This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Order Estimates for the Exact Lugannani–Rice Expansion

Takashi Kato ***Division of Mathematical Science for Social Systems, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan, E-mail: kato@sigmath.es.osaka-u.ac.jp    Jun Sekine Division of Mathematical Science for Social Systems, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan, E-mail: sekine@sigmath.es.osaka-u.ac.jp    Kenichi Yoshikawa Sumitomo Mitsui Banking Corporation, E-mail: k.yoshi6208@gmail.com
(First version: October 12, 2013
This version: June 15, 2014)
Abstract

The Lugannani–Rice formula is a saddlepoint approximation method for estimating the tail probability distribution function, which was originally studied for the sum of independent identically distributed random variables. Because of its tractability, the formula is now widely used in practical financial engineering as an approximation formula for the distribution of a (single) random variable. In this paper, the Lugannani–Rice approximation formula is derived for a general, parametrized sequence (X(ε))ε>0\displaystyle(X^{(\varepsilon)})_{\varepsilon>0} of random variables and the order estimates (as ε0\displaystyle\varepsilon\to 0) of the approximation are given.

000Mathematical Subject Classification (2010)   62E17, 91G60, 65D15
000JEL Classification (2010)  C63 , C65

Keywords: Saddlepoint approximation, The Lugannani–Rice formula, Order estimates, Asymptotic expansion, Stochastic volatility models

1 Introduction

Saddlepoint approximations (SPAs) provide effective methods for approximating probability density functions and tail probability distribution functions, using their cumulant generating functions (CGFs). In mathematical statistics, SPA methods originated with Daniels (1954), in which an approximation formula was given for the density function of the sample mean X¯n=(X1++Xn)/n\displaystyle\bar{X}_{n}=(X_{1}+\cdots+X_{n})/n of independent identically distributed (i.i.d.) random variables (Xi)i\displaystyle(X_{i})_{i\in{\mathbb{N}}}, provided that the law of X1\displaystyle X_{1} has the density function. Lugannani and Rice (1980) derives the following approximation formula for the right tail probability:

P(X¯n>x)=1Φ(w^n)+ϕ(w^n)(1u^n1w^n)+O(n3/2)P(\bar{X}_{n}>x)=1-\Phi(\hat{w}_{n})+\phi(\hat{w}_{n})\left(\frac{1}{\hat{u}_{n}}-\frac{1}{\hat{w}_{n}}\right)+O(n^{-3/2}) (1.1)

as n\displaystyle n\to\infty. Here, Φ(w)\displaystyle\Phi(w) and ϕ(w)\displaystyle\phi(w) are the standard normal distribution function and its density function ϕ:=Φ\displaystyle\phi:=\Phi^{\prime}, respectively, and u^n\displaystyle\hat{u}_{n} and w^n\displaystyle\hat{w}_{n} are expressed by using the CGF K()\displaystyle K(\cdot) of X1\displaystyle X_{1} and the saddlepoint θ^\displaystyle\hat{\theta} of K()\displaystyle K(\cdot). That is, θ^\displaystyle\hat{\theta} satisfies K(θ^)=x\displaystyle K^{\prime}(\hat{\theta})=x. Related SPA formulae have been studied in Daniels (1987), Jensen (1995), Kolassa (1997), Butler (2007), the references therein, and others.

Strictly, the Lugannani–Rice (LR) formula (1.1) should be interpreted as an asymptotic result as n\displaystyle n\rightarrow\infty. However, it is popular in many practical applications of financial engineering as an approximation formula for the right tail probability because of its tractability. This approximation is

P(X1>x)1Φ(w^1)+ϕ(w^1)(1u^11w^1).\displaystyle\displaystyle P(X_{1}>x)\approx 1-\Phi(\hat{w}_{1})+\phi(\hat{w}_{1})\left(\frac{1}{\hat{u}_{1}}-\frac{1}{\hat{w}_{1}}\right). (1.2)

In other words, LR formula (1.1) is applied even when n\displaystyle n is 1\displaystyle 1 ! For financial applications of SPA formulae, we refer the readers to papers such as Rogers and Zane (1999), Xiong, Wong, and Salopek (2005), Aït-Sahalia and Yu (2006), Yang, Hurd, and Zhang (2006), Glasserman and Kim (2009), and Carr and Madan (2009). It is interesting that the approximation formula (1.2) still works surprisingly well in many financial examples, despite its lack of theoretical justification.

The aim of this paper is to provide a measure of the effectivity of the “generalized usage” of the LR formula (1.2) from an asymptotic theoretical viewpoint. We consider a general parametrized sequence of random variables (X(ε))ε>0\displaystyle(X^{(\varepsilon)})_{\varepsilon>0} and assume that the r\displaystyle rth cumulant of X(ε)\displaystyle X^{(\varepsilon)} has order O(εr2)\displaystyle O(\varepsilon^{r-2}) as ε0\displaystyle\varepsilon\rightarrow 0 for each r3\displaystyle r\geq 3. This implies that X(ε)\displaystyle X^{(\varepsilon)} converges in law to a normally distributed random variable (a motivation is provided for this assumption in Remark 2 of Section 3). We next derive the expansion

P(X(ε)>x)=1Φ(w^ε)+m=0Ψmε(w^ε),P\left(X^{(\varepsilon)}>x\right)=1-\Phi(\hat{w}_{\varepsilon})+\sum^{\infty}_{m=0}\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon}), (1.3)

which we call the exact LR expansion (see Theorem 1 of Section 2). Here, w^ε\displaystyle\hat{w}_{\varepsilon} is given by (2.1) and (2.3), and the Ψmε(w^ε)\displaystyle\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon}) (m+\displaystyle m\in{\mathbb{Z}}_{+}) are given by (2.8). We then show that

Ψ0ε(w^ε)=O(ε)\displaystyle\Psi^{\varepsilon}_{0}(\hat{w}_{\varepsilon})=O(\varepsilon) and Ψmε(w^ε)=O(ε3)\displaystyle\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})=O(\varepsilon^{3}) as ε0\displaystyle\varepsilon\rightarrow 0 for all m\displaystyle m\in{\mathbb{N}} (1.4)

under some conditions. This is the main result of the paper (see Theorem 2 in Section 3 for the details).

Remark 1.

We note that the expansion (1.3) with the order estimates (1.4) and the classical LR formula (1.1) treat different situations, although they may have some overlap. Let

ε:=1NandX(ε):=εi=11/ε2Xi,\displaystyle\displaystyle\varepsilon:=\frac{1}{\sqrt{N}}\quad\text{and}\quad X^{(\varepsilon)}:=\varepsilon\sum_{i=1}^{1/\varepsilon^{2}}X_{i},

where (Xi)i\displaystyle(X_{i})_{i\in{\mathbb{N}}} is an i.i.d. sequence of random variables. Then, we can check that the law of X(ε)\displaystyle X^{(\varepsilon)} satisfies the conditions necessary to apply Theorem 2 in Section 3 (see Remark 2 (iv) in Section 3). So, (1.3) holds with (1.4). On the other hand, the classical LR formula (1.1) gives an approximation formula of the far-right tail probability:

P(X(ε)>xε)=1Φ(w^ε)+ϕ(w^ε)(1u^ε1w^ε)+O(ε3)asε0.\displaystyle\displaystyle P\left({X}^{(\varepsilon)}>\frac{x}{\varepsilon}\right)=1-\Phi(\hat{w}_{\varepsilon})+\phi(\hat{w}_{\varepsilon})\left(\frac{1}{\hat{u}_{\varepsilon}}-\frac{1}{\hat{w}_{\varepsilon}}\right)+O(\varepsilon^{3})\ \ \mbox{as}\ \ \varepsilon\rightarrow 0.

In this paper, with motivation from financial applications (e.g., call option pricing in Section 4), we choose to analyse the right tail probability P(X(ε)>x)\displaystyle P(X^{(\varepsilon)}>x) instead of the far-right tail probability P(X(ε)>x/ε)\displaystyle P(X^{(\varepsilon)}>x/\varepsilon). For a related remark, see (i) in Section 7.

The organisation of the rest of this paper is as follows. In Section 2, we introduce the “exact” LR expansion: we first derive it formally, and next provide a technical condition sufficient to ensure the validity of the expansion. Section 3 states our main results: we derive the order estimates of the higher order terms in the exact LR expansion (1.3). Section 4 discusses some examples: we introduce two stochastic volatility (SV) models and numerically check the accuracy of the higher order LR formula. Section 5 contains the necessary proofs: Subsection 5.1 gives the proof of Theorem 1 and Subsection 5.2 gives the proof of Theorem 2. Section 6 discusses some extensions of Theorem 2: under additional conditions we obtain the sharper estimate Ψmε(w^ε)=O(ε2m+1)\displaystyle\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})=O(\varepsilon^{2m+1}) as ε0\displaystyle\varepsilon\rightarrow 0 for m\displaystyle m\in{\mathbb{N}}, and the related order estimate of the absolute error of the M\displaystyle Mth order LR formula. In addition, we introduce error estimates for the Daniels-type formula, which is an approximation formula for the probability density function. The last Section 7 contains concluding remarks. In Appendix, we present some toolkits for deriving the explicit forms of Ψ2ε(w^ε)\displaystyle\Psi^{\varepsilon}_{2}(\hat{w}_{\varepsilon}) and Ψ3ε(w^ε)\displaystyle\Psi^{\varepsilon}_{3}(\hat{w}_{\varepsilon}).

2 The Exact Lugannani–Rice Expansion

In this section we derive the exact LR expansion (1.3), which is given as a natural generalisation of the original LR formula. For readability, we introduce here the formal calculations to derive that formula and leave rigorous arguments to Section 5.1 (see also Appendix in Rogers and Zane (1999)).

Let (με)0ε1\displaystyle(\mu_{\varepsilon})_{0\leq\varepsilon\leq 1} be a family of probability distribution on \displaystyle\mathbb{R} and define a distribution function Fε\displaystyle F_{\varepsilon} and a tail probability function F¯ε\displaystyle\bar{F}_{\varepsilon} by

Fε(x)=με((,x]),F¯ε(x)=1Fε(x).\displaystyle\displaystyle F_{\varepsilon}(x)=\mu_{\varepsilon}((-\infty,x]),\ \ \bar{F}_{\varepsilon}(x)=1-F_{\varepsilon}(x).

We denote by Kε\displaystyle K_{\varepsilon} the CGF of με\displaystyle\mu_{\varepsilon}, that is,

Kε(θ)=logeθxμε(dx).\displaystyle\displaystyle K_{\varepsilon}(\theta)=\log\int_{\mathbb{R}}e^{\theta x}\mu_{\varepsilon}(dx).

We assume the following conditions.

  • [A1]

    For each ε[0,1]\displaystyle\varepsilon\in[0,1], the effective domain 𝒟ε={θ;|Kε(θ)|<}\displaystyle\mathcal{D}_{\varepsilon}=\{\theta\in\mathbb{R}\ ;\ |K_{\varepsilon}(\theta)|<\infty\} of Kε\displaystyle K_{\varepsilon} contains an open interval that includes zero.

  • [A2]

    For each ε[0,1]\displaystyle\varepsilon\in[0,1], the support of με\displaystyle\mu_{\varepsilon} is equal to the whole line \displaystyle\mathbb{R}. Moreover, the characteristic function of με\displaystyle\mu_{\varepsilon} is integrable; that is,

    |eiξxμε(dx)|𝑑ξ<,\displaystyle\displaystyle\int^{\infty}_{-\infty}\left|\int^{\infty}_{-\infty}e^{i\xi x}\mu_{\varepsilon}(dx)\right|d\xi<\infty,

    where i=1\displaystyle i=\sqrt{-1} is the imaginary unit.

It is well known that Kε\displaystyle K_{\varepsilon} is analytic and convex on the interior 𝒪ε\displaystyle\mathcal{O}_{\varepsilon} of 𝒟ε\displaystyle\mathcal{D}_{\varepsilon}. Moreover, [A2] implies that με\displaystyle\mu_{\varepsilon} has a density function, and thus Kε\displaystyle K_{\varepsilon} is a strictly convex function (see Durrett (2010), for instance). Since the range of Kε\displaystyle K^{\prime}_{\varepsilon} coincides with \displaystyle\mathbb{R} under [A1]–[A2], we can always find the solution θ^ε=θ^ε(x)𝒪ε\displaystyle\hat{\theta}_{\varepsilon}=\hat{\theta}_{\varepsilon}(x)\in\mathcal{O}_{\varepsilon} to

Kε(θ^ε)=x\displaystyle\displaystyle K^{\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon})=x (2.1)

for any x\displaystyle x\in\mathbb{R}. We call θ^ε\displaystyle\hat{\theta}_{\varepsilon} the saddlepoint of Kε\displaystyle K_{\varepsilon} given x\displaystyle x. Here, note that Kε\displaystyle K_{\varepsilon} is analytically continued as the function defined on 𝒪ε×i\displaystyle\mathcal{O}_{\varepsilon}\times i\mathbb{R}.

Now, we derive (1.3). Until the end of this section, we fix an ε[0,1]\displaystyle\varepsilon\in[0,1] and an x\displaystyle x\in\mathbb{R}. To derive (1.3), we further that require the condition θ^ε0\displaystyle\hat{\theta}_{\varepsilon}\neq 0 be satisfied. Applying Levy’s inversion formula, we represent F¯ε(x)\displaystyle\bar{F}_{\varepsilon}(x) by the integral form

F¯ε(x)=12πicic+iexp(Kε(θ)xθ)dθθ\displaystyle\displaystyle\bar{F}_{\varepsilon}(x)\ =\ \frac{1}{2\pi i}\int^{c+i\infty}_{c-i\infty}\exp(K_{\varepsilon}(\theta)-x\theta)\frac{d\theta}{\theta} (2.2)

for arbitrary c𝒪ε{0}\displaystyle c\in\mathcal{O}_{\varepsilon}\setminus\{0\} (see Proposition 1 in Subsection 5.1).

Next, we represent w^ε\displaystyle\hat{w}_{\varepsilon}\in\mathbb{R} as

w^ε=sgn(θ^ε)2(xθ^εKε(θ^ε)),\displaystyle\displaystyle\hat{w}_{\varepsilon}=\mathrm{sgn}(\hat{\theta}_{\varepsilon})\sqrt{2(x\hat{\theta}_{\varepsilon}-K_{\varepsilon}(\hat{\theta}_{\varepsilon}))}, (2.3)

where sgn(a)=1(a0),1(a<0)\displaystyle\mathrm{sgn}(a)=1\ (a\geq 0),\ -1\ (a<0). Note that w^ε\displaystyle\hat{w}_{\varepsilon} is well defined because of the calculation

xθ^εKε(θ^ε)\displaystyle\displaystyle x\hat{\theta}_{\varepsilon}-K_{\varepsilon}(\hat{\theta}_{\varepsilon}) =\displaystyle\displaystyle= Kε(0)Kε(θ^ε)+Kε(θ^ε)θ^ε\displaystyle\displaystyle K_{\varepsilon}(0)-K_{\varepsilon}(\hat{\theta}_{\varepsilon})+K^{\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon} (2.4)
=\displaystyle\displaystyle= 01(1u)Kε′′(uθ^ε)𝑑uθ^ε2 0\displaystyle\displaystyle\int^{1}_{0}(1-u)K^{\prime\prime}_{\varepsilon}(-u\hat{\theta}_{\varepsilon})du\hat{\theta}_{\varepsilon}^{2}\ \geq\ 0

by virtue of the convexity of Kε\displaystyle K_{\varepsilon} and Taylor’s theorem. We consider the following change of variables between w\displaystyle w and θ\displaystyle\theta:

12w2w^εw=Kε(θ)xθ.\displaystyle\displaystyle\frac{1}{2}w^{2}-\hat{w}_{\varepsilon}w=K_{\varepsilon}(\theta)-x\theta. (2.5)

Then, replacing the variable θ\displaystyle\theta with w\displaystyle w in the right-hand side of (2.2) and applying Cauchy’s integral theorem, we see that

F¯ε(x)\displaystyle\displaystyle\bar{F}_{\varepsilon}(x) =\displaystyle\displaystyle= 12πiγεexp(12w2w^εw)θ(w)θ(w)𝑑w\displaystyle\displaystyle\frac{1}{2\pi i}\int_{\gamma_{\varepsilon}}\exp\left(\frac{1}{2}w^{2}-\hat{w}_{\varepsilon}w\right)\frac{\theta^{\prime}(w)}{\theta(w)}dw (2.6)
=\displaystyle\displaystyle= 12πiw^εiw^ε+iexp(12w2w^εw)θ(w)θ(w)𝑑w,\displaystyle\displaystyle\frac{1}{2\pi i}\int^{\hat{w}_{\varepsilon}+i\infty}_{\hat{w}_{\varepsilon}-i\infty}\exp\left(\frac{1}{2}w^{2}-\hat{w}_{\varepsilon}w\right)\frac{\theta^{\prime}(w)}{\theta(w)}dw,

where γε\displaystyle\gamma_{\varepsilon} is a Jordan curve in w\displaystyle w-space corresponding to the line {θ^ε}×i\displaystyle\{\hat{\theta}_{\varepsilon}\}\times i\mathbb{R} and θ(w)(=θε(w))\displaystyle\theta(w)\ (=\theta_{\varepsilon}(w)) is defined by (2.5) as an implicit function with respect to w\displaystyle w. Note that θ(w)\displaystyle\theta(w) is well defined for each w\displaystyle w and is analytic on each contour under suitable conditions. Denoting

ψε(w)=θ(w)θ(w)1w=ddwlog(θ(w)w),\displaystyle\displaystyle\psi_{\varepsilon}(w)=\frac{\theta^{\prime}(w)}{\theta(w)}-\frac{1}{w}=\frac{d}{dw}\log\left(\frac{\theta(w)}{w}\right),

we can decompose (2.6) into

F¯ε(x)=Nε(x)+12πiw^εiw^ε+iexp(12w2w^εw)ψε(w)𝑑w,\displaystyle\displaystyle\bar{F}_{\varepsilon}(x)=N_{\varepsilon}(x)+\frac{1}{2\pi i}\int^{\hat{w}_{\varepsilon}+i\infty}_{\hat{w}_{\varepsilon}-i\infty}\exp\left(\frac{1}{2}w^{2}-\hat{w}_{\varepsilon}w\right)\psi_{\varepsilon}(w)dw,

where

Nε(x)\displaystyle\displaystyle N_{\varepsilon}(x) =\displaystyle\displaystyle= 12πiw^εiw^ε+iexp(12w2w^εw)dww.\displaystyle\displaystyle\frac{1}{2\pi i}\int^{\hat{w}_{\varepsilon}+i\infty}_{\hat{w}_{\varepsilon}-i\infty}\exp\left(\frac{1}{2}w^{2}-\hat{w}_{\varepsilon}w\right)\frac{dw}{w}.

Nε(x)\displaystyle N_{\varepsilon}(x) is just the tail probability of the standard normal distribution; that is, Nε(x)=Φ¯(w^ε)\displaystyle N_{\varepsilon}(x)=\bar{\Phi}(\hat{w}_{\varepsilon}), where

Φ¯(w)=wϕ(y)𝑑y,ϕ(y)=12πey2/2.\displaystyle\displaystyle\bar{\Phi}(w)\ =\ \int^{\infty}_{w}\phi(y)dy,\ \ \phi(y)\ =\ \frac{1}{\sqrt{2\pi}}e^{-y^{2}/2}.

Here, if w^ε0\displaystyle\hat{w}_{\varepsilon}\neq 0, we see that ψε\displaystyle\psi_{\varepsilon} is analytic on {w^ε}×i\displaystyle\{\hat{w}_{\varepsilon}\}\times i\mathbb{R}; hence, we obtain

12πiw^εiw^ε+iexp(12w2w^εw)ψε(w)𝑑w\displaystyle\displaystyle\frac{1}{2\pi i}\int^{\hat{w}_{\varepsilon}+i\infty}_{\hat{w}_{\varepsilon}-i\infty}\exp\left(\frac{1}{2}w^{2}-\hat{w}_{\varepsilon}w\right)\psi_{\varepsilon}(w)dw (2.7)
=\displaystyle\displaystyle= 12πiw^εiw^ε+iexp(12w2w^εw)n=0ψε(n)(w^ε)n!(ww^ε)ndw\displaystyle\displaystyle\frac{1}{2\pi i}\int^{\hat{w}_{\varepsilon}+i\infty}_{\hat{w}_{\varepsilon}-i\infty}\exp\left(\frac{1}{2}w^{2}-\hat{w}_{\varepsilon}w\right)\sum^{\infty}_{n=0}\frac{\psi_{\varepsilon}^{(n)}(\hat{w}_{\varepsilon})}{n!}(w-\hat{w}_{\varepsilon})^{n}dw
=\displaystyle\displaystyle= 12πew^ε2/2ey2/2n=0ψε(n)(w^ε)n!(iy)ndy\displaystyle\displaystyle\frac{1}{2\pi}e^{-\hat{w}_{\varepsilon}^{2}/2}\int^{\infty}_{-\infty}e^{-y^{2}/2}\sum^{\infty}_{n=0}\frac{\psi_{\varepsilon}^{(n)}(\hat{w}_{\varepsilon})}{n!}(iy)^{n}dy
=\displaystyle\displaystyle= 12πew^ε2/2n=0inψε(n)(w^ε)ey2/2ynn!𝑑y=m=0Ψmε(w^ε),\displaystyle\displaystyle\frac{1}{2\pi}e^{-\hat{w}_{\varepsilon}^{2}/2}\sum^{\infty}_{n=0}i^{n}\psi_{\varepsilon}^{(n)}(\hat{w}_{\varepsilon})\int^{\infty}_{-\infty}e^{-y^{2}/2}\frac{y^{n}}{n!}dy\ =\ \sum^{\infty}_{m=0}\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon}),

where we define

Ψmε(w)=ϕ(w)(1)m(2m)!!ψε(2m)(w)=ϕ(w)(1)m(2m)(2m2)42ψε(2m)(w).\Psi_{m}^{\varepsilon}(w)=\phi(w)\frac{(-1)^{m}}{(2m)!!}\psi^{(2m)}_{\varepsilon}(w)=\phi(w)\frac{(-1)^{m}}{(2m)(2m-2)\cdots 4\cdot 2}\psi^{(2m)}_{\varepsilon}(w). (2.8)

This is the exact LR expansion (1.3). Note here that the 0\displaystyle 0th order approximation formula

Φ¯(w^ε)+Ψ0ε(w^ε)\displaystyle\displaystyle\bar{\Phi}(\hat{w}_{\varepsilon})+\Psi_{0}^{\varepsilon}(\hat{w}_{\varepsilon})

corresponds to the original LR formula (1.1). Indeed, we see that

Ψ0ε(w^ε)=ϕ(w^ε){1θ^εKε′′(θ^ε)1w^ε}.\displaystyle\displaystyle\Psi_{0}^{\varepsilon}(\hat{w}_{\varepsilon})=\phi(\hat{w}_{\varepsilon})\left\{\frac{1}{\hat{\theta}_{\varepsilon}\sqrt{K^{\prime\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon})}}-\frac{1}{\hat{w}_{\varepsilon}}\right\}.

The 1\displaystyle 1st order approximation formula

Φ¯(w^ε)+Ψ0ε(w^ε)+Ψ1ε(w^ε)\displaystyle\displaystyle\bar{\Phi}(\hat{w}_{\varepsilon})+\Psi^{\varepsilon}_{0}(\hat{w}_{\varepsilon})+\Psi^{\varepsilon}_{1}(\hat{w}_{\varepsilon})

is also often called the LR formula, where we have that

Ψ1ε(w^ε)=ϕ(w^ε){1θ^εKε′′(θ^ε)(18λ^4524λ^32)12θ^ε2Kε′′(θ^ε)λ^3(1θ^ε3(Kε′′(θ^ε))3/21w^ε3)}\displaystyle\displaystyle\Psi_{1}^{\varepsilon}(\hat{w}_{\varepsilon})=\phi(\hat{w}_{\varepsilon})\left\{\frac{1}{\hat{\theta}_{\varepsilon}\sqrt{K^{\prime\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon})}}\left(\frac{1}{8}\hat{\lambda}_{4}-\frac{5}{24}\hat{\lambda}^{2}_{3}\right)-\frac{1}{2\hat{\theta}_{\varepsilon}^{2}K^{\prime\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon})}\hat{\lambda}_{3}-\left(\frac{1}{\hat{\theta}_{\varepsilon}^{3}(K^{\prime\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon}))^{3/2}}-\frac{1}{\hat{w}_{\varepsilon}^{3}}\right)\right\}

with

λ^3=Kε(3)(θ^ε)(Kε′′(θ^ε))3/2,λ^4=Kε(4)(θ^ε)(Kε′′(θ^ε))2.\displaystyle\displaystyle\hat{\lambda}_{3}=\frac{K^{(3)}_{\varepsilon}(\hat{\theta}_{\varepsilon})}{\left(K^{\prime\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon})\right)^{3/2}},\ \ \hat{\lambda}_{4}=\frac{K^{(4)}_{\varepsilon}(\hat{\theta}_{\varepsilon})}{\left(K^{\prime\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon})\right)^{2}}.

The explicit forms of the higher order terms Ψ2ε(w^ε)\displaystyle\Psi_{2}^{\varepsilon}(\hat{w}_{\varepsilon}) and Ψ3ε(w^ε)\displaystyle\Psi_{3}^{\varepsilon}(\hat{w}_{\varepsilon}) are shown in Appendix.

The above formal derivation of the exact LR expansion (1.3) can be made rigorous under suitable conditions, such as the following.

  • [B1]

    For each ε[0,1]\displaystyle\varepsilon\in[0,1], there exists δε,Cε>0\displaystyle\delta_{\varepsilon},C_{\varepsilon}>0 such that δε|Kε′′|Cε\displaystyle\delta_{\varepsilon}\leq|K^{\prime\prime}_{\varepsilon}|\leq C_{\varepsilon} on 𝒪ε×i\displaystyle\mathcal{O}_{\varepsilon}\times i\mathbb{R}.

  • [B2]

    The range of the holomorphic map ιε:𝒪ε×i\displaystyle\iota_{\varepsilon}:\mathcal{O}_{\varepsilon}\times i\mathbb{R}\longrightarrow\mathbb{C} defined by

    ιε(θ)=Kε(θ)xθ(Kε(θ^ε)xθ^ε)\displaystyle\displaystyle\iota_{\varepsilon}(\theta)=K_{\varepsilon}(\theta)-x\theta-(K_{\varepsilon}(\hat{\theta}_{\varepsilon})-x\hat{\theta}_{\varepsilon})

    includes a convex set that contains {2ιε(θ^ε+it);t}\displaystyle\{2\iota_{\varepsilon}(\hat{\theta}_{\varepsilon}+it)\ ;\ t\in\mathbb{R}\} and (,0]\displaystyle(-\infty,0],

  • [B3]

    n=1|ψε(n)(w^ε)|/(n!!)<\displaystyle\sum^{\infty}_{n=1}|\psi_{\varepsilon}^{(n)}(\hat{w}_{\varepsilon})|/(n!!)<\infty.

Under these conditions, we obtain the following, whose proof is given in Subsection 5.1.

Theorem 1.

Assume [A1]\displaystyle\mathrm{[A1]}[A2]\displaystyle\mathrm{[A2]} and [B1]\displaystyle\mathrm{[B1]}[B3]\displaystyle\mathrm{[B3]}. Then (1.3)\displaystyle(\ref{exact_LR}) holds.

3 Order Estimates of Approximation Terms

In practical applications, we need to truncate the formula (1.3) with M\displaystyle M\in{\mathbb{N}}

F¯ε(x)F¯εM(x):=Φ¯(w^ε)+m=0MΨmε(w^ε).\displaystyle\displaystyle\bar{F}_{\varepsilon}(x)\approx\bar{F}^{M}_{\varepsilon}(x):=\bar{\Phi}(\hat{w}_{\varepsilon})+\sum^{M}_{m=0}\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon}). (3.1)

We call the right-hand side of (3.1) the M\displaystyle Mth LR formula. The aim of this section is to derive order estimates for Ψm(w^ε)\displaystyle\Psi_{m}(\hat{w}_{\varepsilon}) (m=0,1,,\displaystyle m=0,1,\ldots,) as ε0\displaystyle\varepsilon\rightarrow 0.

We fix x\displaystyle x\in\mathbb{R}, which is an arbitrary value such that

yμ0(dy)x.\int_{\mathbb{R}}y\mu_{0}(dy)\neq x. (3.2)

We then impose the following additional assumptions.

  • [A3]

    There is a δ0>0\displaystyle\delta_{0}>0 such that Kε′′(θ)δ0\displaystyle K^{\prime\prime}_{\varepsilon}(\theta)\geq\delta_{0} for each θ𝒪ε\displaystyle\theta\in\mathcal{O}_{\varepsilon} and ε[0,1]\displaystyle\varepsilon\in[0,1].

  • [A4]

    For each ε\displaystyle\varepsilon, there is an interval ε𝒟ε\displaystyle\mathcal{I}_{\varepsilon}\subset\mathcal{D}_{\varepsilon} such that ε\displaystyle\mathcal{I}_{\varepsilon}\nearrow\mathbb{R} as ε0\displaystyle\varepsilon\rightarrow 0; that is, εε\displaystyle\mathcal{I}_{\varepsilon}\subset\mathcal{I}_{\varepsilon^{\prime}} for each εε\displaystyle\varepsilon\geq\varepsilon^{\prime} and εε=\displaystyle\cup_{\varepsilon}\mathcal{I}_{\varepsilon}=\mathbb{R}.

  • [A5]

    For each nonnegative integer r\displaystyle r, Kε(r)(θ)\displaystyle K^{(r)}_{\varepsilon}(\theta) converges uniformly to K0(r)(θ)\displaystyle K^{(r)}_{0}(\theta) with ε0\displaystyle\varepsilon\rightarrow 0 on any compact subset of \displaystyle\mathbb{R}. Moreover, for each integer r3\displaystyle r\geq 3, Kε(r)(θ)\displaystyle K^{(r)}_{\varepsilon}(\theta) has order O(εr2)\displaystyle O(\varepsilon^{r-2}) as ε0\displaystyle\varepsilon\rightarrow 0 in the following sense: For each compact set C\displaystyle C\subset\mathbb{R}, it holds that

    lim supε0supθCε(r2)|Kε(r)(θ)|<.\displaystyle\displaystyle\limsup_{\varepsilon\rightarrow 0}\sup_{\theta\in C}\varepsilon^{-(r-2)}|K^{(r)}_{\varepsilon}(\theta)|<\infty. (3.3)
Remark 2.
  • (i)\displaystyle\mathrm{(i)}

    To derive the formula (1.3)\displaystyle(\ref{exact_LR}), we need that θ^ε0\displaystyle\hat{\theta}_{\varepsilon}\neq 0. This condition is satisfied for small ε\displaystyle\varepsilon under (3.2)\displaystyle(\ref{cond_not_x}) and [A5]\displaystyle\mathrm{[A5]} jointly. See Corollary 2 in Section 5.2 for the details.

  • (ii)\displaystyle\mathrm{(ii)}

    From [A4]\displaystyle\mathrm{[A4]}, we see that for each compact set C\displaystyle C\subset\mathbb{R} there is an ε0\displaystyle\varepsilon_{0} such that C𝒟ε\displaystyle C\subset\mathcal{D}_{\varepsilon} for εε0\displaystyle\varepsilon\leq\varepsilon_{0}. Therefore, the assertions in [A5]\displaystyle\mathrm{[A5]} make sense for small ε\displaystyle\varepsilon. Note that one of the sufficient conditions for [A4]\displaystyle\mathrm{[A4]} is that

    • [A4’]

      𝒟ε\displaystyle\mathcal{D}_{\varepsilon}\nearrow\mathbb{R},  ε0\displaystyle\varepsilon\rightarrow 0.

  • (iii)\displaystyle\mathrm{(iii)}

    [A5]\displaystyle\mathrm{[A5]} implies that K0(r)(θ)=0\displaystyle K^{(r)}_{0}(\theta)=0 holds for r3\displaystyle r\geq 3. Therefore,

    K0(θ)=mθ+12σ2θ2\displaystyle\displaystyle K_{0}(\theta)=m\theta+\frac{1}{2}\sigma^{2}\theta^{2}

    with some m\displaystyle m\in{\mathbb{R}} and σ>0\displaystyle\sigma>0, where the positivity of σ\displaystyle\sigma follows from ([A2] or) [A3]. Hence, μ0\displaystyle\mu_{0} is the normal distribution with mean m\displaystyle m and variance σ2\displaystyle\sigma^{2}. Note here that the effective domain of K0\displaystyle K_{0} is equal to \displaystyle\mathbb{R}, which is consistent with [A4].

  • (iv)\displaystyle\mathrm{(iv)}

    An example which satisfies [A5]\displaystyle\mathrm{[A5]} is the following. Let Xi\displaystyle X_{i} for i\displaystyle i\in\mathbb{N} be i.i.d. random variables with mean zero, let X~n=(X1+Xn)/n\displaystyle\tilde{X}_{n}=(X_{1}+\cdots X_{n})/\sqrt{n}, and let μ1/n\displaystyle\mu_{1/\sqrt{n}} be its distribution. We see that (μ1/n)n\displaystyle(\mu_{1/\sqrt{n}})_{n} satisfies [A5] by the central limit theorem (setting ε:=1/n\displaystyle\varepsilon:=1/\sqrt{n}). SV models with small “vol of vol” parameters are introduced as additional examples in Section 4.

Now, we introduce our main theorem.

Theorem 2.

Assume that conditions [A1]\displaystyle\mathrm{[A1]}[A5]\displaystyle\mathrm{[A5]} hold. Then Ψ0ε(w^ε)=O(ε)\displaystyle\Psi^{\varepsilon}_{0}(\hat{w}_{\varepsilon})=O(\varepsilon) and Ψmε(w^ε)=O(ε3)\displaystyle\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})=O(\varepsilon^{3}), both as ε0\displaystyle\varepsilon\to 0 for each m1\displaystyle m\geq 1.

Recall here that the notation aε=O(εr)\displaystyle a_{\varepsilon}=O(\varepsilon^{r}) implies lim supε0εr|aε|<\displaystyle\limsup_{\varepsilon\rightarrow 0}\varepsilon^{-r}|a_{\varepsilon}|<\infty.

Remark 3.

It may be natural to expect that Ψmε(w^ε)=O(εkm)\displaystyle\Psi_{m}^{\varepsilon}(\hat{w}_{\varepsilon})=O(\varepsilon^{k_{m}}) holds as ε0\displaystyle\varepsilon\rightarrow 0 for some km>3\displaystyle k_{m}>3. In other words, to expect that the relation Ψmε(w^ε)=Θ(ε3)\displaystyle\Psi_{m}^{\varepsilon}(\hat{w}_{\varepsilon})=\Theta(\varepsilon^{3}) may not hold for m2\displaystyle m\geq 2. Here, an=Θ(bn)\displaystyle a_{n}=\Theta(b_{n}) is the Bachmann–Landau “Big-Theta” notation, meaning that

0<lim infnanbnlim supnanbn<.\displaystyle\displaystyle 0<\liminf_{n}\frac{a_{n}}{b_{n}}\leq\limsup_{n}\frac{a_{n}}{b_{n}}<\infty.

Under conditions [A1]–[A5], we have not obtained sharper estimates for Ψmε(w^ε)\displaystyle\Psi_{m}^{\varepsilon}(\hat{w}_{\varepsilon}) (m2\displaystyle m\geq 2) than given in Theorem 2. In Section 6.1 we show that by assuming [A6]–[A7] additionally we obtain

Ψmε(w^ε)=O(ε2m+1)asε0\displaystyle\displaystyle\Psi_{m}^{\varepsilon}(\hat{w}_{\varepsilon})=O(\varepsilon^{2m+1})\quad\text{as}\quad\varepsilon\rightarrow 0 (3.4)

for each m0\displaystyle m\geq 0, and

F¯ε(x)=Φ¯(w^ε)+m=0MΨmε(w^ε)+O(ε2M+3)asε0\displaystyle\displaystyle\bar{F}_{\varepsilon}(x)=\bar{\Phi}(\hat{w}_{\varepsilon})+\sum^{M}_{m=0}\Psi_{m}^{\varepsilon}(\hat{w}_{\varepsilon})+O(\varepsilon^{2M+3})\quad\text{as}\quad\varepsilon\rightarrow 0 (3.5)

for each M0\displaystyle M\geq 0. In the next section, we also numerically demonstrate these results by use of examples.

4 Examples

In this section, we introduce some examples and apply our results.

4.1 The Heston SV model

As the first example, we treat Heston’s SV model (Heston (1993)). We consider the following stochastic differential equation (SDE):

dXtε=12Vtεdt+VtεdBt1,\displaystyle\displaystyle dX^{\varepsilon}_{t}=-\frac{1}{2}V^{\varepsilon}_{t}dt+\sqrt{V^{\varepsilon}_{t}}dB^{1}_{t},
dVtε=κ(bVtε)dt+εVtε(ρdBt1+1ρ2dBt2),\displaystyle\displaystyle dV^{\varepsilon}_{t}=\kappa(b-V^{\varepsilon}_{t})dt+\varepsilon\sqrt{V^{\varepsilon}_{t}}(\rho dB^{1}_{t}+\sqrt{1-\rho^{2}}dB^{2}_{t}),
X0ε=x0,V0ε=v0,\displaystyle\displaystyle X^{\varepsilon}_{0}=x_{0},\ V^{\varepsilon}_{0}=v_{0},

where κ,b>0\displaystyle\kappa,b>0, ρ[1,1]\displaystyle\rho\in[-1,1], and ε0\displaystyle\varepsilon\geq 0. It is known that the above SDE has the unique solution (Xtε,Vtε)t\displaystyle(X^{\varepsilon}_{t},V^{\varepsilon}_{t})_{t} when 2κbε2\displaystyle 2\kappa b\geq\varepsilon^{2}. The process (Xtε)t\displaystyle(X^{\varepsilon}_{t})_{t} is regarded as the log-price process of a risky asset with the stocastic volatility process (Vtε)t\displaystyle(\sqrt{V^{\varepsilon}_{t}})_{t} under the risk-neutral probability measure (the risk-free rate is set as zero for simplicity). Our goal is to approximate the tail probability F¯ε(x)=P(XTε>x)\displaystyle\bar{F}_{\varepsilon}(x)=P(X^{\varepsilon}_{T}>x) for a time T>0\displaystyle T>0.

Here ε0\displaystyle\varepsilon\geq 0 is the “vol of vol” parameter, which describes dispersion of the volatility process. In this section, we consider the case of a small ε\displaystyle\varepsilon. Note that when ε=0\displaystyle\varepsilon=0, XTε\displaystyle X^{\varepsilon}_{T} has the normal distribution.

To apply our main result, we verify that the conditions [A1]–[A5] for με=P(XTε)\displaystyle\mu_{\varepsilon}=P(X^{\varepsilon}_{T}\in\cdot) hold. First, [A1] is satisfied and the explicit form of the CGF of με\displaystyle\mu_{\varepsilon} with ε>0\displaystyle\varepsilon>0 is given as

Kε(θ)=x0θ+2κbε2{12(κερθ)logqε(θ)}v0(θθ2)sinh(pε(θ)T/2)pε(θ)qε(θ)\displaystyle\displaystyle K_{\varepsilon}(\theta)=x_{0}\theta+\frac{2\kappa b}{\varepsilon^{2}}\left\{\frac{1}{2}(\kappa-\varepsilon\rho\theta)-\log q_{\varepsilon}(\theta)\right\}-\frac{v_{0}(\theta-\theta^{2})\sinh(\sqrt{p_{\varepsilon}(\theta)}T/2)}{\sqrt{p_{\varepsilon}(\theta)}q_{\varepsilon}(\theta)} (4.1)

on a neighbourhood of the origin, where

pε(θ)\displaystyle\displaystyle p_{\varepsilon}(\theta) =\displaystyle\displaystyle= (κερθ)2+ε2(θθ2),\displaystyle\displaystyle(\kappa-\varepsilon\rho\theta)^{2}+\varepsilon^{2}(\theta-\theta^{2}),
qε(θ)\displaystyle\displaystyle q_{\varepsilon}(\theta) =\displaystyle\displaystyle= coshpε(θ)T2+κερθpε(θ)sinhpε(θ)T2\displaystyle\displaystyle\cosh\frac{\sqrt{p_{\varepsilon}(\theta)}T}{2}+\frac{\kappa-\varepsilon\rho\theta}{\sqrt{p_{\varepsilon}(\theta)}}\sinh\frac{\sqrt{p_{\varepsilon}(\theta)}T}{2}

(see Rollin, Castilla, and Utzet (2010) or Yoshikawa (2013)). Note that when ε=0\displaystyle\varepsilon=0, we have

K0(θ)=12σ2(θ2θ)+x0θ,\displaystyle\displaystyle K_{0}(\theta)=\frac{1}{2}\sigma^{2}(\theta^{2}-\theta)+x_{0}\theta,

where σ2=bT+(v0b)(1eκT)/κ\displaystyle\sigma^{2}=bT+(v_{0}-b)(1-e^{-\kappa T})/\kappa. Moreover, Theorem 3.3 and Corollary 3.4 in Rollin, Castilla, and Utzet (2010) imply [A2]. The same source also tells us that when ερ<κ\displaystyle\varepsilon\rho<\kappa, it is also true that 𝒟εε:=[uε,,uε,+]\displaystyle\mathcal{D}_{\varepsilon}\supset\mathcal{I}_{\varepsilon}:=[u_{\varepsilon,-},u_{\varepsilon,+}], where uε,<0<uε,+\displaystyle u_{\varepsilon,-}<0<u_{\varepsilon,+} are given by

uε,±=ε2κρ±4κ2+ε24κρε2ε(1ρ2).\displaystyle\displaystyle u_{\varepsilon,\pm}=\frac{\varepsilon-2\kappa\rho\pm\sqrt{4\kappa^{2}+\varepsilon^{2}-4\kappa\rho\varepsilon}}{2\varepsilon(1-\rho^{2})}.

We can easily see that uε,+\displaystyle u_{\varepsilon,+}\nearrow\infty and uε,\displaystyle u_{\varepsilon,-}\searrow-\infty as ε0\displaystyle\varepsilon\downarrow 0; thus, [A4] is satisfied. [A5] is obtained by Theorem 3.1 in Yoshikawa (2013). Finally, we numerically compute the minimum value of Kε′′\displaystyle K^{\prime\prime}_{\varepsilon} for each ε\displaystyle\varepsilon to confirm [A3]. We set the parameters as κ=1\displaystyle\kappa=1, b=1\displaystyle b=1, x0=0\displaystyle x_{0}=0, v0=1\displaystyle v_{0}=1, ρ=0.3\displaystyle\rho=0.3, T=1\displaystyle T=1, and x=1\displaystyle x=1. Then we get Figure 1, which implies that [A3] holds.

Refer to caption
Figure 1: Plots of infθ𝒟εKε′′(θ)\displaystyle\inf_{\theta\in\mathcal{D}_{\varepsilon}}K^{\prime\prime}_{\varepsilon}(\theta). The horizontal axis corresponds to ε\displaystyle\varepsilon.
Remark 4.

Theorem 3.1 in Rollin, Castilla, and Utzet (2010) presents a method to calculate the lower bound θε,\displaystyle\theta^{*}_{\varepsilon,-} and the upper bound θε,+\displaystyle\theta^{*}_{\varepsilon,+} of the effective domain 𝒟ε\displaystyle\mathcal{D}_{\varepsilon}. When we set the parameters as above, the bounds θε,±\displaystyle\theta^{*}_{\varepsilon,\pm} are obtained by

θε,+\displaystyle\displaystyle\theta^{*}_{\varepsilon,+} =\displaystyle\displaystyle= argmin{q~ε(θ);θ(uε,+,αε,+1)},\displaystyle\displaystyle\mathrm{argmin}\{\tilde{q}_{\varepsilon}(\theta)\ ;\ \theta\in(u_{\varepsilon,+},\alpha_{\varepsilon,+1})\},
θε,+\displaystyle\displaystyle\theta^{*}_{\varepsilon,+} =\displaystyle\displaystyle= argmax{q~ε(θ);θ(αε,1,uε,)},\displaystyle\displaystyle\mathrm{argmax}\{\tilde{q}_{\varepsilon}(\theta)\ ;\ \theta\in(\alpha_{\varepsilon,-1},u_{\varepsilon,-})\},

where

q~ε(θ)=cospε(θ)T2+κερθpε(θ)sinpε(θ)T2\displaystyle\displaystyle\tilde{q}_{\varepsilon}(\theta)=\cos\frac{\sqrt{-p_{\varepsilon}(\theta)}T}{2}+\frac{\kappa-\varepsilon\rho\theta}{\sqrt{-p_{\varepsilon}(\theta)}}\sin\frac{\sqrt{-p_{\varepsilon}(\theta)}T}{2}

and αε,1<0<αε,+1\displaystyle\alpha_{\varepsilon,-1}<0<\alpha_{\varepsilon,+1} are the solutions to pε(θ)=4π2/T2\displaystyle p_{\varepsilon}(\theta)=-4\pi^{2}/T^{2}. Note that Kε(θ)\displaystyle K_{\varepsilon}(\theta) is given by (4.1) on [uε,,uε,+]\displaystyle[u_{\varepsilon,-},u_{\varepsilon,+}] and by

Kε(θ)=x0θ+2κbε2{12(κερθ)logq~ε(θ)}v0(θθ2)sin(pε(θ)T/2)pε(θ)q~ε(θ)\displaystyle\displaystyle K_{\varepsilon}(\theta)=x_{0}\theta+\frac{2\kappa b}{\varepsilon^{2}}\left\{\frac{1}{2}(\kappa-\varepsilon\rho\theta)-\log\tilde{q}_{\varepsilon}(\theta)\right\}-\frac{v_{0}(\theta-\theta^{2})\sin(\sqrt{-p_{\varepsilon}(\theta)}T/2)}{\sqrt{-p_{\varepsilon}(\theta)}\tilde{q}_{\varepsilon}(\theta)}

on 𝒟ε[uε,,uε,+]\displaystyle\mathcal{D}_{\varepsilon}\setminus[u_{\varepsilon,-},u_{\varepsilon,+}]. In Figure 2, we numerically calculate uε,±\displaystyle u_{\varepsilon,\pm} and θε,±\displaystyle\theta^{*}_{\varepsilon,\pm} for ε(0,1]\displaystyle\varepsilon\in(0,1]. This suggests the modified condition [A4’].

Refer to caption
Figure 2: Plots of θε,±\displaystyle\theta^{*}_{\varepsilon,\pm} (solid lines) and uε,±\displaystyle u_{\varepsilon,\pm} (dashed lines). Note that θε,+>θε,\displaystyle\theta^{*}_{\varepsilon,+}>\theta^{*}_{\varepsilon,-} and uε,+>uε,\displaystyle u_{\varepsilon,+}>u_{\varepsilon,-}. The horizontal axis corresponds to ε\displaystyle\varepsilon.

Now we verify the orders of approximate terms Ψmε(w^ε)\displaystyle\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon}) with m=0,1,2\displaystyle m=0,1,2. Figure 3 represents the log-log plot of the approximations for small ε\displaystyle\varepsilon. In this figure, we can find the linear relationships between log|Ψmε(w^ε)|\displaystyle\log|\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})| and logε\displaystyle\log\varepsilon. We estimate their relationship by linear regression and get

log|Ψ0ε(w^ε)|\displaystyle\displaystyle\log|\Psi^{\varepsilon}_{0}(\hat{w}_{\varepsilon})| =\displaystyle\displaystyle= 1.1365logε4.5611,R2=0.9996,\displaystyle\displaystyle 1.1365\log\varepsilon-4.5611,\ \ R^{2}=0.9996,
log|Ψ1ε(w^ε)|\displaystyle\displaystyle\log|\Psi^{\varepsilon}_{1}(\hat{w}_{\varepsilon})| =\displaystyle\displaystyle= 3.3152logε7.8203,R2=0.9999,\displaystyle\displaystyle 3.3152\log\varepsilon-7.8203,\ \ R^{2}=0.9999,
log|Ψ2ε(w^ε)|\displaystyle\displaystyle\log|\Psi^{\varepsilon}_{2}(\hat{w}_{\varepsilon})| =\displaystyle\displaystyle= 4.9068logε10.928,R2=0.9999.\displaystyle\displaystyle 4.9068\log\varepsilon-10.928,\ \ R^{2}=0.9999.

Then we can numerically confirm that Ψmε(w^ε)=O(ε2m+1)\displaystyle\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})=O(\varepsilon^{2m+1}) as ε0\displaystyle\varepsilon\rightarrow 0 for m=0,1,2\displaystyle m=0,1,2, which is consistent with Theorem 2 and (3.4) (see also Theorem 3 in Section 6.1).

Refer to caption
Figure 3: Log-log plot of |Ψmε(w^ε)|\displaystyle|\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})| with m=0,1,2\displaystyle m=0,1,2 in the Heston SV model. The horizontal axis means logε\displaystyle\log\varepsilon. The vertical axis means log|Ψmε(w^ε)|\displaystyle\log|\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})|.

Next, we calculate the relative errors of the LR formula. We let

Normal formula =\displaystyle\displaystyle= Φ¯(w^ε),\displaystyle\displaystyle\bar{\Phi}(\hat{w}_{\varepsilon}),
0th formula\displaystyle\displaystyle 0\mbox{th formula} =\displaystyle\displaystyle= Φ¯(w^ε)+Ψ0ε(w^ε),\displaystyle\displaystyle\bar{\Phi}(\hat{w}_{\varepsilon})+\Psi^{\varepsilon}_{0}(\hat{w}_{\varepsilon}),
1st formula\displaystyle\displaystyle 1\mbox{st formula} =\displaystyle\displaystyle= Φ¯(w^ε)+Ψ0ε(w^ε)+Ψ1ε(w^ε),\displaystyle\displaystyle\bar{\Phi}(\hat{w}_{\varepsilon})+\Psi^{\varepsilon}_{0}(\hat{w}_{\varepsilon})+\Psi^{\varepsilon}_{1}(\hat{w}_{\varepsilon}),
2nd formula\displaystyle\displaystyle 2\mbox{nd formula} =\displaystyle\displaystyle= Φ¯(w^ε)+Ψ0ε(w^ε)+Ψ1ε(w^ε)+Ψ2ε(w^ε).\displaystyle\displaystyle\bar{\Phi}(\hat{w}_{\varepsilon})+\Psi^{\varepsilon}_{0}(\hat{w}_{\varepsilon})+\Psi^{\varepsilon}_{1}(\hat{w}_{\varepsilon})+\Psi^{\varepsilon}_{2}(\hat{w}_{\varepsilon}).

We define the relative error for approximated value P^\displaystyle\hat{P} of P(XTε>x)\displaystyle P(X^{\varepsilon}_{T}>x):

RE=|P^P(XTε>x)1|.\displaystyle\displaystyle\mathrm{RE}=\left|\frac{\hat{P}}{P(X^{\varepsilon}_{T}>x)}-1\right|. (4.2)

To find the true value of P(XTε>x)\displaystyle P(X^{\varepsilon}_{T}>x) (‘True’ in Table 1), we directly calculate the integral (2.2) with c=θ^ε\displaystyle c=\hat{\theta}_{\varepsilon}.

ε\displaystyle\varepsilon P(XTε>x)\displaystyle P(X^{\varepsilon}_{T}>x) RE
True Normal 0th 1st 2nd Normal 0th 1st 2nd
0.2 0.06622 0.06788 0.06622 0.06622 0.06622 2.51E-02 2.84E-05 3.12E-07 3.18E-09
0.4 0.06521 0.06894 0.06523 0.06521 0.06521 5.71E-02 2.88E-04 9.57E-06 4.04E-07
0.6 0.06385 0.06996 0.06392 0.06385 0.06385 9.56E-02 1.11E-03 6.76E-05 6.28E-06
0.8 0.06219 0.07093 0.06237 0.06217 0.06219 1.41E-01 2.82E-03 2.60E-04 4.11E-05
1 0.06029 0.07184 0.06063 0.06025 0.06028 1.92E-01 5.69E-03 7.22E-04 1.40E-04
Table 1: Approximated values of P(XTε>x)\displaystyle P(X^{\varepsilon}_{T}>x) and relative errors with ε=0.2,0.4,0.6,0.8,1\displaystyle\varepsilon=0.2,0.4,0.6,0.8,1.
Refer to caption
Figure 4: Relative errors of P(XTε>x)\displaystyle P(X^{\varepsilon}_{T}>x). The horizontal axis means ε\displaystyle\varepsilon.

The results are shown in Table 1 and Figure 4. We see that the relative errors decrease when ε\displaystyle\varepsilon becomes small. Moreover, we can verify that the higher order LR formula gives a more accurate approximation. In particular, the accuracies of the ‘1\displaystyle 1st’ and ‘2\displaystyle 2nd’ formulae are quite high, even when ε\displaystyle\varepsilon is not small.

Refer to caption
Figure 5: Log-log plot of the absolute errors of P(XTε>x)\displaystyle P(X^{\varepsilon}_{T}>x). The horizontal axis means logε\displaystyle\log\varepsilon. The vertical axis means logAE\displaystyle\log\mathrm{AE}.

Figure 5 shows the log-log plot of the absolute errors, defined by

AE=|P^P(XTε>x)|.\displaystyle\displaystyle\mathrm{AE}=\left|\hat{P}-P(X^{\varepsilon}_{T}>x)\right|. (4.3)

We see that there are linear relationships between logε\displaystyle\log\varepsilon and the logAE\displaystyle\log\mathrm{AE} functions: by linear regression, we have

logAENormal\displaystyle\displaystyle\log\mathrm{AE}_{\mathrm{Normal}} =\displaystyle\displaystyle= 1.1460logε4.5447,R2=0.9996,\displaystyle\displaystyle 1.1460\log\varepsilon-4.5447,\ \ R^{2}=0.9996,
logAE0th\displaystyle\displaystyle\log\mathrm{AE}_{0\mathrm{th}} =\displaystyle\displaystyle= 3.2951logε7.8692,R2=0.9999,\displaystyle\displaystyle 3.2951\log\varepsilon-7.8692,\ \ R^{2}=0.9999,
logAE1st\displaystyle\displaystyle\log\mathrm{AE}_{1\mathrm{st}} =\displaystyle\displaystyle= 4.9353logε9.7660,R2=0.9999,\displaystyle\displaystyle 4.9353\log\varepsilon-9.7660,\ \ R^{2}=0.9999,
logAE2nd\displaystyle\displaystyle\log\mathrm{AE}_{2\mathrm{nd}} =\displaystyle\displaystyle= 6.9894logε11.050,R2=0.9999.\displaystyle\displaystyle 6.9894\log\varepsilon-11.050,\ \ R^{2}=0.9999.

These imply that the error of the m\displaystyle mth LR formula has order O(ε2m+3)\displaystyle O(\varepsilon^{2m+3}) as ε0\displaystyle\varepsilon\rightarrow 0, which is consistent with (3.5) and Theorem 4 in Section 6.1.

At the end of this section, we consider the application to option pricing. We calculate the European call option price

Callε=E[max{exp(XTε)L,0}]\displaystyle\displaystyle\mathrm{Call}^{\varepsilon}=\mathrm{E}[\max\left\{\exp\left(X^{\varepsilon}_{T}\right)-L,0\right\}] (4.4)

under the risk-neutral probability measure P\displaystyle P, where L>0\displaystyle L>0 is the strike price.

The explicit form of Callε\displaystyle\mathrm{Call}^{\varepsilon} was obtained by Heston (1993), so we can calculate the exact value, up to the truncation error associated with numerical integration. Applying the LR formula to (4.4) was proposed by Rogers and Zane (1999). Here, we briefly review the procedure to do so. First, we rewrite (4.4) as

Callε=E[exp(XTε);XTε>l]LP(XTε>l),\displaystyle\displaystyle\mathrm{Call}^{\varepsilon}=\mathrm{E}[\exp\left(X^{\varepsilon}_{T}\right)\ ;\ X^{\varepsilon}_{T}>l]-LP(X^{\varepsilon}_{T}>l),

where l=logL\displaystyle l=\log L. For the second term in the right-hand side of the above equality, we can directly apply the LR formula. To evaluate the first term, we define a new probability measure Q\displaystyle Q (called the share measure) by the following Radon–Nikodym density

dQdP=exp(XTε)E[exp(XTε)]=exp(Kε(1))exp(XTε).\displaystyle\displaystyle\frac{dQ}{dP}=\frac{\exp\left(X^{\varepsilon}_{T}\right)}{\mathrm{E}[\exp\left(X^{\varepsilon}_{T}\right)]}=\exp\left(-K_{\varepsilon}(1)\right)\exp\left(X^{\varepsilon}_{T}\right).

From this we obtain

E[exp(XTε);XTε>l]=exp(Kε(1))Q(XTε>l).\displaystyle\displaystyle\mathrm{E}[\exp\left(X^{\varepsilon}_{T}\right)\ ;\ X^{\varepsilon}_{T}>l]=\exp\left(K_{\varepsilon}(1)\right)Q(X^{\varepsilon}_{T}>l).

Now, we can easily find the CGF K~ε(θ)\displaystyle\tilde{K}_{\varepsilon}(\theta) of the distribution Q(XTε)\displaystyle Q(X^{\varepsilon}_{T}\in\cdot):

K~ε(θ)=Kε(θ+1)Kε(1).\displaystyle\displaystyle\tilde{K}_{\varepsilon}(\theta)=K_{\varepsilon}(\theta+1)-K_{\varepsilon}(1).

Obviously, K~ε(θ)\displaystyle\tilde{K}_{\varepsilon}(\theta) satisfies our assumptions [A1]–[A5]. Therefore, we can apply the LR formula to Q(XTε>l)\displaystyle Q(X^{\varepsilon}_{T}>l).

Now we set the initial price ex0\displaystyle e^{x_{0}} of the underlying asset as 100\displaystyle 100 and the strike price L\displaystyle L as 105. For the model parameters, we set κ=6\displaystyle\kappa=6, b=0.32\displaystyle b=0.3^{2}, ρ=0.3\displaystyle\rho=0.3, and v0=0.22\displaystyle v_{0}=0.2^{2}. We denote by CallNormalε\displaystyle\mathrm{Call}^{\varepsilon}_{\mathrm{Normal}}, Call0thε\displaystyle\mathrm{Call}^{\varepsilon}_{0\mathrm{th}}, Call1stε\displaystyle\mathrm{Call}^{\varepsilon}_{1\mathrm{st}} and Call2ndε\displaystyle\mathrm{Call}^{\varepsilon}_{2\mathrm{nd}} the approximations of Callε\displaystyle\mathrm{Call}^{\varepsilon} using the LR formulae ‘Normal,’ ‘0\displaystyle 0th,’ ‘1\displaystyle 1st’ and ‘2\displaystyle 2nd’, respectively. RE and AE are the same as in (4.2) and (4.3), respectively, with tail probabilities as option prices.

ε\displaystyle\varepsilon Call Option Price RE
True Normal 0th 1st 2nd Normal 0th 1st 2nd
0.2 9.352 9.367 9.352 9.352 9.352 1.62E-03 8.93E-06 5.95E-08 7.04E-10
0.4 9.358 9.419 9.357 9.358 9.358 6.46E-03 1.41E-04 3.78E-06 1.60E-07
0.6 9.337 9.471 9.330 9.337 9.337 1.43E-02 7.00E-04 4.29E-05 3.43E-06
0.8 9.291 9.523 9.271 9.293 9.291 2.50E-02 2.14E-03 2.38E-04 2.63E-05
1 9.223 9.576 9.177 9.231 9.224 3.82E-02 5.01E-03 8.79E-04 1.16E-04
Table 2: Approximated values of Callε\displaystyle\mathrm{Call}^{\varepsilon} and relative errors with ε=0.2,0.4,0.6,0.8,1\displaystyle\varepsilon=0.2,0.4,0.6,0.8,1 in the Heston SV model.
Refer to caption
Figure 6: Log-log plot of the absolute errors of Callε\displaystyle\mathrm{Call}^{\varepsilon} in the Heston SV model. The horizontal axis means logε\displaystyle\log\varepsilon. The vertical axis means logAE\displaystyle\log\mathrm{AE}.

Table 2 and Figure 6 summerise the results. As in the tail probability case, we can see that the LR formulae yield highly accurate approximations.

4.2 The Wishart SV Model

Next, we introduce the Wishart SV model. The Wishart process was first studied by Bru (1991); it was first used to describe multivariate stochastic volatility by Gouriéroux (2006). Since then, modelling of multivariate stochastic volatility by using the Wishart process has been studied in several papers, such as Fonseca, Grasselli, and Tebaldi (2007, 2008), Grasselli and Tebaldi (2008), Gouriéroux, Jasiak, and Sufana (2009), and Benamid, Bensusan, and El Karoui (2010).

We consider the following SDE:

dYtε=12tr[Σtε]dt+tr[Σtε(dWtR+dBtIRR)],\displaystyle\displaystyle dY^{\varepsilon}_{t}=-\frac{1}{2}\mathrm{tr}[\Sigma^{\varepsilon}_{t}]dt+\mathrm{tr}[\sqrt{\Sigma^{\varepsilon}_{t}}(dW_{t}R^{\prime}+dB_{t}\sqrt{I-RR^{\prime}})],
dΣtε=(ΩΩ+MΣtε+ΣtεM)dt+ε{ΣtεdWtQ+Q(dWt)Σtε},\displaystyle\displaystyle d\Sigma^{\varepsilon}_{t}=(\Omega^{\prime}\Omega+M\Sigma^{\varepsilon}_{t}+\Sigma^{\varepsilon}_{t}M^{\prime})dt+\varepsilon\left\{\sqrt{\Sigma^{\varepsilon}_{t}}dW_{t}Q+Q^{\prime}(dW_{t})^{\prime}\sqrt{\Sigma^{\varepsilon}_{t}}\right\},
Y0ε=y0,Σ0ε=Σ0,\displaystyle\displaystyle\ Y^{\varepsilon}_{0}=y_{0},\ \Sigma^{\varepsilon}_{0}=\Sigma_{0},

where I\displaystyle I is the n\displaystyle n-dimensional unit matrix, R,M,Qnn\displaystyle R,M,Q\in\mathbb{R}^{n}\otimes\mathbb{R}^{n}, and ε0\displaystyle\varepsilon\geq 0. Here, tr[A]\displaystyle\mathrm{tr}[A] is the trace of A\displaystyle A and A\displaystyle A^{\prime} denotes the transpose matrix of A\displaystyle A. Ωnn\displaystyle\Omega\in\mathbb{R}^{n}\otimes\mathbb{R}^{n} is assumed to satisfy

ΩΩ=βQQ\displaystyle\displaystyle\Omega^{\prime}\Omega=\beta Q^{\prime}Q

for some β(n1)ε2\displaystyle\beta\geq(n-1)\varepsilon^{2}. (Wt)t\displaystyle(W_{t})_{t} and (Bt)t\displaystyle(B_{t})_{t} are nn\displaystyle\mathbb{R}^{n}\otimes\mathbb{R}^{n}-valued processes whose components are mutually independent standard Brownian motions. The process (Ytε)t\displaystyle(Y^{\varepsilon}_{t})_{t} is regarded as the log-price of a security under a risk-neutral probability measure. (Σtε)t\displaystyle(\Sigma^{\varepsilon}_{t})_{t} is an n\displaystyle n-dimensional matrix-valued process which describes multivariate stochastic volatility. We verify the validity of the approximation terms of the exact LR expansion for F¯ε(x)=P(YTε>x)\displaystyle\bar{F}_{\varepsilon}(x)=P(Y^{\varepsilon}_{T}>x).

The explicit form of the CGF of με=P(YTε)\displaystyle\mu_{\varepsilon}=P(Y^{\varepsilon}_{T}\in\cdot) is studied in Bru (1991), Fonseca, Grasselli and Tebaldi (2008), and others. To simplify, we only treat the case of n=2\displaystyle n=2 and restrict the forms of R,M\displaystyle R,M and Q\displaystyle Q as follows:

R=(r00r),M=(m00m),Q=(q00q),Σ0=(σ0200σ02).\displaystyle\displaystyle R=\left(\begin{array}[]{cc}r&0\\ 0&r\end{array}\right),\ \ M=\left(\begin{array}[]{cc}-m&0\\ 0&-m\end{array}\right),\ \ Q=\left(\begin{array}[]{cc}q&0\\ 0&q\end{array}\right),\ \ \Sigma_{0}=\left(\begin{array}[]{cc}\sigma^{2}_{0}&0\\ 0&\sigma^{2}_{0}\end{array}\right).

We set parameters as r=0.7\displaystyle r=-0.7, q=0.25\displaystyle q=0.25, m=1\displaystyle m=1, β=3\displaystyle\beta=3, y0=0\displaystyle y_{0}=0, σ0=1\displaystyle\sigma_{0}=1, T=1\displaystyle T=1, and x=1\displaystyle x=1. Similar to the case in Section 4.1, we can find linear relationships between log|Ψmε(w^ε)|\displaystyle\log|\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})| and logε\displaystyle\log\varepsilon in Figure 7 with m=0,1,2\displaystyle m=0,1,2. Linear regression gives

log|Ψ0ε(w^ε)|\displaystyle\displaystyle\log|\Psi^{\varepsilon}_{0}(\hat{w}_{\varepsilon})| =\displaystyle\displaystyle= 0.9740logε4.9496,R2=0.9999,\displaystyle\displaystyle 0.9740\log\varepsilon-4.9496,\ \ R^{2}=0.9999,
log|Ψ1ε(w^ε)|\displaystyle\displaystyle\log|\Psi^{\varepsilon}_{1}(\hat{w}_{\varepsilon})| =\displaystyle\displaystyle= 2.8128logε10.943,R2=0.9995,\displaystyle\displaystyle 2.8128\log\varepsilon-10.943,\ \ R^{2}=0.9995,
log|Ψ2ε(w^ε)|\displaystyle\displaystyle\log|\Psi^{\varepsilon}_{2}(\hat{w}_{\varepsilon})| =\displaystyle\displaystyle= 5.2875logε14.474,R2=0.9999.\displaystyle\displaystyle 5.2875\log\varepsilon-14.474,\ \ R^{2}=0.9999.

Thus, for this case also we can numerically confirm that Ψmε(w^ε)=O(ε2m+1)\displaystyle\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})=O(\varepsilon^{2m+1}), ε0\displaystyle\varepsilon\rightarrow 0 for m=0,1,2\displaystyle m=0,1,2.

Refer to caption
Figure 7: Log-log plot of |Ψmε(w^ε)|\displaystyle|\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})| with m=0,1,2\displaystyle m=0,1,2 in the Wishart SV model. The horizontal axis means logε\displaystyle\log\varepsilon. The vertical axis means log|Ψmε(w^ε)|\displaystyle\log|\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})|.

Now we investigate the relative errors of the LR formula. We compare the approximations of P(YTε>x)\displaystyle P(Y^{\varepsilon}_{T}>x) by the formulae ‘Normal,’ ‘0\displaystyle 0th,’ ‘1\displaystyle 1st’, and ‘2\displaystyle 2nd’, defined in the same way as in Section 4.1, with the true value, which is calculated by direct evaluation of the integral in (2.2).

ε\displaystyle\varepsilon P(YTε>x)\displaystyle P(Y^{\varepsilon}_{T}>x) RE
True Normal 0th 1st 2nd Normal 0th 1st 2nd
0.2 0.06610 0.06462 0.06610 0.06610 0.06610 2.24E-02 2.97E-06 4.62E-09 1.73E-11
0.4 0.06624 0.06333 0.06623 0.06624 0.06624 4.38E-02 2.00E-05 1.88E-07 2.53E-09
0.6 0.06622 0.06198 0.06622 0.06622 0.06622 6.40E-02 5.25E-05 1.77E-06 4.76E-08
0.8 0.06604 0.06056 0.06603 0.06604 0.06604 8.30E-02 8.31E-05 7.92E-06 -6.20E-07
1 0.06568 0.05908 0.06567 0.06568 0.06568 1.00E-01 9.12E-05 4.59E-06 -2.52E-05
Table 3: Approximated values of P(YTε>x)\displaystyle P(Y^{\varepsilon}_{T}>x) and relative errors for ε=0.2,0.4,0.6,0.8,1\displaystyle\varepsilon=0.2,0.4,0.6,0.8,1.
Refer to caption
Figure 8: Log-log plot of the absolute errors of P(YTε>x)\displaystyle P(Y^{\varepsilon}_{T}>x). The horizontal axis means logε\displaystyle\log\varepsilon. The vertical axis means logAE\displaystyle\log\mathrm{AE}.

Similar to the case in Section 4.1, we show the relative errors and the log-log plot of absolute errors of the formulae in Table 3 and Figure 8. We can also confirm that the LR formulae are highly accurate. Using the data shown in Figure 8, we get the linear regression results

logAENormal\displaystyle\displaystyle\log\mathrm{AE}_{\mathrm{Normal}} =\displaystyle\displaystyle= 0.9732logε4.9507,R2=0.9999,\displaystyle\displaystyle 0.9732\log\varepsilon-4.9507,\ \ R^{2}=0.9999,
logAE0th\displaystyle\displaystyle\log\mathrm{AE}_{0\mathrm{th}} =\displaystyle\displaystyle= 2.7930logε10.979,R2=0.9994,\displaystyle\displaystyle 2.7930\log\varepsilon-10.979,\ \ R^{2}=0.9994,
logAE1st\displaystyle\displaystyle\log\mathrm{AE}_{1\mathrm{st}} =\displaystyle\displaystyle= 5.3063logε13.339,R2=0.9999,\displaystyle\displaystyle 5.3063\log\varepsilon-13.339,\ \ R^{2}=0.9999,
logAE2nd\displaystyle\displaystyle\log\mathrm{AE}_{2\mathrm{nd}} =\displaystyle\displaystyle= 7.1747logε15.937,R2=0.9999,\displaystyle\displaystyle 7.1747\log\varepsilon-15.937,\ \ R^{2}=0.9999,

which suggest (3.5).

At the end of this section, we confirm the validity for application in option pricing. Similarly to (4.4), we consider the European call option

Callε=E[max{exp(YTε)L,0}]\displaystyle\displaystyle\mathrm{Call}^{\varepsilon}=\mathrm{E}[\max\left\{\exp\left(Y^{\varepsilon}_{T}\right)-L,0\right\}]

with the strike price L>0\displaystyle L>0. To find the true value of the option price, we apply a closed-form formula proposed in Benabid, Bensusan, and El Karoui (2010). We set the initial price of the underlying asset as ey0=100\displaystyle e^{y0}=100 and L=105\displaystyle L=105. For the initial volatility, we put σ0=0.25\displaystyle\sigma_{0}=0.25. Other parameters are the same as in the previous case.

ε\displaystyle\varepsilon Call Option Price RE
True Normal 0th 1st 2nd Normal 0th 1st 2nd
0.2 10.90 10.91 10.90 10.90 10.90 1.13E-03 1.50E-06 8.61E-09 3.15E-11
0.4 10.76 10.80 10.76 10.76 10.76 4.58E-03 2.10E-05 4.56E-05 4.62E-05
0.6 10.60 10.70 10.59 10.59 10.59 9.88E-03 4.37E-04 3.08E-04 3.02E-04
0.8 10.46 10.60 10.40 10.41 10.41 1.27E-02 5.71E-03 5.29E-03 5.25E-03
1 10.15 10.49 10.20 10.21 10.21 3.37E-02 4.33E-03 5.41E-03 5.55E-03
Table 4: Approximations of Callε\displaystyle\mathrm{Call}^{\varepsilon} and relative errors with ε=0.2,0.4,0.6,0.8,1\displaystyle\varepsilon=0.2,0.4,0.6,0.8,1 in the Wishart SV model.
Refer to caption
Figure 9: Log-log plot of the absolute errors of Callε\displaystyle\mathrm{Call}^{\varepsilon} in the Wishart SV model. The horizontal axis means logε\displaystyle\log\varepsilon. The vertical axis means logAE\displaystyle\log\mathrm{AE}.

The results are shown in Table 4 and Figure 9. Although the linear relationships are not as clear as in Figure 6, we can see that the LR formulae are highly accurate in each case.

5 Proofs

5.1 Proof of Theorem 1

In this subsection, we justify the formal calculations shown in Section 2. For ease of readability, we omit ε\displaystyle\varepsilon from the notation used in this section.

Proposition 1.

Assume [A1]\displaystyle\mathrm{[A1]}[A2]\displaystyle\mathrm{[A2]} hold. Then

F¯(x)=12πicic+iexp(K(θ)xθ)dθθ\displaystyle\displaystyle\bar{F}(x)\ =\ \frac{1}{2\pi i}\int^{c+i\infty}_{c-i\infty}\exp(K(\theta)-x\theta)\frac{d\theta}{\theta}

for c𝒪{0}\displaystyle c\in\mathcal{O}\setminus\{0\}.

Proof.

Without loss of generality, we may assume c>0\displaystyle c>0 and x0\displaystyle x\geq 0. By [A2] and Theorem 3.3.5 in Durrett (2010), the density function f\displaystyle f of μ\displaystyle\mu exists and is bounded and continuous. Moreover,

f(y)=12πeiξyφ(ξ)𝑑ξ\displaystyle\displaystyle f(y)=\frac{1}{2\pi}\int_{\mathbb{R}}e^{-i\xi y}\varphi(\xi)d\xi

holds, where φ(ξ)=exp(K(iξ))\displaystyle\varphi(\xi)=\exp(K(i\xi)) is the characteristic function of μ\displaystyle\mu. Then we have for each R>x\displaystyle R>x that

μ((x,R])=12πxReiξyφ(ξ)𝑑ξ𝑑y=12πiiiF(z)𝑑z\displaystyle\displaystyle\mu((x,R])=\frac{1}{2\pi}\int^{R}_{x}\int_{\mathbb{R}}e^{-i\xi y}\varphi(\xi)d\xi dy=\frac{1}{2\pi i}\int^{i\infty}_{-i\infty}F(z)dz

by Fubini’s theorem, where

F(z)=xRe(sy)zf(s)𝑑y𝑑s.\displaystyle\displaystyle F(z)=\int_{\mathbb{R}}\int^{R}_{x}e^{(s-y)z}f(s)dyds.

Now, consider the four lines Γ1,,Γ4\displaystyle\Gamma_{1},\ldots,\Gamma_{4}\subset\mathbb{C}, defined as

Γ1={it;t[l,l]},Γ2={t+il;t[0,c]},\displaystyle\displaystyle\Gamma_{1}=\{it\ ;\ t\in[-l,l]\},\ \ \Gamma_{2}=\{t+il\ ;\ t\in[0,c]\},
Γ3={til;t[0,c]},Γ4={c+it;t[l,l]}\displaystyle\displaystyle\Gamma_{3}=\{t-il\ ;\ t\in[0,c]\},\ \ \Gamma_{4}=\{c+it\ ;\ t\in[-l,l]\}

for a given l>0\displaystyle l>0. By Cauchy’s integral theorem, we have

Γ1Γ2Γ3Γ4F(z)𝑑z=0.\displaystyle\displaystyle\int_{\Gamma_{1}\cup\Gamma_{2}\cup\Gamma_{3}\cup\Gamma_{4}}F(z)dz=0. (5.1)

Here, we observe that

Γ2Γ3F(z)𝑑z\displaystyle\displaystyle\int_{\Gamma_{2}\cup\Gamma_{3}}F(z)dz =\displaystyle\displaystyle= 2i0cxRe(sy)tf(s)sinl(sy)𝑑y𝑑s𝑑t\displaystyle\displaystyle 2i\int^{c}_{0}\int_{\mathbb{R}}\int^{R}_{x}e^{(s-y)t}f(s)\sin l(s-y)dydsdt
=\displaystyle\displaystyle= 2i0cf(s)t2+l2[e(sx)t(lcosl(sx)+tsinl(sx))\displaystyle\displaystyle 2i\int^{c}_{0}\int_{\mathbb{R}}\frac{f(s)}{t^{2}+l^{2}}\Big{[}e^{(s-x)t}(-l\cos l(s-x)+t\sin l(s-x))
+e(sR)t(lcosl(sR)tsinl(sR))]dsdt\displaystyle\displaystyle\hskip 85.35826pt+e^{(s-R)t}(l\cos l(s-R)-t\sin l(s-R))\Big{]}dsdt

to conclude

|Γ2Γ3F(z)𝑑z|4(l+c)cl2ecsf(s)𝑑s=4(l+c)cl2eK(c).\displaystyle\displaystyle\left|\int_{\Gamma_{2}\cup\Gamma_{3}}F(z)dz\right|\ \leq\ \frac{4(l+c)c}{l^{2}}\int_{\mathbb{R}}e^{cs}f(s)ds=\frac{4(l+c)c}{l^{2}}e^{K(c)}.

Since c𝒪\displaystyle c\in\mathcal{O}, the integral on the right-hand side is finite. Thus, the left-hand side must converge to zero as l\displaystyle l\rightarrow\infty. Combining this result with (5.1), we obtain that

μ((x,R])=12πilimlΓ1F(z)𝑑z=12πilimlΓ4F(z)𝑑z\displaystyle\displaystyle\mu((x,R])\ =\ \frac{1}{2\pi i}\lim_{l\rightarrow\infty}\int_{\Gamma_{1}}F(z)dz\ =\ \frac{1}{2\pi i}\lim_{l\rightarrow\infty}\int_{\Gamma_{4}}F(z)dz
=12πicic+ixRe(sy)zf(s)𝑑y𝑑s𝑑z=12πicic+ixReK(z)yz𝑑y𝑑z.\displaystyle\displaystyle=\frac{1}{2\pi i}\int^{c+i\infty}_{c-i\infty}\int_{\mathbb{R}}\int^{R}_{x}e^{(s-y)z}f(s)dydsdz\ =\ \frac{1}{2\pi i}\int^{c+i\infty}_{c-i\infty}\int^{R}_{x}e^{K(z)-yz}dydz.\ \ \ \ \ (5.2)

Since

cic+i0|eK(z)yz|𝑑y|dz|1ceK(c)<,\displaystyle\displaystyle\int^{c+i\infty}_{c-i\infty}\int^{\infty}_{0}|e^{K(z)-yz}|dy|dz|\leq\frac{1}{c}e^{K(c)}<\infty,

we can take the limit R\displaystyle R\rightarrow\infty on the right-hand side of (5.2); we conclude that

F¯(x)=12πicic+ixeK(z)yz𝑑y𝑑z=12πicic+ieK(z)xzdzz,\displaystyle\displaystyle\bar{F}(x)=\frac{1}{2\pi i}\int^{c+i\infty}_{c-i\infty}\int^{\infty}_{x}e^{K(z)-yz}dydz=\frac{1}{2\pi i}\int^{c+i\infty}_{c-i\infty}e^{K(z)-xz}\frac{dz}{z},

which is the assertion of Proposition 1. ∎

Now, we present the rigorous definition of the change of variables (2.5). For each θ𝒟\displaystyle\theta\in\mathcal{D}, we can define w=w(θ)\displaystyle w=w(\theta)\in\mathbb{R} by

w(θ)=w^+sgn(θθ^)2{(K(θ)xθ)(K(θ^)xθ^)}.\displaystyle\displaystyle w(\theta)=\hat{w}+\mathrm{sgn}(\theta-\hat{\theta})\sqrt{2\left\{\left(K(\theta)-x\theta\right)-\left(K(\hat{\theta})-x\hat{\theta}\right)\right\}}. (5.3)

Obviously, w(θ)\displaystyle w(\theta) is analytic on 𝒪{θ^}\displaystyle\mathcal{O}\setminus\{\hat{\theta}\}. Moreover, by straightforward calculation we observe

dwdθ=sgn(θθ^)K(θ)xw^2+2(K(θ)xθ)=K(θ)xw(θ)w^.\displaystyle\displaystyle\frac{dw}{d\theta}=\mathrm{sgn}(\theta-\hat{\theta})\cdot\frac{K^{\prime}(\theta)-x}{\sqrt{\hat{w}^{2}+2(K(\theta)-x\theta)}}=\frac{K^{\prime}(\theta)-x}{w(\theta)-\hat{w}}. (5.4)

Here we see that w(θ)\displaystyle w(\theta) is also analytic at θ^\displaystyle\hat{\theta}. Indeed, similar to (2.4), we have

w(θ)=w^+sgn(θθ^)k(θ)|θθ^|=w^+k(θ)(θθ^),\displaystyle\displaystyle w(\theta)=\hat{w}+\mathrm{sgn}(\theta-\hat{\theta})\sqrt{k(\theta)}|\theta-\hat{\theta}|=\hat{w}+\sqrt{k(\theta)}(\theta-\hat{\theta}),

where

k(θ)=01K′′(θ^+u(θθ^))𝑑u.\displaystyle\displaystyle k(\theta)=\int^{1}_{0}K^{\prime\prime}(\hat{\theta}+u(\theta-\hat{\theta}))du.

By [A2], k(θ)\displaystyle k(\theta) is positive, and thus k(θ)\displaystyle\sqrt{k(\theta)} is real analytic. As a consequence, the function w(θ)\displaystyle w(\theta) is real analytic on 𝒪\displaystyle\mathcal{O}. Now we can take the limit θθ^\displaystyle\theta\rightarrow\hat{\theta} in (5.5) to obtain

w(θ^)=limθθ^K(θ)xww^=limθθ^K′′(θ)w(θ)\displaystyle\displaystyle w^{\prime}(\hat{\theta})=\lim_{\theta\rightarrow\hat{\theta}}\frac{K^{\prime}(\theta)-x}{w-\hat{w}}=\lim_{\theta\rightarrow\hat{\theta}}\frac{K^{\prime\prime}(\theta)}{w^{\prime}(\theta)}

by using l’Hôpital’s rule. This implies that (w(θ^))2=K′′(θ^)0\displaystyle(w^{\prime}(\hat{\theta}))^{2}=K^{\prime\prime}(\hat{\theta})\neq 0. Therefore, we deduce that there exist a neighbourhood U\displaystyle U\subset\mathbb{C} of w(θ^)=w^\displaystyle w(\hat{\theta})=\hat{w} and a holomorphic function θ(w)\displaystyle\theta(w) on U\displaystyle U such that θ(w(z))=z\displaystyle\theta(w(z))=z for zU\displaystyle z\in U.

Here we remark that

Lemma 1.

θ𝒟\displaystyle\theta\notin\mathcal{D} implies K(θ)\displaystyle K^{\prime}(\theta) does not lie on \displaystyle\mathbb{R}.

Proof.

Let y\displaystyle y\in\mathbb{R}. By [A2], we have K′′(y)0\displaystyle K^{\prime\prime}(y)\neq 0. Thus, we can find a neighbourhood U\displaystyle U of K(y)\displaystyle K^{\prime}(y) and an analytic inverse function function (K)1\displaystyle(K^{\prime})^{-1} of K\displaystyle K^{\prime} defined on U\displaystyle U. On the other hand, [A2] implies that (K)1|U\displaystyle(K^{\prime})^{-1}|_{U\cap\mathbb{R}} is an analytic 𝒟\displaystyle\mathcal{D}-valued function, hence (K)1(y)𝒟\displaystyle(K^{\prime})^{-1}(y)\in\mathcal{D}. ∎

Lemma 1 immediately implies

Corollary 1.

Let z𝒟×i\displaystyle z\in\mathcal{D}\times i\mathbb{R}. If zθ^\displaystyle z\neq\hat{\theta}, then K(z)x\displaystyle K^{\prime}(z)\neq x; hence, w(θ)0\displaystyle w^{\prime}(\theta)\neq 0.

Now, we consider an analytic continuation of θ(w)\displaystyle\theta(w). Until the end of this section, we will assume [A1]–[A2] and [B1]–[B3] hold. By [B2], (5.4) and Corollary 1, we can define the analytic function θ(w)\displaystyle\theta(w) on an open set U^\displaystyle\hat{U} which contains a convex set that includes the line {w^}×i\displaystyle\{\hat{w}\}\times i\mathbb{R} and the curve {w(θ^+it);t}\displaystyle\{w(\hat{\theta}+it)\ ;\ t\in\mathbb{R}\}. Note that (5.4) immediately implies

θ(w)=ww^K(θ(w))x\displaystyle\displaystyle\theta^{\prime}(w)=\frac{w-\hat{w}}{K^{\prime}(\theta(w))-x} (5.5)

for each ww^\displaystyle w\neq\hat{w}.

By definition, the relation (2.5) holds everywhere on U^\displaystyle\hat{U}. Therefore, if we define the curves η\displaystyle\eta and γ\displaystyle\gamma as

η={θ^+it;t},γ={w(θ);θη},\displaystyle\displaystyle\eta=\{\hat{\theta}+it\ ;\ t\in\mathbb{R}\},\ \ \gamma=\{w(\theta)\ ;\ \theta\in\eta\},

then θ(w)\displaystyle\theta(w) can be also defined and is analytic on γ\displaystyle\gamma. Then, we can apply the change of variables to obtain

F¯(x)=12πiηexp(K(θ)xθ)dθθ=γexp(12w2w^w)θ(w)θ(w)𝑑w.\displaystyle\displaystyle\bar{F}(x)\ =\ \frac{1}{2\pi i}\int_{\eta}\exp(K(\theta)-x\theta)\frac{d\theta}{\theta}\ =\ \int_{\gamma}\exp\left(\frac{1}{2}w^{2}-\hat{w}w\right)\frac{\theta^{\prime}(w)}{\theta(w)}dw.

In Section 2, we need the condition θ^0\displaystyle\hat{\theta}\neq 0. In this section we only consider the case where θ^>0\displaystyle\hat{\theta}>0; the arguments are analogous for the case where θ^<0\displaystyle\hat{\theta}<0. In any case, we have θ^0\displaystyle\hat{\theta}\neq 0 and thus η\displaystyle\eta does not pass 0\displaystyle 0. Here, we see that w^>0\displaystyle\hat{w}>0. Indeed, if w^=0\displaystyle\hat{w}=0, then the inequality in (2.4) must be changed to equality. However, the assumptions θ^>0\displaystyle\hat{\theta}>0 and [A2] imply that the left-hand side of (2.4) is positive. This is a contradiction. Moreover, by its definition, w^\displaystyle\hat{w} must be nonnegative. These arguments imply that γ\displaystyle\gamma does not exceed 0\displaystyle 0.

Proposition 2.
γexp(12w2w^w)θ(w)θ(w)𝑑w\displaystyle\displaystyle\int_{\gamma}\exp\left(\frac{1}{2}w^{2}-\hat{w}w\right)\frac{\theta^{\prime}(w)}{\theta(w)}dw =\displaystyle\displaystyle= w^iw^+iexp(12w2w^w)θ(w)θ(w)𝑑w.\displaystyle\displaystyle\int^{\hat{w}+i\infty}_{\hat{w}-i\infty}\exp\left(\frac{1}{2}w^{2}-\hat{w}w\right)\frac{\theta^{\prime}(w)}{\theta(w)}dw.

To prove this proposition, we prepare a lemma.

Lemma 2.

|θ(w)θ^||ww^|/C\displaystyle|\theta(w)-\hat{\theta}|\geq|w-\hat{w}|/\sqrt{C}.

Proof.

By [B1] and Taylor’s theorem, we have

|ww^|2=2|K(θ(w))xθ(w)(K(θ^)xθ^)|C|θ(w)θ^|2,\displaystyle\displaystyle|w-\hat{w}|^{2}=2|K(\theta(w))-x\theta(w)-(K(\hat{\theta})-x\hat{\theta})|\leq C|\theta(w)-\hat{\theta}|^{2},

which implies the asserted statement. ∎

Proof of Proposition 2.

By Cauchy’s integral theorem, it suffices to show that

liml±supc𝒪M|Llcexp(12w2w^w)θ(w)θ(w)𝑑w|=0\displaystyle\displaystyle\lim_{l\rightarrow\pm\infty}\sup_{c\in\mathcal{O}\cap M}\left|\int_{L^{c}_{l}}\exp\left(\frac{1}{2}w^{2}-\hat{w}w\right)\frac{\theta^{\prime}(w)}{\theta(w)}dw\right|=0 (5.6)

for each compact set M\displaystyle M in (0,)\displaystyle(0,\infty), where Llc={w^+t(cw^)+il;t[0,1]}\displaystyle L^{c}_{l}=\{\hat{w}+t(c-\hat{w})+il\ ;\ t\in[0,1]\} and l\displaystyle l\in\mathbb{R}. By (5.5), we get

|Llcexp(12w2w^w)θ(w)θ(w)𝑑w|\displaystyle\displaystyle\left|\int_{L^{c}_{l}}\exp\left(\frac{1}{2}w^{2}-\hat{w}w\right)\frac{\theta^{\prime}(w)}{\theta(w)}dw\right| (5.7)
\displaystyle\displaystyle\leq |cw^|exp(w^2+l22)01exp(12t2(cw^)2)|t(cw^)+il(K(θ)x)θ|𝑑t\displaystyle\displaystyle|c-\hat{w}|\exp\left(-\frac{\hat{w}^{2}+l^{2}}{2}\right)\int^{1}_{0}\exp\left(\frac{1}{2}t^{2}(c-\hat{w})^{2}\right)\left|\frac{t(c-\hat{w})+il}{(K^{\prime}(\theta)-x)\theta}\right|dt
\displaystyle\displaystyle\leq exp(c2l22)(|c|+|w^|)(|c|+|w^|+|l|)infwLlc|(K(θ(w))x)θ(w)|.\displaystyle\displaystyle\exp\left(\frac{c^{2}-l^{2}}{2}\right)\frac{(|c|+|\hat{w}|)(|c|+|\hat{w}|+|l|)}{\inf_{w\in L^{c}_{l}}|(K^{\prime}(\theta(w))-x)\theta(w)|}.

By [B1] and Lemma 2, we observe

infwLlc|(K(θ(w))x)θ(w)|δinfwLlc|θ(w)θ^|infwLlc|θ|δ|l|C(|l|C|θ^|)\displaystyle\displaystyle\inf_{w\in L^{c}_{l}}|(K^{\prime}(\theta(w))-x)\theta(w)|\geq\delta\inf_{w\in L^{c}_{l}}|\theta(w)-\hat{\theta}|\inf_{w\in L^{c}_{l}}|\theta|\geq\delta\cdot\frac{|l|}{\sqrt{C}}\cdot\left(\frac{|l|}{\sqrt{C}}-|\hat{\theta}|\right)

for sufficiently large magnitudes of l\displaystyle l. Hence, we obtain (5.6) from (5.7). ∎

Proof of Theorem 1.

From Propositions 1 and 2, we get (2.6). Now we verify the holomorphicity of ψ\displaystyle\psi on {w^}×i\displaystyle\{\hat{w}\}\times i\mathbb{R}. We define

h(w)=logθ(w)logw=logg(w),g(w)=θ(w)w\displaystyle\displaystyle h(w)=\log\theta(w)-\log w=\log g(w),\ \ g(w)=\frac{\theta(w)}{w} (5.8)

when θ(w)\displaystyle\theta(w) is defined and let w0\displaystyle w\neq 0, where logz\displaystyle\log z is the principal value of the logarithm of z\displaystyle z. Since θ(w)\displaystyle\theta(w) is analytic on the line {w^}×i\displaystyle\{\hat{w}\}\times i\mathbb{R}, h\displaystyle h is also analytic. We can easily see that h(w)=ψ(w)\displaystyle h^{\prime}(w)=\psi(w). This implies that ψ(w)\displaystyle\psi(w) is also analytic; this permits the following Taylor series expansion:

ψ(w)=n=0ψ(n)(w^)n!(ww^)n\displaystyle\displaystyle\psi(w)=\sum^{\infty}_{n=0}\frac{\psi^{(n)}(\hat{w})}{n!}(w-\hat{w})^{n} (5.9)

for w{w^}×i\displaystyle w\in\{\hat{w}\}\times i\mathbb{R}.

To complete the proof of Theorem 1, it suffices to check the calculations in (2.7). Using (5.9) and the relation

ey2/2yn𝑑y=2π(n1)!!(n is even), 0(n is odd),\displaystyle\displaystyle\int^{\infty}_{-\infty}e^{-y^{2}/2}y^{n}dy=\sqrt{2\pi}(n-1)!!\ (\mbox{$\displaystyle n$ is even}),\ 0\ (\mbox{$\displaystyle n$ is odd}), (5.10)

we have

n=01n!ey2/2|ψ(n)(w^)||y|n𝑑y\displaystyle\displaystyle\sum^{\infty}_{n=0}\frac{1}{n!}\int^{\infty}_{-\infty}e^{-y^{2}/2}|\psi^{(n)}(\hat{w})|\cdot|y|^{n}dy
\displaystyle\displaystyle\leq 2π|ψ(w^)|+m=11(2m)!{|ψ(2m)(w^)|+|ψ(2m1)(w^)|}ey2/2(y2m+1)𝑑y\displaystyle\displaystyle\sqrt{2\pi}|\psi(\hat{w})|+\sum^{\infty}_{m=1}\frac{1}{(2m)!}\{|\psi^{(2m)}(\hat{w})|+|\psi^{(2m-1)}(\hat{w})|\}\int^{\infty}_{-\infty}e^{-y^{2}/2}(y^{2m}+1)dy
\displaystyle\displaystyle\leq 2π{|ψ(w^)|+2m=1|ψ(2m)(w^)|+|ψ(2m1)(w^)|(2m)!!}.\displaystyle\displaystyle\sqrt{2\pi}\left\{|\psi(\hat{w})|+2\sum^{\infty}_{m=1}\frac{|\psi^{(2m)}(\hat{w})|+|\psi^{(2m-1)}(\hat{w})|}{(2m)!!}\right\}.

By [B3], the right-hand side of the above inequality is finite. Thus, we can apply Fubini’s theorem and we can interchange the sum and the integral in (2.7). That is,

ey2/2n=0ψ(n)(w^)n!(iy)ndy=n=0ψ(n)(w^)n!iney2/2yn𝑑y.\displaystyle\displaystyle\int^{\infty}_{-\infty}e^{-y^{2}/2}\sum^{\infty}_{n=0}\frac{\psi^{(n)}(\hat{w})}{n!}(iy)^{n}dy=\sum^{\infty}_{n=0}\frac{\psi^{(n)}(\hat{w})}{n!}i^{n}\int^{\infty}_{-\infty}e^{-y^{2}/2}y^{n}dy.

We finish the proof of Theorem 1 by using (5.10) again. ∎

5.2 Proof of Theorem 2

For simplicity, we only consider the case θ^0>0\displaystyle\hat{\theta}_{0}>0. First, we introduce the following lemma.

Lemma 3.

θ^εθ^0\displaystyle\hat{\theta}_{\varepsilon}\longrightarrow\hat{\theta}_{0},  w^εw^0\displaystyle\hat{w}_{\varepsilon}\longrightarrow\hat{w}_{0} as ε0\displaystyle\varepsilon\rightarrow 0.

Proof.

First, we check that (θ^ε)ε\displaystyle(\hat{\theta}_{\varepsilon})_{\varepsilon} is bounded. By (2.1), we have

θ^ε=(Kε)1(x)(Kε)1(mε)=01duKε′′((Kε)1(mε+u(xmε)))(xmε),\displaystyle\displaystyle\hat{\theta}_{\varepsilon}=(K^{\prime}_{\varepsilon})^{-1}(x)-(K^{\prime}_{\varepsilon})^{-1}(m_{\varepsilon})=\int^{1}_{0}\frac{du}{K^{\prime\prime}_{\varepsilon}((K^{\prime}_{\varepsilon})^{-1}(m_{\varepsilon}+u(x-m_{\varepsilon})))}(x-m_{\varepsilon}),

where mε=Kε(0)\displaystyle m_{\varepsilon}=K^{\prime}_{\varepsilon}(0). By [A5], we see that (mε)ε\displaystyle(m_{\varepsilon})_{\varepsilon} is bounded. Thus, from [A3], we get

|θ^ε|1δ0(|x|+maxε|mε|)<.\displaystyle\displaystyle|\hat{\theta}_{\varepsilon}|\leq\frac{1}{\delta_{0}}(|x|+\max_{\varepsilon}|m_{\varepsilon}|)<\infty.

Second, we observe that

xKε(θ^0)=Kε′′(θ^0)(θ^εθ^0)+1201(1u)2Kε′′′(θ^0+u(θ^εθ^0))𝑑u(θ^εθ^0)2\displaystyle\displaystyle x-K^{\prime}_{\varepsilon}(\hat{\theta}_{0})=K^{\prime\prime}_{\varepsilon}(\hat{\theta}_{0})(\hat{\theta}_{\varepsilon}-\hat{\theta}_{0})+\frac{1}{2}\int^{1}_{0}(1-u)^{2}K^{\prime\prime\prime}_{\varepsilon}(\hat{\theta}_{0}+u(\hat{\theta}_{\varepsilon}-\hat{\theta}_{0}))du(\hat{\theta}_{\varepsilon}-\hat{\theta}_{0})^{2}

to arrive at

|θ^εθ^0|1δ0{|xKε(θ^0)|+12supyC|Kε′′′(y)|supε|θ^εθ^0|2}\displaystyle\displaystyle|\hat{\theta}_{\varepsilon}-\hat{\theta}_{0}|\leq\frac{1}{\delta_{0}}\left\{|x-K^{\prime}_{\varepsilon}(\hat{\theta}_{0})|+\frac{1}{2}\sup_{y\in C}|K^{\prime\prime\prime}_{\varepsilon}(y)|\cdot\sup_{\varepsilon}|\hat{\theta}_{\varepsilon}-\hat{\theta}_{0}|^{2}\right\}

for some compact set C\displaystyle C\subset\mathbb{R}. Letting ε0\displaystyle\varepsilon\rightarrow 0, we get the former assertion. The latter assertion follows immediately. ∎

The above lemma implies the following corollary.

Corollary 2.

There is a δ1>0\displaystyle\delta_{1}>0 such that θ^ε,w^ε>0\displaystyle\hat{\theta}_{\varepsilon},\ \hat{w}_{\varepsilon}>0 for ε[0,δ1)\displaystyle\varepsilon\in[0,\delta_{1}).

Proof.

Since θ^εθ^0>0\displaystyle\hat{\theta}_{\varepsilon}\longrightarrow\hat{\theta}_{0}>0, we can find some δ1>0\displaystyle\delta_{1}>0 such that θ^ε>θ^0/2>0\displaystyle\hat{\theta}_{\varepsilon}>\hat{\theta}_{0}/2>0 holds for ε<δ1\displaystyle\varepsilon<\delta_{1}. The relation w^ε>0\displaystyle\hat{w}_{\varepsilon}>0 is obtained in the same way by using w^0=K0′′(0)θ^0>0\displaystyle\hat{w}_{0}=\sqrt{K^{\prime\prime}_{0}(0)}\hat{\theta}_{0}>0. ∎

By the above corollary, we may assume that θ^ε\displaystyle\hat{\theta}_{\varepsilon} and w^ε\displaystyle\hat{w}_{\varepsilon} are strictly positive.

Proposition 3.

w^εKε′′(θ^ε)θ^ε=O(ε)\displaystyle\hat{w}_{\varepsilon}-\sqrt{K^{\prime\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon})}\hat{\theta}_{\varepsilon}=O(\varepsilon) as ε0\displaystyle\varepsilon\rightarrow 0.

Proof.

Since (θ^ε)ε\displaystyle(\hat{\theta}_{\varepsilon})_{\varepsilon} and (w^ε)ε\displaystyle(\hat{w}_{\varepsilon})_{\varepsilon} are bounded and away from zero, it suffices to show that w^ε2Kε′′(θ^ε)θ^ε2=O(ε)\displaystyle\hat{w}^{2}_{\varepsilon}-K^{\prime\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon})\hat{\theta}^{2}_{\varepsilon}=O(\varepsilon) as ε0\displaystyle\varepsilon\rightarrow 0. From the definition of w^ε\displaystyle\hat{w}_{\varepsilon}, we have

w^ε2=2(Kε(θ^ε)+Kε(θ^ε)θ^ε).\displaystyle\displaystyle\hat{w}_{\varepsilon}^{2}=2(-K_{\varepsilon}(\hat{\theta}_{\varepsilon})+K^{\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}).

Using Kε(0)=0\displaystyle K_{\varepsilon}(0)=0 and Taylor’s theorem, we get

w^ε2Kε′′(θ^ε)θ^ε2=θ^ε201Kε′′′(uθ^ε)(1u)2𝑑u.\displaystyle\displaystyle\hat{w}^{2}_{\varepsilon}-K^{\prime\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon})\hat{\theta}^{2}_{\varepsilon}=\hat{\theta}_{\varepsilon}^{2}\int^{1}_{0}K^{\prime\prime\prime}_{\varepsilon}(-u\hat{\theta}_{\varepsilon})(1-u)^{2}du.

Therefore,

|w^ε2Kε′′(θ^ε)θ^ε2|sup|y|θ^εy2|Kε′′′(y)|=O(ε)asε0,\displaystyle\displaystyle|\hat{w}^{2}_{\varepsilon}-K^{\prime\prime}_{\varepsilon}(\hat{\theta}_{\varepsilon})\hat{\theta}^{2}_{\varepsilon}|\leq\sup_{|y|\leq\hat{\theta}_{\varepsilon}}y^{2}|K^{\prime\prime\prime}_{\varepsilon}(y)|=O(\varepsilon)\ \ \mbox{as}\ \ \varepsilon\rightarrow 0,

from which our assertion follows. ∎

We write

θ^ε=dθdw(w^ε)=limww^εdθdw(w^ε).\displaystyle\displaystyle\hat{\theta}^{\prime}_{\varepsilon}=\frac{d\theta}{dw}(\hat{w}_{\varepsilon})=\lim_{w\rightarrow\hat{w}_{\varepsilon}}\frac{d\theta}{dw}(\hat{w}_{\varepsilon}).

Note that θ^ε\displaystyle\hat{\theta}^{\prime}_{\varepsilon} exists, because θ(w)\displaystyle\theta(w) is analytic at w^ε\displaystyle\hat{w}_{\varepsilon}. Similarly, we can define

θ^ε(n)=dnθdwn(w^ε)=limww^εdnθdwn(w^ε)\displaystyle\displaystyle\hat{\theta}^{(n)}_{\varepsilon}=\frac{d^{n}\theta}{dw^{n}}(\hat{w}_{\varepsilon})=\lim_{w\rightarrow\hat{w}_{\varepsilon}}\frac{d^{n}\theta}{dw^{n}}(\hat{w}_{\varepsilon})

for each n\displaystyle n. The next proposition is frequently used in the calculations shown later.

Proposition 4.

θ^ε=1/K′′(θ^ε)\displaystyle\hat{\theta}^{\prime}_{\varepsilon}=1/\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})}.

Proof.

Since both the numerator and the denominator in the right-hand side of (5.5) converge to zero with ww^ε\displaystyle w\rightarrow\hat{w}_{\varepsilon}, we can apply l’Hôpital’s rule to obtain

θ^ε=limww^εww^εK(θ(w))x=limww^ε1K′′(θ(w))θ(w)=1K′′(θ^ε)θ^ε.\displaystyle\displaystyle\hat{\theta}^{\prime}_{\varepsilon}=\lim_{w\rightarrow\hat{w}_{\varepsilon}}\frac{w-\hat{w}_{\varepsilon}}{K^{\prime}(\theta(w))-x}=\lim_{w\rightarrow\hat{w}_{\varepsilon}}\frac{1}{K^{\prime\prime}(\theta(w))\theta^{\prime}(w)}=\frac{1}{K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}^{\prime}_{\varepsilon}}.

Solving this equation for θ^ε\displaystyle\hat{\theta}^{\prime}_{\varepsilon}, we obtain the desired assertion. ∎

Recall that the function g(w)\displaystyle g(w) defined in (5.8) is analytic on 𝒪^ε,+:={w(θ);θ𝒪ε(0,)}\displaystyle\hat{\mathcal{O}}_{\varepsilon,+}:=\{w(\theta)\ ;\ \theta\in\mathcal{O}_{\varepsilon}\cap(0,\infty)\}. The following lemma is straightforward by using mathematical induction.

Lemma 4.

For each n=0,1,2,\displaystyle n=0,1,2,\ldots and w𝒪^ε,+\displaystyle w\in\hat{\mathcal{O}}_{\varepsilon,+},

g(n)(w)=θ(n)(w)ng(n1)(w)w.\displaystyle\displaystyle g^{(n)}(w)=\frac{\theta^{(n)}(w)-ng^{(n-1)}(w)}{w}.

Note that g(w^ε)=θ^ε/w^ε>0\displaystyle g(\hat{w}_{\varepsilon})=\hat{\theta}_{\varepsilon}/\hat{w}_{\varepsilon}>0. Therefore, we can define h(w)=logg(w)\displaystyle h(w)=\log g(w) on a neighbourhood of w^ε\displaystyle\hat{w}_{\varepsilon}. Obviously, we have ψ(w)=h(w)\displaystyle\psi(w)=h^{\prime}(w). Hence,

ψ(2m)(w^ε)=h(2m+1)(w^ε).\displaystyle\displaystyle\psi^{(2m)}(\hat{w}_{\varepsilon})=h^{(2m+1)}(\hat{w}_{\varepsilon}). (5.11)

Different but nevertheless straightforward calculations give

h(w)\displaystyle\displaystyle h^{\prime}(w) =\displaystyle\displaystyle= g(w)g(w),\displaystyle\displaystyle\frac{g^{\prime}(w)}{g(w)},
h′′(w)\displaystyle\displaystyle h^{\prime\prime}(w) =\displaystyle\displaystyle= g′′(w)g(w)(g(w))2g(w)2,\displaystyle\displaystyle\frac{g^{\prime\prime}(w)}{g(w)}-\frac{(g^{\prime}(w))^{2}}{g(w)^{2}}, (5.12)
h′′′(w)\displaystyle\displaystyle h^{\prime\prime\prime}(w) =\displaystyle\displaystyle= g′′′(w)g(w)3g(w)g′′(w)g(w)2+2(g(w))3g(w)3.\displaystyle\displaystyle\frac{g^{\prime\prime\prime}(w)}{g(w)}-\frac{3g^{\prime}(w)g^{\prime\prime}(w)}{g(w)^{2}}+\frac{2(g^{\prime}(w))^{3}}{g(w)^{3}}.

We can show by induction the following.

Lemma 5.

For each n\displaystyle n and w𝒪^ε,+\displaystyle w\in\hat{\mathcal{O}}_{\varepsilon,+},

h(n)(w)=k=1mn(akg(w)bki=0n(g(ci,k)(w))di,k)\displaystyle\displaystyle h^{(n)}(w)=\sum^{m_{n}}_{k=1}\left(\frac{a_{k}}{g(w)^{b_{k}}}\prod^{n}_{i=0}(g^{(c_{i,k})}(w))^{d_{i,k}}\right)

for some mn,ak,bk,ci,k\displaystyle m_{n},a_{k},b_{k},c_{i,k} and di,k\displaystyle d_{i,k} with i=0ncikdik=n\displaystyle\sum^{n}_{i=0}c_{i_{k}}d_{i_{k}}=n.

By (5.11), Lemmas 3 and 5, it suffices to consider the estimation of the order of g(m)(w^ε)\displaystyle g^{(m)}(\hat{w}_{\varepsilon}) for m\displaystyle m\in\mathbb{N}. The next proposition gives the order estimate of g(w^ε)\displaystyle g^{\prime}(\hat{w}_{\varepsilon}).

Proposition 5.

g(w^ε)=O(ε)\displaystyle g^{\prime}(\hat{w}_{\varepsilon})=O(\varepsilon) as ε0\displaystyle\varepsilon\rightarrow 0.

Proof.

By Lemma 4, we have

wg(w)=θ(w)g(w)=wθ(w)θ(w)w.\displaystyle\displaystyle wg^{\prime}(w)=\theta^{\prime}(w)-g(w)=\frac{w\theta^{\prime}(w)-\theta(w)}{w}.

Combining this with (5.5), we get

wg(w)=w(ww^ε)θ(w)(K(θ(w))x)w(K(θ(w))x).\displaystyle\displaystyle wg^{\prime}(w)=\frac{w(w-\hat{w}_{\varepsilon})-\theta(w)(K^{\prime}(\theta(w))-x)}{w(K^{\prime}(\theta(w))-x)}. (5.13)

Letting ww^ε\displaystyle w\rightarrow\hat{w}_{\varepsilon}, both the numerator and the denominator of the right-hand side of (5.13) converge to zero. Then, we can apply l’Hôpital’s rule to obtain

limww^εwg(w)\displaystyle\displaystyle\lim_{w\rightarrow\hat{w}_{\varepsilon}}wg^{\prime}(w) =\displaystyle\displaystyle= limww^ε2ww^εθ(w)(K(θ(w))x)θ(w)K′′(θ(w))θ(w)K(θ(w))x+wK′′(θ(w))θ(w)\displaystyle\displaystyle\lim_{w\rightarrow\hat{w}_{\varepsilon}}\frac{2w-\hat{w}_{\varepsilon}-\theta^{\prime}(w)(K^{\prime}(\theta(w))-x)-\theta(w)K^{\prime\prime}(\theta(w))\theta^{\prime}(w)}{K^{\prime}(\theta(w))-x+wK^{\prime\prime}(\theta(w))\theta^{\prime}(w)} (5.14)
=\displaystyle\displaystyle= w^εθ^εK′′(θ^ε)θ^εw^εK′′(θ^ε)θ^ε.\displaystyle\displaystyle\frac{\hat{w}_{\varepsilon}-\hat{\theta}_{\varepsilon}K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}^{\prime}_{\varepsilon}}{\hat{w}_{\varepsilon}K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}^{\prime}_{\varepsilon}}.

By Proposition 4 and (5.14), we see that g(w^ε)=limww^εg(w)\displaystyle g^{\prime}(\hat{w}_{\varepsilon})=\lim_{w\rightarrow\hat{w}_{\varepsilon}}g^{\prime}(w) exists and can be given as

g(w^ε)=w^εK′′(θ^ε)θ^εw^ε2K′′(θ^ε).\displaystyle\displaystyle g^{\prime}(\hat{w}_{\varepsilon})=\frac{\hat{w}_{\varepsilon}-\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\hat{\theta}_{\varepsilon}}{\hat{w}_{\varepsilon}^{2}\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})}}. (5.15)

Our assertion follows from (5.15) and Proposition 3. ∎

Differentiating both sides of (5.5) with respect to w\displaystyle w, we get the following proposition.

Proposition 6.

For w𝒪^ε,+{w^ε}\displaystyle w\in\hat{\mathcal{O}}_{\varepsilon,+}\setminus\{\hat{w}_{\varepsilon}\},

θ′′(w)=1(θ(w))2K′′(θ(w))K(θ(w))x.\displaystyle\displaystyle\theta^{\prime\prime}(w)=\frac{1-(\theta^{\prime}(w))^{2}K^{\prime\prime}(\theta(w))}{K^{\prime}(\theta(w))-x}. (5.16)

By (5.13) and Propositions 4 and 6, we obtain the following.

Proposition 7.

For w𝒪^ε,+{w^ε}\displaystyle w\in\hat{\mathcal{O}}_{\varepsilon,+}\setminus\{\hat{w}_{\varepsilon}\},

g′′(w)=w2(1(θ)2K′′(θ))2(K(θ)x)(wθθ)w3(K(θ)x),\displaystyle\displaystyle g^{\prime\prime}(w)=\frac{w^{2}(1-(\theta^{\prime})^{2}K^{\prime\prime}(\theta))-2(K^{\prime}(\theta)-x)(w\theta^{\prime}-\theta)}{w^{3}(K^{\prime}(\theta)-x)},

with θ=θ(w)\displaystyle\theta=\theta(w) and θ=θ(w)\displaystyle\theta^{\prime}=\theta^{\prime}(w) for brevity.

Next, we consider the second derivative θ^ε′′=θ^ε(2)\displaystyle\hat{\theta}^{\prime\prime}_{\varepsilon}=\hat{\theta}^{(2)}_{\varepsilon} of θ(w)\displaystyle\theta(w) at w^ε\displaystyle\hat{w}_{\varepsilon}.

Proposition 8.
θ^ε′′=K′′′(θ^ε)3(K′′(θ^ε))2.\displaystyle\displaystyle\hat{\theta}^{\prime\prime}_{\varepsilon}=-\frac{K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})}{3(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}}. (5.17)
Proof.

Apply l’Hôpital’s rule for (5.16) and observe that

θ^ε′′\displaystyle\displaystyle\hat{\theta}^{\prime\prime}_{\varepsilon} =\displaystyle\displaystyle= limww^ε2θ(w)θ′′(w)K′′(θ(w))+(θ(w))3K′′′(θ(w))K′′(θ(w))θ(w)\displaystyle\displaystyle-\lim_{w\rightarrow\hat{w}_{\varepsilon}}\frac{2\theta^{\prime}(w)\theta^{\prime\prime}(w)K^{\prime\prime}(\theta(w))+(\theta^{\prime}(w))^{3}K^{\prime\prime\prime}(\theta(w))}{K^{\prime\prime}(\theta(w))\theta^{\prime}(w)}
=\displaystyle\displaystyle= 2θ^ε′′K′′′(θ^ε)(K′′(θ^ε))2.\displaystyle\displaystyle-2\hat{\theta}_{\varepsilon}^{\prime\prime}-\frac{K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})}{(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}}.

We then obtain our assertion by solving the above equation for θ^ε′′\displaystyle\hat{\theta}^{\prime\prime}_{\varepsilon}. ∎

Proposition 9.

g′′(w^ε)=O(ε2)\displaystyle g^{\prime\prime}(\hat{w}_{\varepsilon})=O(\varepsilon^{2}) as ε0\displaystyle\varepsilon\rightarrow 0.

Proof.

Applying l’Hôpital’s rule for the equality in Proposition 7 and using Proposition 8, we have

limww^εwg′′(w)=w^ε2K′′′(θ^ε)6(K′′(θ^ε))3/2(w^εθ^εK′′(θ^ε))3w^ε2(K′′(θ^ε))2.\displaystyle\displaystyle\lim_{w\rightarrow\hat{w}_{\varepsilon}}wg^{\prime\prime}(w)=\frac{-\hat{w}_{\varepsilon}^{2}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})-6(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{3/2}(\hat{w}_{\varepsilon}-\hat{\theta}_{\varepsilon}\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})})}{3\hat{w}_{\varepsilon}^{2}(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}}. (5.18)

Similarly to Proposition 3, by applying Taylor’s theorem, we get

w^ε2K′′(θ^ε)θ^ε2+13K′′′(θ^ε)θ^ε3=θ^ε2K′′(θ^ε)vε,\displaystyle\displaystyle\hat{w}^{2}_{\varepsilon}-K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{2}+\frac{1}{3}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{3}=\hat{\theta}_{\varepsilon}^{2}K^{\prime\prime}(\hat{\theta}_{\varepsilon})v_{\varepsilon}, (5.19)

where

vε=θ^ε3K′′(θ^ε)01K(4)(uθ^ε)(1u)3𝑑u.\displaystyle\displaystyle v_{\varepsilon}=-\frac{\hat{\theta}_{\varepsilon}}{3K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\int^{1}_{0}K^{(4)}(-u\hat{\theta}_{\varepsilon})(1-u)^{3}du.

Note that vε=O(ε2)\displaystyle v_{\varepsilon}=O(\varepsilon^{2}) as ε0\displaystyle\varepsilon\rightarrow 0 by [A5]. From (5.19), we get

w^ε=θ^εK′′(θ^ε)1K′′′(θ^ε)3K′′(θ^ε)θ^ε+vε.\displaystyle\displaystyle\hat{w}_{\varepsilon}=\hat{\theta}_{\varepsilon}\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\sqrt{1-\frac{K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})}{3K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\hat{\theta}_{\varepsilon}+v_{\varepsilon}}.

Therefore, we can rewrite the numerator of the right-hand side of (5.18) as

{K′′(θ^ε)θ^ε213K′′′(θ^ε)θ^ε3+θ^ε2K′′(θ^ε)vε}K′′′(θ^ε)\displaystyle\displaystyle-\left\{K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{2}-\frac{1}{3}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{3}+\hat{\theta}_{\varepsilon}^{2}K^{\prime\prime}(\hat{\theta}_{\varepsilon})v_{\varepsilon}\right\}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})
6(K′′(θ^ε))2θ^ε{1K′′′(θ^ε)3K′′(θ^ε)θ^ε+vε1}\displaystyle\displaystyle-6(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}\hat{\theta}_{\varepsilon}\left\{\sqrt{1-\frac{K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})}{3K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\hat{\theta}_{\varepsilon}+v_{\varepsilon}}-1\right\}
=\displaystyle\displaystyle= {K′′(θ^ε)θ^ε213K′′′(θ^ε)θ^ε3}K′′′(θ^ε)+K′′(θ^ε)θ^ε2K′′′(θ^ε)+O(ε2)\displaystyle\displaystyle-\left\{K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{2}-\frac{1}{3}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{3}\right\}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})+K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{2}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})+O(\varepsilon^{2})
=\displaystyle\displaystyle= 13(K′′′(θ^ε))2θ^ε3+O(ε2)=O(ε2)asε0.\displaystyle\displaystyle\frac{1}{3}(K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}\hat{\theta}_{\varepsilon}^{3}+O(\varepsilon^{2})\ =\ O(\varepsilon^{2})\ \ \mathrm{as}\ \ \varepsilon\rightarrow 0.

Here, we use the relations 1+x=1+x/2+O(x2)\displaystyle\sqrt{1+x}=1+x/2+O(x^{2}) for small x\displaystyle x, K′′′(θ^ε)=O(ε)\displaystyle K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})=O(\varepsilon), and vε=O(ε2)\displaystyle v_{\varepsilon}=O(\varepsilon^{2}) as ε0\displaystyle\varepsilon\rightarrow 0. This completes the proof. ∎

In fact, we can refine the assertion of the above proposition. From Taylor’s theorem, we observe that

w^ε2K′′(θ^ε)θ^ε2+13K′′′(θ^ε)θ^ε3112K(4)(θ^ε)θ^ε4=θ^ε2K′′(θ^ε)v~ε\displaystyle\displaystyle\hat{w}^{2}_{\varepsilon}-K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{2}+\frac{1}{3}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{3}-\frac{1}{12}K^{(4)}(\hat{\theta}_{\varepsilon})\hat{\theta}^{4}_{\varepsilon}=\hat{\theta}_{\varepsilon}^{2}K^{\prime\prime}(\hat{\theta}_{\varepsilon})\tilde{v}_{\varepsilon}

to arrive at

w^ε=θ^εK′′(θ^ε)1K′′′(θ^ε)3K′′(θ^ε)θ^ε+K(4)(θ^ε)12K′′(θ^ε)θ^ε2+v~ε,\displaystyle\displaystyle\hat{w}_{\varepsilon}=\hat{\theta}_{\varepsilon}\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\sqrt{1-\frac{K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})}{3K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\hat{\theta}_{\varepsilon}+\frac{K^{(4)}(\hat{\theta}_{\varepsilon})}{12K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\hat{\theta}_{\varepsilon}^{2}+\tilde{v}_{\varepsilon}},

where

v~ε=θ^ε212K′′(θ^ε)01K(5)(uθ^ε)(1u)4du(=O(ε3)asε0).\displaystyle\displaystyle\tilde{v}_{\varepsilon}=\frac{\hat{\theta}_{\varepsilon}^{2}}{12K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\int^{1}_{0}K^{(5)}(-u\hat{\theta}_{\varepsilon})(1-u)^{4}du\ \left(=O(\varepsilon^{3})\ \ \mathrm{as}\ \ \varepsilon\rightarrow 0\right).

Then, by a calculation similar to that in the proof of the above proposition, we have

3w^ε2(K′′(θ^ε))2limww^εwg′′(w)\displaystyle\displaystyle 3\hat{w}^{2}_{\varepsilon}(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}\lim_{w\rightarrow\hat{w}_{\varepsilon}}wg^{\prime\prime}(w)
=\displaystyle\displaystyle= {K′′(θ^ε)θ^ε213K′′′(θ^ε)θ^ε3+112K(4)(θ^ε)θ^ε4+θ^ε2K′′(θ^ε)v~ε}K′′′(θ^ε)\displaystyle\displaystyle-\left\{K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{2}-\frac{1}{3}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{3}+\frac{1}{12}K^{(4)}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{4}+\hat{\theta}_{\varepsilon}^{2}K^{\prime\prime}(\hat{\theta}_{\varepsilon})\tilde{v}_{\varepsilon}\right\}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})
6(K′′(θ^ε))2θ^ε{1K′′′(θ^ε)3K′′(θ^ε)θ^ε+K(4)(θ^ε)12K′′(θ^ε)θ^ε2+v~ε1}\displaystyle\displaystyle-6(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}\hat{\theta}_{\varepsilon}\left\{\sqrt{1-\frac{K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})}{3K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\hat{\theta}_{\varepsilon}+\frac{K^{(4)}(\hat{\theta}_{\varepsilon})}{12K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\hat{\theta}_{\varepsilon}^{2}+\tilde{v}_{\varepsilon}}-1\right\}
=\displaystyle\displaystyle= {K′′(θ^ε)θ^ε213K′′′(θ^ε)θ^ε3}K′′′(θ^ε)\displaystyle\displaystyle-\left\{K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{2}-\frac{1}{3}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{3}\right\}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})
+K′′(θ^ε)θ^ε2K′′′(θ^ε)14K′′(θ^ε)θ^ε3K(4)(θ^ε)+34(K′′(θ^ε))2θ^ε(K′′′(θ^ε)3K′′(θ^ε)θ^ε)2+O(ε3)\displaystyle\displaystyle+K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{2}K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})-\frac{1}{4}K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{3}K^{(4)}(\hat{\theta}_{\varepsilon})+\frac{3}{4}(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}\hat{\theta}_{\varepsilon}\left(\frac{K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon})}{3K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\hat{\theta}_{\varepsilon}\right)^{2}+O(\varepsilon^{3})
=\displaystyle\displaystyle= 512θ^ε3(K′′′(θ^ε))214K′′(θ^ε)θ^ε3K(4)(θ^ε)+O(ε3)asε0,\displaystyle\displaystyle\frac{5}{12}\hat{\theta}_{\varepsilon}^{3}(K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}-\frac{1}{4}K^{\prime\prime}(\hat{\theta}_{\varepsilon})\hat{\theta}_{\varepsilon}^{3}K^{(4)}(\hat{\theta}_{\varepsilon})+O(\varepsilon^{3})\ \ \mathrm{as}\ \ \varepsilon\rightarrow 0,

where we have applied the relation 1+x=1+x/2x2/8+O(x3)\displaystyle\sqrt{1+x}=1+x/2-x^{2}/8+O(x^{3}) for small x\displaystyle x. This implies that

g′′(w^ε)=(5(K′′′(θ^ε))236(K′′(θ^ε))2K(4)(θ^ε)12K′′(θ^ε))θ^ε3w^ε3+O(ε3)asε0.\displaystyle\displaystyle g^{\prime\prime}(\hat{w}_{\varepsilon})=\left(\frac{5(K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}}{36(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}}-\frac{K^{(4)}(\hat{\theta}_{\varepsilon})}{12K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\right)\frac{\hat{\theta}_{\varepsilon}^{3}}{\hat{w}_{\varepsilon}^{3}}+O(\varepsilon^{3})\ \ \mathrm{as}\ \ \varepsilon\rightarrow 0. (5.20)

Here, we calculate the third derivative of θ(w)\displaystyle\theta(w) at w^ε\displaystyle\hat{w}_{\varepsilon} (θ^ε′′′\displaystyle\hat{\theta}^{\prime\prime\prime}_{\varepsilon}).

Proposition 10.
θ^ε′′′=5(K′′′(θ^ε))212(K′′(θ^ε))7/2K(4)(θ^ε)4(K′′(θ^ε))5/2.\displaystyle\displaystyle\hat{\theta}^{\prime\prime\prime}_{\varepsilon}=\frac{5(K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}}{12(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{7/2}}-\frac{K^{(4)}(\hat{\theta}_{\varepsilon})}{4(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{5/2}}. (5.21)
Proof.

Differentiating both sides of (5.16), we have

θ′′′(w)\displaystyle\displaystyle\theta^{\prime\prime\prime}(w) =\displaystyle\displaystyle= 3θθ′′K′′(θ)+(θ)3K′′′(θ)K(θ)x.\displaystyle\displaystyle-\frac{3\theta^{\prime}\theta^{\prime\prime}K^{\prime\prime}(\theta)+(\theta^{\prime})^{3}K^{\prime\prime\prime}(\theta)}{K^{\prime}(\theta)-x}. (5.22)

Now we apply l’Hôpital’s rule for (5.22) to obtain

θ^ε′′′=limww^εθ′′′(w)={(K′′′(θ^ε))23(K′′(θ^ε))7/2+3θ^ε′′′2(K′′′(θ^ε))2(K′′(θ^ε))7/2+K(4)(θ^ε)(K′′(θ^ε))5/2}.\displaystyle\displaystyle\hat{\theta}^{\prime\prime\prime}_{\varepsilon}=\lim_{w\rightarrow\hat{w}_{\varepsilon}}\theta^{\prime\prime\prime}(w)=-\left\{-\frac{(K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}}{3(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{7/2}}+3\hat{\theta}^{\prime\prime\prime}_{\varepsilon}-\frac{2(K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}}{(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{7/2}}+\frac{K^{(4)}(\hat{\theta}_{\varepsilon})}{(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{5/2}}\right\}.

This can be simplified to

4θ^ε′′′=5(K′′′(θ^ε))23(K′′(θ^ε))7/2K(4)(θ^ε)(K′′(θ^ε))5/2.\displaystyle\displaystyle 4\hat{\theta}^{\prime\prime\prime}_{\varepsilon}=\frac{5(K^{\prime\prime\prime}(\hat{\theta}_{\varepsilon}))^{2}}{3(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{7/2}}-\frac{K^{(4)}(\hat{\theta}_{\varepsilon})}{(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{5/2}}.

We have obtained the desired assertion. ∎

Substituting (5.21) into (5.20), we have the following proposition.

Proposition 11.
g′′(w^ε)=(θ^εK′′(θ^ε))33w^ε3×θ^ε′′′+O(ε3),ε0.\displaystyle\displaystyle g^{\prime\prime}(\hat{w}_{\varepsilon})=\frac{(\hat{\theta}_{\varepsilon}\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})})^{3}}{3\hat{w}^{3}_{\varepsilon}}\times\hat{\theta}^{\prime\prime\prime}_{\varepsilon}+O(\varepsilon^{3}),\ \ \varepsilon\rightarrow 0. (5.23)

Now we are prepared to prove the next proposition.

Proposition 12.

g′′′(w^ε)=O(ε3)\displaystyle g^{\prime\prime\prime}(\hat{w}_{\varepsilon})=O(\varepsilon^{3}) as ε0\displaystyle\varepsilon\rightarrow 0.

Proof.

By Lemma 4, it holds that

wg′′′(w)=θ′′′(w)3g′′(w)\displaystyle\displaystyle wg^{\prime\prime\prime}(w)=\theta^{\prime\prime\prime}(w)-3g^{\prime\prime}(w)

for ww^ε\displaystyle w\neq\hat{w}_{\varepsilon}. Letting ww^ε\displaystyle w\rightarrow\hat{w}_{\varepsilon} and substituting (5.23), we have

w^εlimww^εg′′′(w)\displaystyle\displaystyle\hat{w}_{\varepsilon}\lim_{w\rightarrow\hat{w}_{\varepsilon}}g^{\prime\prime\prime}(w) =\displaystyle\displaystyle= θ^ε′′′3{(θ^εK′′(θ^ε))33w^ε3×θ^ε′′′+O(ε3)}\displaystyle\displaystyle\hat{\theta}^{\prime\prime\prime}_{\varepsilon}-3\left\{\frac{(\hat{\theta}_{\varepsilon}\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})})^{3}}{3\hat{w}^{3}_{\varepsilon}}\times\hat{\theta}^{\prime\prime\prime}_{\varepsilon}+O(\varepsilon^{3})\right\}
=\displaystyle\displaystyle= θ^ε′′′w^ε3{w^ε3(θ^εK′′(θ^ε))3}+O(ε3).\displaystyle\displaystyle\frac{\hat{\theta}^{\prime\prime\prime}_{\varepsilon}}{\hat{w}^{3}_{\varepsilon}}\left\{\hat{w}^{3}_{\varepsilon}-(\hat{\theta}_{\varepsilon}\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})})^{3}\right\}+O(\varepsilon^{3}).

By [A5] and Proposition 10, we see that θ^ε′′′=O(ε2)\displaystyle\hat{\theta}^{\prime\prime\prime}_{\varepsilon}=O(\varepsilon^{2}). Moreover, Proposition 3 implies that

w^ε3(θ^εK′′(θ^ε))3\displaystyle\displaystyle\hat{w}^{3}_{\varepsilon}-(\hat{\theta}_{\varepsilon}\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})})^{3}
=\displaystyle\displaystyle= (w^εθ^εK′′(θ^ε))(w^ε2+w^εθ^εK′′(θ^ε)+θ^ε2K′′(θ^ε))=O(ε),ε0.\displaystyle\displaystyle\left(\hat{w}_{\varepsilon}-\hat{\theta}_{\varepsilon}\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\right)\left(\hat{w}_{\varepsilon}^{2}+\hat{w}_{\varepsilon}\hat{\theta}_{\varepsilon}\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})}+\hat{\theta}_{\varepsilon}^{2}K^{\prime\prime}(\hat{\theta}_{\varepsilon})\right)=O(\varepsilon),\ \ \varepsilon\rightarrow 0.

By the above arguments, we deduce that w^εg′′(w^ε)=O(ε3)\displaystyle\hat{w}_{\varepsilon}g^{\prime\prime}(\hat{w}_{\varepsilon})=O(\varepsilon^{3}) as ε0\displaystyle\varepsilon\rightarrow 0. ∎

Next we estimate θ^ε(n)\displaystyle\hat{\theta}^{(n)}_{\varepsilon} and g(n)(w^ε)\displaystyle g^{(n)}(\hat{w}_{\varepsilon}) for n4\displaystyle n\geq 4. We let

fn(w)=θ(n)(w)(K(θ(w))x).\displaystyle\displaystyle f_{n}(w)=\theta^{(n)}(w)(K^{\prime}(\theta(w))-x).
Lemma 6.

fn+1(w)=fn(w)K′′(θ(w))θ(w)θ(n)(w)\displaystyle f_{n+1}(w)=f^{\prime}_{n}(w)-K^{\prime\prime}(\theta(w))\theta^{\prime}(w)\theta^{(n)}(w) for each n1\displaystyle n\geq 1.

Proof.

A straightforward calculation gives

θ(n+1)=ddw(fnK(θ)x)=fn(K(θ)x)fnK′′(θ)θ(K(θ)x)2=fnθ(n)K′′(θ)θK(θ)x,\displaystyle\displaystyle\theta^{(n+1)}=\frac{d}{dw}\left(\frac{f_{n}}{K^{\prime}(\theta)-x}\right)=\frac{f^{\prime}_{n}\cdot(K^{\prime}(\theta)-x)-f_{n}\cdot K^{\prime\prime}(\theta)\theta^{\prime}}{(K^{\prime}(\theta)-x)^{2}}=\frac{f^{\prime}_{n}-\theta^{(n)}K^{\prime\prime}(\theta)\theta^{\prime}}{K^{\prime}(\theta)-x},

which implies the desired assertion. ∎

Proposition 13.

For each n3\displaystyle n\geq 3, the following two assertions hold.
(i)\displaystyle\mathrm{(i)}  There are nonnegative integers mn,ain,rin,sin,ki,2n,,ki,n2n\displaystyle m^{n},a^{n}_{i},r^{n}_{i},s^{n}_{i},k^{n}_{i,2},\ldots,k^{n}_{i,n-2} (i=1,,mn)\displaystyle(i=1,\ldots,m^{n}) such that

fn(w)\displaystyle\displaystyle f_{n}(w) =\displaystyle\displaystyle= K(n)(θ(w))(θ(w))nnK′′(θ(w))θ(w)θ(n1)(w)\displaystyle\displaystyle-K^{(n)}(\theta(w))(\theta^{\prime}(w))^{n}-nK^{\prime\prime}(\theta(w))\theta^{\prime}(w)\theta^{(n-1)}(w)
i=1mnainK(rin)(θ(w))(θ(w))sinj=2n2(θ(j)(w))ki,jn\displaystyle\displaystyle-\sum^{m^{n}}_{i=1}a^{n}_{i}K^{(r^{n}_{i})}(\theta(w))(\theta^{\prime}(w))^{s^{n}_{i}}\prod^{n-2}_{j=2}(\theta^{(j)}(w))^{k^{n}_{i,j}}

and also j=2n2(j1)ki,jn+rin=n\displaystyle\sum^{n-2}_{j=2}(j-1)k^{n}_{i,j}+r^{n}_{i}=n, rin2\displaystyle r^{n}_{i}\geq 2 for each i=1,,mn\displaystyle i=1,\ldots,m^{n}.
(ii)\displaystyle\mathrm{(ii)}  fn(w^ε)=0\displaystyle f_{n}(\hat{w}_{\varepsilon})=0.

Proof.

We will prove assertion (i) by induction. First, we consider the case n=3\displaystyle n=3. By Proposition 6 and Lemma 6, we know

f2(w)=1K′′(θ(w))(θ(w))2\displaystyle\displaystyle f_{2}(w)=1-K^{\prime\prime}(\theta(w))(\theta^{\prime}(w))^{2}

and

f3(w)\displaystyle\displaystyle f_{3}(w) =\displaystyle\displaystyle= f2(w)K′′(θ(w))θ(w)θ′′(w)\displaystyle\displaystyle f_{2}^{\prime}(w)-K^{\prime\prime}(\theta(w))\theta^{\prime}(w)\theta^{\prime\prime}(w) (5.24)
=\displaystyle\displaystyle= K′′′(θ(w))(θ(w))33K′′(θ(w))θ(w)θ′′(w);\displaystyle\displaystyle-K^{\prime\prime\prime}(\theta(w))(\theta^{\prime}(w))^{3}-3K^{\prime\prime}(\theta(w))\theta^{\prime}(w)\theta^{\prime\prime}(w);

thus, (i) is true for n=3\displaystyle n=3.

Now we assume that (i) holds for any integer in {3,,n}\displaystyle\{3,\ldots,n\}. Thus,

fn+1(w)\displaystyle\displaystyle f_{n+1}(w) =\displaystyle\displaystyle= fn(w)K′′(θ)θθ(n)\displaystyle\displaystyle f^{\prime}_{n}(w)-K^{\prime\prime}(\theta)\theta^{\prime}\theta^{(n)}
=\displaystyle\displaystyle= K(n+1)(θ)(θ)n+1(n+1)K′′(θ)θθ(n)\displaystyle\displaystyle-K^{(n+1)}(\theta)(\theta^{\prime})^{n+1}-(n+1)K^{\prime\prime}(\theta)\theta^{\prime}\theta^{(n)}
{nK(n)(θ)(θ)n1θ′′+nK′′′(θ)(θ)2θ(n1)\displaystyle\displaystyle-\Big{\{}nK^{(n)}(\theta)(\theta^{\prime})^{n-1}\theta^{\prime\prime}+nK^{\prime\prime\prime}(\theta)(\theta^{\prime})^{2}\theta^{(n-1)}
+nK′′(θ)θ′′θ(n1)+i=1mnainFin(θ(w))}\displaystyle\displaystyle\hskip 14.22636pt+nK^{\prime\prime}(\theta)\theta^{\prime\prime}\theta^{(n-1)}+\sum^{m^{n}}_{i=1}a^{n}_{i}F^{n}_{i}(\theta(w))\Big{\}}

by virtue of Lemma 6, where

Fin(θ)\displaystyle\displaystyle F^{n}_{i}(\theta) =\displaystyle\displaystyle= K(rin+1)(θ)(θ)sin+1j=2n2(θ(j))ki,jn\displaystyle\displaystyle K^{(r^{n}_{i}+1)}(\theta)(\theta^{\prime})^{s^{n}_{i}+1}\prod^{n-2}_{j=2}(\theta^{(j)})^{k^{n}_{i,j}}
+sinK(rin)(θ)(θ)sin1θ′′j=2n2(θ(j))ki,jn\displaystyle\displaystyle+s^{n}_{i}K^{(r^{n}_{i})}(\theta)(\theta^{\prime})^{s^{n}_{i}-1}\theta^{\prime\prime}\prod^{n-2}_{j=2}(\theta^{(j)})^{k^{n}_{i,j}}
+l=2n2ki,lnK(rin)(θ)(θ)sin(θ(l))ki,jn1θ(l+1)j=2:jln2(θ(j))ki,jn.\displaystyle\displaystyle+\sum^{n-2}_{l=2}k^{n}_{i,l}K^{(r^{n}_{i})}(\theta)(\theta^{\prime})^{s^{n}_{i}}(\theta^{(l)})^{k^{n}_{i,j}-1}\theta^{(l+1)}\prod^{n-2}_{j=2:j\neq l}(\theta^{(j)})^{k^{n}_{i,j}}.

Replacing n\displaystyle n with n+1\displaystyle n+1 again gives (i). By induction, (i) holds for n3\displaystyle n\geq 3. The assertion (ii) is obvious from (2.1) and the definition of fn(w)\displaystyle f_{n}(w). ∎

Proposition 14.

For each n2\displaystyle n\geq 2, we have θ^ε(n)=O(εn1)\displaystyle\hat{\theta}^{(n)}_{\varepsilon}=O(\varepsilon^{n-1}) as ε0\displaystyle\varepsilon\rightarrow 0.

Proof.

When n=2\displaystyle n=2, the assertion is obvious by [A5] and Proposition 8. We suppose that the assertion is true for 1,,n1\displaystyle 1,\ldots,n-1. By the definition of fn\displaystyle f_{n}, we have

θ(n)(w)=fn(w)K(θ(w))x\displaystyle\displaystyle\theta^{(n)}(w)=\frac{f_{n}(w)}{K^{\prime}(\theta(w))-x}

for ww^ε\displaystyle w\neq\hat{w}_{\varepsilon}. By Proposition 13(ii) and the definition of θ^ε\displaystyle\hat{\theta}_{\varepsilon}, we see that both the numerator and the denominator of the right-hand side of the above equality converge to zero by letting ww^ε\displaystyle w\rightarrow\hat{w}_{\varepsilon}. Therefore, we can apply l’Hôpital’s rule to obtain

θ^ε(n)=limww^εfn(w)K′′(w)θ(w)=fn(w^ε)K′′(θ^ε).\displaystyle\displaystyle\hat{\theta}^{(n)}_{\varepsilon}=\lim_{w\rightarrow\hat{w}_{\varepsilon}}\frac{f^{\prime}_{n}(w)}{K^{\prime\prime}(w)\theta^{\prime}(w)}=\frac{f^{\prime}_{n}(\hat{w}_{\varepsilon})}{\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})}}. (5.25)

By Lemma 6 and Proposition 13, we see that fn(w^ε)\displaystyle f^{\prime}_{n}(\hat{w}_{\varepsilon}) has the form

fn(w^ε)\displaystyle\displaystyle f^{\prime}_{n}(\hat{w}_{\varepsilon}) =\displaystyle\displaystyle= nK′′(θ^ε)θ^ε(n)i=1mnainK(rin)(θ^ε)(θ^ε)sinj=2n1(θ^ε(j))ki,jn\displaystyle\displaystyle-n\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})}\hat{\theta}^{(n)}_{\varepsilon}-\sum^{m^{n}}_{i=1}a^{n}_{i}K^{(r^{n}_{i})}(\hat{\theta}_{\varepsilon})(\hat{\theta}^{\prime}_{\varepsilon})^{s^{n}_{i}}\prod^{n-1}_{j=2}(\hat{\theta}^{(j)}_{\varepsilon})^{k^{n}_{i,j}} (5.26)

for some mn,ain,rin,sin,ki,2n,,ki,n1n\displaystyle m^{n},a^{n}_{i},r^{n}_{i},s^{n}_{i},k^{n}_{i,2},\ldots,k^{n}_{i,n-1} (i=1,,mn)\displaystyle(i=1,\ldots,m^{n}) with j=2n1(j1)ki,jn+rin=n+1\displaystyle\sum^{n-1}_{j=2}(j-1)k^{n}_{i,j}+r^{n}_{i}=n+1. By (5.25)–(5.26), we have

θ^ε(n)=1(n+1)K′′(θ^ε)i=1mnainK(rin)(θ^ε)(θ^ε)sinj=2n1(θ^ε(j))ki,jn.\displaystyle\displaystyle\hat{\theta}^{(n)}_{\varepsilon}=\frac{1}{(n+1)\sqrt{K^{\prime\prime}(\hat{\theta}_{\varepsilon})}}\sum^{m^{n}}_{i=1}a^{n}_{i}K^{(r^{n}_{i})}(\hat{\theta}_{\varepsilon})(\hat{\theta}^{\prime}_{\varepsilon})^{s^{n}_{i}}\prod^{n-1}_{j=2}(\hat{\theta}^{(j)}_{\varepsilon})^{k^{n}_{i,j}}.

Here, by the supposition θ^ε(j)=O(εj1)\displaystyle\hat{\theta}^{(j)}_{\varepsilon}=O(\varepsilon^{j-1}) as ε0\displaystyle\varepsilon\rightarrow 0 for j=2,,j=n1\displaystyle j=2,\ldots,j=n-1 and that [A4] holds, we see that the term

K(rin)(θ^ε)(θ^ε)sinj=2n1(θ^ε(j))ki,jn\displaystyle\displaystyle K^{(r^{n}_{i})}(\hat{\theta}_{\varepsilon})(\hat{\theta}^{\prime}_{\varepsilon})^{s^{n}_{i}}\prod^{n-1}_{j=2}(\hat{\theta}^{(j)}_{\varepsilon})^{k^{n}_{i,j}}

has order O(εrin2+j(j1)ki,jn)=O(εn1)\displaystyle O(\varepsilon^{r^{n}_{i}-2+\sum_{j}(j-1)k^{n}_{i,j}})=O(\varepsilon^{n-1}) as ε0\displaystyle\varepsilon\rightarrow 0. Thus, θ^ε(n)=O(εn1)\displaystyle\hat{\theta}^{(n)}_{\varepsilon}=O(\varepsilon^{n-1}) as ε0\displaystyle\varepsilon\rightarrow 0. Therefore, the assertion is also true for n\displaystyle n. Induction completes the proof. ∎

Lemma 7.

For each n3\displaystyle n\geq 3, g(n)(w^ε)=O(ε3)\displaystyle g^{(n)}(\hat{w}_{\varepsilon})=O(\varepsilon^{3}) as ε0\displaystyle\varepsilon\rightarrow 0.

Proof.

The assertion is true for n=3\displaystyle n=3 by Proposition 12. For n4\displaystyle n\geq 4, the assertion is obtained by Lemma 4, Proposition 14, and induction. ∎

Proof of Theorem 2.

Since (ϕ(w^ε))0ε1\displaystyle(\phi(\hat{w}_{\varepsilon}))_{0\leq\varepsilon\leq 1} is bounded, it suffices to show that ψ(m)(w^ε)=\displaystyle\psi^{(m)}(\hat{w}_{\varepsilon})=
O(εmin{2m+1,3})\displaystyle\allowbreak O(\varepsilon^{\min\{2m+1,3\}}), ε0\displaystyle\varepsilon\rightarrow 0 for m0\displaystyle m\geq 0. From (5.11)–(5.12), we have that

ψε(w^ε)=g(w^ε)g(w^ε)=O(ε)asε0\displaystyle\displaystyle\psi_{\varepsilon}(\hat{w}_{\varepsilon})=\frac{g^{\prime}(\hat{w}_{\varepsilon})}{g(\hat{w}_{\varepsilon})}=O(\varepsilon)\ \ \mathrm{as}\ \ \varepsilon\rightarrow 0

by Proposition 5 and that

ψε′′(w^ε)=g′′′(w^ε)g(w^ε)g(w^ε)g′′(w^ε)g(w^ε)2+2(g(w^ε))3g(w^ε)3=O(ε3)asε0\displaystyle\displaystyle\psi_{\varepsilon}^{\prime\prime}(\hat{w}_{\varepsilon})=\frac{g^{\prime\prime\prime}(\hat{w}_{\varepsilon})}{g(\hat{w}_{\varepsilon})}-\frac{g^{\prime}(\hat{w}_{\varepsilon})g^{\prime\prime}(\hat{w}_{\varepsilon})}{g(\hat{w}_{\varepsilon})^{2}}+\frac{2(g^{\prime}(\hat{w}_{\varepsilon}))^{3}}{g(\hat{w}_{\varepsilon})^{3}}=O(\varepsilon^{3})\ \ \mathrm{as}\ \ \varepsilon\rightarrow 0

by Propositions 5, 9, and 12. For m2\displaystyle m\geq 2, we get the assertion by Lemmas 5 and 7. ∎

6 Extentions

6.1 Error Estimates of the Higher Order LR Formulae

In the beginning of this subsection, we introduce the following proposition.

Proposition 15.

For each n\displaystyle n,

g(n)(w^ε)=k=n+1n!k!θ^ε(k)(w^ε)kn1.\displaystyle\displaystyle g^{(n)}(\hat{w}_{\varepsilon})=\sum^{\infty}_{k=n+1}\frac{n!}{k!}\hat{\theta}^{(k)}_{\varepsilon}(-\hat{w}_{\varepsilon})^{k-n-1}. (6.1)
Proof.

Using Lemma 4 and induction, we see that g(n)(w^ε)\displaystyle g^{(n)}(\hat{w}_{\varepsilon}) can be represented as

w^εn+1g(n)(w^ε)\displaystyle\displaystyle\hat{w}_{\varepsilon}^{n+1}g^{(n)}(\hat{w}_{\varepsilon}) =\displaystyle\displaystyle= k=0n(1)nkn!k!w^εkθ^ε(k)\displaystyle\displaystyle\sum^{n}_{k=0}(-1)^{n-k}\frac{n!}{k!}\hat{w}_{\varepsilon}^{k}\hat{\theta}_{\varepsilon}^{(k)} (6.2)
=\displaystyle\displaystyle= (1)nn!θ(w^ε)+k=1n(1)nkn!k!w^εkθ^ε(k).\displaystyle\displaystyle(-1)^{n}n!\theta(\hat{w}_{\varepsilon})+\sum^{n}_{k=1}(-1)^{n-k}\frac{n!}{k!}\hat{w}_{\varepsilon}^{k}\hat{\theta}_{\varepsilon}^{(k)}.

Combining (6.2) with the Taylor expansion

n!θ(w^ε)=n!(θ(0)θ(w^ε))=k=1n!k!θ^ε(k)(w^ε)k,\displaystyle\displaystyle n!\theta(\hat{w}_{\varepsilon})=-n!(\theta(0)-\theta(\hat{w}_{\varepsilon}))=-\sum^{\infty}_{k=1}\frac{n!}{k!}\hat{\theta}^{(k)}_{\varepsilon}(-\hat{w}_{\varepsilon})^{k},

we get the desired assertion. ∎

Here, by Proposition 14, there are positive constants Cn\displaystyle C_{n} (with n2\displaystyle n\geq 2), such that

|θ^ε(n)|Cnεn1.\displaystyle\displaystyle|\hat{\theta}^{(n)}_{\varepsilon}|\leq C_{n}\varepsilon^{n-1}. (6.3)

Therefore, if we assume the further condition [A6] below, then the series (6.1) converges absolutely when ε\displaystyle\varepsilon is small.

  • [A6]

    There exists ε0(0,1]\displaystyle\varepsilon_{0}\in(0,1] such that

    k=2Ckk!ε0k<.\displaystyle\displaystyle\sum^{\infty}_{k=2}\frac{C_{k}}{k!}\varepsilon_{0}^{k}<\infty.

Moreover, we obtain the following theorem.

Theorem 3.

Assume [A1]\displaystyle\mathrm{[A1]}[A6]\displaystyle\mathrm{[A6]}. Then h(n)(w^ε)=O(εn)\displaystyle h^{(n)}(\hat{w}_{\varepsilon})=O(\varepsilon^{n}), ε0\displaystyle\varepsilon\rightarrow 0 holds for each n1\displaystyle n\geq 1. Moreover, Ψmε(w^ε)=O(ε2m+1)\displaystyle\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})=O(\varepsilon^{2m+1}), ε0\displaystyle\varepsilon\rightarrow 0 holds for each m0\displaystyle m\geq 0.

Proof.

This is an immediate consequence of (6.1) and Lemma 5. ∎

By the above theorem, we see that there are positive constants Cn\displaystyle C^{\prime}_{n} (where n2\displaystyle n\geq 2) such that |h(n)(w^ε)|Cnεn\displaystyle|h^{(n)}(\hat{w}_{\varepsilon})|\leq C^{\prime}_{n}\varepsilon^{n}, and hence

|Ψmε(w^ε)|ϕ(w^ε)C2m+1(2m)!!ε2m+1.\displaystyle\displaystyle|\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})|\leq\phi(\hat{w}_{\varepsilon})\frac{C^{\prime}_{2m+1}}{(2m)!!}\varepsilon^{2m+1}.

Now we introduce the condition [A7].

  • [A7]

    There exists ε1(0,1]\displaystyle\varepsilon_{1}\in(0,1] such that

    m=1C2m+1(2m)!!ε12m+1<.\displaystyle\displaystyle\sum^{\infty}_{m=1}\frac{C^{\prime}_{2m+1}}{(2m)!!}\varepsilon_{1}^{2m+1}<\infty.

Then, obviously we have the theorem below.

Theorem 4.

Assume [A1]\displaystyle\mathrm{[A1]}[A7]\displaystyle\mathrm{[A7]}and that (1.3)\displaystyle(\ref{exact_LR}) holds. Then the expansion formula (3.5)\displaystyle(\ref{error_estimate}) holds.

Note that [A6]–[A7] are technical conditions that may be hard to verify directly in the general case. However, the results in Section 4 suggest that the assertions of Theorems 34 are likely to be valid in many cases.

6.2 Application to the Daniels Formula for Density Functions

In this subsection, we study the order estimates for the saddlepoint approximation formula of Daniels (1954), which approximates the probability density function. Let x\displaystyle x\in\mathbb{R} and define θ^ε(n),w^ε\displaystyle\hat{\theta}^{(n)}_{\varepsilon},\hat{w}_{\varepsilon} as are done in Section 5.2. By an argument similar to that in Section 2, we can prove the following “exact” Daniels expansion:

fε(x)=m=0Θm\displaystyle\displaystyle f_{\varepsilon}(x)=\sum^{\infty}_{m=0}\Theta_{m} (6.4)

under suitable conditions, where fε\displaystyle f_{\varepsilon} is the probability density function of με\displaystyle\mu_{\varepsilon} and

Θm=ϕ(w^ε)θ^ε(2m+1)(2m)!!.\displaystyle\displaystyle\Theta_{m}=\phi(\hat{w}_{\varepsilon})\frac{\hat{\theta}^{(2m+1)}_{\varepsilon}}{(2m)!!}.

In the case of the sample mean of i.i.d. random variables, this version of (6.4) was studied as (3.3) in Daniels (1954) and (2.5) in Daniels (1980). In the general case, we can obtain (6.4) under, for instance, [A1]–[A5], [B1]–[B2] and the following additional condition.

  • [A8]

    There exists ε2(0,1]\displaystyle\varepsilon_{2}\in(0,1] such that

    n=1Cnn!!ε2n<,\displaystyle\displaystyle\sum^{\infty}_{n=1}\frac{C_{n}}{n!!}\varepsilon_{2}^{n}<\infty,

    where Cn>0\displaystyle C_{n}>0 is a constant appearing in (6.3).

We can easily show the following by arguments similar to those in Section 5 and Subsection 6.1 (we omit the proof here).

Theorem 5.

Assume [A1]\displaystyle\mathrm{[A1]}[A5]\displaystyle\mathrm{[A5]}. Moreover assume that (6.4)\displaystyle(\ref{exact_Daniels}) holds. Then Θm=O(ε2m)\displaystyle\Theta_{m}=O(\varepsilon^{2m}) as ε0\displaystyle\varepsilon\rightarrow 0 for each m0\displaystyle m\geq 0. Moreover, if we further assume [A8]\displaystyle\mathrm{[A8]}, it holds that

fε(x)=m=0MΘm+O(ε2(M+1))asε0foreachM0.\displaystyle\displaystyle f_{\varepsilon}(x)=\sum^{M}_{m=0}\Theta_{m}+O(\varepsilon^{2(M+1)})\ \ \mathrm{as}\ \ \varepsilon\rightarrow 0\ \ \mathrm{for\ each}\ \ M\geq 0.

7 Concluding Remarks

For a general, parametrised sequence of random variables (X(ε))ε>0\displaystyle(X^{(\varepsilon)})_{\varepsilon>0}, assuming that the r\displaystyle rth cumultant of X(ε)\displaystyle X^{(\varepsilon)} has order O(εr2)\displaystyle O(\varepsilon^{r-2}) as ε0\displaystyle\varepsilon\rightarrow 0 for each r3\displaystyle r\geq 3, we derive the “exact” Lugannnani-Rice expansion formula for the right tail probability

P(X(ε)>x)=1Φ(w^ε)+m=0Ψmε(w^ε),P\left(X^{(\varepsilon)}>x\right)=1-\Phi(\hat{w}_{\varepsilon})+\sum^{\infty}_{m=0}\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon}),

where x\displaystyle x\in{\mathbb{R}} is fixed to a given value. In particular, we have obtained the order estimates of each term in the expansion. For the first two terms, we have that Ψ0ε(w^ε)=O(ε)\displaystyle\Psi^{\varepsilon}_{0}(\hat{w}_{\varepsilon})=O(\varepsilon) and Ψ1ε(w^ε)=O(ε3)\displaystyle\Psi^{\varepsilon}_{1}(\hat{w}_{\varepsilon})=O(\varepsilon^{3}) as ε0\displaystyle\varepsilon\to 0, respectively. Under some additional conditions, the m\displaystyle mth term satisfies Ψmε(w^ε)=O(ε2m+1)\displaystyle\Psi^{\varepsilon}_{m}(\hat{w}_{\varepsilon})=O(\varepsilon^{2m+1}) as ε0\displaystyle\varepsilon\to 0. Using these, we have established (3.5) for each m,M0\displaystyle m,M\geq 0. As numerical examples, we chose stochastic volatility models in financial mathematics; we checked the validity of our order estimates for the LR formula.

The following are interesting and important future research topics related to this work.

  • (i)

    Analysing the far-right tail probability

    P(X(ε)>xε),\displaystyle\displaystyle P\left(X^{(\varepsilon)}>\frac{x}{\varepsilon}\right),

    using an LR type expansion, which is compatible with the classical LR formula (see Remark 1 in Introduction). In this case, the saddlepoint diverges as ε0\displaystyle\varepsilon\rightarrow 0 allowing us to avoid the difficulty in calculating (2.7) by using Watson’s lemma (see Watson (1918) or Kolassa (1997)). Hence, we can expect that condition [B3] may be omitted; this condition was imposed when we derived the exact LR expansion.

  • (ii)

    Seeking more “natural” conditions than [A6]–[A7] for obtaining the error estimate (3.5).

  • (iii)

    Studying order estimates for generalized LR expansions with non-Gaussian bases. Among studies of the expansions without order estimates are Wood, Booth and Butler (1993), Rogers and Zane (1999), Butler (2007), and Carr and Madan (2009).

Appendix A Explicit Forms of Higher Order Approximation Terms

In this section, we introduce the derivation of Ψ2ε(w^ε)\displaystyle\Psi^{\varepsilon}_{2}(\hat{w}_{\varepsilon}) and Ψ3ε(w^ε)\displaystyle\Psi^{\varepsilon}_{3}(\hat{w}_{\varepsilon}). First, we can inductively calculate θ^ε(r)\displaystyle\hat{\theta}^{(r)}_{\varepsilon} for r4\displaystyle r\geq 4 by the same calculation as the proof of Proposition 14.

Proposition 16.
θ^ε(4)\displaystyle\displaystyle\hat{\theta}^{(4)}_{\varepsilon} =\displaystyle\displaystyle= K(5)(θ^ε)5(K′′(θ^ε))3+K(3)(θ^ε)K(4)(θ^ε)(K′′(θ^ε))48(K(3)(θ^ε))39(K′′(θ^ε))5,\displaystyle\displaystyle-\frac{K^{(5)}(\hat{\theta}_{\varepsilon})}{5(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{3}}+\frac{K^{(3)}(\hat{\theta}_{\varepsilon})K^{(4)}(\hat{\theta}_{\varepsilon})}{(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{4}}-\frac{8(K^{(3)}(\hat{\theta}_{\varepsilon}))^{3}}{9(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{5}},
θ^ε(5)\displaystyle\displaystyle\hat{\theta}^{(5)}_{\varepsilon} =\displaystyle\displaystyle= K(6)(θ^ε)6(K′′(θ^ε))7/2+35(K(4)(θ^ε))248(K′′(θ^ε))9/2+7K(3)(θ^ε)K(5)(θ^ε)6(K′′(θ^ε))9/2\displaystyle\displaystyle-\frac{K^{(6)}(\hat{\theta}_{\varepsilon})}{6(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{7/2}}+\frac{35(K^{(4)}(\hat{\theta}_{\varepsilon}))^{2}}{48(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{9/2}}+\frac{7K^{(3)}(\hat{\theta}_{\varepsilon})K^{(5)}(\hat{\theta}_{\varepsilon})}{6(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{9/2}}
35(K(3)(θ^ε))2K(4)(θ^ε)8(K′′(θ^ε))11/2+385(K(3)(θ^ε))4144(K′′(θ^ε))13/2,\displaystyle\displaystyle-\frac{35(K^{(3)}(\hat{\theta}_{\varepsilon}))^{2}K^{(4)}(\hat{\theta}_{\varepsilon})}{8(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{11/2}}+\frac{385(K^{(3)}(\hat{\theta}_{\varepsilon}))^{4}}{144(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{13/2}},
θ^ε(6)\displaystyle\displaystyle\hat{\theta}^{(6)}_{\varepsilon} =\displaystyle\displaystyle= K(7)(θ^ε)7(K′′(θ^ε))4280(K(3)(θ^ε))527(K′′(θ^ε))8+200(K(3)(θ^ε))3K(4)(θ^ε)9(K′′(θ^ε))7\displaystyle\displaystyle-\frac{K^{(7)}(\hat{\theta}_{\varepsilon})}{7(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{4}}-\frac{280(K^{(3)}(\hat{\theta}_{\varepsilon}))^{5}}{27(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{8}}+\frac{200(K^{(3)}(\hat{\theta}_{\varepsilon}))^{3}K^{(4)}(\hat{\theta}_{\varepsilon})}{9(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{7}}
25(K(4)(θ^ε))23(K′′(θ^ε))620(K(3)(θ^ε))2K(5)(θ^ε)3(K′′(θ^ε))6+2K(4)(θ^ε)K(5)(θ^ε)(K′′(θ^ε))5\displaystyle\displaystyle-\frac{25(K^{(4)}(\hat{\theta}_{\varepsilon}))^{2}}{3(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{6}}-\frac{20(K^{(3)}(\hat{\theta}_{\varepsilon}))^{2}K^{(5)}(\hat{\theta}_{\varepsilon})}{3(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{6}}+\frac{2K^{(4)}(\hat{\theta}_{\varepsilon})K^{(5)}(\hat{\theta}_{\varepsilon})}{(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{5}}
+4K(3)(θ^ε)K(6)(θ^ε)3(K′′(θ^ε))5,\displaystyle\displaystyle+\frac{4K^{(3)}(\hat{\theta}_{\varepsilon})K^{(6)}(\hat{\theta}_{\varepsilon})}{3(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{5}},
θ^ε(7)\displaystyle\displaystyle\hat{\theta}^{(7)}_{\varepsilon} =\displaystyle\displaystyle= K(8)(θ^ε)8(K′′(θ^ε))9/285085(K(3)(θ^ε))61728(K′′(θ^ε))19/225025(K(3)(θ^ε))4K(4)(θ^ε)192(K′′(θ^ε))17/2\displaystyle\displaystyle-\frac{K^{(8)}(\hat{\theta}_{\varepsilon})}{8(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{9/2}}-\frac{85085(K^{(3)}(\hat{\theta}_{\varepsilon}))^{6}}{1728(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{19/2}}-\frac{25025(K^{(3)}(\hat{\theta}_{\varepsilon}))^{4}K^{(4)}(\hat{\theta}_{\varepsilon})}{192(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{17/2}}
+5005(K(3)(θ^ε))2(K(4)(θ^ε))264(K′′(θ^ε))15/2385(K(4)(θ^ε))364(K′′(θ^ε))13/2+1001(K(3)(θ^ε))3K(5)(θ^ε)24(K′′(θ^ε))15/2\displaystyle\displaystyle+\frac{5005(K^{(3)}(\hat{\theta}_{\varepsilon}))^{2}(K^{(4)}(\hat{\theta}_{\varepsilon}))^{2}}{64(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{15/2}}-\frac{385(K^{(4)}(\hat{\theta}_{\varepsilon}))^{3}}{64(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{13/2}}+\frac{1001(K^{(3)}(\hat{\theta}_{\varepsilon}))^{3}K^{(5)}(\hat{\theta}_{\varepsilon})}{24(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{15/2}}
231K(3)(θ^ε)K(4)(θ^ε)K(5)(θ^ε)8(K′′(θ^ε))13/2+63(K(5)(θ^ε))240(K′′(θ^ε))11/277(K(3)(θ^ε))2K(6)(θ^ε)8(K′′(θ^ε))13/2\displaystyle\displaystyle-\frac{231K^{(3)}(\hat{\theta}_{\varepsilon})K^{(4)}(\hat{\theta}_{\varepsilon})K^{(5)}(\hat{\theta}_{\varepsilon})}{8(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{13/2}}+\frac{63(K^{(5)}(\hat{\theta}_{\varepsilon}))^{2}}{40(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{11/2}}-\frac{77(K^{(3)}(\hat{\theta}_{\varepsilon}))^{2}K^{(6)}(\hat{\theta}_{\varepsilon})}{8(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{13/2}}
+21K(4)(θ^ε)K(6)(θ^ε)8(K′′(θ^ε))11/2+3K(3)(θ^ε)K(7)(θ^ε)2(K′′(θ^ε))11/2.\displaystyle\displaystyle+\frac{21K^{(4)}(\hat{\theta}_{\varepsilon})K^{(6)}(\hat{\theta}_{\varepsilon})}{8(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{11/2}}+\frac{3K^{(3)}(\hat{\theta}_{\varepsilon})K^{(7)}(\hat{\theta}_{\varepsilon})}{2(K^{\prime\prime}(\hat{\theta}_{\varepsilon}))^{11/2}}.

Second, by continuing the differentiation in (5.12), we have

h(4)(w)\displaystyle\displaystyle h^{(4)}(w) =\displaystyle\displaystyle= g(4)(w)g(w)6(g(w))4g(w)4+12(g(w))2g′′(w)g(w)23(g′′(w))2g(w)24g(w)g(3)(w)g(w)2,\displaystyle\displaystyle\frac{g^{(4)}(w)}{g(w)}-\frac{6(g^{\prime}(w))^{4}}{g(w)^{4}}+\frac{12(g^{\prime}(w))^{2}g^{\prime\prime}(w)}{g(w)^{2}}-\frac{3(g^{\prime\prime}(w))^{2}}{g(w)^{2}}-\frac{4g^{\prime}(w)g^{(3)}(w)}{g(w)^{2}},
h(5)(w)\displaystyle\displaystyle h^{(5)}(w) =\displaystyle\displaystyle= g(5)(w)g(w)24(g(w))5g(w)560(g(w))3g′′(w)g(w)4+30g(w)(g′′(w))2g(w)3\displaystyle\displaystyle\frac{g^{(5)}(w)}{g(w)}-\frac{24(g^{\prime}(w))^{5}}{g(w)^{5}}-\frac{60(g^{\prime}(w))^{3}g^{\prime\prime}(w)}{g(w)^{4}}+\frac{30g^{\prime}(w)(g^{\prime\prime}(w))^{2}}{g(w)^{3}}
+20(g(w))2g(3)(w)g(w)210g′′(w)g(3)(w)g(w)25g(w)g(4)(w)g(w)2,\displaystyle\displaystyle+\frac{20(g^{\prime}(w))^{2}g^{(3)}(w)}{g(w)^{2}}-\frac{10g^{\prime\prime}(w)g^{(3)}(w)}{g(w)^{2}}-\frac{5g^{\prime}(w)g^{(4)}(w)}{g(w)^{2}},
h(6)(w)\displaystyle\displaystyle h^{(6)}(w) =\displaystyle\displaystyle= g(6)(w)g(w)120(g(w))6g(w)6+360(g(w))4g′′(w)g(w)5270(g(w))2(g′′(w))2g(w)4\displaystyle\displaystyle\frac{g^{(6)}(w)}{g(w)}-\frac{120(g^{\prime}(w))^{6}}{g(w)^{6}}+\frac{360(g^{\prime}(w))^{4}g^{\prime\prime}(w)}{g(w)^{5}}-\frac{270(g^{\prime}(w))^{2}(g^{\prime\prime}(w))^{2}}{g(w)^{4}}
+30(g′′(w))3g(w)2120(g(w))3g(3)(w)g(w)4+120g(w)g′′(w)g(3)(w)g(w)3\displaystyle\displaystyle+\frac{30(g^{\prime\prime}(w))^{3}}{g(w)^{2}}-\frac{120(g^{\prime}(w))^{3}g^{(3)}(w)}{g(w)^{4}}+\frac{120g^{\prime}(w)g^{\prime\prime}(w)g^{(3)}(w)}{g(w)^{3}}
10(g(3)(w))2g(w)2+30(g(w))2g(4)(w)g(w)315g′′(w)g(4)(w)g(w)26g(w)g(5)(w)g(w)2,\displaystyle\displaystyle-\frac{10(g^{(3)}(w))^{2}}{g(w)^{2}}+\frac{30(g^{\prime}(w))^{2}g^{(4)}(w)}{g(w)^{3}}-\frac{15g^{\prime\prime}(w)g^{(4)}(w)}{g(w)^{2}}-\frac{6g^{\prime}(w)g^{(5)}(w)}{g(w)^{2}},
h(7)(w)\displaystyle\displaystyle h^{(7)}(w) =\displaystyle\displaystyle= g(7)(w)g(w)+720(g(w))7g(w)72520(g(w))5g′′(w)g(w)6+2520(g(w))3(g′′(w))2g(w)5\displaystyle\displaystyle\frac{g^{(7)}(w)}{g(w)}+\frac{720(g^{\prime}(w))^{7}}{g(w)^{7}}-\frac{2520(g^{\prime}(w))^{5}g^{\prime\prime}(w)}{g(w)^{6}}+\frac{2520(g^{\prime}(w))^{3}(g^{\prime\prime}(w))^{2}}{g(w)^{5}}
630g(w)(g′′(w))3g(w)4+840(g(w))4g(3)(w)g(w)51260(g(w))2g′′(w)g(4)(w)g(w)4\displaystyle\displaystyle-\frac{630g^{\prime}(w)(g^{\prime\prime}(w))^{3}}{g(w)^{4}}+\frac{840(g^{\prime}(w))^{4}g^{(3)}(w)}{g(w)^{5}}-\frac{1260(g^{\prime}(w))^{2}g^{\prime\prime}(w)g^{(4)}(w)}{g(w)^{4}}
+210(g′′(w))2g(3)(w)g(w)2+140g(w)(g(3)(w))2g(w)3210(g(w))3g(4)(w)g(w)4\displaystyle\displaystyle+\frac{210(g^{\prime\prime}(w))^{2}g^{(3)}(w)}{g(w)^{2}}+\frac{140g^{\prime}(w)(g^{(3)}(w))^{2}}{g(w)^{3}}-\frac{210(g^{\prime}(w))^{3}g^{(4)}(w)}{g(w)^{4}}
+210g(w)g′′(w)g(4)(w)g(w)335g(3)(w)g(4)(w)g(w)2+42(g(w))2g(5)(w)g(w)3\displaystyle\displaystyle+\frac{210g^{\prime}(w)g^{\prime\prime}(w)g^{(4)}(w)}{g(w)^{3}}-\frac{35g^{(3)}(w)g^{(4)}(w)}{g(w)^{2}}+\frac{42(g^{\prime}(w))^{2}g^{(5)}(w)}{g(w)^{3}}
21g′′(w)g(5)(w)g(w)27g(w)g(6)(w)g(w)2,\displaystyle\displaystyle-\frac{21g^{\prime\prime}(w)g^{(5)}(w)}{g(w)^{2}}-\frac{7g^{\prime}(w)g^{(6)}(w)}{g(w)^{2}},

where g(w)\displaystyle g(w) and h(w)\displaystyle h(w) are defined as (5.8). Combining this with (5.11), Lemma 4, and Propositions 4, 8, 10, and 16, we can calculate Ψ2ε(w^ε)\displaystyle\Psi^{\varepsilon}_{2}(\hat{w}_{\varepsilon}) and Ψ3ε(w^ε)\displaystyle\Psi^{\varepsilon}_{3}(\hat{w}_{\varepsilon}) explicitly.

Acknowledgement

The authors thank communications with Masaaki Fukasawa of Osaka University, who directed their attentions to the Lugannani–Rice formula. Jun Sekine’s research was supported by a Grant-in-Aid for Scientific Research (C), No. 23540133, from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

  • [1] Aït-Sahalia, Y. and Yu, H. (2006). Saddlepoint approximations for continuous-time Markov processes. J. Economet. 134, 507–551.
  • [2] Benabid, A., Bensusan, H. and El Karoui, N. (2010). Wishart stochastic volatility: Asymptotic smile and numerical framework. Preprint.
  • [3] Bru, M. F. (1991). Wishart processes. J. Theor. Prob. 4, 724–743.
  • [4] Butler, R. W. (2007). Saddlepoint approximations with applications, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge.
  • [5] Carr, P. and Madan, A. (2009). Saddlepoints methods for option pricing. The J. Comput. Finance 13(1), 49–61.
  • [6] Daniels, H. E. (1954). Saddlepoint approximations in statistics. Ann. Math. Statist. 25, 631–650.
  • [7] Daniels, H. E. (1980). Exact saddlepoint approximations. Biometrika 67(1), 59–63.
  • [8] Daniels, H. E. (1987). Tail probability approximations. Int. Statist. Rev. 55, 37–48.
  • [9] Durrett, R. (2010). Probability: Theory and Examples, 4th edn. Cambridge University Press, Cambridge.
  • [10] Fonseca, J. Grasselli, M. and Tebaldi, C. (2007). Option pricing when correlations are stochastic: an analytical framework. Rev. Derivatives Research 10(2), 151–180.
  • [11] Fonseca, J. Grasselli, M. and Tebaldi, C. (2008). A multifactor volatility Heston model. Quant. Financ. 8(6), 591–604.
  • [12] Glasserman, P. and Kim, K-K. (2009). Saddlepoint approximations for affine jump-diffusion models. J. Econ. Dyn. Control 33, 15–36.
  • [13] Gouriéroux, C. (2006). Continuous time Wishart process for stochastic risk. Economet. Rev. 25(2), 177–217.
  • [14] Gouriéroux, C., Jasiak, J. and Sufana, R. (2009). The Wishart autoregressive process of multivariate stochastic volatility. J. Economet. 150, 167–181.
  • [15] Grasselli, M. and Tebaldi, C. (2008). Solvable affine term structure models. Math. Financ. 18(1), 135–153.
  • [16] Heston, S. (1993). A closed form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Studies 6, 327–343.
  • [17] Jensen, J. L. (1995). Saddlepoint Approximations. Oxford Statistical Science Series, 16, Oxford University Press, Oxford.
  • [18] Kolassa, J. E. (2006). Series Approximation Methods in Statistics, 3rd edn. Lecture Notes in Statistics, 88, Springer-verlag.
  • [19] Lugannani, R. and Rice, S. (1980). Saddlepoint approximations for the distribution of the sum of independent random variables. Adv. Appl. Prob. 12, 475–490.
  • [20] Rogers, L.C.G. and Zane, O. (1999). Saddlepoint approximations to option prices. Ann. Appl. Prob. 9, 493–503.
  • [21] Rollin, S.del Baño, Ferreiro-Castilla, A. and Utzet, F. (2010). On the density of log-spot in the Heston volatility model. Stoc. Proc. Appl. 120(10), 2037–2063.
  • [22] Watson, G. N. (1918). The harmonic functions associated with the parabolic cylinder. Proc. London Math. Soc. 2(17), 116–148.
  • [23] Wood, A. T. A., Booth, J. G. and Butler, R. W. (1993). Saddlepoint approximations with nonnormal limit disributions. J. Amer. Statist. Soc. 88, 680–686.
  • [24] Xiong, J., Wong, A. and Salopek, D. (2005). Saddlepoint approximations to option price in a general equilibrium model. Statist. Prob. Lett. 71, 361–369.
  • [25] Yang, J., Hurd, T. and Zhang, X. (2006). Saddlepoint approximation method for pricing CDOs. J. Comput. Financ. 10, 1–20.
  • [26] Yoshikawa, K. (2013). On generalization of the Lugannani–Rice formula and its application to stochastic volatility models. Master Thesis, Graduate School of Engineering Science, Osaka University. (in Japanese)