{\rm d}\big{|}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\big{|}
\displaystyle\leq G(tktjh)h5βh2H12ϵ|ts|.\displaystyle G\Big{(}\frac{t_{k}-t_{j}}{h}\Big{)}h^{5\beta}\leq h^{2H-\frac{1}{2}-\epsilon}|t-s|.

Gathering the above two estimates, we obtain

|D4dx~u3n,α3dx~u2n,α2dx~u1n,α1|Gh2H12ϵ|ts|3β.\displaystyle\left|\int_{D_{4}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\right|\leq Gh^{2H-\frac{1}{2}-\epsilon}|t-s|^{3\beta}.

To estimate D3dx~u3n,α3dx~u2n,α2dx~u1n,α1\int_{D_{3}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}, we define ftj,tk=tjtktj[u1/n]htju2dx~u3n,α3dx~u2n,α2dx~u1n,α1f_{t_{j},t_{k}}=\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{[u_{1}/n]h}\int_{t_{j}}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}} such that ftj,tj+1=0f_{t_{j},t_{j+1}}=0 and for integers j<k<lj<k<l,

|ftj,tlftj,tkftk,tl|\displaystyle\big{|}f_{t_{j},t_{l}}-f_{t_{j},t_{k}}-f_{t_{k},t_{l}}\big{|}
\displaystyle\leq |tktltjtktju2dx~u3n,α3dx~u2n,α2dx~u1n,α1|+|tktltk[u1/n]htjtkdx~u3n,α3dx~u2n,α2dx~u1n,α1|\displaystyle\bigg{|}\int_{t_{k}}^{t_{l}}\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}+\bigg{|}\int_{t_{k}}^{t_{l}}\int_{t_{k}}^{[u_{1}/n]h}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}
\displaystyle\leq |tktltjtktju2dx~u3n,α3dx~u2n,α2dx~u1n,α1|\displaystyle\bigg{|}\int_{t_{k}}^{t_{l}}\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}
+|tktltku1tjtkdx~u3n,α3dx~u2n,α2dx~u1n,α1tktl[u1/n]hu1tjtkdx~u3n,α3dx~u2n,α2dx~u1n,α1|\displaystyle+\bigg{|}\int_{t_{k}}^{t_{l}}\int_{t_{k}}^{u_{1}}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}-\int_{t_{k}}^{t_{l}}\int_{[u_{1}/n]h}^{u_{1}}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}
\displaystyle\leq |tktldx~u1n,α1||tjtktju2dx~u3n,α3dx~u2n,α2|\displaystyle\bigg{|}\int_{t_{k}}^{t_{l}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\bigg{|}\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}\bigg{|}
+|tktltku1dx~u2n,α2dx~u1n,α1||tjtkdx~u3n,α3|+|tktl[u1/n]hu1dx~u2n,α2dx~u1n,α1||tjtkdx~u3n,α3|.\displaystyle+\bigg{|}\int_{t_{k}}^{t_{l}}\int_{t_{k}}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\bigg{|}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}\bigg{|}+\bigg{|}\int_{t_{k}}^{t_{l}}\int_{[u_{1}/n]h}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\bigg{|}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}\bigg{|}.

Lemma 2.2 and (4.1)-(4.2) yield

|tktldx~u1n,α1||tjtktju2dx~u3n,α3dx~u2n,α2|+|tktltku1dx~u2n,α2dx~u1n,α1||tjtkdx~u3n,α3|\displaystyle\bigg{|}\int_{t_{k}}^{t_{l}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\bigg{|}\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}\bigg{|}+\bigg{|}\int_{t_{k}}^{t_{l}}\int_{t_{k}}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\bigg{|}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}\bigg{|}
\displaystyle\leq {Gh3H1/2ϵ|tltk|12δ|tktj|2β+Gh2H1/2ϵ|tltk||tktj|β,(|α1|,|α2|,|α3|)=(3,1,1)G|tltk|βh2H1/2ϵ|tktj|+Gh2H1/2ϵ|tltk||tktj|β,else\displaystyle\left\{\begin{aligned} &Gh^{3H-1/2-\epsilon}|t_{l}-t_{k}|^{\frac{1}{2}-\delta}|t_{k}-t_{j}|^{2\beta}+Gh^{2H-1/2-\epsilon}|t_{l}-t_{k}||t_{k}-t_{j}|^{\beta},\quad(|\alpha^{1}|,|\alpha^{2}|,|\alpha^{3}|)=(3,1,1)\\ &G|t_{l}-t_{k}|^{\beta}h^{2H-1/2-\epsilon}|t_{k}-t_{j}|+Gh^{2H-1/2-\epsilon}|t_{l}-t_{k}||t_{k}-t_{j}|^{\beta},\quad{\rm else}\\ \end{aligned}\right.

and

|tktl[u1/n]hu1dx~u2n,α2dx~u1n,α1||tjtkdx~u3n,α3|G(tltkh)h4β|tktj|β.\displaystyle\bigg{|}\int_{t_{k}}^{t_{l}}\int_{[u_{1}/n]h}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\bigg{|}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}\bigg{|}\leq G\Big{(}\frac{t_{l}-t_{k}}{h}\Big{)}h^{4\beta}|t_{k}-t_{j}|^{\beta}.

Then for H2+18<β<H\frac{H}{2}+\frac{1}{8}<\beta<H and 0<δ<2(β14)0<\delta<2(\beta-\frac{1}{4}) such that 12+2βδ>1\frac{1}{2}+2\beta-\delta>1, Lemma 4.5 leads to

|D3dx~u3n,α3dx~u2n,α2dx~u1n,α1|=|ftj,tk|Gh2H12ϵ|ts|12+2βδ.\displaystyle\bigg{|}\int_{D_{3}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}=\big{|}f_{t_{j},t_{k}}\big{|}\leq Gh^{2H-\frac{1}{2}-\epsilon}|t-s|^{\frac{1}{2}+2\beta-\delta}.

Hence,

|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1|Gh2H12ϵ|ts|3β.\displaystyle\bigg{|}\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq Gh^{2H-\frac{1}{2}-\epsilon}|t-s|^{3\beta}.

If (|α1|,|α2|,|α3|)=(1,1,3)(|\alpha^{1}|,|\alpha^{2}|,|\alpha^{3}|)=(1,1,3), based on

stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1=stu3tu2tdx~u1n,α1dx~u2n,α2dx~u3n,α3,\displaystyle\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}=\int_{s}^{t}\int_{u_{3}}^{t}\int_{u_{2}}^{t}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}},

the decomposition of the domain is changed to

stu3tu2t=\displaystyle\int_{s}^{t}\int_{u_{3}}^{t}\int_{u_{2}}^{t}= tktu3tu2t+tjtktktu2t+tjtku3/nhtku2tk\displaystyle\int_{t_{k}}^{t}\int_{u_{3}}^{t}\int_{u_{2}}^{t}+\int_{t_{j}}^{t_{k}}\int_{t_{k}}^{t}\int_{u_{2}}^{t}+\int_{t_{j}}^{t_{k}}\int_{\lceil u_{3}/n\rceil h}^{t_{k}}\int_{u_{2}}^{t_{k}}
+tjtku3u3/nhu2tk+tjtku3tktkt+stju3tu2t\displaystyle+\int_{t_{j}}^{t_{k}}\int_{u_{3}}^{\lceil u_{3}/n\rceil h}\int_{u_{2}}^{t_{k}}+\int_{t_{j}}^{t_{k}}\int_{u_{3}}^{t_{k}}\int_{t_{k}}^{t}+\int_{s}^{t_{j}}\int_{u_{3}}^{t}\int_{u_{2}}^{t}
=\displaystyle= :D~1+D~2+D~3+D~4+D~5+D~6,\displaystyle:\int_{\tilde{D}_{1}}+\int_{\tilde{D}_{2}}+\int_{\tilde{D}_{3}}+\int_{\tilde{D}_{4}}+\int_{\tilde{D}_{5}}+\int_{\tilde{D}_{6}},

where u3/n=[u3/n]+1\lceil u_{3}/n\rceil=[u_{3}/n]+1. Then we get for H14<β<HH-\frac{1}{4}<\beta<H and 0<δ<12β0<\delta<\frac{1}{2}-\beta,

|D~1dx~u1n,α1dx~u2n,α2dx~u3n,α3|\displaystyle\left|\int_{\tilde{D}_{1}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\right|\leq Gh5βGh2H1/2ϵ|ts|3β,\displaystyle Gh^{5\beta}\leq Gh^{2H-1/2-\epsilon}|t-s|^{3\beta},
|D~2dx~u1n,α1dx~u2n,α2dx~u3n,α3|=\displaystyle\left|\int_{\tilde{D}_{2}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\right|= |tjtkdx~u3n,α3||tkttku1dx~u2n,α2dx~u1n,α1|\displaystyle\bigg{|}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\bigg{|}\bigg{|}\int_{t_{k}}^{t}\int_{t_{k}}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}\bigg{|}
\displaystyle\leq Gh3H1/2ϵ|tktj|12δ|ttk|2βGh2H1/2ϵ|ts|3β,\displaystyle Gh^{3H-1/2-\epsilon}|t_{k}-t_{j}|^{\frac{1}{2}-\delta}|t-t_{k}|^{2\beta}\leq Gh^{2H-1/2-\epsilon}|t-s|^{3\beta},
|D~5dx~u1n,α1dx~u2n,α2dx~u3n,α3|=\displaystyle\left|\int_{\tilde{D}_{5}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\right|= |tjtktju2dx~u23n,α3dx~u2n,α2||tktdx~u1n,α1|\displaystyle\bigg{|}\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{u_{2}}{\rm d}\tilde{x}_{u_{2}3}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}\bigg{|}\bigg{|}\int_{t_{k}}^{t}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}
\displaystyle\leq Gh2H1/2ϵ|tktj|2β|ttk|βGh2H1/2ϵ|ts|3β,\displaystyle Gh^{2H-1/2-\epsilon}|t_{k}-t_{j}|^{2\beta}|t-t_{k}|^{\beta}\leq Gh^{2H-1/2-\epsilon}|t-s|^{3\beta},
|D~6dx~u1n,α1dx~u2n,α2dx~u3n,α3|\displaystyle\left|\int_{\tilde{D}_{6}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\right|\leq stjsups<u3<tj|u3tu3u1dx~u2n,α2dx~u1n,α1|d|x~u3n,α3|\displaystyle\int_{s}^{t_{j}}\sup_{s<u_{3}<t_{j}}\bigg{|}\int_{u_{3}}^{t}\int_{u_{3}}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}\bigg{|}{\rm d}\big{|}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\big{|}
\displaystyle\leq G|ts|2β(tjsh)h3βGh2H1/2ϵ|ts|3β.\displaystyle G|t-s|^{2\beta}\Big{(}\frac{t_{j}-s}{h}\Big{)}h^{3\beta}\leq Gh^{2H-1/2-\epsilon}|t-s|^{3\beta}.

Furthermore, it follows from u2/n=u3/n\lceil u_{2}/n\rceil=\lceil u_{3}/n\rceil for u3<u2<u3/nhu_{3}<u_{2}<\lceil u_{3}/n\rceil h that

|D~4dx~u1n,α1dx~u2n,α2dx~u3n,α3|\displaystyle\left|\int_{\tilde{D}_{4}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\right|\leq |tjtku3u3/nhu3/nhtkdx~u1n,α1dx~u2n,α2dx~u3n,α3|\displaystyle\left|\int_{t_{j}}^{t_{k}}\int_{u_{3}}^{\lceil u_{3}/n\rceil h}\int_{\lceil u_{3}/n\rceil h}^{t_{k}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\right|
+|tjtku3u3/nhu2u3/nhdx~u1n,α1dx~u2n,α2dx~u3n,α3|\displaystyle+\left|\int_{t_{j}}^{t_{k}}\int_{u_{3}}^{\lceil u_{3}/n\rceil h}\int_{u_{2}}^{\lceil u_{3}/n\rceil h}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\right|
\displaystyle\leq l=j+1ktl1tlsuptl1<u3<tl|u3u3/nhdx~u2n,α2||u3/nhtkdx~u1n,α1|d|x~u3n,α3|\displaystyle\sum_{l=j+1}^{k}\int_{t_{l-1}}^{t_{l}}\sup_{t_{l-1}<u_{3}<t_{l}}\bigg{|}\int_{u_{3}}^{\lceil u_{3}/n\rceil h}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}\bigg{|}\bigg{|}\int_{\lceil u_{3}/n\rceil h}^{t_{k}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}\bigg{|}{\rm d}\big{|}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\big{|}
+l=j+1ktl1tlsuptl1<u3<tl|u3u3/nhu2u3/nhdx~u1n,α1dx~u2n,α2|d|x~u3n,α3|\displaystyle+\sum_{l=j+1}^{k}\int_{t_{l-1}}^{t_{l}}\sup_{t_{l-1}<u_{3}<t_{l}}\bigg{|}\int_{u_{3}}^{\lceil u_{3}/n\rceil h}\int_{u_{2}}^{\lceil u_{3}/n\rceil h}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}\bigg{|}{\rm d}\big{|}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\big{|}
\displaystyle\leq G(tktjh)h4β|tktj|β+G(tktjh)h5β\displaystyle G\Big{(}\frac{t_{k}-t_{j}}{h}\Big{)}h^{4\beta}\big{|}t_{k}-t_{j}\big{|}^{\beta}+G\Big{(}\frac{t_{k}-t_{j}}{h}\Big{)}h^{5\beta}
\displaystyle\leq Gh2H12ϵ|ts|3β,\displaystyle Gh^{2H-\frac{1}{2}-\epsilon}|t-s|^{3\beta},

where 12H+18<β<H\frac{1}{2}H+\frac{1}{8}<\beta<H. In order to estimate the last part, we define

f~tj,tk=tjtku3/nhtku2tkdx~u1n,α1dx~u2n,α2dx~u3n,α3\tilde{f}_{t_{j},t_{k}}=\int_{t_{j}}^{t_{k}}\int_{\lceil u_{3}/n\rceil h}^{t_{k}}\int_{u_{2}}^{t_{k}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}

such that f~tj,tj+1=0\tilde{f}_{t_{j},t_{j+1}}=0 and for j<k<lj<k<l,

|f~tj,tlf~tj,tkf~tk,tl|\displaystyle\big{|}\tilde{f}_{t_{j},t_{l}}-\tilde{f}_{t_{j},t_{k}}-\tilde{f}_{t_{k},t_{l}}\big{|}
\displaystyle\leq |tjtku3tktktldx~u1n,α1dx~u2n,α2dx~u3n,α3|+|tjtktktlu2tldx~u1n,α1dx~u2n,α2dx~u3n,α3|\displaystyle\bigg{|}\int_{t_{j}}^{t_{k}}\int_{u_{3}}^{t_{k}}\int_{t_{k}}^{t_{l}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\bigg{|}+\bigg{|}\int_{t_{j}}^{t_{k}}\int_{t_{k}}^{t_{l}}\int_{u_{2}}^{t_{l}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\bigg{|}
+|tjtku3u3/nhtktldx~u1n,α1dx~u2n,α2dx~u3n,α3|\displaystyle+\bigg{|}\int_{t_{j}}^{t_{k}}\int_{u_{3}}^{\lceil u_{3}/n\rceil h}\int_{t_{k}}^{t_{l}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\bigg{|}
\displaystyle\leq |tktldx~u1n,α1||tjtktju2dx~u3n,α3dx~u2n,α2|+|tktltku1dx~u2n,α2dx~u1n,α1||tjtkdx~u3n,α3|\displaystyle\bigg{|}\int_{t_{k}}^{t_{l}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\bigg{|}\int_{t_{j}}^{t_{k}}\int_{t_{j}}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}\bigg{|}+\bigg{|}\int_{t_{k}}^{t_{l}}\int_{t_{k}}^{u_{1}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\bigg{|}\int_{t_{j}}^{t_{k}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}\bigg{|}
+|tjtku3u3/nhdx~u2n,α2dx~u3n,α3||tktldx~u1n,α1|\displaystyle+\bigg{|}\int_{t_{j}}^{t_{k}}\int_{u_{3}}^{\lceil u_{3}/n\rceil h}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{3}}_{u_{3}}\bigg{|}\bigg{|}\int_{t_{k}}^{t_{l}}{\rm d}\tilde{x}_{u_{1}}^{n,\alpha^{1}}\bigg{|}
\displaystyle\leq G|tltk|βh2H1/2ϵ|tktj|+G|tltk|2βh3H1/2ϵ|tktj|12δ+G(tktjh)h4β|tltk|β.\displaystyle G|t_{l}-t_{k}|^{\beta}h^{2H-1/2-\epsilon}|t_{k}-t_{j}|+G|t_{l}-t_{k}|^{2\beta}h^{3H-1/2-\epsilon}|t_{k}-t_{j}|^{\frac{1}{2}-\delta}+G\Big{(}\frac{t_{k}-t_{j}}{h}\Big{)}h^{4\beta}|t_{l}-t_{k}|^{\beta}.

Then for H2+18<β<H\frac{H}{2}+\frac{1}{8}<\beta<H and 0<δ<2(β14)0<\delta<2(\beta-\frac{1}{4}) such that 12+2βδ>1\frac{1}{2}+2\beta-\delta>1, Lemma 4.5 leads to

|D~3dx~u3n,α3dx~u2n,α2dx~u1n,α1|=|f~tj,tk|Gh2H12ϵ|ts|12+2βδ.\displaystyle\bigg{|}\int_{\tilde{D}_{3}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}=\big{|}\tilde{f}_{t_{j},t_{k}}\big{|}\leq Gh^{2H-\frac{1}{2}-\epsilon}|t-s|^{\frac{1}{2}+2\beta-\delta}.

As a consequence,

|stsu1su2dx~u3n,α3dx~u2n,α2dx~u1n,α1|Gh2H12ϵ|ts|3β,|α3|=3,|α1|=|α2|=1,\displaystyle\bigg{|}\int_{s}^{t}\int_{s}^{u_{1}}\int_{s}^{u_{2}}{\rm d}\tilde{x}_{u_{3}}^{n,\alpha^{3}}{\rm d}\tilde{x}_{u_{2}}^{n,\alpha^{2}}{\rm d}\tilde{x}^{n,\alpha^{1}}_{u_{1}}\bigg{|}\leq Gh^{2H-\frac{1}{2}-\epsilon}|t-s|^{3\beta},\quad|\alpha^{3}|=3,~{}|\alpha^{1}|=|\alpha^{2}|=1,

which finishes the proof. ∎

References

  • [1] A. Abdulle, D. Cohen, G. Vilmart, and K. C. Zygalakis. High weak order methods for stochastic differential equations based on modified equations. SIAM J. Sci. Comput., 34(3):A1800–A1823, 2012.
  • [2] C. Anton. Weak backward error analysis for stochastic Hamiltonian systems. BIT, 59(3):613–646, 2019.
  • [3] C. Bayer, P. Friz, S. Riedel, and J. Schoenmakers. From rough path estimates to multilevel Monte Carlo. SIAM J. Numer. Anal., 54(3):1449–1483, 2016.
  • [4] P. Breuer and P. Major. Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal., 13(3):425–441, 1983.
  • [5] Y. Cao, J. Hong, and Z. Liu. Approximating stochastic evolution equations with additive white and rough noises. SIAM J. Numer. Anal., 55(4):1958–1981, 2017.
  • [6] T. Cass and P. Friz. Densities for rough differential equations under Hörmander’s condition. Ann. of Math. (2), 171(3):2115–2141, 2010.
  • [7] T. Cass, M. Hairer, C. Litterer, and S. Tindel. Smoothness of the density for solutions to Gaussian rough differential equations. Ann. Probab., 43(1):188–239, 2015.
  • [8] C. Chen, J. Hong, and C. Huang. Stochastic modified equations for symplectic methods applied to rough Hamiltonian systems based on the Wong–Zakai approximation. arXiv:1907.02825.
  • [9] A. Debussche and E. Faou. Weak backward error analysis for SDEs. SIAM J. Numer. Anal., 50(3):1735–1752, 2012.
  • [10] G. Denk and R. Winkler. Modelling and simulation of transient noise in circuit simulation. Math. Comput. Model. Dyn. Syst., 13(4):383–394, 2007.
  • [11] A. Deya, A. Neuenkirch, and S. Tindel. A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat., 48(2):518–550, 2012.
  • [12] O. El Euch and M. Rosenbaum. The characteristic function of rough Heston models. Math. Finance, 29(1):3–38, 2019.
  • [13] X. Feng, P. Li, and X. Wang. An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion. Inverse Problems, 36(4):045008, 30, 2020.
  • [14] M. Forde and H. Zhang. Asymptotics for rough stochastic volatility models. SIAM J. Financial Math., 8(1):114–145, 2017.
  • [15] P. Friz and M. Hairer. A course on rough paths. Universitext. Springer, Cham, 2014. With an introduction to regularity structures.
  • [16] P. Friz and S. Riedel. Convergence rates for the full Gaussian rough paths. Ann. Inst. Henri Poincaré Probab. Stat., 50(1):154–194, 2014.
  • [17] P. Friz and N. Victoir. Multidimensional stochastic processes as rough paths, volume 120 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010. Theory and applications.
  • [18] M. Gradinaru, F. Russo, and P. Vallois. Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index H14H\geq\frac{1}{4}. Ann. Probab., 31(4):1772–1820, 2003.
  • [19] M. Gubinelli. Controlling rough paths. J. Funct. Anal., 216(1):86–140, 2004.
  • [20] M. Hairer and N. Pillai. Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths. Ann. Probab., 41(4):2544–2598, 2013.
  • [21] J. Hong, C. Huang, and X. Wang. Optimal rate of convergence for two classes of schemes to stochastic differential equations driven by fractional brownian motions. IMA J. Numer. Anal., 2020, doi:10.1093/imanum/draa019.
  • [22] J. Hong, C. Huang, and X. Wang. Symplectic Runge-Kutta methods for Hamiltonian systems driven by Gaussian rough paths. Appl. Numer. Math., 129:120–136, 2018.
  • [23] Y. Hu, Y. Liu, and D. Nualart. Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions. Ann. Appl. Probab., 26(2):1147–1207, 2016.
  • [24] Y. Hu, Y. Liu, and D. Nualart. Crank-Nicolson scheme for stochastic differential equations driven by fractional Brownian motions. arXiv: 1709.01614, 2017.
  • [25] T. Jaisson and M. Rosenbaum. Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes. Ann. Appl. Probab., 26(5):2860–2882, 2016.
  • [26] M. Kopec. Weak backward error analysis for Langevin process. BIT, 55(4):1057–1103, 2015.
  • [27] M. Kopec. Weak backward error analysis for overdamped Langevin processes. IMA J. Numer. Anal., 35(2):583–614, 2015.
  • [28] Y. Liu and S. Tindel. First-order Euler scheme for SDEs driven by fractional Brownian motions: the rough case. Ann. Appl. Probab., 29(2):758–826, 2019.
  • [29] T. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana, 14(2):215–310, 1998.
  • [30] B. Mandelbrot and J. Van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10:422–437, 1968.
  • [31] G. N. Milstein and M. V. Tretyakov. Stochastic numerics for mathematical physics. Scientific Computation. Springer-Verlag, Berlin, 2004.
  • [32] A. Neuenkirch, S. Tindel, and J. Unterberger. Discretizing the fractional Lévy area. Stochastic Process. Appl., 120(2):223–254, 2010.
  • [33] I. Nourdin and G. Peccati. Normal approximations with Malliavin calculus, volume 192 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2012. From Stein’s method to universality.
  • [34] F. Russo and P. Vallois. Stochastic calculus with respect to continuous finite quadratic variation processes. Stochastics Stochastics Rep., 70(1-2):1–40, 2000.
  • [35] T. Shardlow. Modified equations for stochastic differential equations. BIT, 46(1):111–125, 2006.
  • [36] L. Wang, J. Hong, and L. Sun. Modified equations for weakly convergent stochastic symplectic schemes via their generating functions. BIT, 56(3):1131–1162, 2016.
  • [37] Z. Wang, J. Xin, and Z. Zhang. Computing effective diffusivity of chaotic and stochastic flows using structure-preserving schemes. SIAM J. Numer. Anal., 56(4):2322–2344, 2018.