This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimized Schwarz waveform relaxation and discontinuous Galerkin time stepping for heterogeneous problems.

Laurence Halpern LAGA, Université Paris XIII, 99 Avenue J-B Clément, 93430 Villetaneuse, France, halpern@math.univ-paris13.fr    Caroline Japhet LAGA, Université Paris XIII, 99 Avenue J-B Clément, 93430 Villetaneuse, France, and CSCAMM, University of Maryland, College Park, MD 20742 USA, japhet@cscamm.umd.edu    Jérémie Szeftel Département de mathématiques et applications, Ecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05 France. Jeremie.Szeftel@ens.fr. The first two authors are partially supported by french ANR (COMMA) and GNR MoMaS
Abstract

We design and analyze Schwarz waveform relaxation algorithms for domain decomposition of advection-diffusion-reaction problems with strong heterogeneities. These algorithms rely on optimized Robin or Ventcell transmission conditions, and can be used with curved interfaces. We analyze the semi-discretization in time with discontinuous Galerkin as well. We also show two-dimensional numerical results using generalized mortar finite elements in space.

keywords:
Coupling heterogeneous problems, domain decomposition, optimized Schwarz waveform relaxation, time discontinuous Galerkin, nonconforming grids, error analysis.
AMS:
65 M 15, 65M50, 65M55.

1 Introduction

In many fields of applications such as reactive transport, far field simulations of underground nuclear waste disposal or ocean-atmosphere coupling, models have to be coupled in different spatial zones, with very different space and time scales and possible complex geometries. For such problems with long time computations, a splitting of the time interval into windows is essential, with the possibility to use robust and fast solvers in each time window.

The Optimized Schwarz Waveform Relaxation (OSWR) method was introduced for linear parabolic and hyperbolic problems with constant coefficients in [4]. It was analyzed for advection diffusion equations, and applied to non constant advection, in [17]. The algorithm computes independently in each subdomain over the whole time interval, exchanging space-time boundary data through optimized transmission operators. The operators are of Robin or Ventcell type, with coefficients optimizing a convergence factor, extending the strategy developed by F. Nataf and coauthors [3, 12]. The optimization problem was analyzed in [5], [1].

This method potentially applies to different space-time discretization in subdomains, possibly nonconforming and needs a very small number of iterations to converge. Numerical evidences of the performance of the method with variable smooth coefficients were given in [17]. An extension to discontinuous coefficients was introduced in [6], with asymptotically optimized Robin transmission conditions in some particular cases.

The discontinuous Galerkin finite element method in time offers many advantages. Rigorous analysis can be made for any degree of accuracy and local time-stepping, and time steps can be adaptively controlled by a posteriori error analysis, see [20, 14, 16]. In a series of presentations in the regular domain decomposition meeting we presented the DG-OSWR method, using discontinuous Galerkin for the time discretization of the OSWR. In [2], [9], we introduced the algorithm in one dimension with discontinuous coefficients. In [10], we extended the method to the two dimensional case. For the space discretization, we extended numerically the nonconforming approach in [8] to advection-diffusion problems and optimized order 2 transmission conditions, to allow for non-matching grids in time and space on the boundary. The space-time projections between subdomains were computed with an optimal projection algorithm without any additional grid, as in [8]. Two dimensional simulations were presented. In [11] we extended the proof of convergence of the OSWR algorithm to nonoverlapping subdomains with curved interfaces. Only sketches of proofs were presented.

The present paper intends to give a full and self-contained account of the method for the advection diffusion reaction equation with non constant coefficients.

In Section 2, we present the Robin and Ventcell algorithms at the continuous level in any dimension, and give in details the new proofs of convergence of the algorithms for nonoverlapping subdomains with curved interfaces.
Then in Section 3, we discretize in time with discontinuous Galerkin, and prove the convergence of the semi-discrete algorithms for flat interfaces. Error estimates are derived from the classical ones [20].
The fully discrete problem is introduced in Section 4, using finite elements. The interfaces are treated by a new cement approach, extending the method in [8]. Given the length of the paper, the numerical analysis will be treated in a forthcoming paper.
We finally present in Section 5 simulations for two subdomains, with piecewise smooth coefficients and a curved interface, for which no error estimates are available. We also include an application to the porous media equation.

Consider the advection-diffusion-reaction equation in Ω=N\Omega=\mathbb{R}^{N}

tu+(𝒃uνu)+cu=fin Ω×(0,T),\partial_{t}u+\nabla\cdot(\boldsymbol{b}u-\nu\nabla u)+cu=f\quad\mbox{in }\Omega\times(0,T), (1.1)

with initial condition

u(0,x)=u0(x)xΩ.u(0,x)=u_{0}(x)\quad x\in\Omega. (1.2)

The advection and diffusion coefficients 𝒃\boldsymbol{b} and ν\nu , as well as the reaction coefficient cc, are piecewise smooth, the problem is parabolic, i.e. νν0>0\nu\geq\nu_{0}>0 a.e. in N\mathbb{R}^{N} .

Theorem 1 (Well-posedness and regularity, [15]).

Let Ω=N\Omega=\mathbb{R}^{N}. Suppose 𝐛(W1,(Ω))N\boldsymbol{b}\in(W^{1,\infty}(\Omega))^{N}, νW1,(Ω)\nu\in W^{1,\infty}(\Omega) and cL(Ω)c\in L^{\infty}(\Omega). If the initial value u0u_{0} is in H1(Ω)H^{1}(\Omega), and the right-hand side ff is in L2(0,T;L2(Ω))L^{2}(0,T;L^{2}(\Omega)), then there exists a unique solution uu of (1.1), (1.2) in H1(0,T;L2(Ω))H^{1}(0,T;L^{2}(\Omega)) \cap L(0,T;H1(Ω))L^{\infty}(0,T;H^{1}(\Omega)) \cap L2(0,T;H2(Ω))L^{2}(0,T;H^{2}(\Omega)).

We consider now a decomposition of Ω\Omega into nonoverlapping subdomains Ωi,i[[1,I]]\Omega_{i},i\in[\![1,I]\!], as depicted in Figure 1. In all cases the boundaries between the subdomains are supposed to be hyperplanes at infinity.

\psfrag{Oj}{$\Omega_{i}$}\includegraphics[width=73.7146pt]{subdomains.eps} \psfrag{Oj}{$\Omega_{i}$}\includegraphics[width=60.70653pt]{subdomainsband.eps}
Fig. 1: Left: decomposition with possible corners (Robin transmission conditions), right: decomposition in bands (Ventcell transmission conditions)

Problem (1.1) is equivalent to solving II problems in subdomains Ωi\Omega_{i}, with transmission conditions on the interface Γi,j\Gamma_{i,j} between two neighboring subdomains Ωi\Omega_{i} and Ωj\Omega_{j}, given by the jumps [u]=0[u]=0, [(νu𝒃)𝒏i]=0[(\nu\nabla u-\boldsymbol{b})\cdot\boldsymbol{n}_{i}]=0. Here 𝒏i\boldsymbol{n}_{i} is the unit exterior normal to Ωi\Omega_{i}. As coefficients ν\nu and 𝒃\boldsymbol{b} are possibly discontinuous on the interface, we note, for sΓi,js\in\Gamma_{i,j}, νi(s)=limε0+ν(sε𝒏i)\nu_{i}(s)=\lim_{\varepsilon\rightarrow 0_{+}}\nu(s-\varepsilon\boldsymbol{n}_{i}). The same notation holds for 𝒃\boldsymbol{b} and cc.

To any i[[1,m]]i\in[\![1,m]\!], we associate the set 𝒩i{\cal N}_{i} of indices of the neighbors of Ωi\Omega_{i}.

Following [3, 4, 6], we propose as preconditioner for (1.1, 1.2), the sequence of problems

tuik+(𝒃iuikνiuik)+ciuik=f in Ωi×(0,T),\displaystyle\partial_{t}u_{i}^{k}+\nabla\cdot(\boldsymbol{b}_{i}u_{i}^{k}-\nu_{i}\nabla u_{i}^{k})+c_{i}u_{i}^{k}=f\mbox{ in }\Omega_{i}\times(0,T), (1.3a)
(νi𝒏i𝒃i𝒏i)uik+𝒮i,juik=(νj𝒏i𝒃j𝒏i)ujk1+𝒮i,jujk1 on Γi,j,j𝒩i.\displaystyle\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\bigr{)}\,u_{i}^{k}+\mathcal{S}_{i,j}u_{i}^{k}=\bigl{(}\nu_{j}\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i}\bigr{)}\,u_{j}^{k-1}+\mathcal{S}_{i,j}u_{j}^{k-1}\mbox{ on }\Gamma_{i,j},\,j\in{\cal N}_{i}. (1.3b)

The boundary operators 𝒮i,j\mathcal{S}_{i,j}, acting on the part Γi,j\Gamma_{i,j} of the boundary of Ωi\Omega_{i} shared by the boundary of Ωj\Omega_{j} are given by

𝒮i,jφ=pi,jφ+qi,j(tφ+Γi,j(𝒓i,jφsi,jΓi,jφ)).\mathcal{S}_{i,j}\varphi=p_{i,j}\varphi+q_{i,j}(\partial_{t}\varphi+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}\varphi-s_{i,j}\nabla_{\Gamma{i,j}}\varphi)). (1.4)

Γ\nabla_{\Gamma} and Γ\nabla_{\Gamma}\cdot are respectively the gradient and divergence operators on Γ\Gamma. pi,j,qi,j,si,jp_{i,j},\ q_{i,j},\ s_{i,j} are functions in L(Γi,j)L^{\infty}(\Gamma_{i,j}) and 𝒓i,j\boldsymbol{r}_{i,j} is in (L(Γi,j))N1(L^{\infty}(\Gamma_{i,j}))^{N-1}. The initial value is that of u0u_{0} in each subdomain. An initial guess (gi,j)(g_{i,j}) is given on L2((0,T)×Γi,j)L^{2}((0,T)\times\Gamma_{i,j}) for i[[1,I]],j𝒩ii\in[\![1,I]\!],j\in{\cal N}_{i}. By convention for the first iterate, the right-hand side in (1.3) is given by gi,jg_{i,j}. Under regularity assumptions, solving (1.1) is equivalent to solving

tui+(𝒃iuiνiui)+ciui=f in Ωi×(0,T),(νi𝒏i𝒃i𝒏i)ui+𝒮i,jui=(νj𝒏i𝒃j𝒏i)uj+𝒮i,juj on Γi,j×(0,T),j𝒩i,\begin{array}[]{l}\partial_{t}u_{i}+\nabla\cdot(\boldsymbol{b}_{i}u_{i}-\nu_{i}\nabla u_{i})+c_{i}u_{i}=f\mbox{ in }\Omega_{i}\times(0,T),\\[1.42262pt] \displaystyle\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\bigr{)}\,u_{i}+\mathcal{S}_{i,j}u_{i}=\bigl{(}\nu_{j}\displaystyle\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i}\bigr{)}\,u_{j}+\mathcal{S}_{i,j}u_{j}\mbox{ on }\Gamma_{i,j}\times(0,T),j\in{\cal N}_{i},\end{array} (1.5)

for i[[1,I]]i\in[\![1,I]\!] with uiu_{i} the restriction of uu to Ωi\Omega_{i}.

2 Studying the algorithm for the P.D.E

The first step of the study is to give a frame for the definition of the iterates.

2.1 The local problem

The optimized Schwarz waveform relaxation algorithm relies on the resolution of the following initial boundary value problem in a domain 𝒪{\mathcal{O}} with boundary Γ\Gamma:

tw+(𝒃wνw)+cw=f in 𝒪×(0,T),ν𝒏w𝒃𝒏w+𝒮w=g on Γ×(0,T),w(,0)=u0 in 𝒪,\begin{array}[]{l}\partial_{t}w+\nabla\cdot(\boldsymbol{b}w-\nu\nabla w)+cw=f\mbox{ in }{\mathcal{O}}\times(0,T),\\ \displaystyle\nu\,\partial_{\boldsymbol{n}}w-\boldsymbol{b}\cdot\boldsymbol{n}\,w+\mathcal{S}w=g\mbox{ on }\Gamma\times(0,T),\\ w(\cdot,0)=u_{0}\mbox{ in }{\mathcal{O}},\end{array} (2.1)

where 𝒏\boldsymbol{n} is the exterior unit normal to 𝒪{\mathcal{O}}. The boundary operator 𝒮\mathcal{S} is defined on Γ=𝒪\Gamma=\partial{\mathcal{O}} by

𝒮w=pw+q(tw+Γ(𝒓wsΓw)).\mathcal{S}w=p\,w+q\,(\partial_{t}w+\nabla_{\Gamma}\cdot(\boldsymbol{r}w-s\nabla_{\Gamma}w)). (2.2)

The domain 𝒪{\mathcal{O}} has either form depicted in Figure 1, left for q=0q=0, right otherwise.

The functions p,qp,\,q and ss are in L(Γ)L^{\infty}(\Gamma), and 𝒓\boldsymbol{r} is in (L(Γ))N1(L^{\infty}(\Gamma))^{N-1}. Either q=0q=0, and the boundary condition is of Robin type, or we suppose qq0>0q\geq q_{0}>0 and the operator will be referred to as Order 2 or Ventcell operator. In the latter case, we need the spaces

Hss(𝒪)={vHs(𝒪),vΓHs(Γ)},H^{s}_{s}({\mathcal{O}})=\{v\in H^{s}({\mathcal{O}}),v_{\,\mid\Gamma}\in H^{s}(\Gamma)\}, (2.3)

which are defined for s>1/2s>1/2, and equipped with the scalar product

(w,v)Hss(𝒪)=(w,v)Hs(𝒪)+(qw,v)Hs(Γ).(w,v)_{H^{s}_{s}({\mathcal{O}})}=(w,v)_{H^{s}({\mathcal{O}})}+(qw,v)_{H^{s}(\Gamma)}. (2.4)

We define the bilinear forms mm on H1(𝒪)H^{1}({\mathcal{O}}) and aa on H11(𝒪)H^{1}_{1}({\mathcal{O}}) by

m(w,v)=(w,v)L2(𝒪)+(qw,v)L2(Γ),m(w,v)=(w,v)_{L^{2}({\mathcal{O}})}+(qw,v)_{L^{2}(\Gamma)}, (2.5)

and

a(w,v):=𝒪(12((𝒃w)v(𝒃v)w))𝑑x+𝒪νwvdx+𝒪(c+12𝒃)wv𝑑x+Γ((p𝒃𝒏2+q2Γ𝒓)wv+q2(Γ(𝒓w)vΓ(𝒓v)w)+qsΓwΓv)𝑑σ,a(w,v):=\int_{\mathcal{O}}(\frac{1}{2}((\boldsymbol{b}\cdot\nabla w)v-(\boldsymbol{b}\cdot\nabla v)w))\,dx+\int_{\mathcal{O}}\nu\nabla w\cdot\nabla v\,dx+\int_{\mathcal{O}}(c+\frac{1}{2}\nabla\cdot\boldsymbol{b})wv\,dx\\ +\int_{\Gamma}\bigl{(}(p-\frac{\boldsymbol{b}\cdot\boldsymbol{n}}{2}+{q\over 2}\nabla_{\Gamma}\cdot\boldsymbol{r})wv+{q\over 2}(\nabla_{\Gamma}\cdot(\boldsymbol{r}w)v-\nabla_{\Gamma}\cdot(\boldsymbol{r}v)w)+qs\nabla_{\Gamma}w\cdot\nabla_{\Gamma}v\bigr{)}\,d\sigma, (2.6)

By the Green’s formula, we can write a variational formulation of (2.1):

ddtm(w,v)+a(w,v)=(f,v)L2(𝒪)+(g,v)L2(Γ).\displaystyle\frac{d\,}{dt}\,m(w,v)+a(w,v)=(f,v)_{L^{2}({\mathcal{O}})}+(g,v)_{L^{2}(\Gamma)}. (2.7)

The well-posedness is a generalization of results in [5, 1, 19]. It relies on energy estimates and Grönwall’s lemma.

Theorem 2.

Suppose νW1,(𝒪)\nu\in W^{1,\infty}({\mathcal{O}}), 𝐛(W1,(𝒪))N\boldsymbol{b}\in(W^{1,\infty}({\mathcal{O}}))^{N}, cL(𝒪)c\in L^{\infty}({\mathcal{O}}), pL(Γ),qL(Γ)p\in L^{\infty}(\Gamma),\ q\in L^{\infty}(\Gamma), 𝐫(W1,(Γ))N1\boldsymbol{r}\in(W^{1,\infty}(\Gamma))^{N-1}, sW1,(Γ)s\in W^{1,\infty}(\Gamma) with s>0s>0 a.e.

If q=0q=0, if ff is in H1(0,T;L2(𝒪))H^{1}(0,T;L^{2}({\mathcal{O}})), u0u_{0} is in H2(𝒪)H^{2}({\mathcal{O}}) and gg is in H1(0,T;L2(Γ))L(0,T;H1/2(Γ))H^{1}(0,T;L^{2}(\Gamma))\cap L^{\infty}(0,T;H^{1/2}(\Gamma)), satisfying the compatibility condition ν𝐧u0𝐛𝐧u0+pu0=g\displaystyle\nu\,\partial_{\boldsymbol{n}}u_{0}-\boldsymbol{b}\cdot\boldsymbol{n}\,u_{0}+pu_{0}=g , the subdomain problem (2.1) has a unique solution ww in L(0,T;H2(𝒪))L^{\infty}(0,T;H^{2}({\mathcal{O}})) \cap W1,(0,T;L2(𝒪))W^{1,\infty}(0,T;L^{2}({\mathcal{O}})).

If qq0>0a.e.q\geq q_{0}>0\ a.e., if ff is in H1(0,T;L2(𝒪))H^{1}(0,T;L^{2}({\mathcal{O}})), u0u_{0} is in H22(𝒪)H^{2}_{2}({\mathcal{O}}), and gg is in H1((0,T);L2(Γ))H^{1}((0,T);L^{2}(\Gamma)), problem (2.1) has a unique solution ww in L(0,T;H22(𝒪))L^{\infty}(0,T;H^{2}_{2}({\mathcal{O}})) \cap W1,(0,T;L2(𝒪))W^{1,\infty}(0,T;L^{2}({\mathcal{O}})) with twL(0,T;L2(Γ))\partial_{t}w\in L^{\infty}(0,T;L^{2}(\Gamma)).

Proof.

The existence result relies on a Galerkin method like in [18, 19]. In the sequel, α,β,\alpha,\beta,\cdots denote positive real numbers depending only on the coefficients and the geometry. The basic estimate is obtained by multiplying the equation by ww and integrating by parts in the domain. We set w=wL2(𝒪)\|w\|=\|w\|_{L^{2}({\mathcal{O}})} and wΓ=wL2(Γ)\|w\|_{\Gamma}=\|w\|_{L^{2}(\Gamma)}.

12ddtm(w,w)+a(w,w)=(f,w)L2(𝒪)+(g,w)L2(Γ).\displaystyle\frac{1}{2}\frac{d}{dt}m(w,w)\ +\ a(w,w)=(f,w)_{L^{2}({\mathcal{O}})}+(g,w)_{L^{2}(\Gamma)}.

With the assumptions on the coefficients, we have

Case q=0q=0.

a(w,w)=𝒪ν|w|2dx+𝒪(c+12𝒃)w2dx+Γ((p𝒃𝒏2)w2dσα(w2β(w2+wΓ2)α2w2γw2,\begin{array}[]{lcl}a(w,w)&=&\displaystyle\int_{\mathcal{O}}\nu|\nabla w|^{2}\,dx+\int_{\mathcal{O}}(c+\frac{1}{2}\nabla\cdot\boldsymbol{b})w^{2}\,dx+\int_{\Gamma}\bigl{(}(p-\frac{\boldsymbol{b}\cdot\boldsymbol{n}}{2}\bigr{)}w^{2}\,d\sigma\\[8.53581pt] &\geq&\displaystyle\alpha(\|\nabla w\|^{2}-\beta(\|w\|^{2}+\|w\|_{\Gamma}^{2})\\[8.53581pt] &\geq&\displaystyle\frac{\alpha}{2}\|\nabla w\|^{2}-\gamma\|w\|^{2},\end{array}

the last inequality coming from the trace theorem

wΓ2Cww.\|w\|_{\Gamma}^{2}\leq C\|\nabla w\|\|w\|. (2.8)

We obtain with the Cauchy-Schwarz inequality

12ddtw2+α4w2ηw2+δ(f2+gΓ2).\begin{array}[]{lcl}\frac{1}{2}\frac{d}{dt}\|w\|^{2}\ +\ \frac{\alpha}{4}\|\nabla w\|^{2}&\leq&\eta\|w\|^{2}+\delta(\|f\|^{2}+\|g\|_{\Gamma}^{2}).\end{array}

We now have with Grönwall’s lemma

w(t)2+α20t(w(s)2dse2ηT(u02+2δ(fL2(0,T;L2(𝒪))2+gL2(0,T;L2(Γ))2)).\begin{array}[]{l}\displaystyle\|w(t)\|^{2}\ +\ \frac{\alpha}{2}\int_{0}^{t}(\|\nabla w(s)\|^{2}ds\leq\\[8.53581pt] \hskip 28.45274pt\displaystyle e^{2\eta T}(\|u_{0}\|^{2}+2\delta(\|f\|_{L^{2}(0,T;L^{2}({\mathcal{O}}))}^{2}+\|g\|_{L^{2}(0,T;L^{2}(\Gamma))}^{2})).\end{array} (2.9)

We apply (2.9) to wtw_{t}:

wt(t)2+α20twt(s)2𝑑se2ηT(wt02+2δ(ftL2(0,T;L2(𝒪))2+gtL2(0,T;L2(Γ))2)).\begin{array}[]{l}\displaystyle\|w_{t}(t)\|^{2}\ +\frac{\alpha}{2}\int_{0}^{t}\|\nabla w_{t}(s)\|^{2}ds\leq\\[8.53581pt] \hskip 28.45274pt\displaystyle e^{2\eta T}(\|{w_{t}}_{0}\|^{2}+2\delta(\|f_{t}\|_{L^{2}(0,T;L^{2}({\mathcal{O}}))}^{2}+\|g_{t}\|_{L^{2}(0,T;L^{2}(\Gamma))}^{2})).\end{array}

Thanks to the compatibility condition, wt0{w_{t}}_{0} can be estimated, using the equation, by wt0ζ(u0H2(𝒪)+f(0,))\|{w_{t}}_{0}\|\leq\zeta(\|u_{0}\|_{H^{2}({\mathcal{O}})}+\|f(0,\cdot)\|) , and we obtain

wt(t)2+α20twt(s)2𝑑sθe2ηT(u0H2(𝒪)+(fH1(0,T;L2(𝒪))2+gH1(0,T;L2(Γ))2)).\begin{array}[]{l}\displaystyle\|w_{t}(t)\|^{2}\ +\frac{\alpha}{2}\int_{0}^{t}\|\nabla w_{t}(s)\|^{2}ds\leq\\[8.53581pt] \hskip 28.45274pt\displaystyle\theta e^{2\eta T}(\|u_{0}\|_{H^{2}({\mathcal{O}})}+(\|f\|_{H^{1}(0,T;L^{2}({\mathcal{O}}))}^{2}+\|g\|_{H^{1}(0,T;L^{2}(\Gamma))}^{2})).\end{array}

Case qq0>0q\geq q_{0}>0  a.e.

a(w,w)=𝒪ν|w|2𝑑x+𝒪(c+12𝒃)w2𝑑x+Γ((p𝒃𝒏2+q2Γ𝒓)w2+qs|Γw|2)𝑑σ,α(w2+ΓwΓ2)βm(w,w),\begin{array}[]{lcl}a(w,w)&=&\displaystyle\int_{\mathcal{O}}\nu|\nabla w|^{2}\,dx+\int_{\mathcal{O}}(c+\frac{1}{2}\nabla\cdot\boldsymbol{b})w^{2}\,dx\\[5.69054pt] &&\displaystyle\quad+\int_{\Gamma}\bigl{(}(p-\frac{\boldsymbol{b}\cdot\boldsymbol{n}}{2}+{q\over 2}\nabla_{\Gamma}\cdot\boldsymbol{r})w^{2}+qs|\nabla_{\Gamma}w|^{2}\bigr{)}\,d\sigma,\\[5.69054pt] &\geq&\displaystyle\alpha(\|\nabla w\|^{2}+\|\nabla_{\Gamma}w\|_{\Gamma}^{2})-\beta m(w,w),\end{array}

and by the Cauchy-Schwarz inequality

𝒪(f,w)𝑑x+Γ(g,w)Γ𝑑σγm(w,w)+δ(f2+gΓ2).\int_{\mathcal{O}}(f,w)\,dx+\int_{\Gamma}(g,w)_{\Gamma}\,d\sigma\leq\gamma m(w,w)+\delta(\|f\|^{2}+\|g\|_{\Gamma}^{2}).

Collecting these inequalities, we obtain

12ddtm(w,w)+α(w2+ΓwΓ2)(β+γ)m(w,w)+δ(f2+gΓ2).\begin{array}[]{lcl}\frac{1}{2}\frac{d}{dt}m(w,w)\ +\ \alpha(\|\nabla w\|^{2}+\|\nabla_{\Gamma}w\|_{\Gamma}^{2})&\leq&(\beta+\gamma)m(w,w)+\delta(\|f\|^{2}+\|g\|_{\Gamma}^{2}).\end{array}

We now integrate in time and use Grönwall’s lemma to obtain for any tt in (0,T)(0,T)

m(w(t),w(t))+ 2α0t(w(s)2+Γw(s)Γ2)𝑑se(β+γ)T(m(u0,u0)+2δ(fL2(0,T;L2(𝒪))2+gL2(0,T;L2(Γ))2)).\begin{array}[]{l}\displaystyle m(w(t),w(t))\ +\ 2\alpha\int_{0}^{t}(\|\nabla w(s)\|^{2}+\|\nabla_{\Gamma}w(s)\|_{\Gamma}^{2})ds\leq\\[8.53581pt] \hskip 28.45274pt\displaystyle e^{(\beta+\gamma)T}(m(u_{0},u_{0})+2\delta(\|f\|_{L^{2}(0,T;L^{2}({\mathcal{O}}))}^{2}+\|g\|_{L^{2}(0,T;L^{2}(\Gamma))}^{2})).\end{array} (2.10)

We apply (2.10) to wtw_{t}:

m(wt(t),wt(t))+ 2α0t(wt(s)2+Γwt(s)Γ2)𝑑se(β+γ)T(m(wt0,wt0)+2δ(ftL2(0,T;L2(𝒪))2+gtL2(0,T;L2(Γ))2)).\begin{array}[]{l}\displaystyle m(w_{t}(t),w_{t}(t))\ +\ 2\alpha\int_{0}^{t}(\|\nabla w_{t}(s)\|^{2}+\|\nabla_{\Gamma}w_{t}(s)\|_{\Gamma}^{2})ds\leq\\[8.53581pt] \hskip 28.45274pt\displaystyle e^{(\beta+\gamma)T}(m({w_{t}}_{0},{w_{t}}_{0})+2\delta(\|f_{t}\|_{L^{2}(0,T;L^{2}({\mathcal{O}}))}^{2}+\|g_{t}\|_{L^{2}(0,T;L^{2}(\Gamma))}^{2})).\end{array}

We now use the equations at time 0 to estimate m(wt0,wt0)m({w_{t}}_{0},{w_{t}}_{0}). From the equation in the domain, we deduce that

wt0ζ(u0H2(𝒪)+f(0,)),\|{w_{t}}_{0}\|\leq\zeta(\|{u}_{0}\|_{H^{2}({\mathcal{O}})}+\|f(0,\cdot)\|),

and from the boundary condition that

wt0Γη(u0H22(𝒪)+g(0,)Γ),\|{w_{t}}_{0}\|_{\Gamma}\leq\eta(\|{u}_{0}\|_{H_{2}^{2}({\mathcal{O}})}+\|g(0,\cdot)\|_{\Gamma}),

which gives altogether

m(wt(t),wt(t))+ 2α0t(wt(s)2+Γwt(s)Γ2)𝑑sθe(β+γ)T(u0H22(𝒪)2+fH1(0,T;L2(𝒪))2+gH1(0,T;L2(Γ))2)).\begin{array}[]{l}\displaystyle m(w_{t}(t),w_{t}(t))\ +\ 2\alpha\int_{0}^{t}(\|\nabla w_{t}(s)\|^{2}+\|\nabla_{\Gamma}w_{t}(s)\|_{\Gamma}^{2})ds\leq\\[8.53581pt] \hskip 28.45274pt\displaystyle\theta e^{(\beta+\gamma)T}(\|{u}_{0}\|_{H_{2}^{2}({\mathcal{O}})}^{2}+\|f\|_{H^{1}(0,T;L^{2}({\mathcal{O}}))}^{2}+\|g\|_{H^{1}(0,T;L^{2}(\Gamma))}^{2})).\end{array} (2.11)

We can now apply the Galerkin method. When q=0q=0, we work in H1(0,T;H1(𝒪))H^{1}(0,T;H^{1}({\mathcal{O}})) \cap W1,(0,T;L2(𝒪))W^{1,\infty}(0,T;L^{2}({\mathcal{O}})) , while if qq0>0q\geq q_{0}>0 a.e we consider H1(0,T;H11(𝒪))H^{1}(0,T;H^{1}_{1}({\mathcal{O}})) \cap W1,(0,T;L2(𝒪))W^{1,\infty}(0,T;L^{2}({\mathcal{O}})) \cap W1,(0,T;L2(Γ))W^{1,\infty}(0,T;L^{2}(\Gamma)). This gives a unique solution ww. The regularity H2H^{2} is obtained for q=0q=0 by the usual regularity results for the Laplace equation with Neumann boundary condition, since

Δw=1ν(fwt(𝒃w)+νw)L(0,T;L2(𝒪)),𝒏w=1ν(𝒃𝒏p)w+1νgL(0,T;H1/2(Γ)).\begin{array}[]{l}-\Delta w=\displaystyle\frac{1}{\nu}(f-w_{t}-\nabla\cdot(\boldsymbol{b}w)+\nabla\nu\cdot\nabla w)\in L^{\infty}(0,T;L^{2}({\mathcal{O}})),\\ \displaystyle\partial_{\boldsymbol{n}}w=\displaystyle\frac{1}{\nu}(\boldsymbol{b}\cdot\boldsymbol{n}-p)w+\frac{1}{\nu}g\in L^{\infty}(0,T;H^{1/2}(\Gamma)).\end{array}

In the other case, we have that

Δw=1ν(fwt(𝒃w)+νw)L(0,T;L2(𝒪)),ν𝒏qsΔΓw=1ν(𝒃𝒏pq(t+Γ𝒓(Γs)Γ)))w+1νgL(0,T;L2(Γ)),\begin{array}[]{l}-\Delta w=\displaystyle\frac{1}{\nu}(f-w_{t}-\nabla\cdot(\boldsymbol{b}w)+\nabla\nu\cdot\nabla w)\in L^{\infty}(0,T;L^{2}({\mathcal{O}})),\\ \displaystyle\nu\partial_{\boldsymbol{n}}-qs\Delta_{\Gamma}w=\displaystyle\frac{1}{\nu}(\boldsymbol{b}\cdot\boldsymbol{n}-p-q\,(\partial_{t}+\nabla_{\Gamma}\cdot\boldsymbol{r}-(\nabla_{\Gamma}\cdot s)\nabla_{\Gamma})))w+\frac{1}{\nu}g\in L^{\infty}(0,T;L^{2}(\Gamma)),\end{array}

and we conclude like in [18, 19]. ∎

2.2 Convergence analysis for Robin transmission conditions

We suppose here the coefficients qiq_{i} to be zero everywhere. Given initial guess (gi,j)(g_{i,j}) on L2((0,T)×Γi,j)L^{2}((0,T)\times\Gamma_{i,j}) for i[[1,I]],j𝒩ii\in[\![1,I]\!],j\in{\cal N}_{i}, the algorithm reduces in each subdomain to

tuik+(𝒃iuikνiuik)+ciuik=f in Ωi×(0,T),\displaystyle\partial_{t}u_{i}^{k}+\nabla\cdot(\boldsymbol{b}_{i}u_{i}^{k}-\nu_{i}\nabla u_{i}^{k})+c_{i}u_{i}^{k}=f\mbox{ in }\Omega_{i}\times(0,T), (2.12a)
(νi𝒏i𝒃i𝒏i)uik+pi,juik=(νj𝒏i𝒃j𝒏i)ujk1+pi,jujk1 on Γi,j,j𝒩i.\displaystyle\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\bigr{)}\,u_{i}^{k}+p_{i,j}\,u_{i}^{k}=\bigl{(}\nu_{j}\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i}\bigr{)}\,u_{j}^{k-1}+p_{i,j}\,u_{j}^{k-1}\mbox{ on }\Gamma_{i,j},j\in{\cal N}_{i}. (2.12b)

The well-posedness for the boundary value problem in the previous section permits to define the sequence of iterates. We now consider the convergence of this sequence.

Theorem 3.

For coefficients pi,jp_{i,j} such that pi,j+pj,i>0a.e.p_{i,j}+p_{j,i}>0\ a.e., the sequence (uik)k(u_{i}^{k})_{k\in\mathbb{N}} of solutions of (2.12) converges to the solution uu of problem (1.1).

Proof.

By linearity, it is sufficient to prove that the sequence of iterates converges to zero if f=u0=0f=u_{0}=0.

We multiply (2.12a) by uiku_{i}^{k}, integrate on Ωi\Omega_{i}, and use the Green’s formula. We obtain

12ddtuik(t,)L2(Ωi)2+(νiuik,uik)L2(Ωi)+((ci+12𝒃i)uik,uik)L2(Ωi)j𝒩iΓi,j(νi𝒏iuik𝒃i𝒏i2uik)uik𝑑σ=0.\frac{1}{2}\frac{d\,}{dt}\|u_{i}^{k}(t,\cdot)\|^{2}_{L^{2}(\Omega_{i})}+(\nu_{i}\nabla u_{i}^{k},\nabla u_{i}^{k})_{L^{2}(\Omega_{i})}+((c_{i}+\frac{1}{2}\nabla\cdot\boldsymbol{b}_{i})u_{i}^{k},u_{i}^{k})_{L^{2}(\Omega_{i})}\\ \hskip-85.35826pt-\sum_{j\in{\cal N}_{i}}\int_{\Gamma_{i,j}}\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2}u_{i}^{k}\bigr{)}\,u_{i}^{k}d\sigma=0. (2.13)

We use now

(νi𝒏iuik𝒃i𝒏iuik+pi,juik)2(νi𝒏iuik𝒃i𝒏iuikpj,iuik)2=2(pi,j+pj,i)(νi𝒏iuik𝒃i𝒏i2uik)uik+(pi,j+pj,i)(pi,jpj,i𝒃i𝒏i)(uik)2.\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}u_{i}^{k}+p_{i,j}u_{i}^{k}\bigr{)}^{2}-\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}u_{i}^{k}-p_{j,i}u_{i}^{k}\bigr{)}^{2}=\\ 2(p_{i,j}+p_{j,i})\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2}u_{i}^{k}\bigr{)}u_{i}^{k}+(p_{i,j}+p_{j,i})(p_{i,j}-p_{j,i}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i})(u_{i}^{k})^{2}. (2.14)

We replace the boundary term in (2.13), and integrate in time. Since the initial value vanishes, we have for any time tt,

uik(t)L2(Ωi)2+20t((νiuik,uik)L2(Ωi)+((ci+12𝒃i)uik,uik)L2(Ωi))𝑑τ+j𝒩i0tΓi,j1pi,j+pj,i(νi𝒏iuik𝒃i𝒏iuikpj,iuik)2𝑑σ𝑑τ=j𝒩i0tΓi,j1pi,j+pj,i(νi𝒏iuik𝒃i𝒏iuik+pi,juik)2𝑑σ𝑑τ+j𝒩i0tΓi,j(pj,ipi,j𝒃i𝒏i)(uik)2𝑑σ𝑑τ.\|u_{i}^{k}(t)\|^{2}_{L^{2}(\Omega_{i})}+2\int_{0}^{t}\bigl{(}(\nu_{i}\nabla u_{i}^{k},\nabla u_{i}^{k})_{L^{2}(\Omega_{i})}+((c_{i}+\frac{1}{2}\nabla\cdot\boldsymbol{b}_{i})u_{i}^{k},u_{i}^{k})_{L^{2}(\Omega_{i})}\bigr{)}\,d\tau\\ +\sum_{j\in{\cal N}_{i}}\int_{0}^{t}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}u_{i}^{k}-p_{j,i}u_{i}^{k}\bigr{)}^{2}d\sigma\,d\tau\\ =\sum_{j\in{\cal N}_{i}}\int_{0}^{t}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}u_{i}^{k}+p_{i,j}u_{i}^{k}\bigr{)}^{2}d\sigma\,d\tau\\ \hskip-85.35826pt+\sum_{j\in{\cal N}_{i}}\int_{0}^{t}\int_{\Gamma_{i,j}}(p_{j,i}-p_{i,j}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i})(u_{i}^{k})^{2}d\sigma\,d\tau.

Since the coefficients are all bounded, the last term in the right-hand side can be handled by the trace theorem (2.8) to be canceled with the terms in the left-hand side like in the proof of Theorem 3. We further insert the transmission condition in the right-hand side:

uik(t)L2(Ωi)2+ν00tuikL2(Ωi)2𝑑τ+j𝒩i0tΓi,j1pi,j+pj,i(νi𝒏iuik𝒃i𝒏iuikpj,iuik)2𝑑σ𝑑τj𝒩i0tΓi,j1pi,j+pj,i(νj𝒏iujk1𝒃j𝒏iujk1+pi,jujk1)2𝑑σ𝑑τ+C10tuikL2(Ωi)2.\|u_{i}^{k}(t)\|^{2}_{L^{2}(\Omega_{i})}+\nu_{0}\int_{0}^{t}\|\nabla u_{i}^{k}\|^{2}_{L^{2}(\Omega_{i})}\,d\tau+\sum_{j\in{\cal N}_{i}}\int_{0}^{t}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}u_{i}^{k}-p_{j,i}u_{i}^{k}\bigr{)}^{2}d\sigma\,d\tau\\ \leq\sum_{j\in{\cal N}_{i}}\int_{0}^{t}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}(\nu_{j}\partial_{\boldsymbol{n}_{i}}u_{j}^{k-1}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i}u_{j}^{k-1}\,+p_{i,j}u_{j}^{k-1}\bigr{)}^{2}d\sigma\,d\tau+C_{1}\int_{0}^{t}\|u_{i}^{k}\|^{2}_{L^{2}(\Omega_{i})}.

We sum on the subdomains, and on the iterations, the boundary terms cancel out except the first and last ones, and we obtain for any t(0,T)t\in(0,T),

k[[1,K]]i[[1,I]](uik(t)L2(Ωi)2+ν00tuikL2(Ωi)2𝑑τ)α(t)+C1k[[1,K]]i[[1,I]]0tuikL2(Ωi)2,\sum_{k\in[\![1,K]\!]}\sum_{i\in[\![1,I]\!]}\biggl{(}\|u_{i}^{k}(t)\|^{2}_{L^{2}(\Omega_{i})}+\nu_{0}\int_{0}^{t}\|\nabla u_{i}^{k}\|^{2}_{L^{2}(\Omega_{i})}\,d\tau\biggr{)}\leq\alpha(t)+C_{1}\sum_{k\in[\![1,K]\!]}\sum_{i\in[\![1,I]\!]}\int_{0}^{t}\|u_{i}^{k}\|^{2}_{L^{2}(\Omega_{i})}, (2.15)

with

α(t)=i[[1,I]]j𝒩i0tΓi,j1pi,j+pj,i(νj𝒏iuj0𝒃j𝒏iuj0+pi,juj0)2𝑑σ𝑑τ.\alpha(t)=\sum_{i\in[\![1,I]\!]}\sum_{j\in{\cal N}_{i}}\int_{0}^{t}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}(\nu_{j}\partial_{\boldsymbol{n}_{i}}u_{j}^{0}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i}u_{j}^{0}\,+p_{i,j}u_{j}^{0}\bigr{)}^{2}d\sigma\,d\tau.

We now apply Grönwall’s lemma and obtain that for any K>0K>0,

k[[1,K]]i[[1,I]]uik(t)L2(Ωi)2α(T)eC1T,\displaystyle\sum_{k\in[\![1,K]\!]}\sum_{i\in[\![1,I]\!]}\|u_{i}^{k}(t)\|^{2}_{L^{2}(\Omega_{i})}\leq\alpha(T)e^{C_{1}T},

which proves that the sequence uiku_{i}^{k} converges to zero in L2((0,T)×Ωi)L^{2}((0,T)\times\Omega_{i}) for each ii, and concludes the proof of the theorem. ∎

Remark 4.

In the case 𝐛=0\nabla\cdot\boldsymbol{b}=0, if pj,ipi,j𝐛i𝐧i=0p_{j,i}-p_{i,j}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}=0 and ciα0>0c_{i}\geq\alpha_{0}>0, then C1=0C_{1}=0 in (2.15) and we conclude without using Grönwall’s lemma.

2.3 Order 2 transmission conditions

Theorem 5.

Assume pi,jW1,(Ωi),pi,j+pj,i>0a.e.p_{i,j}\in W^{1,\infty}(\Omega_{i}),\ p_{i,j}+p_{j,i}>0\ a.e., qi,j=q>0q_{i,j}=q>0, 𝐛i(W1,(Ωi))N\boldsymbol{b}_{i}\in(W^{1,\infty}(\Omega_{i}))^{N}, νiW1,(Ω)\nu_{i}\in W^{1,\infty}(\Omega), 𝐫i,j(W1,(Ωi))N1\boldsymbol{r}_{i,j}\in(W^{1,\infty}(\Omega_{i}))^{N-1}, with 𝐫i,j=𝐫j,ionΓi,j\boldsymbol{r}_{i,j}=\boldsymbol{r}_{j,i}\ on\ \Gamma_{i,j}, si,jW1,(Ωi)s_{i,j}\in W^{1,\infty}(\Omega_{i}), si,j>0s_{i,j}>0 with si,j=sj,ionΓi,js_{i,j}=s_{j,i}\ on\ \Gamma_{i,j}, and the domain is cut in bands as in Figure 1, right. Then, the algorithm (1.3) converges in each subdomain to the solution uu of problem (1.1).

Proof.

We first need some results in differential geometry. For any i[[1,I]]i\in[\![1,I]\!], For every j𝒩ij\in{\cal N}_{i}, the normal vector 𝒏i\boldsymbol{n}_{i} can be extended in a neighbourhood of Γi,j\Gamma_{i,j} in Ωi\Omega_{i} as a smooth function 𝒏~i\tilde{\boldsymbol{n}}_{i} with length one. Let ψi,j𝒞(Ωi¯)\psi_{i,j}\in{\cal C}^{\infty}(\overline{\Omega_{i}}), such that ψi,j1\psi_{i,j}\equiv 1 in a neighbourhood of Γi,j\Gamma_{i,j}, ψi,j0\psi_{i,j}\equiv 0 in a neighbourhood of Γi,k\Gamma_{i,k} for k𝒩i,kjk\in{\cal N}_{i},\,k\neq j and j𝒩iψi,j>0\sum_{j\in{\cal N}_{i}}\psi_{i,j}>0 on Ωi\Omega_{i}. We can assume that 𝒏~i\tilde{\boldsymbol{n}}_{i} is defined on a neighbourhood of the support of ψi,j\psi_{i,j}. We extend the tangential gradient and divergence operators in the support of ψi,j\psi_{i,j} by:

~Γi,jφ:=φ(𝒏~iφ)𝒏~i,~Γi,j𝝋:=(𝝋(𝝋𝒏~i)𝒏~i).\displaystyle\widetilde{\nabla}_{\Gamma_{i,j}}\varphi:=\nabla\varphi-(\partial_{\tilde{\boldsymbol{n}}_{i}}\varphi)\tilde{\boldsymbol{n}}_{i},\quad\widetilde{\nabla}_{\Gamma_{i,j}}\cdot\boldsymbol{\varphi}:=\nabla\cdot(\boldsymbol{\varphi}-(\boldsymbol{\varphi}\cdot\tilde{\boldsymbol{n}}_{i})\tilde{\boldsymbol{n}}_{i}).

It is easy to see that (~Γi,jφ)|Γi,j=Γi,jφ(\widetilde{\nabla}_{\Gamma_{i,j}}\varphi)_{|\Gamma_{i,j}}=\nabla_{\Gamma_{i,j}}\varphi, (~Γi,j𝝋)|Γi,j=Γi,j𝝋(\widetilde{\nabla}_{\Gamma_{i,j}}\cdot\boldsymbol{\varphi})_{|\Gamma_{i,j}}=\nabla_{\Gamma_{i,j}}\cdot\boldsymbol{\varphi} and for 𝝋\boldsymbol{\varphi} and χ\chi with support in supp(ψi,j)supp(\psi_{i,j}), we have

Ωi(~Γi,j𝝋)χ𝑑x=Ωi𝝋~Γi,jχ𝑑x.\int_{\Omega_{i}}(\widetilde{\nabla}_{\Gamma_{i,j}}\cdot\boldsymbol{\varphi})\,\chi\,dx=-\int_{\Omega_{i}}\boldsymbol{\varphi}\cdot\widetilde{\nabla}_{\Gamma_{i,j}}\chi\,dx. (2.16)

Now we prove Theorem 5. We consider the algorithm (1.3) on the error, so we suppose f=u0=0f=u_{0}=0. We set φi=φL2(Ωi)\|\varphi\|_{i}=\|\varphi\|_{L^{2}(\Omega_{i})}, φi2=νiφi2\interleave\varphi\interleave_{i}^{2}=\|\sqrt{\nu_{i}}\,\nabla\varphi\|^{2}_{i}, φi,=φL(Ωi)\|\varphi\|_{i,\infty}=\|\varphi\|_{L^{\infty}(\Omega_{i})}, φi,1,=φW1,(Ωi)\|\varphi\|_{i,1,\infty}=\|\varphi\|_{W^{1,\infty}(\Omega_{i})} and βi,j=pi,j+pj,i2\beta_{i,j}=\sqrt{\frac{p_{i,j}+p_{j,i}}{2}}.

The proof is based on energy estimates containing the term

0tΓi,j(νi𝒏iuik𝒃i𝒏iuik+𝒮i,juik)2𝑑σ𝑑τ,\int_{0}^{t}\int_{\Gamma_{i,j}}\left(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}u_{i}^{k}+\mathcal{S}_{i,j}u_{i}^{k}\right)^{2}\,d\sigma\,d\tau,

and that we derive by multiplying successively the first equation of (1.3) by the terms βi2uik\beta_{i}^{2}\,u_{i}^{k}, tuik\partial_{t}u_{i}^{k}, ~Γi,j(ψi,j2𝒓i,juik)\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}\boldsymbol{r}_{i,j}u_{i}^{k}) and ~Γi,j(ψi,j2si,j~Γi,juik)-\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}s_{i,j}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}).

We multiply the first equation of (1.3) by βi2uik\beta_{i}^{2}\,u_{i}^{k}, integrate on (0,t)×Ωi(0,t)\times\Omega_{i} and integrate by parts in space,

12βiuik(t)i2+0tβiuik(τ,)i2dτ0tΩiβi(𝒃iβi)(uik)2𝑑x𝑑τ+0tΩi(ci+12𝒃i)βi2(uik)2𝑑x𝑑τ0tΩiνi|βi|2(uik)2𝑑x𝑑τ0tΓi,jβi,j2(νi𝒏iuik𝒃i𝒏i2uik)uik𝑑σ𝑑τ=0.\frac{1}{2}\|\beta_{i}u_{i}^{k}(t)\|^{2}_{i}+\int_{0}^{t}\interleave\beta_{i}u_{i}^{k}(\tau,\cdot)\interleave_{i}^{2}\,d\tau-\int_{0}^{t}\int_{\Omega_{i}}\beta_{i}(\boldsymbol{b}_{i}\cdot\nabla\beta_{i})(u_{i}^{k})^{2}\,dx\,d\tau\hskip 28.45274pt\\ +\int_{0}^{t}\int_{\Omega_{i}}(c_{i}+\frac{1}{2}\nabla\cdot\boldsymbol{b}_{i})\beta_{i}^{2}(u_{i}^{k})^{2}\,dx\,d\tau-\int_{0}^{t}\int_{\Omega_{i}}\nu_{i}|\nabla\beta_{i}|^{2}(u_{i}^{k})^{2}\,dx\,d\tau\\ -\int_{0}^{t}\int_{\Gamma_{i,j}}\beta_{i,j}^{2}(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2}u_{i}^{k})\,u_{i}^{k}\,d\sigma\,d\tau=0. (2.17)

We multiply the first equation of (1.3) by tuik\partial_{t}u_{i}^{k}, integrate on (0,t)×Ωi(0,t)\times\Omega_{i} and then integrate by parts in space,

0ttuiki2𝑑τ+12uik(t)i2+0tΩi(ciuik+(𝒃iuik))tuikdxdτ0tΓi,jνi𝒏iuiktuikdσdτ=0.\hskip-22.76219pt\int_{0}^{t}\|\partial_{t}u_{i}^{k}\|^{2}_{i}\,d\tau+\frac{1}{2}\interleave u_{i}^{k}(t)\interleave_{i}^{2}+\int_{0}^{t}\int_{\Omega_{i}}(c_{i}u_{i}^{k}+\nabla\cdot(\boldsymbol{b}_{i}u_{i}^{k}))\,\partial_{t}u_{i}^{k}\,dx\,d\tau-\int_{0}^{t}\int_{\Gamma_{i,j}}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}\,\partial_{t}u_{i}^{k}\,d\sigma\,d\tau=0. (2.18)

We multiply the first equation of (1.3) by ~Γi,j(ψi,j2𝒓i,juik)\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}\boldsymbol{r}_{i,j}u_{i}^{k}) integrate on (0,t)×Ωi(0,t)\times\Omega_{i} and integrate by parts in space:

0tΩituik~Γi,j(ψi,j2𝒓i,juik)dxdτ+0tΩi(𝒃iuik)~Γi,j(ψi,j2𝒓i,juik)𝑑x𝑑τ+0tΩiciuik~Γi,j(ψi,j2𝒓i,juik)𝑑x𝑑τ+0tΩiνiuik~Γi,j(ψi,j2𝒓i,juik)𝑑x𝑑τ0tΓi,jνi𝒏iuikΓi,j(𝒓i,juik)dσdτ=0.\int_{0}^{t}\int_{\Omega_{i}}\partial_{t}u_{i}^{k}\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}\boldsymbol{r}_{i,j}u_{i}^{k})\,dx\,d\tau+\int_{0}^{t}\int_{\Omega_{i}}\nabla\cdot(\boldsymbol{b}_{i}u_{i}^{k})\,\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}\boldsymbol{r}_{i,j}u_{i}^{k})\,dx\,d\tau\\ +\int_{0}^{t}\int_{\Omega_{i}}c_{i}u_{i}^{k}\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}\boldsymbol{r}_{i,j}u_{i}^{k})\,dx\,d\tau\\ +\int_{0}^{t}\int_{\Omega_{i}}\nu_{i}\nabla u_{i}^{k}\cdot\nabla\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}\boldsymbol{r}_{i,j}u_{i}^{k})\,dx\,d\tau-\int_{0}^{t}\int_{\Gamma_{i,j}}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}\,\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}u_{i}^{k})\,d\sigma\,d\tau=0. (2.19)

We observe that

0tΩiνiuik~Γi,j(ψi,j2𝒓i,juik)𝑑x𝑑τ=0tΩiνiuik(~Γi,j(ψi,j2𝒓i,j)uik)dxdτ+0tΩiνiuik(ψi,j2𝒓i,j~Γi,juik)dxdτ,\int_{0}^{t}\int_{\Omega_{i}}\nu_{i}\nabla u_{i}^{k}\cdot\nabla\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}\boldsymbol{r}_{i,j}u_{i}^{k})\,dx\,d\tau\\ =\int_{0}^{t}\int_{\Omega_{i}}\nu_{i}\nabla u_{i}^{k}\cdot\nabla(\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}\boldsymbol{r}_{i,j})u_{i}^{k})\,dx\,d\tau+\int_{0}^{t}\int_{\Omega_{i}}\nu_{i}\nabla u_{i}^{k}\cdot\nabla(\psi_{i,j}^{2}\boldsymbol{r}_{i,j}\cdot\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k})\,dx\,d\tau, (2.20)

with

0tΩiνiuik(ψi,j2𝒓i,j~Γi,juik)dxdτ140tψi,jνisi,j~Γi,juiki2𝑑τC0tΩi(uiki2+uiki2)𝑑x𝑑τ.\int_{0}^{t}\int_{\Omega_{i}}\nu_{i}\nabla u_{i}^{k}\cdot\nabla(\psi_{i,j}^{2}\boldsymbol{r}_{i,j}\cdot\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k})\,dx\,d\tau\\ \geq-{1\over 4}\int_{0}^{t}\|\psi_{i,j}\sqrt{\nu_{i}\,s_{i,j}}\ \nabla\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}\|_{i}^{2}\,d\tau-C\int_{0}^{t}\int_{\Omega_{i}}(\|\nabla u_{i}^{k}\|_{i}^{2}+\|u_{i}^{k}\|_{i}^{2})\,dx\,d\tau. (2.21)

Replacing (2.21) in (2.20) and then (2.20) in (2.19), we obtain

0tΩi(tuik~Γi,j(ψi,j2𝒓i,juik)+(𝒃iuik)~Γi,j(ψi,j2𝒓i,juik)+ciuik~Γi,j(ψi,j2𝒓i,juik))𝑑x𝑑τ140tψi,jνisi,j~Γi,juik)i2dτ0tΓi,jνi𝒏iuikΓi,j(𝒓i,juik)dσdτC0tΩi(νiuiki2+βiuiki2)𝑑x𝑑τ.\begin{array}[]{l}\hskip-11.38109pt{\small\mbox{$\displaystyle\int_{0}^{t}\int_{\Omega_{i}}\left(\partial_{t}u_{i}^{k}\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}\boldsymbol{r}_{i,j}u_{i}^{k})+\nabla\cdot(\boldsymbol{b}_{i}u_{i}^{k})\,\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}\boldsymbol{r}_{i,j}u_{i}^{k})+c_{i}u_{i}^{k}\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}\boldsymbol{r}_{i,j}u_{i}^{k})\right)\,dx\,d\tau$}}\\ \displaystyle\hskip 42.67912pt-{1\over 4}\int_{0}^{t}\|\psi_{i,j}\sqrt{\nu_{i}\,s_{i,j}}\ \nabla\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k})\|_{i}^{2}\,d\tau-\int_{0}^{t}\int_{\Gamma_{i,j}}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}\,\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}u_{i}^{k})\,d\sigma\,d\tau\\ \displaystyle\hskip 85.35826pt\leq C\int_{0}^{t}\int_{\Omega_{i}}(\|\sqrt{\nu_{i}}\nabla u_{i}^{k}\|_{i}^{2}+\|\beta_{i}u_{i}^{k}\|_{i}^{2})\,dx\,d\tau.\end{array} (2.22)

Now we multiply the first equation of (1.3) by ~Γi,j(ψi,j2si,j~Γi,juik)-\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}s_{i,j}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}) integrate on (0,t)×Ωi(0,t)\times\Omega_{i} and integrate by parts in space:

12ψi,jsi,j~Γi,juik(t)i20tΩi(𝒃iuik)~Γi,j(ψi,j2si,j~Γi,juik)𝑑x𝑑τ+0tΩiψi,j2si,j~Γi,j(ciuik)~Γi,juik𝑑x𝑑τ0tΩiνiuik(~Γi,j(ψi,j2si,j~Γi,juik))dxdτ+0tΓi,jνi𝒏iuikΓi,j(si,jΓi,juik)dσdτ=0.\frac{1}{2}\|\psi_{i,j}\sqrt{s_{i,j}}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}(t)\|_{i}^{2}-\int_{0}^{t}\int_{\Omega_{i}}\nabla\cdot(\boldsymbol{b}_{i}u_{i}^{k})\,\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}s_{i,j}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k})\,dx\,d\tau\\ \hskip-11.38109pt{\small\mbox{$\displaystyle+\int_{0}^{t}\int_{\Omega_{i}}\psi_{i,j}^{2}s_{i,j}\widetilde{\nabla}_{\Gamma_{i,j}}(c_{i}u_{i}^{k})\cdot\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}\,dx\,d\tau-\int_{0}^{t}\int_{\Omega_{i}}\nu_{i}\nabla u_{i}^{k}\cdot\nabla(\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}s_{i,j}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}))\,dx\,d\tau$}}\\ +\int_{0}^{t}\int_{\Gamma_{i,j}}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}\,\nabla_{\Gamma_{i,j}}\cdot(s_{i,j}\,\nabla_{\Gamma_{i,j}}\,u_{i}^{k})\,d\sigma\,d\tau=0. (2.23)

We have,

0tΩi\displaystyle-\int_{0}^{t}\int_{\Omega_{i}} νiuik(~Γi,j(ψi,j2si,j~Γi,juik))dxdτ\displaystyle\nu_{i}\nabla u_{i}^{k}\cdot\nabla(\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}s_{i,j}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}))\,dx\,d\tau
120tψi,jνisi,j~Γi,juik)i2dτC10tuiki2dτ.\displaystyle\geq{1\over 2}\int_{0}^{t}\|\psi_{i,j}\sqrt{\nu_{i}\,s_{i,j}}\ \nabla\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k})\|_{i}^{2}\,d\tau-C_{1}\int_{0}^{t}\|\nabla u_{i}^{k}\|_{i}^{2}\,d\tau. (2.24)

Replacing (2.3) in (2.23) leads to

12ψi,jsi,j~Γi,juik(t)i2+120tψi,jνisi,j~Γi,juik)i2dτ+0tΩiψi,j2si,jci|~Γi,juik|2𝑑x𝑑τ+0tΓi,jνi𝒏iuikΓi,j(si,jΓi,juik)dσdτ0tΩi(𝒃iuik)~Γi,j(ψi,j2si,j~Γi,juik)𝑑x𝑑τ+C0tνiuiki2𝑑τ.\frac{1}{2}\|\psi_{i,j}\sqrt{s_{i,j}}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}(t)\|_{i}^{2}+{1\over 2}\int_{0}^{t}\|\psi_{i,j}\sqrt{\nu_{i}\,s_{i,j}}\ \nabla\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k})\|_{i}^{2}\,d\tau\\[-2.84526pt] +\int_{0}^{t}\int_{\Omega_{i}}\psi_{i,j}^{2}s_{i,j}\,c_{i}|\widetilde{\nabla}_{\Gamma_{i,j}}u_{i}^{k}|^{2}\,dx\,d\tau+\int_{0}^{t}\int_{\Gamma_{i,j}}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}\,\nabla_{\Gamma_{i,j}}\cdot(s_{i,j}\,\nabla_{\Gamma_{i,j}}\,u_{i}^{k})\,d\sigma\,d\tau\\[-2.84526pt] \hskip-14.22636pt\leq\int_{0}^{t}\int_{\Omega_{i}}\nabla\cdot(\boldsymbol{b}_{i}u_{i}^{k})\,\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}s_{i,j}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k})\,dx\,d\tau+C\int_{0}^{t}\|\sqrt{\nu_{i}}\nabla u_{i}^{k}\|_{i}^{2}\,d\tau. (2.25)

Multiplying (2.18), (2.22) and (2.25) by qq, and adding the three equations with (2.17), we get

12(βiuik(t)i2+quik(t)i2+qψi,jsi,j~Γi,juik(t)i2)+0tβiuik(τ,)i2dτ+q0ttuiki2𝑑τ+q40tψi,jνisi,j~Γi,juiki2𝑑τ0tΓi,jβi2(νi𝒏iuik𝒃i𝒏i2uik)uik𝑑σ𝑑τq0tΓi,jνi𝒏iuik(tuik+Γi,j(𝒓i,juik)Γi,j(si,jΓi,juik))dσdτq(12𝒃ii,1,+𝒓i,ji,1,)0tuikituiki𝑑τ+q(𝒃ii,+𝒓i,ji,)0tuikituiki𝑑τ+q2𝒃ii,0tuiki~Γi,j(ψi,j2si,j~Γi,juik)i𝑑τ+q(12𝒃ii,1,+cii,)0tuiki~Γi,j(ψi,j2si,j~Γi,juik)i𝑑τ+q2(𝒃ii,1,+cii,)uik(t)i2+C(0tβiuiki2𝑑τ+q0tνiuiki2𝑑τ).\frac{1}{2}\left(\|\beta_{i}u_{i}^{k}(t)\|^{2}_{i}+q\interleave u_{i}^{k}(t)\interleave_{i}^{2}+q\|\psi_{i,j}\sqrt{s_{i,j}}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}(t)\|_{i}^{2}\right)+\int_{0}^{t}\interleave\beta_{i}u_{i}^{k}(\tau,\cdot)\interleave_{i}^{2}\,d\tau\\ +q\int_{0}^{t}\|\partial_{t}u_{i}^{k}\|^{2}_{i}\,d\tau+\frac{q}{4}\int_{0}^{t}\|\psi_{i,j}\sqrt{\nu_{i}\,s_{i,j}}\ \nabla\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}\|_{i}^{2}\,d\tau\\ -\int_{0}^{t}\int_{\Gamma_{i,j}}\beta_{i}^{2}(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2}u_{i}^{k})\,u_{i}^{k}\,d\sigma\,d\tau\\ -q\int_{0}^{t}\int_{\Gamma_{i,j}}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}\,\left(\partial_{t}u_{i}^{k}+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}u_{i}^{k})-\nabla_{\Gamma_{i,j}}\cdot(s_{i,j}\,\nabla_{\Gamma_{i,j}}\,u_{i}^{k})\right)\,d\sigma\,d\tau\\ \leq q(\frac{1}{2}\|\boldsymbol{b}_{i}\|_{i,1,\infty}+\|\boldsymbol{r}_{i,j}\|_{i,1,\infty})\int_{0}^{t}\|u_{i}^{k}\|_{i}\,\|\partial_{t}u_{i}^{k}\|_{i}\,d\tau\\ +q(\|\boldsymbol{b}_{i}\|_{i,\infty}+\|\boldsymbol{r}_{i,j}\|_{i,\infty})\int_{0}^{t}\|\nabla u_{i}^{k}\|_{i}\,\|\partial_{t}u_{i}^{k}\|_{i}\,d\tau\\ +\frac{q}{2}\|\boldsymbol{b}_{i}\|_{i,\infty}\int_{0}^{t}\|\nabla u_{i}^{k}\|_{i}\,\|\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}s_{i,j}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k})\|_{i}\,d\tau\\ +q(\frac{1}{2}\|\boldsymbol{b}_{i}\|_{i,1,\infty}+\|c_{i}\|_{i,\infty})\int_{0}^{t}\|u_{i}^{k}\|_{i}\,\|\widetilde{\nabla}_{\Gamma_{i,j}}\cdot(\psi_{i,j}^{2}s_{i,j}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k})\|_{i}\,d\tau\\ +\frac{q}{2}(\|\boldsymbol{b}_{i}\|_{i,1,\infty}+\|c_{i}\|_{i,\infty})\|u_{i}^{k}(t)\|_{i}^{2}+C\left(\int_{0}^{t}\|\beta_{i}u_{i}^{k}\|_{i}^{2}\,d\tau+q\int_{0}^{t}\|\sqrt{\nu_{i}}\nabla u_{i}^{k}\|_{i}^{2}\,d\tau\right).

We bound the right-hand side by

12(q20ttuiki2𝑑τ+q40tψi,jνisi,j~Γi,juiki2𝑑τ)+q2(𝒃ii,1,+cii,)uik(t)i2+C(0tβiuiki2𝑑τ+q0tνiuiki2𝑑τ).{1\over 2}\left(\frac{q}{2}\int_{0}^{t}\|\partial_{t}u_{i}^{k}\|_{i}^{2}\,d\tau+\frac{q}{4}\int_{0}^{t}\|\psi_{i,j}\sqrt{\nu_{i}\,s_{i,j}}\ \nabla\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}\|_{i}^{2}\,d\tau\right)\\ +\frac{q}{2}(\|\boldsymbol{b}_{i}\|_{i,1,\infty}+\|c_{i}\|_{i,\infty})\|u_{i}^{k}(t)\|_{i}^{2}+C\left(\int_{0}^{t}\|\beta_{i}u_{i}^{k}\|_{i}^{2}\,d\tau+q\int_{0}^{t}\|\sqrt{\nu_{i}}\nabla u_{i}^{k}\|_{i}^{2}\,d\tau\right).

We simplify the terms which appear on both sides, and obtain

12(βiuik(t)i2+quik(t)i2+qψi,jsi,j~Γi,juik(t)i2)+0tβiuik(τ,)i2dτ+q20ttuiki2𝑑τ+q80tψi,jνisi,j~Γi,juiki2𝑑τ0tΓi,jβi2(νi𝒏iuik𝒃i𝒏i2uik)uik𝑑σ𝑑τq0tΓi,jνi𝒏iuik(tuik+Γi,j(𝒓i,juik)Γi,j(si,jΓi,juik))dσdτC(0tβiuiki2𝑑τ+q0tνiuiki2𝑑τ).\frac{1}{2}\left(\|\beta_{i}u_{i}^{k}(t)\|^{2}_{i}+q\interleave u_{i}^{k}(t)\interleave_{i}^{2}+q\|\psi_{i,j}\sqrt{s_{i,j}}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}(t)\|_{i}^{2}\right)+\int_{0}^{t}\interleave\beta_{i}u_{i}^{k}(\tau,\cdot)\interleave_{i}^{2}\,d\tau\\ +\frac{q}{2}\int_{0}^{t}\|\partial_{t}u_{i}^{k}\|^{2}_{i}\,d\tau+\frac{q}{8}\int_{0}^{t}\|\psi_{i,j}\sqrt{\nu_{i}\,s_{i,j}}\ \nabla\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}\|_{i}^{2}\,d\tau\\ -\int_{0}^{t}\int_{\Gamma_{i,j}}\beta_{i}^{2}(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2}u_{i}^{k})\,u_{i}^{k}\,d\sigma\,d\tau\\ -q\int_{0}^{t}\int_{\Gamma_{i,j}}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}\,\left(\partial_{t}u_{i}^{k}+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}u_{i}^{k})-\nabla_{\Gamma_{i,j}}\cdot(s_{i,j}\,\nabla_{\Gamma_{i,j}}\,u_{i}^{k})\right)\,d\sigma\,d\tau\\ \leq C\left(\int_{0}^{t}\|\beta_{i}u_{i}^{k}\|_{i}^{2}\,d\tau+q\int_{0}^{t}\|\sqrt{\nu_{i}}\nabla u_{i}^{k}\|_{i}^{2}\,d\tau\right). (2.26)

Recalling that si,j=sj,is_{i,j}=s_{j,i} on Γi,j\Gamma_{i,j} and 𝒓i,j=𝒓j,i\boldsymbol{r}_{i,j}=\boldsymbol{r}_{j,i} on Γi,j\Gamma_{i,j}, we use now:

(νi𝒏iuik𝒃i𝒏iuik+𝒮i,juik)2(νi𝒏iuik𝒃i𝒏iuik𝒮j,iuik)2=4(βi,j2(νi𝒏iuik𝒃i𝒏i2uik)uik+qνi𝒏iuik(tuik+Γi,j(𝒓i,juik)Γi,j(si,jΓi,juik)))+2q(pi,jpj,i2𝒃i𝒏i)(tuik+Γi,j(𝒓i,juik)Γi,j(si,jΓi,juik))uik+(pi,j+pj,i)(pi,jpj,i𝒃i𝒏i)(uik)2.\left(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}u_{i}^{k}+\mathcal{S}_{i,j}u_{i}^{k}\right)^{2}-\left(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}u_{i}^{k}-\mathcal{S}_{j,i}u_{i}^{k}\right)^{2}\\ \hskip-11.38109pt{\small\mbox{$\displaystyle=4\left(\beta_{i,j}^{2}(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2}u_{i}^{k})u_{i}^{k}+q\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}(\partial_{t}u_{i}^{k}+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}u_{i}^{k})-\nabla_{\Gamma_{i,j}}\cdot(s_{i,j}\,\nabla_{\Gamma_{i,j}}\,u_{i}^{k}))\right)$}}\\ +2q(p_{i,j}-p_{j,i}-2\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i})(\partial_{t}u_{i}^{k}+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}u_{i}^{k})-\nabla_{\Gamma_{i,j}}\cdot(s_{i,j}\,\nabla_{\Gamma_{i,j}}\,u_{i}^{k}))u_{i}^{k}\\ +(p_{i,j}+p_{j,i})(p_{i,j}-p_{j,i}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i})(u_{i}^{k})^{2}. (2.27)

Replacing (2.27) into (2.26), we obtain

12(βiuik(t)i2+quik(t)i2+qψi,jsi,j~Γi,juik(t)i2)+0tβiuik(τ,)i2dτ+q20ttuiki2𝑑τ+140tΓi,j(νi𝒏iuik𝒃i𝒏iuik𝒮j,iuik)2𝑑σ𝑑τ+q80tψi,jνisi,j~Γi,juiki2𝑑τ140tΓi,j(νi𝒏iuik𝒃i𝒏iuik+𝒮i,juik)2𝑑σ𝑑τ+0tΓi,j(pi,j+pj,i)(pi,j+pj,i+𝒃i𝒏i)(uik)2𝑑σ𝑑τ+q2(𝒃ii,1,+cii,)uik(t)i2+q20tΓi,j(pi,j+pj,i+2𝒃i𝒏i)(tuik+Γi,j(𝒓i,juik)Γi,j(si,jΓi,juik))uik𝑑σ𝑑τ+C(0tβiuiki2𝑑τ+q0tνiuiki2𝑑τ).{1\over 2}\left(\|\beta_{i}u_{i}^{k}(t)\|^{2}_{i}+q\interleave u_{i}^{k}(t)\interleave_{i}^{2}+q\|\psi_{i,j}\sqrt{s_{i,j}}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}(t)\|_{i}^{2}\right)+\int_{0}^{t}\interleave\beta_{i}u_{i}^{k}(\tau,\cdot)\interleave_{i}^{2}\,d\tau\\ +\frac{q}{2}\int_{0}^{t}\|\partial_{t}u_{i}^{k}\|^{2}_{i}\,d\tau+\frac{1}{4}\int_{0}^{t}\int_{\Gamma_{i,j}}\left(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\,u_{i}^{k}-\mathcal{S}_{j,i}u_{i}^{k}\right)^{2}\,d\sigma\,d\tau\\ +\frac{q}{8}\int_{0}^{t}\|\psi_{i,j}\sqrt{\nu_{i}\,s_{i,j}}\ \nabla\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}\|_{i}^{2}\,d\tau\leq\frac{1}{4}\int_{0}^{t}\int_{\Gamma_{i,j}}\left(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\,u_{i}^{k}+\mathcal{S}_{i,j}u_{i}^{k}\right)^{2}\,d\sigma\,d\tau\\ +\int_{0}^{t}\int_{\Gamma_{i,j}}(p_{i,j}+p_{j,i})(-p_{i,j}+p_{j,i}+\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i})(u_{i}^{k})^{2}\,d\sigma\,d\tau+\frac{q}{2}(\|\boldsymbol{b}_{i}\|_{i,1,\infty}+\|c_{i}\|_{i,\infty})\|u_{i}^{k}(t)\|_{i}^{2}\\ +{q\over 2}\int_{0}^{t}\int_{\Gamma_{i,j}}(-p_{i,j}+p_{j,i}+2\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i})(\partial_{t}u_{i}^{k}+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}u_{i}^{k})-\nabla_{\Gamma_{i,j}}\cdot(s_{i,j}\,\nabla_{\Gamma_{i,j}}\,u_{i}^{k}))\,u_{i}^{k}\,d\sigma\,d\tau\\ +C\left(\int_{0}^{t}\|\beta_{i}u_{i}^{k}\|_{i}^{2}\,d\tau+q\int_{0}^{t}\|\sqrt{\nu_{i}}\nabla u_{i}^{k}\|_{i}^{2}\,d\tau\right). (2.28)

In order to estimate the fourth term in the right-hand side of (2.28), we observe that

0tΓi,j(pi,j+pj,i+2𝒃i𝒏i)uiktuikdσdτ=12Γi,j(pi,j+pj,i+2𝒃i𝒏i)uik(t)2𝑑σ.\int_{0}^{t}\int_{\Gamma_{i,j}}(-p_{i,j}+p_{j,i}+2\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i})u_{i}^{k}\,\partial_{t}u_{i}^{k}\,d\sigma\,d\tau={1\over 2}\int_{\Gamma_{i,j}}(-p_{i,j}+p_{j,i}+2\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i})u_{i}^{k}(t)^{2}\,d\sigma.

By the trace theorem in the right-hand side, we write:

0tΓi,j(pi,j+pj,i+2𝒃i𝒏i)uiktuikdσdτCuik(t)iνiuik(t)i,\int_{0}^{t}\int_{\Gamma_{i,j}}(-p_{i,j}+p_{j,i}+2\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i})u_{i}^{k}\,\partial_{t}u_{i}^{k}\,d\sigma\,d\tau\leq C\|u_{i}^{k}(t)\|_{i}\|\sqrt{\nu_{i}}\nabla u_{i}^{k}(t)\|_{i},

and

uik(t)i2=20tΩi(tuik)uik2(0ttuiki2)12(0tuiki2)12,\|u_{i}^{k}(t)\|_{i}^{2}=2\int_{0}^{t}\int_{\Omega_{i}}(\partial_{t}u_{i}^{k})u_{i}^{k}\leq 2\left(\int_{0}^{t}\|\partial_{t}u_{i}^{k}\|_{i}^{2}\right)^{1\over 2}\left(\int_{0}^{t}\|u_{i}^{k}\|_{i}^{2}\right)^{1\over 2}, (2.29)

we obtain

q20tΓi,j(pi,j+pj,i+2𝒃i𝒏i)uiktuikdσdτq80ttuiki2𝑑τ+q4uik(t)i2+C(0tβiuiki2𝑑τ).{q\over 2}\ \int_{0}^{t}\int_{\Gamma_{i,j}}(-p_{i,j}+p_{j,i}+2\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i})u_{i}^{k}\,\partial_{t}u_{i}^{k}\,d\sigma\,d\tau\\ \leq\frac{q}{8}\int_{0}^{t}\|\partial_{t}u_{i}^{k}\|_{i}^{2}\,d\tau+\frac{q}{4}\interleave u_{i}^{k}(t)\interleave_{i}^{2}+C\left(\int_{0}^{t}\|\beta_{i}u_{i}^{k}\|_{i}^{2}\,d\tau\right). (2.30)

Moreover, integrating by parts and using the trace theorem, we have

q20tΓi,jΓi,j(si,jΓi,juik)(pi,j+pj,i+2𝒃i𝒏i)uik𝑑σ𝑑τq160tψi,jνisi,j~Γi,juiki2𝑑τ+C(0t~Γi,juiki2𝑑τ+0tβiuiki2𝑑τ).\displaystyle-\frac{q}{2}\int_{0}^{t}\int_{\Gamma_{i,j}}\nabla_{\Gamma_{i,j}}\cdot(s_{i,j}\,\nabla_{\Gamma_{i,j}}\,u_{i}^{k})(-p_{i,j}+p_{j,i}+2\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i})u_{i}^{k}\,d\sigma\,d\tau\\ \hskip-42.67912pt\displaystyle\leq\frac{q}{16}\int_{0}^{t}\|\psi_{i,j}\sqrt{\nu_{i}\,s_{i,j}}\ \nabla\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}\|_{i}^{2}\,d\tau+C(\int_{0}^{t}\|\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}\|_{i}^{2}\,d\tau+\int_{0}^{t}\|\beta_{i}u_{i}^{k}\|_{i}^{2}\,d\tau). (2.31)

Using (2.29), we estimate the third term in the right-hand side of (2.28) by

q2(𝒃ii,1,+cii,)uik(t)i2q80ttuiki2𝑑τ+C0tβiuiki2𝑑τ.\frac{q}{2}(\|\boldsymbol{b}_{i}\|_{i,1,\infty}+\|c_{i}\|_{i,\infty})\|u_{i}^{k}(t)\|_{i}^{2}\leq\frac{q}{8}\int_{0}^{t}\|\partial_{t}u_{i}^{k}\|_{i}^{2}\,d\tau+C\int_{0}^{t}\|\beta_{i}u_{i}^{k}\|_{i}^{2}\,d\tau. (2.32)

Replacing (2.31), (2.30) and (2.32) in (2.28), then using the transmission conditions, we have:

12(βiuik(t)i2+q2uik(t)i2+qψi,jsi,j~Γi,juik(t)i2)+0tβiuik(τ,)i2dτ+q40ttuiki2𝑑τ+q160tψi,jνisi,j~Γi,juiki2𝑑τ+140tΓi,j(νi𝒏iuik𝒃i𝒏iuik𝒮j,iuik)2𝑑σ𝑑τ140tΓi,j(νj𝒏iujk1𝒃j𝒏iujk1+𝒮i,jujk1)2𝑑σ𝑑τ+C(0tβiuiki2𝑑τ+q20tνiuiki2𝑑τ).{1\over 2}\left(\|\beta_{i}u_{i}^{k}(t)\|^{2}_{i}+\frac{q}{2}\interleave u_{i}^{k}(t)\interleave_{i}^{2}+q\|\psi_{i,j}\sqrt{s_{i,j}}\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}(t)\|_{i}^{2}\right)\\ +\int_{0}^{t}\interleave\beta_{i}u_{i}^{k}(\tau,\cdot)\interleave_{i}^{2}\,d\tau+\frac{q}{4}\int_{0}^{t}\|\partial_{t}u_{i}^{k}\|^{2}_{i}\,d\tau+\frac{q}{16}\int_{0}^{t}\|\psi_{i,j}\sqrt{\nu_{i}\,s_{i,j}}\ \nabla\,\widetilde{\nabla}_{\Gamma_{i,j}}\,u_{i}^{k}\|_{i}^{2}\,d\tau\\ +\frac{1}{4}\int_{0}^{t}\int_{\Gamma_{i,j}}\left(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\,u_{i}^{k}-\mathcal{S}_{j,i}u_{i}^{k}\right)^{2}\,d\sigma\,d\tau\\ \leq\frac{1}{4}\int_{0}^{t}\int_{\Gamma_{i,j}}\left(\nu_{j}\partial_{\boldsymbol{n}_{i}}u_{j}^{k-1}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i}\,u_{j}^{k-1}+\mathcal{S}_{i,j}u_{j}^{k-1}\right)^{2}\,d\sigma\,d\tau\\ +C\left(\int_{0}^{t}\|\beta_{i}u_{i}^{k}\|_{i}^{2}\,d\tau+\frac{q}{2}\int_{0}^{t}\|\sqrt{\nu_{i}}\,\nabla u_{i}^{k}\|_{i}^{2}\,d\tau\right).

We now sum up over the interfaces j𝒩ij\in{\cal N}_{i}, then over the subdomains for 1iI1\leq i\leq I, and on the iterations for 1kK1\leq k\leq K, the boundary terms cancel out, and we obtain for any t(0,T)t\in(0,T),

k[[1,K]]i[[1,I]](βi,juik(t)i2+qνiuik(t)i2+ν00t(βi,juik)i2𝑑τ)α(t)+Ck[[1,K]]i[[1,I]](0tβi,juiki2𝑑τ+q0tνiuiki2𝑑τ),\sum_{k\in[\![1,K]\!]}\sum_{i\in[\![1,I]\!]}\left(\|\beta_{i,j}u_{i}^{k}(t)\|^{2}_{i}+q\|\sqrt{\nu_{i}}\,\nabla u_{i}^{k}(t)\|_{i}^{2}+\nu_{0}\int_{0}^{t}\|\nabla(\beta_{i,j}u_{i}^{k})\|_{i}^{2}\,d\tau\right)\\ \leq\alpha(t)+C\sum_{k\in[\![1,K]\!]}\sum_{i\in[\![1,I]\!]}\left(\int_{0}^{t}\|\beta_{i,j}u_{i}^{k}\|_{i}^{2}\,d\tau+q\int_{0}^{t}\|\sqrt{\nu_{i}}\,\nabla u_{i}^{k}\|_{i}^{2}\,d\tau\right), (2.33)

with

α(t)=14i[[1,I]]j𝒩i0tΓi,j(νj𝒏iui0𝒃j𝒏iuj0+𝒮i,juj0)2𝑑σ𝑑τ.\alpha(t)=\frac{1}{4}\sum_{i\in[\![1,I]\!]}\sum_{j\in{\cal N}_{i}}\int_{0}^{t}\int_{\Gamma_{i,j}}\left(\nu_{j}\partial_{\boldsymbol{n}_{i}}u_{i}^{0}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i}\,u_{j}^{0}+\mathcal{S}_{i,j}u_{j}^{0}\right)^{2}\,d\sigma\,d\tau. (2.34)

We conclude with Grönwall’s lemma as before. ∎

3 The discontinous Galerkin time stepping for the Schwarz waveform relaxation algorithm

In the following sections, in order to simplify the analysis, we suppose that c+12𝒃α0>0c+{1\over 2}\nabla\cdot\boldsymbol{b}\geq\alpha_{0}>0 a.e. in Ω\Omega.

3.1 Time discretization of the local problem: discontinuous Galerkin method

We suppose that the coefficients are restricted to p𝒃𝒏2+q2Γ𝒓>0p-\frac{\boldsymbol{b}\cdot\boldsymbol{n}}{2}+{q\over 2}\nabla_{\Gamma}\cdot\boldsymbol{r}>0  a.e. on Γ\Gamma, q0a.e.q\geq 0\ a.e. and s>0s>0 a.e.. This implies that the bilinear form aa defined in (2.6) is positive definite on H1(𝒪)H^{1}({\mathcal{O}}) when q=0q=0, and positive definite on H11(𝒪)H^{1}_{1}({\mathcal{O}}) when qq0>0q\geq q_{0}>0 a.e.

We recall the time-discontinuous Galerkin method, as presented in [14]. We are given a decomposition 𝒯{\cal T} of the time interval (0,T)(0,T), In=(tn,tn+1]I_{n}=(t_{n},t_{n+1}], for 0nN0\leq n\leq N, the mesh size is kn=tn+1tnk_{n}=t_{n+1}-t_{n}. For {\cal B} a Banach space and II an interval of \mathbb{R}, define for any integer d0d\geq 0

𝐏d()={φ:I,φ(t)=i=0dφiti,φi},𝒫d(,𝒯)={φ:I,φIn𝐏d(), 1nN}.\displaystyle\begin{array}[]{rcl}{\mathbf{P}}_{d}({\cal B})&=&\{\varphi:I\rightarrow{\cal B},\ \varphi(t)=\displaystyle\sum_{i=0}^{d}\varphi_{i}t^{i},\ \varphi_{i}\in{\cal B}\},\\ {\cal P}_{d}({\cal B},{\cal T})&=&\{\varphi:I\rightarrow{\cal B},\ \varphi_{\mid I_{n}}\in{\mathbf{P}}_{d}({\cal B}),\ 1\leq n\leq N\}.\end{array} (3.3)

Let =H11(𝒪){\cal B}=H_{1}^{1}({\mathcal{O}}) if q>0q>0, =H1(𝒪){\cal B}=H^{1}({\mathcal{O}}) if q=0q=0. We define an approximation UU of uu, polynomial of degree lower than dd on every subinterval InI_{n}. For every point tnt_{n}, we define U(tn)=limttn0U(t)U(t_{n}^{-})=\lim_{t\rightarrow t_{n}-0}U(t), and note U(tn+)=limttn+0U(t)U(t_{n}^{+})=\lim_{t\rightarrow t_{n}+0}U(t). The time discretization of (2.7) leads to searching U𝒫d(,𝒯)U\in{\cal P}_{d}({\cal B},{\cal T}) such that

{U(0,)=u0,V𝒫d(,𝒯):In(m(U˙,V)+a(U,V))𝑑t+m(U(tn+,)U(tn,),V(tn+,))=InL(V)𝑑t,\displaystyle\left\{\begin{array}[]{l}U(0,\cdot)=u_{0},\\ \forall\,V\in{\cal P}_{d}({\cal B},{\cal T})\colon\displaystyle\int_{I_{n}}(\,m(\dot{U},V)+a(U,V))\,dt\\ \hskip 56.9055pt+m(U(t_{n}^{+},\cdot)-U(t_{n}^{-},\cdot),V(t_{n}^{+},\cdot))=\displaystyle\int_{I_{n}}L(V)\,dt,\end{array}\right. (3.7)

with L(V)=(f,V)L2(𝒪)+(g,V)L2(Γ)L(V)=(f,V)_{L^{2}({\mathcal{O}})}+(g,V)_{L^{2}(\Gamma)}. Since InI_{n} is closed at tn+1t_{n+1}, U(tn+1)U(t_{n+1}^{-}) is the value of UU at tn+1t_{n+1}. Due to the discontinuous nature of the test and trial spaces, the method is an implicit time stepping scheme, and U𝐏d(,𝒯)U\in{\mathbf{P}}_{d}({\cal B},{\cal T}) is obtained recursively on each subinterval, which makes it very flexible.

Theorem 6.

If p𝐛𝐧2+q2Γ𝐫>0p-\frac{\boldsymbol{b}\cdot\boldsymbol{n}}{2}+{q\over 2}\nabla_{\Gamma}\cdot\boldsymbol{r}>0  a.e. on Γ\Gamma, q0a.e.q\geq 0\ a.e. and s>0a.e.s>0\ a.e., equation (3.7) defines a unique solution.

Proof.

The result relies on the fact that the bilinear form aa is definite positive. It is is most easily seen by using a basis of Legendre polynomials. U𝒫d(H11(Ω),𝒯)U\in{\cal P}_{d}(H_{1}^{1}(\Omega),{\cal T}) is obtained recursively on each subinterval. We introduce the Legendre polynomials LnL_{n}, orthogonal basis in L2(1,1)L^{2}(-1,1), with Ln(1)=1L_{n}(1)=1. LnL_{n} has the parity of nn, hence Ln(1)=(1)nL_{n}(-1)=(-1)^{n}. A basis of orthogonal polynomial on InI_{n} is given by Ln,k(t)=Lk(2kn(ttn+1+tn2))L_{n,k}(t)=L_{k}(\frac{2}{k_{n}}(t-\frac{t_{n+1}+t_{n}}{2})). Choose V(t,x)=Ln,j(t)Φj(x)V(t,x)=L_{n,j}(t)\Phi_{j}(x) in (3.7) with ΦjH11(Ω)\Phi_{j}\in H_{1}^{1}(\Omega), and expand UU on InI_{n} as U(t,x)=k=0dUk(x)Ln,k(t)U(t,x)=\sum_{k=0}^{d}U_{k}(x)L_{n,k}(t). Suppose UU to be given on (0,tn](0,t_{n}]. In order to determine UU on InI_{n}, we must solve the system: for any ΦjH11(Ω)\Phi_{j}\in H_{1}^{1}(\Omega),

k=0dIn(L˙n,kLn,jm(Uk,Φj)+Ln,kLn,ja(Uk,Φj))𝑑t+k=0dLn,k(tn+)Ln,j(tn+)m(Uk,Φj)=InLn,jL(Φj)𝑑t.\begin{split}\sum_{k=0}^{d}\ \int_{I_{n}}\biggl{(}\dot{L}_{n,k}L_{n,j}m(U_{k},\Phi_{j})+L_{n,k}L_{n,j}a(U_{k},\Phi_{j})\biggr{)}\,dt\\ +\sum_{k=0}^{d}L_{n,k}(t_{n}^{+})L_{n,j}(t_{n}^{+})m(U_{k},\Phi_{j})=\displaystyle\int_{I_{n}}L_{n,j}L(\Phi_{j})\,dt.\end{split}

It is an implicit scheme. We calculate the coefficients

InLn,kLn,j=δkjLn,j2,\displaystyle\int_{I_{n}}L_{n,k}L_{n,j}=\delta_{kj}\|L_{n,j}\|^{2},
InL˙n,kLn,j={0 if kj1(1)k+j if k>j,\displaystyle\int_{I_{n}}\dot{L}_{n,k}L_{n,j}=\begin{cases}0&\text{ if $k\leq j$}\\ 1-(-1)^{k+j}&\text{ if $k>j$},\end{cases}
InL˙n,kLn,j+Ln,k(tn+)Ln,j(tn+)={(1)k+j if kj1 if k>j,\displaystyle\int_{I_{n}}\dot{L}_{n,k}L_{n,j}+L_{n,k}(t_{n}^{+})L_{n,j}(t_{n}^{+})=\begin{cases}(-1)^{k+j}&\text{ if $k\leq j$}\\ 1&\text{ if $k>j$},\end{cases}

which leads to

Ln,j2a(Uj,Φj)+m(Uj,Φj)+k<j(1)k+jm(Uk,Φj)+k>jm(Uk,Φj)=InLn,jL(Φj)𝑑t.\displaystyle\|L_{n,j}\|^{2}a(U_{j},\Phi_{j})+m(U_{j},\Phi_{j})+\sum_{k<j}(-1)^{k+j}m(U_{k},\Phi_{j})+\sum_{k>j}m(U_{k},\Phi_{j})=\displaystyle\int_{I_{n}}L_{n,j}L(\Phi_{j})\,dt.

It is a square system of partial differential equations, of the type coercive ++ compact. By the Fredholm alternative, we only need to prove uniqueness. Choose now Φj=Uj\Phi_{j}=U_{j}, and obtain

jLn,j2a(Uj,Uj)+jm(Uj,Uj)+2jk>jk+jevenm(Uk,Uj)=0,\sum_{j}\|L_{n,j}\|^{2}a(U_{j},U_{j})+\sum_{j}m(U_{j},U_{j})+2\sum_{j}\sum_{\begin{subarray}{c}k>j\\ k+j\ \mbox{even}\end{subarray}}m(U_{k},U_{j})=0,

and since aa is positive definite, we deduce that U=0U=0. ∎

We will make use of the following remark ([16]). We introduce the Gauss-Radau points, (0<τ1,,τd+1=1)(0<\tau_{1},\dotsc,\tau_{d+1}=1), defined such that the quadrature formula

01f(t)𝑑tj=1d+1wqf(τq)\int_{0}^{1}f(t)dt\approx\sum_{j=1}^{d+1}w_{q}\ f(\tau_{q})

is exact in 𝐏2d\mathbf{P}_{2d}, and the interpolation operator n{\cal I}_{n} on [tn,tn+1][t_{n},t_{n+1}] at points (tn,tn+τ1kn,,tn+τd+1kn)(t_{n},t_{n}+\tau_{1}k_{n},\dotsc,t_{n}+\tau_{d+1}k_{n}). For any χ𝐏d\chi\in\mathbf{P}_{d}, χ^=nχ𝐏d+1\hat{\chi}={\cal I}_{n}\chi\in\mathbf{P}_{d+1}.

Let :𝒫d(,𝒯)𝒫d+1(,𝒯){\cal I}:{\cal P}_{d}({\cal B},{\cal T})\rightarrow{\cal P}_{d+1}({\cal B},{\cal T}) be the operator whose restriction to each subinterval is n{\cal I}_{n} and satisfies U(tn+)=U(tn){\cal I}U(t_{n}^{+})=U(t_{n}^{-}). By using the Gauss-Radau formula, which is exact in 𝐏2d\mathbf{P}_{2d}, we have for all ψi,j𝐏d\psi_{i,j}\in\mathbf{P}_{d}

In>dχdtψi,j𝑑tIndχdtψi,j𝑑t=(χ(tn+)χ(tn))ψi,j(tn+).\int_{I_{n}>}\frac{d{\cal I\chi}}{dt}\,\psi_{i,j}\,dt-\int_{I_{n}}\frac{d\chi}{dt}\,\psi_{i,j}\,dt=(\chi(t_{n}^{+})-\chi(t_{n}^{-}))\psi_{i,j}(t_{n}^{+}).

As a consequence, we have a very useful inequality:

Inddt(ψi,j)ψi,j𝑑t12[ψi,j(tn+1)2ψi,j(tn)2].\int_{I_{n}}\frac{d}{dt}({\cal I}\psi_{i,j})\psi_{i,j}dt\geq{1\over 2}[\psi_{i,j}(t^{-}_{n+1})^{2}-\psi_{i,j}(t^{-}_{n})^{2}]. (3.8)

Also, equation (3.7) can be rewritten as

In(m(dUdt,V)+a(U,V))𝑑t=InL(V)𝑑t,\int_{I_{n}}(\,m(\,\frac{d{\cal I}U}{dt}\,,V)+a(U,V))\,dt=\displaystyle\int_{I_{n}}L(V)\,dt, (3.9)

or in the strong formulation:

t(U)+(𝒃UνU)+cU=Pf, in Ω×(0,T),(ν𝒏𝒃𝒏)U+pU+q(t(U)+Γ(𝒓UsΓU))=Pg on Γ×(0,T).\begin{array}[]{l}\partial_{t}({\cal I}U)+\nabla\cdot(\boldsymbol{b}U-\nu\nabla U)+cU=Pf,\mbox{ in }\Omega\times(0,T),\\[5.69054pt] \displaystyle\bigl{(}\nu\,\partial_{\boldsymbol{n}}-\boldsymbol{b}\cdot\boldsymbol{n}\bigr{)}U+p\,U+q(\partial_{t}({\cal I}U)+\nabla_{\Gamma}\cdot(\boldsymbol{r}U-s\nabla_{\Gamma}U))=Pg\mbox{ on }\Gamma\times(0,T).\\ \end{array} (3.10)

Here PP is the projection L2L^{2} in each subinterval of 𝒯{\cal T} on 𝐏d\mathbf{P}_{d}.

Theorem 7 (Thomee, [20]).

Let UU be the solution of (3.7) and uu the solution of (2.1). Under the assumptions of Theorem 2, the estimate holds

uUL(In,L2(Ω))Ckd+1td+1uL2(0,T;H22(Ω)),\displaystyle\|u-U\|_{L^{\infty}(I_{n},L^{2}(\Omega))}\leq Ck^{d+1}\|\partial_{t}^{d+1}u\|_{L^{2}(0,T;H_{2}^{2}(\Omega))}, (3.11)

with k=max0nNknk=\max_{0\leq n\leq N}k_{n}.

3.2 The discrete in time optimized Schwarz waveform relaxation algorithm with different subdomains grids

In this part we present and analyse the discrete non conforming in time optimized Schwarz waveform relaxation method.

The time partition in subdomain Ωi\Omega_{i}, is 𝒯i{\cal T}_{i}, with Ni+1N_{i}+1 intervals IniI_{n}^{i}, and mesh size knik_{n}^{i}. In view of formulation (3.10), we define interpolation operators i{\cal I}^{i} and projection operators PiP^{i} in each subdomain, i.e. PiP^{i} is the projection L2L^{2} in each subinterval of 𝒯i{\cal T}_{i} on 𝐏d\mathbf{P}_{d}, and we solve

t(iUik)+(𝒃iUikνiUik)+ciUik=Pif in Ωi×(0,T),\displaystyle\partial_{t}({\cal I}^{i}U_{i}^{k})+\nabla\cdot(\boldsymbol{b}_{i}U_{i}^{k}-\nu_{i}\nabla U_{i}^{k})+c_{i}\,U_{i}^{k}=P^{i}f\mbox{ in }\Omega_{i}\times(0,T), (3.12a)
(νi𝒏i𝒃i𝒏i)Uik+Si,jUik=Pi((νj𝒏i𝒃j𝒏i)Ujk1+S~i,jUjk1) on Γi,j,j𝒩i.\displaystyle\displaystyle\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\bigr{)}\,U_{i}^{k}+S_{i,j}U_{i}^{k}=P^{i}\bigl{(}(\nu_{j}\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i})\,U_{j}^{k-1}+\widetilde{S}_{i,j}U_{j}^{k-1}\bigr{)}\mbox{ on }\Gamma_{i,j},j\in{\cal N}_{i}. (3.12b)

Here the operators are different on either part of the "equal" sign:

Si,jU=pi,jU+qi,j(t(iU)+Γi,j(𝒓i,jUsi,jΓi,jU))S~i,jU=pi,jU+qi,j(t(jU)+Γi,j(𝒓i,jUsi,jΓi,jU)).\begin{array}[]{l}S_{i,j}U=p_{i,j}\,U+q_{i,j}\,(\partial_{t}({\cal I}^{i}U)+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}U-s_{i,j}\nabla_{\Gamma_{i,j}}U))\\ \widetilde{S}_{i,j}U=p_{i,j}\,U+q_{i,j}\,(\partial_{t}({\cal I}^{j}U)+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}U-s_{i,j}\nabla_{\Gamma_{i,j}}U)).\end{array} (3.13)

Formally, the sequence of problems (3.12) converges to the solution of

t(iUi)+(𝒃iUiνiUi)+ciUi=Pif in Ωi×(0,T),\displaystyle\partial_{t}({\cal I}^{i}U_{i})+\nabla\cdot(\boldsymbol{b}_{i}U_{i}-\nu_{i}\nabla U_{i})+c_{i}\,U_{i}=P^{i}f\mbox{ in }\Omega_{i}\times(0,T), (3.14a)
(νi𝒏i𝒃i𝒏i)Ui+Si,jUi=Pi((νj𝒏i𝒃j𝒏i)Uj+S~i,jUj) on Γi,j,j𝒩i.\displaystyle\displaystyle\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\bigr{)}\,U_{i}+S_{i,j}U_{i}=P^{i}\bigl{(}(\nu_{j}\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i})\,U_{j}+\widetilde{S}_{i,j}U_{j}\bigr{)}\mbox{ on }\Gamma_{i,j},j\in{\cal N}_{i}. (3.14b)

We present the analysis first with Robin transmission conditions (e.g. qi,j=0q_{i,j}=0) and general decomposition, and then with order 2 transmission conditions and decomposition in strips.

3.2.1 The Robin case

We consider here a general decomposition of the domain, possibly with corners. We solve (3.12) with qi,j=0q_{i,j}=0, i.e. Si,jU=S~i,jU=pi,jUS_{i,j}U=\widetilde{S}_{i,j}U=p_{i,j}\,U.

Theorem 8.

Assume qi,j=0q_{i,j}=0, pj,ipi,j𝐛i𝐧i=0,pi,j𝐛i𝐧i2>0p_{j,i}-p_{i,j}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}=0,\ p_{i,j}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2}>0. Problem (3.14) has a unique solution (Ui)iI(U_{i})_{i\in I} , and UiU_{i} is the limit of the iterates of algorithm (3.12).

Proof.

We first write energy estimates on (3.12) for f0f\equiv 0 and u00u_{0}\equiv 0. We start like in the proof of Theorem 3. We multiply (3.12a) by UikU_{i}^{k}, integrate on Ωi\Omega_{i}, then integrate on the interval (tni,tn+1i)(t_{n}^{i},t_{n+1}^{i}) and use (3.8) and (2.14):

Uik(tn+1i)L2(Ωi)2Uik(tni)L2(Ωi)2+2Ini((νiUik,Uik)L2(Ωi)+((ci+12𝒃i)Uik,Uik)L2(Ωi))𝑑τ+j𝒩iIniΓi,j1pi,j+pj,i(νi𝒏iuik𝒃i𝒏iUikpj,iUik)2𝑑σ𝑑τj𝒩iIniΓi,j1pi,j+pj,i(νi𝒏iuik𝒃i𝒏iUik+pi,jUik)2𝑑σ𝑑τ+j𝒩iIniΓi,j(pj,ipi,j𝒃i𝒏i)(Uik)2𝑑σ𝑑τ.\|U_{i}^{k}(t^{i}_{n+1})\|^{2}_{L^{2}(\Omega_{i})}-\|U_{i}^{k}(t^{i}_{n})\|^{2}_{L^{2}(\Omega_{i})}\\ +2\int_{I_{n}^{i}}\bigl{(}(\nu_{i}\nabla U_{i}^{k},\nabla U_{i}^{k})_{L^{2}(\Omega_{i})}+((c_{i}+{1\over 2}\nabla\cdot\boldsymbol{b}_{i})U_{i}^{k},U_{i}^{k})_{L^{2}(\Omega_{i})}\bigr{)}\,d\tau\\ +\sum_{j\in{\cal N}_{i}}\int_{I_{n}^{i}}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}U_{i}^{k}-p_{j,i}U_{i}^{k}\bigr{)}^{2}d\sigma\,d\tau\\ \leq\sum_{j\in{\cal N}_{i}}\int_{I_{n}^{i}}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}U_{i}^{k}+p_{i,j}U_{i}^{k}\bigr{)}^{2}d\sigma\,d\tau\\ +\sum_{j\in{\cal N}_{i}}\int_{I_{n}^{i}}\int_{\Gamma_{i,j}}(p_{j,i}-p_{i,j}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i})(U_{i}^{k})^{2}d\sigma\,d\tau.

We can not use Grönwall’s Lemma like in the continuous case, due to the presence of the global in time projection operator 𝒫j{\cal P}^{j} in the transmission conditions. Therefore we have to assume that pj,ipi,j𝒃i𝒏i=0p_{j,i}-p_{i,j}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}=0 everywhere, which cancels the last term. We sum up over the time intervals, using the fact that the errors vanish at time 0:

Uik(T)L2(Ωi)2+2min(ν0,α0)0TUikH1(Ωi)2𝑑τ+j𝒩i0TΓi,j1pi,j+pj,i(νi𝒏iuik𝒃i𝒏iUikpj,iUik)2𝑑σ𝑑τj𝒩i0TΓi,j1pi,j+pj,i(νi𝒏iuik𝒃i𝒏iUik+pi,jUik)2𝑑σ𝑑τ.\|U_{i}^{k}(T)\|^{2}_{L^{2}(\Omega_{i})}+2\min(\nu_{0},\alpha_{0})\int_{0}^{T}\|U_{i}^{k}\|^{2}_{H^{1}(\Omega_{i})}\,d\tau\\ +\sum_{j\in{\cal N}_{i}}\int_{0}^{T}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}U_{i}^{k}-p_{j,i}U_{i}^{k}\bigr{)}^{2}d\sigma\,d\tau\\ \leq\sum_{j\in{\cal N}_{i}}\int_{0}^{T}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}U_{i}^{k}+p_{i,j}U_{i}^{k}\bigr{)}^{2}d\sigma\,d\tau.

We now insert the transmission conditions

Uik(T)L2(Ωi)2+2min(ν0,α0)0TUikH1(Ωi)2𝑑τ+j𝒩i0TΓi,j1pi,j+pj,i(νi𝒏iuik𝒃i𝒏iUikpj,iUik)2𝑑σ𝑑τj𝒩i0TΓi,j1pi,j+pj,i(Pi(νj𝒏iUjk1𝒃j𝒏iUjk1+pi,jUjk1))2𝑑σ𝑑τ.\|U_{i}^{k}(T)\|^{2}_{L^{2}(\Omega_{i})}+2\min(\nu_{0},\alpha_{0})\int_{0}^{T}\|U_{i}^{k}\|^{2}_{H^{1}(\Omega_{i})}\,d\tau\\ +\sum_{j\in{\cal N}_{i}}\int_{0}^{T}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}U_{i}^{k}-p_{j,i}U_{i}^{k}\bigr{)}^{2}d\sigma\,d\tau\\ \leq\sum_{j\in{\cal N}_{i}}\int_{0}^{T}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}\biggl{(}P^{i}\bigl{(}\nu_{j}\partial_{\boldsymbol{n}_{i}}U_{j}^{k-1}-{\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i}}U_{j}^{k-1}\,+p_{i,j}U_{j}^{k-1}\bigr{)}\biggr{)}^{2}d\sigma\,d\tau.

We use the fact that the projection operator is a contraction to obtain:

Uik(T)L2(Ωi)2+2min(ν0,α0)0TUikH1(Ωi)2𝑑τ+j𝒩i0TΓi,j1pi,j+pj,i(νi𝒏iuik𝒃i𝒏iUikpj,iUik)2𝑑σ𝑑τj𝒩i0TΓj,i1pi,j+pj,i(νj𝒏jUjk1𝒃j𝒏jUjk1pi,jUjk1)2𝑑σ𝑑τ.\|U_{i}^{k}(T)\|^{2}_{L^{2}(\Omega_{i})}+2\min(\nu_{0},\alpha_{0})\int_{0}^{T}\|U_{i}^{k}\|^{2}_{H^{1}(\Omega_{i})}\,d\tau\\ +\sum_{j\in{\cal N}_{i}}\int_{0}^{T}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}U_{i}^{k}-p_{j,i}U_{i}^{k}\bigr{)}^{2}d\sigma\,d\tau\\ \leq\sum_{j\in{\cal N}_{i}}\int_{0}^{T}\int_{\Gamma_{j,i}}\frac{1}{p_{i,j}+p_{j,i}}\bigl{(}\nu_{j}\partial_{\boldsymbol{n}_{j}}U_{j}^{k-1}-{\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{j}}U_{j}^{k-1}\,-p_{i,j}U_{j}^{k-1}\bigr{)}^{2}d\sigma\,d\tau.

We sum up over the subdomains, we define the boundary term

Bk=i[[1,I]]j𝒩i0TΓi,j1pi,j+pj,i(νi𝒏iuik𝒃i𝒏iUikpj,iUik)2𝑑σ𝑑τ,B^{k}=\sum_{i\in[\![1,I]\!]}\sum_{j\in{\cal N}_{i}}\int_{0}^{T}\int_{\Gamma_{i,j}}\frac{1}{p_{i,j}+p_{j,i}}\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}U_{i}^{k}-p_{j,i}U_{i}^{k}\bigr{)}^{2}d\sigma\,d\tau,

we obtain

i[[1,I]](Uik(T)L2(Ωi)2+2min(ν0,α0)0TUikH1(Ωi)2𝑑τ)+BkBk1.\sum_{i\in[\![1,I]\!]}(\|U_{i}^{k}(T)\|^{2}_{L^{2}(\Omega_{i})}+2\min(\nu_{0},\alpha_{0})\int_{0}^{T}\|U_{i}^{k}\|^{2}_{H^{1}(\Omega_{i})}\,d\tau)+B^{k}\leq B^{k-1}. (3.15)

We first apply this inequality to prove the first part of the Theorem. (3.14) is a square discrete system, and proving well-posedness is equivalent to proving uniqueness. Dropping the superscript in (3.15) gives the result. As for the convergence, we proceed as in the continuous case by summing (3.15) over the iterates to obtain that i[[1,I]]Uik(T)L2(Ωi)2\sum_{i\in[\![1,I]\!]}\|U_{i}^{k}(T)\|^{2}_{L^{2}(\Omega_{i})} and i[[1,I]]0TUikH1(Ωi)2𝑑τ\sum_{i\in[\![1,I]\!]}\int_{0}^{T}\|U_{i}^{k}\|^{2}_{H^{1}(\Omega_{i})}\,d\tau tend to zero as kk tend to infinity. ∎

3.2.2 The Order 2 case

We restrict ourselves to a splitting of the domain into strips with parallel planar interfaces.

Theorem 9.

We assume that pi,j=p>0p_{i,j}=p>0, qi,j=q>0q_{i,j}=q>0, si,j=s>0s_{i,j}=s>0, 𝐛i=0\boldsymbol{b}_{i}=0 and 𝐫i,j=0\boldsymbol{r}_{i,j}=0. Problem (3.14) has a unique solution (Ui)iI(U_{i})_{i\in I}, and UiU_{i} is the limit of the iterates of algorithm (3.12).

Proof.

We consider the algorithm (3.12) on the error, so we suppose f=u0=0f=u_{0}=0. As in the continuous case, the proof is based on energy estimates containing the term

IniΓi,j(νi𝒏iuik+𝒮i,jUik)2𝑑σ𝑑τ,\int_{I_{n}^{i}}\int_{\Gamma_{i,j}}\left(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}+\mathcal{S}_{i,j}U_{i}^{k}\right)^{2}\,d\sigma\,d\tau,

and that we derive by multiplying successively the first equation of (3.12) by the terms Uik\,U_{i}^{k}, t(iUik)\partial_{t}({\cal I}^{i}U_{i}^{k}), and ΔΓi,jUik-\Delta_{\Gamma_{i,j}}\,U_{i}^{k}. We set φi2=νiφL2(Ωi)2+ciφL2(Ωi)2\interleave\varphi\interleave_{i}^{2}=\|\sqrt{\nu_{i}}\,\nabla\varphi\|^{2}_{L^{2}(\Omega_{i})}+\|\sqrt{c_{i}}\,\varphi\|^{2}_{L^{2}(\Omega_{i})}. We multiply the first equation of (3.12) by Uik\,U_{i}^{k}, we integrate on Ini×ΩiI_{n}^{i}\times\Omega_{i} then integrate by parts in space and use (3.8):

12Uik(tn+1)i2+IniUik(τ,)i2dτIniΓi,jνi𝒏iuikUikdσdτ12Uik(tn)i2.\frac{1}{2}\|U_{i}^{k}(t_{n+1}^{-})\|^{2}_{i}+\int_{I_{n}^{i}}\interleave U_{i}^{k}(\tau,\cdot)\interleave_{i}^{2}\,d\tau-\int_{I_{n}^{i}}\int_{\Gamma_{i,j}}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}\,U_{i}^{k}\,d\sigma\,d\tau\leq\frac{1}{2}\|U_{i}^{k}(t_{n}^{-})\|^{2}_{i}.\hskip 14.22636pt (3.16)

We multiply the first equation of (3.12) by t(iUik)\partial_{t}({\cal I}^{i}U_{i}^{k}), integrate on Ini×ΩiI_{n}^{i}\times\Omega_{i} and then integrate by parts in space and use (3.8):

12Uik(tn+1)i2+Init(iUik)i2𝑑τIniΓi,jνi𝒏iuikt(iUik)dσdτ12Uik(tn)i2.\frac{1}{2}\interleave U_{i}^{k}(t_{n+1}^{-})\interleave_{i}^{2}+\int_{I_{n}^{i}}\|\partial_{t}({\cal I}^{i}U_{i}^{k})\|^{2}_{i}\,d\tau-\int_{I_{n}^{i}}\int_{\Gamma_{i,j}}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}\,\partial_{t}({\cal I}^{i}U_{i}^{k})\,d\sigma\,d\tau\leq\frac{1}{2}\interleave U_{i}^{k}(t_{n}^{-})\interleave_{i}^{2}.\hskip 14.22636pt (3.17)

Now we multiply the first equation of (3.12) by ΔΓi,jUik-\Delta_{\Gamma_{i,j}}\,U_{i}^{k} integrate on Ini×ΩiI_{n}^{i}\times\Omega_{i} and integrate by parts in space and use (3.8):

12Γi,jUik(tn+1)i2+IniΓi,jUik(t,.)i2+IniΓi,jνi𝒏iuikΔΓi,juikdσdτ12Γi,jUik(tn)i2,\frac{1}{2}\|\nabla_{\Gamma_{i,j}}U_{i}^{k}(t_{n+1}^{-})\|_{i}^{2}+\int_{I_{n}^{i}}\interleave\nabla_{\Gamma_{i,j}}U_{i}^{k}(t,.)\interleave_{i}^{2}\\ +\int_{I_{n}^{i}}\int_{\Gamma_{i,j}}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}\,\Delta_{\Gamma_{i,j}}\,u_{i}^{k}\,d\sigma\,d\tau\leq\frac{1}{2}\|\nabla_{\Gamma_{i,j}}U_{i}^{k}(t_{n}^{-})\|_{i}^{2}, (3.18)

where we have used the fact that ΔΓi,j\Delta_{\Gamma_{i,j}} is a constant coefficient operator. Let

En(Uik)=p2Uik((tni))i2+q2Uik((tni))i2+sq2Γi,jUik((tni))i2.E^{n}(U_{i}^{k})=\frac{p}{2}\|U_{i}^{k}((t^{i}_{n})^{-})\|^{2}_{i}+\frac{q}{2}\interleave U_{i}^{k}((t^{i}_{n})^{-})\interleave_{i}^{2}+\frac{sq}{2}\|\nabla_{\Gamma_{i,j}}U_{i}^{k}((t^{i}_{n})^{-})\|^{2}_{i}.

Multiplying (3.16) by pp, (3.17) by qq and (3.18) by sqsq, and adding the three equations with (3.16), we get

En+1(Uik)+Ini[pUik(t,)i2+qt(niUik)i2+sqΓi,jUik(t,)i2]dtj𝒩iIniΓijνi𝒏iuikSijUikdx2dtEn(Uik).E^{n+1}(U_{i}^{k})+\int_{I_{n}^{i}}[\,p\interleave U_{i}^{k}(t,\cdot)\interleave_{i}^{2}\,+q\|\partial_{t}({\cal I}_{n}^{i}U_{i}^{k})\|^{2}_{i}\,+sq\interleave\nabla_{\Gamma_{i,j}}U_{i}^{k}(t,\cdot)\interleave_{i}^{2}\,]\,dt\\ -\sum_{j\in{\cal N}_{i}}\int_{I_{n}^{i}}\int_{\Gamma_{ij}}\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}\,S_{ij}U_{i}^{k}dx_{2}\,dt\leq E^{n}(U_{i}^{k}).

It can be rewritten as

En+1(Uik)+Ini[Uik(t,)i2+qt(niUik)i2+sqΓi,jUik(t,)i2]dt+14j𝒩iIniΓij(νi𝒏iuikSijUik)2En(Uik)+14j𝒩iIniΓij(νi𝒏iuik+SijUik)2.E^{n+1}(U_{i}^{k})+\int_{I_{n}^{i}}[\,\interleave U_{i}^{k}(t,\cdot)\interleave_{i}^{2}\,+q\|\partial_{t}({\cal I}_{n}^{i}U_{i}^{k})\|^{2}_{i}\,+sq\interleave\nabla_{\Gamma_{i,j}}U_{i}^{k}(t,\cdot)\interleave_{i}^{2}\,]\,dt\\ +\frac{1}{4}\sum_{j\in{\cal N}_{i}}\int_{I_{n}^{i}}\int_{\Gamma_{ij}}(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\,S_{ij}U_{i}^{k})^{2}\leq E^{n}(U_{i}^{k})+\frac{1}{4}\sum_{j\in{\cal N}_{i}}\int_{I_{n}^{i}}\int_{\Gamma_{ij}}(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}+\,S_{ij}U_{i}^{k})^{2}.

We now sum in time for 0nN0\leq n\leq N, and use the transmission condition. Since E0(Uik)=0E^{0}(U_{i}^{k})=0, we obtain

EN+1(Uik)+0T[Uik(t,)i2+qt(niUik)i2+sqΓi,jUik(t,)i2]dt+14j𝒩i0TΓij(νi𝒏iuikSijUik)2𝑑t14j𝒩i0TΓij(Pi(νj𝒏jUjk1+S~ijUjk1))2𝑑t.E^{N+1}(U_{i}^{k})+\int_{0}^{T}\,[\,\interleave U_{i}^{k}(t,\cdot)\interleave_{i}^{2}\,+q\|\partial_{t}({\cal I}_{n}^{i}U_{i}^{k})\|^{2}_{i}\,+sq\interleave\nabla_{\Gamma_{i,j}}U_{i}^{k}(t,\cdot)\interleave_{i}^{2}\,]\,dt\\ +\frac{1}{4}\sum_{j\in{\cal N}_{i}}\int_{0}^{T}\int_{\Gamma_{ij}}(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\,S_{ij}U_{i}^{k})^{2}\,dt\leq\frac{1}{4}\sum_{j\in{\cal N}_{i}}\int_{0}^{T}\int_{\Gamma_{ij}}(P^{i}(-\nu_{j}\partial_{\boldsymbol{n}_{j}}U_{j}^{k-1}+\,\widetilde{S}_{ij}U_{j}^{k-1}))^{2}\,dt.

We sum up over the subdomains and use the fact that the projection is a contraction. Since we are in the case where pij=pp_{ij}=p, qij=qq_{ij}=q, rij=0r_{ij}=0 and sij=ss_{ij}=s, we have S~ij=Sji\widetilde{S}_{ij}=S_{ji}. Thus, we can sum up over the iterates, the boundary terms cancel out, and we obtain

k=1Ki=1I(EN+1(Uik)+0T[Uik(t,)i2+qt(niUik)i2+sqΓi,jUik(t,)i2]dt)+14i=1I0TΓi(νi𝒏iuik𝒮ijUiK)214i=1I0TΓi(νi𝒏iUi0𝒮ijUi0)2.\sum_{k=1}^{K}\sum_{i=1}^{I}\left(E^{N+1}(U_{i}^{k})+\int_{0}^{T}[\,\interleave U_{i}^{k}(t,\cdot)\interleave_{i}^{2}\,+q\|\partial_{t}({\cal I}_{n}^{i}U_{i}^{k})\|^{2}_{i}\,+sq\interleave\nabla_{\Gamma_{i,j}}U_{i}^{k}(t,\cdot)\interleave_{i}^{2}\,]\,dt\right)\\ +\frac{1}{4}\sum_{i=1}^{I}\int_{0}^{T}\int_{\Gamma_{i}}(\nu_{i}\partial_{\boldsymbol{n}_{i}}u_{i}^{k}-\,{\cal S}_{ij}U_{i}^{K})^{2}\leq\frac{1}{4}\sum_{i=1}^{I}\int_{0}^{T}\int_{\Gamma_{i}}(\nu_{i}\partial_{\boldsymbol{n}_{i}}U_{i}^{0}-\,{\cal S}_{ij}U_{i}^{0})^{2}.

We conclude as in the proof of Theorem 9. ∎

We now state the error estimate in the Robin case.

3.3 Error estimates in the Robin case

Theorem 10.

If 𝐛=0\nabla\cdot\boldsymbol{b}=0, pi,j𝐛i𝐧i2=pj,i𝐛j𝐧j2=p>0p_{i,j}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2}=p_{j,i}-\frac{\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{j}}{2}=p>0, and qi,j=0q_{i,j}=0, the error between uu and the solution UiU_{i} of (3.14) is estimated by:

i=1IuUiL(0,T,L2(Ωi))2Ck2(d+1)td+1uL2(0,T;H2(Ω))2.\sum_{i=1}^{I}\|u-U_{i}\|^{2}_{L^{\infty}(0,T,L^{2}(\Omega_{i}))}\leq Ck^{2(d+1)}\|\partial_{t}^{d+1}u\|^{2}_{L^{2}(0,T;H^{2}(\Omega))}. (3.19)
Proof.

We introduce the projection operator PiP_{i}^{-} as

n[[1,Ni]],Piφ𝐏d(Ini),Piφ(tn+1i)=φ(tn+1i),ψi,j𝐏d1(Ini),Ini(Piφφ)(t)ψi,j(t)𝑑t=0.\begin{split}&\forall n\in[\![1,N_{i}]\!],P_{i}^{-}\varphi\in\mathbf{P}_{d}(I_{n}^{i}),\\ &P_{i}^{-}\varphi(t_{n+1}^{i})=\varphi(t_{n+1}^{i}),\quad\forall\psi_{i,j}\in\mathbf{P}_{d-1}(I_{n}^{i}),\int_{I_{n}^{i}}(P_{i}^{-}\varphi-\varphi)(t)\psi_{i,j}(t)\,dt=0.\end{split}

We define Wi=Pi(u|Ωi)W_{i}=P_{i}^{-}(u|_{\Omega_{i}}), Θi=UiWi\Theta_{i}=U_{i}-W_{i} and ρi=Wiu|Ωi\rho_{i}=W_{i}-u|_{\Omega_{i}}. Classical projection estimates ([20]) yield the estimate on ρi\rho_{i}:

i=1IρiL(0,T,L2(Ωi))2Ck2(d+1)td+1uL2(0,T;L2(Ω))2.\sum_{i=1}^{I}\|\rho_{i}\|^{2}_{L^{\infty}(0,T,L^{2}(\Omega_{i}))}\leq Ck^{2(d+1)}\|\partial_{t}^{d+1}u\|^{2}_{L^{2}(0,T;L^{2}(\Omega))}.

Thus, since Uiu|Ωi=Θi+ρiU_{i}-u|_{\Omega_{i}}=\Theta_{i}+\rho_{i}, it suffices to prove estimate (3.19) for Θi\Theta_{i}. Now, thanks to the equations on uu and UiU_{i}, and the identity ddtiPi=𝒫iddt\frac{d}{dt}\mathcal{I}^{i}P_{i}^{-}=\mathcal{P}^{i}\frac{d}{dt}, Θi\Theta_{i} satisfies:

t(iΘi)+𝒃ΘiνΔΘi+cΘi=𝒃ρi+νΔρicρi+(1Pi)(tuf) in Ωi×(0,T),(νi𝒏i𝒃i𝒏i)Θi+pi,jΘi=Pi((νj𝒏i𝒃j𝒏i)Θj+pi,jΘj)(1Pi)((νj𝒏i𝒃j𝒏i)Wj+pi,jWj) on Γij×(0,T),j𝒩i.\displaystyle\begin{array}[]{c}\partial_{t}({\cal I}^{i}\,\Theta_{i})+\boldsymbol{b}\cdot\nabla\Theta_{i}-\nu\Delta\Theta_{i}+c\Theta_{i}=-\boldsymbol{b}\cdot\nabla\rho_{i}+\nu\Delta\rho_{i}-c\rho_{i}\\ +(1-P^{i})(\partial_{t}u-f)\mbox{ in }\Omega_{i}\times(0,T),\\ \displaystyle\bigl{(}\nu_{i}\,\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\bigr{)}\Theta_{i}+p_{i,j}\,\Theta_{i}=P^{i}(\bigl{(}\nu_{j}\,\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i}\bigr{)}\Theta_{j}+p_{i,j}\,\Theta_{j})\\ -(1-P^{i})(\bigl{(}\nu_{j}\,\displaystyle\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i}\bigr{)}W_{j}+p_{i,j}\,W_{j})\mbox{ on }\Gamma_{ij}\times(0,T),\,j\in{\cal N}_{i}.\\ \end{array} (3.24)

Multiply the first equation of (3.24) by Θi\,\Theta_{i}, integrate on (tni,tn+1i)×Ωi(t_{n}^{i},t_{n+1}^{i})\times\Omega_{i}, using (3.8) and integrate by parts in space. Terminate with Cauchy Schwarz inequality:

12Θi((tn+1i))i2+IniΘi(t,)i2dtIniΓi(νi𝒏iΘi𝒃i𝒏i2Θi)Θi𝑑x2𝑑t12Θi((tni))i2+CIniρi(t,)H2(Ωi)2𝑑t.\frac{1}{2}\|\Theta_{i}((t^{i}_{n+1})^{-})\|^{2}_{i}+\int_{I_{n}^{i}}\interleave\Theta_{i}(t,\cdot)\interleave_{i}^{2}\,dt-\int_{I_{n}^{i}}\int_{\Gamma_{i}}(\nu_{i}\partial_{\boldsymbol{n}_{i}}\Theta_{i}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2}\Theta_{i})\,\Theta_{i}dx_{2}\,dt\\ \leq\frac{1}{2}\|\Theta_{i}((t^{i}_{n})^{-})\|^{2}_{i}+C\int_{I_{n}^{i}}\|\rho_{i}(t,\cdot)\|^{2}_{H^{2}(\Omega_{i})}\,dt.

Rewriting the boundary integral using (2.14), we obtain

12Θi((tn+1i))i2+IniΘi(t,)i2dt+14pj𝒩iIniΓij(νi𝒏iΘi𝒃i𝒏iΘipj,iΘi)2𝑑x2𝑑t14pj𝒩iIniΓij(νi𝒏iΘi𝒃i𝒏iΘi+pi,jΘi)2𝑑x2+12Θi((tni))i2+CIniρi(t,)H2(Ωi)2𝑑t.\frac{1}{2}\|\Theta_{i}((t^{i}_{n+1})^{-})\|^{2}_{i}+\int_{I_{n}^{i}}\interleave\Theta_{i}(t,\cdot)\interleave_{i}^{2}\,dt+\frac{1}{4p}\sum_{j\in{\cal N}_{i}}\int_{I_{n}^{i}}\int_{\Gamma_{ij}}(\nu_{i}\partial_{\boldsymbol{n}_{i}}\Theta_{i}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\Theta_{i}-p_{j,i}\Theta_{i})^{2}\,dx_{2}\,dt\\ \leq\frac{1}{4p}\sum_{j\in{\cal N}_{i}}\int_{I_{n}^{i}}\int_{\Gamma_{ij}}(\nu_{i}\partial_{\boldsymbol{n}_{i}}\Theta_{i}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\Theta_{i}+p_{i,j}\Theta_{i})^{2}\,dx_{2}+\frac{1}{2}\|\Theta_{i}((t^{i}_{n})^{-})\|^{2}_{i}+C\int_{I_{n}^{i}}\|\rho_{i}(t,\cdot)\|^{2}_{H^{2}(\Omega_{i})}\,dt.

Using the transmission condition in (3.24) together with the fact that PiP^{i} and 1Pi1-P^{i} are orthogonal to each other and have norm 1, we get by a trace theorem

12Θi((tn+1i))i2+IniΘi(t,)i2dt+14pj𝒩iIniΓij(νi𝒏iΘi𝒃i𝒏iΘipj,iΘi)2𝑑x2𝑑t14pj𝒩iIniΓij(νj𝒏jΘj𝒃j𝒏jΘjpi,jΘi)2𝑑x2+12Θi((tni))i2+CIniρi(t,)H2(Ωi)2dt+CIni(1Pi)(u|Ωi)(t,)H2(Ωi)2dt.\frac{1}{2}\|\Theta_{i}((t^{i}_{n+1})^{-})\|^{2}_{i}+\int_{I_{n}^{i}}\interleave\Theta_{i}(t,\cdot)\interleave_{i}^{2}\,dt+\frac{1}{4p}\sum_{j\in{\cal N}_{i}}\int_{I_{n}^{i}}\int_{\Gamma_{ij}}(\nu_{i}\partial_{\boldsymbol{n}_{i}}\Theta_{i}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\Theta_{i}-p_{j,i}\Theta_{i})^{2}\,dx_{2}\,dt\\ \hskip 28.45274pt\leq\frac{1}{4p}\sum_{j\in{\cal N}_{i}}\int_{I_{n}^{i}}\int_{\Gamma_{ij}}(\nu_{j}\partial_{\boldsymbol{n}_{j}}\Theta_{j}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{j}\Theta_{j}-p_{i,j}\Theta_{i})^{2}\,dx_{2}+\frac{1}{2}\|\Theta_{i}((t^{i}_{n})^{-})\|^{2}_{i}\\ +C\int_{I_{n}^{i}}\|\rho_{i}(t,\cdot)\|^{2}_{H^{2}(\Omega_{i})}\,dt+C\int_{I_{n}^{i}}\|(1-P^{i})(u|_{\Omega_{i}})(t,\cdot)\|^{2}_{H^{2}(\Omega_{i})}\,dt.\hskip 19.91684pt (3.25)

Classical error estimates [20] imply:

0Tρi(t,)H2(Ωi)2dt+0T(1Pi)(u|Ωi)(t,)H2(Ωi)2Ck2(d+1)td+1uL2(0,T;H2(Ωi))2.\int_{0}^{T}\|\rho_{i}(t,\cdot)\|^{2}_{H^{2}(\Omega_{i})}\,dt+\int_{0}^{T}\|(1-P^{i})(u|_{\Omega_{i}})(t,\cdot)\|^{2}_{H^{2}(\Omega_{i})}\,\leq Ck^{2(d+1)}\|\partial_{t}^{d+1}u\|^{2}_{L^{2}(0,T;H^{2}(\Omega_{i}))}.

Summing (3.25) in ii and nn, and using the previous equation yields (3.19). ∎

4 Space-time nonconforming algorithm

In this section we describe the implementation of algorithm (3.12), especially in the cases d=0d=0 and d=1d=1. We start from the semi-disrete in time scheme and use finite elements for the space discretization in each subdomain. In order to permit non-matching grids in time and space on the boundary, we extend the nonconforming approach in [8].

We describe first the implementation of algorithm (3.12) at the semi-discrete in time level, and then at the space-time discret level.

4.1 Time discretization

We recall the subdomain scheme in time, and give it in details for d=0d=0 and d=1d=1. Then we describe the computation of the transmission conditions in algorithm (3.12).

4.1.1 Interior scheme

We consider the subdomain problem in the algorithm (3.12) at iteration kk in 𝒪=Ωi{\mathcal{O}}=\Omega_{i}. Let i=H11(Ωi){\cal B}_{i}=H_{1}^{1}(\Omega_{i}) if q>0q>0, i=H1(Ωi){\cal B}_{i}=H^{1}(\Omega_{i}) if q=0q=0. We set U=Uik𝒫d(i,𝒯i)U=U_{i}^{k}\in{\cal P}_{d}({\cal B}_{i},{\cal T}_{i}), and we omit the subscript ii for the local time scheme to simplify the notations :

t(U)+(𝒃UνU)+cU=Pf in 𝒪×(0,T)(ν𝒏𝒃𝒏)U+pU+q(t(U)+Γ(𝒓UsΓU))=Pg on Γ×(0,T).\displaystyle\begin{array}[]{c}\partial_{t}({\cal I}U)+\nabla\cdot(\boldsymbol{b}U-\nu\nabla U)+cU=Pf\mbox{ in }{\mathcal{O}}\times(0,T)\\ \displaystyle\bigl{(}\nu\,\partial_{\boldsymbol{n}}-\boldsymbol{b}\cdot\boldsymbol{n}\bigr{)}U+p\,U+q(\partial_{t}({\cal I}U)+\nabla_{\Gamma}\cdot(\boldsymbol{r}U-s\nabla_{\Gamma}U))=Pg\mbox{ on }\Gamma\times(0,T).\end{array} (4.3)

Case d=0d=0

In the case d=0d=0, the approximating functions are piecewise constant in time, then U(t)=Un+1=U+nU(t)=U^{n+1}=U^{n}_{+} in InI_{n}, we have nU=Un+ttnkn(Un+1Un){\cal I}_{n}U=U^{n}+\frac{t-t_{n}}{k_{n}}(U^{n+1}-U^{n}), Pξ=1knInξ(,s)𝑑sP\xi=\frac{1}{k_{n}}\int_{I_{n}}\xi(\cdot,s)\,ds and the method reduces to the modifed backward Euler method

Un+1kn+(𝒃Un+1νUn+1)+cUn+1=Unkn+1knInf(,s)𝑑s in 𝒪(ν𝒏𝒃𝒏)Un+1+pUn+1+q(Un+1kn+Γ(𝒓Un+1sΓUn+1))=qUnkn+1knIng(,s)𝑑s on Γ.\displaystyle\begin{array}[]{c}\displaystyle\frac{U^{n+1}}{k_{n}}+\nabla\cdot(\boldsymbol{b}U^{n+1}-\nu\nabla U^{n+1})+cU^{n+1}\displaystyle=\frac{U^{n}}{k_{n}}+\frac{1}{k_{n}}\int_{I_{n}}f(\cdot,s)\,ds\mbox{ in }{\mathcal{O}}\\ \displaystyle\bigl{(}\nu\,\partial_{\boldsymbol{n}}-\boldsymbol{b}\cdot\boldsymbol{n}\bigr{)}U^{n+1}+p\,U^{n+1}+q(\frac{U^{n+1}}{k_{n}}+\nabla_{\Gamma}\cdot(\boldsymbol{r}U^{n+1}-s\nabla_{\Gamma}U^{n+1}))\\ \displaystyle=q\frac{U^{n}}{k_{n}}+\frac{1}{k_{n}}\int_{I_{n}}g(\cdot,s)\,ds\mbox{ on }\Gamma.\end{array} (4.7)

Case d=1d=1

In that case, for piecewise linear functions of tt, using a basis of Legendre polynomials we may write, U(t)=U0n+1+2ttn+1/2knU1n+1U(t)=U^{n+1}_{0}+2\frac{t-t_{n+{1/2}}}{k_{n}}U_{1}^{n+1}, on IniI_{n}^{i}, with tn+1/2=tn+tn+12t_{n+{1/2}}=\frac{t_{n}+t_{n+1}}{2}, Un=U(tn)U^{n}=U(t_{n}), and we have on IniI_{n}^{i} :

nU=14(5U0n+1U1n+1Un)+(U0n+1+U1n+1Un)(ttn+1/2kn)\displaystyle\displaystyle{\cal I}_{n}U={1\over 4}(5U_{0}^{n+1}-U_{1}^{n+1}-U^{n})+(U_{0}^{n+1}+U_{1}^{n+1}-U^{n})\bigl{(}\frac{t-t_{n+{1/2}}}{k_{n}}\bigr{)}
+3(U0n+1+U1n+1+Un)(ttn+1/2kn)2,\displaystyle+3(-U_{0}^{n+1}+U_{1}^{n+1}+U^{n})\bigl{(}\frac{t-t_{n+{1/2}}}{k_{n}}\bigr{)}^{2},

and Pξ=ξ0+2ttn+1/2knξ1P\xi=\xi_{0}+2\frac{t-t_{n+1/2}}{k_{n}}\xi_{1} with

{ξ0=1knInξ(,s)𝑑sξ1=6knInstn+1/2knξ(,s)𝑑s\displaystyle\left\{\begin{array}[]{l}\xi_{0}=\frac{1}{k_{n}}\int_{I_{n}}\xi(\cdot,s)\,ds\\ \xi_{1}=\frac{6}{k_{n}}\int_{I_{n}}\frac{s-t_{n+1/2}}{k_{n}}\xi(\cdot,s)\,ds\end{array}\right. (4.10)

Thus, we obtain for the determination of U0n+1U^{n+1}_{0} and U1n+1U^{n+1}_{1} the system

1kn(U0n+1+U1n+1)+(𝒃U0n+1νU0n+1)+cU0n+1=Unkn+1knInf(,s)𝑑s3kn(U0n+1+U1n+1)+(𝒃U1n+1νU1n+1)+cU1n+1=3Unkn+6knInstn+1/2knf(,s)𝑑s in 𝒪(ν𝒏𝒃𝒏)U0n+1+pU0n+1+q(1kn(U0n+1+U1n+1)+Γ(𝒓U0n+1sΓU0n+1))=qUnkn+1knIng(,s)𝑑s(ν𝒏𝒃𝒏)U1n+1+pU1n+1+q(3kn(U0n+1+U1n+1)+Γ(𝒓U1n+1sΓU1n+1))=q3Unkn+6knInstn+1/2kng(,s)𝑑s on Γ.\begin{array}[]{l}\begin{array}[]{l}\displaystyle\frac{1}{k_{n}}(U_{0}^{n+1}+U_{1}^{n+1})+\nabla\cdot(\boldsymbol{b}U_{0}^{n+1}-\nu\nabla U_{0}^{n+1})+cU_{0}^{n+1}=\frac{U^{n}}{k_{n}}+\frac{1}{k_{n}}\int_{I_{n}}f(\cdot,s)\,ds\\ \displaystyle\frac{3}{k_{n}}(-U_{0}^{n+1}+U_{1}^{n+1})+\nabla\cdot(\boldsymbol{b}U_{1}^{n+1}-\nu\nabla U_{1}^{n+1})+cU_{1}^{n+1}\\ \hskip 85.35826pt\displaystyle=-\frac{3U^{n}}{k_{n}}+\frac{6}{k_{n}}\int_{I_{n}}\frac{s-t_{n+1/2}}{k_{n}}f(\cdot,s)\,ds\mbox{ in }{\mathcal{O}}\end{array}\\ \begin{array}[]{l}\displaystyle\bigl{(}\nu\,\partial_{\boldsymbol{n}}-\boldsymbol{b}\cdot\boldsymbol{n}\bigr{)}U_{0}^{n+1}+p\,U_{0}^{n+1}+q(\frac{1}{k_{n}}(U_{0}^{n+1}+U_{1}^{n+1})+\nabla_{\Gamma}\cdot(\boldsymbol{r}U_{0}^{n+1}-s\nabla_{\Gamma}U_{0}^{n+1}))\\ \hskip 85.35826pt\displaystyle=q\frac{U^{n}}{k_{n}}+\frac{1}{k_{n}}\int_{I_{n}}g(\cdot,s)\,ds\\ \displaystyle\bigl{(}\nu\,\partial_{\boldsymbol{n}}-\boldsymbol{b}\cdot\boldsymbol{n}\bigr{)}U_{1}^{n+1}+p\,U_{1}^{n+1}+q(\frac{3}{k_{n}}(-U_{0}^{n+1}+U_{1}^{n+1})+\nabla_{\Gamma}\cdot(\boldsymbol{r}U_{1}^{n+1}-s\nabla_{\Gamma}U_{1}^{n+1}))\\ \hskip 85.35826pt\displaystyle=-q\frac{3U^{n}}{k_{n}}+\frac{6}{k_{n}}\int_{I_{n}}\frac{s-t_{n+1/2}}{k_{n}}g(\cdot,s)\,ds\mbox{ on }\Gamma.\end{array}\end{array} (4.11)

Multiplying the first equation of (4.7) by viv\in{\cal B}_{i} (resp. the first equation of (4.11) by viv\in{\cal B}_{i} and the second equation of (4.11) by wiw\in{\cal B}_{i}), integrating by parts on 𝒪{\mathcal{O}}, and using the boundary conditions, the variational formulation is:

Case d=0d=0 (Variational formulation)

m(Un+1,v)+kna(Un+1,v)=m(Un,v)+Ini(f(,s),v)𝑑s+Ini(g(,s),v)Γ𝑑s,vi.m(U^{n+1},v)+k_{n}a(U^{n+1},v)=\\ m(U^{n},v)+\int_{I_{n}^{i}}(f(\cdot,s),v)ds+\int_{I_{n}^{i}}(g(\cdot,s),v)_{\Gamma}ds,\quad\forall v\in{\cal B}_{i}. (4.12)

Case d=1d=1 (Variational formulation)

m(U0n+1,v)+kna(U0n+1,v)+m(U1n+1,v)=m(Un,v)+In(f(,s),v)𝑑s+In(g(,s),v)Γ𝑑s,m(U0n+1,v)+m(U1n+1,w)+kna(U1n+1,w)=m(Un,v)+In2(stn+1/2)kn(f(,s),w)𝑑s+In2(stn+1/2)kn(g(,s),w)Γ𝑑s,v,wi.m(U_{0}^{n+1},v)+k_{n}a(U_{0}^{n+1},v)+m(U_{1}^{n+1},v)\\ =m(U^{n},v)+\int_{I_{n}}(f(\cdot,s),v)ds+\int_{I_{n}}(g(\cdot,s),v)_{\Gamma}ds,\\ \hskip-142.26378pt-m(U_{0}^{n+1},v)+m(U_{1}^{n+1},w)+k_{n}a(U_{1}^{n+1},w)\\ \hskip 28.45274pt=-m(U^{n},v)+\int_{I_{n}}\frac{2(s-t_{n+1/2})}{k_{n}}(f(\cdot,s),w)ds\\ +\int_{I_{n}}\frac{2(s-t_{n+1/2})}{k_{n}}(g(\cdot,s),w)_{\Gamma}ds,\quad\forall v,\,w\in{\cal B}_{i}. (4.13)
Remark 11.

Equations (4.12) and (4.13) can be derived directly from (3.7). However we will need formulas (4.7) and (4.11) in the space nonconforming case.

We now discuss the computation of the right-hand side on the interface Γi,j×(0,T)\Gamma_{i,j}\times(0,T) for j𝒩ij\in{\cal N}_{i} in the algorithm (3.12).

4.1.2 Transmission terms

Let (gi,j1)(g^{1}_{i,j}) be a given initial guess in 𝒫d(L2(Γi,j),𝒯i){\cal P}_{d}(L^{2}(\Gamma_{i,j}),{\cal T}_{i}), for 1iI1\leq i\leq I, j𝒩ij\in{\cal N}_{i}. Then, at iteration k1k\geq 1, we solve the subdomain problem in Ωi\Omega_{i} :

t(iUik)+(𝒃iUikνiUik)+ciUik=Pif in Ωi×(0,T),\displaystyle\partial_{t}({\cal I}^{i}U_{i}^{k})+\nabla\cdot(\boldsymbol{b}_{i}U_{i}^{k}-\nu_{i}\nabla U_{i}^{k})+c_{i}\,U_{i}^{k}=P^{i}f\mbox{ in }\Omega_{i}\times(0,T), (4.14a)
(νi𝒏i𝒃i𝒏i)Uik+Si,jUik=gi,jk,j𝒩i on Γi,j×(0,T),\displaystyle\displaystyle\bigl{(}\nu_{i}\partial_{\boldsymbol{n}_{i}}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}\bigr{)}\,U_{i}^{k}+S_{i,j}U_{i}^{k}=g^{k}_{i,j},\ j\in{\cal N}_{i}\mbox{ on }\Gamma_{i,j}\times(0,T), (4.14b)

The function gi,jkg^{k}_{i,j} is defined for k2k\geq 2 by

gi,jk=Pig~j,ik,g^{k}_{i,j}=P^{i}\tilde{g}^{k}_{j,i}, (4.15)

with g~j,ik\tilde{g}^{k}_{j,i}, k2k\geq 2, defined by

g~j,ik=((νj𝒏j𝒃j𝒏j)Ujk1+S~i,jUjk1).\tilde{g}^{k}_{j,i}=\bigl{(}-(\nu_{j}\partial_{\boldsymbol{n}_{j}}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{j})\,U_{j}^{k-1}+\widetilde{S}_{i,j}U_{j}^{k-1}\bigr{)}.

We remark that, for k2k\geq 2,

g~j,ik=gj,ik1+Sj,iUjk1+S~i,jUjk1=gj,ik1+(pi,j+pj,i)Ujk1+(qi,j+qj,i)t(jUjk1)+qi,j(Γi,j(𝒓i,jUjk1si,jΓi,jUjk1))+qj,i(Γj,i(𝒓j,iUjk1sj,iΓj,iUjk1)).\tilde{g}^{k}_{j,i}=-g^{k-1}_{j,i}+S_{j,i}U_{j}^{k-1}+\widetilde{S}_{i,j}U_{j}^{k-1}\\ \hskip-56.9055pt=-g^{k-1}_{j,i}+(p_{i,j}+p_{j,i})U_{j}^{k-1}+(q_{i,j}+q_{j,i})\partial_{t}({\cal I}^{j}U_{j}^{k-1})\\ \hskip 5.69054pt+q_{i,j}\,(\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}U_{j}^{k-1}-s_{i,j}\nabla_{\Gamma_{i,j}}U_{j}^{k-1}))+q_{j,i}\,(\nabla_{\Gamma_{j,i}}\cdot(\boldsymbol{r}_{j,i}U_{j}^{k-1}-s_{j,i}\nabla_{\Gamma_{j,i}}U_{j}^{k-1})). (4.16)

Once g~j,ik\tilde{g}^{k}_{j,i} is computed from Ujk1U_{j}^{k-1}, we obtain gi,jkg^{k}_{i,j} from (4.15) as follows : we introduce the basis functions (φn,αi)0αd(\varphi_{n,\alpha}^{i})_{0\leq\alpha\leq d} of polynomial of degree lower than dd on subinterval IniI_{n}^{i}, then

(gi,jk)|Ini=(Pig~j,ik)|Ini=α=0dGn,αi,kφn,αi(g^{k}_{i,j})_{|I_{n}^{i}}=(P^{i}\tilde{g}^{k}_{j,i})_{|I_{n}^{i}}=\sum_{\alpha=0}^{d}G^{i,k}_{n,\alpha}\varphi_{n,\alpha}^{i}

with Gn,αi,kL2(Γi,j)G^{i,k}_{n,\alpha}\in L^{2}(\Gamma_{i,j}) solution of the system

α=0dGn,αi,kIniφn,αiφn,βi𝑑s=Inig~j,ikφn,βi,β{0,,d}.\sum_{\alpha=0}^{d}G^{i,k}_{n,\alpha}\int_{I_{n}^{i}}\varphi_{n,\alpha}^{i}\varphi_{n,\beta}^{i}\,ds=\int_{I_{n}^{i}}\tilde{g}^{k}_{j,i}\varphi_{n,\beta}^{i},\quad\beta\in\{0,...,d\}.

Thus, the computation of gi,jkg^{k}_{i,j} on each IniI_{n}^{i} needs the computation of terms in the form

Inig~j,ikφn,βi𝑑s,\int_{I_{n}^{i}}\tilde{g}^{k}_{j,i}\varphi_{n,\beta}^{i}\,ds, (4.17)

for β{0,,d}\beta\in\{0,...,d\}. Recall that g~j,ik\tilde{g}^{k}_{j,i} is defined on Γi,j×I\Gamma_{i,j}\times I and g~j,ik𝒫d(L2(Γi,j),𝒯j)\tilde{g}^{k}_{j,i}\in{\cal P}_{d}(L^{2}(\Gamma_{i,j}),{\cal T}_{j}). Thus, we first write the integral in (4.17) as an integral over II : let Φn,αi\Phi_{n,\alpha}^{i} be the function defined on II, equal to φn,αi\varphi_{n,\alpha}^{i} on IniI_{n}^{i} and equal to zero on I\IniI\backslash I_{n}^{i}. Then

Inig~j,ikφn,βi𝑑s=Ig~j,ikΦn,βi𝑑s.\displaystyle\int_{I_{n}^{i}}\tilde{g}^{k}_{j,i}\varphi_{n,\beta}^{i}\,ds=\int_{I}\tilde{g}^{k}_{j,i}\Phi_{n,\beta}^{i}\,ds. (4.18)

We now decompose g~j,ik\tilde{g}^{k}_{j,i} on the basis functions (φm,αj)0αd(\varphi_{m,\alpha}^{j})_{0\leq\alpha\leq d} of polynomial of degree lower than dd on each subinterval ImjI_{m}^{j} :

(g~j,ik)|Imj=α=0dG~m,αj,kφm,αj,(\tilde{g}^{k}_{j,i})_{|I_{m}^{j}}=\sum_{\alpha=0}^{d}\tilde{G}^{j,k}_{m,\alpha}\varphi_{m,\alpha}^{j},

with G~m,αj,kL2(Γi,j)\tilde{G}^{j,k}_{m,\alpha}\in L^{2}(\Gamma_{i,j}) solution of the system

α=0dG~m,αj,kImjφm,αjφm,βj𝑑s=Imjg~j,ikφm,βj,β{0,,d}.\sum_{\alpha=0}^{d}\tilde{G}^{j,k}_{m,\alpha}\int_{I_{m}^{j}}\varphi_{m,\alpha}^{j}\varphi_{m,\beta}^{j}\,ds=\int_{I_{m}^{j}}\tilde{g}^{k}_{j,i}\varphi_{m,\beta}^{j},\quad\beta\in\{0,...,d\}.

Introducing the function Φm,αj\Phi_{m,\alpha}^{j} defined on II, equal to φm,αj\varphi_{m,\alpha}^{j} on ImjI_{m}^{j} and equal to zero on I\ImjI\backslash I_{m}^{j}, we have

g~j,ik=m=0Njα=0dG~m,αj,kΦm,αj,\tilde{g}^{k}_{j,i}=\sum_{m=0}^{N_{j}}\sum_{\alpha=0}^{d}\tilde{G}^{j,k}_{m,\alpha}\Phi_{m,\alpha}^{j}, (4.19)

Replacing (4.19) in (4.18) leads to

Inig~j,ikφn,βi𝑑s=m=0Njα=0dG~m,αj,kIΦm,αjΦn,βi𝑑s.\int_{I_{n}^{i}}\tilde{g}^{k}_{j,i}\varphi_{n,\beta}^{i}\,ds=\displaystyle\sum_{m=0}^{N_{j}}\sum_{\alpha=0}^{d}\tilde{G}^{j,k}_{m,\alpha}\int_{I}\Phi_{m,\alpha}^{j}\Phi_{n,\beta}^{i}\,ds.

Let 𝕄α,β{\mathbb{M}}^{\alpha,\beta} be the projection matrix defined by

(𝕄α,β)n+1,m+1=IΦm,αjΦn,βids.0,nNi, 0mNj.({\mathbb{M}}^{\alpha,\beta})_{n+1,m+1}=\int_{I}\Phi_{m,\alpha}^{j}\Phi_{n,\beta}^{i}\,ds.\quad 0\leq,n\leq N_{i},\,0\leq m\leq N_{j}.

Then we have, for 0nNi0\leq n\leq N_{i},

Inig~j,ikφn,βi𝑑s=α=0d(𝕄α,β𝐆~αj,k)n\int_{I_{n}^{i}}\tilde{g}^{k}_{j,i}\varphi_{n,\beta}^{i}\,ds=\displaystyle\sum_{\alpha=0}^{d}({\mathbb{M}}^{\alpha,\beta}\tilde{\mathbf{G}}^{j,k}_{\alpha})_{n}

with 𝐆~αj,k=(G~0,αj,k,,G~Nj,αj,k)t\tilde{\mathbf{G}}^{j,k}_{\alpha}=(\tilde{G}^{j,k}_{0,\alpha},...,\tilde{G}^{j,k}_{N_{j},\alpha})^{t}.

In the special cases d=0d=0 and d=1d=1, we obtain :

Case d=0d=0

In that case there is one basis function φn,0i=1\varphi^{i}_{n,0}=1 on IniI_{n}^{i}, and

Inig~j,ikφn,0i𝑑s=Inig~j,ik𝑑s=(𝕄0,0𝐆~0j,k)n,\int_{I_{n}^{i}}\tilde{g}^{k}_{j,i}\varphi_{n,0}^{i}\,ds=\int_{I_{n}^{i}}\tilde{g}^{k}_{j,i}\,ds\displaystyle=({\mathbb{M}}^{0,0}\tilde{\mathbf{G}}^{j,k}_{0})_{n},

with (𝕄0,0)n+1,m+1=I𝟏Imj𝟏Ini𝑑s({\mathbb{M}}^{0,0})_{n+1,m+1}=\int_{I}\mathbf{1}_{I_{m}^{j}}\mathbf{1}_{I_{n}^{i}}\,ds, 𝐆~m,0j,k=1kmjImjg~j,ik𝑑s\tilde{\mathbf{G}}^{j,k}_{m,0}=\frac{1}{k_{m}^{j}}\int_{I_{m}^{j}}\tilde{g}^{k}_{j,i}\,ds, 0,nNi, 0mNj0\leq,n\leq N_{i},\,0\leq m\leq N_{j}.

Case d=1d=1

In that case there are two basis functions φn,0i=1,φn,1i=2stn+1/2ikni\varphi^{i}_{n,0}=1,\ \varphi^{i}_{n,1}=2\frac{s-t_{n+1/2}^{i}}{k_{n}^{i}} on IniI_{n}^{i}, and

Inig~j,ikφn,0i𝑑s=(𝕄0,0𝐆~0j,k+𝕄1,0𝐆~1j,k)n,Inig~j,ikφn,1i𝑑s=(𝕄0,1𝐆~0j,k+𝕄1,1𝐆~1j,k)n,\displaystyle\begin{array}[]{l}\int_{I_{n}^{i}}\tilde{g}^{k}_{j,i}\varphi_{n,0}^{i}\,ds=({\mathbb{M}}^{0,0}\tilde{\mathbf{G}}^{j,k}_{0}+{\mathbb{M}}^{1,0}\tilde{\mathbf{G}}^{j,k}_{1})_{n},\\ \int_{I_{n}^{i}}\tilde{g}^{k}_{j,i}\varphi_{n,1}^{i}\,ds=({\mathbb{M}}^{0,1}\tilde{\mathbf{G}}^{j,k}_{0}+{\mathbb{M}}^{1,1}\tilde{\mathbf{G}}^{j,k}_{1})_{n},\end{array}

with, for 0,nNi, 0mNj0\leq,n\leq N_{i},\,0\leq m\leq N_{j},

(𝕄0,0)n+1,m+1=I𝟏Imj𝟏Ini𝑑s,(𝕄1,1)n+1,m+1=4Istm+1/2jkmj𝟏Imjstn+1/2ikni𝟏Ini𝑑s,(𝕄1,0)n+1,m+1=2Istm+1/2jkmj𝟏Imj𝟏Ini𝑑s,(𝕄0,1)n+1,m+1=2I𝟏Imjstn+1/2ikni𝟏Ini𝑑s,\displaystyle\begin{array}[]{l}\displaystyle({\mathbb{M}}^{0,0})_{n+1,m+1}=\int_{I}\mathbf{1}_{I_{m}^{j}}\mathbf{1}_{I_{n}^{i}}\,ds,\quad({\mathbb{M}}^{1,1})_{n+1,m+1}=4\int_{I}\frac{s-t_{m+1/2}^{j}}{k_{m}^{j}}\mathbf{1}_{I_{m}^{j}}\frac{s-t_{n+1/2}^{i}}{k_{n}^{i}}\mathbf{1}_{I_{n}^{i}}\,ds,\\ \displaystyle({\mathbb{M}}^{1,0})_{n+1,m+1}=2\int_{I}\frac{s-t_{m+1/2}^{j}}{k_{m}^{j}}\mathbf{1}_{I_{m}^{j}}\mathbf{1}_{I_{n}^{i}}\,ds,\quad\displaystyle({\mathbb{M}}^{0,1})_{n+1,m+1}=2\int_{I}\mathbf{1}_{I_{m}^{j}}\frac{s-t_{n+1/2}^{i}}{k_{n}^{i}}\mathbf{1}_{I_{n}^{i}}\,ds,\end{array}

and 𝐆~m,0j,k,𝐆~m,1j,k\tilde{\mathbf{G}}^{j,k}_{m,0},\ \tilde{\mathbf{G}}^{j,k}_{m,1} defined by

{𝐆~m,0j,k=1kmjImjg~j,ik𝑑s𝐆~m,1j,k=6kmjImjstm+1/2jkmjg~j,ik𝑑s\displaystyle\left\{\begin{array}[]{l}\tilde{\mathbf{G}}^{j,k}_{m,0}=\frac{1}{k_{m}^{j}}\int_{I_{m}^{j}}\tilde{g}^{k}_{j,i}\,ds\\ \ \tilde{\mathbf{G}}^{j,k}_{m,1}=\frac{6}{k_{m}^{j}}\int_{I_{m}^{j}}\frac{s-t_{m+1/2}^{j}}{k_{m}^{j}}\tilde{g}^{k}_{j,i}\,ds\end{array}\right.

The projection matrices 𝕄α,β{\mathbb{M}}^{\alpha,\beta} are computed by a simple and optimal projection algorithm without any additional grid (see [7],[8]).

We now discuss the space dicretization using finite elements.

4.2 Space discretization

We suppose that each subdomain Ωi\Omega_{i} is provided with its own mesh 𝒯hi, 1iI{\cal T}_{h}^{i},\ 1\leq i\leq I, such that

Ω¯i=T𝒯hiT.\overline{\Omega}_{i}=\cup_{T\in{\cal T}_{h}^{i}}T.

For T𝒯hiT\in{\cal T}_{h}^{i}, let hT:=supx,yTd(x,y)h_{T}:=\sup_{x,y\in T}d(x,y) be the diameter of TT and hh the discretization parameter

h=max1iIhi,withhi=maxT𝒯hihT.h=\max_{1\leq i\leq I}h_{i},\quad\mbox{with}\quad h_{i}=\max_{T\in{\cal T}_{h}^{i}}h_{T}.

Let 𝒫1(T){\cal P}_{1}(T) denote the space of all polynomials defined over T of total degree less than or equal to 11. Then, we define over each subdomain the conforming spaces VhiV_{h}^{i} by :

Vhi={vi,h𝒞0(Ω¯i),vi,h|T𝒫1(T),T𝒯hi}.V_{h}^{i}=\{v_{i,h}\in{\cal C}^{0}(\overline{\Omega}_{i}),\ \ {v_{i,h}}_{|T}\in{\cal P}_{1}(T),\ \forall T\in{\cal T}_{h}^{i}\}.

In what follows we assume that the mesh is designed by taking into account the geometry of the Γi,j\Gamma_{i,j} in the sense that, the space of traces over each Γi,j\Gamma_{i,j} of elements of VhiV_{h}^{i} is a finite element space denoted by 𝒱hi,j{\cal V}_{h}^{i,j}. Let ni,jn^{i,j} be the dimension of 𝒱hi,j{\cal V}_{h}^{i,j} and (χ,hi,j)1ni,j(\chi_{\ell,h}^{i,j})_{1\leq\ell\leq n^{i,j}} the finite element basis functions of 𝒱hi,j{\cal V}_{h}^{i,j}.

We consider two cases : when the grids in space are conforming, and the case of nonconforming space grids.

4.2.1 Conforming case

In the case of conforming grids in space, we have 𝒱hi,j=𝒱hj,i{\cal V}_{h}^{i,j}={\cal V}_{h}^{j,i}. We can replace i{\cal B}_{i} by VhiV_{h}^{i} in the variational formulation. We set :

a~i(u,v)=Ωi(12((𝒃iu)v(𝒃iv)u))𝑑x+Ωiνiuvdx+Ωi(ci+12𝒃i)uv𝑑x,\tilde{a}_{i}(u,v)=\int_{\Omega_{i}}(\frac{1}{2}((\boldsymbol{b}_{i}\cdot\nabla u)v-(\boldsymbol{b}_{i}\cdot\nabla v)u))\,dx+\int_{\Omega_{i}}\nu_{i}\nabla u\cdot\nabla v\,dx+\int_{\Omega_{i}}(c_{i}+\frac{1}{2}\nabla\cdot\boldsymbol{b}_{i})uv\,dx, (4.23)

and

<Ci,ju,v>Γi,j=Γi,j((pi,j𝒃i𝒏i2)uv+qi,j(t(iu)+Γi,j(𝒓i,ju))vsi,jΓi,juΓi,jv)dσ,<C~i,ju,v>Γi,j=Γi,j((pi,j𝒃i𝒏i2)uv+qi,j(t(ju)+Γi,j(𝒓i,ju))vsi,jΓi,juΓi,jv)dσ.\begin{array}[]{l}<C_{i,j}u,v>_{\Gamma_{i,j}}=\int_{\Gamma_{i,j}}\bigl{(}(p_{i,j}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2})\,uv\\ \hskip 85.35826pt+q_{i,j}\,(\partial_{t}({\cal I}^{i}u)+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}u))v-s_{i,j}\nabla_{\Gamma_{i,j}}u\nabla_{\Gamma_{i,j}}v\bigr{)}\,d\sigma,\\ <\widetilde{C}_{i,j}u,v>_{\Gamma_{i,j}}=\int_{\Gamma_{i,j}}\bigl{(}(p_{i,j}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2})\,uv\\ \hskip 85.35826pt+q_{i,j}\,(\partial_{t}({\cal I}^{j}u)+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}u))v-s_{i,j}\nabla_{\Gamma_{i,j}}u\nabla_{\Gamma_{i,j}}v\bigr{)}\,d\sigma.\end{array}

We introduce the discret algorithm : let (gi,j,h1)(g^{1}_{i,j,h}) be a given initial guess in 𝒫d(𝒱hi,j,𝒯i){\cal P}_{d}({\cal V}_{h}^{i,j},{\cal T}_{i}), for 1iI1\leq i\leq I, j𝒩ij\in{\cal N}_{i}. Let Ui,hkU_{i,h}^{k} be the approximation of uiku_{i}^{k} in 𝒫d(Vhi,𝒯j){\cal P}_{d}(V_{h}^{i},{\cal T}_{j}). Then, at iteration k1k\geq 1, we solve the subdomain problem in Ωi\Omega_{i}:

Ωi(t(iUi,hk)vi,h+a~i(Ui,hk,vi,h))dx+<Ci,jUi,hk,vi,h>Γi,j=ΩiPifvi,h𝑑x+Γi,jgi,j,hkvi,h𝑑σ, in (0,T),vi,hVhi,\int_{\Omega_{i}}\bigl{(}\partial_{t}({\cal I}^{i}U_{i,h}^{k})v_{i,h}+\tilde{a}_{i}(U_{i,h}^{k},v_{i,h})\bigr{)}\,dx\,+<C_{i,j}U_{i,h}^{k},v_{i,h}>_{\Gamma_{i,j}}\\ =\int_{\Omega_{i}}P^{i}fv_{i,h}\,dx+\int_{\Gamma_{i,j}}g_{i,j,h}^{k}v_{i,h}\,d\sigma,\mbox{ in }(0,T),\ \forall v_{i,h}\in V_{h}^{i}, (4.24)

For k2k\geq 2, vh𝒱hi,jv_{h}\in{\cal V}_{h}^{i,j}, we define

Γi,jgi,j,hkvh𝑑σ:=PiΓi,jg~j,i,hkvh𝑑σ,\int_{\Gamma_{i,j}}g_{i,j,h}^{k}v_{h}\,d\sigma:=P^{i}\int_{\Gamma_{i,j}}\tilde{g}_{j,i,h}^{k}v_{h}\,d\sigma, (4.25)

with

Γi,jg~j,i,hkvh𝑑σ:=Γi,jgj,i,hk1vh𝑑σ+<Cj,iUj,hk1+C~i,jUj,hk1,vh>Γi,j.\int_{\Gamma_{i,j}}\tilde{g}_{j,i,h}^{k}v_{h}\,d\sigma:=-\int_{\Gamma_{i,j}}g^{k-1}_{j,i,h}v_{h}\,d\sigma+<C_{j,i}U_{j,h}^{k-1}+\widetilde{C}_{i,j}U_{j,h}^{k-1},v_{h}>_{\Gamma_{i,j}}.

In equation (4.25) we used the fact that the space of traces over each Γi,j\Gamma_{i,j} of elements of VhiV_{h}^{i} is the same as the space of traces over each Γi,j\Gamma_{i,j} of elements of VhjV_{h}^{j}. For the computation of the right-hand side in (4.24), we follow the same steps as in section 4.1.2, where we replace g~j,ik\tilde{g}_{j,i}^{k} with 𝒈~j,i,hk𝒱hi,j\tilde{\boldsymbol{g}}_{j,i,h}^{k}\in{\cal V}_{h}^{i,j} defined by

𝒈~j,i,hk=(Γi,jg~j,i,hχ1,hi,j𝑑σ,,Γi,jg~j,i,hχni,j,hi,j𝑑σ)t,\tilde{\boldsymbol{g}}_{j,i,h}^{k}=\bigl{(}\int_{\Gamma_{i,j}}\tilde{g}_{j,i,h}\chi^{i,j}_{1,h}\,d\sigma,...,\int_{\Gamma_{i,j}}\tilde{g}_{j,i,h}\chi^{i,j}_{n^{i,j},h}\,d\sigma\bigr{)}^{t},

and we replace G~m,αi,k\tilde{G}^{i,k}_{m,\alpha} with G~m,α,hi,k𝒱hi,j\tilde{G}^{i,k}_{m,\alpha,h}\in{\cal V}_{h}^{i,j} solution of

α=0dG~m,α,hj,kImjφm,αjφm,βj𝑑s=Imj𝒈~j,i,hkφm,βj,β{0,,d}.\sum_{\alpha=0}^{d}\tilde{G}^{j,k}_{m,\alpha,h}\int_{I_{m}^{j}}\varphi_{m,\alpha}^{j}\varphi_{m,\beta}^{j}\,ds=\int_{I_{m}^{j}}\tilde{\boldsymbol{g}}^{k}_{j,i,h}\varphi_{m,\beta}^{j},\quad\beta\in\{0,...,d\}. (4.26)

The discrete formulation in the cases d=0d=0 and d=1d=1 are obtained from (4.12) and (4.13), by replacing i{\cal B}_{i} by VhiV_{h}^{i}.

When the space grids are nonconforming, following [8], we cannot replace directly i{\cal B}_{i} by the finite element space VhiV_{h}^{i} in the variational formulation. We have to consider equation (4.3) (i.e. (4.7) for d=0d=0, and (4.11) for d=1d=1).

4.2.2 Nonconforming case

In this section we extend the nonconforming approach in [8]. We consider the mortar spaces W~hi,j\tilde{W}_{h}^{i,j} as in [8]. Let mi,jm^{i,j} be the dimension of W~hi,j\tilde{W}_{h}^{i,j} and (ψk,hi,j)1kmi,j(\psi^{i,j}_{k,h})_{1\leq k\leq m^{i,j}} the finite element basis functions of W~hi,j\tilde{W}_{h}^{i,j}. We introduce the discrete algorithm : let (Ui,hk1,Qi,hk1)𝒫d(Vhi,𝒯i)×𝒫d(W~hi,j,𝒯i)(U_{i,h}^{k-1},Q_{i,h}^{k-1})\in{\cal P}_{d}(V_{h}^{i},{\cal T}_{i})\times{\cal P}_{d}(\tilde{W}_{h}^{i,j},{\cal T}_{i}) be a discrete approximation of (Uik1,νi𝒏iUik1)(U_{i}^{k-1},\nu_{i}\partial_{\boldsymbol{n}_{i}}U^{k-1}_{i}) in Ωi\Omega_{i} at step k1k-1. Then (Ui,hk,Qi,hk)(U_{i,h}^{k},Q_{i,h}^{k}) is the solution in 𝒫d(Vhi,𝒯i)×𝒫d(W~hi,j,𝒯i){\cal P}_{d}(V_{h}^{i},{\cal T}_{i})\times{\cal P}_{d}(\tilde{W}_{h}^{i,j},{\cal T}_{i}) of

ddt(iUi,hk,vi,h)i+a~i(Ui,hk,vi,h)i+Γi,j(Qi,hk𝒃i𝒏i2Ui,hk)vi,h𝑑σ=(Pif,vi,h)i, in (0,T),vi,hVhi,Γi,j(Qi,hk𝒃i𝒏iUi,hk+pi,jUi,hk)ψhi,j𝑑σ+Γi,j(qi,j(t(iUi,hk)+Γi,j(𝒓i,jUi,hk))ψhi,j+qi,jsi,jΓi,jUi,hkΓi,jψhi,j)𝑑σ=Γi,jPi(Qj,hk1𝒃j𝒏iUj,hk1+pi,jUj,hk1)ψhi,j𝑑σ+Γi,jPi(qi,j(t(jUj,hk1)+Γi,j(𝒓i,jUj,hk1))ψhi,j+qi,jsi,jΓi,jUj,hk1Γi,jψhi,j)𝑑σ on (0,T),ψhi,jW~hi,j,j𝒩i.\displaystyle\begin{array}[]{l}\displaystyle\frac{d\,}{dt}\,({\cal I}^{i}U_{i,h}^{k},v_{i,h})_{i}+\tilde{a}_{i}(U_{i,h}^{k},v_{i,h})_{i}\\ \hskip 56.9055pt+\displaystyle\int_{\Gamma_{i,j}}(Q_{i,h}^{k}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2}U_{i,h}^{k})v_{i,h}d\sigma=(P^{i}f,v_{i,h})_{i},\mbox{ in }(0,T),\ \forall v_{i,h}\in V^{i}_{h},\\[14.22636pt] \displaystyle\int_{\Gamma_{i,j}}\bigl{(}Q_{i,h}^{k}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}U_{i,h}^{k}+p_{i,j}\,U_{i,h}^{k}\bigr{)}\psi_{h}^{i,j}\,d\sigma\\ \displaystyle+\int_{\Gamma_{i,j}}\bigl{(}q_{i,j}(\partial_{t}({\cal I}^{i}U_{i,h}^{k})+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}U_{i,h}^{k}))\psi_{h}^{i,j}+q_{i,j}s_{i,j}\nabla_{\Gamma_{i,j}}U_{i,h}^{k}\nabla_{\Gamma_{i,j}}\psi_{h}^{i,j}\bigr{)}\,d\sigma\\ \hskip 56.9055pt\displaystyle=\int_{\Gamma_{i,j}}P^{i}\bigl{(}-Q_{j,h}^{k-1}-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i}U_{j,h}^{k-1}+p_{i,j}\,U_{j,h}^{k-1}\bigr{)}\psi_{h}^{i,j}\,d\sigma\\ \displaystyle+\int_{\Gamma_{i,j}}P^{i}\bigl{(}q_{i,j}(\partial_{t}({\cal I}^{j}U_{j,h}^{k-1})+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}U_{j,h}^{k-1}))\psi_{h}^{i,j}+q_{i,j}s_{i,j}\nabla_{\Gamma_{i,j}}U_{j,h}^{k-1}\nabla_{\Gamma_{i,j}}\psi_{h}^{i,j}\bigr{)}\,d\sigma\\ \mbox{ on }(0,T),\quad\forall\psi_{h}^{i,j}\in\tilde{W}_{h}^{i,j},j\in{\cal N}_{i}.\end{array} (4.34)

We give first the interior scheme for d=0d=0 and d=1d=1 and then the computation of the right-hand side in the transmission condition of (4.34).

Interior scheme. The discrete problem in subdomain 𝒪=Ωi{\mathcal{O}}=\Omega_{i} in (4.34) is defined as follows : find (Uh,Qh):=(Ui,hk,Qi,hk)(U_{h},Q_{h}):=(U_{i,h}^{k},Q_{i,h}^{k}) in 𝒫d(Vhi,𝒯i)×𝒫d(W~hi,j,𝒯i){\cal P}_{d}(V_{h}^{i},{\cal T}_{i})\times{\cal P}_{d}(\tilde{W}_{h}^{i,j},{\cal T}_{i}) solution of

ddt(Uh,vh)+a~(Uh,vh)+Γ(Qh𝒃𝒏2Uh)vh𝑑σ=(Pf,vh), in (0,T),vhVhi,Γ((Q𝒃𝒏Uh+pUh+q(t(Uh)+Γ(𝒓Uh)))ψh+qsΓUhΓψh)𝑑σ=Γ(Pg)ψh𝑑σ, on (0,T),ψhW~hi,j.\displaystyle\begin{array}[]{l}\displaystyle\frac{d\,}{dt}\,({\cal I}U_{h},v_{h})+\tilde{a}(U_{h},v_{h})+\int_{\Gamma}(Q_{h}-\frac{\boldsymbol{b}\cdot\boldsymbol{n}}{2}U_{h})v_{h}d\sigma=(Pf,v_{h}),\ \mbox{ in }(0,T),\ \forall v_{h}\in V^{i}_{h},\\ \displaystyle\int_{\Gamma}\bigl{(}(Q-\boldsymbol{b}\cdot\boldsymbol{n}U_{h}+p\,U_{h}+q(\partial_{t}({\cal I}U_{h})+\nabla_{\Gamma}\cdot(\boldsymbol{r}U_{h})))\psi_{h}+qs\nabla_{\Gamma}U_{h}\nabla_{\Gamma}\psi_{h}\bigr{)}\,d\sigma\\ =\int_{\Gamma}(Pg)\psi_{h}\,d\sigma,\ \mbox{ on }(0,T),\ \forall\psi_{h}\in\tilde{W}_{h}^{i,j}.\end{array} (4.38)

In the cases d=0d=0 and d=1d=1 we obtain

Case d=0d=0

In that case, the approximating functions are piecewise constant in time: Uh(t)=Uhn+1=Uh,+nU_{h}(t)=U_{h}^{n+1}=U_{h,+}^{n} and Qh(t)=Qhn+1=Qh,+nQ_{h}(t)=Q_{h}^{n+1}=Q_{h,+}^{n} on IniI_{n}^{i}, and the discrete problem reduces to find (Uhn+1,Qhn+1)Vhi×W~hi,j(U_{h}^{n+1},Q_{h}^{n+1})\in V^{i}_{h}\times\tilde{W}_{h}^{i,j} solution of

(Uhn+1kn,vh)+a~(Uhn+1,vh)+Γ(Qhn+1𝒃𝒏2Uhn+1)vh𝑑σ=(Uhnkn,vh)+1knIn(f(,s),vh)𝑑s,vhVhi,Γ(Qhn+1𝒃𝒏Uhn+1+pUhn+1+q(Uhn+1kn+Γ(𝒓Uhn+1))ψh+qsΓUhn+1Γψh)𝑑σ=ΓqUhnknψh𝑑σ+1knInΓg(s)ψh𝑑σ𝑑s,ψhW~hi,j.\displaystyle\begin{array}[]{c}\displaystyle(\frac{U_{h}^{n+1}}{k_{n}},v_{h})+\tilde{a}(U_{h}^{n+1},v_{h})+\int_{\Gamma}(Q_{h}^{n+1}-\frac{\boldsymbol{b}\cdot\boldsymbol{n}}{2}U_{h}^{n+1})v_{h}d\sigma\\ \displaystyle=(\frac{U_{h}^{n}}{k_{n}},v_{h})+\frac{1}{k_{n}}\int_{I_{n}}(f(\cdot,s),v_{h})\,ds,\forall v_{h}\in V^{i}_{h},\\ \displaystyle\int_{\Gamma}\bigl{(}Q_{h}^{n+1}-\boldsymbol{b}\cdot\boldsymbol{n}U_{h}^{n+1}+p\,U_{h}^{n+1}+q(\frac{U_{h}^{n+1}}{k_{n}}+\nabla_{\Gamma}\cdot(\boldsymbol{r}U_{h}^{n+1}))\psi_{h}+qs\nabla_{\Gamma}U_{h}^{n+1}\nabla_{\Gamma}\psi_{h}\bigr{)}\,d\sigma\\ \displaystyle=\int_{\Gamma}q\frac{U_{h}^{n}}{k_{n}}\psi_{h}\,d\sigma+\frac{1}{k_{n}}\int_{I_{n}}\int_{\Gamma}g(s)\psi_{h}\,d\sigma\,ds,\forall\psi_{h}\in\tilde{W}_{h}^{i,j}.\end{array} (4.43)

Case d=1d=1

In that case, we write Uh(t)=U0,hn+1+2ttn+1/2knU1,hn+1U_{h}(t)=U^{n+1}_{0,h}+2\frac{t-t_{n+1/2}}{k_{n}}U_{1,h}^{n+1} and Qh(t)=Q0,hn+1+2ttn+1/2knQ1,hn+1Q_{h}(t)=Q^{n+1}_{0,h}+2\frac{t-t_{n+1/2}}{k_{n}}Q_{1,h}^{n+1} on IniI_{n}^{i}, Uhn=Uh(tn)U_{h}^{n}=U_{h}(t_{n}), and the discrete problem reduces to find (U0,hn+1,Q0,hn+1)(U^{n+1}_{0,h},Q^{n+1}_{0,h}) and (U1,hn+1,Q1,hn+1)(U^{n+1}_{1,h},Q^{n+1}_{1,h}) in Vhi×W~hi,jV^{i}_{h}\times\tilde{W}_{h}^{i,j} solution of the system

1kn(U0,hn+1+U1,hn+1,vh)+a~(U0,hn+1,vh)+Γ(Q0,hn+1𝒃𝒏2U0,hn+1)vh𝑑σ=(Unkn,vh)+1knIn(f,vh)𝑑s,vhVhi,3kn(U0,hn+1+U1,hn+1,wh)+a~(U1,hn+1,wh)+Γ(Q0,hn+1𝒃𝒏2U0,hn+1)wh𝑑σ=(3Unkn,wh)+6knInstn+1/2kn(f,wh)𝑑s,whVhi,Γ(Q0,hn+1𝒃𝒏U0,hn+1+pU0,hn+1+qkn(U0,hn+1+U1,hn+1)+qΓ(𝒓U0,hn+1))ψh𝑑σ+ΓqsΓU0,hn+1Γψhdσ=ΓqUnknψh𝑑σ+1knInΓgψh𝑑σ𝑑s,ψhW~hi,j,Γ(Q1,hn+1𝒃𝒏U1,hn+1+pU1,hn+1+3qkn(U0,hn+1+U1,hn+1)+qΓ(𝒓U1,hn+1))ζh𝑑σ+ΓqsΓU1,hn+1Γζhdσ=Γq3Unknζh𝑑σ+6knInstn+1/2knΓgζh𝑑σ𝑑s,ζhW~hi,j.\displaystyle\begin{array}[]{l}\displaystyle\frac{1}{k_{n}}(U_{0,h}^{n+1}+U_{1,h}^{n+1},v_{h})+\tilde{a}(U_{0,h}^{n+1},v_{h})+\int_{\Gamma}(Q_{0,h}^{n+1}-\frac{\boldsymbol{b}\cdot\boldsymbol{n}}{2}U_{0,h}^{n+1})v_{h}\,d\sigma\\ \displaystyle\hskip 85.35826pt=(\frac{U^{n}}{k_{n}},v_{h})+\frac{1}{k_{n}}\int_{I_{n}}(f,v_{h})\,ds,\quad\forall v_{h}\in V^{i}_{h},\\ \displaystyle\frac{3}{k_{n}}(-U_{0,h}^{n+1}+U_{1,h}^{n+1},w_{h})+\tilde{a}(U_{1,h}^{n+1},w_{h})+\int_{\Gamma}(Q_{0,h}^{n+1}-\frac{\boldsymbol{b}\cdot\boldsymbol{n}}{2}U_{0,h}^{n+1})w_{h}\,d\sigma\\ \displaystyle\hskip 85.35826pt=-(\frac{3U^{n}}{k_{n}},w_{h})+\frac{6}{k_{n}}\int_{I_{n}}\frac{s-t_{n+1/2}}{k_{n}}(f,w_{h})\,ds,\quad\forall w_{h}\in V^{i}_{h},\\[11.38109pt] \displaystyle\int_{\Gamma}\bigl{(}Q_{0,h}^{n+1}-\boldsymbol{b}\cdot\boldsymbol{n}U_{0,h}^{n+1}+p\,U_{0,h}^{n+1}+\frac{q}{k_{n}}(U_{0,h}^{n+1}+U_{1,h}^{n+1})+q\nabla_{\Gamma}\cdot(\boldsymbol{r}U_{0,h}^{n+1})\bigr{)}\psi_{h}\,d\sigma\\[8.53581pt] \hskip 14.22636pt\displaystyle+\int_{\Gamma}qs\nabla_{\Gamma}U_{0,h}^{n+1}\nabla_{\Gamma}\psi_{h}\,d\sigma=\int_{\Gamma}q\frac{U^{n}}{k_{n}}\psi_{h}\,d\sigma+\frac{1}{k_{n}}\int_{I_{n}}\int_{\Gamma}g\psi_{h}\,d\sigma\,ds,\quad\forall\psi_{h}\in\tilde{W}_{h}^{i,j},\\[8.53581pt] \displaystyle\int_{\Gamma}\bigl{(}Q_{1,h}^{n+1}-\boldsymbol{b}\cdot\boldsymbol{n}U_{1,h}^{n+1}+p\,U_{1,h}^{n+1}+\frac{3q}{k_{n}}(-U_{0,h}^{n+1}+U_{1,h}^{n+1})+q\nabla_{\Gamma}\cdot(\boldsymbol{r}U_{1,h}^{n+1})\bigr{)}\zeta_{h}\,d\sigma\\[8.53581pt] \displaystyle+\int_{\Gamma}qs\nabla_{\Gamma}U_{1,h}^{n+1}\nabla_{\Gamma}\zeta_{h}\,d\sigma=-\int_{\Gamma}q\frac{3U^{n}}{k_{n}}\zeta_{h}\,d\sigma+\frac{6}{k_{n}}\int_{I_{n}}\frac{s-t_{n+1/2}}{k_{n}}\int_{\Gamma}g\zeta_{h}\,d\sigma\,ds,\quad\forall\zeta_{h}\in\tilde{W}_{h}^{i,j}.\end{array} (4.52)

Transmission terms. Let (Ui,h0,Qi,h0)𝒫d(Vhi,𝒯i)×𝒫d(W~hi,j,𝒯i)(U_{i,h}^{0},Q_{i,h}^{0})\in{\cal P}_{d}(V_{h}^{i},{\cal T}_{i})\times{\cal P}_{d}(\tilde{W}_{h}^{i,j},{\cal T}_{i}) be a given initial guess, for 1iI1\leq i\leq I. Then, at iteration k1k\geq 1, we solve the subdomain problem in Ωi\Omega_{i} :

ddt(iUi,hk,vi,h)i+a~i(Ui,hk,vi,h)i+Γi,j(Qi,hk𝒃i𝒏i2Ui,hk)vi,h𝑑σ=(Pif,vi,h)i, in (0,T),vi,hVhi,Γi,j(Qi,hk𝒃i𝒏iUi,hk+pi,jUi,hk)ψhi,j𝑑σ+Γi,j(qi,j(t(iUi,hk)+Γi,j(𝒓i,jUi,hk))ψhi,j+qi,jsi,jΓi,jUi,hkΓi,jψhi,j)𝑑σ=Pig~h((Uj,hk1,Qj,hk1),ψhi,j), on (0,T),ψhi,jW~hi,j,j𝒩i,\displaystyle\begin{array}[]{l}\displaystyle\frac{d\,}{dt}\,({\cal I}^{i}U_{i,h}^{k},v_{i,h})_{i}+\tilde{a}_{i}(U_{i,h}^{k},v_{i,h})_{i}\\ \hskip 56.9055pt+\displaystyle\int_{\Gamma_{i,j}}(Q_{i,h}^{k}-\frac{\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}}{2}U_{i,h}^{k})v_{i,h}d\sigma=(P^{i}f,v_{i,h})_{i},\mbox{ in }(0,T),\ \forall v_{i,h}\in V^{i}_{h},\\[14.22636pt] \displaystyle\int_{\Gamma_{i,j}}\bigl{(}Q_{i,h}^{k}-\boldsymbol{b}_{i}\cdot\boldsymbol{n}_{i}U_{i,h}^{k}+p_{i,j}\,U_{i,h}^{k}\bigr{)}\psi_{h}^{i,j}\,d\sigma\\ \displaystyle+\int_{\Gamma_{i,j}}\bigl{(}q_{i,j}(\partial_{t}({\cal I}^{i}U_{i,h}^{k})+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}U_{i,h}^{k}))\psi_{h}^{i,j}+q_{i,j}s_{i,j}\nabla_{\Gamma_{i,j}}U_{i,h}^{k}\nabla_{\Gamma_{i,j}}\psi_{h}^{i,j}\bigr{)}\,d\sigma\\ \hskip 56.9055pt\displaystyle=P^{i}\tilde{g}_{h}((U_{j,h}^{k-1},Q_{j,h}^{k-1}),\psi_{h}^{i,j}),\mbox{ on }(0,T),\quad\forall\psi_{h}^{i,j}\in\tilde{W}_{h}^{i,j},j\in{\cal N}_{i},\end{array} (4.58)

with, for k1k\geq 1,

g~h((U,Q),ψ):=Γi,j(Q+𝒃j𝒏jU+pi,jU)ψ𝑑σ+Γi,jqi,j(t(jU)+Γi,j(𝒓i,jU))ψ+qi,jsi,jΓi,jUΓi,jψ)dσ.\displaystyle\begin{array}[]{l}\tilde{g}_{h}((U,Q),\psi):=\int_{\Gamma_{i,j}}\bigl{(}-Q+\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{j}U+p_{i,j}\,U\bigr{)}\psi\,d\sigma\\ \displaystyle+\int_{\Gamma_{i,j}}q_{i,j}(\partial_{t}({\cal I}^{j}U)+\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}U))\psi+q_{i,j}s_{i,j}\nabla_{\Gamma_{i,j}}U\nabla_{\Gamma_{i,j}}\psi\bigr{)}\,d\sigma.\end{array} (4.61)

For the computation of the right-hand side in (4.58), we follow the same steps as in section 4.1.2, where we replace g~j,ik\tilde{g}_{j,i}^{k} with

𝒈~j,i,hk=(g~h((Uj,hk1,Qj,hk1),ψ1,hi,j),,g~h((Uj,hk1,Qj,hk1),ψmi,j,hi,j))t,\tilde{\boldsymbol{g}}_{j,i,h}^{k}=\bigl{(}\tilde{g}_{h}((U_{j,h}^{k-1},Q_{j,h}^{k-1}),\psi_{1,h}^{i,j}),...,\tilde{g}_{h}((U_{j,h}^{k-1},Q_{j,h}^{k-1}),\psi_{m^{i,j},h}^{i,j})\bigr{)}^{t},

and we replace G~m,αi,k\tilde{G}^{i,k}_{m,\alpha} with G~m,α,hi,kW~hi,j\tilde{G}^{i,k}_{m,\alpha,h}\in\tilde{W}_{h}^{i,j} solution of

α=0dG~m,α,hj,kImjφm,αjφm,βj𝑑s=Imj𝒈~j,i,hkφm,βj,β{0,,d}.\sum_{\alpha=0}^{d}\tilde{G}^{j,k}_{m,\alpha,h}\int_{I_{m}^{j}}\varphi_{m,\alpha}^{j}\varphi_{m,\beta}^{j}\,ds=\int_{I_{m}^{j}}\tilde{\boldsymbol{g}}^{k}_{j,i,h}\varphi_{m,\beta}^{j},\quad\beta\in\{0,...,d\}. (4.62)

For the computation of 𝒈~j,i,hk\tilde{\boldsymbol{g}}_{j,i,h}^{k}, we write (Uj,hk1)|Γi,j=l=1nj,iuj,lhχl,hj,i(U_{j,h}^{k-1})_{|_{\Gamma_{i,j}}}=\sum_{l=1}^{n^{j,i}}u_{j,l}^{h}\chi^{j,i}_{l,h}, and Qj,hk1==1mj,izj,hψ,hj,iQ_{j,h}^{k-1}=\sum_{\ell=1}^{m^{j,i}}z_{j,\ell}^{h}\psi^{j,i}_{\ell,h}, and introduce 𝑸j,hk1=(zj,1h,,zj,mj,ih)t\boldsymbol{Q}_{j,h}^{k-1}=(z_{j,1}^{h},...,z_{j,m^{j,i}}^{h})^{t}, 𝑼j,hk1=(uj,1h,,uj,nj,ih)t\boldsymbol{U}_{j,h}^{k-1}=(u_{j,1}^{h},...,u_{j,n^{j,i}}^{h})^{t}, and the projection matrices, for 1kmi,j, 1lmj,i1\leq k\leq m^{i,j},\,1\leq l\leq m^{j,i}, and 1nj,i1\leq\ell\leq n^{j,i},

(𝕄~hi,j)k,l=Γi,jψk,hi,jψl,hj,i𝑑σ,(𝕄hi,j)k,=Γi,jψk,hi,jχ,hj,i𝑑σ,(𝕄b,hi,j)k,=Γi,j(𝒃j𝒏i+pi,j)ψk,hi,jχ,hj,i𝑑σ,(𝔹r,hi,j)k,=Γi,jΓi,j(𝒓i,jχ,hj,i)ψk,hi,j𝑑σ,(𝕂s,hi,j)k,=Γi,jqi,jsi,jΓi,jχ,hj,iΓi,jψk,hi,jdσ.(\widetilde{\mathbb{M}}_{h}^{i,j})_{k,l}=\int_{\Gamma_{i,j}}\psi^{i,j}_{k,h}\psi^{j,i}_{l,h}\,d\sigma,\ (\mathbb{M}_{h}^{i,j})_{k,\ell}=\int_{\Gamma_{i,j}}\psi^{i,j}_{k,h}\chi^{j,i}_{\ell,h}\,d\sigma,\\ (\mathbb{M}_{b,h}^{i,j})_{k,\ell}=\int_{\Gamma_{i,j}}(-\boldsymbol{b}_{j}\cdot\boldsymbol{n}_{i}+p_{i,j})\psi^{i,j}_{k,h}\chi^{j,i}_{\ell,h}\,d\sigma,\\ (\mathbb{B}_{r,h}^{i,j})_{k,\ell}=\int_{\Gamma_{i,j}}\nabla_{\Gamma_{i,j}}\cdot(\boldsymbol{r}_{i,j}\chi^{j,i}_{\ell,h})\psi^{i,j}_{k,h}\,d\sigma,\ (\mathbb{K}_{s,h}^{i,j})_{k,\ell}=\int_{\Gamma_{i,j}}q_{i,j}s_{i,j}\nabla_{\Gamma_{i,j}}\chi^{j,i}_{\ell,h}\nabla_{\Gamma_{i,j}}\psi^{i,j}_{k,h}\,d\sigma.

Then

𝒈~j,i,hk=𝕄~hi,j𝑸j,hk1+t(j𝕄hi,j𝑼j,hk1)+(𝕄b,hi,j+𝔹r,hi,j+𝕂s,hi,j)𝑼j,hk1.\tilde{\boldsymbol{g}}_{j,i,h}^{k}=-\widetilde{\mathbb{M}}_{h}^{i,j}\boldsymbol{Q}_{j,h}^{k-1}+\partial_{t}({\cal I}^{j}\mathbb{M}_{h}^{i,j}\boldsymbol{U}_{j,h}^{k-1})+(\mathbb{M}_{b,h}^{i,j}+\mathbb{B}_{r,h}^{i,j}+\mathbb{K}_{s,h}^{i,j})\boldsymbol{U}_{j,h}^{k-1}. (4.63)

The projection matrices are computed using the projection algorithm in [8].

5 Numerical Results

We have implemented the algorithm with d=1d=1 and 𝐏1\mathbf{P}_{1} finite elements in space in each subdomain. Time windows are used in order to reduce the number of iterations of the algorithm. For the free parameters defining Si,jS_{i,j} and S~i,j\tilde{S}_{i,j}, we chose ri,jr_{i,j} to be the tangential component of the advection, si,js_{i,j} the value of the diffusion in the domain Ωj\Omega_{j}. The optimized parameters pi,jp_{i,j} and qi,jq_{i,j} are constant along the interface. They correspond to a mean value of the parameters obtained by a numerical optimization of the convergence factor [6].

We first give an example of a multidomain solution with discontinuous variable diffusion, for two subdomains and one time window. The advection velocity is also discontinuous, taken normal to the interface in one subdomain, and tangential to the interface in the other subdomain. The latter case of a flow tangential to the interface is difficult when the interface conditions are not related to the convergence factor of the domain decomposition method (see for example [12]).

The physical domain is Ω=(0,1)×(0,2)\Omega=(0,1)\times(0,2), the final time is T=1T=1. The initial value is u0=0.25e100((x0.55)2+(y1.7)2)u_{0}=0.25e^{-100((x-0.55)^{2}+(y-1.7)^{2})} and the right-hand side is f=0f=0. The domain Ω×(0,2)\Omega\times(0,2) is split into two subdomains Ω1=(0,0.5)×(0,2)\Omega_{1}=(0,0.5)\times(0,2) and Ω2=(0.5,1)×(0,2)\Omega_{2}=(0.5,1)\times(0,2). The reaction cc is zero, the advection and diffusion coefficients are 𝒃1=(0,1)\boldsymbol{b}_{1}=(0,-1), ν1=0.001y\nu_{1}=0.001\sqrt{y}, and 𝒃2=(0.1,0)\boldsymbol{b}_{2}=(-0.1,0), ν2=0.1sin(xy)\nu_{2}=0.1\sin(xy). The mesh size over the interface and time step in Ω1\Omega_{1} are h1=1/32h_{1}=1/32 and k1=1/128k_{1}=1/128, while in Ω2\Omega_{2}, h2=1/24h_{2}=1/24 and k2=1/94k_{2}=1/94. In Figure 2, we observe, at final time T=1T=1, that the approximate solution computed using 3 iterations (right figure) is close to the variational solution computed in one time window on a time conforming finergrid (left figure).

Refer to caption
Refer to caption
Fig. 2: Variational (left) and nonconforming (right) DG-OSWR solutions

We analyze now the precision in time. The space mesh is conforming and the converged solution is such that the residual is smaller than 10810^{-8}. We compute a variational reference solution on a time grid with 4096 time steps. The nonconforming solutions are interpolated on the previous grid to compute the error. We start with a time grid with 128 time steps for the left domain and 94 time steps for the right domain. Thereafter the time step is divided by 2 several times. Figure 3 shows the norms of the error in L(I;L2(Ωi))L^{\infty}(I;L^{2}(\Omega_{i})) versus the number of refinements, for both subdomains. First we observe the order 22 in time for the nonconforming case. This fits the theoretical estimates, even though we have theoretical results only for Robin transmission conditions. Moreover, the error obtained in the nonconforming case, in the subdomain where the grid is finer, is nearly the same as the error obtained in the conforming finer case.

Refer to caption
Fig. 3: Error between variational and DG-OSWR solutions versus the refinement in time

The computations are done using Order 2 transmission conditions. Indeed, the error between the multidomain and the variational solutions decrease much faster with the Order 2 transmissions conditions than with the Robin transmissions conditions as we can see in Figure 4, in the conforming case.

Refer to caption
Fig. 4: Convergence history for different transmission conditions

We now consider the advection-diffusion equation with discontinuous porosity ω\omega:

ωtu+(𝒃uνu)=0.\displaystyle\omega\partial_{t}u+\nabla\cdot({\boldsymbol{b}}u-\nu\nabla u)=0.

The physical domain is Ω=(0,1)×(0,2)\Omega=(0,1)\times(0,2), the final time is T=1.5T=1.5. Ω\Omega is split into two subdomains. The interface Γ\Gamma is parametrized with a Hermite polynomial (12+((2s1)3+2(2s1)2+(2s1))11s12+((2s1)32(2s1)2+(2s1))11s12), 0<s<1({1\over 2}+((2s-1)^{3}+2(2s-1)^{2}+(2s-1))\displaystyle{1\!\!1_{s\leq{1\over 2}}}+((2s-1)^{3}-2(2s-1)^{2}+(2s-1))\displaystyle{1\!\!1_{s\geq{1\over 2}}}),\,0<s<1, see Figure 5. The advection, diffusion and porosity coefficients are
 𝒃1=(sin(π2(y1))cos(π(x12)),3cos(π2(y1))sin(π(x12)))\boldsymbol{b}_{1}=(-sin({\pi\over 2}(y-1))cos(\pi(x-{1\over 2})),3cos({\pi\over 2}(y-1))sin(\pi(x-{1\over 2}))), ν1=0.003\nu_{1}=0.003, ω1=0.1\omega_{1}=0.1,
𝒃2=𝒃1\boldsymbol{b}_{2}=\boldsymbol{b}_{1}, ν2=0.01\nu_{2}=0.01, ω2=1\omega_{2}=1.

Refer to caption
Fig. 5: Domains Ω1\Omega_{1} (left) and Ω2\Omega_{2} (right)

We first consider a conforming grid in space. The time step in Ω1\Omega_{1} is k1=1/180k_{1}=1/180, while in Ω2\Omega_{2}, k2=1/100k_{2}=1/100. In Figure 6, we observe, at final time T=1.5T=1.5, the approximate solution computed using ten time windows and 5 iterations in each time window. It is close to the variational solution computed in one time window on the conforming finer space-time grid as shown on the error, in Figure 7. Refer to caption Fig. 6: DG-OSWR solution after 10 time windows and 5 iterations per window Refer to caption Fig. 7: Error with variational solution after 10 time windows and 5 iterations per window

We analyze in Figure 8 the precision versus the time step. The converged solution is such that the residual is smaller than 101210^{-12}. A variational reference solution is computed on a time grid with 7680 time steps. The time nonconforming solutions are interpolated on the previous grid to compute the error. We start with a time grid with 120 time steps for the left domain and 26 time steps for the right domain and divide by 2 the time steps several times. Figure 8 shows the norms of the error in L(I;L2(Ωi))L^{\infty}(I;L^{2}(\Omega_{i})) versus the time steps, for both subdomains.

Refer to caption
Fig. 8: Error curves versus the refinement in time

We observe the order 22 in time for the nonconforming case that fits the theoretical estimates. In Figure 8 we show also the norms of the error in L2(Ωi)L^{2}(\Omega_{i}) at final time t=Tt=T versus the time steps, for both subdomains. We observe the order 33 for the time nonconforming case. This corresponds to the superconvergence behavior described in [13].

We now consider nonconforming grids in space as well. The mesh size and time step in Ω1\Omega_{1} are h1=0.032h_{1}=0.032 and k1=1/120k_{1}=1/120, while in Ω2\Omega_{2}, h2=0.048h_{2}=0.048 and k2=1/26k_{2}=1/26. In Figure 9 we observe, at final time T=1.5T=1.5, that the approximate solution computed using 5 iterations in one time window is close to the solution computed with the conformal in space grid in Figure 6, left. In Figure 10 and 11 we observe the precision versus the mesh size. The converged solution is such that the residual is smaller than 101210^{-12}. A variational reference solution is computed on a time grid with 960 time steps and a space grid with mesh size h=3.5 103h=3.5\,10^{-3}. The space-time nonconforming solutions are interpolated on the previous grid to compute the error. We start with a time grid with 60 time steps and a mesh size h1=0.056h_{1}=0.056 for the left domain and 20 time steps a mesh size h2=0.11h_{2}=0.11 for the right domain and divide by 2 the time step and mesh size several times. Figure 10 shows the norms of the error in L2(I;L2(Ωi))L^{2}(I;L^{2}(\Omega_{i})) versus the time steps, for both subdomains. We observe the order 22 for the nonconforming space-time case, even though we have theoretical results only for the time semi-discrete case. Figure 11 displays the norms of the error in L2(Ωi)L^{2}(\Omega_{i}) and in H1(Ωi)H^{1}(\Omega_{i}) at final time t=Tt=T versus the mesh size, for both subdomains. We observe the order 22 for the L2L^{2} error, and the order 11 for the H1H^{1} error for the nonconforming space-time case.

Refer to caption
Fig. 9: DG-OSWR solution after 5 iterations, in one time window
Refer to caption Fig. 10: Relative L2L^{2} error in time and space Refer to caption Fig. 11: L2L^{2} and H1H^{1} errors at the final time

6 Conclusion

We have proposed a new numerical method to solve parabolic equations with discontinuous coefficients. It relies on the splitting of the time interval into time windows, in which a few iterations of an optimized Schwarz waveform relaxation algorithm are performed by a discontinuous Galerkin method in time, with non conforming projection between space-time grids on the interfaces. We have shown theoretically in the Robin case that the method preserves the order of the discontinuous Galerkin method. Numerical estimates of the L2(I;L2(Ωi))L^{2}(I;L^{2}(\Omega_{i})) error and the H1H^{1} error at final time have shown that the method preserves the order of the space nonconforming scheme as well. The analysis of the fully discrete scheme will be done in a further work.

References

  • [1] D. Bennequin, M.J. Gander, and L.Halpern. A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Math. Comp., 78:185–223, 2009.
  • [2] E. Blayo, L. Halpern, and C. Japhet. Optimized Schwarz waveform relaxation algorithms with nonconforming time discretization for coupling convection-diffusion problems with discontinuous coefficients. In O.B. Widlund and D.E. Keyes, editors, Decomposition Methods in Science and Engineering XVI, volume 55 of Lecture Notes in Computational Science and Engineering, pages 267–274. Springer, 2007.
  • [3] Philippe Charton, Frédéric Nataf, and Francois Rogier. Méthode de décomposition de domaine pour l’équation d’advection-diffusion. C. R. Acad. Sci., 313(9):623–626, 1991.
  • [4] Martin J. Gander, Laurence Halpern, and Frédéric Nataf. Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation. In C-H. Lai, P. Bjørstad, M. Cross, and O. Widlund, editors, Eleventh international Conference of Domain Decomposition Methods. ddm.org, 1999.
  • [5] M.J. Gander and L. Halpern. Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM Journal on Numerical Analysis, 45(2):666–697, 2007.
  • [6] M.J. Gander, L. Halpern, and M. Kern. Schwarz waveform relaxation method for advection–diffusion–reaction problems with discontinuous coefficients and non-matching grids. In O.B. Widlund and D.E. Keyes, editors, Decomposition Methods in Science and Engineering XVI, volume 55 of Lecture Notes in Computational Science and Engineering, pages 916–920. Springer, 2007.
  • [7] M.J. Gander, L. Halpern, and F. Nataf. Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM Journal of Numerical Analysis, 41(5):1643–1681, 2003.
  • [8] M.J. Gander, C. Japhet, Y. Maday, and F. Nataf. A New Cement to Glue Nonconforming Grids with Robin Interface Conditions : The Finite Element Case. In R. Kornhuber, R. H. W. Hoppe, J. Périaux, O. Pironneau, O. B. Widlund, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering, volume 40 of Lecture Notes in Computational Science and Engineering, pages 259–266. Springer, 2005.
  • [9] L. Halpern and C. Japhet. Discontinuous Galerkin and Nonconforming in Time Optimized Schwarz Waveform Relaxation for Heterogeneous Problems. In U. Langer, M. Discacciati, D.E. Keyes, O.B. Widlund, and W. Zulehner, editors, Decomposition Methods in Science and Engineering XVII, volume 60 of Lecture Notes in Computational Science and Engineering, pages 211–219. Springer, 2008.
  • [10] L. Halpern, C. Japhet, and J. Szeftel. Discontinuous Galerkin and nonconforming in time optimized Schwarz waveform relaxation. In Proceedings of the Eighteenth International Conference on Domain Decomposition Methods, 2009. http://numerik.mi.fu-berlin.de/DDM/DD18/ in electronic form. To appear in printed form in the proceedings of DD19.
  • [11] L. Halpern, C. Japhet, and J. Szeftel. Space-time nonconforming Optimized Schwarz Waveform Relaxation for heterogeneous problems and general geometries. In Proceedings of the Eighteenth International Conference on Domain Decomposition Methods, 2010. accepted.
  • [12] Caroline Japhet. Méthode de décomposition de domaine et conditions aux limites artificielles en mécanique des fluides : méthode Optimisée d’Ordre 2 (OO2). PhD thesis, Université Paris 13, France, 1998.
  • [13] Claes Johnson and Kenneth Eriksson. Adaptive finite element methods for parabolic problems ii: Optimal error estimates in ll2l_{\infty}l_{2} and lll_{\infty}l_{\infty}. SIAM J. Numer.Anal., 32, 1995.
  • [14] Claes Johnson, Kenneth Eriksson, and Vidar Thomee. Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Modél. Math. Anal. Numér., 19, 1985.
  • [15] J-L Lions and E. Magenes. Problèmes aux limites non homogènes et applications, volume 18 of Travaux et recherches mathématiques. Dunod, 1968.
  • [16] C. Makridakis and R. Nochetto. A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math., 104, 2006.
  • [17] V. Martin. An optimized Schwarz waveform relaxation method for unsteady convection diffusion equation. Appl. Numer. Math., 52(4):401–428, 2005.
  • [18] Jérémie Szeftel. Absorbing boundary conditions for reaction-diffusion equations. IMA J. Appl. Math., 68(2):167–184, 2003.
  • [19] Jérémie Szeftel. Calcul pseudo-différentiel et para-différentiel pour l’étude des conditions aux limites absorbantes et des propriétés qualitatives des EDP non linéaires. PhD thesis, Université Paris 13, France, 2004.
  • [20] Vidar Thomee. Galerkin Finite Element Methods for Parabolic Problems. Springer, 1997.