This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimal investment with a noisy signal of future stock prices

Peter Bank Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany bank@math.tu-berlin.de  and  Yan Dolinsky Department of Statistics, Hebrew University of Jerusalem, Mount Scopus, Israel yan.dolinsky@mail.huji.ac.il
(Date: July 30, 2025)
Abstract.

We consider an investor who is dynamically informed about the future evolution of one of the independent Brownian motions driving a stock’s price fluctuations. With linear temporary price impact the resulting optimal investment problem with exponential utility turns out to be not only well posed, but it even allows for a closed-form solution. We describe this solution and the resulting problem value for this stochastic control problem with partial observation by solving its convex-analytic dual problem.

P. Bank is supported in part by the GIF Grant 1489-304.6/2019.
Y. Dolinsky is supported in part by the GIF Grant 1489-304.6/2019 and the ISF grant 230/21.
Mathematical Subject Classification (2010):

91G10, 91B16

Keywords:

optimal control with partial observation, exponential utility maximization, noisy price signals, duality, temporary price impact

1. Introduction

Information is arguably a key driver in stochastic optimal control problems as policy choice strongly depends on assessments of the future evolution of a controlled system and on how these can be expected to change over time. This is particularly obvious in Finance where information drives price fluctuations and where the question how it affects investment decisions is still a topic of great interest for financial economics and mathematics alike.

In part this may be due to the many ways information can be modeled and due to the various difficulties that come with each such model choice. If, as we are setting out to do in this paper, one seeks to understand how imperfect signals on future stock price evolution can be factored into present investment decisions, one needs to specify how the signal and the stock price are connected and work out the trading opportunities afforded by the signal. For a dynamic specification of the signal and its noise such as ours, this often leads to challenging combinations of filtering and optimal control and we refer to [8, 12, 7, 20, 2] for classical and more recent work in this direction.

The present paper contributes to this literature with a simple Bachelier stock price model driven by two independent Brownian motions. The investor dynamically gets advanced knowledge about the evolution of one of these over some time period, but the noise arising from the other Brownian motion makes perfect prediction of stock price fluctuations impossible. Accounting in addition for temporary price impact from finite market depth (cf. [16]) as suggested in the Almgren-Chriss model [1], we arrive at a viable expected utility maximization problem. In fact, for exponential utility we follow an approach similar to the one of [4], where the case of perfect stock price predictions is considered, and we work out explicitly the optimal investment strategy and maximum expected utility in this case. We can even allow for dynamically varying horizons over which peeks ahead are possible, thus extending beyond the fixed horizon setting of [4] (which is still included as a special case).

Our model also complements the literature on optimal order execution where different forms of market signals have been studied. For instance, [9] add a Markovian drift to the stock price evolution to model market trends as perceived by the agent; latent factors are added in [10]. With transient price impact rather than temporary one as in our setting, [17] and [19] study such signals and [6] adds a version with non-Markovian finite variation signals. Yet another version of market signals is considered in [5] who use Meyer σ\sigma-fields to model ultra short-term signals on the jumps in the order flow.

Describing how signals are specifically processed into strategies is a challenge for each of these models. In our setting, we find that the investor should optimally weigh her noisy signals of future stock price evolution and aggregate these weights into a projection of its fluctuations. The difference of this projection with the present stock price determines the signal-based part of her investment strategy. The relevant projection weights are computed explicitly and we analyze how they depend on the signal to noise ratio. On top of that, the investor also is interested in chasing the risk premium afforded by the stock and thus aims to take her portfolio to the Merton ratio, well-known from standard expected utility maximization. In addition, we investigate the value of reductions in noise and show that it is convex in signal quality. In other words, incentives for signal improvement turn out to be skewed in favor of investors who are already good at sniffing out the market’s evolution. Finally, we also use the flexibility in the signal horizon of our model to investigate when our investor would most like to be peek ahead if she can do so only once and how much of an advantage a continually probing investor has over her more relaxed counterpart who does so only periodically.

Mathematically, our method is based on the general duality result given in [4]. Here, however, we need to understand how changes of measures can be optimized when two Brownian motions are affected. Fortunately, we again find the problem to reduce to deterministic variational problems, which, albeit more involved, remain quadratic and thus can still be solved explicitly. The time-dependent knowledge horizon adds further challenges, but also affords us the opportunity to show that the problem is continuous with respect to perturbations in signal reach.

The present paper generalizes [4] and, while similar in its line of attack, the method of solution here differs in essential ways. Indeed, both papers apply the dual approach and do not deal with the primal infinite dimensional stochastic control problem directly. But the current paper decomposes the information flow into independent parts and passes to a conditional model driven by independent Brownian motions in the ‘usual’ way. This approach does not require applying the results from the theory of Gaussian Volterra integral equations [15, 14] and readily accommodates time-dependent signal specifications and noise.

Section 2 of the paper formalizes the optimal investment problem with dynamic noisy signals mathematically. Section 3 states the main results on optimal investment strategy and utility and comments on some financial-economic implications. Section 4 is devoted to the proof of the main results.

2. Problem formulation

Consider an investor who can invest over some time horizon [0,T][0,T] both in the money market at zero interest (for simplicity) and in stock. The price of the stock follows Bachelier dynamics

(2.1) St=S0+μt+σ(γWt+γ¯Wt),t[0,T],\displaystyle S_{t}=S_{0}+\mu t+\sigma\left(\gamma W^{\prime}_{t}+\bar{\gamma}W_{t}\right),\quad t\in[0,T],

where S0S_{0}\in\mathbb{R} denotes the initial stock price, μ\mu\in\mathbb{R} describes the stock’s risk premium and σ(0,)\sigma\in(0,\infty) its volatility; γ[1,1]\gamma\in[-1,1] and γ¯:=1γ2\bar{\gamma}:=\sqrt{1-\gamma^{2}} parameterize the correlation between the stock price process SS and its drivers WW, WW^{\prime}, two independent Brownian motions specified on a complete probability space (Ω,,)(\Omega,\mathcal{F},\mathbb{P}). On top of the information flow from present and past stock prices as captured by the augmented filtration (tS)t[0,T](\mathcal{F}^{S}_{t})_{t\in[0,T]} generated by SS, the investor is assumed to have access to a signal which at any time t[0,T]t\in[0,T] allows her to deduce the future evolution of WW^{\prime} (but not of WW) over a time window [t,τ(t)][t,\tau(t)] where τ:[0,T][0,T]\tau:[0,T]\to[0,T] is a right-continuous, nondecreasing time shift satisfying τ(t)t\tau(t)\geq t throughout. In other words, the investor is able to partially predict the evolution of future stock prices, albeit with some uncertainty. The uncertainty is described by a noise whose variance accrues over [t,τ(t)][t,\tau(t)] solely from WW at the rate σ2(1γ2)\sigma^{2}(1-\gamma^{2}) and accrues from both WW and WW^{\prime} at the joint rate σ2\sigma^{2} afterwards. As a result, the investor can draw on the information flow given by the filtration

(2.2) 𝒢t:=tSσ(Wu,u[0,τ(t)]),t[0,T],\displaystyle\mathcal{G}_{t}:=\mathcal{F}^{S}_{t}\vee\sigma\left(W^{\prime}_{u},u\in[0,\tau(t)]\right),\quad t\in[0,T],

when making her investment decisions.

In case γ=±1\gamma=\pm 1 all noise is wiped out from the stock price signal and so the investor gets perfect knowledge of some future prices, affording her obvious arbitrage opportunities. But even for the complementary case γ(1,1)\gamma\in(-1,1) it is easy to check that SS is not a semimartingale and, by the Fundamental Theorem of Asset Pricing of [11], there is a free lunch with vanishing risk (and in fact even a strong arbitrage as can be shown by a Borel-Cantelli argument similar to the one in [18]). As a consequence, we need to curb the investor’s trading capabilities in order to maintain a viable financial model. In line with the economic view of the role and effect of arbitrageurs, we choose to accomplish this by taking into account the market impact from the investor’s trades. These cause execution prices for absolutely continuous changes dΦt=ϕtdtd\Phi_{t}=\phi_{t}dt in the investor’s position to be given by

(2.3) Stϕ:=St+Λ2ϕt,t[0,T].\displaystyle S^{\phi}_{t}:=S_{t}+\frac{\Lambda}{2}\phi_{t},\quad t\in[0,T].

So, when marking to market her position Φt=Φ0+0tϕs𝑑s\Phi_{t}=\Phi_{0}+\int_{0}^{t}\phi_{s}ds in the stock accrued by time t[0,T]t\in[0,T], the investor will consider her net profit to be

(2.4) Vtϕ,Φ0\displaystyle V^{\phi,\Phi_{0}}_{t} :=0tSsϕ𝑑Φs+ΦtStΦ0S0\displaystyle:=-\int_{0}^{t}S^{\phi}_{s}d\Phi_{s}+\Phi_{t}S_{t}-\Phi_{0}S_{0}
(2.5) =Φ0(StS0)+0t(ϕs(StSs)Λ2ϕs2)𝑑s,t[0,T].\displaystyle=\Phi_{0}(S_{t}-S_{0})+\int_{0}^{t}\left(\phi_{s}(S_{t}-S_{s})-\frac{\Lambda}{2}\phi^{2}_{s}\right)ds,\quad t\in[0,T].

As a consequence, the investor will have to choose her turnover rates from the class of admissible strategies

(2.6) 𝒜:={ϕ=(ϕt)t[0,T]:ϕ is 𝒢-optional with 0Tϕt2𝑑t< a.s.}.\displaystyle\mathcal{A}:=\left\{\phi=(\phi_{t})_{t\in[0,T]}\;:\;\phi\text{ is }\mathcal{G}\text{-optional with }\int_{0}^{T}\phi^{2}_{t}dt<\infty\text{ a.s.}\right\}.

Assuming for convenience constant absolute risk aversion α(0,)\alpha\in(0,\infty), the investor would then seek to

(2.7) Maximize 𝔼[exp(αVTϕ,Φ0)] over ϕ𝒜.\displaystyle\text{Maximize }\mathbb{E}\left[-\exp\left(-\alpha V^{\phi,\Phi_{0}}_{T}\right)\right]\text{ over }\phi\in\mathcal{A}.
Remark 2.1.

The special case of no signal noise (γ=1\gamma=1) and constant peek ahead period (i.e., τ(t)=(t+Δ)T\tau(t)=(t+\Delta)\wedge T, t[0,T]t\in[0,T], for some Δ>0\Delta>0) was solved in [4].

3. Main results and their financial-economic discussion

The paper’s main results are collected in the following theorem.

Theorem 3.1.

The investor’s unique optimal strategy is to average out the risk-premium adjusted stock price estimates

(3.1) S^t,h:=𝔼[St+h|𝒢t]μγ¯2h=St+μγ2h+σγ(W(t+h)τ(t)Wt),t,h[0,),\displaystyle\widehat{S}_{t,h}:=\mathbb{E}[S_{t+h}\;|\;\mathcal{G}_{t}]-\mu\bar{\gamma}^{2}h=S_{t}+\mu\gamma^{2}h+\sigma\gamma(W^{\prime}_{(t+h)\wedge\tau(t)}-W^{\prime}_{t}),\quad t,h\in[0,\infty),

to obtain the risk- and liquidity-weighted projection of prices

(3.2) S¯t:=1Υt(τ(t)t)(0τ(t)tS^t,hΥt(h)𝑑h+Υt(0)S^t,τ(t)t),t[0,T],\displaystyle\bar{S}_{t}:=\frac{1}{\Upsilon_{t}(\tau(t)-t)}\left(\int_{0}^{\tau(t)-t}\widehat{S}_{t,h}\Upsilon^{\prime}_{t}(h)dh+\Upsilon_{t}(0)\widehat{S}_{t,\tau(t)-t}\right),\quad t\in[0,T],

where

(3.3) Υt(h)\displaystyle\Upsilon_{t}(h) :=γ¯cosh(γ¯ρh)+tanh(ρ(Tτ(t)))sinh(γ¯ρh),h[0,),\displaystyle:=\bar{\gamma}\cosh\left(\bar{\gamma}\sqrt{\rho}h\right)+\tanh\left(\sqrt{\rho}(T-\tau(t))\right)\sinh\left(\bar{\gamma}\sqrt{\rho}h\right),\quad h\in[0,\infty),

with ρ:=ασ2/Λ\rho:=\alpha\sigma^{2}/\Lambda. With the projection S¯t\bar{S}_{t} at hand, the investor should then take at time t[0,T]t\in[0,T] into view her present stock holdings Φ^t=Φ0+0tϕ^s𝑑s\widehat{\Phi}_{t}=\Phi_{0}+\int_{0}^{t}\widehat{\phi}_{s}ds and choose to turn her position over at the rate

(3.4) ϕ^t=1Λ(S¯tSt)+Υt(τ(t)t)Υt(τ(t)t)(μασ2Φ^t).\displaystyle\widehat{\phi}_{t}=\frac{1}{\Lambda}(\bar{S}_{t}-S_{t})+\frac{\Upsilon^{\prime}_{t}(\tau(t)-t)}{\Upsilon_{t}(\tau(t)-t)}\left(\frac{\mu}{\alpha\sigma^{2}}-\widehat{\Phi}_{t}\right).

Finally, the maximum utility the investor can expect is

(3.5) supϕ𝒜𝔼[exp(αVTϕ,Φ0)]\displaystyle\sup_{\phi\in\mathcal{A}}\mathbb{E}\left[-\exp\left(-\alpha V^{\phi,\Phi_{0}}_{T}\right)\right]
(3.6) =exp(αΛρ2coth(ρT)(Φ0μασ2)212μ2σ2T)\displaystyle=-\exp\left(\frac{\alpha\Lambda\sqrt{\rho}}{2\coth(\sqrt{\rho}T)}\left(\Phi_{0}-\frac{\mu}{\alpha\sigma^{2}}\right)^{2}-\frac{1}{2}\frac{\mu^{2}}{\sigma^{2}}T\right)
(3.7) exp(120Tγ2ργ¯coth(γ¯ρ(tτ1(t)))+tanh(ρ(Tt))𝑑t),\displaystyle\quad\cdot\exp\left(-\frac{1}{2}\int_{0}^{T}\!\frac{\gamma^{2}\sqrt{\rho}}{\overline{\gamma}\coth\left(\overline{\gamma}\sqrt{\rho}\left(t-\tau^{-1}(t)\right)\right)+\tanh\left(\sqrt{\rho}\left(T-t\right)\right)}dt\right),

where τ1(t):=inf{s[0,T]:τ(s)>t}\tau^{-1}(t):=\inf\{s\in[0,T]:\tau(s)>t\}, t[0,T]t\in[0,T], denotes the right-continuous inverse of τ\tau.

Let us briefly collect some financial-economic observations from this result. First, similar to the case without signal noise discussed in [4], an average of future price proxies S^t,h\widehat{S}_{t,h} is formed, but here weights are time-inhomogenous. In fact, the weights used in this averaging are determined in terms of the function Υ\Upsilon and interestingly depend on the peek-ahead horizon τ\tau only through its present value τ(t)\tau(t). As a consequence, when deciding about the time tt turnover rate ϕ^t\widehat{\phi}_{t}, the investor does not care if her information horizon τ\tau is going to stall or to jump all the way to TT soon. The reason for this is the investor’s exponential utility which makes investment decisions insensitive to present wealth and thus does not require planning ahead. It would be interesting to see how this changes with different utility functions. Unfortunately, our method to obtain an explicit solution to the optimal investment problem strongly depends on our choice of exponential utility, leaving this a challenge for future research.

Second, it is interesting to assess the impact of signal noise on investment decisions. Here, we observe that the emphasis Υt(0)/Υt(τ(t)t)\Upsilon_{t}(0)/\Upsilon_{t}(\tau(t)-t) that the projection S¯t\bar{S}_{t} puts on the last learned signal S^t,τ(t)t\widehat{S}_{t,\tau(t)-t} decreases when noise gets stronger due to an increase in γ¯\overline{\gamma}. This reflects the investor’s reduced trust in this most noisy of her signals when noise becomes more prominent.

Third, we can assess how the presence of noise affects the value of the signal WW^{\prime}. To this end, let us consider the certainty equivalent

(3.8) c(γ)\displaystyle c(\gamma) :=1αlogsupϕ𝒜𝔼[exp(αVTϕ,Φ0)]supϕ𝒜𝔼[exp(αV~Tϕ,Φ0)]\displaystyle:=\frac{1}{\alpha}\log\frac{\sup_{\phi\in\mathcal{A}}\mathbb{E}\left[-\exp\left(-\alpha V^{\phi,\Phi_{0}}_{T}\right)\right]}{\sup_{\phi\in\mathcal{A}}\mathbb{E}\left[-\exp\left(-\alpha\tilde{V}^{\phi,\Phi_{0}}_{T}\right)\right]}
(3.9) =12α0Tγ2ργ¯coth(γ¯ρ(tτ1(t)))+tanh(ρ(Tt))𝑑t\displaystyle=\frac{1}{2\alpha}\int_{0}^{T}\!\frac{\gamma^{2}\sqrt{\rho}}{\overline{\gamma}\coth\left(\overline{\gamma}\sqrt{\rho}\left(t-\tau^{-1}(t)\right)\right)+\tanh\left(\sqrt{\rho}\left(T-t\right)\right)}dt

that an agent, who can eliminate a fraction γ2\gamma^{2} from the variance in stock price noise γW+1γ2W\gamma W^{\prime}+\sqrt{1-\gamma^{2}}W by observing part of WW^{\prime}, gains compared to her peer without that privilege (whence her terminal wealth V~T\tilde{V}_{T} is determined by S~t=S0+μt+σWt\tilde{S}_{t}=S_{0}+\mu t+\sigma W_{t}, t[0,T]t\in[0,T], instead of SS). Contributions to this quantity from times long before the investment horizon (TtT-t large) when the signal WtW^{\prime}_{t} has been received for a long time (tτ1(t))t-\tau^{-1}(t)) large), depend on γ\gamma by a factor of about γ2/(1γ2+1)\gamma^{2}/(\sqrt{1-\gamma^{2}}+1). This factor increases from 0 to 1 as γ\gamma increases from 0 (no signal) to 1 (noiseless signal), with the steepest increase at γ=1\gamma=1, indicating limited, but ever higher returns from noise reductions. Conversely, an increase in noise is making itself felt the most when the signal is already quite reliable.

Finally, the flexibility concerning the form of the peek-ahead length given by τ:[0,T][0,T]\tau:[0,T]\to[0,T] affords one to account for periods when predictions are harder to make over periods where they are easier. Moreover, this flexibility also allows us to shed light on some natural questions such as the following ones:

  1. (i)

    When best to peek ahead? Suppose that the investor has an opportunity to choose a (deterministic) moment of time 𝕋[0,T]\mathbb{T}\in[0,T] when, for one time only, she can peek ahead over some period Δ>0\Delta>0 into the future. What time 𝕋\mathbb{T} should she choose? We can formalize this as an optimization problem over the family of time changes

    τ𝕋(t)={t,for t𝕋(t(𝕋+Δ))T,otherwise},𝕋[0,T].\tau_{\mathbb{T}}(t)=\left.\begin{cases}t,&\text{for }t\leq\mathbb{T}\\ (t\vee(\mathbb{T}+\Delta))\wedge T,&\text{otherwise}\\ \end{cases}\right\},\ \ \ \mathbb{T}\in[0,T].

    Clearly, the corresponding inverse function is given by

    τ𝕋1(t)={𝕋,for 𝕋t𝕋+Δt,otherwise}.\tau^{-1}_{\mathbb{T}}(t)=\left.\begin{cases}\mathbb{T},&\text{for }\mathbb{T}\leq t\leq\mathbb{T}+\Delta\\ t,&\text{otherwise}\\ \end{cases}\right\}.

    Hence, in view of (3.8) we need to maximize over 𝕋[0,T]\mathbb{T}\in[0,T] the value of

    𝕋(𝕋+Δ)Tdtγ¯coth(γ¯ρ(t𝕋))+tanh(ρ(Tt))max.\int_{\mathbb{T}}^{(\mathbb{T}+\Delta)\wedge T}\frac{dt}{\overline{\gamma}\coth\left(\overline{\gamma}\sqrt{\rho}\left(t-\mathbb{T}\right)\right)+\tanh\left(\sqrt{\rho}\left(T-t\right)\right)}\rightarrow\max.

    Observe that

    𝕋(𝕋+Δ)Tdtγ¯coth(γ¯ρ(t𝕋))+tanh(ρ(Tt))\displaystyle\int_{\mathbb{T}}^{(\mathbb{T}+\Delta)\wedge T}\frac{dt}{\overline{\gamma}\coth\left(\overline{\gamma}\sqrt{\rho}\left(t-\mathbb{T}\right)\right)+\tanh\left(\sqrt{\rho}\left(T-t\right)\right)}
    =0(T𝕋)Δdtγ¯coth(γ¯ρt)+tanh(ρ(T𝕋t))\displaystyle=\int_{0}^{(T-\mathbb{T})\wedge\Delta}\frac{dt}{\overline{\gamma}\coth\left(\overline{\gamma}\sqrt{\rho}t\right)+\tanh\left(\sqrt{\rho}\left(T-\mathbb{T}-t\right)\right)}
    0TΔdtγ¯coth(γ¯ρt)+tanh(ρ(Tt))\displaystyle\leq\int_{0}^{T\wedge\Delta}\frac{dt}{\overline{\gamma}\coth\left(\overline{\gamma}\sqrt{\rho}t\right)+\tanh\left(\sqrt{\rho}\left(T-t\right)\right)}

    We conclude that the optimal time is 𝕋=0\mathbb{T}=0 and so one should peek ahead immediately.

  2. (ii)

    How much of an advantage does continual probing have over periodic probing? For this we can compare the continual probing where we keep predicting what is going to happen over the next Δ\Delta time units with its discrete counter part where we only peek ahead every Δ\Delta units:

    τc(t)=(t+Δ)Tvs.τp(t)=((tΔ+1)Δ)T,\displaystyle\tau^{c}(t)=(t+\Delta)\wedge T\quad\text{vs.}\quad\tau^{p}(t)=\left((\lfloor\frac{t}{\Delta}\rfloor+1)\Delta\right)\wedge T,

    where 2.8=2\lfloor 2.8\rfloor=2 denotes the floor function. Clearly, the continual probing is superior to periodic probing, but its advantage depends on the probing period length Δ\Delta. Indeed, Figure 1 below shows the difference in certainty equivalents for the choices Δ=T/n\Delta=T/n corresponding to n=1,2,n=1,2,\dots updates in the periodic case. We see that, for the considered parameters, the periodically updating investor will be at the greatest disadvantage compared to her more diligent, continually probing counterpart when updating about 80 times for periods of length Δ=T/80\Delta=T/80.

    Refer to caption
    Figure 1. Continual vs. periodic probing: Difference of certainty equivalents for Δ=T/n\Delta=T/n, n=1,2,,500n=1,2,\dots,500, when γ=0.7\gamma=0.7, ρ=0.49\rho=0.49, α=0.01\alpha=0.01, T=100T=100.

4. Proof

We start this section by outlining the main steps of the proof. The first step in Section 4.1 deals with simplifying the general setup to obtain a notationally and computationally more convenient special case of our problem. The second step (Section 4.2) consists of the main idea which is to apply duality theory. We show that the dual problem can be reduced to the solution of three separate deterministic variational problems. The third step (Section 4.3) is to solve these deterministic problems, which are quite involved and for which we therefore compute only their values and the essential properties of the corresponding optimal control. The fourth step (Section 4.4) combines the second and the third step to solve the dual problem. The last step (Section 4.5) uses duality and the Markovian structure of our problem to finally construct the solution to the primal problem from the dual solution.

4.1. Simplification of our setting

Parameter reduction.

Let us first note that it suffices to treat the special case where S0=0S_{0}=0, σ=1\sigma=1, μ=0\mu=0, α=1\alpha=1:

Lemma 4.1.

If ϕ^0𝒜\widehat{\phi}^{0}\in\mathcal{A} is optimal when starting with the initial position Φ00:=ασΦ0μ/σ\Phi^{0}_{0}:=\alpha\sigma\Phi_{0}-\mu/\sigma in the baseline model with parameters S00:=0S^{0}_{0}:=0, σ0:=1\sigma^{0}:=1, μ0:=0\mu^{0}:=0, α0:=1\alpha^{0}:=1 and Λ0:=Λ/(ασ2)\Lambda^{0}:=\Lambda/(\alpha\sigma^{2}), then the optimal strategy in the model with general parameters Φ0\Phi_{0}, S0S_{0}, σ\sigma, μ\mu, α\alpha and Λ\Lambda is given by

(4.1) ϕ^t(ω)=1ασφ^t((Ws(ω)+μσγs,Ws(ω)+μσγ¯s)s[0,T]),t[0,T],\displaystyle\widehat{\phi}_{t}(\omega)=\frac{1}{\alpha\sigma}\widehat{\varphi}_{t}\left(\left(W_{s}(\omega)+\frac{\mu}{\sigma}\gamma s,W^{\prime}_{s}(\omega)+\frac{\mu}{\sigma}\overline{\gamma}s\right)_{s\in[0,T]}\right),\quad t\in[0,T],

where φ^\widehat{\varphi} is the measurable functional on C[0,T]×C[0,T]C[0,T]\times C[0,T] for which ϕ^0=φ^(W,W)\widehat{\phi}^{0}=\widehat{\varphi}(W^{\prime},W). Morevorer, the maximum expected utility is exp(12μ2σ2T)\exp\left(-\frac{1}{2}\frac{\mu^{2}}{\sigma^{2}}T\right) times as high as the maximum utility in the baseline model.

Proof.

Let ϕ=φ(W,W)𝒜\phi=\varphi(W,W^{\prime})\in\mathcal{A} be the representation of an arbitrary admissible strategy as a functional of the underlying Brownian motions WW and WW^{\prime}. Then (W~,W~):=(Ws(ω)+μσγs,Ws(ω)+μσγ¯s)s[0,T](\tilde{W},\tilde{W}^{\prime}):=\left(W_{s}(\omega)+\frac{\mu}{\sigma}\gamma s,W^{\prime}_{s}(\omega)+\frac{\mu}{\sigma}\overline{\gamma}s\right)_{s\in[0,T]}, is a standard two-dimensional Brownian motion under ~\tilde{\mathbb{P}}\approx\mathbb{P} with d~/d=(μσ(γW+γ¯W))Td\tilde{\mathbb{P}}/d\mathbb{P}=\mathcal{E}(-\frac{\mu}{\sigma}(\gamma W^{\prime}+\overline{\gamma}W))_{T}, (W~,W~)(\tilde{W},\tilde{W}^{\prime}) and we can write the expected utility from ϕ\phi as

(4.2) 𝔼[exp(αVTϕ,Φ0)]\displaystyle\mathbb{E}[-\exp(-\alpha V_{T}^{\phi,\Phi_{0}})] =exp(12μ2σ2T)𝔼~[exp(V~Tφ00,ϕ~)]\displaystyle=\exp\left(-\frac{1}{2}\frac{\mu^{2}}{\sigma^{2}}T\right)\tilde{\mathbb{E}}\left[-\exp\left(-\tilde{V}_{T}^{\varphi^{0}_{0},\tilde{\phi}}\right)\right]

where V~TΦ00,ϕ~\tilde{V}_{T}^{\Phi^{0}_{0},\tilde{\phi}} is the terminal wealth generated in the baseline model from the initial position Φ00\Phi^{0}_{0} by the strategy given by

(4.3) ϕ~t(ω)=ασφt((W~(ω),W~(ω))s[0,T]),t[0,T].\displaystyle\tilde{\phi}_{t}(\omega)={\alpha\sigma}{\varphi}_{t}\left(\left(\tilde{W}(\omega),\tilde{W}^{\prime}(\omega)\right)_{s\in[0,T]}\right),\quad t\in[0,T].

In the baseline model, ϕ^0=φ^(W~,W~)\widehat{\phi}^{0}=\widehat{\varphi}(\tilde{W},\tilde{W}^{\prime}) is optimal by assumption and we obtain an upper bound for the maximum utility in the general model. This bound is sharp since it is attained by ϕ^\widehat{\phi} as in the formulation of the lemma. ∎

Reduction to differentiable, increasing time changes.

Let us argue next why we can assume without loss of generality that

(4.4) τ is continuously differentiable and strictly increasing on [0,τ1(T)],\displaystyle\tau\text{ is continuously differentiable and strictly increasing on }[0,\tau^{-1}(T)],

and that it suffices to do the computation of the value of the problem (3.5) for τ\tau satisfying, in addition, τ(0)=0\tau(0)=0.

In fact, using that the description of optimal policies from Theorem 3.1 holds for τ\tau satisfying (4.4) and that (3.5) holds when, in addition, τ(0)=0\tau(0)=0 (which we will prove independently below), we can even prove that the optimization problem depends continuously on τ\tau and thus it suffices to consider smooth τ\tau with (4.4):

Lemma 4.2.

If τn(t)τ(t)\tau_{n}(t)\to\tau_{\infty}(t) for t=Tt=T and for every continuity point tt of τ\tau_{\infty} (i.e., if dτndτd\tau_{n}\to d\tau_{\infty} weakly as Borel measures on [0,T][0,T]), then the optimal terminal wealth associated with τn\tau_{n} converges almost surely to the one associated with τ\tau_{\infty} and the problem value for τn\tau_{n} converges to the one of τ\tau_{\infty}.

Proof.

Let us denote by v(τ)v(\tau) the value of our problem in dependence on τ\tau and by v~(τ)\tilde{v}(\tau) its claimed value from the right-hand side of (3.5). Similarly, denote by V(τ)V(\tau) the optimal terminal wealth (if it exists) for τ\tau and by V~(τ)\tilde{V}(\tau) our candidate described in Theorem 3.1. Let us furthermore denote by 𝒯\mathcal{T} the class of all τ\tau satisfying (4.4) and by 𝒯0𝒯\mathcal{T}_{0}\subset\mathcal{T} those τ\tau which in addition satisfy τ(0)=0\tau(0)=0. We will assume that V(τ)=V~(τ)V(\tau)=\tilde{V}(\tau) for τ𝒯\tau\in\mathcal{T} and v(τ)=v~(τ)v(\tau)=\tilde{v}(\tau) for τ𝒯0\tau\in\mathcal{T}_{0} as these statements will be derived below independently from this lemma.

Let us observe first that both V~(τ)\tilde{V}(\tau) and v~(τ)\tilde{v}(\tau) continuously depend on τ\tau. For v~\tilde{v} this readily follows from (3.5) by dominated convergence; for V~\tilde{V} this is due to the stability of the linear ODE (3.4) and the continuous dependence of its coefficients on τ\tau.

Let us next argue why an optimal control for general τ\tau exists and its terminal wealth is V(τ)=V~(τ)V(\tau)=\tilde{V}(\tau). For this take τn𝒯\tau_{n}\in\mathcal{T} converging to τ\tau from above and observe that V(τn)=V~(τn)V~(τ)V(\tau_{n})=\tilde{V}(\tau_{n})\to\tilde{V}(\tau). By Fatou’s lemma we conclude that lim supn𝔼[exp(αV(τn))]𝔼[exp(αV~(τ))]v(τ)\limsup_{n}\mathbb{E}[-\exp(-\alpha V(\tau_{n}))]\leq\mathbb{E}[-\exp(-\alpha\tilde{V}(\tau))]\leq v(\tau). Because τnτ\tau_{n}\geq\tau, any competitor ϕ𝒜(τ)\phi\in\mathcal{A}(\tau) is also in 𝒜(τn)\mathcal{A}(\tau_{n}) and thus v(τn)=𝔼[exp(αV(τn))]𝔼[exp(αVTϕ,Φ0)]v(\tau_{n})=\mathbb{E}[-\exp(-\alpha V(\tau_{n}))]\geq\mathbb{E}[-\exp(-\alpha V_{T}^{\phi,\Phi_{0}})]. In conjunction with the preceding estimate, this shows that the candidate for general τ\tau is indeed optimal with value v(τ)=v~(τ)=limnv(τn)v(\tau)=\tilde{v}(\tau)=\lim_{n}v(\tau_{n}).

Let us conclude by arguing why it suffices to compute the problem value for τ𝒯0\tau\in\mathcal{T}_{0}. For this choose τn𝒯0\tau_{n}\in\mathcal{T}_{0} to converge to a general τ\tau from below. From the above, we know that v(τ)v~(τ)=limnv(τn)v(\tau)\geq\tilde{v}(\tau)=\lim_{n}v(\tau_{n}). To see that conversely v~(τ)v(τ)\tilde{v}(\tau)\geq{v}(\tau) (and conclude), take a risk-aversion α<α\alpha^{\prime}<\alpha and observe that the corresponding (candidate) problem values vα(.)v_{\alpha^{\prime}}(.) and v~α(.)\tilde{v}_{\alpha^{\prime}}(.) satisfy

(4.5) v~α(τ)=limnvα(τn)limn𝔼[exp(αV(τn))]=𝔼[exp(αV(τ))].\displaystyle\tilde{v}_{\alpha^{\prime}}(\tau)=\lim_{n}v_{\alpha^{\prime}}({\tau}_{n})\geq\lim_{n}\mathbb{E}[-\exp(-\alpha^{\prime}V(\tau_{n}))]=\mathbb{E}[-\exp(-\alpha^{\prime}V(\tau))].

Indeed, the first identity is due to the stability of the right-hand side of (3.5) in τ\tau; the estimate holds because the optimal strategy for risk-aversion α\alpha is also admissible for risk-aversion α\alpha^{\prime}; the final identity holds because of uniform integrability which in turn follows from boundedness in Lp()L^{p}(\mathbb{P}) with p=α/α>1p=\alpha/\alpha^{\prime}>1:

(4.6) supn𝔼[exp(αV(τn))p]=supn𝔼[exp(αV(τn))]=supn(v~(τn))<.\displaystyle\sup_{n}\mathbb{E}[\exp(-\alpha^{\prime}{V}(\tau_{n}))^{p}]=\sup_{n}\mathbb{E}[\exp(-\alpha{V}(\tau_{n}))]=\sup_{n}(-\tilde{v}(\tau_{n}))<\infty.

Letting αα\alpha^{\prime}\uparrow\alpha in (4.5), its left-hand side converges to v~(τ)\tilde{v}(\tau) by continuous dependence on α\alpha of the right-side of (3.5); the right-hand side in (4.5) converges by monotone convergence to 𝔼[exp(αV(τ))]=v(τ)\mathbb{E}[-\exp(-\alpha V(\tau))]=v(\tau) and we are done. ∎

Decomposing the filtration into independent Brownian parts and passage to a conditional model.

For time changes τ\tau satisfying (4.4), we can introduce

(4.7) Bt:=0tτ1(T)1τ˙(u)𝑑Wτ(u),t[0,T],\displaystyle B_{t}:=\int_{0}^{t\wedge\tau^{-1}(T)}\frac{1}{\sqrt{\dot{\tau}(u)}}dW^{\prime}_{\tau(u)},\quad t\in[0,T],

and readily check that it is a Brownian motion stopped at time τ1(T)T\tau^{-1}(T)\leq T which is independent of both WW and (Ws)s[0,τ(0)](W^{\prime}_{s})_{s\in[0,\tau(0)]}. Moreover, using that τ1(t)=0\tau^{-1}(t)=0 for t[0,τ(0)]t\in[0,\tau(0)], we can write the stock price dynamics as

(4.8) St=γWtτ(0)+γ0τ1(t)τ˙(s)𝑑Bs+γ¯Wt,t[0,T],\displaystyle S_{t}=\gamma W^{\prime}_{t\wedge\tau(0)}+\gamma\int_{0}^{\tau^{-1}(t)}\sqrt{\dot{\tau}(s)}dB_{s}+\overline{\gamma}W_{t},\quad t\in[0,T],

and view the insider’s filtration as generated by the following independent components:

(4.9) 𝒢t=σ(Ws,s[0,τ(0)])σ(Bs,s[0,tτ1(T)])σ(Ws,s[0,t])𝒩,\displaystyle\mathcal{G}_{t}=\sigma(W^{\prime}_{s},\;s\in[0,\tau(0)])\vee\sigma(B_{s},\;s\in[0,t\wedge\tau^{-1}(T)])\vee\sigma(W_{s},\;s\in[0,t])\vee\mathcal{N},

for t[0,T]t\in[0,T] and with 𝒩\mathcal{N} denoting the collection of \mathbb{P}-nullsets. So, maximizing expected utility conditional on 𝒢0=σ(Ws,s[0,τ(0)])𝒩\mathcal{G}_{0}=\sigma(W^{\prime}_{s},\;s\in[0,\tau(0)])\vee\mathcal{N} amounts to maximizing an unconditional expected utility in a model with probability 0\mathbb{P}_{0} where, by a slight abuse of notation, asset prices evolve according to

(4.10) St:=γw(tτ(0))+γ0τ1(t)τ˙(s)𝑑Bs+γ¯Wt,t[0,T],\displaystyle S_{t}:=\gamma w(t\wedge\tau(0))+\gamma\int_{0}^{\tau^{-1}(t)}\sqrt{\dot{\tau}(s)}dB_{s}+\overline{\gamma}W_{t},\quad t\in[0,T],

for some deterministic path segment wC([0,τ(0)])w\in C([0,\tau(0)]), a 0\mathbb{P}_{0}-Brownian motion BB stopped at time τ1(T)\tau^{-1}(T) and a standard 0\mathbb{P}_{0}-Brownian motion WW which generate the filtration

𝒢tτ:=σ(Bs,s[0,tτ1(T)])σ(Ws,s[0,t])𝒩,t[0,T],\mathcal{G}^{\tau}_{t}:=\sigma(B_{s},\;s\in[0,t\wedge\tau^{-1}(T)])\vee\sigma(W_{s},\;s\in[0,t])\vee\mathcal{N},\quad t\in[0,T],

specifying the information flow for admissible strategies.

4.2. Duality

For the unconditional expected utility maximization under the measure 0\mathbb{P}_{0} identified above, we can apply Proposition A.2 in [4] to deduce that we can proceed by solving the dual problem with value

(4.11) inf𝒬𝔼[Φ0(STS0)+logdd0+ρ20T|𝔼[ST|𝒢tτ]St|2dt]\displaystyle\inf_{\mathbb{Q}\in\mathcal{Q}}\mathbb{E}_{\mathbb{Q}}\left[\Phi_{0}(S_{T}-S_{0})+\log\frac{d\mathbb{Q}}{d\mathbb{P}_{0}}+\frac{\rho}{2}\int_{0}^{T}\left|\mathbb{E}_{\mathbb{Q}}\left[S_{T}\middle|\mathcal{G}^{\tau}_{t}\right]-S_{t}\right|^{2}dt\right]

where ρ:=1/Λ\rho:=1/\Lambda and 𝒬\mathcal{Q} is the set of all probability measures 0\mathbb{Q}\approx\mathbb{P}_{0} with finite relative entropy 𝔼[logdd0]<\mathbb{E}_{\mathbb{Q}}\left[\log\frac{d\mathbb{Q}}{d\mathbb{P}_{0}}\right]<\infty. Said proposition also yields that the unique solution ^\widehat{\mathbb{Q}} to the dual problem allows us to construct the solution ϕ^\widehat{\phi} to the primal problem considered under 0\mathbb{P}_{0} as

(4.12) ϕ^t=1Λ𝔼0[STSt|𝒢tτ],t[0,T].\displaystyle\widehat{\phi}_{t}=\frac{1}{\Lambda}\mathbb{E}_{0}[S_{T}-S_{t}\;|\;\mathcal{G}^{\tau}_{t}],\quad t\in[0,T].

Following the path outlined in the special case treated in [4], we need to rewrite the dual target functional (4.11). For this it will be convenient to introduce the functionals Ψ1:(L2[0,τ1(T)],dt)×(L2[0,T],dt)\Psi_{1}:(L^{2}[0,\tau^{-1}(T)],dt)\times(L^{2}[0,T],dt)\rightarrow\mathbb{R} and Ψ2,Ψ3:L2([0,τ1(T)]2,dtds)×L2([0,T]2,dtds)\Psi_{2},\Psi_{3}:L^{2}\left([0,\tau^{-1}(T)]^{2},dt\otimes ds\right)\times L^{2}\left([0,T]^{2},dt\otimes ds\right)\rightarrow\mathbb{R} given by

(4.13) Ψ1(a,a~)\displaystyle\Psi_{1}(a,\tilde{a}) :=120τ1(T)at2𝑑t+120Ta~t2𝑑t\displaystyle:=\frac{1}{2}\int_{0}^{\tau^{-1}(T)}a^{2}_{t}dt+\frac{1}{2}\int_{0}^{T}\tilde{a}^{2}_{t}dt
+Φ0(γ(w(τ(0))+0τ1(T)τ˙(t)at𝑑t)+γ¯0Ta~t𝑑t)\displaystyle\quad+\Phi_{0}\left(\gamma\left(w({\tau(0)})+\int_{0}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(t)}a_{t}dt\right)+\overline{\gamma}\int_{0}^{T}\tilde{a}_{t}dt\right)
(4.14) +ρ20T(γ(w(τ(0))w(tτ(0))+τ1(t)τ1(T)τ˙(s)as𝑑s)+γ¯tTa~s𝑑s)2𝑑t,\displaystyle\quad+\frac{\rho}{2}\int_{0}^{T}\left(\gamma\left(w({\tau(0)})-w({t\wedge\tau(0)})+\int_{\tau^{-1}(t)}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(s)}a_{s}ds\right)+\overline{\gamma}\int_{t}^{T}\tilde{a}_{s}ds\right)^{2}dt,
(4.15) Ψ2(l,l~)\displaystyle\Psi_{2}(l,\tilde{l}) :=120τ1(T)sτ1(T)lt,s2𝑑t𝑑s+120τ1(T)sTl~t,s2𝑑t𝑑s\displaystyle:=\frac{1}{2}\int_{0}^{\tau^{-1}(T)}\int_{s}^{\tau^{-1}(T)}l^{2}_{t,s}dt\,ds+\frac{1}{2}\int_{0}^{\tau^{-1}(T)}\int_{s}^{T}\tilde{l}^{2}_{t,s}dt\,ds
+ρ20τ1(T)sT(γsτ1(t)τ1(T)τ˙(u)lu,s𝑑u+γ¯tTl~u,s𝑑u+γτ˙(s)𝕀sτ1(t))2𝑑t𝑑s\displaystyle\quad+\frac{\rho}{2}\int_{0}^{\tau^{-1}(T)}\int_{s}^{T}\left(\gamma\int_{s\vee\tau^{-1}(t)}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(u)}l_{u,s}du+\overline{\gamma}\int_{t}^{T}\tilde{l}_{u,s}du+\gamma\sqrt{\dot{\tau}(s)}\mathbb{I}_{s\geq\tau^{-1}(t)}\right)^{2}dt\,ds
and
(4.17) Ψ3(m,m~)\displaystyle\Psi_{3}(m,\tilde{m}) :=120τ1(T)sτ1(T)mt,s2𝑑t𝑑s+120TsTm~t,s2𝑑t𝑑s\displaystyle:=\frac{1}{2}\int_{0}^{\tau^{-1}(T)}\int_{s}^{\tau^{-1}(T)}m^{2}_{t,s}dt\,ds+\frac{1}{2}\int_{0}^{T}\int_{s}^{T}\tilde{m}^{2}_{t,s}dtds
+ρ20TsT(γ𝕀sτ1(T)sτ1(t)τ1(T)τ˙(u)mu,s𝑑u+γ¯tTm~u,s𝑑u)2𝑑t𝑑s.\displaystyle+\frac{\rho}{2}\int_{0}^{T}\int_{s}^{T}\left(\gamma\mathbb{I}_{s\leq\tau^{-1}(T)}\int_{s\vee\tau^{-1}(t)}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(u)}m_{u,s}du+\overline{\gamma}\int_{t}^{T}\tilde{m}_{u,s}du\right)^{2}dt\,ds.
Lemma 4.3.

The dual infimum in (4.11) coincides with the one taken over all 𝒬\mathbb{Q}\in\mathcal{Q} whose densities take the form

(4.18) dd0|𝒢tτ=(0.τ1(T)θs𝑑Bs+0.θ~s𝑑Ws)t,t[0,T],\displaystyle\left.\frac{d\mathbb{Q}}{d\mathbb{P}_{0}}\right|_{\mathcal{G}^{\tau}_{t}}=\mathcal{E}\left(\int_{0}^{.\wedge\tau^{-1}(T)}\theta_{s}dB_{s}+\int_{0}^{.}\tilde{\theta}_{s}dW_{s}\right)_{t},\quad t\in[0,T],

for some bounded, (𝒢tτ)(\mathcal{G}^{\tau}_{t})-adapted θ\theta and θ~\tilde{\theta} changing values only at finitely many deterministic times. For such \mathbb{Q}, we have the Girsanov (𝒢τ,)(\mathcal{G}^{\tau},\mathbb{Q})-Brownian motions

(4.19) Bt\displaystyle B^{\mathbb{Q}}_{t} :=Bt0tθs𝑑s,t[0,τ1(T)],\displaystyle:=B_{t}-\int_{0}^{t}\theta_{s}ds,\quad t\in[0,\tau^{-1}(T)],
(4.20) Wt\displaystyle W^{\mathbb{Q}}_{t} :=Wt0tθ~s𝑑s,t[0,T],\displaystyle:=W_{t}-\int_{0}^{t}\tilde{\theta}_{s}ds,\quad t\in[0,T],

which allow for Ito representations

(4.21) θt\displaystyle\theta_{t} =at+0tlt,s𝑑Bs+0tmt,s𝑑Ws,t[0,τ1(T)],\displaystyle=a_{t}+\int_{0}^{t}l_{t,s}dB^{\mathbb{Q}}_{s}+\int_{0}^{t}m_{t,s}dW^{\mathbb{Q}}_{s},\quad t\in[0,\tau^{-1}(T)],
(4.22) θ~t\displaystyle\tilde{\theta}_{t} =a~t+0tl~t,s𝑑Bs+0tm~t,s𝑑Ws,t[0,T],\displaystyle=\tilde{a}_{t}+\int_{0}^{t}\tilde{l}_{t,s}dB^{\mathbb{Q}}_{s}+\int_{0}^{t}\tilde{m}_{t,s}dW^{\mathbb{Q}}_{s},\quad t\in[0,T],

for suitable at,a~ta_{t},\tilde{a}_{t}\in\mathbb{R} and suitable 𝒢τ\mathcal{G}^{\tau}-predictable processes lt,.l_{t,.}, mt,.m_{t,.}, l~t,.\tilde{l}_{t,.}, m~t,.\tilde{m}_{t,.}. In terms of these, the dual target value associated with \mathbb{Q} is

𝔼[Φ0(STS0)+logdd0+ρ20T|𝔼[ST|𝒢t]St|2dt]\displaystyle\mathbb{E}_{\mathbb{Q}}\left[\Phi_{0}(S_{T}-S_{0})+\log\frac{d\mathbb{Q}}{d\mathbb{P}_{0}}+\frac{\rho}{2}\int_{0}^{T}\left|\mathbb{E}_{\mathbb{Q}}\left[S_{T}\middle|\mathcal{G}_{t}\right]-S_{t}\right|^{2}dt\right]
(4.23) =𝔼[Ψ1(a,a~)+Ψ2(l,l~)+Ψ3(m,m~)]\displaystyle=\mathbb{E}_{\mathbb{Q}}\left[\Psi_{1}(a,\tilde{a})+\Psi_{2}(l,\tilde{l})+\Psi_{3}(m,\tilde{m})\right]
Proof.

For any 𝒬\mathbb{Q}\in\mathcal{Q} the martingale representation property of Brownian motion gives us a predictable θ,θ~\theta,\tilde{\theta} with

𝔼[log(dd)]=12𝔼[0τ1(T)θt2𝑑t+0Tθ~t2𝑑t]<\mathbb{E}_{\mathbb{Q}}\left[\log\left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right)\right]=\frac{1}{2}\mathbb{E}_{\mathbb{Q}}\left[\int_{0}^{\tau^{-1}(T)}\theta^{2}_{t}dt+\int_{0}^{T}\tilde{\theta}^{2}_{t}dt\right]<\infty

such that (4.18) holds. Using this density to rewrite the dual target functional as an expectation under \mathbb{P}, we can use standard density arguments to see that the infimum over 𝒬\mathbb{Q}\in\mathcal{Q} can be realized by considering the \mathbb{Q} induced by simple θ,θ^\theta,\widehat{\theta} as described in the lemma’s formulation via (4.18). As a consequence, the Itô representations of θt,θ^t\theta_{t},\widehat{\theta}_{t} can be chosen in such a way that the resulting at,a~t,lt,.l~t,.,mt,.,m~t,.a_{t},\tilde{a}_{t},l_{t,.}\tilde{l}_{t,.},m_{t,.},\tilde{m}_{t,.} are also measurable in tt; in fact they only change when θ,θ^\theta,\widehat{\theta} change their values, i.e., at finitely many deterministic times. This measurability property will be used below for applying Fubini’s theorem.

Next, we compute the value of the dual problem in terms of a,a~,l,l~,m,m~a,\tilde{a},l,\tilde{l},m,\tilde{m}. Recalling the dynamics for SS in (4.8), we get

(4.24) 𝔼[Φ0(STS0)]=Φ0(γ(w(τ(0))+0τ1(T)τ˙(t)at𝑑t)+γ¯0Ta~t𝑑t).\mathbb{E}_{\mathbb{Q}}\left[\Phi_{0}(S_{T}-S_{0})\right]=\Phi_{0}\left(\gamma\left(w(\tau(0))+\int_{0}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(t)}a_{t}dt\right)+\overline{\gamma}\int_{0}^{T}\tilde{a}_{t}dt\right).

From Itô’s isometry and Fubini’s theorem we obtain

(4.25) 𝔼[logdd]\displaystyle\mathbb{E}_{\mathbb{Q}}\left[\log\frac{d\mathbb{Q}}{d\mathbb{P}}\right] =120τ1(T)at2𝑑t+120Ta~t2𝑑t\displaystyle=\frac{1}{2}\int_{0}^{\tau^{-1}(T)}a^{2}_{t}dt+\frac{1}{2}\int_{0}^{T}\tilde{a}^{2}_{t}dt
+120τ1(T)sτ1(T)lt,s2𝑑t𝑑s+120τ1(T)sTl~t,s2𝑑t𝑑s\displaystyle\quad+\frac{1}{2}\int_{0}^{\tau^{-1}(T)}\int_{s}^{\tau^{-1}(T)}l^{2}_{t,s}dtds+\frac{1}{2}\int_{0}^{\tau^{-1}(T)}\int_{s}^{T}\tilde{l}^{2}_{t,s}dtds
+120τ1(T)sτ1(T)mt,s2𝑑t𝑑s+120TsTm~t,s2𝑑t𝑑s.\displaystyle\quad+\frac{1}{2}\int_{0}^{\tau^{-1}(T)}\int_{s}^{\tau^{-1}(T)}m^{2}_{t,s}dt\,ds+\frac{1}{2}\int_{0}^{T}\int_{s}^{T}\tilde{m}^{2}_{t,s}dt\,ds.

Next, from the Fubini Theorem

𝔼[STSt|𝒢tτ]=γτ1(t)tτ1(T)τ˙(s)𝑑Bs\displaystyle\mathbb{E}_{\mathbb{Q}}\left[S_{T}-S_{t}|\mathcal{G}^{\tau}_{t}\right]=\gamma\int_{\tau^{-1}(t)}^{t\wedge\tau^{-1}(T)}\sqrt{\dot{\tau}(s)}dB^{\mathbb{Q}}_{s}
+γ(w(τ(0))w(tτ(0))+τ1(t)τ1(T)τ˙(s)as𝑑s)+γ¯tTa~s𝑑s\displaystyle+\gamma\left(w({\tau(0)})-w({t\wedge\tau(0)})+\int_{\tau^{-1}(t)}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(s)}a_{s}ds\right)+\overline{\gamma}\int_{t}^{T}\tilde{a}_{s}ds
+γ(0tτ1(T)sτ1(t)τ1(T)τ˙(u)lu,s𝑑u𝑑Bs+0tτ1(T)sτ1(t)τ1(T)τ˙(u)mu,s𝑑u𝑑B^s)\displaystyle+\gamma\left(\int_{0}^{t\wedge\tau^{-1}(T)}\int_{s\vee\tau^{-1}(t)}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(u)}l_{u,s}du\,dB^{\mathbb{Q}}_{s}+\int_{0}^{t\wedge\tau^{-1}(T)}\int_{s\vee\tau^{-1}(t)}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(u)}m_{u,s}du\,d\widehat{B}^{\mathbb{Q}}_{s}\right)
+γ¯(0tτ1(T)tTl~u,s𝑑u𝑑Bs+0ttTm~u,s𝑑u𝑑B~s).\displaystyle+\overline{\gamma}\left(\int_{0}^{t\wedge\tau^{-1}(T)}\int_{t}^{T}\tilde{l}_{u,s}du\,dB^{\mathbb{Q}}_{s}+\int_{0}^{t}\int_{t}^{T}\tilde{m}_{u,s}du\,d\tilde{B}^{\mathbb{Q}}_{s}\right).

This together with the Itô’s isometry and (4.24)–(4.25) gives (4.3). ∎

4.3. Solving the deterministic variational problems

Lemma 4.3 above suggests to consider the minimization of the functionals Ψ1\Psi_{1}, Ψ2\Psi_{2}, and Ψ3\Psi_{3} specified there. This amounts to solving deterministic variational problems and the following lemmas sum up the main findings.

Lemma 4.4.

The functional Ψ2=Ψ2(l,l~)\Psi_{2}=\Psi_{2}(l,\tilde{l}) defined for square-integrable ll, l~\tilde{l} by (4.15) has the minimum value

(4.26) Ψ2(l¯,l¯~)\displaystyle\Psi_{2}(\underline{l},\underline{\tilde{l}}) =12τ(0)Tγ2ργ¯coth(γ¯ρ(tτ1(t)))+tanh(ρ(Tt))𝑑t\displaystyle=\frac{1}{2}\int_{\tau(0)}^{T}\!\frac{\gamma^{2}\sqrt{\rho}}{\overline{\gamma}\coth\left(\overline{\gamma}\sqrt{\rho}\left(t-\tau^{-1}(t)\right)\right)+\tanh\left(\sqrt{\rho}\left(T-t\right)\right)}dt

for some (l¯,l¯~)(\underline{l},\underline{\tilde{l}}).

Proof.

For a given (l,l~)L2([0,τ1(T)]2,dtds)×L2([0,T]2,dtds)(l,\tilde{l})\in L^{2}\left([0,\tau^{-1}(T)]^{2},dt\otimes ds\right)\times L^{2}\left([0,T]^{2},dt\otimes ds\right) and s<τ1(T)s<\tau^{-1}(T) introduce the functions

(4.27) gs(t):=τ1(t)τ1(T)τ˙(u)lu,s𝑑u,t[τ(s),T]\displaystyle g_{s}(t):=\int_{\tau^{-1}(t)}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(u)}l_{u,s}du,\ \ t\in[\tau(s),T]
(4.28) g~s(t):=tTl~u,s𝑑u,t[s,T].\displaystyle\tilde{g}_{s}(t):=\int_{t}^{T}\tilde{l}_{u,s}du,\ \ t\in[s,T].

Clearly, almost surely the functions gs,g~sg_{s},\tilde{g}_{s} are absolutely continuous in tt for almost every s[0,τ1(T)]s\in[0,\tau^{-1}(T)] with boundary values

(4.29) gs(T)=0,g~s(T)=0.\displaystyle g_{s}(T)=0,\quad\tilde{g}_{s}(T)=0.

Changing variables we note

sτ1(T)lt,s2𝑑t=τ(s)Tg˙s2(t)𝑑t\int_{s}^{\tau^{-1}(T)}l^{2}_{t,s}dt=\int_{\tau(s)}^{T}\dot{g}^{2}_{s}(t)dt

where g˙s\dot{g}_{s} denotes the derivative with respect to tt and so

Ψ2(l,l~)=0τ1(T)ψs(gs,g~s)𝑑s\Psi_{2}(l,\tilde{l})=\int_{0}^{\tau^{-1}(T)}\psi_{s}(g_{s},\tilde{g}_{s})ds

for

(4.30) ψs(g,g~)\displaystyle\psi_{s}(g,\tilde{g}) :=12(τ(s)T(g˙2(t)+g~˙2(t))𝑑t)+12sτ(s)g~˙2(t)𝑑t\displaystyle:=\frac{1}{2}\left(\int_{\tau(s)}^{T}\left(\dot{g}^{2}(t)+\dot{\tilde{g}}^{2}(t)\right)dt\right)+\frac{1}{2}\int_{s}^{\tau(s)}\dot{\tilde{g}}^{2}(t)dt
+ρ2τ(s)T(γg(t)+γ¯g~(t))2𝑑t\displaystyle\quad+\frac{\rho}{2}\int_{\tau(s)}^{T}\left(\gamma g(t)+\overline{\gamma}\tilde{g}(t)\right)^{2}dt
+ρ2sτ(s)(γτ˙(s)+γg(τ(s))+γ¯g~(t))2𝑑t.\displaystyle\quad+\frac{\rho}{2}\int_{s}^{\tau(s)}\left(\gamma\sqrt{\dot{\tau}(s)}+\gamma g\left(\tau(s)\right)+\overline{\gamma}\tilde{g}(t)\right)^{2}dt.

Minimization of Ψ2\Psi_{2} can thus be carried out separately for each s[0,τ1(T)]s\in[0,\tau^{-1}(T)]. So we fix such an ss and seek to determine the absolutely continuous (g¯s,g¯~s)(\underline{g}_{s},\underline{\tilde{g}}_{s}) which minimizes ψs\psi_{s} under the boundary condition (4.29). To this end, observe fist that the functional ψs\psi_{s} is strictly convex and so existence of a minimizer follows by a standard Komlos-argument.

In the computation of the minimum value, let us, for ease of notation, put g:=gsg:=g_{s}, g~:=g~s\tilde{g}:=\tilde{g}_{s}. We first focus on the contributions to ψs(g,g~)\psi_{s}(g,\tilde{g}) from its integrals over the interval [τ(s),T][\tau(s),T], assuming τ(s)<T\tau(s)<T of course; for τ(s)=T\tau(s)=T we can directly proceed with the minimization over [s,τ(s)][s,\tau(s)] as carried out below with zs:=0z_{s}:=0. Clearly if γx+γ¯y\gamma x+\overline{\gamma}y is given then the minimum of x2+y2x^{2}+y^{2} is obtained for x,yx,y which satisfy yx=γ¯γ\frac{y}{x}=\frac{\overline{\gamma}}{\gamma}. Hence, the optimal solution will satisfy

g(t)=γfs(t),g~(t)=γ¯fs(t),t[τ(s),T]g(t)=\gamma f_{s}(t),\ \ \tilde{g}(t)=\overline{\gamma}f_{s}(t),\ \ t\in[\tau(s),T]

for some function fsf_{s} which satisfies fs(T)=0f_{s}(T)=0. Hence the functional to be minimized is really

12τ(s)T(g˙s2(t)+g~˙s2(t))𝑑t+ρ2τ(s)T(γgs(t)+γ¯g~s(t))2𝑑t\displaystyle\frac{1}{2}\int_{\tau(s)}^{T}\left(\dot{g}_{s}^{2}(t)+\dot{\tilde{g}}_{s}^{2}(t)\right)dt+\frac{\rho}{2}\int_{\tau(s)}^{T}\left(\gamma g_{s}(t)+\overline{\gamma}\tilde{g}_{s}(t)\right)^{2}dt
=12τ(s)Tf˙s2(t)+ρ2τ(s)Tfs2(t)𝑑t.\displaystyle=\frac{1}{2}\int_{\tau(s)}^{T}\dot{f}^{2}_{s}(t)+\frac{\rho}{2}\int_{\tau(s)}^{T}f^{2}_{s}(t)dt.

Its Euler–Lagrange reads fs¨=ρfs\ddot{f_{s}}=\rho f_{s}; c.f., e.g., Section 1 in [13]. Since fs(T)=0f_{s}(T)=0, we conclude that

(4.31) g¯s(t)\displaystyle\underline{g}_{s}(t) =γzssinh(ρ(Tt))sinh(ρ(Tτ(s))),\displaystyle=\gamma z_{s}\frac{\sinh\left(\sqrt{\rho}(T-t)\right)}{\sinh\left(\sqrt{\rho}\left(T-\tau(s)\right)\right)},
(4.32) g¯~s(t)\displaystyle\underline{\tilde{g}}_{s}(t) =γ¯zssinh(ρ(Tt))sinh(ρ(Tτ(s))),t[τ(s),T],\displaystyle=\overline{\gamma}z_{s}\frac{\sinh\left(\sqrt{\rho}(T-t)\right)}{\sinh\left(\sqrt{\rho}\left(T-\tau(s)\right)\right)},\quad t\in[\tau(s),T],

for some zsz_{s}\in\mathbb{R} which is yet to be determined optimally.

Next, we treat the interval [s,τ(s)][s,\tau(s)]. The Euler–Lagrange equation for minimizing the functional

sτ(s)g~˙s2(t)𝑑t+ρ2sτ(s)(γτ˙(s)+γ2zs+γ¯g~s(t))2𝑑t\int_{s}^{\tau(s)}\dot{\tilde{g}}_{s}^{2}(t)dt+\frac{\rho}{2}\int_{s}^{\tau(s)}\left(\gamma\sqrt{\dot{\tau}(s)}+\gamma^{2}z_{s}+\overline{\gamma}\tilde{g}_{s}(t)\right)^{2}dt

subject to the boundary condition g~s(τ(s))=γ¯zs\tilde{g}_{s}(\tau(s))=\overline{\gamma}z_{s} (which we infer from (4.32)) is

g~¨s=ργ¯(γτ˙(s)+γzs+γ¯g~s).\ddot{\tilde{g}}_{s}=\rho\overline{\gamma}\left(\gamma\sqrt{\dot{\tau}(s)}+\gamma z_{s}+\overline{\gamma}\tilde{g}_{s}\right).

Hence,

(4.33) g¯~s(t)+\displaystyle\underline{\tilde{g}}_{s}(t)+ γγ¯(τ˙(s)+zs)=ussinh(γ¯ρ(τ(s)t))\displaystyle\frac{\gamma}{\overline{\gamma}}\left(\sqrt{\dot{\tau}(s)}+z_{s}\right)=u_{s}\sinh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(s)-t\right)\right)
(4.34) +1γ¯(γτ˙(s)+zs)cosh(γ¯ρ(τ(s)t)),t[s,τ(s)],\displaystyle+\frac{1}{\overline{\gamma}}\left(\gamma\sqrt{\dot{\tau}(s)}+z_{s}\right)\cosh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(s)-t\right)\right),\quad t\in[s,\tau(s)],

for some usu_{s}\in\mathbb{R} which we still need to choose optimally.

We plug (4.31)–(4.33) into (4.30) to obtain

ψs(g¯s,g¯~s)\displaystyle\psi_{s}(\underline{g}_{s},\underline{\tilde{g}}_{s}) =12ρcoth(ρ(Tτ(s)))zs2\displaystyle=\frac{1}{2}\sqrt{\rho}\coth\left(\sqrt{\rho}\left(T-\tau(s)\right)\right)z_{s}^{2}
+12γ¯ρsinh(γ¯ρ(τ(s)s))cosh(γ¯ρ(τ(s)s))\displaystyle\quad+\frac{1}{2\overline{\gamma}}\sqrt{\rho}\sinh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(s)-s\right)\right)\cosh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(s)-s\right)\right)
(γ¯2us2+(γτ˙(s)+zs)2)\displaystyle\quad\quad\quad\cdot\left(\overline{\gamma}^{2}u_{s}^{2}+\left(\gamma\sqrt{\dot{\tau}(s)}+z_{s}\right)^{2}\right)
+ρsinh2(γ¯ρ(τ(s)s))(γτ˙(s)+zs)us)\displaystyle\quad+\rho\sinh^{2}\left(\overline{\gamma}\sqrt{\rho}\left(\tau(s)-s\right)\right)\left(\gamma\sqrt{\dot{\tau}(s)}+z_{s}\right)u_{s}\bigg{)}

Simple computations show that, for τ(s)<T\tau(s)<T, the minimal value of the above positive definite quadratic pattern in (us,zs)2(u_{s},z_{s})\in\mathbb{R}^{2} is equal to

12γ2ρcoth(ρ(Tτ(s)))tanh(γ¯ρ(τ(s)s))γ¯coth(ρ(Tτ(s)))+tanh(γ¯ρ(τ(s)s))τ˙(s)\displaystyle\frac{1}{2}\gamma^{2}\sqrt{\rho}\frac{\coth\left(\sqrt{\rho}\left(T-\tau(s)\right)\right)\tanh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(s)-s\right)\right)}{\overline{\gamma}\coth\left(\sqrt{\rho}\left(T-\tau(s)\right)\right)+\tanh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(s)-s\right)\right)}\dot{\tau}(s)
=12γ2ργ¯coth(γ¯ρ(τ(s)s))+tanh(ρ(Tτ(s)))τ˙(s)\displaystyle=\frac{1}{2}\frac{\gamma^{2}\sqrt{\rho}}{\overline{\gamma}\coth\left(\overline{\gamma}\sqrt{\rho}\left(\tau(s)-s\right)\right)+\tanh\left(\sqrt{\rho}\left(T-\tau(s)\right)\right)}\dot{\tau}(s)

and is attained for some constants zsz_{s} and usu_{s} which depend continuously on ss. For τ(s)=T\tau(s)=T, we have zs=0z_{s}=0 and the minimization over usu_{s}\in\mathbb{R} leads again to this last expression which thus holds for any ss. Upon integration over ss, we thus find

Ψ2(l¯,l¯~)=\displaystyle\Psi_{2}(\underline{l},\underline{\tilde{l}})= 120Tγ2ργ¯coth(γ¯ρ(τ(s)s))+tanh(ρ(Tτ(s)))τ˙(s)𝑑s\displaystyle\frac{1}{2}\int_{0}^{T}\frac{\gamma^{2}\sqrt{\rho}}{\overline{\gamma}\coth\left(\overline{\gamma}\sqrt{\rho}\left(\tau(s)-s\right)\right)+\tanh\left(\sqrt{\rho}\left(T-\tau(s)\right)\right)}\dot{\tau}(s)ds

and (4.26) follows by the substitution t=τ(s)t=\tau(s).

Lemma 4.5.

The functional Ψ1=Ψ1(a,a~)\Psi_{1}=\Psi_{1}(a,\tilde{a}) given for square-integrable (a,a~)(a,\tilde{a}) by (4.13) is minimized by (a¯,a¯~):=Ψ(Φ0,(w(t)w(0))t[0,τ(0)])(\underline{a},\tilde{\underline{a}}):=\Psi\left(\Phi_{0},(w(t)-w(0))_{t\in[0,\tau(0)]}\right) for some continuous functional Ψ:×C([0,τ(0)])L2([0,τ1(T)],dt)×L2([0,T],dt)\Psi:\mathbb{R}\times C([0,\tau(0)])\rightarrow L^{2}\left([0,\tau^{-1}(T)],dt\right)\times L^{2}\left([0,T],dt\right). This minimizer (a¯,a¯~)(\underline{a},\tilde{\underline{a}}) satisfies

(4.35) γ\displaystyle\gamma w(τ(0))+γ0τ1(T)τ˙(t)a¯t𝑑t+γ¯0Ta¯~t𝑑t\displaystyle w(\tau(0))+\gamma\int_{0}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(t)}\underline{a}_{t}dt+\overline{\gamma}\int_{0}^{T}\tilde{\underline{a}}_{t}dt
(4.36) =S¯0S0ρΥ0(τ(0))Υ0(τ(0))Φ0\displaystyle=\bar{S}_{0}-S_{0}-\frac{\rho\Upsilon^{\prime}_{0}(\tau(0))}{\Upsilon_{0}(\tau(0))}\Phi_{0}

where S¯\bar{S} and Υ\Upsilon are given in Theorem 3.1.

Moreover, in the special case τ(0)=0\tau(0)=0 the minimum value is

(4.37) Ψ1(a¯,a¯~)=12ρtanh(ρT)Φ02.\displaystyle\Psi_{1}(\underline{a},\tilde{\underline{a}})=-\frac{1}{2\sqrt{\rho}}\tanh\left(\sqrt{\rho}T\right)\Phi^{2}_{0}.
Proof.

Similar arguments as in Lemma 4.4 give the uniqueness of the minimizer.

For a given a,a~L2([0,τ1(T)],dt)×L2([0,T],dt)a,\tilde{a}\in L^{2}\left([0,\tau^{-1}(T)],dt\right)\times L^{2}\left([0,T],dt\right) introduce the functions

(4.38) h(t)\displaystyle h(t) :=τ1(t)τ1(T)τ˙(s)as𝑑s,t[τ(0),T],\displaystyle:=\int_{\tau^{-1}(t)}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(s)}a_{s}ds,\quad t\in[\tau(0),T],
(4.39) h~(t)\displaystyle\tilde{h}(t) :=tTa~s𝑑s,t[0,T].\displaystyle:=\int_{t}^{T}\tilde{a}_{s}ds,\quad t\in[0,T].

Clearly, h,h~h,\tilde{h} are absolutely continuous and satisfy

(4.40) h(T)=h~(T)=0.\displaystyle h(T)=\tilde{h}(T)=0.

From a change of variables we obtain

0τ1(T)at2𝑑t=τ(0)Th˙2(t)𝑑t\int_{0}^{\tau^{-1}(T)}a^{2}_{t}dt=\int_{\tau(0)}^{T}\dot{h}^{2}(t)dt

and so Ψ1(a,a~)=ψ1(h,h~)\Psi_{1}(a,\tilde{a})=\psi_{1}(h,\tilde{h}) for

(4.41) ψ1(h,h~)\displaystyle\psi_{1}(h,\tilde{h}) :=Φ0(γw(τ(0))+γh(τ(0))+γ¯h~(0))\displaystyle:=\Phi_{0}\left(\gamma w({\tau(0)})+\gamma h\left(\tau(0)\right)+\overline{\gamma}\tilde{h}(0)\right)
(4.42) +12τ(0)T(h˙2(t)+h~˙2(t))𝑑t+120τ(0)h~˙2(t)𝑑t\displaystyle\quad+\frac{1}{2}\int_{\tau(0)}^{T}\left(\dot{h}^{2}(t)+\dot{\tilde{h}}^{2}(t)\right)dt+\frac{1}{2}\int_{0}^{\tau(0)}\dot{\tilde{h}}^{2}(t)dt
(4.43) +ρ20τ(0)(γ(w(τ(0))w(t))+γh(τ(0))+γ¯h~(t))2𝑑t\displaystyle\quad+\frac{\rho}{2}\int_{0}^{\tau(0)}\left(\gamma\left(w({\tau(0)})-w(t)\right)+\gamma h\left(\tau(0)\right)+\overline{\gamma}\tilde{h}(t)\right)^{2}dt
(4.44) +ρ2τ(0)T(γh(t)+γ¯h~(t))2𝑑t.\displaystyle\quad+\frac{\rho}{2}\int_{\tau(0)}^{T}\left(\gamma h(t)+\overline{\gamma}\tilde{h}(t)\right)^{2}dt.

We aim to find absolutely continuous functions h,h~h,\tilde{h} which minimize the right hand side of (4.41) under the boundary condition (4.40).

Using the same arguments as in Lemma 4.4, we obtain that a unique minimizer (h,h~)(h,\tilde{h}) exists. Focusing first on minimizing the contributions to γ\gamma collected over [τ(0),T][\tau(0),T] (if τ(0)<T\tau(0)<T), we moreover find that it satisfies

(4.45) h(t)\displaystyle h(t) =γvsinh(ρ(Tt))sinh(ρ(Tτ(0))),t[τ(0),T]\displaystyle=\gamma v\frac{\sinh\left(\sqrt{\rho}(T-t)\right)}{\sinh\left(\sqrt{\rho}\left(T-\tau(0)\right)\right)},\quad t\in[\tau(0),T]
(4.46) h~(t)\displaystyle\tilde{h}(t) =γ¯vsinh(ρ(Tt))sinh(ρ(Tτ(0))),t[τ(0),T]\displaystyle=\overline{\gamma}v\frac{\sinh\left(\sqrt{\rho}(T-t)\right)}{\sinh\left(\sqrt{\rho}\left(T-\tau(0)\right)\right)},\quad t\in[\tau(0),T]

for some v=h(τ(0))/γ=h~(τ(0))/γ¯v=h(\tau(0))/\gamma=\tilde{h}(\tau(0))/\overline{\gamma} which we still need to optimize over.

For the contributions to ψ1(h,h~)\psi_{1}(h,\tilde{h}) over the interval [0,τ(0)][0,\tau(0)], i.e., for the minimization of

(4.47) 120τ(0)h~˙2(t)𝑑t+ρ20τ(0)(γ(w(τ(0))w(t))+γh(τ(0))+γ¯h~(t))2𝑑t\displaystyle\frac{1}{2}\int_{0}^{\tau(0)}\dot{\tilde{h}}^{2}(t)dt+\frac{\rho}{2}\int_{0}^{\tau(0)}\left(\gamma\left(w({\tau(0)})-w(t)\right)+\gamma h\left(\tau(0)\right)+\overline{\gamma}\tilde{h}(t)\right)^{2}dt

over h~\tilde{h} subject to the yet to be optimally chosen starting value h~(0)=u\tilde{h}(0)=u and the terminal value h~(τ(0))=γ¯v\tilde{h}(\tau(0))=\overline{\gamma}v fixed above, we apply Theorem 3.2 in [3] for our present deterministic setup. This result shows that

(4.48) ξ~(t)\displaystyle\tilde{\xi}(t) :=1γ2cosh(γ¯ρ(τ(0)t))γ¯cosh(γ¯ρ(τ(0)t))v\displaystyle:=\frac{1-\gamma^{2}\cosh\left(\overline{\gamma}\sqrt{\rho}(\tau(0)-t)\right)}{\overline{\gamma}\cosh\left(\overline{\gamma}\sqrt{\rho}(\tau(0)-t)\right)}v
(4.49) +γρcosh(γ¯ρ(τ(0)t))tτ(0)sinh(γ¯ρ(τ(0)s))(w(s)w(τ(0)))𝑑s,t[0,τ(0)]\displaystyle\quad+\frac{\gamma\sqrt{\rho}}{\cosh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(0)-t\right)\right)}\int_{t}^{\tau(0)}\sinh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(0)-s\right)\right)\left(w(s)-w(\tau(0))\right)ds,\quad t\in[0,\tau(0)]

allows us to describe the minimizer h¯~\underline{\tilde{h}} as the solution to the linear ODE

(4.50) h~˙(t)=γ¯ρcoth(γ¯ρ(τ(0)t))(ξ~(t)h~(t)),h~(0)=u,\displaystyle\dot{\tilde{h}}(t)=\overline{\gamma}\sqrt{\rho}\coth\left(\overline{\gamma}\sqrt{\rho}(\tau(0)-t)\right)\left(\tilde{\xi}(t)-\tilde{h}(t)\right),\quad\tilde{h}(0)=u,

and the minimum value is

Φ0γ¯h~(0)+120τ(0)h~˙2(t)𝑑t\displaystyle\Phi_{0}\overline{\gamma}\tilde{h}(0)+\frac{1}{2}\int_{0}^{\tau(0)}\dot{\tilde{h}}^{2}(t)dt
+12Λ0τ(0)(γ(w(τ(0))w(t))+γh(τ(0))+γ¯f(t))2𝑑t\displaystyle+\frac{1}{2\Lambda}\int_{0}^{\tau(0)}\left(\gamma\left(w(\tau(0))-w(t)\right)+\gamma h\left(\tau(0)\right)+\overline{\gamma}f(t)\right)^{2}dt
(4.51) =\displaystyle=\; Φ0γ¯u+12γ¯ρcoth(γ¯ρτ(0))(uξ^(0))2\displaystyle\Phi_{0}\overline{\gamma}u+\frac{1}{2}\overline{\gamma}\sqrt{\rho}\coth\left(\overline{\gamma}\sqrt{\rho}\tau(0)\right)\left(u-\widehat{\xi}(0)\right)^{2}
+12Λ0τ(0)(vcosh(γ¯ρ(τ(0)t))+γf(t))2𝑑t\displaystyle+\frac{1}{2\Lambda}\int_{0}^{\tau(0)}\left(\frac{v}{\cosh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(0)-t\right)\right)}+\gamma f(t)\right)^{2}dt

for

(4.52) f(t):=w(τ(0))w(t)\displaystyle f(t):=w(\tau(0))-w(t)
+γ¯ρcosh(γ¯ρ(τ(0)t))tτ(0)sinh(γ¯ρ(τ(0)s))(w(s)w(τ(0)))𝑑s.\displaystyle+\frac{\overline{\gamma}\sqrt{\rho}}{\cosh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(0)-t\right)\right)}\int_{t}^{\tau(0)}\sinh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(0)-s\right)\right)\left(w(s)-w(\tau(0))\right)ds.

Minimizing over uu in (4.51) we obtain

(4.53) h¯~(0)=ξ^(0)Φ0tanh(γ¯ρτ(0))/ρ\underline{\tilde{h}}(0)=\widehat{\xi}(0)-\Phi_{0}\tanh\left(\overline{\gamma}\sqrt{\rho}\tau(0)\right)/\sqrt{\rho}

and we find the corresponding minimum value to be

(4.54) Φ0γ¯h¯~(0)+120τ(0)h~¯˙2(t)𝑑t\displaystyle\Phi_{0}\overline{\gamma}\underline{\tilde{h}}(0)+\frac{1}{2}\int_{0}^{\tau(0)}\dot{\underline{\tilde{h}}}^{2}(t)dt
(4.55) +12Λ0τ(0)(γ(w(τ(0))w(t))+γh(τ(0))+γ¯h¯~(t))2𝑑t\displaystyle+\frac{1}{2\Lambda}\int_{0}^{\tau(0)}\left(\gamma\left(w(\tau(0))-w(t)\right)+\gamma h\left(\tau(0)\right)+\overline{\gamma}\underline{\tilde{h}}(t)\right)^{2}dt
(4.56) =\displaystyle=\; Φ0γ¯ξ^(0)12ρΦ02γ¯tanh(γ¯ρτ(0))\displaystyle\Phi_{0}\overline{\gamma}\widehat{\xi}(0)-\frac{1}{2\sqrt{\rho}}\Phi^{2}_{0}\overline{\gamma}\tanh\left(\overline{\gamma}\sqrt{\rho}\tau(0)\right)
+12Λ0τ(0)(vcosh(γ¯ρ(τ(0)t))+γf(t))2𝑑t.\displaystyle+\frac{1}{2\Lambda}\int_{0}^{\tau(0)}\left(\frac{v}{\cosh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(0)-t\right)\right)}+\gamma f(t)\right)^{2}dt.

Next, we plugin (4.45)–(4.46) and (4.54) into (4.41). The result is

(4.57) ψ1(h¯,h¯~)\displaystyle\psi_{1}(\underline{h},\underline{\tilde{h}}) =Φ0γw(τ(0))+Φ0γ2v+12ρcoth(ρ(Tτ(0))v2\displaystyle=\Phi_{0}\gamma w(\tau(0))+\Phi_{0}\gamma^{2}v+\frac{1}{2}\sqrt{\rho}\coth\left(\sqrt{\rho}(T-\tau(0)\right)v^{2}
(4.58) +Φ0γ¯ξ^(0)12ρΦ02γ¯tanh(γ¯ρτ(0))\displaystyle\quad+\Phi_{0}\overline{\gamma}\widehat{\xi}(0)-\frac{1}{2\sqrt{\rho}}\Phi^{2}_{0}\overline{\gamma}\tanh\left(\overline{\gamma}\sqrt{\rho}\tau(0)\right)
(4.59) +ρ20τ(0)(vcosh(γ¯ρ(τ(0)t))+γf(t))2𝑑t\displaystyle\quad+\frac{\rho}{2}\int_{0}^{\tau(0)}\left(\frac{v}{\cosh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(0)-t\right)\right)}+\gamma f(t)\right)^{2}dt

and from (4.48) (for t=0t=0) it follows that the minimum over vv is achieved for

(4.60) v:=ρΦ0ρcosh(γ¯ρτ(0))+γ0τ(0)f(t)cosh(γ¯ρ(τ(0)t))𝑑tcoth(ρ(Tτ(0)))+1γ¯tanh(γ¯ρτ(0)).\displaystyle v:=-\sqrt{\rho}\frac{\frac{\Phi_{0}}{\rho\cosh\left(\overline{\gamma}\sqrt{\rho}\tau(0)\right)}+\gamma\int_{0}^{\tau(0)}\frac{f(t)}{\cosh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(0)-t\right)\right)}dt}{\coth\left(\sqrt{\rho}\left(T-\tau(0)\right)\right)+\frac{1}{\overline{\gamma}}\tanh\left(\overline{\gamma}\sqrt{\rho}\tau(0)\right)}.

The minimizer (a¯,a¯~)(\underline{a},\underline{\tilde{a}}) can now be recovered from (4.38)–(4.39), (4.45)–(4.50), (4.52) and (4.60) and turns out to be a continuous functional of (Φ0,(w(t)w(0))t[0,τ(0)])(\Phi_{0},(w(t)-w(0))_{t\in[0,\tau(0)]}). From (4.45), (4.48), (4.53)

γw(τ(0))+γh(τ(0))+γ¯h~(0)\displaystyle\gamma w(\tau(0))+\gamma h(\tau(0))+\overline{\gamma}\tilde{h}(0)
=γw(τ(0))+νcosh(γ¯ρτ(0))γ¯Φ0tanh(γ¯ρτ(0))/ρ\displaystyle=\gamma w(\tau(0))+\frac{\nu}{\cosh\left(\overline{\gamma}\sqrt{\rho}\tau(0)\right)}-\overline{\gamma}\Phi_{0}\tanh\left(\overline{\gamma}\sqrt{\rho}\tau(0)\right)/\sqrt{\rho}
+γγ¯ρcosh(γ¯ρτ(0))0τ(0)sinh(γ¯ρ(τ(0)s))(w(s)w(τ(0)))𝑑s\displaystyle\quad+\frac{\gamma\overline{\gamma}\sqrt{\rho}}{\cosh\left(\overline{\gamma}\sqrt{\rho}\tau(0)\right)}\int_{0}^{\tau(0)}\sinh\left(\overline{\gamma}\sqrt{\rho}\left(\tau(0)-s\right)\right)\left(w(s)-w(\tau(0))\right)ds
=S¯0S0ΛΥ0(τ(0))Υ0(τ(0))Φ0\displaystyle=\bar{S}_{0}-S_{0}-\Lambda\frac{\Upsilon^{\prime}_{0}(\tau(0))}{\Upsilon_{0}(\tau(0))}\Phi_{0}

where the last equality follows from (4.52), (4.60) and the Fubini theorem. This together with (4.38)–(4.39) gives (4.35). Finally, (4.37) follows from (4.57)–(4.60). ∎

Lemma 4.6.

The functional Ψ3=Ψs(m,m~)\Psi_{3}=\Psi_{s}(m,\tilde{m}) given by (4.17) is minimized by (m¯,m¯~)=(0,0)(\underline{m},\underline{\tilde{m}})=(0,0) which yields the minimum value Ψ3(m¯,m¯~)=0\Psi_{3}(\underline{m},\underline{\tilde{m}})=0.

Proof.

The statement is obvious since Ψ30\Psi_{3}\geq 0 and Ψ3(m,m~)=0\Psi_{3}(m,\tilde{m})=0 if and only if (m,m~)=(0,0)(m,\tilde{m})=(0,0). ∎

4.4. Construction of the solution to the dual problem

Having found the minimum values for the functionals Ψ1\Psi_{1}, Ψ2\Psi_{2}, and Ψ3\Psi_{3} from Lemma 4.3, we conclude that their sum yields a lower bound for the value of the dual problem (4.11). In fact, this lower bound is sharp since we can construct a measure ¯𝒬\underline{\mathbb{Q}}\in\mathcal{Q} whose dual target value coincides with it. For this consider the resolvent kernel k¯\underline{k} associated with l¯\underline{l} via

(4.61) l¯t,s+k¯t,s=stl¯t,rk¯r,s𝑑r,0stT.\displaystyle\underline{l}_{t,s}+\underline{k}_{t,s}=\int_{s}^{t}\underline{l}_{t,r}\underline{k}_{r,s}dr,\quad 0\leq s\leq t\leq T.

This kernel allows us to construct the solution

(4.62) θ¯t:=a¯t0tκ¯t,r(a¯r+0rl¯r,s𝑑Bs)𝑑r,t[0,T],\displaystyle\underline{\theta}_{t}:=\underline{a}_{t}-\int_{0}^{t}\underline{\kappa}_{t,r}\left(\underline{a}_{r}+\int_{0}^{r}\underline{l}_{r,s}dB_{s}\right)dr,\quad t\in[0,T],

to the Volterra equation

(4.63) θ¯t=a¯t+0tl¯t,s𝑑Bs+0tl¯t,sθ¯s𝑑s.\displaystyle\underline{\theta}_{t}=\underline{a}_{t}+\int_{0}^{t}\underline{l}_{t,s}dB_{s}+\int_{0}^{t}\underline{l}_{t,s}\underline{\theta}_{s}ds.

Now, the probability =¯\mathbb{Q}=\underline{\mathbb{Q}} given by (4.18) with θ=θ¯\theta=\underline{\theta} of (4.62) and

(4.64) θ~=θ¯~:=a¯~+0.l¯~.,s(dBs+θ¯sds).\displaystyle\tilde{\theta}=\underline{\tilde{\theta}}:=\underline{\tilde{a}}+\int_{0}^{.}\underline{\tilde{l}}_{.,s}(dB_{s}+\underline{\theta}_{s}ds).

induces the Girsanov ¯\underline{\mathbb{Q}}-Brownian motion B¯B^{\underline{\mathbb{Q}}} of (4.19) and, using that θ¯\underline{\theta} solves the Volterra equation (4.63), we find the Ito representations

(4.65) θ¯t\displaystyle\underline{\theta}_{t} =a¯t+0tl¯t,s𝑑Bs¯ for t[0,τ1(T)],\displaystyle=\underline{a}_{t}+\int_{0}^{t}\underline{l}_{t,s}dB^{\underline{\mathbb{Q}}}_{s}\text{ for }t\in[0,\tau^{-1}(T)],
(4.66) θ¯~t\displaystyle\underline{\tilde{\theta}}_{t} =a¯~t+0tl¯~t,s𝑑Bs¯ for t[0,T].\displaystyle=\underline{\tilde{a}}_{t}+\int_{0}^{t}\underline{\tilde{l}}_{t,s}dB^{\underline{\mathbb{Q}}}_{s}\text{ for }t\in[0,T].

As a consequence, θ¯\underline{\theta}, θ¯~\underline{\tilde{\theta}}, a¯\underline{a}, a¯~\underline{\tilde{a}}, l¯\underline{l}, l¯~\underline{\tilde{l}} and m¯=0\underline{m}=0, m¯~=0\underline{\tilde{m}}=0 are related exactly in the same way as the corresponding quantities in Lemma 4.3. By the same calculation as in the proof of this lemma, the dual target value thus turns out to be

𝔼¯[Φ0(STS0)+logd¯d0+ρ20T|𝔼¯[ST|𝒢t]St|2dt]\displaystyle\mathbb{E}_{\underline{\mathbb{Q}}}\left[\Phi_{0}(S_{T}-S_{0})+\log\frac{d\underline{\mathbb{Q}}}{d\mathbb{P}_{0}}+\frac{\rho}{2}\int_{0}^{T}\left|\mathbb{E}_{\underline{\mathbb{Q}}}\left[S_{T}\middle|\mathcal{G}_{t}\right]-S_{t}\right|^{2}dt\right]
(4.67) =Ψ1(a¯,a¯~)+Ψ2(l¯,l¯~)+Ψ3(m¯,m¯~),\displaystyle=\Psi_{1}(\underline{a},\tilde{\underline{a}})+\Psi_{2}(\underline{l},\underline{\tilde{l}})+\Psi_{3}(\underline{m},\underline{\tilde{m}}),

where in the last line we are allowed to drop the expectation 𝔼¯\mathbb{E}_{\underline{\mathbb{Q}}} because the quantity there is deterministic anyway. It follows that ¯\underline{\mathbb{Q}} indeed attains the lower bound for the dual problem.

Moreover, we learn from Lemmas 4.5, 4.4, and 4.6, that the dual problem’s value is given by

(4.68) inf𝒬\displaystyle\inf_{\mathbb{Q}\in\mathcal{Q}} 𝔼[Φ0(STS0)+logdd0+ρ20T|𝔼[ST|𝒢tτ]St|2dt]\displaystyle\mathbb{E}_{\mathbb{Q}}\left[\Phi_{0}(S_{T}-S_{0})+\log\frac{d\mathbb{Q}}{d\mathbb{P}_{0}}+\frac{\rho}{2}\int_{0}^{T}\left|\mathbb{E}_{\mathbb{Q}}\left[S_{T}\middle|\mathcal{G}^{\tau}_{t}\right]-S_{t}\right|^{2}dt\right]
(4.69) =Ψ1(a¯,a¯~)+Ψ2(l¯,l¯~)+Ψ3(m¯,m¯~)\displaystyle=\Psi_{1}(\underline{a},\tilde{\underline{a}})+\Psi_{2}(\underline{l},\underline{\tilde{l}})+\Psi_{3}(\underline{m},\underline{\tilde{m}})
(4.70) =12ρtanh(ρT)Φ02\displaystyle=-\frac{1}{2\sqrt{\rho}}\tanh\left(\sqrt{\rho}T\right)\Phi^{2}_{0}
(4.71) +120Tγ2ργ¯coth(γ¯ρ(tτ1(t)))+tanh(ρ(Tt))𝑑t,\displaystyle\qquad+\frac{1}{2}\int_{0}^{T}\!\frac{\gamma^{2}\sqrt{\rho}}{\overline{\gamma}\coth\left(\overline{\gamma}\sqrt{\rho}\left(t-\tau^{-1}(t)\right)\right)+\tanh\left(\sqrt{\rho}\left(T-t\right)\right)}dt,

where the last identity holds in case τ(0)=0\tau(0)=0.

4.5. Construction of the solution to the primal problem

Having constructed the dual optimizer ^:=¯\widehat{\mathbb{Q}}:=\underline{\mathbb{Q}}, we now can use (4.12) to compute the optimal primal solution ϕ^\widehat{\phi}. For t=0t=0, we use the representation of STS_{T} from (4.8) and the fact that BB and WW have, respectively, drift θ¯\underline{\theta} and θ¯~\underline{\tilde{\theta}} under ¯\underline{\mathbb{Q}}. Hence, upon taking expectation with respect to ¯\underline{\mathbb{Q}}, we find

(4.72) 𝔼¯[ST]\displaystyle\mathbb{E}_{\underline{\mathbb{Q}}}\left[S_{T}\right] =𝔼¯[γw(τ(0))+γ0τ1(T)τ˙(t)θt𝑑t+γ¯0Tθ¯~t𝑑t]\displaystyle=\mathbb{E}_{\underline{\mathbb{Q}}}\left[\gamma w(\tau(0))+\gamma\int_{0}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(t)}\theta_{t}dt+\overline{\gamma}\int_{0}^{T}\underline{\tilde{\theta}}_{t}dt\right]
(4.73) =γw(τ(0))+γ0τ1(T)τ˙(t)a¯t𝑑t+γ¯0Ta¯~t𝑑t\displaystyle=\gamma w(\tau(0))+\gamma\int_{0}^{\tau^{-1}(T)}\sqrt{\dot{\tau}(t)}\underline{a}_{t}dt+\overline{\gamma}\int_{0}^{T}\underline{\tilde{a}}_{t}dt
(4.74) =S¯0S0Υ0(τ(0))ρΥ0(τ(0))Φ0\displaystyle=\bar{S}_{0}-S_{0}-\frac{\Upsilon^{\prime}_{0}(\tau(0))}{\rho\Upsilon_{0}(\tau(0))}\Phi_{0}

where the last identity is just (4.35). It follows that the optimal initial turnover rate is

(4.75) ϕ^0=ρ(S¯0S0)Υ0(τ(0))Υ0(τ(0))Φ0.\displaystyle\widehat{\phi}_{0}=\rho(\bar{S}_{0}-S_{0})-\frac{\Upsilon^{\prime}_{0}(\tau(0))}{\Upsilon_{0}(\tau(0))}\Phi_{0}.

Invoking the same dynamic programming argument as in Lemma 3.5 of [4], we conclude that the analogous formula holds for arbitrary tt. This establishes optimality of the strategy described in Theorem 3.1.

References

  • Almgren and Chriss [2001] R. Almgren and N. Chriss. Optimal execution of portfolio transactions. J. Risk, 3:5–39, 2001.
  • Bandini et al. [2019] E. Bandini, A. Cosso, M. Fuhrman, and H. Pham. Randomized filtering and Bellman equation in Wasserstein space for partial observation control problem. Stochastic Processes and Applications, 129:674–711, 2019.
  • Bank et al. [2017] P. Bank, H.M. Soner, and M. Voß. Hedging with temporary price impact. Mathematics and Financial Economics, 11:215–239, 2017.
  • Bank et al. [2022] P. Bank, Y. Dolinsky, and M. Rásonyi. What if we knew what the future brings? Optimal investment for a frontrunner with price impact. Applied Mathematics and Optimization, 86:article 25, 2022.
  • Bank et al. [2023] P. Bank, Á. Cartea, and L. Körber. Optimal execution and speculation with trade signals, 2023. URL https://doi.org/10.48550/arXiv.2306.00621.
  • Belak et al. [2018] C. Belak, J. Muhle-Karbe, and K. Ou. Optimal trading with general signals and liquidation in target zone models. 2018.
  • Bensoussan [1992] A. Bensoussan. Stochastic Control of Partially Observable Systems. Cambridge University Press,, Cambridge, UK., 1992.
  • Bismut [1982] J.-M. Bismut. Partially observed diffusions and their control. SIAM Journal of Control and Optimization, 20:302–309, 1982.
  • Cartea and Jaimungal [2016] Á. Cartea and S. Jaimungal. Incorporating order-flow into optimal execution. Mathematics and Financial Economics, 10(3):339–364, 2016.
  • Casgrain and Jaimungal [2019] P. Casgrain and S. Jaimungal. Trading algorithms with learning in latent alpha models. Mathematical Finance, 29(3):735–772, 2019. doi: 10.1111/mafi.12194. URL https://ideas.repec.org/a/bla/mathfi/v29y2019i3p735-772.html.
  • Delaben and Schachermayer [1994] F. Delaben and W. Schachermayer. A general version of the fundamental theorem of asset pricing,. Mathematische Annalen, 300:463–520, 1994.
  • Fleming and Pardoux [1982] W. Fleming and E. Pardoux. Optimal control for partially observed diffusions. SIAM Journal of Control and Optimization, 20:261–285, 1982.
  • Gelfand and Fomin [1963] I.M. Gelfand and S.V. Fomin. Calculus of variations. Prentice Hall, International, 1963.
  • Hida and Hitsuda [1993] T. Hida and M. Hitsuda. Gaussian Processes. American Mathematical Society, 1993.
  • Hitsuda [1968] M. Hitsuda. Representation of gaussian processes equivalent to wiener process. Osaka Journal of Mathematics, 5:299–312, 1968.
  • Kyle [1985] A.S. Kyle. Continuous auctions and insider trading. Econometrica, 53:1315–1335, 1985.
  • Lehalle and Neuman [2019] C.A. Lehalle and E. Neuman. Incorporating signals into optimal trading. Finance and Stochastics, 23(1):275–311, 2019.
  • Levental and Skorohod [1995] S. Levental and A.V. Skorohod. A necessary and sufficient condition for absence of arbitrage with tame portfolios. Annals of Applied Probability, 5:463–520, 1995.
  • Neuman and Voß [2022] E. Neuman and M. Voß. Optimal signal-adaptive trading with temporary and transient price impact. SIAM Journal on Financial Mathematics, 13(2):551–575, 2022. doi: 10.1137/20M1375486. URL https://doi.org/10.1137/20M1375486.
  • Tang [1998] S. Tang. The maximum principle for partially observed optimal control of stochastic differential equations. SIAM Journal of Control and Optimization, 36:1596–1617, 1998.