This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimal Power Allocation for OFDM-based Ranging Using Random Communication Signals

Ying Zhang, , Fan Liu, , Tao Liu, , and Shi Jin Y. Zhang and T. Liu are with the School of Automation and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China. (email: zhangying2024@mail.sustech.edu.cn; liut6@sustech.edu.cn).F. Liu and S. Jin are with the National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China. (email: f.liu@ieee.org; jinshi@seu.edu.cn).
Abstract

High-precision ranging plays a crucial role in future 6G Integrated Sensing and Communication (ISAC) systems. To improve the ranging performance while maximizing the resource utilization efficiency, future 6G ISAC networks have to reuse data payload signals for both communication and sensing, whose inherent randomness may deteriorate the ranging performance. To address this issue, this paper investigates the power allocation (PA) design for an OFDM-based ISAC system under random signaling, aiming to reduce the ranging sidelobe level of both periodic and aperiodic auto-correlation functions (P-ACF and A-ACF) of the ISAC signal. Towards that end, we first derive the closed-form expressions of the average squared P-ACF and A-ACF, and then propose to minimize the expectation of the integrated sidelobe level (EISL) under arbitrary constellation mapping. We then rigorously prove that the uniform PA scheme achieves the global minimum of the EISL for both P-ACF and A-ACF. As a step further, we show that this scheme also minimizes the P-ACF sidelobe level at every lag. Moreover, we extend our analysis to the P-ACF case with frequency-domain zero-padding, which is a typical approach to improve the ranging resolution. We reveal that there exists a tradeoff between sidelobe level and mainlobe width, and propose a project gradient descent algorithm to seek a locally optimal PA scheme that reduces the EISL. Finally, we validate our theoretical findings through extensive simulation results, confirming the effectiveness of the proposed PA methods in reducing the ranging sidelobe level for random OFDM signals.

Index Terms:
Integrated Sensing and Communication, OFDM, ranging sidelobe, power allocation, frequency zero-padding

I Introduction

The International Telecommunication Union (ITU) has recently endorsed a global vision for 6G, identifying Integrated Sensing and Communication (ISAC) technology as one of six critical use cases for next-generation networks [1]. To date, ISAC has been widely recognized as a key enabler for a number of emerging 6G applications, including autonomous vehicles, Internet of Things (IoT) networks, unmanned aerial vehicle (UAV) networks, and the low-altitude economy, which require simultaneous communication and sensing functionalities[2, 3, 4].

The ISAC system is a unified framework that provides both wireless communication and radar sensing functions. ISAC significantly enhances spectrum utilization and mitigates spectrum conflicts between radar and communication systems. Furthermore, it reduces the size and energy consumption of the equipment. Due to its high spectrum efficiency and low hardware costs, ISAC technology has garnered substantial attention from both academia and industry [5, 6, 7, 8, 9, 10]. ISAC waveforms, as the basis of ISAC technology, have been studied extensively [11, 12, 13, 14]. In general, waveform design methodologies for ISAC can be categorized into sensing-centric design, communication-centric design, and joint design approaches [3]. For the sensing-centric design, the priority of sensing functionality is higher than that of the communication counterpart. In such cases, one typically focuses on maximizing sensing performance or implementing basic communication capabilities over existing sensing waveforms or infrastructures[15],[16]. Communication-centric schemes, on the other hand, rely on the existing communication waveforms and standard-compatible protocols, such as single-carrier (SC) signals, orthogonal time frequency space (OTFS) signals and orthogonal frequency division multiplexing (OFDM) signals [17],[18]. Different from the above two methods, the joint design strategy creates new ISAC waveforms, aiming to achieve an optimized balance between sensing and communication capabilities[19],[20].

The communication-centric approach is expected to be more advantageous for ISAC networks due to its lower implementation complexity[5],[6]. Towards that end, numerous researches have been centering on communication-centric ISAC transmission, with a particular focus on waveform design and performance analysis [21, 22, 23, 24]. However, a critical challenge arises because communication data symbols must inherently exhibit randomness to carry meaningful information, which can adversely affect sensing accuracy. This phenomenon has recently been characterized as the deterministic-random tradeoff (DRT), a fundamental limitation in ISAC system design [25]. As a result, developing optimal communication-centric waveforms that mitigate sensing performance degradation becomes a crucial research objective. Against this backdrop, our recent work [26] took an initial step towards answering this fundamental question: What is the optimal communication-centric ISAC waveform under random signaling? In [26], we established the superiority of OFDM modulation in achieving the lowest ranging sidelobe. Specifically, we demonstrated that among all communication waveforms with a cyclic prefix (CP), OFDM is the only globally optimal waveform that achieves the lowest ranging sidelobe for both quadrature amplitude modulation (QAM) and phase shift keying (PSK) constellations. This holds true in terms of both the expectation of the integrated sidelobe level (EISL) and the expected sidelobe level at each lag of the periodic auto-correlation function (P-ACF). Furthermore, we proved that for communication waveforms without a CP, OFDM serves as a locally optimal waveform for QAM/PSK constellations, achieving a local minimum of the EISL of the aperiodic auto-correlation function (A-ACF).

Although the superiority of OFDM modulation over other waveforms in reducing ranging sidelobe level has been demonstrated in [26], it generally assumed a uniform power distribution across transmitted symbols, leaving the optimal power allocation (PA) strategies for random ISAC signaling unexplored. Numerous studies have investigated PA schemes for OFDM-based ISAC systems [27, 28, 29, 30, 31]. In [27], the authors proposed three distinct PA schemes aimed at maximizing the mutual information (MI) of radar sensing under different scenarios. In [28], the authors designed an optimization algorithm to obtain the PA design over subcarriers, thus the sensing MI of the OFDM-based ISAC waveform is improved. The authors in [29] conceived a power minimization-based joint subcarrier assignment and power allocation (PM-JSAPA) approach for ISAC systems. Similarly, a joint subcarrier and PA method for the integrated OFDM with interleaved subcarriers (OFDM-IS) waveform was proposed in [30]. The proposed method minimizes the autocorrelation sidelobe level of the integrated OFDM-IS waveform, using a cyclic minimization algorithm to solve the optimization problem. In [31], the authors proposed two designs for a radar-communication spectrum sharing problem by maximizing the output signal-to-interference-plus-noise ratio (SINR) at the radar receiver while maintaining certain communication throughput and power constraints. Although extensive studies on OFDM PA have been conducted for deterministic signaling, none have rigorously addressed the issue of PA design for random signaling.

In this paper, we investigate the PA design for random OFDM communication signals, in the context of target range estimation under a monostatic ISAC setup. In this setup, the ISAC transmitter (Tx) sends out an OFDM communication signal modulated with random symbols for dual purposes of delivering information to communication users and multi-target ranging. The signal is received by communication users, and simultaneously reflected from distant targets back to a sensing receiver (Rx) that is colocated with the ISAC Tx. As a result, despite its inherent randomness, the sensing Rx has full knowledge of the ISAC signal. To evaluate the ranging performance under matched filtering algorithms, we adopt the auto-correlation function (ACF) of the ISAC signal as a performance indicator, considering both periodic and aperiodic convolutions for signals with and without CP, respectively. For clarity, we summarize our main contributions as follows:

  • We develop a generic framework to analyze the ranging performance of OFDM-based random ISAC signals. Specifically, we analyze P-ACF and A-ACF for the considered signal by deriving their closed-form expressions.

  • We prove that the uniform PA scheme achieves the lowest EISL for both P-ACF and A-ACF. In particular, it also achieves the lowest average sidelobe level at every lag of the P-ACF.

  • We derive a closed-form expression for P-ACF with PA and frequency zero-padding, where the latter is a classical method to improve the range resolution of the matched filtering output. We demonstrate that in the case of frequency zero-padding, uniform PA does not yield the lowest possible ranging sidelobe. To address this, we formulate an optimization problem and develop the Projected Gradient Descent (PGD) algorithm to conceive a PA scheme that minimizes the ranging sidelobe.

  • By comparing ranging performances, we observe that while the PA scheme obtained via the PGD algorithm achieves a lower sidelobe level, it results in a slight increase in the mainlobe width compared to the uniform PA scheme. Building upon this observation, we introduce a new constraint to limit the mainlobe width and employ the Successive Convex Approximation (SCA) algorithm to solve the corresponding optimization problem. Our results indicate the existence of a tradeoff between the mainlobe width and the sidelobe level.

The remainder of this paper is organized as follows. Section II introduces the system model of the ISAC system under consideration and the corresponding performance metrics. Section III derives the closed-form expressions for both P-ACF and A-ACF of random ISAC signals using OFDM modulation and PA schemes. The optimal PA strategies of P-ACF and A-ACF with OFDM modulation for random ISAC signals are discussed in Section IV. Section V conceives optimal PA strategies for P-ACF with frequency zero-padding and OFDM modulation in random ISAC signals. Section VI presents simulation results to validate the theoretical analysis. Finally, Section VII concludes the paper.

Notations: Matrices are denoted by bold uppercase letters (e.g., 𝐔\mathbf{U}), vectors are represented by bold lowercase letters (e.g., 𝐱\mathbf{x}), and scalars are denoted by normal font (e.g., NN); The nnth entry of a vector 𝐬\mathbf{s}, and the (m,n)(m,n)-th entry of a matrix 𝐀\mathbf{A} are denoted as sns_{n} and am.na_{m.n}, respectively; \otimes and vec()\operatorname{vec}\left(\cdot\right) denote the Kronecker product and the vectorization, ()T\left(\cdot\right)^{T}, ()H\left(\cdot\right)^{H}, and ()\left(\cdot\right)^{*} stand for transpose, Hermitian transpose, and the complex conjugate of the matrices; p\ell_{p} norm is written as p\left\|\cdot\right\|_{p}, and 𝔼()\mathbb{E}(\cdot) represents the expectation operation; The notation Diag(𝐚\mathbf{a}) denotes the diagonal matrix obtained by placing the entries of 𝐚\mathbf{a} on its main diagonal.

II System Model

II-A ISAC Signal Model

This paper considers a monostatic ISAC system. The ISAC Tx emits a signal modulated with random communication symbols, which is received by a communication Rx and simultaneously reflected back to a sensing Rx by one or more targets at varying ranges. The sensing Rx, collocated with the ISAC Tx, performs matched filtering to estimate target delay parameters using the known random ISAC signal.

Let 𝐬=[s1,s2,,sN]TN\mathbf{s}=\left[s_{1},s_{2},\dots,s_{N}\right]^{\mathrm{T}}\in\mathbb{C}^{N} represent the NN communication symbols to be transmitted. When the OFDM modulation is adapted and the power allocation is considered, the discrete-time domain signal is given by

𝐱=𝐅NH𝐁𝐬,\mathbf{x}=\mathbf{F}_{N}^{H}\mathbf{B}\mathbf{s}, (1)

where 𝐅N\mathbf{F}_{N} is the normalized discrete Fourier transform (DFT) matrix of size NN, and the matrix 𝐁\mathbf{B} is the PA matrix, in the form of

𝐁=Diag([P1,P2,,PN]T),\displaystyle\mathbf{B}=\mathrm{Diag}\left(\left[\sqrt{P_{1}},\sqrt{P_{2}},...,\sqrt{P_{N}}\right]^{T}\right), (2)

where PiP_{i} represents the power allocated to iith subcarrier, with the constraints i=1NPi=N\sum_{i=1}^{N}P_{i}=N and Pi0P_{i}\geq 0, for all ii.

Assumption 1 (Unit Power and Rotational Symmetry).

We focus on constellations with a unit power, zero mean, and zero pseudo-variance, defined as

𝔼(|sn|2)=1,𝔼(sn)=0,𝔼(sn2)=0,n.\mathbb{E}(\left|s_{n}\right|^{2})=1,\quad\mathbb{E}(s_{n})=0,\quad\mathbb{E}(s_{n}^{2})=0,\quad\forall n. (3)

The unit-power normalization in Assumption 1 enables fair sensing and communication performance under varying constellation formats. Moreover, the properties of zero mean and zero pseudo-variance hold for most practical constellations (e.g., PSK and QAM families, excluding BPSK and 8-QAM).

To proceed, let us further define the kurtosis of a constellation as

μ4=𝔼{|sn𝔼(sn)|4}𝔼{|sn𝔼(sn)|2}2.\mu_{4}=\frac{\mathbb{E}\left\{|s_{n}-\mathbb{E}(s_{n})|^{4}\right\}}{\mathbb{E}\left\{|s_{n}-\mathbb{E}(s_{n})|^{2}\right\}^{2}}. (4)

Under unit power and zero mean conditions, kurtosis reduces to the fourth-order moment μ4=𝔼(|sn|4)\mu_{4}=\mathbb{E}(|s_{n}|^{4}). Using the Power Mean Inequality, we arrive at

𝔼(|sn|4)(𝔼(|sn|2))2=1.\mathbb{E}(|s_{n}|^{4})\geq\left(\mathbb{E}(|s_{n}|^{2})\right)^{2}=1. (5)

Specifically, all PSK constellations exhibit μ4=1\mu_{4}=1, while all QAM constellations have 1μ421\leq\mu_{4}\leq 2.

II-B Sensing Performance Metric

In radar systems, the Ambiguity Function (AF) of the signal is an important performance indicator for sensing [32].

𝒳(τ,fd)=x(t)x(tτ)ej2πfdt𝑑t,\mathcal{X}(\tau,f_{d})=\int_{-\infty}^{\infty}x(t)x^{*}(t-\tau)e^{j2\pi f_{d}t}dt, (6)

where x(t)x(t) is the radar signal, τ\tau is the time delay and fdf_{d} is Doppler shift. For the sake of simplicity, this paper considers only the zero-Doppler slice and sets aside the characterization of the complete AF as our future work. By letting fd=0f_{d}=0, (6) can be rewritten as

𝒳(τ,0)=x(t)x(tτ)𝑑t,\mathcal{X}(\tau,0)=\int_{-\infty}^{\infty}x(t)x^{*}(t-\tau)dt, (7)

which is known as the ACF of the signal x(t)x(t), and is well-recognized as a key performance indicator for ranging. In a discrete form, the ACF can be defined as the linear or periodic self-convolution of the discrete signal 𝐱\mathbf{x}, depending on whether a CP is added.

II-B1 Aperiodic ACF (A-ACF)

rk=𝐱H𝐉k𝐱=rk,k=0,1,,N1,r_{k}=\mathbf{x}^{H}\mathbf{J}_{k}\mathbf{x}=r_{-k}^{*},\quad k=0,1,\ldots,N-1, (8)

where 𝐉k\mathbf{J}_{k} is the kkth shift matrix in the form of

𝐉k=[𝟎𝐈Nk𝟎𝟎],𝐉k=𝐉kT=[𝟎𝟎𝐈Nk𝟎].\mathbf{J}_{k}={\begin{bmatrix}{\mathbf{0}}&{{{\mathbf{I}}_{N-k}}}\\ {\mathbf{0}}&{\mathbf{0}}\end{bmatrix}},\quad\mathbf{J}_{-k}=\mathbf{J}_{k}^{T}=\begin{bmatrix}{\mathbf{0}}&{\mathbf{0}}\\ {{{\mathbf{I}}_{N-k}}}&{\mathbf{0}}\end{bmatrix}. (9)

II-B2 Periodic ACF (P-ACF)

r~k=𝐱H𝐉~k𝐱=r~Nk,k=0,1,,N1,\widetilde{r}_{k}=\mathbf{x}^{H}\widetilde{\mathbf{J}}_{k}\mathbf{x}=\widetilde{r}_{N-k}^{*},\quad k=0,1,\ldots,N-1, (10)

where 𝐉~k\widetilde{\mathbf{J}}_{k} is defined as the kkth periodic shift matrix [33], given as

𝐉~k=[𝟎𝐈Nk𝐈k𝟎],𝐉~k=𝐉~Nk=[𝟎𝐈k𝐈Nk𝟎].\widetilde{\mathbf{J}}_{k}=\begin{bmatrix}{\mathbf{0}}&{{{\mathbf{I}}_{N-k}}}\\ {\mathbf{I}_{k}}&{\mathbf{0}}\end{bmatrix},\quad\widetilde{\mathbf{J}}_{-k}=\widetilde{\mathbf{J}}_{N-k}=\begin{bmatrix}{\mathbf{0}}&{{\mathbf{I}_{k}}}\\ {{{\mathbf{I}}_{N-k}}}&{\mathbf{0}}\end{bmatrix}. (11)

In both cases, the sidelobe level of the ACF plays a critical role. Let us take the A-ACF as an example. The sidelobe of rkr_{k} is defined as

|rk|2=|𝐱H𝐉k𝐱|2=|rk|2,k=1,2,..,N1,|r_{k}|^{2}=|\mathbf{x}^{H}\mathbf{J}_{k}\mathbf{x}|^{2}=|r_{\mathit{-k}}|^{2},\quad{k=1,2,..,N-1}, (12)

where |r0|2|r_{0}|^{2}=|𝐱H𝐱|2|\mathbf{x}^{H}\mathbf{x}|^{2}= |𝐬H𝐁H𝐅N𝐅NH𝐁𝐬|2|\mathbf{s}^{H}\mathbf{B}^{H}\mathbf{F}_{N}\mathbf{F}_{N}^{H}\mathbf{B}\mathbf{s}|^{2} = |i=1NPi|si|2|2\left|\sum_{i=1}^{N}P_{i}\left|s_{i}\right|^{2}\right|^{2} is the mainlobe of the ACF. The integrated sidelobe level (ISL) can be expressed as [34], [35]

ISL=k=1N1|rk|2.\mathrm{ISL}=\sum_{k=1}^{N-1}\left|r_{k}\right|^{2}. (13)

Given the random nature of the signal 𝐱\mathbf{x}, we define the average sidelobe level as the primary sensing performance metric. This metric is expressed as

𝔼(|rk|2)=𝔼(|𝐱H𝐉k𝐱|2)=𝔼(|𝐬H𝐁H𝐅N𝐉k𝐅NH𝐁𝐬|2),k.\mathbb{E}(|r_{k}|^{2})=\mathbb{E}(|\mathbf{x}^{H}\mathbf{J}_{k}\mathbf{x}|^{2})=\mathbb{E}(|\mathbf{s}^{H}\mathbf{B}^{H}\mathbf{F}_{N}\mathbf{J}_{k}\mathbf{F}_{N}^{H}\mathbf{B}\mathbf{s}|^{2}),\quad\forall k. (14)

When kk is zero, 𝔼(|r0|2)\mathbb{E}(|r_{0}|^{2}) denotes the average mainlobe level. Correspondingly, the EISL is given by

EISL=k=1N1𝔼(|rk|2).\mathrm{EISL}=\sum_{k=1}^{N-1}\ \mathbb{E}(|r_{k}|^{2}). (15)

Consequently, seeking the optimal PA strategy is equivalent to solving the following stochastic optimization problem:

mini=1NPi=N,Pi0k=1N1𝔼(|𝐬H𝐁H𝐅N𝐉k𝐅NH𝐁𝐬|2)𝔼(|i=1NPi|si|2|2),\mathop{\text{min}}\limits_{\sum_{i=1}^{N}P_{i}=N,P_{i}\geq 0}\frac{\sum_{k=1}^{N-1}\mathbb{E}\left(\left|\mathbf{s}^{H}\mathbf{B}^{H}\mathbf{F}_{N}\mathbf{J}_{k}\mathbf{F}_{N}^{H}\mathbf{B}\mathbf{s}\right|^{2}\right)}{\mathbb{E}\left(\left|\sum_{i=1}^{N}P_{i}\left|s_{i}\right|^{2}\right|^{2}\right)}, (16)

which is the EISL normalized by the expected mainlobe level.

III Statistical Characterizations of P-ACF and A-ACF

In [26], the closed-form expressions of P-ACF and A-ACF without PA have been theoretically analyzed. In this section, we systematically investigate the closed-form expressions of both P-ACF and A-ACF with PA in OFDM systems.

III-A The P-ACF Case

In this section, we present the main result of the P-ACF case with PA, which is generally easier to tackle than its A-ACF counterpart. Let us first demonstrate the basic structure of the periodic shift matrix in Lemma 1.

Lemma 1.

The periodic shift matrix can be decomposed as

𝐉~k=N𝐅NHDiag(𝐟Nk+1)𝐅N,\widetilde{\mathbf{J}}_{k}=\sqrt{N}\mathbf{F}_{N}^{H}\mathrm{Diag}(\mathbf{f}_{\mathit{N-k+1}})\mathbf{F}_{N}, (17)

where 𝐟k\mathbf{f}_{k} is the k\mathnormal{k}th column of 𝐅N\mathbf{F}_{N}.

The P-ACF with PA can be expressed as

r~k=𝐱H𝐉~k𝐱=𝐜H𝐅N𝐉~k𝐅NH𝐜,\begin{split}\widetilde{r}_{k}=\mathbf{x}^{H}\widetilde{\mathbf{J}}_{k}\mathbf{x}&=\mathbf{c}^{H}\mathbf{F}_{N}\widetilde{\mathbf{J}}_{k}\mathbf{F}_{N}^{H}\mathbf{c},\end{split} (18)

where k=0,1,,N1k=0,1,...,N-1 and 𝐜\mathbf{c} is

𝐜=𝐁𝐬=[s1P1,s2P2,,sNPN]T.\displaystyle\mathbf{c}=\mathbf{B}\mathbf{s}=\left[s_{1}\sqrt{P_{1}},s_{2}\sqrt{P_{2}},...,s_{N}\sqrt{P_{N}}\right]^{T}. (19)

Using Lemma 1, (18) can be recast as

r~k=N𝐜HDiag(𝐟Nk+1)𝐜=n=1N|cn|2ej2π(Nk)(n1)N=n=1N|cn|2ej2πk(n1)N.\begin{split}\widetilde{r}_{k}&=\sqrt{N}\mathbf{c}^{H}\mathrm{Diag}\left(\mathbf{f}_{\mathit{N-k+1}}\right)\mathbf{c}\\ &=\sum_{n=1}^{N}\left|c_{n}\right|^{2}e^{\frac{-j2\pi(N-k)(n-1)}{N}}\\ &=\sum_{n=1}^{N}\left|c_{n}\right|^{2}e^{\frac{j2\pi k(n-1)}{N}}.\end{split} (20)
Proposition 1.

The average squared P-ACF with PA is

𝔼(|r~k|2)=(μ41)i=1NPi2+|n=1NPnej2πknN|2.\mathbb{E}\left(\left|\widetilde{r}_{k}\right|^{2}\right)=\left(\mathbf{\mu}_{4}-1\right)\sum_{i=1}^{N}P_{i}^{2}+\left|\sum_{n=1}^{N}P_{n}e^{\frac{j2\pi kn}{N}}\right|^{2}. (21)
Proof.

See Appendix A. ∎

As a consequence, the average mainlobe of the P-ACF with PA is

𝔼(|r~0|2)=(μ41)i=1NPi2+N2.\ \mathbb{E}\left(\left|\widetilde{r}_{0}\right|^{2}\right)=(\mathbf{\mu}_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}. (22)
Corollary 1.

The EISL of the P-ACF with PA is

k=1N1𝔼(|r~k|2)=[(N1)μ4+1]i=1NPi2N2.\sum_{k=1}^{N-1}\ \mathbb{E}\left(\left|\widetilde{r}_{k}\right|^{2}\right)=\left[(N-1)\mu_{4}+1\right]\sum_{i=1}^{N}P_{i}^{2}-N^{2}. (23)
Proof.

See Appendix B. ∎

III-B The A-ACF Case

In this section, we evaluate the ranging performance of random ISAC signals with PA by investigating the sidelobe level of A-ACF.

Similarly to (18), the expression of A-ACF with PA is given by

rk=𝐱H𝐉k𝐱=𝐬H𝐁H𝐅N𝐉k𝐅NH𝐁𝐬,\begin{split}r_{k}=\mathbf{x}^{H}\mathbf{J}_{k}\mathbf{x}=\mathbf{s}^{H}\mathbf{B}^{H}\mathbf{F}_{N}\mathbf{J}_{k}\mathbf{F}_{N}^{H}\mathbf{B}\mathbf{s},\end{split} (24)

where 𝐉k\mathbf{J}_{k} is a shift matrix and the size is N×NN\times N. To apply Lemma 1, (24) can be rewritten as

rk=𝐱H𝐉k𝐱=[𝐱H𝟎NH]𝐉~k[𝐱𝟎N],\begin{split}{r}_{k}=\mathbf{x}^{H}\mathbf{J}_{k}\mathbf{x}=\begin{bmatrix}\mathbf{x}^{H}\mathbf{0}_{N}^{H}\end{bmatrix}\widetilde{\mathbf{J}}^{\star}_{k}\begin{bmatrix}\mathbf{x}\\ \mathbf{0}_{N}\end{bmatrix},\end{split} (25)

where 𝐉~k{\widetilde{\mathbf{J}}^{\star}_{k}} is a periodic shift matrix with size 2N×2N2N\times 2N and 𝟎N\mathbf{0}_{N} is a all-zero vector of length NN. According to Lemma 1, it can be decomposed as

𝐉~k=2N𝐅2NHDiag(𝐟2Nk+1)𝐅2N,\widetilde{\mathbf{J}}^{\star}_{k}=\sqrt{2N}\mathbf{F}_{2N}^{H}\mathrm{Diag}(\mathbf{f}^{\star}_{2N-k+1})\mathbf{F}_{2N}, (26)

where 𝐟k\mathbf{f}^{\star}_{k} is the k\mathnormal{k}th column of 𝐅2N\mathbf{F}_{2N}, which is the normalized DFT matrix of size 2N2N.

Accordingly, (25) can be rewritten as

rk=2N𝐬H𝐁H𝐅N𝐅~2NHDiag(𝐟2Nk+1)𝐅~2N𝐅NH𝐁𝐬,\begin{split}{r}_{k}=\sqrt{2N}\mathbf{s}^{H}\mathbf{B}^{H}\mathbf{F}_{N}\widetilde{\mathbf{F}}_{2N}^{H}\mathrm{Diag}(\mathbf{f}^{\star}_{2N-k+1})\widetilde{\mathbf{F}}_{2N}\mathbf{F}_{N}^{H}\mathbf{B}\mathbf{s},\end{split} (27)

where 𝐅~2N2N×N\widetilde{\mathbf{F}}_{2N}\in\mathbb{C}^{2N\times N} contains the first NN columns of 𝐅2N\mathbf{F}_{2N}. By denoting 𝐕=𝐁H𝐅N𝐅~2NH=[𝐯1,𝐯2,,𝐯2N]\mathbf{V}=\mathbf{B}^{H}\mathbf{F}_{N}\widetilde{\mathbf{F}}_{2N}^{H}=[\mathbf{v}_{1},\mathbf{v}_{2},...,\mathbf{v}_{2N}], it follows that

rk\displaystyle\ {r}_{k} =2N𝐬H𝐕Diag(𝐟2Nk+1)𝐕H𝐬\displaystyle=\sqrt{2N}\mathbf{s}^{H}\mathbf{V}\mathrm{Diag}(\mathbf{f}^{\star}_{2N-k+1})\mathbf{V}^{H}\mathbf{s}
=n=12N|𝐯nH𝐬|2ej2π(2Nk)(n1)2N\displaystyle=\sum_{n=1}^{2N}\left|\mathbf{v}_{n}^{H}\mathbf{s}\right|^{2}e^{-\frac{j2\pi(2N-k)(n-1)}{2N}}
=n=12N|𝐯nH𝐬|2ej2πk(n1)2N.\displaystyle=\sum_{n=1}^{2N}\left|\mathbf{v}_{n}^{H}\mathbf{s}\right|^{2}e^{\frac{j2\pi k(n-1)}{2N}}. (28)

The average mainlobe level and the EISL of the A-ACF are 𝔼(|r0|2)\mathbb{E}(|r_{0}|^{2}) and 12k=12N1𝔼(|rk|2)\frac{1}{2}\sum_{k=1}^{2N-1}\mathbb{E}(|{r}_{k}|^{2}) respectively.

Proposition 2.

The average mainlobe and the EISL of the A-ACF with PA are respectively

𝔼(|r0|2)\displaystyle\mathbb{E}(|r_{0}|^{2}) =(μ41)i=1NPi2+N2,\displaystyle=(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}, (29)
12k=12N1𝔼(|rk|2)\displaystyle\frac{1}{2}\sum_{k=1}^{2N-1}\mathbb{E}(|{r}_{k}|^{2}) =N(μ42)𝐕44+2Nn=12N𝐯n24\displaystyle=N(\mu_{4}-2)\|\mathbf{V}\|_{4}^{4}+2N\sum_{n=1}^{2N}\|\mathbf{v}_{n}\|_{2}^{4}
12[(μ41)i=1NPi2+N2].\displaystyle-\frac{1}{2}\left[(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}\right]. (30)
Proof.

See Appendix C. ∎

IV Optimal Power Allocation schemes

In this section, we analyze the optimal PA based on OFDM modulation for both the P-ACF and A-ACF cases.

IV-A The P-ACF Case

Theorem 1 (Global Optimality of the Uniform PA for Ranging).

When the OFDM signaling scheme is employed, the uniform PA is the only scheme that achieves the lowest normalized EISL of the P-ACF across all constellations.

Proof.

It is evident that both the average mainlobe and the EISL vary with the PA scheme. Therefore, we normalize the EISL with respect to the average mainlobe, yielding the expression

k=1N1𝔼(|r~k|2)𝔼(|r~0|2)=Nμ4i=1NPi2(μ41)i=1NPi2+N21=Nμ4(μ41)+N2i=1NPi21,\begin{split}\frac{\sum_{k=1}^{N-1}\ \mathbb{E}(\left|\widetilde{r}_{k}\right|^{2})}{\mathbb{E}(\left|\widetilde{r}_{0}\right|^{2})}&=\frac{N\mathbf{\mu}_{4}\sum_{i=1}^{N}P_{i}^{2}}{(\mathbf{\mu}_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}}-1\\ &=\frac{N\mathbf{\mu}_{4}}{(\mathbf{\mu}_{4}-1)+\frac{N^{2}}{\sum_{i=1}^{N}P_{i}^{2}}}-1,\end{split} (31)

indicating that the normalized EISL is minimized if and only if i=1NPi2\sum_{i=1}^{N}P_{i}^{2} is minimized. Moreover, note that

i=1NPi2=1Ni=1NPi2i=1N121N(i=1NPi)2\begin{split}\sum_{i=1}^{N}P_{i}^{2}=\frac{1}{N}\sum_{i=1}^{N}P_{i}^{2}\sum_{i=1}^{N}1^{2}\geq\frac{1}{N}\left(\sum_{i=1}^{N}P_{i}\right)^{2}\end{split} (32)

due to the Cauchy-Schwarz Inequality. The equality is attained if and only if P1=P2==PN=1P_{1}=P_{2}=...=P_{N}=1. This suggests that the normalized EISL is minimized under uniform PA, completing the proof. ∎

Theorem 2 (The Uniform PA achieves the Lowest Sidelobe at Every Lag).

When the OFDM signaling scheme is used, the uniform PA is the only scheme that achieves the lowest sidelobe level at every delay index kk of the P-ACF for all constellations.

Proof.

According to (21) and (22), the normalized 𝔼(|r~k|2)\mathbb{E}(|\widetilde{r}_{k}|^{2}) is shown as follows:

𝔼(|r~k|2)𝔼(|r~0|2)\displaystyle\frac{\mathbb{E}(|\widetilde{r}_{k}|^{2})}{\mathbb{E}(\left|\widetilde{r}_{0}\right|^{2})} =1N2|n=1NPnej2πknN|2(μ41)i=1NPi2+N2,k=1,2,,N1.\displaystyle=1-\frac{N^{2}-\left|\sum_{n=1}^{N}P_{n}e^{\frac{j2\pi kn}{N}}\right|^{2}}{(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}},k=1,2,...,N-1. (33)

When P1=P2==PN=1P_{1}=P_{2}=...=P_{N}=1,

|n=1NPnej2πknN|2=0,\left|\sum_{n=1}^{N}P_{n}e^{\frac{j2\pi kn}{N}}\right|^{2}=0, (34)

which maximizes the numerator of the second term of the right-hand side (RHS) in (33). Moreover, by applying an argument similar to the proof of Theorem 1, the denominator is minimized, which, in turn, maximizes the second term of the RHS of (33). Therefore, only when P1=P2==PN=1P_{1}=P_{2}=...=P_{N}=1, the normalized 𝔼(|r~k|2)\mathbb{E}(|\widetilde{r}_{k}|^{2}) reaches to its minimum, completing the proof. ∎

When the uniform PA scheme is employed, the average mainlobe level is

𝔼(|r~0|2)=(μ41)N+N2,\begin{split}\ \mathbb{E}(|\widetilde{r}_{0}|^{2})=({\mu_{4}}-1)N+N^{2},\end{split} (35)

the average sidelobe level is

𝔼(|r~k|2)=(μ41)N,k0,\begin{split}\mathbb{E}(|\widetilde{r}_{k}|^{2})=({\mu_{4}}-1)N,\quad k\neq 0,\end{split} (36)

and the normalized EISL is expressed as

k=1N1𝔼(|r~k|2)𝔼(|r~0|2)=Nμ4(μ41)+N1.\begin{split}\frac{\sum_{k=1}^{N-1}\ \mathbb{E}(|\widetilde{r}_{k}|^{2})}{\mathbb{E}(|\widetilde{r}_{0}|^{2})}=\frac{N{\mu_{4}}}{({\mu_{4}}-1)+N}-1.\end{split} (37)

An interesting observation is that for PSK constellations (μ4=1\mu_{4}=1), both the individual and the integrated sidelobe levels are zero under OFDM signaling with uniform power. This implies that the P-ACF of an OFDM-PSK signal with uniform power is always a unit impulse function. This observation is consistent with the results introduced in [26].

IV-B The A-ACF Case

Theorem 3 (Uniform PA is Globally Optimal for All Constellations).

When the OFDM signaling scheme is used, the uniform PA is the only PA scheme that achieves the lowest normalized EISL of the A-ACF for all constellations.

Proof.

See Appendix D

At this time, the average mainlobe of A-ACF is

𝔼(|r0|2)=(μ41)N+N2,\mathbb{E}(|r_{0}|^{2})=(\mu_{4}-1)N+N^{2}, (38)

and the normalized EISL of A-ACF is

12k=12N1𝔼(|rk|2)𝔼(|r0|2)=N(μ42)𝐅N𝐅~2NH44+N2(μ41)N+N212.\begin{split}\frac{\frac{1}{2}\sum_{k=1}^{2N-1}\mathbb{E}(|r_{k}|^{2})}{\mathbb{E}(|r_{0}|^{2})}=\frac{N(\mu_{4}-2)\left|\left|\mathbf{F}_{N}\widetilde{\mathbf{F}}_{2N}^{H}\right|\right|_{4}^{4}+N^{2}}{(\mu_{4}-1)N+N^{2}}-\frac{1}{2}.\end{split} (39)

V CP-OFDM With power allocation and frequency zero-padding

In this section, we analyze the P-ACF for the OFDM scheme incorporating PA and frequency zero-padding. Zero-padding refers to the process of appending zeros to the end of a signal or data sequence to extend its length. Specifically, zero-padding in the frequency domain involves adding zero values to the high-frequency portion of the signal’s spectrum, thereby increasing the overall length of the spectrum. By doing this, the resolution of the time-domain signal is enhanced through increasing the number of sampling points. Consequently, the accuracy of the range estimation may be improved.

According to (20), when the OFDM modulation and PA are applied, the P-ACF is the inverse discrete Fourier transform (IDFT) of the sequence |cn|2|c_{n}|^{2} up to a factor 1N\frac{1}{N}. Through frequency zero-padding with N(L1)N(L-1) null subcarriers, where L1L\geq 1 represents the padding factor, we generate an augmented sequence 𝐜^\hat{\mathbf{c}} with an extended length of NLNL samples, yielding

𝐜^=[|c1|2,|c2|2,,|cN|2,𝟎N(L1)]TT=[|s1P1|2,|s2P2|2,,|sNPN|2,𝟎N(L1)]TT,\begin{split}\hat{\mathbf{c}}&=\left[|c_{1}|^{2},|c_{2}|^{2},...,|c_{N}|^{2},\mathbf{0}_{N(L-1)}{{}^{T}}\right]^{T}\\ &=\left[|s_{1}\sqrt{P_{1}}|^{2},|s_{2}\sqrt{P_{2}}|^{2},...,|s_{N}\sqrt{P_{N}}|^{2},\mathbf{0}_{N(L-1)}{{}^{T}}\right]^{T},\end{split} (40)

where 𝟎N(L1)\mathbf{0}_{N(L-1)} represents the all-zero vector with length N(L1)N(L-1).

Analogous to the derivation in (20), we construct an enhanced P-ACF incorporating both PA and frequency-domain zero-padding. The modified P-ACF, denoted as r^k\hat{r}_{k}, is expressed as

r^k=n=1N|cn|2ej2πk(n1)NL=n=1NPn|sn|2ej2πk(n1)NL,\begin{split}\hat{r}_{k}&=\sum_{n=1}^{N}\left|c_{n}\right|^{2}e^{\frac{j2\pi k(n-1)}{NL}}=\sum_{n=1}^{N}{P_{n}}\left|s_{n}\right|^{2}e^{\frac{j2\pi k(n-1)}{NL}},\\ \end{split} (41)

which is the IDFT of the sequence 𝐜^\hat{\mathbf{c}} up to a factor 1NL\frac{1}{NL}.

Proposition 3.

The expectation of the integrated sidelobe level EISLZP and the average mainlobe level of the P-ACF with PA and frequency zero-padding can be expressed as

EISLZP\displaystyle\operatorname{EISL}_{\text{ZP}} =k=LNL21𝔼(|r^k|2)\displaystyle=\sum_{k=L}^{\frac{NL}{2}-1}\mathbb{E}(|\hat{r}_{k}|^{2})
=(NL2L)(μ41)𝐩22+𝐆H𝐩22,\displaystyle=(\frac{NL}{2}-L)\left(\mu_{4}-1\right)\left\|\mathbf{p}\right\|_{2}^{2}+\left\|\mathbf{G}^{H}\mathbf{p}\right\|_{2}^{2}, (42)
𝔼(|r^0|2)\displaystyle\mathbb{E}(|\hat{r}_{0}|^{2}) =(μ41)i=1NPi2+N2,\displaystyle=(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}, (43)

where

𝐠k\displaystyle\mathbf{g}_{k} =[ej2πkNL,ej2π2kNL,,ej2πNkNL]T,\displaystyle=\left[e^{\frac{-j2\pi k}{NL}},e^{\frac{-j2\pi 2k}{NL}},...,e^{\frac{-j2\pi Nk}{NL}}\right]^{T}, (44)
𝐆\displaystyle\mathbf{G} =[𝐠L,𝐠L+1,,𝐠NL/21],\displaystyle=\left[\mathbf{g}_{L},\mathbf{g}_{L+1},...,\mathbf{g}_{NL/2-1}\right], (45)
𝐩\displaystyle\mathbf{p} =[P1,P2,,PN]T.\displaystyle=\left[P_{1},P_{2},...,P_{N}\right]^{T}. (46)
Proof.

See Appendix E. ∎

The normalized EISLZP\text{EISL}_{\text{ZP}} can be denoted as

f(𝐩)=(NL2L)(μ41)𝐩22+𝐆H𝐩22(μ41)𝐩22+N2.f(\mathbf{p})=\frac{\left(\frac{NL}{2}-L\right)\left(\mu_{4}-1\right)\left\|\mathbf{p}\right\|_{2}^{2}+\left\|\mathbf{G}^{H}\mathbf{p}\right\|_{2}^{2}}{(\mu_{4}-1)\left\|\mathbf{p}\right\|_{2}^{2}+N^{2}}. (47)

Through comprehensive theoretical analysis and numerical simulations, we found that the uniform PA scheme ceases to be optimal for minimizing the normalized EISLZP\text{EISL}_{\text{ZP}} when frequency zero-padding is implemented. To address this limitation, we formulate the following constrained optimization problem to derive a suitable PA strategy that can minimize the normalized EISLZP\text{EISL}_{\text{ZP}}.

minf(𝐩)\displaystyle\min\quad f(\mathbf{p}) (48)
s.t.i=1NPi=N\displaystyle\mathrm{s.t.}\quad\sum\nolimits_{i=1}^{N}P_{i}=N
Pi0,i=1,2,,N.\displaystyle\qquad\quad P_{i}\geq 0,i=1,2,...,N.

Notably, the optimization problem in (48) requires minimizing a fractional objective function over the simplex. To solve this constrained problem, we adopt the PGD algorithm to obtain a locally optimal solution. As outlined in Algorithm 1, the PGD method enhances the conventional Gradient Descent (GD) by introducing a projection step, which ensures that each iteration remains within the feasible region [36], [37]. The gradient of the objective function f(𝐩)f(\mathbf{p}) at an arbitrary point 𝐩\mathbf{p} is given by

f(𝐩)=EISLZP𝐩𝔼(|r^0|2)EISLZP𝔼(|r^0|2)𝐩(𝔼(|r^0|2))2,\nabla f(\mathbf{p})=\frac{\frac{\partial\text{EISL}_{\text{ZP}}}{\partial\mathbf{p}}\mathbb{E}(|\hat{r}_{0}|^{2})-\text{EISL}_{\text{ZP}}\frac{\partial\mathbb{E}(|\hat{r}_{0}|^{2})}{\partial\mathbf{p}}}{(\mathbb{E}(|\hat{r}_{0}|^{2}))^{2}}, (49)

where

EISLZP𝐩\displaystyle\frac{\partial\text{EISL}_{\text{ZP}}}{\partial\mathbf{p}} =(NL2L)(μ41)𝐩\displaystyle=\left(NL-2L\right)\left(\mu_{4}-1\right)\mathbf{p}
+k=LNL21(𝐠k𝐩H𝐠k+𝐠k𝐩T𝐠k),\displaystyle+\sum_{k=L}^{\frac{NL}{2}-1}\left(\mathbf{g}_{k}^{*}\mathbf{p}^{H}\mathbf{g}_{k}+\mathbf{g}_{k}\mathbf{p}^{T}\mathbf{g}_{k}^{*}\right), (50)
𝔼(|r^0|2)𝐩\displaystyle\frac{\partial\mathbb{E}(|\hat{r}_{0}|^{2})}{\partial\mathbf{p}} =2(μ41)𝐩.\displaystyle=2(\mu_{4}-1)\mathbf{p}. (51)
Algorithm 1 PGD Algorithm for Solving (48)
0:  NN, 𝐩0\mathbf{p}_{0}, rmaxr_{max}, ε\varepsilon
0:  𝐩\mathbf{p}
1:  Initialize r=1r=1 and 𝐩(1)=𝐩0\mathbf{p}^{(1)}=\mathbf{p}_{0}.
2:  Initialize the Communication Symbol Set 𝐒={𝐬1,𝐬2,,𝐬N}\mathbf{S}=\left\{\mathbf{s}_{1},\mathbf{s}_{2},...,\mathbf{s}_{N}\right\} and calculate μ4\mu_{4}.
3:  repeat
4:   Calculate f(𝐩(r)){\nabla}f(\mathbf{p}^{(r)}).
5:   Update 𝐩(r+1)\mathbf{p}^{(r+1)} \xleftarrow{} Proj(𝐩(r)η(r)f(𝐩(r)))\mathrm{Proj}_{\mathcal{B}}(\mathbf{p}^{(r)}-\eta^{(r)}{\nabla}f(\mathbf{p}^{(r)})).
6:   Update r=r+1r=r+1.
7:  until the decrease of the objective value is below ε\varepsilon or r=rmaxr=r_{max}.

Moreover, the projector over the simplex can be expressed as

Proj(𝐩(r+1))=N𝟏NT𝐩(r+1)𝐩(r+1),\quad\mathrm{Proj}_{\mathcal{B}}(\mathbf{p}^{(r+1)})=\frac{N}{\mathbf{1}_{N}^{T}\mathbf{p}^{\left(r+1\right)}}\mathbf{p}^{\left(r+1\right)}, (52)

where 𝟏N\mathbf{1}_{N} represents the all-one vector with length NN and \mathcal{B} denotes the feasible region of the optimization variable 𝐩\mathbf{p}.

The average sidelobe levels achieved by the proposed PA scheme, obtained via Algorithm 1, are illustrated in Fig. 5 and Fig. 6. In these figures, “optimal PA” denotes the PA scheme derived from Algorithm 1. The results indicate that the optimal PA offers considerable sidelobe suppression compared to the “uniform PA”. However, this improvement is accompanied by a slight broadening of the mainlobe, which in turn leads to a degradation in range resolution performance.

To mitigate the adverse effects of PA on mainlobe width, we propose to add a new constraint in the original optimization problem (48). The enhanced formulation is given by:

minf(𝐩)\displaystyle\min\quad f(\mathbf{p}) (53)
s.t.i=1NPi=N\displaystyle\mathrm{s.t.}\quad\sum\nolimits_{i=1}^{N}P_{i}=N
Pi0,i=1,2,,N\displaystyle\qquad\quad P_{i}\geq 0,i=1,2,...,N
𝔼(|r^q|2)12𝔼(|r^0|2).\displaystyle\qquad\quad\mathbb{E}(|\hat{r}_{q}|^{2})\leq\frac{1}{2}\mathbb{E}(|\hat{r}_{0}|^{2}).

The newly added constraint 𝔼(|r^q|2)12𝔼(|r^0|2)\mathbb{E}(|\hat{r}_{q}|^{2})\leq\frac{1}{2}\mathbb{E}(|\hat{r}_{0}|^{2}) ensures that the average sidelobe level at delay qq remains within 3 dB of the average mainlobe level 𝔼(|r^0|2)\mathbb{E}(|\hat{r}_{0}|^{2}). This condition is equivalent to 10log(𝔼(|r^q|2)𝔼(|r^0|2))3dB10\text{log}(\frac{\mathbb{E}(|\hat{r}_{q}|^{2})}{\mathbb{E}(|\hat{r}_{0}|^{2})})\leq-3\text{dB}.

Algorithm 2 SCA Algorithm for Solving (53)
0:  NN, LL, rmaxr_{max}, ε\varepsilon
0:  𝐩\mathbf{p}
1:  Find a feasible starting point 𝐩(0)\mathbf{p}^{(0)}.
2:  Initialize the Communication Symbol Set 𝐒={𝐬1,𝐬2,,𝐬N}\mathbf{S}=\left\{\mathbf{s}_{1},\mathbf{s}_{2},...,\mathbf{s}_{N}\right\} and calculate μ4\mu_{4}.
3:  Initial r=0r=0.
4:  repeat
5:   Calculate f(𝐩(r)){\nabla}f(\mathbf{p}^{(r)}) and construct fsu(𝐩,𝐩(r))f_{su}(\mathbf{p},\mathbf{p}^{(r)}).
6:   Attaining 𝐩^(r)\hat{\mathbf{p}}^{(r)} by solving the convex problem (54).
7:   Update 𝐩(r+1)=𝐩(r)+α(r)(𝐩^(r)𝐩(r))\mathbf{p}^{(r+1)}=\mathbf{p}^{(r)}+\alpha^{(r)}(\hat{\mathbf{p}}^{(r)}-{\mathbf{p}}^{(r)}).
8:   Update r=r+1r=r+1.
9:  until the decrease of the objective value is below ε\varepsilon or r=rmaxr=r_{max}.

Compared to the original formulation in (48), the introduction of the third constraint in (53) makes it challenging to project 𝐩\mathbf{p} onto the feasible region. As a result, the PGD algorithm is no longer directly applicable for solving the modified optimization problem. Upon analyzing the problem in (53), we observe that although all three constraints are convex, the objective function remains non-convex. Given these conditions, the Successive Convex Approximation (SCA) algorithm becomes a suitable alternative. SCA is a powerful framework for handling non-convex optimization problems, as it addresses non-convex optimization problems through iterative minimization of convex surrogate functions [36, 38, 39]. The core procedure of the SCA algorithm lies in constructing an appropriate surrogate function fsu(𝐩,𝐩(r))f_{su}(\mathbf{p},\mathbf{p}^{(r)}) and determining a suitable step size α(r)\alpha^{(r)}. In Algorithm 2, the surrogate function is defined as

fsu(𝐩,𝐩(r))=f(𝐩(r))+(f(𝐩(r)))H(𝐩𝐩(r)),f_{su}(\mathbf{p},\mathbf{p}^{(r)})=f(\mathbf{p}^{(r)})+(\nabla f(\mathbf{p}^{(r)}))^{H}(\mathbf{p}-\mathbf{p}^{(r)}), (54)

which is the first-order Taylor expansion of the objective function near the rrth iteration point. Furthermore, the step size α(r)\alpha^{(r)} at each iteration is determined via the exact line search method.

VI Simulation Results

In this section, we further validate our conclusions and theoretical analysis by presenting numerical results. All the simulation results are attained by averaging over 10001000 random realizations.

First, we focus on the P-ACF with PA of 16-QAM and 64-QAM. In Fig. 1, the sidelobe performances of 16-QAM and 64-QAM constellations for CP-OFDM with uniform PA are shown. It can be observed that the theoretical values align closely with the simulation results, confirming the accuracy of the derivations in Section III-A. Additionally, a 3 dB performance gain in the peak-to-sidelobe level ratio is achieved by doubling NN. In Fig. 2, the sidelobe performances of the P-ACF for 64-QAM with two PA schemes, uniform PA and random PA, are compared. It is clear that the uniform PA scheme achieves a much lower sidelobe level than the random PA scheme.

Refer to caption
Figure 1: The P-ACF of 16/64-QAM under OFDM signaling and uniform power with varying NN.
Refer to caption
Figure 2: The P-ACF of 64-QAM under OFDM signaling and uniform power or random power, N=64/256N=64/256.

In addition to the P-ACF, the sidelobe level performance of the A-ACF with PA is shown in Fig. 3 for the 16-QAM and 16-PSK constellations. We examine the normalized EISL without CP under different PA schemes. We observe that the theoretical results match perfectly with the numerical simulations for both the average and random PA schemes, confirming the accuracy of the theoretical derivations in Section III-B. Additionally, the normalized EISL for the uniform PA scheme is significantly lower than that of the random PA scheme in both the 16-QAM and 16-PSK constellations.

Refer to caption
Figure 3: The resultant normalized EISL of A-ACF for 16PSK/16QAM under OFDM signaling with different power allocation and varying number of symbols.
Refer to caption
Figure 4: The resultant normalized EISLZP\text{EISL}_{\text{ZP}} for 16PSK/16QAM and L=10L=10 under OFDM signaling with different power allocation and varying number of symbols.

To verify the theoretical formulation of the normalized EISLZP\text{EISL}_{\text{ZP}} in (47), we present comparative simulations of computed EISLZP\text{EISL}_{\text{ZP}} values for different constellation schemes and PA methods in Fig. 4, where the proposed “optimal PA” scheme utilizes the power vector 𝐩\mathbf{p} obtained through Algorithm 1. The close agreement between theoretical predictions and simulation measurements validates our analytical model. Notably, under the “optimal PA” scheme, the normalized EISLZP\text{EISL}_{\text{ZP}} for 16-PSK is significantly lower than that of the “uniform PA” case. For 16-QAM, the reduction is more modest, but the “optimal PA” still achieves a lower normalized EISLZP\text{EISL}_{\text{ZP}} compared to the uniform counterpart.

Next, we examine the sidelobe performances of 16-QAM and 16-PSK constellations with frequency zero-padding and different PA schemes. Fig. 5 and Fig. 6 display the P-ACF of 16-QAM and 16-PSK under OFDM signaling across different PA schemes and values of NN. For both 16-QAM and 16-PSK, the “optimal PA” configuration achieves a lower sidelobe level than that of the “uniform PA”. Analyzing these figures further, while the “optimal PA” reduces the sidelobe level, it also slightly increases the mainlobe width compared to the “uniform PA” scheme.

Refer to caption
Figure 5: The P-ACF of 16-QAM under OFDM signaling and different power allocation schemes with varying NN and L=10L=10.
Refer to caption
Figure 6: The P-ACF of 16-PSK under OFDM signaling and different power allocation schemes with varying NN and L=10L=10.

In Fig. 7, we compare the convergence results of Algorithm 2 for 16-QAM and 16-PSK under different 3 dB mainlobe width constraints, where the limiting positions qq are set to L2\frac{L}{2}, L2+2\frac{L}{2}+2 and L2+4\frac{L}{2}+4, respectively. The “uniform PA” scheme and the “unconstrained mainlobe width” scheme serve as baseline references, where the latter refers to the PA vector obtained from Algorithm 1 without any constraint on mainlobe width. It is observed that as the 3 dB constraint becomes more stringent (i.e., smaller qq), the convergence result increasingly resembles that of the “uniform PA” scheme. Conversely, when the constraint is relaxed (i.e., larger qq), the convergence result tends to align more closely with the “unconstrained mainlobe width” case.

Refer to caption
Refer to caption
Figure 7: The convergence results of the SCA algorithm for solving (53) in 16-QAM and 16-PSK cases.
Refer to caption
Figure 8: The P-ACF of 16-QAM under OFDM signaling and different power allocation schemes.
Refer to caption
Figure 9: The P-ACF of 16-PSK under OFDM signaling and different power allocation schemes.

Combining Figs. 7, 8, and 9, we observe that as the PA scheme approaches the “uniform PA” scheme, the mainlobe width becomes narrower, yet the sidelobe level increases. This trend holds for both 16-QAM and 16-PSK constellations. These results suggest a tradeoff between mainlobe width and sidelobe level, allowing for a flexible selection of PA schemes based on specific performance requirements.

VII Conclusion

In this paper, we investigated optimal PA for OFDM-based random ISAC signals. Our findings demonstrated that the uniform PA achieves the global minimum EISL for both periodic and aperiodic autocorrelation functions for all constellations. Additionally, we proved that this scheme achieves the lowest sidelobe at every P-ACF lag. For frequency zero-padding scenarios, where uniform PA is suboptimal, we employed efficient optimization algorithms to design tailored PA schemes that balance the trade-off between sidelobe suppression and mainlobe width. The effectiveness of our theoretical framework was further validated through comprehensive simulations. Future research should explore the optimal signal basis and PA schemes for two-dimensional ambiguity function (2D AF) design.

Appendix A Proof of Proposition 1

By referring to (20), the squared P-ACF with power allocation can be expressed as

|r~k|2\displaystyle\left|\widetilde{r}_{k}\right|^{2} =(𝐜H𝐅N𝐉k𝐅NH𝐜)(𝐜H𝐅N𝐉k𝐅NH𝐜)\displaystyle=\left(\mathbf{c}^{H}\mathbf{F}_{N}\mathbf{J}_{k}\mathbf{F}_{N}^{H}\mathbf{c}\right)\left(\mathbf{c}^{H}\mathbf{F}_{N}\mathbf{J}_{k}\mathbf{F}_{N}^{H}\mathbf{c}\right)^{*}
=n=1N|cn|2ej2πk(n1)Nm=1N|cm|2ej2πk(m1)N\displaystyle=\sum_{n=1}^{N}\left|c_{n}\right|^{2}e^{\frac{j2\pi k(n-1)}{N}}\sum_{m=1}^{N}\left|c_{m}\right|^{2}e^{\frac{-j2\pi k(m-1)}{N}}
=n=1Nm=1N|cn|2|cm|2ej2πk(mn)N\displaystyle=\sum_{n=1}^{N}\sum_{m=1}^{N}\left|c_{n}\right|^{2}\left|c_{m}\right|^{2}e^{\frac{-j2\pi k(m-n)}{N}}
=n=1Nm=1NPnPm|sn|2|sm|2ej2πk(mn)N.\displaystyle=\sum_{n=1}^{N}\sum_{m=1}^{N}P_{n}P_{m}\left|s_{n}\right|^{2}\left|s_{m}\right|^{2}e^{\frac{-j2\pi k(m-n)}{N}}. (55)

Correspondingly, the average squared P-ACF with PA is

𝔼(|r~k|2)=μ4i=1NPi2+n=1Nm=1mnNPnPmej2πk(mn)N=(μ41)i=1NPi2+n=1Nm=1NPnPmej2πk(mn)N=(μ41)i=1NPi2+|n=1NPnej2πknN|2.\begin{split}\mathbb{E}(|\widetilde{r}_{k}|^{2})&=\mu_{4}\sum_{i=1}^{N}P_{i}^{2}+\sum_{n=1}^{N}\sum_{\begin{subarray}{c}m=1\\ m\neq n\end{subarray}}^{N}P_{n}P_{m}e^{\frac{-j2\pi k(m-n)}{N}}\\ &=(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+\sum_{n=1}^{N}\sum_{m=1}^{N}P_{n}P_{m}e^{\frac{-j2\pi k(m-n)}{N}}\\ &=(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+\left|\sum_{n=1}^{N}P_{n}e^{\frac{j2\pi kn}{N}}\right|^{2}.\end{split} (56)

Appendix B Proof of Corollary1

According to (21), the EISL of P-ACF with PA can be expressed as

k=1N1𝔼(|r~k|2)=k=0N1𝔼(|r~k|2)𝔼(|r~0|2)=(N1)(μ41)i=1NPi2+k=0N1(|n=1NPnej2πknN|2)N2.\begin{split}&\sum_{k=1}^{N-1}\mathbb{E}(|\widetilde{r}_{k}|^{2})=\sum_{k=0}^{N-1}\mathbb{E}(|\widetilde{r}_{k}|^{2})-\mathbb{E}(|\widetilde{r}_{0}|^{2})\\ &=\left(N-1\right)\left(\mu_{4}-1\right)\sum_{i=1}^{N}P_{i}^{2}+\sum_{k=0}^{N-1}\left(\left|\sum_{n=1}^{N}P_{n}e^{\frac{j2\pi kn}{N}}\right|^{2}\right)-N^{2}.\\ \end{split} (57)

Using Parseval’s theorem yields

k=0N1(|n=1NPnej2πknN|2)=Nn=1NPn2,\sum_{k=0}^{N-1}\left(\left|\sum_{n=1}^{N}P_{n}e^{\frac{j2\pi kn}{N}}\right|^{2}\right)=N\sum_{n=1}^{N}P_{n}^{2}, (58)

we get (23).

Appendix C Proof of proposition 2

According to (III-B)

|rk|2\displaystyle\left|{r}_{k}\right|^{2} =n=12N|𝐯nH𝐬|2ej2πk(n1)2Nm=12N|𝐯mH𝐬|2ej2πk(m1)2N\displaystyle=\sum_{n=1}^{2N}\left|\mathbf{v}_{n}^{H}\mathbf{s}\right|^{2}e^{\frac{-j2\pi k(n-1)}{2N}}\sum_{m=1}^{2N}\left|\mathbf{v}_{m}^{H}\mathbf{s}\right|^{2}e^{\frac{j2\pi k(m-1)}{2N}}
=n=12Nm=12N|𝐯nH𝐬|2|𝐯mH𝐬|2ej2πk(nm)2N.\displaystyle=\sum_{n=1}^{2N}\sum_{m=1}^{2N}\left|\mathbf{v}_{n}^{H}\mathbf{s}\right|^{2}\left|\mathbf{v}_{m}^{H}\mathbf{s}\right|^{2}e^{\frac{-j2\pi k(n-m)}{2N}}. (59)

Expanding |𝐯nH𝐬|2\left|\mathbf{v}_{n}^{H}\mathbf{s}\right|^{2} yields

|𝐯nH𝐬|2\displaystyle|\mathbf{v}_{n}^{H}\mathbf{s}|^{2} =𝐯nH𝐬𝐬H𝐯n=(𝐯nT𝐯nH)vec(𝐬𝐬H)\displaystyle=\mathbf{v}_{n}^{H}\mathbf{s}\mathbf{s}^{H}\mathbf{v}_{n}=(\mathbf{v}_{n}^{T}\otimes\mathbf{v}_{n}^{H})\operatorname{vec}(\mathbf{s}\mathbf{s}^{H})
=(𝐯nT𝐯nH)𝐬~=𝐬~H(𝐯n𝐯n).\displaystyle=(\mathbf{v}_{n}^{T}\otimes\mathbf{v}_{n}^{H})\widetilde{\mathbf{s}}=\widetilde{\mathbf{s}}^{H}(\mathbf{v}_{n}^{*}\otimes\mathbf{v}_{n}). (60)

Therefore

𝔼(|rk|2)=n=12Nm=12N(𝐯nT𝐯nH)𝐬~𝐬~H(𝐯m𝐯m)ej2πk(nm)2N=n=12Nm=12N(𝐯nT𝐯nH)𝐒(𝐯m𝐯m)ej2πk(nm)2N,\begin{split}\mathbb{E}(|{r}_{k}|^{2})&=\sum_{n=1}^{2N}\sum_{m=1}^{2N}(\mathbf{v}_{n}^{T}\otimes\mathbf{v}_{n}^{H})\widetilde{\mathbf{s}}\widetilde{\mathbf{s}}^{H}(\mathbf{v}_{m}^{*}\otimes\mathbf{v}_{m})e^{\frac{-j2\pi k(n-m)}{2N}}\\ &=\sum_{n=1}^{2N}\sum_{m=1}^{2N}(\mathbf{v}_{n}^{T}\otimes\mathbf{v}_{n}^{H})\mathbf{S}(\mathbf{v}_{m}^{*}\otimes\mathbf{v}_{m})e^{\frac{-j2\pi k(n-m)}{2N}},\end{split} (61)

where 𝐒=𝔼(𝐬~𝐬~H)\mathbf{S}=\mathbb{E}({\widetilde{\mathbf{s}}\widetilde{\mathbf{s}}^{H}}). To simplify (61), 𝐒\mathbf{S} can be decomposed [26] as

𝐒=𝐈N2+𝐒1+𝐒2,\mathbf{S}=\mathbf{I}_{N^{2}}+\mathbf{S}_{1}+\mathbf{S}_{2}, (62)

where

𝐒1\displaystyle\mathbf{S}_{1} =Diag([μ42,𝟎NT,μ42,𝟎NT,,μ42]T),\displaystyle=\mathrm{Diag}\left(\left[\mu_{4}-2,\mathbf{0}_{N}^{T},\mu_{4}-2,\mathbf{0}_{N}^{T},...,\mu_{4}-2\right]^{T}\right), (63)
𝐒2\displaystyle\mathbf{S}_{2} =[𝐝,𝟎N2×N,𝐝,,𝐝,𝟎N2×N,𝐝],\displaystyle=\left[\mathbf{d},\mathbf{0}_{N^{2}\times N},\mathbf{d},...,\mathbf{d},\mathbf{0}_{N^{2}\times N},\mathbf{d}\right], (64)

with 𝟎N2×N\mathbf{0}_{N^{2}\times N} being the all-zero matrix of size N2×NN^{2}\times N, and

𝐝=[1,𝟎NT,1,,1,𝟎NT,1]T.\mathbf{d}=\left[1,\mathbf{0}_{N}^{T},1,...,1,\mathbf{0}_{N}^{T},1\right]^{T}. (65)

Plugging (62) into (61), we can get

(𝐯nT𝐯nH)𝐈N2(𝐯m𝐯m)=|𝐯nT𝐯m|2,\displaystyle(\mathbf{v}_{n}^{T}\otimes\mathbf{v}_{n}^{H})\mathbf{I}_{N^{2}}(\mathbf{v}_{m}^{*}\otimes\mathbf{v}_{m})=\left|\mathbf{v}_{n}^{T}\mathbf{v}_{m}^{*}\right|^{2}, (66)
(𝐯nT𝐯nH)𝐒1(𝐯m𝐯m)=(μ42)p=1N|vp,n|2|vp,m|2\displaystyle(\mathbf{v}_{n}^{T}\otimes\mathbf{v}_{n}^{H})\mathbf{S}_{1}(\mathbf{v}_{m}^{*}\otimes\mathbf{v}_{m})=(\mu_{4}-2)\sum_{p=1}^{N}\left|v_{p,n}\right|^{2}\left|v_{p,m}\right|^{2}
=(μ42)𝐯n𝐯m22,\displaystyle=(\mu_{4}-2)\|\mathbf{v}_{n}\odot\mathbf{v}_{m}\|_{2}^{2}, (67)
(𝐯nT𝐯nH)𝐒2(𝐯m𝐯m)=p=1N|vp,n|2p=1N|vp,m|2\displaystyle(\mathbf{v}_{n}^{T}\otimes\mathbf{v}_{n}^{H})\mathbf{S}_{2}(\mathbf{v}_{m}^{*}\otimes\mathbf{v}_{m})=\sum_{p=1}^{N}\left|v_{p,n}\right|^{2}\sum_{p=1}^{N}\left|v_{p,m}\right|^{2}
=𝐯n22𝐯m22.\displaystyle=\|\mathbf{v}_{n}\|_{2}^{2}\|\mathbf{v}_{m}\|_{2}^{2}. (68)

According to (61) - (68), the average mainlobe is

𝔼(|r0|2)=(μ41)i=1NPi2+N2.\begin{split}\mathbb{E}(|{r}_{0}|^{2})=(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}.\end{split} (69)

Corresponding to equations (66) - (68), k=02N1𝔼(|rk|2)\sum_{k=0}^{2N-1}\mathbb{E}(|{r}_{k}|^{2}) also can be divided into three terms, as shown in (70).

k=02N1𝔼(|rk|2)=k=02N1{n,m=12N|𝐯nT𝐯m|2ej2πk(nm)2N+n,m=12N(μ42)𝐯n𝐯m22ej2πk(nm)2N+n,m=12N𝐯n22𝐯m22ej2πk(nm)2N}\displaystyle\sum_{k=0}^{2N-1}\mathbb{E}(|r_{k}|^{2})=\sum_{k=0}^{2N-1}\left\{\sum_{n,m=1}^{2N}|\mathbf{v}_{n}^{T}\mathbf{v}_{m}^{*}|^{2}e^{\frac{-j2\pi k(n-m)}{2N}}+\sum_{n,m=1}^{2N}(\mu_{4}-2)||\mathbf{v}_{n}\odot\mathbf{v}_{m}||_{2}^{2}e^{\frac{-j2\pi k(n-m)}{2N}}+\sum_{n,m=1}^{2N}||\mathbf{v}_{n}||_{2}^{2}||\mathbf{v}_{m}||_{2}^{2}e^{\frac{-j2\pi k(n-m)}{2N}}\right\} (70)
  • The first term of (70) is

    k=02N1{n=12Nm=12N|𝐯nT𝐯m|2ej2πk(nm)2N}\displaystyle\sum_{k=0}^{2N-1}\left\{\sum_{n=1}^{2N}\sum_{m=1}^{2N}\left|\mathbf{v}_{n}^{T}\mathbf{v}_{m}^{*}\right|^{2}e^{\frac{-j2\pi k(n-m)}{2N}}\right\}
    =n=12Nm=12N{|𝐯nT𝐯m|2k=02N1ej2πk(nm)2N}\displaystyle=\sum_{n=1}^{2N}\sum_{m=1}^{2N}\left\{\left|\mathbf{v}_{n}^{T}\mathbf{v}_{m}^{*}\right|^{2}\sum_{k=0}^{2N-1}e^{\frac{-j2\pi k(n-m)}{2N}}\right\}
    =2Nn=12N|𝐯n|4=2Nn=12N𝐯n24.\displaystyle=2N\sum_{n=1}^{2N}{|\mathbf{v}_{n}|^{4}}=2N\sum_{n=1}^{2N}{\|\mathbf{v}_{n}\|_{2}^{4}}. (71)
  • The second term of (70) is

    k=02N1{n=12Nm=12N(μ42)𝐯n𝐯m22ej2πk(nm)2N}=(μ42)k=02N1{n=12Nm=12N𝐯n𝐯m22ej2πk(nm)2N}.\begin{split}&\sum_{k=0}^{2N-1}\left\{\sum_{n=1}^{2N}\sum_{m=1}^{2N}(\mu_{4}-2)\|\mathbf{v}_{n}\odot\mathbf{v}_{m}\|_{2}^{2}e^{\frac{-j2\pi k(n-m)}{2N}}\right\}\\ &=(\mu_{4}-2)\sum_{k=0}^{2N-1}\left\{\sum_{n=1}^{2N}\sum_{m=1}^{2N}\|\mathbf{v}_{n}\odot\mathbf{v}_{m}\|_{2}^{2}e^{\frac{-j2\pi k(n-m)}{2N}}\right\}.\\ \end{split} (72)

    We define a vector 𝐛k\mathbf{b}_{k}

    𝐛k=[b1,k,b2,k,,bN,k]T,\displaystyle\mathbf{b}_{k}=\left[b_{1,k},b_{2,k},...,b_{N,k}\right]^{T}, (73)
    bp,k=n=12N|vp,n|2ej2πk(n1)2N,p=1,2,,N.\displaystyle b_{p,k}=\sum_{n=1}^{2N}\left|v_{p,n}\right|^{2}e^{-j\frac{2\pi k(n-1)}{2N}},p=1,2,...,N. (74)

    Using Parseval’s theorem yields

    12Nk=02N1|bp,k|2=n=12N|vp,n|4,\displaystyle\frac{1}{2N}\sum_{k=0}^{2N-1}\left|b_{p,k}\right|^{2}=\sum_{n=1}^{2N}\left|v_{p,n}\right|^{4}, (75)

    and the square of the 2\ell_{2} norm of vector 𝐛k\mathbf{b}_{k} is

    𝐛k22\displaystyle\|\mathbf{b}_{k}\|_{2}^{2} =p=1Nn=12Nm=12N|vp,n|2|vp,m|2ej2πk(nm)2N\displaystyle=\sum_{p=1}^{N}\sum_{n=1}^{2N}\sum_{m=1}^{2N}|v_{p,n}|^{2}|v_{p,m}|^{2}e^{-j\frac{2\pi k(n-m)}{2N}}
    =n=12Nm=12N𝐯n𝐯m22ej2πk(nm)2N.\displaystyle=\sum_{n=1}^{2N}\sum_{m=1}^{2N}\|\mathbf{v}_{n}\odot\mathbf{v}_{m}\|_{2}^{2}e^{-j\frac{2\pi k(n-m)}{2N}}. (76)

    By combining (75) and (C), we obtain

    k=02N1{n=12Nm=12N𝐯n𝐯m22ej2πk(nm)2N}\displaystyle\sum_{k=0}^{2N-1}\left\{\sum_{n=1}^{2N}\sum_{m=1}^{2N}\|\mathbf{v}_{n}\odot\mathbf{v}_{m}\|_{2}^{2}e^{\frac{-j2\pi k(n-m)}{2N}}\right\}
    =k=02N1𝐛k22=2Np=1Nn=12N|vp,n|4=2N𝐕44.\displaystyle=\sum_{k=0}^{2N-1}\|\mathbf{b}_{k}\|_{2}^{2}=2N\sum_{p=1}^{N}\sum_{n=1}^{2N}|v_{p,n}|^{4}=2N\|\mathbf{V}\|_{4}^{4}. (77)

    Plugging (C) into (72), we arrive at

    2N(μ42)𝐕44.2N(\mu_{4}-2)\|\mathbf{V}\|_{4}^{4}. (78)
  • The third term of (70) is

    k=02N1{n=12Nm=12N𝐯n22𝐯m22ej2πk(nm)2N}\displaystyle\sum_{k=0}^{2N-1}\left\{\sum_{n=1}^{2N}\sum_{m=1}^{2N}\|\mathbf{v}_{n}\|_{2}^{2}\|\mathbf{v}_{m}\|_{2}^{2}e^{\frac{-j2\pi k(n-m)}{2N}}\right\}
    =k=02N1|n=12N𝐯n22ej2πk(n1))2N|2\displaystyle=\sum_{k=0}^{2N-1}\left|\sum_{n=1}^{2N}\|\mathbf{v}_{n}\|_{2}^{2}e^{\frac{-j2\pi k(n-1))}{2N}}\right|^{2}
    =2Nn=12N𝐯n24.\displaystyle=2N\sum_{n=1}^{2N}\|\mathbf{v}_{n}\|_{2}^{4}. (79)

Combining (69), (C), (78) and (C), the EISL of the A-ACF is shown in (2).

Appendix D Proof of theorem 3

According to (29) and (2), the normalized EISL of A-ACF with PA is

12k=12N1𝔼(|rk|2)𝔼(|r0|2)=Nn=12N[(μ42)𝐯n44+2𝐯n24](μ41)i=1NPi2+N212.\begin{split}\frac{\frac{1}{2}\sum_{k=1}^{2N-1}\mathbb{E}(|r_{k}|^{2})}{\mathbb{E}(|r_{0}|^{2})}=N\frac{\sum_{n=1}^{2N}\left[(\mu_{4}-2)\|\mathbf{v}_{n}\|_{4}^{4}+2\|\mathbf{v}_{n}\|_{2}^{4}\right]}{(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}}-\frac{1}{2}.\end{split} (80)

By observing the structure of 𝐅~2N\widetilde{\mathbf{F}}_{2N}, we can extract all the odd rows and reorganize them into a matrix 𝐅~2N,o\widetilde{\mathbf{F}}_{2N,o}, while all the even rows can be reorganized as 𝐅~2N,e\widetilde{\mathbf{F}}_{2N,e}.

𝐅~2N,o=12𝐅N,𝐅~2N,e=12𝐅N𝐃12,\displaystyle\widetilde{\mathbf{F}}_{2N,o}=\frac{1}{\sqrt{2}}\mathbf{F}_{N},\qquad\widetilde{\mathbf{F}}_{2N,e}=\frac{1}{\sqrt{2}}\mathbf{F}_{N}\mathbf{D}_{\frac{1}{2}}, (81)

where 𝐃α\mathbf{D}_{\alpha} is a diagonal matrix with its n-th diagonal entry begin ej2π(n1)Nα{e^{-j\frac{2\pi(n-1)}{N}\cdot\alpha}}.

We set 𝐖=𝐅N𝐅~2NH=[𝐰1,𝐰2,,𝐰2N]\mathbf{W}=\mathbf{F}_{N}\widetilde{\mathbf{F}}_{2N}^{H}=\left[\mathbf{w}_{1},\mathbf{w}_{2},...,\mathbf{w}_{2N}\right], so 𝐕=𝐁𝐖=[𝐁𝐰1,𝐁𝐰2,,𝐁𝐰2N]\mathbf{V}=\mathbf{B}\mathbf{W}=\left[\mathbf{B}\mathbf{w}_{1},\mathbf{B}\mathbf{w}_{2},...,\mathbf{B}\mathbf{w}_{2N}\right]. Because of the specificity of the 𝐅~2N\widetilde{\mathbf{F}}_{2N}, we can find that all odd-numbered columns of 𝐖\mathbf{W} can form an identity matrix, and all even-numbered columns can form a cyclic matrix.

𝐖1=[𝐰1,𝐰3,,𝐰2N1]=𝐅N𝐅~2N,oH=12𝐈N,\displaystyle\mathbf{W}1=\left[\mathbf{w}_{1},\mathbf{w}_{3},...,\mathbf{w}_{2N-1}\right]=\mathbf{F}_{N}\widetilde{\mathbf{F}}_{2N,o}^{H}=\frac{1}{\sqrt{2}}\mathbf{I}_{N}, (82)
𝐖2=[𝐰2,𝐰4,,𝐰2N]=𝐅N𝐅~2N,eH=12𝐅N𝐃12H𝐅NH.\displaystyle\mathbf{W}2=\left[\mathbf{w}_{2},\mathbf{w}_{4},...,\mathbf{w}_{2N}\right]=\mathbf{F}_{N}\widetilde{\mathbf{F}}_{2N,e}^{H}=\frac{1}{\sqrt{2}}\mathbf{F}_{N}\mathbf{D}_{\frac{1}{2}}^{H}\mathbf{F}_{N}^{H}. (83)

Similarly, the first term of the RHS of (80) can be divided according to odd and even columns. Accordingly, the normalized EISL of A-ACF (80) can be rewritten as (84).

12k=12N1𝔼(|rk|2)𝔼(|r0|2)=Nn=1N[(μ42)𝐯2n144+2𝐯2n124](μ41)i=1NPi2+N2+Nn=1N[(μ42)𝐯2n44+2𝐯2n24](μ41)i=1NPi2+N212\displaystyle\frac{\frac{1}{2}\sum_{k=1}^{2N-1}\mathbb{E}(|r_{k}|^{2})}{\mathbb{E}(|r_{0}|^{2})}=N\frac{\sum_{n=1}^{N}\left[(\mu_{4}-2)\|\mathbf{v}_{2n-1}\|_{4}^{4}+2\|\mathbf{v}_{2n-1}\|_{2}^{4}\right]}{(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}}+N\frac{\sum_{n=1}^{N}\left[(\mu_{4}-2)\|\mathbf{v}_{2n}\|_{4}^{4}+2\|\mathbf{v}_{2n}\|_{2}^{4}\right]}{(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}}-\frac{1}{2} (84)

According to (2) and (82), we can get

𝐯2n144=𝐯2n124=14Pn2,n=1,2,,N.\|\mathbf{v}_{2n-1}\|_{4}^{4}=\|\mathbf{v}_{2n-1}\|_{2}^{4}=\frac{1}{4}P_{n}^{2},n=1,2,...,N. (85)

Plugging (85) into the first term of (84), this term can be reduced to (86). When the value of n=1NPn2\sum_{n=1}^{N}P_{n}^{2} is minimized, the value of (86) is also minimized. According to (31) and (32), only when P1=P2==PN=1P_{1}=P_{2}=...=P_{N}=1, (86) reaches the minimum.

n=1N[(μ42)𝐯2n144+2𝐯2n124](μ41)i=1NPi2+N2=μ44n=1NPn2(μ41)i=1NPi2+N2=μ441(μ41)+N2n=1NPn2\displaystyle\frac{\sum_{n=1}^{N}\left[(\mu_{4}-2)\|\mathbf{v}_{2n-1}\|_{4}^{4}+2\|\mathbf{v}_{2n-1}\|_{2}^{4}\right]}{(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}}=\frac{\mu_{4}}{4}\frac{\sum_{n=1}^{N}P_{n}^{2}}{(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}}=\frac{\mu_{4}}{4}\frac{1}{(\mu_{4}-1)+\frac{N^{2}}{\sum_{n=1}^{N}P_{n}^{2}}} (86)

Based on the conditions that μ41\mu_{4}\geq 1 and 𝐯n24𝐯n44||\mathbf{v}_{n}||_{2}^{4}\geq||\mathbf{v}_{n}||_{4}^{4}, the Cauchy-Schwarz Inequality can be used in the second term of (84), as is shown in (D). Only when every (μ42)𝐯2n44+2𝐯2n24\sqrt{(\mu_{4}-2)||\mathbf{v}_{2n}||_{4}^{4}+2||\mathbf{v}_{2n}||_{2}^{4}} (n=1,2,,N)(n=1,2,...,N) is equal, the (D) reaches the minimum. According to (83), when P1=P2==PN=1P_{1}=P_{2}=...=P_{N}=1, the conditions for equality are met.

In conclusion, when P1=P2==PN=1P_{1}=P_{2}=...=P_{N}=1, the normalized EISL achieves the global minimum.

Nn=1N[(μ42)𝐯2n44+2𝐯2n24](μ41)i=1NPi2+N2\displaystyle N\frac{\sum_{n=1}^{N}\left[(\mu_{4}-2)\|\mathbf{v}_{2n}\|_{4}^{4}+2\|\mathbf{v}_{2n}\|_{2}^{4}\right]}{(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}} =n=1N1(μ41)i=1NPi2+N2×n=1N[(μ42)𝐯2n44+2𝐯2n24]\displaystyle=\sum_{n=1}^{N}\frac{1}{(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}}\times\sum_{n=1}^{N}\left[(\mu_{4}-2)\|\mathbf{v}_{2n}\|_{4}^{4}+2\|\mathbf{v}_{2n}\|_{2}^{4}\right]
(n=1N(μ42)𝐯2n44+2𝐯2n24(μ41)i=1NPi2+N2)2\displaystyle\geq\left(\sum_{n=1}^{N}\frac{\sqrt{(\mu_{4}-2)\|\mathbf{v}_{2n}\|_{4}^{4}+2\|\mathbf{v}_{2n}\|_{2}^{4}}}{\sqrt{(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}}}\right)^{2} (87)

Appendix E Proof of proposition 3

According to (41), the sidelobe of r^k\hat{r}_{k} is

|r^k|2=|n=1NPn|sn|2ej2πk(n1)NL|2=n=1Nm=1NPnPm|sn|2|sm|2ej2πk(nm)NL.\begin{split}|\hat{r}_{k}|^{2}&=\left|\sum_{n=1}^{N}{P_{n}}|s_{n}|^{2}e^{\frac{j2\pi k(n-1)}{NL}}\right|^{2}\\ &=\sum_{n=1}^{N}\sum_{m=1}^{N}P_{n}P_{m}|s_{n}|^{2}|s_{m}|^{2}e^{\frac{j2\pi k(n-m)}{NL}}.\end{split} (88)

The average sidelobe of P-ACF with PA and frequency zero-padding is

𝔼(|r^k|2)=μ4i=1NPi2+n=1Nm=1mnNPnPmej2πk(nm)NL=(μ41)i=1NPi2+|n=1NPnej2πknNL|2.\begin{split}\mathbb{E}(|\hat{r}_{k}|^{2})&=\mu_{4}\sum_{i=1}^{N}P_{i}^{2}+\sum_{n=1}^{N}\sum_{\begin{subarray}{c}m=1\\ m\neq n\end{subarray}}^{N}P_{n}P_{m}e^{\frac{j2\pi k(n-m)}{NL}}\\ &=(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+\left|\sum_{n=1}^{N}P_{n}e^{\frac{j2\pi kn}{NL}}\right|^{2}.\end{split} (89)

Taking k=0k=0 into the above equation, the average mainlobe of the P-ACF with PA and frequency zero-padding is

𝔼(|r^0|2)=(μ41)i=1NPi2+N2.\mathbb{E}(|\hat{r}_{0}|^{2})=(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+N^{2}. (90)

The EISLZP\text{EISL}_{\text{ZP}} of the P-ACF with PA and frequency zero-padding is

k=LNL21𝔼(|r^k|2)\displaystyle\sum_{k=L}^{\frac{NL}{2}-1}\mathbb{E}(|\hat{r}_{k}|^{2}) (91)
=k=LNL21[(μ41)i=1NPi2+|n=1NPnej2πknNL|2]\displaystyle=\sum_{k=L}^{\frac{NL}{2}-1}\left[(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+\left|\sum_{n=1}^{N}P_{n}e^{\frac{j2\pi kn}{NL}}\right|^{2}\right]
=(NL2L)(μ41)i=1NPi2+k=LNL21|n=1NPnej2πknNL|2.\displaystyle=(\frac{NL}{2}-L)(\mu_{4}-1)\sum_{i=1}^{N}P_{i}^{2}+\sum_{k=L}^{\frac{NL}{2}-1}\left|\sum_{n=1}^{N}P_{n}e^{\frac{j2\pi kn}{NL}}\right|^{2}.

For the convenience of writing, we define 𝐠k\mathbf{g}_{k} and 𝐆\mathbf{G} as

𝐠k\displaystyle\mathbf{g}_{k} =[ej2πkNL,ej2π2kNL,,ej2πNkNL]T,\displaystyle=\left[e^{\frac{-j2\pi k}{NL}},e^{\frac{-j2\pi 2k}{NL}},...,e^{\frac{-j2\pi Nk}{NL}}\right]^{T}, (92)
𝐆\displaystyle\mathbf{G} =[𝐠L,𝐠L+1,,𝐠NL/21],\displaystyle=\left[\mathbf{g}_{L},\mathbf{g}_{L+1},...,\mathbf{g}_{NL/2-1}\right], (93)

and the size of 𝐆\mathbf{G} is N×(NL2L)N\times(\frac{NL}{2}-L). Plugging (92) and (93) into (91), we can get

k=LNL21|n=1NPnej2πknNL|2=k=LNL21|𝐠kH𝐩|2=𝐆H𝐩22,\displaystyle\sum_{k=L}^{\frac{NL}{2}-1}\left|\sum_{n=1}^{N}P_{n}e^{\frac{j2\pi kn}{NL}}\right|^{2}=\sum_{k=L}^{\frac{NL}{2}-1}\left|\mathbf{g}_{k}^{H}\mathbf{p}\right|^{2}=\left\|\mathbf{G}^{H}\mathbf{p}\right\|_{2}^{2}, (94)

where 𝐩=[P1,P2,,PN]T\mathbf{p}=[P_{1},P_{2},...,P_{N}]^{T}. Correspondingly, (91) can be rewritten as

k=LNL21𝔼(|r^k|2)=(NL2L)(μ41)𝐩22+𝐆H𝐩22.\sum_{k=L}^{\frac{NL}{2}-1}\mathbb{E}(|\hat{r}_{k}|^{2})=(\frac{NL}{2}-L)(\mu_{4}-1)\|\mathbf{p}\|_{2}^{2}+\left\|\mathbf{G}^{H}\mathbf{p}\right\|_{2}^{2}. (95)

References

  • [1] ITU-R WP5D, “Draft New Recommendation ITU-R M. [IMT. Framework for 2030 and Beyond],” 2023.
  • [2] M. Chafii, L. Bariah, S. Muhaidat, and M. Debbah, “Twelve scientific challenges for 6G: Rethinking the foundations of communications theory,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 868–904, 2023.
  • [3] F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward Dual-Functional Wireless Networks for 6G and Beyond,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 6, pp. 1728–1767, 2022.
  • [4] F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint radar and communication design: Applications, state-of-the-art, and the road ahead,” IEEE Transactions on Communications, vol. 68, no. 6, pp. 3834–3862, 2020.
  • [5] Z. Wei, H. Qu, Y. Wang, X. Yuan, H. Wu, Y. Du, K. Han, N. Zhang, and Z. Feng, “Integrated sensing and communication signals toward 5G-A and 6G: A survey,” IEEE Internet of Things Journal, no. 13, pp. 11 068–11 092, 2023.
  • [6] Z. Wei, Y. Wang, L. Ma, S. Yang, Z. Feng, C. Pan, Q. Zhang, Y. Wang, H. Wu, and P. Zhang, “5G PRS-Based Sensing: A sensing reference signal approach for joint sensing and communication system,” IEEE Transactions on Vehicular Technology, vol. 72, no. 3, pp. 3250–3263, 2023.
  • [7] A. R. Chiriyath, B. Paul, and D. W. Bliss, “Radar-communications convergence: Coexistence, cooperation, and co-design,” IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 1, pp. 1–12, 2017.
  • [8] A. Hassanien, M. G. Amin, E. Aboutanios, and B. Himed, “Dual-function radar communication systems: A solution to the spectrum congestion problem,” IEEE Signal Processing Magazine, vol. 36, no. 5, pp. 115–126, 2019.
  • [9] J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu, “An overview of signal processing techniques for joint communication and radar sensing,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 6, pp. 1295–1315, 2021.
  • [10] S. Li, F. Zhang, T. Mao, R. Na, Z. Wang, and G. K. Karagiannidis, “Transmit beamforming design for ISAC with stacked intelligent metasurfaces,” IEEE Transactions on Vehicular Technology, pp. 1–6, 2024.
  • [11] W. Zhou, R. Zhang, G. Chen, and W. Wu, “Integrated sensing and communication waveform design: A survey,” IEEE Open Journal of the Communications Society, vol. 3, pp. 1930–1949, 2022.
  • [12] Z. Xiao and Y. Zeng, “Waveform design and performance analysis for full-duplex integrated sensing and communication,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 6, pp. 1823–1837, 2022.
  • [13] F. Zhang, T. Mao, R. Liu, Z. Han, S. Chen, and Z. Wang, “Cross-domain dual-functional ofdm waveform design for accurate sensing/positioning,” IEEE Journal on Selected Areas in Communications, vol. 42, no. 9, pp. 2259–2274, 2024.
  • [14] T. Mao, J. Chen, Q. Wang, C. Han, Z. Wang, and G. K. Karagiannidis, “Waveform design for joint sensing and communications in millimeter-wave and low terahertz bands,” IEEE Transactions on Communications, vol. 70, no. 10, pp. 7023–7039, 2022.
  • [15] R. M. Mealey, “A method for calculating error probabilities in a radar communication system,” IEEE Transactions on Space Electronics and Telemetry, vol. 9, no. 2, pp. 37–42, 1963.
  • [16] M. Roberton and E. Brown, “Integrated radar and communications based on chirped spread-spectrum techniques,” in IEEE MTT-S International Microwave Symposium Digest, 2003, vol. 1, 2003, pp. 611–614.
  • [17] P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Transactions on Wireless Communications, vol. 17, no. 10, pp. 6501–6515, 2018.
  • [18] C. Sturm and W. Wiesbeck, “Waveform design and signal processing aspects for fusion of wireless communications and radar sensing,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1236–1259, 2011.
  • [19] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-functional radar-communication systems: Optimal waveform design,” IEEE Transactions on Signal Processing, vol. 66, no. 16, pp. 4264–4279, 2018.
  • [20] F. Liu, Y.-F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-Rao bound optimization for joint radar-communication beamforming,” IEEE Trans. Signal Process., vol. 70, pp. 240–253, Dec. 2021.
  • [21] C. Sturm and W. Wiesbeck, “Waveform design and signal processing aspects for fusion of wireless communications and radar sensing,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1236–1259, 2011.
  • [22] X. Chen, Z. Feng, Z. Wei, P. Zhang, and X. Yuan, “Code-division ofdm joint communication and sensing system for 6G machine-type communication,” IEEE Internet of Things Journal, vol. 8, no. 15, pp. 12 093–12 105, 2021.
  • [23] Y. Zeng, Y. Ma, and S. Sun, “Joint radar-communication with cyclic prefixed single carrier waveforms,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4069–4079, 2020.
  • [24] L. Gaudio, M. Kobayashi, G. Caire, and G. Colavolpe, “On the effectiveness of OTFS for joint radar parameter estimation and communication,” IEEE Transactions on Wireless Communications, vol. 19, no. 9, pp. 5951–5965, 2020.
  • [25] Y. Xiong, F. Liu, Y. Cui, W. Yuan, T. X. Han, and G. Caire, “On the fundamental tradeoff of integrated sensing and communications under Gaussian channels,” IEEE Trans. Inf. Theory, vol. 69, no. 9, pp. 5723–5751, Jun. 2023.
  • [26] F. Liu, Y. Zhang, Y. Xiong, S. Li, W. Yuan, F. Gao, S. Jin, and G. Caire, “OFDM achieves the lowest ranging sidelobe under random ISAC signaling,” 2024. [Online]. Available: https://arxiv.org/abs/2407.06691
  • [27] J. Zhu, J. Mu, Y. Cui, and X. Jing, “Mutual information maximization via joint power allocation in integrated sensing and communications system,” China Communications, vol. 21, no. 2, pp. 129–142, 2024.
  • [28] R. Yao, Z. Wei, L. Su, L. Wang, and Z. Feng, “Low-PAPR integrated sensing and communication waveform design,” in 2023 IEEE Wireless Communications and Networking Conference (WCNC), 2023, pp. 1–6.
  • [29] C. Shi, F. Wang, S. Salous, and J. Zhou, “Joint subcarrier assignment and power allocation strategy for integrated radar and communications system based on power minimization,” IEEE Sensors Journal, vol. 19, no. 23, pp. 11 167–11 179, 2019.
  • [30] Y. Chen, G. Liao, Y. Liu, H. Li, and X. Liu, “Joint subcarrier and power allocation for integrated ofdm waveform in radcom systems,” IEEE Communications Letters, vol. 27, no. 1, pp. 253–257, 2023.
  • [31] F. Wang and H. Li, “Power allocation for coexisting multicarrier radar and communication systems in cluttered environments,” IEEE Transactions on Signal Processing, vol. 69, pp. 1603–1613, 2021.
  • [32] N. Levanon, E. Mozeson, R. Signals, and C. Levanon, “Radar signals,” 2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:9503789
  • [33] P. Stoica, H. He, and J. Li, “On designing sequences with impulse-like periodic correlation,” IEEE Signal Processing Letters, vol. 16, no. 8, pp. 703–706, 2009.
  • [34] J. Song, P. Babu, and D. P. Palomar, “Optimization methods for designing sequences with low autocorrelation sidelobes,” IEEE Transactions on Signal Processing, vol. 63, no. 15, pp. 3998–4009, 2015.
  • [35] P. Stoica, H. He, and J. Li, “New algorithms for designing unimodular sequences with good correlation properties,” IEEE Transactions on Signal Processing, vol. 57, no. 4, pp. 1415–1425, 2009.
  • [36] S. Boyd and L. Vandenberghe, Convex Optimization.   Cambridge University Press, 2004.
  • [37] S. Lu, F. Liu, F. Dong, Y. Xiong, J. Xu, Y.-F. Liu, and S. Jin, “Random ISAC signals deserve dedicated precoding,” IEEE Transactions on Signal Processing, vol. 72, pp. 3453–3469, 2024.
  • [38] A. Liu, V. K. N. Lau, and B. Kananian, “Stochastic successive convex approximation for non-convex constrained stochastic optimization,” IEEE Transactions on Signal Processing, vol. 67, no. 16, pp. 4189–4203, 2019.
  • [39] M. Kojic, Z. Luzanin, and I. Stojkovska, “Adaptive stochastic approximation algorithm,” Numerical Algorithms, vol. 76, pp. 917–937, 12 2017.