This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: W. Qiu (✉) 22institutetext: MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, P. R. China
22email: qwllkx12379@163.com

Optimal error estimate of accurate second-order scheme for Volterra integrodifferential equations with tempered multi-term kernels

Wenlin Qiu
(Received: date / Accepted: date)
Abstract

In this paper, we investigate and analyze numerical solutions for the Volterra integrodifferential equations with tempered multi-term kernels. Firstly we derive some regularity estimates of the exact solution. Then a temporal-discrete scheme is established by employing Crank-Nicolson technique and product integration (PI) rule for discretizations of the time derivative and tempered-type fractional integral terms, respectively, from which, nonuniform meshes are applied to overcome the singular behavior of the exact solution at t=0t=0. Based on deduced regularity conditions, we prove that the proposed scheme is unconditionally stable, and possesses accurately temporal second-order convergence in L2L_{2}-norm. Numerical examples confirm the effectiveness of the proposed method.

Keywords:
Volterra integrodifferential equations tempered multi-term kernels accurate second order stability optimal error estimate
MSC:
26A33 45J05 65M12 65M15 65M60

1 Introduction

In this work, we consider the following nonlocal evolution equation with tempered multi-term kernels

ut+Au+j=1m(βjBju)(t)=f(t),t>0,1m<,u(0)=u0,\begin{split}\frac{\partial u}{\partial t}&+Au+\sum\limits_{j=1}^{m}(\beta_{j}*B_{j}u)(t)=f(t),\quad t>0,\quad 1\leq m<\infty,\\ &u(0)=u_{0},\end{split} (1.1)

in which AA is a self-adjoint positive-definite linear operator, not necessarily bounded operator, with compact inverse, defined on a dense subspace D(A)D(A) of the Hilbert space 𝐇\mathbf{H}, and BjB_{j} is the self-adjoint linear operator in 𝐇\mathbf{H} such that D(Bj)D(A)D(B_{j})\supset D(A), 1jm1\leq j\leq m. Letting

wq=Aq/2w=(Aqw,w)1/2,\begin{split}\|w\|_{q}=\|A^{q/2}w\|=(A^{q}w,w)^{1/2},\end{split}

where (,)(\cdot,\cdot) is the inner product in 𝐇\mathbf{H} with the norm \|\cdot\|, we suppose that in this paper the operator AA dominates BjB_{j} in the sense that Larsson

|(Bjw,v)|Cwqvϑ,ϑ=0,1,2,ϑ+q=2.\begin{split}\left|(B_{j}w,v)\right|\leq C\|w\|_{q}\|v\|_{\vartheta},\quad\vartheta=0,1,2,\quad\vartheta+q=2.\end{split} (1.2)

Define the convolution

(βjφ)(t):=0tβj(ts)φ(s)𝑑s,1jm,t>0,\begin{split}(\beta_{j}*\varphi)(t):=\int_{0}^{t}\beta_{j}(t-s)\varphi(s)ds,\quad 1\leq j\leq m,\quad t>0,\end{split}

see Podlubny ; Xu1 , where the tempered singular kernels

βj(t)=eκttαj1Γ(αj),κ0,0<αj<1,\begin{split}\beta_{j}(t)=\frac{e^{-\kappa t}t^{\alpha_{j}-1}}{\Gamma(\alpha_{j})},\quad\kappa\geq 0,\quad 0<\alpha_{j}<1,\end{split} (1.3)

and Γ()\Gamma(\cdot) denotes the Euler’s Gamma function; see Podlubny . Problems of type (1.1) with the single-term kernel (m=1,κ=0m=1,\kappa=0) can be considered as the model arising in heat transfer theory with memory, population dynamics and viscoelastic materials, see Friedman ; Heard and references therein; with m=1m=1 and κ>0\kappa>0, (1.1) is called the tempered fractional integro-differential equation, in which the tempered fractional integral of Brownian motion, called tempered fractional Brownian motion, can show semi-long-range correlation, and then the increment of this process is called tempered fractional Gaussian noise, which affords a useful new stochastic model for the wind speed data, see Sabzikar . Furthermore, when A=0A=0, problem (1.1) with self-adjoint boundary conditions appears in a linear model for heat flow in a rectangular, orthotropic material with the memory Carslaw ; Hannsgen ; MacCamy , from which the axes of orthotropy are parallel to the edges of the rectangle.

Due to its broad and practical applications, many scholars have carried out a series of theoretical and numerical studies regarding the problem of type (1.1), e.g., in terms of theoretical research with A=0A=0 and f=0f=0, Hannsgen and Wheeler Hannsgen first studied the asymptotic behavior as tt\rightarrow\infty of solutions of (1.1), combined with a resolvent formula, which gave the long-time estimate of solutions with the weight function. Then based on Hannsgen , Noren Noren1 proved the long-time estimate of solutions without the weight function by giving variable hypothesis of kernel functions βj(t)\beta_{j}(t). Subsequently, Noren Noren1 derived that u(t)u^{\prime}(t) is integrable uniformly with respect to the parameters of solutions under some assumptions regarding kernel functions βj(t)\beta_{j}(t). With the maturity of theoretical studies, numerical researches have gradually developed. Xu proved the weighted L1L^{1} asymptotic stability of the numerical solutions by temporal backward Euler (BE) method and first-order convolution quadrature rule. Hereafter, Xu considered the weighted L1L^{1} asymptotic convergence of the numerical solutions by same temporal approximation. After that, in order to improve accuracy to the second order for time, Xu proved the weighted L1L^{1} asymptotic stability Xu4 and weighted L1L^{1} asymptotic convergence Xu5 by second-order backward differentiation formula (BDF) and second-order convolution quadrature, from which, temporal convergence can not reach accurate second order due to the singular behavior of the exact solution at the initial point t=0t=0. Besides, some studies of (1.1) with m=2m=2 were considered recently, see Cao ; Qiu , which only achieved temporal first-order accuracy; also, there has been a lot of excellent work on similar multi-term problems, see Jin ; Liu ; Zhou . Thus, the limitations of existing methods motivate us to carry out the following research.

The major aim of this work is to consider an accurate second-order numerical scheme for Volterra integrodifferential equations with tempered-type multi-term singular kernels. This time-discrete scheme is constructed by the Crank-Nicolson method and PI rule on the nonuniform meshes. In addition, the main contribution of this work can be summarized in the following aspects: (i)(i) Based on certain suitable assumptions, we derive the regularity estimates of the exact solution of problem (1.1); (ii)(ii) We employ the graded meshes in time to establish the discrete scheme, which can compensate for the singular behaviour of the exact solutions at t=0t=0; (iii)(iii) The energy method is utilized to deduce the stability and convergence of the proposed scheme; (iv)(iv) Provided numerical examples satisfying the regularity substantiate the theoretical analyses, which can reflect and illustrate the accurate second-order accuracy for time by choosing the grading index γ2/(1+α)\gamma\geq 2/(1+\alpha), α=min1jm{αj}\alpha=\min\limits_{1\leq j\leq m}\{\alpha_{j}\}.

The rest of this article is arranged as follows. In section 2, the regularity of exact solutions is deduced on the L2L_{2} space. Section 3 gives some notations and formulates a time-discrete scheme. Then the stability and convergence of proposed scheme are proved in section 4. Section 5 provides several numerical examples to verify our analysis. Finally, some concluding remarks are presented in section 6.

Throughout this paper, CC denotes a generic positive constant that is independent of the space-time step sizes, and may be not necessarily the same on each occurrence.

2 Regularity of exact solutions

For the further analysis, denoting

v(t)=eκtu(t),g(t)=eκtf(t),t>0,\begin{split}v(t)=e^{\kappa t}u(t),\quad g(t)=e^{\kappa t}f(t),\quad t>0,\end{split} (2.1)

then (1.1) is converted to

vt+Av+j=1m(ωαjBjv)(t)κv=g(t),t>0,m1,v(0)=u0,\begin{split}\frac{\partial v}{\partial t}&+Av+\sum\limits_{j=1}^{m}(\omega_{\alpha_{j}}*B_{j}v)(t)-\kappa v=g(t),\quad t>0,\quad m\geq 1,\\ &v(0)=u_{0},\end{split} (2.2)

where the Abel kernel ωαj(t)=tαj1Γ(αj)\omega_{\alpha_{j}}(t)=\frac{t^{\alpha_{j}-1}}{\Gamma(\alpha_{j})} with 1jm1\leq j\leq m.

Below, we shall give some regularity estimates of the exact solution of (1.1). That is, we wish to present that

tAv′′(t)+v′′(t)+Av(t)Ctα1,α=min1jm{αj},tAu′′(t)+u′′(t)+Au(t)Ceκttα1,t0+.\begin{split}&t\|Av^{\prime\prime}(t)\|+\|v^{\prime\prime}(t)\|+\|Av^{\prime}(t)\|\leq Ct^{\alpha-1},\quad\alpha=\min\limits_{1\leq j\leq m}\{\alpha_{j}\},\\ &t\|Au^{\prime\prime}(t)\|+\|u^{\prime\prime}(t)\|+\|Au^{\prime}(t)\|\leq Ce^{-\kappa t}t^{\alpha-1},\quad t\rightarrow 0^{+}.\end{split} (2.3)

Later Lp\|\cdot\|_{L_{p}} denotes the norm on the Sobolev space Lp(Ω)L_{p}(\Omega) with 1<p1<p\leq\infty; besides, Lipschitz domain Ωd\Omega\subseteq\mathbb{R}^{d}, d1d\geq 1. In fact, before establishing the regularity estimates of uu, we only need to consider vv defined in (2.2). By splitting the solution of (2.2) be into v(t)=v1(t)+v2(t)v(t)=v_{1}(t)+v_{2}(t), which implies that for t>0t>0, we shall further solve

v1(t)+Av1(t)=g(t),v1(0)=u0,\begin{split}v_{1}^{\prime}(t)+Av_{1}(t)=g(t),\quad v_{1}(0)=u_{0},\end{split} (2.4)

and

v2(t)+Av2(t)=j=1m0tωαj(ts)Bjv(s)𝑑s+κv(t),v2(0)=0,\begin{split}v_{2}^{\prime}(t)+Av_{2}(t)=-\sum\limits_{j=1}^{m}\int_{0}^{t}\omega_{\alpha_{j}}(t-s)B_{j}v(s)ds+\kappa v(t),\quad v_{2}(0)=0,\end{split} (2.5)

respectively. Then, we rewrite the solution of (2.4) as

v1(t)=E(t)u0+0tE(ts)g(s)𝑑s,\begin{split}v_{1}(t)=E(t)u_{0}+\int_{0}^{t}E(t-s)g(s)ds,\end{split} (2.6)

where E(t)=exp(At)E(t)=\exp(-At) is the analytic semigroup in space Lp(Ω)L_{p}(\Omega), generated by A-A (cf. Pazy ), such that

E(t)wLp+tAE(t)wLp+t2A2E(t)wLpCwLp,t(0,T]\begin{split}\|E(t)w\|_{L_{p}}+t\|AE(t)w\|_{L_{p}}+t^{2}\|A^{2}E(t)w\|_{L_{p}}\leq C\|w\|_{L_{p}},\quad t\in(0,T]\end{split} (2.7)

for any wLp(Ω)w\in L_{p}(\Omega). Then similar to Larsson ; Mustapha , we introduce the following key lemmas.

Lemma 1

Assume that p(1,)p\in(1,\infty) and φ(t)Lp(Ω)\varphi(t)\in L_{p}(\Omega), t>0t>0. Suppose that φ(t)LpCtα1\|\varphi(t)\|_{L_{p}}\leq Ct^{\alpha-1} and φ(t)LpCtα2\|\varphi^{\prime}(t)\|_{L_{p}}\leq Ct^{\alpha-2} with α=min1jm{αj}\alpha=\min\limits_{1\leq j\leq m}\{\alpha_{j}\}. Then it holds that

0tAE(ts)φ(s)𝑑sLpCtα1,α(0,1).\begin{split}\left\|\int_{0}^{t}AE(t-s)\varphi(s)ds\right\|_{L_{p}}\leq Ct^{\alpha-1},\quad\alpha\in(0,1).\end{split}
Proof

The desired result can be proved similarly by (Larsson, , Lemma 5.1).

Lemma 2

Let p(1,)p\in(1,\infty) and φ(t)Lp(Ω)\varphi(t)\in L_{p}(\Omega) for t>0t>0, then

0tAE(ts)0sωαj(sσ)φ(σ)𝑑σ𝑑sLpC0tωαj(tσ)φ(σ)Lp𝑑σ.\begin{split}\left\|\int_{0}^{t}AE(t-s)\int_{0}^{s}\omega_{\alpha_{j}}(s-\sigma)\varphi(\sigma)d\sigma ds\right\|_{L_{p}}\leq C\int_{0}^{t}\omega_{\alpha_{j}}(t-\sigma)\|\varphi(\sigma)\|_{L_{p}}d\sigma.\end{split}
Proof

Exchanging the order of integration and swapping variables, we have

0tAE(ts)0sωαj(sσ)φ(σ)𝑑σ𝑑s=0t[0tσAE(tσϑ)ωαj(ϑ)𝑑ϑ]φ(σ)𝑑σ.\begin{split}\int_{0}^{t}AE(t-s)\int_{0}^{s}\omega_{\alpha_{j}}(s-\sigma)\varphi(\sigma)d\sigma ds=\int_{0}^{t}\left[\int_{0}^{t-\sigma}AE(t-\sigma-\vartheta)\omega_{\alpha_{j}}(\vartheta)d\vartheta\right]\varphi(\sigma)d\sigma.\end{split}

Then an application of Lemma 1 completes the proof.

Lemma 3

Suppose that Au0g(0)+g(t)C\|Au_{0}-g(0)\|+\|g(t)\|\leq C and (Au0g(0))E(t)+g(t)+tg′′(t)Ctα1\|(Au_{0}-g(0))E^{\prime}(t)\|+\|g^{\prime}(t)\|+t\|g^{\prime\prime}(t)\|\leq Ct^{\alpha-1} with α=min1jm{αj}\alpha=\min\limits_{1\leq j\leq m}\{\alpha_{j}\}. Then v1(t)v_{1}(t) denoted by (2.4) satisfies

Av1(t)+v1(t)C,Av1(t)+v1′′(t)Ctα1.\begin{split}\|Av_{1}(t)\|+\|v_{1}^{\prime}(t)\|\leq C,\quad\|Av_{1}^{\prime}(t)\|+\|v_{1}^{\prime\prime}(t)\|\leq Ct^{\alpha-1}.\end{split}
Proof

We can finish the proof analogously by (Mustapha, , Lemma 2.3).

Below we derive the regularity estimate with respect to v(t)v(t).

Theorem 2.1

Based on the assumptions of Lemma 3, then the solution v(t)v(t) of (2.2) satisfies that

v(t)+Av(t)Cu0,0<tT.\begin{split}\|v^{\prime}(t)\|+\|Av(t)\|\leq C\|u_{0}\|,\quad 0<t\leq T.\end{split}
Proof

By (2.5)-(2.7) and the assumption (1.2) (AA dominates BjB_{j}), then v2(t)v_{2}(t) given by (2.5) satisfies

v2(t)j=1m0tωαj(ts)(BjA1)Av(s)𝑑s+Av2(t)+κ(v1(t)+v2(t))j=1m0tωαj(ts)Av(s)𝑑s+Av2(t)+κ(u0+0tg(s)𝑑s)+κ0tv2(s)𝑑s.\begin{split}\|v_{2}^{\prime}(t)\|&\leq\sum\limits_{j=1}^{m}\left\|\int_{0}^{t}\omega_{\alpha_{j}}(t-s)(B_{j}A^{-1})Av(s)ds\right\|\\ &+\|Av_{2}(t)\|+\kappa\Big{(}\|v_{1}(t)\|+\|v_{2}(t)\|\Big{)}\\ &\leq\sum\limits_{j=1}^{m}\int_{0}^{t}\omega_{\alpha_{j}}(t-s)\left\|Av(s)\right\|ds+\|Av_{2}(t)\|\\ &+\kappa\left(\|u_{0}\|+\int_{0}^{t}\|g(s)\|ds\right)+\kappa\int_{0}^{t}\|v_{2}^{\prime}(s)\|ds.\end{split}

Then using Duhamel’s principle and (2.3), we deduce

v2(t)=0tE(ts)j=1m0sωαj(sσ)Bjv(σ)𝑑σ𝑑sκ0tE(ts)v(s)𝑑s:=v21+v22.\begin{split}v_{2}(t)&=-\int_{0}^{t}E(t-s)\sum\limits_{j=1}^{m}\int_{0}^{s}\omega_{\alpha_{j}}(s-\sigma)B_{j}v(\sigma)d\sigma ds\\ &-\kappa\int_{0}^{t}E(t-s)v(s)ds:=v_{21}+v_{22}.\end{split} (2.8)

From Lemma 2 and Lemma 3, we yield

Av210tAE(ts)j=1m0sωαj(sσ)(BjA1)Av(σ)𝑑σ𝑑sCj=1m0tωαj(tσ)(Av1(σ)+Av2(σ))𝑑σCj=1m(tαj+0tωαj(tσ)Av2(σ)𝑑σ),\begin{split}\|Av_{21}\|&\leq\left\|\int_{0}^{t}AE(t-s)\sum\limits_{j=1}^{m}\int_{0}^{s}\omega_{\alpha_{j}}(s-\sigma)(B_{j}A^{-1})Av(\sigma)d\sigma ds\right\|\\ &\leq C\sum\limits_{j=1}^{m}\int_{0}^{t}\omega_{\alpha_{j}}(t-\sigma)\left(\left\|Av_{1}(\sigma)\right\|+\left\|Av_{2}(\sigma)\right\|\right)d\sigma\\ &\leq C\sum\limits_{j=1}^{m}\left(t^{\alpha_{j}}+\int_{0}^{t}\omega_{\alpha_{j}}(t-\sigma)\left\|Av_{2}(\sigma)\right\|d\sigma\right),\end{split}

and (2.7) gives

Av22κ0tE(ts)Av(s)𝑑sC0tAv(s)𝑑s.\begin{split}\|Av_{22}\|&\leq\kappa\left\|\int_{0}^{t}E(t-s)Av(s)ds\right\|\leq C\int_{0}^{t}\|Av(s)\|ds.\end{split}

Therefore, we have

Av2(t)C(tα+0tAv(s)𝑑s)+0tωα(tσ)Av2(σ)𝑑σ,\begin{split}\|Av_{2}(t)\|&\leq C\left(t^{\alpha}+\int_{0}^{t}\|Av(s)\|ds\right)+\int_{0}^{t}\omega_{\alpha}(t-\sigma)\left\|Av_{2}(\sigma)\right\|d\sigma,\end{split}

from which, an application of Grönwall’s lemma (see (Chen, , Lemma 1)) yields

Av2(t)C(tα+0tAv(s)𝑑s),\begin{split}\|Av_{2}(t)\|&\leq C\left(t^{\alpha}+\int_{0}^{t}\|Av(s)\|ds\right),\end{split}

which follows from Lemma 3 that Av(t)C+C0tAv(s)𝑑s\|Av(t)\|\leq C+C\int_{0}^{t}\|Av(s)\|ds, then we have Av(t)C\|Av(t)\|\leq C and Av2(t)Ctα\|Av_{2}(t)\|\leq Ct^{\alpha}. Thus, we can get

v2(t)C(j=1mtαj+u0)+κ0tv2(s)𝑑s,\begin{split}\|v_{2}^{\prime}(t)\|&\leq C\left(\sum\limits_{j=1}^{m}t^{\alpha_{j}}+\|u_{0}\|\right)+\kappa\int_{0}^{t}\|v_{2}^{\prime}(s)\|ds,\end{split}

then Grönwall’s lemma and Lemma 3 gives

v(t)v1(t)+v2(t)Cu0,\begin{split}\|v^{\prime}(t)\|&\leq\|v_{1}^{\prime}(t)\|+\|v_{2}^{\prime}(t)\|\leq C\|u_{0}\|,\end{split} (2.9)

which completes the proof.

We will give other estimates of v(t)v(t) regarding the second time derivative.

Theorem 2.2

Based on the assumptions of Theorem 2.1. Then it follows that

v′′(t)+Av(t)Ctα1u02,α=min1jm{αj},t(0,T].\begin{split}\left\|v^{\prime\prime}(t)\right\|+\left\|Av^{\prime}(t)\right\|\leq Ct^{\alpha-1}\left\|u_{0}\right\|_{2},\quad\alpha=\min\limits_{1\leq j\leq m}\{\alpha_{j}\},\quad t\in(0,T].\end{split}
Proof

Differentiate (2.5) to get

v2′′(t)+Av2(t)=κv(t)j=1mωαj(t)Bju0j=1m0tωαj(s)Bjv(ts)t𝑑s,\begin{split}v_{2}^{\prime\prime}(t)+Av_{2}^{\prime}(t)=\kappa v^{\prime}(t)-\sum\limits_{j=1}^{m}\omega_{\alpha_{j}}(t)B_{j}u_{0}-\sum\limits_{j=1}^{m}\int_{0}^{t}\omega_{\alpha_{j}}(s)B_{j}\frac{\partial v(t-s)}{\partial t}ds,\end{split} (2.10)

where using (2.4)-(2.5), we have v2(0)=v1(0)=u0v_{2}^{\prime}(0)=v_{1}(0)=u_{0}, thus Duhamel’s principle gives

v2(t)=(E(t)u0κ0tE(ts)(v1(s)+v2(s)))j=1m0tE(ts)ωαj(s)(BjA1)Au0𝑑sj=1m0tE(ts)0sωαj(sσ)Bjv2(σ)𝑑σ𝑑sj=1m0tE(ts)0sωαj(sσ)Bjv1(σ)𝑑σ𝑑s:=R21+R22+R23+R24.\begin{split}v_{2}^{\prime}(t)&=-\left(E(t)u_{0}-\kappa\int_{0}^{t}E(t-s)\big{(}v_{1}^{\prime}(s)+v_{2}^{\prime}(s)\big{)}\right)\\ &-\sum\limits_{j=1}^{m}\int_{0}^{t}E(t-s)\omega_{\alpha_{j}}(s)(B_{j}A^{-1})Au_{0}ds\\ &-\sum\limits_{j=1}^{m}\int_{0}^{t}E(t-s)\int_{0}^{s}\omega_{\alpha_{j}}(s-\sigma)B_{j}v_{2}^{\prime}(\sigma)d\sigma ds\\ &-\sum\limits_{j=1}^{m}\int_{0}^{t}E(t-s)\int_{0}^{s}\omega_{\alpha_{j}}(s-\sigma)B_{j}v_{1}^{\prime}(\sigma)d\sigma ds\\ &:=R_{21}+R_{22}+R_{23}+R_{24}.\end{split} (2.11)

Then, each term of (2.11) will be estimated. First, Lemma 3 and (2.7) lead to

R212CAu0+C0tE(s)(v1(ts)+v2(ts))𝑑sC(u02+j=1mtαj+0tv2(s)𝑑s),\begin{split}\left\|R_{21}\right\|_{2}&\leq C\left\|Au_{0}\right\|+C\int_{0}^{t}\left\|E(s)\big{(}v_{1}^{\prime}(t-s)+v_{2}^{\prime}(t-s)\big{)}\right\|ds\\ &\leq C\left(\left\|u_{0}\right\|_{2}+\sum\limits_{j=1}^{m}t^{\alpha_{j}}+\int_{0}^{t}\left\|v_{2}^{\prime}(s)\right\|ds\right),\end{split} (2.12)

besides, Lemmas 1-3 and assumption (1.2) give

R222j=1m0tAE(ts)ωαj(s)(BjA1)Au0𝑑sCj=1mtαjAu0Ctα1u02,\begin{split}\left\|R_{22}\right\|_{2}&\leq\sum\limits_{j=1}^{m}\left\|\int_{0}^{t}AE(t-s)\omega_{\alpha_{j}}(s)(B_{j}A^{-1})Au_{0}ds\right\|\\ &\leq C\sum\limits_{j=1}^{m}t^{\alpha_{j}}\left\|Au_{0}\right\|\leq Ct^{\alpha-1}\left\|u_{0}\right\|_{2},\end{split} (2.13)

and

R232j=1m0tAE(ts)0sωαj(sσ)(BjA1)Av2(σ)𝑑sCj=1m0tωαj(tσ)Av2(σ)𝑑σC0tωα(tσ)Av2(σ)𝑑σ.\begin{split}\left\|R_{23}\right\|_{2}&\leq\sum\limits_{j=1}^{m}\left\|\int_{0}^{t}AE(t-s)\int_{0}^{s}\omega_{\alpha_{j}}(s-\sigma)(B_{j}A^{-1})Av_{2}^{\prime}(\sigma)ds\right\|\\ &\leq C\sum\limits_{j=1}^{m}\int_{0}^{t}\omega_{\alpha_{j}}(t-\sigma)\left\|Av_{2}^{\prime}(\sigma)\right\|d\sigma\leq C\int_{0}^{t}\omega_{\alpha}(t-\sigma)\left\|Av_{2}^{\prime}(\sigma)\right\|d\sigma.\end{split} (2.14)

Then for the estimate of R242\left\|R_{24}\right\|_{2}, we first utilize (2.6) to obtain

Av1(t)=E(t)(Au0g(0))+0tAE(ts)g(s)𝑑s.\begin{split}Av_{1}^{\prime}(t)=E^{\prime}(t)(Au_{0}-g(0))+\int_{0}^{t}AE(t-s)g^{\prime}(s)ds.\end{split} (2.15)

Hence, we have

AR24=j=1m0tAE(ts)(BjA1)Gj(s)𝑑sj=1m0tAE(ts)0sωαj(sσ)Hj(σ)𝑑σ𝑑s,\begin{split}AR_{24}&=-\sum\limits_{j=1}^{m}\int_{0}^{t}AE(t-s)(B_{j}A^{-1})G_{j}(s)ds\\ &-\sum\limits_{j=1}^{m}\int_{0}^{t}AE(t-s)\int_{0}^{s}\omega_{\alpha_{j}}(s-\sigma)H_{j}(\sigma)d\sigma ds,\end{split} (2.16)

from which, Hj(t)=0t(BjA1)AE(tθ)g(θ)𝑑θH_{j}(t)=\int_{0}^{t}(B_{j}A^{-1})AE(t-\theta)g^{\prime}(\theta)d\theta and

Gj(t)=0tωαj(s)AE(ts)(Au0g(0))𝑑s.\begin{split}G_{j}(t)=\int_{0}^{t}\omega_{\alpha_{j}}(s)AE(t-s)(Au_{0}-g(0))ds.\end{split} (2.17)

Then, Lemma 1 can be applied to (2.16) by satisfying two conditions. Firstly, we have Gj(t)Ctαj1Au0g(0)Ctαj1\|G_{j}(t)\|\leq Ct^{\alpha_{j}-1}\|Au_{0}-g(0)\|\leq Ct^{\alpha_{j}-1}. Further we estimate the derivative of Gj(t)G_{j}(t). By writing

Gj(t)=(0t/2+t/2t)ωαj(s)AE(ts)(Au0g(0))ds:=(G1)j(t)+(G2)j(t).\begin{split}G_{j}(t)=\left(\int_{0}^{t/2}+\int_{t/2}^{t}\right)\omega_{\alpha_{j}}(s)AE(t-s)(Au_{0}-g(0))ds:=(G_{1})_{j}(t)+(G_{2})_{j}(t).\end{split}

Next we employ [AE(ts)]t=A2E(ts)\frac{\partial[AE(t-s)]}{\partial t}=-A^{2}E(t-s) to get

(G1)j(t)=ωαj(t/2)AE(t/2)(Au0g(0))0t/2ωαj(s)A2E(ts)(Au0g(0))𝑑s,\begin{split}(G_{1})_{j}^{\prime}(t)=\omega_{\alpha_{j}}(t/2)AE(t/2)(Au_{0}-g(0))-\int_{0}^{t/2}\omega_{\alpha_{j}}(s)A^{2}E(t-s)(Au_{0}-g(0))ds,\end{split}

thus we have

(G1)j(t)=Ctαj2Au0g(0)Ctαj2.\begin{split}\left\|(G_{1})_{j}^{\prime}(t)\right\|=Ct^{\alpha_{j}-2}\|Au_{0}-g(0)\|\leq Ct^{\alpha_{j}-2}.\end{split} (2.18)

Further, by applying E(ts)s=AE(ts)\frac{\partial E(t-s)}{\partial s}=AE(t-s) and integrating by parts, we obtain

(G2)j(t)=ωαj(s)E(ts)|t/2t(Au0g(0))dst/2tωαj(s)E(ts)(Au0g(0))𝑑s,\begin{split}(G_{2})_{j}(t)=\omega_{\alpha_{j}}(s)E(t-s)\Big{|}_{t/2}^{t}(Au_{0}-g(0))ds-\int_{t/2}^{t}\omega_{\alpha_{j}}^{\prime}(s)E(t-s)(Au_{0}-g(0))ds,\end{split}

therefore (2.7) gives (G2)j(t)Ctαj1\|(G_{2})_{j}(t)\|\leq Ct^{\alpha_{j}-1}. Then, Differentiating (G2)j(t)(G_{2})_{j}(t) and similar to the estimate of (G1)j(t)\left\|(G_{1})_{j}^{\prime}(t)\right\|, we can yield that

(G2)j(t)=Ctαj2Au0g(0)Ctαj2.\begin{split}\left\|(G_{2})_{j}^{\prime}(t)\right\|=Ct^{\alpha_{j}-2}\|Au_{0}-g(0)\|\leq Ct^{\alpha_{j}-2}.\end{split} (2.19)

In view of (2.18) and (2.19), we use Lemmas 1 and 2 to deduce

R242j=1mtαj1+Cj=1m0t(ts)αj1Hj(s)𝑑sCj=1mtαj1+j=1m0t(ts)αj1sα1𝑑sC(tα1+j=1mtαj+α1)Ctα1.\begin{split}\left\|R_{24}\right\|_{2}&\leq\sum\limits_{j=1}^{m}t^{\alpha_{j}-1}+C\sum\limits_{j=1}^{m}\int_{0}^{t}(t-s)^{\alpha_{j}-1}\|H_{j}(s)\|ds\\ &\leq C\sum\limits_{j=1}^{m}t^{\alpha_{j}-1}+\sum\limits_{j=1}^{m}\int_{0}^{t}(t-s)^{\alpha_{j}-1}s^{\alpha-1}ds\\ &\leq C\left(t^{\alpha-1}+\sum_{j=1}^{m}t^{\alpha_{j}+\alpha-1}\right)\leq Ct^{\alpha-1}.\end{split} (2.20)

Using (2.11)-(2.14) and (2.20), then

Av2(t)C(tα1u02+0tωα(tσ)Av2(σ)𝑑σ),\begin{split}\left\|Av_{2}^{\prime}(t)\right\|\leq C\left(t^{\alpha-1}\left\|u_{0}\right\|_{2}+\int_{0}^{t}\omega_{\alpha}(t-\sigma)\left\|Av_{2}^{\prime}(\sigma)\right\|d\sigma\right),\end{split} (2.21)

from which using Grönwall’s lemma (see (Chen, , Lemma 1)), we get Av2(t)Ctα1u02\left\|Av_{2}^{\prime}(t)\right\|\leq Ct^{\alpha-1}\left\|u_{0}\right\|_{2}. From (2.10) and above analyses, we have

v2′′(t)CAv2(t)+κv(t)+j=1mωαj(t)u02+j=1m0tωαj(ts)(BjA1)Av(s)𝑑sCtα1u02,\begin{split}\left\|v_{2}^{\prime\prime}(t)\right\|&\leq C\left\|Av_{2}^{\prime}(t)\right\|+\kappa\left\|v^{\prime}(t)\right\|+\sum\limits_{j=1}^{m}\omega_{\alpha_{j}}(t)\|u_{0}\|_{2}\\ &+\sum\limits_{j=1}^{m}\int_{0}^{t}\omega_{\alpha_{j}}(t-s)\|(B_{j}A^{-1})Av^{\prime}(s)\|ds\\ &\leq Ct^{\alpha-1}\left\|u_{0}\right\|_{2},\end{split} (2.22)

which combines Lemma 3, we finish the proof.

According to the relation between v(t)v(t) and u(t)u(t), we give the following theorems.

Theorem 2.3

Under the assumptions of Theorem 2.1. Then the solution of (1.1) satisfies that

u(t)+Au(t)Ceκtu0,0<tT.\begin{split}\|u^{\prime}(t)\|+\|Au(t)\|\leq Ce^{-\kappa t}\|u_{0}\|,\quad 0<t\leq T.\end{split}
Proof

By Theorem 2.1 and v(t)=eκtu(t)v(t)=e^{\kappa t}u(t), we have

u(t)+κu(t)+Au(t)Cu0eκt,\begin{split}\|u^{\prime}(t)+\kappa u(t)\|+\|Au(t)\|\leq C\|u_{0}\|e^{-\kappa t},\end{split}

which follows from the triangle inequality that

u(t)+Au(t)eκt(Cu0+κv(t)),\begin{split}\|u^{\prime}(t)\|+\|Au(t)\|\leq e^{-\kappa t}\Big{(}C\|u_{0}\|+\kappa\|v(t)\|\Big{)},\end{split}

which yields the desired result.

Theorem 2.4

Under the assumptions of Theorem 2.2, then for 0<tT0<t\leq T, the solution of (1.1) satisfies

u′′(t)+Au(t)Ceκttα1u02,αmin1jm{αj}.\begin{split}\|u^{\prime\prime}(t)\|+\|Au^{\prime}(t)\|\leq Ce^{-\kappa t}t^{\alpha-1}\|u_{0}\|_{2},\quad\alpha\in\min\limits_{1\leq j\leq m}\{\alpha_{j}\}.\end{split}
Proof

By Theorem 2.2, Theorem 2.3 and the triangle inequality, we get

Au(t)eκtAv(t)+κAu(t)Ceκttα1u02,\begin{split}\|Au^{\prime}(t)\|\leq e^{-\kappa t}\|Av^{\prime}(t)\|+\kappa\|Au(t)\|\leq Ce^{-\kappa t}t^{\alpha-1}\|u_{0}\|_{2},\end{split}

and

u′′(t)eκtv′′(t)+κ2eκtv(t)+2κu(t)Ceκttα1u02.\begin{split}\|u^{\prime\prime}(t)\|\leq e^{-\kappa t}\|v^{\prime\prime}(t)\|+\kappa^{2}e^{-\kappa t}\|v(t)\|+2\kappa\|u^{\prime}(t)\|\leq Ce^{-\kappa t}t^{\alpha-1}\|u_{0}\|_{2}.\end{split}

We complete the proof.

Moreover, to show the regularity result (2.3), we need to derive that Av′′(t)Ctα2\|Av^{\prime\prime}(t)\|\leq Ct^{\alpha-2}, which can be proved by the procedure that was utilized to present that Av(t)Ctα1\|Av^{\prime}(t)\|\leq Ct^{\alpha-1}, based on certain changes and appropriate assumptions. These naturally deduce that Au′′(t)Ceκttα2\|Au^{\prime\prime}(t)\|\leq Ce^{-\kappa t}t^{\alpha-2} from previous analyses.

3 Establishment of numerical scheme

Before formulating the time-discrete scheme, we first introduce some helpful notations.

3.1 Some notations

In this section, we shall give some symbols in order to construct our method. First, we present the temporal levels 0=t0<t1<t2<0=t_{0}<t_{1}<t_{2}<\cdots and define that kn=tntn1k_{n}=t_{n}-t_{n-1} and tn1/2=12(tn+tn1)t_{n-1/2}=\frac{1}{2}(t_{n}+t_{n-1}) for n1n\geq 1. Moreover, we define that 𝒱k={𝒱n|0nN}\mathcal{V}_{k}=\{\mathcal{V}^{n}|0\leq n\leq N\} and that

δt𝒱n12=1kn(𝒱n𝒱n1),𝒱n12=12(𝒱n+𝒱n1),1nN,\begin{array}[]{ll}\delta_{t}\mathcal{V}^{n-\frac{1}{2}}=\frac{1}{k_{n}}(\mathcal{V}^{n}-\mathcal{V}^{n-1}),\quad\mathcal{V}^{n-\frac{1}{2}}=\frac{1}{2}(\mathcal{V}^{n}+\mathcal{V}^{n-1}),\quad 1\leq n\leq N,\end{array}

and we also define the piecewise constant approximation as follows

𝒱¯(t)={𝒱1,t0<t<t1,𝒱n1/2,tn1<t<tn,n2.\overline{\mathcal{V}}(t)=\begin{cases}\mathcal{V}^{1},&t_{0}<t<t_{1},\\ \mathcal{V}^{n-1/2},&t_{n-1}<t<t_{n},\quad n\geq 2.\end{cases} (3.1)

Then in view of above results, for approximating the integral term given in (2.2), we utilize the PI rule to denote the discrete fractional integral (see McLean )

I(αj)𝒱n1/2=1kntn1tnI(αj)𝒱¯(t)𝑑t=1kntn1tn0tωαj(tϑ)𝒱¯(ϑ)𝑑ϑ𝑑t=wn1(j)𝒱1k1+p=2nwnp(j)𝒱p1/2kp,1jm,\begin{split}I^{(\alpha_{j})}\mathcal{V}^{n-1/2}&=\frac{1}{k_{n}}\int_{t_{n-1}}^{t_{n}}I^{(\alpha_{j})}\overline{\mathcal{V}}(t)dt=\frac{1}{k_{n}}\int_{t_{n-1}}^{t_{n}}\int_{0}^{t}\omega_{\alpha_{j}}(t-\vartheta)\overline{\mathcal{V}}(\vartheta)d\vartheta dt\\ &=w_{n1}^{(j)}\mathcal{V}^{1}k_{1}+\sum\limits_{p=2}^{n}w_{np}^{(j)}\mathcal{V}^{p-1/2}k_{p},\quad 1\leq j\leq m,\end{split} (3.2)

where

wnp(j)=1knkptn1tntp1min{t,tp}ωαj(tϑ)𝑑ϑ𝑑t>0.\begin{split}w_{np}^{(j)}=\frac{1}{k_{n}k_{p}}\int_{t_{n-1}}^{t_{n}}\int_{t_{p-1}}^{\min\{t,t_{p}\}}\omega_{\alpha_{j}}(t-\vartheta)d\vartheta dt>0.\end{split} (3.3)

Further, for 1pn11\leq p\leq n-1, we obtain

wnp(j)=1knkptn1tntp1tpωαj(tϑ)𝑑ϑ𝑑t=λn,p(j)λn1,p(j)knkpΓ(αj+2),\begin{split}w_{np}^{(j)}=\frac{1}{k_{n}k_{p}}\int_{t_{n-1}}^{t_{n}}\int_{t_{p-1}}^{t_{p}}\omega_{\alpha_{j}}(t-\vartheta)d\vartheta dt=\frac{\lambda_{n,p}^{(j)}-\lambda_{n-1,p}^{(j)}}{k_{n}k_{p}\Gamma(\alpha_{j}+2)},\end{split} (3.4)

from which, λn,p(j)=(tntp1)αj+1(tntp)αj+1\lambda_{n,p}^{(j)}=(t_{n}-t_{p-1})^{\alpha_{j}+1}-(t_{n}-t_{p})^{\alpha_{j}+1}, and for n1n\geq 1, then

wnn(j)=1kn2tn1tntn1tωαj(tϑ)𝑑ϑ𝑑t=knαj1Γ(αj+2).\begin{split}w_{nn}^{(j)}=\frac{1}{k_{n}^{2}}\int_{t_{n-1}}^{t_{n}}\int_{t_{n-1}}^{t}\omega_{\alpha_{j}}(t-\vartheta)d\vartheta dt=\frac{k_{n}^{\alpha_{j}-1}}{\Gamma(\alpha_{j}+2)}.\end{split} (3.5)

Besides, for the inhomogeneous term in (2.2), we denote

gn121kntn1tng(t)𝑑t,n1,\begin{split}g^{n-\frac{1}{2}}\approx\frac{1}{k_{n}}\int_{t_{n-1}}^{t_{n}}g(t)dt,\qquad n\geq 1,\end{split} (3.6)

from which, we suppose that

g1/2k1t0t1g(t)𝑑tCt0t1tg(t)𝑑t,\begin{split}\left\|g^{1/2}k_{1}-\int_{t_{0}}^{t_{1}}g(t)dt\right\|\leq C\int_{t_{0}}^{t_{1}}t\|g^{\prime}(t)\|dt,\end{split} (3.7)

and that

gn1/2kntn1tng(t)𝑑tCkn2tn1tng′′(t)𝑑t,n2.\begin{split}\left\|g^{n-1/2}k_{n}-\int_{t_{n-1}}^{t_{n}}g(t)dt\right\|\leq Ck_{n}^{2}\int_{t_{n-1}}^{t_{n}}\|g^{\prime\prime}(t)\|dt,\quad n\geq 2.\end{split} (3.8)

Also, e.g., gn12=12[g(tn1)+g(tn)]g^{n-\frac{1}{2}}=\frac{1}{2}\left[g(t_{n-1})+g(t_{n})\right] or gn12=g(tn1/2)g^{n-\frac{1}{2}}=g(t_{n-1/2}) are permissible.

Then, to overcome the singular behaviour of the exact solution at t=0t=0, we give some hypotheses of non-uniform meshes McLean that

knCγkmin{1,tn11/γ},n1,γ1,\begin{split}k_{n}\leq C_{\gamma}k\min\left\{1,t_{n}^{1-1/\gamma}\right\},\quad n\geq 1,\quad\gamma\geq 1,\end{split} (3.9)

where CγC_{\gamma} does not depend on kk, and that

t1=k1cγkγ,tnCγtn1,n2,\begin{split}t_{1}=k_{1}\geq c_{\gamma}k^{\gamma},\quad t_{n}\leq C_{\gamma}t_{n-1},\quad n\geq 2,\end{split} (3.10)

and that (a more rigid hypothesis)

0kn+1knCγk2min{1,tn12/γ},n2.\begin{split}0\leq k_{n+1}-k_{n}\leq C_{\gamma}k^{2}\min\left\{1,t_{n}^{1-2/\gamma}\right\},\quad n\geq 2.\end{split} (3.11)

Thence, for 0tT<0\leq t\leq T<\infty, the case satisfying the hypotheses (3.9)-(3.11) is

tn=(nk)γ,k=T1/γ/N,0nN.\begin{split}t_{n}=(nk)^{\gamma},\quad k=T^{1/\gamma}/N,\quad 0\leq n\leq N.\end{split} (3.12)

3.2 Time discrete scheme

First, we integrate (2.2) from t=tn1t=t_{n-1} to t=tnt=t_{n} and multiply the term 1kn\frac{1}{k_{n}}, then

δtvn12+1kntn1tnAv(t)𝑑t+1knj=1mtn1tn(ωαjBjv)(t)𝑑tκkntn1tnv(t)𝑑t=1kntn1tng(t)𝑑t,\begin{split}\delta_{t}v^{n-\frac{1}{2}}+\frac{1}{k_{n}}\int_{t_{n-1}}^{t_{n}}Av(t)dt&+\frac{1}{k_{n}}\sum\limits_{j=1}^{m}\int_{t_{n-1}}^{t_{n}}(\omega_{\alpha_{j}}*B_{j}v)(t)dt\\ &-\frac{\kappa}{k_{n}}\int_{t_{n-1}}^{t_{n}}v(t)dt=\frac{1}{k_{n}}\int_{t_{n-1}}^{t_{n}}g(t)dt,\end{split} (3.13)

which follows from (3.1)-(3.8) that

δtv12+Av1+j=1mI(αj)Bjv12κv1=g12+1/2,\begin{split}\delta_{t}v^{\frac{1}{2}}+Av^{1}&+\sum\limits_{j=1}^{m}I^{(\alpha_{j})}B_{j}v^{\frac{1}{2}}-\kappa v^{1}=g^{\frac{1}{2}}+\mathcal{R}^{1/2},\end{split} (3.14)

and for n2n\geq 2 that

δtvn12+Avn12+j=1mI(αj)Bjvn12κvn12=gn12+n1/2,\begin{split}\delta_{t}v^{n-\frac{1}{2}}+Av^{n-\frac{1}{2}}&+\sum\limits_{j=1}^{m}I^{(\alpha_{j})}B_{j}v^{n-\frac{1}{2}}-\kappa v^{n-\frac{1}{2}}=g^{n-\frac{1}{2}}+\mathcal{R}^{n-1/2},\end{split} (3.15)

where vn=v(tn)v^{n}=v(t_{n}), vn12=vn+vn12v^{n-\frac{1}{2}}=\frac{v^{n}+v^{n-1}}{2} and n1/2=s=14sn1/2\mathcal{R}^{n-1/2}=\sum\limits_{s=1}^{4}\mathcal{R}_{s}^{n-1/2} for n1n\geq 1, and

11/2=Av11k1t0t1Av(t)𝑑t,1n1/2=Avn121kntn1tnAv(t)𝑑t,n2,2n1/2=j=1m(I(αj)Bjvn121kntn1tn(ωαjBjv)(t)𝑑t),n,m1,31/2=κ(v11k1t0t1v(t)𝑑t),3n1/2=κ(vn121kntn1tnv(t)𝑑t),n2,4n1/2=gn121kntn1tng(t)𝑑t,n1.\begin{split}&\mathcal{R}_{1}^{1/2}=Av^{1}-\frac{1}{k_{1}}\int_{t_{0}}^{t_{1}}Av(t)dt,\\ &\mathcal{R}_{1}^{n-1/2}=Av^{n-\frac{1}{2}}-\frac{1}{k_{n}}\int_{t_{n-1}}^{t_{n}}Av(t)dt,\quad n\geq 2,\\ &\mathcal{R}_{2}^{n-1/2}=\sum\limits_{j=1}^{m}\left(I^{(\alpha_{j})}B_{j}v^{n-\frac{1}{2}}-\frac{1}{k_{n}}\int_{t_{n-1}}^{t_{n}}(\omega_{\alpha_{j}}*B_{j}v)(t)dt\right),\quad n,m\geq 1,\\ &\mathcal{R}_{3}^{1/2}=-\kappa\left(v^{1}-\frac{1}{k_{1}}\int_{t_{0}}^{t_{1}}v(t)dt\right),\\ &\mathcal{R}_{3}^{n-1/2}=-\kappa\left(v^{n-\frac{1}{2}}-\frac{1}{k_{n}}\int_{t_{n-1}}^{t_{n}}v(t)dt\right),\quad n\geq 2,\\ &\mathcal{R}_{4}^{n-1/2}=g^{n-\frac{1}{2}}-\frac{1}{k_{n}}\int_{t_{n-1}}^{t_{n}}g(t)dt,\quad n\geq 1.\end{split} (3.16)

Then omitting the truncation errors n1/2\mathcal{R}^{n-1/2} and replacing vnv^{n} with its numerical approximation VnV^{n}, then time discrete scheme is yielded as follows

δtV12+AV1+j=1mI(αj)BjV12κV1=g12,\begin{split}\delta_{t}V^{\frac{1}{2}}+AV^{1}&+\sum\limits_{j=1}^{m}I^{(\alpha_{j})}B_{j}V^{\frac{1}{2}}-\kappa V^{1}=g^{\frac{1}{2}},\end{split} (3.17)
δtVn12+AVn12+j=1mI(αj)BjVn12κVn12=gn12,2nN,\begin{split}\delta_{t}V^{n-\frac{1}{2}}+AV^{n-\frac{1}{2}}&+\sum\limits_{j=1}^{m}I^{(\alpha_{j})}B_{j}V^{n-\frac{1}{2}}-\kappa V^{n-\frac{1}{2}}=g^{n-\frac{1}{2}},\quad 2\leq n\leq N,\end{split} (3.18)
V0=u0.\begin{split}V^{0}=u_{0}.\end{split} (3.19)

4 Analysis of time discrete scheme

In this section, we shall present the stability and convergence of the proposed time-discrete scheme (3.17)-(3.19).

4.1 Stability

Here, we first establish the stability result of the numerical scheme. Then the following theorem is obtained.

Theorem 4.1

Assume that the numerical solution VnV^{n} is denoted by (3.17) and (3.18) for 1nN1\leq n\leq N. Let UnU^{n} be the approximate solution of u(tn)u(t_{n}) given in (1.1). Then for T<T<\infty and 0κ<0\leq\kappa<\infty, it holds that

max1nNVnC(T)(V0+n=1Nkngn1/2),\begin{split}\max\limits_{1\leq n\leq N}\|V^{n}\|\leq C(T)\left(\|V^{0}\|+\sum\limits_{n=1}^{N}k_{n}\left\|g^{n-1/2}\right\|\right),\end{split}

and that

max1nNUnC(T)(U0+n=1Nkneκtn1/2fn1/2).\begin{split}\max\limits_{1\leq n\leq N}\|U^{n}\|\leq C(T)\left(\|U^{0}\|+\sum\limits_{n=1}^{N}k_{n}e^{\kappa t_{n-1/2}}\left\|f^{n-1/2}\right\|\right).\end{split}
Proof

By taking the inner product of (3.17)-(3.18) with k1V1k_{1}V^{1} and knVn12k_{n}V^{n-\frac{1}{2}} correspondingly, and summing (3.8) for nn from 2 to NN, we obtain that

k1(δtV12,V1)+k1(AV1,V1)+k1j=1m(I(αj)BjV1/2,V1)κk1(V1,V1)=k1(g12,V1),\begin{split}k_{1}(\delta_{t}V^{\frac{1}{2}},V^{1})&+k_{1}(AV^{1},V^{1})+k_{1}\sum\limits_{j=1}^{m}\left(I^{(\alpha_{j})}B_{j}V^{1/2},V^{1}\right)\\ &-\kappa k_{1}(V^{1},V^{1})=k_{1}\left(g^{\frac{1}{2}},V^{1}\right),\end{split} (4.1)

and that

n=2Nkn(δtVn12,Vn12)+n=2Nkn(AVn12,Vn12)κn=2Nkn(Vn12,Vn12)+j=1mn=2Nkn(I(αj)BjVn1/2,Vn12)=n=2Nkn(gn12,Vn12).\begin{split}&\sum\limits_{n=2}^{N}k_{n}(\delta_{t}V^{n-\frac{1}{2}},V^{n-\frac{1}{2}})+\sum\limits_{n=2}^{N}k_{n}(AV^{n-\frac{1}{2}},V^{n-\frac{1}{2}})-\kappa\sum\limits_{n=2}^{N}k_{n}(V^{n-\frac{1}{2}},V^{n-\frac{1}{2}})\\ &+\sum\limits_{j=1}^{m}\sum\limits_{n=2}^{N}k_{n}\left(I^{(\alpha_{j})}B_{j}V^{n-1/2},V^{n-\frac{1}{2}}\right)=\sum\limits_{n=2}^{N}k_{n}\left(g^{n-\frac{1}{2}},V^{n-\frac{1}{2}}\right).\end{split} (4.2)

Adding above two formulae and applying the positiveness of operator AA, we have

k1(δtV12,V1)+n=2Nkn(δtVn12,Vn12)κ(k1V12+n=2NknVn122)+j=1m{k1(I(αj)BjV12,V1)+n=2Nkn(I(αj)BjVn12,Vn12)}=k1(g12,V1)+n=2Nkn(gn12,Vn12).\begin{split}k_{1}(\delta_{t}V^{\frac{1}{2}},V^{1})&+\sum\limits_{n=2}^{N}k_{n}(\delta_{t}V^{n-\frac{1}{2}},V^{n-\frac{1}{2}})-\kappa\left(k_{1}\|V^{1}\|^{2}+\sum\limits_{n=2}^{N}k_{n}\|V^{n-\frac{1}{2}}\|^{2}\right)\\ &+\sum\limits_{j=1}^{m}\left\{k_{1}\left(I^{(\alpha_{j})}B_{j}V^{\frac{1}{2}},V^{1}\right)+\sum\limits_{n=2}^{N}k_{n}\left(I^{(\alpha_{j})}B_{j}V^{n-\frac{1}{2}},V^{n-\frac{1}{2}}\right)\right\}\\ &=k_{1}\left(g^{\frac{1}{2}},V^{1}\right)+\sum\limits_{n=2}^{N}k_{n}\left(g^{n-\frac{1}{2}},V^{n-\frac{1}{2}}\right).\end{split} (4.3)

Let BjB_{j} be the positive-definite operator and then from (Mustapha, , Lemma 3.1), we get

k1(I(αj)BjV12,V1)+n=2Nkn(I(αj)BjVn12,Vn12)0.\begin{split}k_{1}\left(I^{(\alpha_{j})}B_{j}V^{\frac{1}{2}},V^{1}\right)+\sum\limits_{n=2}^{N}k_{n}\left(I^{(\alpha_{j})}B_{j}V^{n-\frac{1}{2}},V^{n-\frac{1}{2}}\right)\geq 0.\end{split} (4.4)

Therefore, using the Cauchy-Schwarz inequality, then (4.3) turns into

k1(δtV12,V1)+n=2Nkn(δtVn12,Vn12)κ(k1V12+n=2NknVn122)k1g12V1+n=2Nkngn12Vn12.\begin{split}k_{1}\left(\delta_{t}V^{\frac{1}{2}},V^{1}\right)&+\sum\limits_{n=2}^{N}k_{n}\left(\delta_{t}V^{n-\frac{1}{2}},V^{n-\frac{1}{2}}\right)-\kappa\left(k_{1}\|V^{1}\|^{2}+\sum\limits_{n=2}^{N}k_{n}\|V^{n-\frac{1}{2}}\|^{2}\right)\\ &\leq k_{1}\left\|g^{\frac{1}{2}}\right\|\left\|V^{1}\right\|+\sum\limits_{n=2}^{N}k_{n}\left\|g^{n-\frac{1}{2}}\right\|\left\|V^{n-\frac{1}{2}}\right\|.\end{split} (4.5)

Then it is easy to yield

(δtV12,V1)V12V022k1,(δtVn12,Vn12)=Vn2Vn122kn.\begin{split}\left(\delta_{t}V^{\frac{1}{2}},V^{1}\right)\geq\frac{\left\|V^{1}\right\|^{2}-\left\|V^{0}\right\|^{2}}{2k_{1}},\quad\left(\delta_{t}V^{n-\frac{1}{2}},V^{n-\frac{1}{2}}\right)=\frac{\left\|V^{n}\right\|^{2}-\left\|V^{n-1}\right\|^{2}}{2k_{n}}.\end{split} (4.6)

Thus, we further obtain

VN2V022k1(κV1+g1/2)V1+n=2Nkn(κVn12+gn12)Vn12.\begin{split}\frac{\left\|V^{N}\right\|^{2}-\left\|V^{0}\right\|^{2}}{2}&\leq k_{1}\left(\kappa\left\|V^{1}\right\|+\left\|g^{1/2}\right\|\right)\left\|V^{1}\right\|\\ &+\sum\limits_{n=2}^{N}k_{n}\left(\kappa\left\|V^{n-\frac{1}{2}}\right\|+\left\|g^{n-\frac{1}{2}}\right\|\right)\left\|V^{n-\frac{1}{2}}\right\|.\end{split} (4.7)

Next, choosing a suitable \mathcal{M} such that V=max0nNVn\left\|V^{\mathcal{M}}\right\|=\max\limits_{0\leq n\leq N}\left\|V^{n}\right\|, then

V2V02+2k1(κV1+g1/2)V1+2n=2kn(κVn12+gn12)Vn12V0V+2k1(κV1+g1/2)V+2n=2kn(κVn12+gn12)V.\begin{split}\left\|V^{\mathcal{M}}\right\|^{2}&\leq\left\|V^{0}\right\|^{2}+2k_{1}\left(\kappa\left\|V^{1}\right\|+\left\|g^{1/2}\right\|\right)\left\|V^{1}\right\|\\ &+2\sum\limits_{n=2}^{\mathcal{M}}k_{n}\left(\kappa\left\|V^{n-\frac{1}{2}}\right\|+\left\|g^{n-\frac{1}{2}}\right\|\right)\left\|V^{n-\frac{1}{2}}\right\|\\ &\leq\left\|V^{0}\right\|\left\|V^{\mathcal{M}}\right\|+2k_{1}\left(\kappa\left\|V^{1}\right\|+\left\|g^{1/2}\right\|\right)\left\|V^{\mathcal{M}}\right\|\\ &+2\sum\limits_{n=2}^{\mathcal{M}}k_{n}\left(\kappa\left\|V^{n-\frac{1}{2}}\right\|+\left\|g^{n-\frac{1}{2}}\right\|\right)\left\|V^{\mathcal{M}}\right\|.\end{split} (4.8)

Consequently,

VNVV0+2k1(κV1+g1/2)+2n=2Nkn(κVn12+gn12)κkNVN+2κn=1N1(kn+kn+1)Vn+(V0+2n=1Nkngn12).\begin{split}\left\|V^{N}\right\|\leq\left\|V^{\mathcal{M}}\right\|&\leq\left\|V^{0}\right\|+2k_{1}\left(\kappa\left\|V^{1}\right\|+\left\|g^{1/2}\right\|\right)\\ &+2\sum\limits_{n=2}^{N}k_{n}\left(\kappa\left\|V^{n-\frac{1}{2}}\right\|+\left\|g^{n-\frac{1}{2}}\right\|\right)\\ &\leq\kappa k_{N}\left\|V^{N}\right\|+2\kappa\sum\limits_{n=1}^{N-1}(k_{n}+k_{n+1})\left\|V^{n}\right\|\\ &+\left(\left\|V^{0}\right\|+2\sum\limits_{n=1}^{N}k_{n}\left\|g^{n-\frac{1}{2}}\right\|\right).\end{split} (4.9)

Then an application of Grönwall’s lemma (see Sloan ) yields

VNCn=1N1(kn+kn+1)(V0+2n=1Nkngn12)C(T)(V0+n=1Nkngn12),\begin{split}\left\|V^{N}\right\|&\leq C\sum\limits_{n=1}^{N-1}\left(k_{n}+k_{n+1}\right)\left(\left\|V^{0}\right\|+2\sum\limits_{n=1}^{N}k_{n}\left\|g^{n-\frac{1}{2}}\right\|\right)\\ &\leq C(T)\left(\left\|V^{0}\right\|+\sum\limits_{n=1}^{N}k_{n}\left\|g^{n-\frac{1}{2}}\right\|\right),\end{split} (4.10)

which can finish the proof by using (2.1).

4.2 Convergence

Based on above analyses, we shall deduce the convergence of the scheme by the energy argument. We first define

ρn=v(tn)Vn,en=u(tn)Un,0nN.\begin{split}\rho^{n}=v(t_{n})-V^{n},\quad e^{n}=u(t_{n})-U^{n},\quad 0\leq n\leq N.\end{split} (4.11)

Then we subtract (3.17)-(3.18) from (3.14)-(3.15) to get error equations as follows

δtρ12+Aρ1+j=1mI(αj)Bjρ12κρ1=12,\begin{split}\delta_{t}\rho^{\frac{1}{2}}+A\rho^{1}&+\sum\limits_{j=1}^{m}I^{(\alpha_{j})}B_{j}\rho^{\frac{1}{2}}-\kappa\rho^{1}=\mathcal{R}^{\frac{1}{2}},\end{split} (4.12)
δtρn12+Aρn12+j=1mI(αj)Bjρn12κρn12=n12\begin{split}\delta_{t}\rho^{n-\frac{1}{2}}+A\rho^{n-\frac{1}{2}}&+\sum\limits_{j=1}^{m}I^{(\alpha_{j})}B_{j}\rho^{n-\frac{1}{2}}-\kappa\rho^{n-\frac{1}{2}}=\mathcal{R}^{n-\frac{1}{2}}\end{split} (4.13)

with 2nN2\leq n\leq N and ρ0=0\rho^{0}=0, where n12\mathcal{R}^{n-\frac{1}{2}} is given in (3.16).

In order to further derive the convergence, we shall introduce several auxiliary lemmas. At first, from (McLean, , Corollary 3.4), we can yield the following two lemmas.

Lemma 4

Supposing that tnt_{n} satisfies the assumptions (3.9)-(3.11) and the exact solution satisfies the regularity condition (2.3), then for 1m<1\leq m<\infty, γ1\gamma\geq 1 and α=min1jm{αj}\alpha=\min\limits_{1\leq j\leq m}\{\alpha_{j}\}, we have

n=1Nkn2n12Cα,γ,T,m×Ξ(k,α,γ,T),\begin{split}\sum\limits_{n=1}^{N}k_{n}\left\|\mathcal{R}_{2}^{n-\frac{1}{2}}\right\|\leq C_{\alpha,\gamma,T,m}\times\Xi(k,\alpha,\gamma,T),\end{split}

where

Ξ(k,α,γ,T):={kγ(α+1),if 1γ<2/(α+1),k2log(tN/t1),if γ=2/(α+1),k2,if γ>2/(α+1).\begin{split}\Xi(k,\alpha,\gamma,T):=\begin{cases}k^{\gamma(\alpha+1)},&\mbox{if }1\leq\gamma<2/(\alpha+1),\\ k^{2}\log(t_{N}/t_{1}),&\mbox{if }\gamma=2/(\alpha+1),\\ k^{2},&\mbox{if }\gamma>2/(\alpha+1).\end{cases}\end{split}
Lemma 5

Assuming that tnt_{n} satisfies the assumptions (3.9)-(3.11) and the modified source term satisfies tg(t)+t2g′′(t)Ctαt\|g^{\prime}(t)\|+t^{2}\|g^{\prime\prime}(t)\|\leq Ct^{\alpha}, then for α=min1jm{αj}\alpha=\min\limits_{1\leq j\leq m}\{\alpha_{j}\} and γ1\gamma\geq 1, it holds that

n=1Nkn4n12Cα,γ×Ξ(k,α,γ,T).\begin{split}\sum\limits_{n=1}^{N}k_{n}\left\|\mathcal{R}_{4}^{n-\frac{1}{2}}\right\|\leq C_{\alpha,\gamma}\times\Xi(k,\alpha,\gamma,T).\end{split}

Further, we will estimate the remaining error terms in (3.16) based on certain reasonable conditions. Firstly, we give the following result.

Lemma 6

Assume that assumptions (3.9)-(3.11) hold and the exact solution satisfies the regularity (2.3). Then for γ1\gamma\geq 1 and α=min1jm{αj}\alpha=\min\limits_{1\leq j\leq m}\{\alpha_{j}\}, it holds that

n=1Nkn1n12Cα,γ×Ξ(k,α,γ,T).\begin{split}\sum\limits_{n=1}^{N}k_{n}\left\|\mathcal{R}_{1}^{n-\frac{1}{2}}\right\|\leq C_{\alpha,\gamma}\times\Xi(k,\alpha,\gamma,T).\end{split}
Proof

First, when n=1n=1, we use the Taylor expansion with integral remainder to obtain

k1112=0k1tk1Av(ζ)𝑑ζ𝑑t=0k10ζAv(ζ)𝑑t𝑑ζ=0k1ζAv(ζ)𝑑ζ.\begin{split}k_{1}\mathcal{R}_{1}^{\frac{1}{2}}=\int_{0}^{k_{1}}\int_{t}^{k_{1}}Av^{\prime}(\zeta)d\zeta dt=\int_{0}^{k_{1}}\int_{0}^{\zeta}Av^{\prime}(\zeta)dtd\zeta=\int_{0}^{k_{1}}\zeta Av^{\prime}(\zeta)d\zeta.\end{split} (4.14)

Similarly, we also have

v(t)v(tn1/2)=(ttn1/2)v(tn1/2)+tn1/2t(tζ)v′′(ζ)𝑑ζ,\begin{split}v(t)-v(t_{n-1/2})=(t-t_{n-1/2})v^{\prime}(t_{n-1/2})+\int_{t_{n-1/2}}^{t}(t-\zeta)v^{\prime\prime}(\zeta)d\zeta,\end{split} (4.15)

and

vn12v(tn12)=12[tn1tn12(ζtn1)v′′(ζ)𝑑ζtn12tn(ζtn)v′′(ζ)𝑑ζ].\begin{split}v^{n-\frac{1}{2}}-v(t_{n-\frac{1}{2}})=\frac{1}{2}\left[\int_{t_{n-1}}^{t_{n-\frac{1}{2}}}(\zeta-t_{n-1})v^{\prime\prime}(\zeta)d\zeta-\int_{t_{n-\frac{1}{2}}}^{t_{n}}(\zeta-t_{n})v^{\prime\prime}(\zeta)d\zeta\right].\end{split} (4.16)

Then for n2n\geq 2, we yield

kn1n12=tn1tnA[vn12v(tn1/2)]𝑑ζ+tn1tnA[v(tn1/2)v(t)]𝑑ζ=kn2[tn1tn1/2(ζtn1)Av′′(ζ)𝑑ζtn1/2tn(ζtn)Av′′(ζ)𝑑ζ]Av(tn1/2)2(ttn1/2)2|tn1tntn1tntn1/2t(tζ)Av′′(ζ)𝑑ζ𝑑t.\begin{split}k_{n}\mathcal{R}_{1}^{n-\frac{1}{2}}&=\int_{t_{n-1}}^{t_{n}}A\left[v^{n-\frac{1}{2}}-v(t_{n-1/2})\right]d\zeta+\int_{t_{n-1}}^{t_{n}}A\left[v(t_{n-1/2})-v(t)\right]d\zeta\\ &=\frac{k_{n}}{2}\left[\int_{t_{n-1}}^{t_{n-1/2}}(\zeta-t_{n-1})Av^{\prime\prime}(\zeta)d\zeta-\int_{t_{n-1/2}}^{t_{n}}(\zeta-t_{n})Av^{\prime\prime}(\zeta)d\zeta\right]\\ &-\frac{Av^{\prime}(t_{n-1/2})}{2}(t-t_{n-1/2})^{2}\Big{|}_{t_{n-1}}^{t_{n}}-\int_{t_{n-1}}^{t_{n}}\int_{t_{n-1/2}}^{t}(t-\zeta)Av^{\prime\prime}(\zeta)d\zeta dt.\end{split} (4.17)

Thus, using (4.14), (4.17), regularity condition (2.3) and (3.10), we obtain

n=1Nkn1n120k1ζAv(ζ)𝑑ζ+n=2Nkn2tn1tnAv′′(ζ)𝑑ζCα(0k1ζα𝑑ζ+n=2Nkn3tnα2)Cα,γ(kγ(α+1)+k2n=2Ntnα2/γkn),\begin{split}\sum\limits_{n=1}^{N}k_{n}\left\|\mathcal{R}_{1}^{n-\frac{1}{2}}\right\|&\leq\int_{0}^{k_{1}}\zeta\|Av^{\prime}(\zeta)\|d\zeta+\sum\limits_{n=2}^{N}k_{n}^{2}\int_{t_{n-1}}^{t_{n}}\|Av^{\prime\prime}(\zeta)\|d\zeta\\ &\leq C_{\alpha}\left(\int_{0}^{k_{1}}\zeta^{\alpha}d\zeta+\sum\limits_{n=2}^{N}k_{n}^{3}t_{n}^{\alpha-2}\right)\\ &\leq C_{\alpha,\gamma}\left(k^{\gamma(\alpha+1)}+k^{2}\sum\limits_{n=2}^{N}t_{n}^{\alpha-2/\gamma}k_{n}\right),\end{split}

from which,

n=2Ntnα2/γknCk1tNζα2/γ𝑑ζC×{kγ(α+1)22/γ(α+1),if γ<2α+1,log(tN/t1),if γ=2α+1,tn(α+1)2/γ(α+1)2/γ,if γ>2α+1.\begin{split}\sum\limits_{n=2}^{N}t_{n}^{\alpha-2/\gamma}k_{n}\leq C\int_{k_{1}}^{t_{N}}\zeta^{\alpha-2/\gamma}d\zeta\leq C\times\begin{cases}\frac{k^{\gamma(\alpha+1)-2}}{2/\gamma-(\alpha+1)},&\mbox{if }\gamma<\frac{2}{\alpha+1},\\ \log(t_{N}/t_{1}),&\mbox{if }\gamma=\frac{2}{\alpha+1},\\ \frac{t_{n}^{(\alpha+1)-2/\gamma}}{(\alpha+1)-2/\gamma},&\mbox{if }\gamma>\frac{2}{\alpha+1}.\end{cases}\end{split} (4.18)

This completes the proof.

Then, after a similar analysis, the following result holds.

Lemma 7

Suppose that assumptions (3.9)-(3.11) are valid and the exact solution satisfies the regularity (2.3). For γ1\gamma\geq 1, κ0\kappa\geq 0 and α=min1jm{αj}\alpha=\min\limits_{1\leq j\leq m}\{\alpha_{j}\}, it holds that

n=1Nkn3n12Cα,κ,γ,T×k2.\begin{split}\sum\limits_{n=1}^{N}k_{n}\left\|\mathcal{R}_{3}^{n-\frac{1}{2}}\right\|\leq C_{\alpha,\kappa,\gamma,T}\times k^{2}.\end{split}
Proof

For n=1n=1, using the Taylor expansion with integral remainder, we get

k1312=κ0k1tk1v(ζ)𝑑ζ𝑑t=κ0k1ζv(ζ)𝑑ζ.\begin{split}k_{1}\mathcal{R}_{3}^{\frac{1}{2}}=-\kappa\int_{0}^{k_{1}}\int_{t}^{k_{1}}v^{\prime}(\zeta)d\zeta dt=-\kappa\int_{0}^{k_{1}}\zeta v^{\prime}(\zeta)d\zeta.\end{split} (4.19)

Then for n2n\geq 2, we employ (4.15) and (4.16) to obtain

kn3n12=tn1tn[vn12v(tn1/2)]𝑑ζ+tn1tn[v(tn1/2)v(t)]𝑑ζ=κkn2[tn1tn1/2(ζtn1)v′′(ζ)𝑑ζtn1/2tn(ζtn)v′′(ζ)𝑑ζ]+κv(tn1/2)2(ttn1/2)2|tn1tn+κtn1tntn1/2t(tζ)v′′(ζ)𝑑ζ𝑑t.\begin{split}k_{n}\mathcal{R}_{3}^{n-\frac{1}{2}}&=\int_{t_{n-1}}^{t_{n}}\left[v^{n-\frac{1}{2}}-v(t_{n-1/2})\right]d\zeta+\int_{t_{n-1}}^{t_{n}}\left[v(t_{n-1/2})-v(t)\right]d\zeta\\ &=-\frac{\kappa k_{n}}{2}\left[\int_{t_{n-1}}^{t_{n-1/2}}(\zeta-t_{n-1})v^{\prime\prime}(\zeta)d\zeta-\int_{t_{n-1/2}}^{t_{n}}(\zeta-t_{n})v^{\prime\prime}(\zeta)d\zeta\right]\\ &+\frac{\kappa v^{\prime}(t_{n-1/2})}{2}(t-t_{n-1/2})^{2}\Big{|}_{t_{n-1}}^{t_{n}}+\kappa\int_{t_{n-1}}^{t_{n}}\int_{t_{n-1/2}}^{t}(t-\zeta)v^{\prime\prime}(\zeta)d\zeta dt.\end{split} (4.20)

Next, applying (4.19), (4.20), Theorem 2.1 and Theorem 2.2, we have

n=1Nkn3n12κ0k1ζv(ζ)𝑑ζ+κn=2Nkn2tn1tnv′′(ζ)𝑑ζCα,κ(0k1ζ𝑑ζ+n=2Nkn2(tnαtn1α))Cα,κ,γ(k12+k2n=2N(tnαtn1α)),\begin{split}\sum\limits_{n=1}^{N}k_{n}\left\|\mathcal{R}_{3}^{n-\frac{1}{2}}\right\|&\leq\kappa\int_{0}^{k_{1}}\zeta\|v^{\prime}(\zeta)\|d\zeta+\kappa\sum\limits_{n=2}^{N}k_{n}^{2}\int_{t_{n-1}}^{t_{n}}\|v^{\prime\prime}(\zeta)\|d\zeta\\ &\leq C_{\alpha,\kappa}\left(\int_{0}^{k_{1}}\zeta d\zeta+\sum\limits_{n=2}^{N}k_{n}^{2}\left(t_{n}^{\alpha}-t_{n-1}^{\alpha}\right)\right)\\ &\leq C_{\alpha,\kappa,\gamma}\left(k_{1}^{2}+k^{2}\sum\limits_{n=2}^{N}\left(t_{n}^{\alpha}-t_{n-1}^{\alpha}\right)\right),\end{split}

which finishes the proof.

Based on above analyses, we can yield the following convergence result.

Theorem 4.2

Let VnV^{n} denoted by (3.17) and (3.18) and UnU^{n} be the approximate solution of and v(tn)v(t_{n}) and u(tn)u(t_{n}), respectively. For T<T<\infty, α=min1jm{αj}\alpha=\min\limits_{1\leq j\leq m}\{\alpha_{j}\}, 1m<1\leq m<\infty, γ1\gamma\geq 1 and 0κ<0\leq\kappa<\infty, then it holds that

max1nNVnv(tn)Cα,κ,γ,T,m×Ξ(k,α,γ,T),max1nNUnu(tn)Cα,κ,γ,T,m×Ξ(k,α,γ,T),\begin{split}&\max\limits_{1\leq n\leq N}\|V^{n}-v(t_{n})\|\leq C_{\alpha,\kappa,\gamma,T,m}\times\Xi(k,\alpha,\gamma,T),\\ &\max\limits_{1\leq n\leq N}\|U^{n}-u(t_{n})\|\leq C_{\alpha,\kappa,\gamma,T,m}\times\Xi(k,\alpha,\gamma,T),\end{split}

where the notation Ξ(k,α,γ,T)\Xi(k,\alpha,\gamma,T) is denoted in Lemma 4.

Proof

In view of (4.11)-(4.13) and Theorem 4.1, we get

max1nNρnC(T)(ρ0+n=1Nknn1/2),max1nNenC(T)(e0+n=1Nknn1/2),\begin{split}&\max\limits_{1\leq n\leq N}\|\rho^{n}\|\leq C(T)\left(\|\rho^{0}\|+\sum_{n=1}^{N}k_{n}\left\|\mathcal{R}^{n-1/2}\right\|\right),\\ &\max\limits_{1\leq n\leq N}\|e^{n}\|\leq C(T)\left(\|e^{0}\|+\sum_{n=1}^{N}k_{n}\left\|\mathcal{R}^{n-1/2}\right\|\right),\end{split}

from which ρ0=e0=0\|\rho^{0}\|=\|e^{0}\|=0. Then utilizing the triangle inequality, (2.1) and Lemmas 4-7, the proof is completed.

5 Numerical experiment

In this section, in order to further show the time convergence of proposed scheme, we formulate the fully discrete scheme by the time semidiscrete scheme (3.17)-(3.19) and a standard spatial finite difference method, with the spatial step size h=LMh=\frac{L}{M} (M+M\in\mathbb{Z}^{+} is the number of spatial partitions). Below we choose the parameters T=L=1T=L=1 and denote the L2L_{2}-norm error

CN(N,M)=max1nNUnu(tn),\mathcal{E}_{CN}(N,M)=\max\limits_{1\leq n\leq N}\|U^{n}-u(t_{n})\|,

and the temporal convergence rate

rateCNk=log2(CN(N,M)CN(2N,M)).rate_{CN}^{k}=\log_{2}\left(\frac{\mathcal{E}_{CN}(N,M)}{\mathcal{E}_{CN}(2N,M)}\right).

In addition, we define the following notations for illustrating the numerical stability of the proposed scheme,

U=max1nNUn,U=n=1NknUn.U^{*}=\max\limits_{1\leq n\leq N}\|U^{n}\|,\quad U^{**}=\sum_{n=1}^{N}k_{n}\|U^{n}\|.
Example 1

Here we first consider the one-dimensional case (d=1d=1) of (1.1) with the parameter m=2m=2. Set the operators A=B1=B2=2x12A=B_{1}=B_{2}=-\frac{\partial^{2}}{\partial x_{1}^{2}} over the domain Ω=(0,L)\Omega=(0,L) with the homogeneous Dirichlet boundary conditions (DBCs). To meet the regularity assumption (2.3), the exact solution of (1.1) is given via

u(x1,t)=(t1+α1+t1+α2)eκtsinπx1,u(x_{1},t)=\left(t^{1+\alpha_{1}}+t^{1+\alpha_{2}}\right)e^{-\kappa t}\sin\pi x_{1},

thus the initial condition u0(x1)=0u_{0}(x_{1})=0 and the source term f(x1,t)f(x_{1},t) can be computed accordingly.

In Table 1, we list the L2L_{2}-norm errors and time convergence rates by fixing κ=1\kappa=1, α1=0.2\alpha_{1}=0.2, α2=0.8\alpha_{2}=0.8 and M=256M=256, from which, we discuss three cases regarding grading index γ\gamma, i.e., γ=1\gamma=1, γ=2α+1\gamma=\frac{2}{\alpha+1} and γ=2α+1+1\gamma=\frac{2}{\alpha+1}+1, respectively. It can be seen clearly from Table 1 that time convergence rates of proposed scheme reach the order 1+min{α1,α2}1+\min\{\alpha_{1},\alpha_{2}\} with uniform temporal step sizes, and second-order accuracy for time can be obtained with nonuniform temporal step sizes (γ2α+1\gamma\geq\frac{2}{\alpha+1}). These are consistent with Theorem 4.2. Below we only consider the cases with the optimal grading index γ=2α+1\gamma=\frac{2}{\alpha+1}.

Table 2 shows the L2L_{2}-norm errors and time convergence rates when κ=2\kappa=2, γ=2α+1\gamma=\frac{2}{\alpha+1} and M=512M=512, from which we present three cases with different α1\alpha_{1} and α2\alpha_{2}, including (i) α1<12<α2\alpha_{1}<\frac{1}{2}<\alpha_{2}, (ii) α1,α2<12\alpha_{1},\alpha_{2}<\frac{1}{2} and (iii) α1,α2>12\alpha_{1},\alpha_{2}>\frac{1}{2}. Then, the numerical results in Table 2 demonstrate that unform temporal second-order accuracy can be yielded under three situations.

Besides, in Table 3, fixed α1=α2=0.5\alpha_{1}=\alpha_{2}=0.5, γ=2α+1\gamma=\frac{2}{\alpha+1} and M=512M=512, we discuss three cases about different tempered parameter κ\kappa, involving κ=0.2\kappa=0.2, κ=1\kappa=1 and κ=5\kappa=5, respectively, from which the results approximate second-order convergence for time. These validate our theoretical analysis and illustrate the effectiveness of proposed scheme.

Then, in Table 4, fixed κ=1\kappa=1, γ=2α+1\gamma=\frac{2}{\alpha+1} and M=256M=256, we list two types of numerical solution UU^{*} and UU^{**}. Table 4 show that as NN increases gradually, the value of UU^{*} gradually stabilizes and finally remains unchanged, and the value of UU^{**} has maintained a non-increasing trend. These results demonstrate the numerical stability of proposed scheme in the time direction. Furthermore, the same phenomenon is exhibited in Table 5, by fixing some different parameters.

Table 1: Example 1: L2L_{2}-norm errors and time convergence rates when κ=1\kappa=1, α1=0.2\alpha_{1}=0.2, α2=0.8\alpha_{2}=0.8 and M=256M=256.
γ=1γ=2α+1γ=2α+1+1NCNrateCNkCNrateCNkCNrateCNk161.2098e-021.1501e-038.3435e-04324.9207e-031.302.9352e-041.972.2642e-041.88642.0432e-031.277.9232e-051.895.6305e-052.011288.6517e-041.242.1719e-051.871.0427e-052.432563.7105e-041.225.9279e-061.872.0922e-062.32\begin{array}[]{|c||c|c|c|c|c|c|}\hline\cr&\vrule\lx@intercol\hfil\text{$\gamma=1$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\gamma=\frac{2}{\alpha+1}$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\gamma=\frac{2}{\alpha+1}+1$}\hfil\lx@intercol\vrule\lx@intercol\\ \hline\cr N&\mathcal{E}_{CN}&rate^{k}_{CN}&\mathcal{E}_{CN}&rate^{k}_{CN}&\mathcal{E}_{CN}&rate^{k}_{CN}\\ \hline\cr 16&$1.2098e-02$&*&$1.1501e-03$&*&$8.3435e-04$&*\\ 32&$4.9207e-03$&1.30&$2.9352e-04$&1.97&$2.2642e-04$&1.88\\ 64&$2.0432e-03$&1.27&$7.9232e-05$&1.89&$5.6305e-05$&2.01\\ 128&$8.6517e-04$&1.24&$2.1719e-05$&1.87&$1.0427e-05$&2.43\\ 256&$3.7105e-04$&1.22&$5.9279e-06$&1.87&$2.0922e-06$&2.32\\ \hline\cr\end{array}
Table 2: Example 1: L2L_{2}-norm errors and time convergence rates when κ=2\kappa=2, γ=2α+1\gamma=\frac{2}{\alpha+1} and M=512M=512.
α1=0.15α2=0.85α1=0.10α2=0.20α1=0.80α2=0.90NCNrateCNkCNrateCNkCNrateCNk84.8275e-038.0324e-034.7639e-03161.1850e-032.031.9166e-032.078.8628e-042.43323.0304e-041.974.7020e-042.031.6001e-042.47648.1431e-051.901.2227e-041.943.3122e-052.271282.2048e-051.883.2098e-051.938.0217e-062.05\begin{array}[]{|c||c|c|c|c|c|c|}\hline\cr&\vrule\lx@intercol\hfil\text{$\alpha_{1}=0.15$, $\alpha_{2}=0.85$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\alpha_{1}=0.10$, $\alpha_{2}=0.20$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\alpha_{1}=0.80$, $\alpha_{2}=0.90$}\hfil\lx@intercol\vrule\lx@intercol\\ \hline\cr N&\mathcal{E}_{CN}&rate^{k}_{CN}&\mathcal{E}_{CN}&rate^{k}_{CN}&\mathcal{E}_{CN}&rate^{k}_{CN}\\ \hline\cr 8&$4.8275e-03$&*&$8.0324e-03$&*&$4.7639e-03$&*\\ 16&$1.1850e-03$&2.03&$1.9166e-03$&2.07&$8.8628e-04$&2.43\\ 32&$3.0304e-04$&1.97&$4.7020e-04$&2.03&$1.6001e-04$&2.47\\ 64&$8.1431e-05$&1.90&$1.2227e-04$&1.94&$3.3122e-05$&2.27\\ 128&$2.2048e-05$&1.88&$3.2098e-05$&1.93&$8.0217e-06$&2.05\\ \hline\cr\end{array}
Table 3: Example 1: L2L_{2}-norm errors and time convergence rates when α1=α2=0.5\alpha_{1}=\alpha_{2}=0.5, γ=2α+1\gamma=\frac{2}{\alpha+1} and M=512M=512.
κ=0.2κ=1κ=5NCNrateCNkCNrateCNkCNrateCNk88.1009e-037.6310e-035.5947e-03161.7039e-032.251.6545e-032.201.4190e-031.98323.9316e-042.123.8782e-042.093.6162e-041.97641.0427e-041.911.0361e-041.901.0037e-041.851282.8791e-051.862.8701e-051.852.8255e-051.832568.0558e-061.848.0397e-061.847.9604e-061.83\begin{array}[]{|c||c|c|c|c|c|c|}\hline\cr&\vrule\lx@intercol\hfil\text{$\kappa=0.2$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\kappa=1$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\kappa=5$}\hfil\lx@intercol\vrule\lx@intercol\\ \hline\cr N&\mathcal{E}_{CN}&rate^{k}_{CN}&\mathcal{E}_{CN}&rate^{k}_{CN}&\mathcal{E}_{CN}&rate^{k}_{CN}\\ \hline\cr 8&$8.1009e-03$&*&$7.6310e-03$&*&$5.5947e-03$&*\\ 16&$1.7039e-03$&2.25&$1.6545e-03$&2.20&$1.4190e-03$&1.98\\ 32&$3.9316e-04$&2.12&$3.8782e-04$&2.09&$3.6162e-04$&1.97\\ 64&$1.0427e-04$&1.91&$1.0361e-04$&1.90&$1.0037e-04$&1.85\\ 128&$2.8791e-05$&1.86&$2.8701e-05$&1.85&$2.8255e-05$&1.83\\ 256&$8.0558e-06$&1.84&$8.0397e-06$&1.84&$7.9604e-06$&1.83\\ \hline\cr\end{array}
Table 4: Example 1: Numerical solutions when κ=1\kappa=1, γ=2α+1\gamma=\frac{2}{\alpha+1} and M=256M=256.
α1=0.15α2=0.85α1=0.10α2=0.20α1=0.80α2=0.90NUUUUUU83.2498e-021.9364e-023.2506e-022.2373e-023.2499e-021.6138e-02163.2512e-021.8805e-023.2514e-022.1881e-023.2512e-021.5631e-02323.2515e-021.8518e-023.2516e-022.1626e-023.2516e-021.5373e-02643.2516e-021.8374e-023.2516e-022.1497e-023.2516e-021.5243e-021283.2517e-021.8301e-023.2517e-022.1432e-023.2517e-021.5177e-022563.2517e-021.8264e-023.2517e-022.1399e-023.2517e-021.5145e-025123.2517e-021.8246e-023.2517e-022.1382e-023.2517e-021.5129e-02\begin{array}[]{|c||c|c|c|c|c|c|}\hline\cr&\vrule\lx@intercol\hfil\text{$\alpha_{1}=0.15$, $\alpha_{2}=0.85$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\alpha_{1}=0.10$, $\alpha_{2}=0.20$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\alpha_{1}=0.80$, $\alpha_{2}=0.90$}\hfil\lx@intercol\vrule\lx@intercol\\ \hline\cr N&U^{*}&U^{**}&U^{*}&U^{**}&U^{*}&U^{**}\\ \hline\cr 8&$3.2498e-02$&$1.9364e-02$&$3.2506e-02$&$2.2373e-02$&$3.2499e-02$&$1.6138e-02$\\ 16&$3.2512e-02$&$1.8805e-02$&$3.2514e-02$&$2.1881e-02$&$3.2512e-02$&$1.5631e-02$\\ 32&$3.2515e-02$&$1.8518e-02$&$3.2516e-02$&$2.1626e-02$&$3.2516e-02$&$1.5373e-02$\\ 64&$3.2516e-02$&$1.8374e-02$&$3.2516e-02$&$2.1497e-02$&$3.2516e-02$&$1.5243e-02$\\ 128&$3.2517e-02$&$1.8301e-02$&$3.2517e-02$&$2.1432e-02$&$3.2517e-02$&$1.5177e-02$\\ 256&$3.2517e-02$&$1.8264e-02$&$3.2517e-02$&$2.1399e-02$&$3.2517e-02$&$1.5145e-02$\\ 512&$3.2517e-02$&$1.8246e-02$&$3.2517e-02$&$2.1382e-02$&$3.2517e-02$&$1.5129e-02$\\ \hline\cr\end{array}
Table 5: Example 1: Numerical solutions when α1=α2=0.5\alpha_{1}=\alpha_{2}=0.5, γ=2α+1\gamma=\frac{2}{\alpha+1} and M=32M=32.
κ=0κ=0.5κ=1NUUUUUU322.5016e-011.0454e-011.5173e-017.3025e-029.2033e-025.1659e-02642.5018e-011.0231e-011.5175e-017.1730e-029.2040e-025.0921e-021282.5019e-011.0119e-011.5175e-017.1080e-029.2042e-025.0548e-022562.5019e-011.0063e-011.5175e-017.0753e-029.2043e-025.0360e-025122.5019e-011.0035e-011.5175e-017.0590e-029.2043e-025.0266e-0210242.5019e-011.0021e-011.5175e-017.0509e-029.2043e-025.0219e-0220482.5019e-011.0014e-011.5175e-017.0468e-029.2043e-025.0195e-02\begin{array}[]{|c||c|c|c|c|c|c|}\hline\cr&\vrule\lx@intercol\hfil\text{$\kappa=0$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\kappa=0.5$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\kappa=1$}\hfil\lx@intercol\vrule\lx@intercol\\ \hline\cr N&U^{*}&U^{**}&U^{*}&U^{**}&U^{*}&U^{**}\\ \hline\cr 32&$2.5016e-01$&$1.0454e-01$&$1.5173e-01$&$7.3025e-02$&$9.2033e-02$&$5.1659e-02$\\ 64&$2.5018e-01$&$1.0231e-01$&$1.5175e-01$&$7.1730e-02$&$9.2040e-02$&$5.0921e-02$\\ 128&$2.5019e-01$&$1.0119e-01$&$1.5175e-01$&$7.1080e-02$&$9.2042e-02$&$5.0548e-02$\\ 256&$2.5019e-01$&$1.0063e-01$&$1.5175e-01$&$7.0753e-02$&$9.2043e-02$&$5.0360e-02$\\ 512&$2.5019e-01$&$1.0035e-01$&$1.5175e-01$&$7.0590e-02$&$9.2043e-02$&$5.0266e-02$\\ 1024&$2.5019e-01$&$1.0021e-01$&$1.5175e-01$&$7.0509e-02$&$9.2043e-02$&$5.0219e-02$\\ 2048&$2.5019e-01$&$1.0014e-01$&$1.5175e-01$&$7.0468e-02$&$9.2043e-02$&$5.0195e-02$\\ \hline\cr\end{array}
Example 2

In this example, we consider the two-dimensional (2D) case (d=2d=2) of (1.1) with m=2m=2. Let AA be the 2D Laplace operator, and the operators B1=2x12B_{1}=-\frac{\partial^{2}}{\partial x_{1}^{2}} and B2=2x22B_{2}=-\frac{\partial^{2}}{\partial x_{2}^{2}} over the domain Ω=(0,L)×(0,L)\Omega=(0,L)\times(0,L) with the homogeneous DBCs. In order to satisfy the regularity assumption (2.3), we present the exact solution of (1.1) as follows

u(x1,x2,t)=(t1+min{α1,α2}+1)eκtsinπx1sinπx2,u(x_{1},x_{2},t)=\left(t^{1+\min\{\alpha_{1},\alpha_{2}\}}+1\right)e^{-\kappa t}\sin\pi x_{1}\sin\pi x_{2},

then the initial condition

u0(x1,x2)=sinπx1sinπx2,u_{0}(x_{1},x_{2})=\sin\pi x_{1}\sin\pi x_{2},

and the source term f(x1,x2,t)f(x_{1},x_{2},t) can be calculated correspondingly.

Here, in Table 6 we present the L2L_{2}-norm errors and time convergence rates when fixing κ=2\kappa=2, γ=2α+1\gamma=\frac{2}{\alpha+1} and M=70M=70. The numerical results incarnate time second-order convergence by selecting three kinds of values of α1\alpha_{1} and α2\alpha_{2}, when NN increases gradually.

Fixing α1=0.3\alpha_{1}=0.3, α2=0.6\alpha_{2}=0.6, γ=2α+1+12\gamma=\frac{2}{\alpha+1}+\frac{1}{2} and M=80M=80, the numerical results from Table 7 approximate second order in the time direction, with different tempered parameter κ\kappa (κ=0,0.2,1,5)(\kappa=0,0.2,1,5), which is in accordance with the theory.

Table 6: Example 2: L2L_{2}-norm errors and time convergence rates when κ=2\kappa=2, γ=2α+1\gamma=\frac{2}{\alpha+1} and M=70M=70.
α1=0.10α2=0.90α1=0.15α2=0.20α1=0.80α2=0.75NCNrateCNkCNrateCNkCNrateCNk121.3009e-021.8510e-022.8330e-03243.8048e-031.775.5602e-031.748.7227e-041.70481.0148e-031.911.5145e-031.882.4016e-041.86962.6995e-041.914.0689e-041.906.2739e-051.94\begin{array}[]{|c||c|c|c|c|c|c|}\hline\cr&\vrule\lx@intercol\hfil\text{$\alpha_{1}=0.10$, $\alpha_{2}=0.90$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\alpha_{1}=0.15$, $\alpha_{2}=0.20$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\alpha_{1}=0.80$, $\alpha_{2}=0.75$}\hfil\lx@intercol\vrule\lx@intercol\\ \hline\cr N&\mathcal{E}_{CN}&rate^{k}_{CN}&\mathcal{E}_{CN}&rate^{k}_{CN}&\mathcal{E}_{CN}&rate^{k}_{CN}\\ \hline\cr 12&$1.3009e-02$&*&$1.8510e-02$&*&$2.8330e-03$&*\\ 24&$3.8048e-03$&1.77&$5.5602e-03$&1.74&$8.7227e-04$&1.70\\ 48&$1.0148e-03$&1.91&$1.5145e-03$&1.88&$2.4016e-04$&1.86\\ 96&$2.6995e-04$&1.91&$4.0689e-04$&1.90&$6.2739e-05$&1.94\\ \hline\cr\end{array}
Table 7: Example 2: L2L_{2}-norm errors and time convergence rates when α1=0.3\alpha_{1}=0.3, α2=0.6\alpha_{2}=0.6, γ=2α+1+12\gamma=\frac{2}{\alpha+1}+\frac{1}{2} and M=80M=80.
κ=0κ=0.2κ=1κ=5NCNrateCNkCNrateCNkCNrateCNkCNrateCNk42.3908e-022.3711e-022.2942e-021.9567e-0285.8707e-032.035.8643e-032.015.8393e-031.975.7221e-031.77161.3915e-032.081.3904e-032.081.3858e-032.071.3634e-032.07323.2342e-042.103.2318e-042.103.2219e-042.103.1738e-042.10641.0394e-041.648.5550e-051.926.6420e-052.286.5801e-052.27\begin{array}[]{|c||c|c|c|c|c|c|c|c|}\hline\cr&\vrule\lx@intercol\hfil\text{$\kappa=0$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\kappa=0.2$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\kappa=1$}\hfil\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil\text{$\kappa=5$}\hfil\lx@intercol\vrule\lx@intercol\\ \hline\cr N&\mathcal{E}_{CN}&rate^{k}_{CN}&\mathcal{E}_{CN}&rate^{k}_{CN}&\mathcal{E}_{CN}&rate^{k}_{CN}&\mathcal{E}_{CN}&rate^{k}_{CN}\\ \hline\cr 4&$2.3908e-02$&*&$2.3711e-02$&*&$2.2942e-02$&*&$1.9567e-02$&*\\ 8&$5.8707e-03$&2.03&$5.8643e-03$&2.01&$5.8393e-03$&1.97&$5.7221e-03$&1.77\\ 16&$1.3915e-03$&2.08&$1.3904e-03$&2.08&$1.3858e-03$&2.07&$1.3634e-03$&2.07\\ 32&$3.2342e-04$&2.10&$3.2318e-04$&2.10&$3.2219e-04$&2.10&$3.1738e-04$&2.10\\ 64&$1.0394e-04$&1.64&$8.5550e-05$&1.92&$6.6420e-05$&2.28&$6.5801e-05$&2.27\\ \hline\cr\end{array}

6 Concluding remarks

In this work, we have considered and analyzed numerical solutions for Volterra integrodifferential equations with tempered multi-term kernels. First we deduced certain regularity estimates of the exact solution of (1.1). Then under graded meshes, we applied the Crank-Nicolson method and PI rule to construct a time discrete scheme. Based on the regularity assumptions, we proved the unconditional stability and accurate second-order convergence for time by the energy argument. Finally, numerical experiments verified our theoretical results.

Moreover, the regularity of exact solution of (1.1) can be extended to a semilinear case (source term f(t)f(t) replaced by f(t,u(t))f(t,u(t))) by certain appropriate assumptions; also, theoretical results about new numerical scheme could be similarly yielded by adding a Lipschitz condition |f(t,u1)f(t,u2)||u1u2||f(t,u_{1})-f(t,u_{2})|\leq\mathcal{L}|u_{1}-u_{2}|.

Note that in this paper we only consider the discrete scheme and numerical analysis in the time direction. In our future work, the fully discrete scheme can be considered combined with some high-precision spatial-discrete techniques, such as local discontinuous Galerkin method, finite difference method, orthogonal spline collocation method, compatible wavelet, etc.

Conflict of Interest Statement

The authors declare that they do not have any conflicts of interest.

Acknowledgements

The first author would like to thank the reviewers for their helpful suggestions and comments to improve the quality of this paper. In addition, the first author is also very grateful to his girlfriend Dr. Kexin Li for her support in scientific research and care in life.

References

  • (1) Y. Cao, O. Nikan and Z. Avazzadeh, A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels, Appl. Numer. Math., 2022.
  • (2) H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. Oxford: Charendon Press, 1959.
  • (3) C. Chen, V. Thomée, L. B. Wahlbin, Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel, Math. Comput., 58 (1992), pp. 587–602.
  • (4) A. Friedman and M. Shinbrot, Volterra integral equations in Banach space, Trans. Amer. Math. Soc., 126 (1967), pp. 131–179.
  • (5) K. B. Hannsgen and R. L. Wheeler, Uniform L1L^{1} behavior in classes of integrodifferential equations with completely monotonic kernels, SIAM J. Math. Anal., 1984, 15: 579–594
  • (6) M. L. Heard, An abstract parabolic Volterra integrodifferential equation, SIAM J. Math. Anal., 13 (1982), pp. 81–105.
  • (7) B. Jin, R. Lazarov, Y. Liu and Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys., 281 (2015), pp. 825–843.
  • (8) S. Larsson, V. Thomée, L. Wahlbin, Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method, Math. Comput., 67 (1998), pp. 45–71.
  • (9) F. Liu, M. M. Meerschaert, R. J. McGough et al., Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fract. Calcul. Appl. Anal., 16 (2013), pp. 9–25.
  • (10) R. C. MacCamy, An integro-differential equation with application in heat flow, Quart. Appl. Math., 35 (1977), pp. 1–19.
  • (11) W. McLean and K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math., 105 (2007), pp. 481–510.
  • (12) K. Mustapha and H. Mustapha, A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel, IMA J. Numer. Anal., 30 (2010), pp. 555–578.
  • (13) R. Noren, Uniform L1L^{1} behavior in classes of integro-differential equations with convex kernels, J. Integr. Equ. Appl., 1 (1988), pp. 385–369.
  • (14) R. Noren, Uniform L1L^{1} behavior in a class of linear Volterra equations, Quart. Appl. Math., 47 (1989), pp. 547–554.
  • (15) A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York, Springer, 1983.
  • (16) I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • (17) W. Qiu, D. Xu, J. Guo, Numerical solution of the fourth-order partial integro-differential equation with multi-term kernels by the Sinc-collocation method based on the double exponential transformation, Appl. Math. Comput., 392 (2021), p. 125693.
  • (18) F. Sabzikar, M. M. Meerschaert and J. Chen, Tempered fractional calculus, J. Comput. Phys., 293 (2015), pp. 14-28.
  • (19) I. H. Sloan, V. Thomée, Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal., 23 (1986), pp. 1052–1061.
  • (20) D. Xu, The long-time global behavior of time discretization for fractional order Volterra equations, Calcolo, 35 (1998), pp. 93–116.
  • (21) D. Xu, The time discretization in classes of integro-differential equations with completely monotonic kernels: Weighted asymptotic stability, Sci. China Math., 56 (2013), pp. 395–424.
  • (22) D. Xu, The time discretization in classes of integro‐differential equations with completely monotonic kernels: Weighted asymptotic convergence, Numer. Methods Part. Differ. Equ., 32 (2016), pp. 896–935.
  • (23) D. Xu, Numerical asymptotic stability for the integro-differential equations with the multi-term kernels, Appl. Math. Comput., 309 (2017), pp. 107–132.
  • (24) D. Xu, Second-order difference approximations for Volterra equations with the completely monotonic kernels, Numer. Algorithms, 81 (2019), pp. 1003–1041.
  • (25) J. Zhou, D. Xu and H. Chen, A Weak Galerkin Finite Element Method for Multi-Term Time-Fractional Diffusion Equations, E. Asian J. Appl. Math., 8 (2018), pp. 181–193.