This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Order Restricted Inference for Adaptive Progressively Censored Competing Risks Data

Ayon Ganguly 111Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India. Email: aganguly@iitg.ac.in, Debanjan Mitra 222Operations Management, Quantitative Methods and Information Systems Area, Indian Institute of Management Udaipur, Udaipur 313001, Rajasthan, India. Email: debanjan.mitra@iimu.ac.in, & Debasis Kundu333Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India. Email: kundu@iitk.ac.in
Abstract

Under adaptive progressive Type-II censoring schemes, order restricted inference based on competing risks data is discussed in this article. The latent failure lifetimes for the competing causes are assumed to follow Weibull distributions, with an order restriction on the scale parameters of the distributions. The practical implication of this order restriction is that one of the risk factors is dominant, as often observed in competing risks scenarios. In this setting, likelihood estimation for the model parameters, along with bootstrap based techniques for constructing asymptotic confidence intervals are presented. Bayesian inferential methods for obtaining point estimates and credible intervals for the model parameters are also discussed. Through a detailed Monte Carlo simulation study, the performance of order restricted inferential methods are assessed. In addition, the results are also compared with the case when no order restriction is imposed on the estimation approach. The simulation study shows that order restricted inference is more efficient between the two, when this additional information is taken into consideration. A numerical example is provided for illustrative purpose.

Key Words and Phrases: Maximum likelihood estimators; competing risks; order restricted inference; prior distribution; posterior analysis; credible set.

AMS 2000 Subject Classification: Primary 62F10; Secondary 62H10, 62F15.

1 Introduction

Reliability researchers have given significant attention to the analysis of Type-II progressively censored data which are obtained from a scheme as follows. Suppose nn units are placed on a life testing experiment, and the number of failures to be observed, say mm, is fixed. Let

X1:m:n<X2:m:n<<Xm:m:nX_{1:m:n}<X_{2:m:n}<...<X_{m:m:n} (1)

denote the ordered observed failure times. Immediately after the first observed failure at X1:m:mX_{1:m:m}, R1R_{1} functioning units are randomly removed from the experiment. Similarly, immediately after X2:m:nX_{2:m:n}, R2R_{2} functioning units are randomly removed from the experiment, and so on. At the time of the mm-th failure, all the remaining functioning units are removed, and the experiment is terminated. The censoring scheme, given by 𝑹=(R1,R2,,Rm)\boldsymbol{R}=(R_{1},R_{2},...,R_{m}), is pre-specified, and naturally, m+i=1mRi=nm+\sum_{i=1}^{m}R_{i}=n. Progressive Type-II censoring is a general version of the conventional Type-II censoring scheme, as can be easily seen by setting (R1,R2,,Rm)(R_{1},R_{2},...,R_{m}) to (0,0,,0,nm)(0,0,...,0,n-m). The progressive censoring scheme has many desirable properties, including that it tends to give a more detailed picture of the tail behaviour of the underlying lifetime distribution. For details on this topic, refer to the excellent account by Balakrishnan and Cramer [2].

The progressive Type-II censoring scheme has a longer test duration compared to the conventional Type-II censoring scheme in return to the efficiency of inference (see Burkschat [4], Ng et al. [11]). The adaptive progressive Type-II censoring scheme, proposed by Ng et al. [12], introduced a controlling parameter TT that controls the total duration of a lifetime experiment. At the beginning of the experiment, along with the progressive censoring scheme (R1,R2,,Rm)(R_{1},R_{2},...,R_{m}), the experimenter provides a time TT as the ideal duration of the experiment. If mm failures are obtained before TT, the censoring is carried out according to the pre-specified scheme. However, if less than mm failures are observed till TT, then the censoring scheme is modified, with the goal of terminating the experiment as soon as possible after TT. The adaptive progressive Type-II censoring scheme is thus a very useful method to be used in practical reliability experiments as it controls the total test duration while retaining the desirable properties of progressive censoring.

In competing risks scenarios, there could be multiple risk factors that may cause the failure of a unit; a researcher may want to assess one or more of the risk factors in particular. Competing risks have been studied extensively in reliability literature; see for example Pascual [16], Pascual [17], Pareek et al. [15] and the references therein. The statistical inferential issues for adaptive progressively censored data in the presence of competing risks were addressed by Ren and Gui [19]. The authors assumed the latent failure time model, where each latent failure time had a Weibull distribution. They considered likelihood and Bayesian inferences.

It is common for a researcher to have an additional information that one of the risk factors is more severe compared to the other. A possible way to incorporate this information into the statistical model is to consider an order restriction on the suitable parameters of the underlying life distributions. Of course, in absence of such an information, no assumption of order restriction among parameters is required. The order restricted inferences are considered by several authors in different context; for example, the readers are referred to Balakrishnan et al. [1], Samanta et al. [20], Pal et al. [14, 13], and Mahto et al. [10]. Balakrishnan et al. [1] used isotonic regression technique to obtain MLEs of the model parameters under step-stress setup. It may be noted that the implementation of the isotonic regression is quite complicated, which can be seen from (9) of the article. Therefore, in this article, we reparameterize the original model parameters to incorporate order restriction on original model parameters, as proposed by Samanta et al. [20].

In this paper, our main aim is to consider inference under an order restriction on the scale parameters of the life distributions for adaptive progressive Type-II censored competing risks data. Likelihood as well as Bayesian inferential methods are discussed. The proposed methods of inference are then assessed through a detailed Monte Carlo simulation study. We study the effect of order restriction on parameter estimates by comparing order restricted inference with unrestricted inference through extensive simulation. It is observed that if the true value of the model parameters are close, the estimates of some parameters obtained using order restricted inference have higher precision compared to the estimates obtained when there is no ordering assumed on the parameters.

The rest of the paper is organized as follows. In Section 2, the structure of adaptive progressively Type-II censored competing risks data, and the notations used are presented. In Section 3, we discuss likelihood and Bayesian inferential methods for the model parameters under an order restriction on the scale parameters. The inferential results without the order restriction are briefly stated in Section 4. Section 5 presents results of a detailed Monte Carlo simulation study in which we assess performance of all the inferential procedures developed under order restriction in Section 3, and compare them with the case when there is no order restriction. A data analysis is provided in Section 6 for illustrative purpose. Finally, the paper is concluded in Section 7 with some remarks.

2 Structure of the data and notations used

Suppose nn items are put on a life test, and the researcher wants to observe mm failures. Let the ordered observed failure times be denoted by (1). At the beginning of the experiment, the experimenter provides a censoring scheme 𝑹=(R1,R2,,Rm)\boldsymbol{R}=(R_{1},R_{2},...,R_{m}) with m+i=1mRi=nm+\sum_{i=1}^{m}R_{i}=n, and the ideal duration of the life test TT. Then, two scenarios may arise:

Case I: X1:m:n<X2:m:n<<Xm:m:n<TX_{1:m:n}<X_{2:m:n}<...<X_{m:m:n}<T. In this case, the experiment stops at Xm:m:nX_{m:m:n}, and the random removal of units are carried out according to the pre-specified censoring scheme (R1,R2,,Rm)(R_{1},R_{2},...,R_{m}).
Case II: For some J=0,1,,m1J=0,1,...,m-1, XJ:m:n<T<XJ+1:m:nX_{J:m:n}<T<X_{J+1:m:n}, with X0:m:n=0X_{0:m:n}=0. Once the experimental time exceeds TT but the number of observed failures has not reached mm, the experimenter would want to terminate the experiment as soon as possible. Now, it is known from the theory of order statistics that larger the number of operating units left on test, the smaller the expected total test time (see Ng et al. [12], David and Nagaraja [6]). In view of this, the experimenter would leave as many items as possible on test, in order to not go too far from the ideal test duration TT. Therefore, according to the proposed method by Ng et al. [12], the censoring scheme would be modified as

RJ+1=.=Rm1=0,Rm=nmi=1JRi.R_{J+1}=....=R_{m-1}=0,\quad R_{m}=n-m-\sum_{i=1}^{J}R_{i}.

Thus, under adaptive progressive Type-II censoring, the scheme becomes

Rj={Rj,forj=1,2,,J0,forj=J+1,J+2,,m1nmj=1JRj,forj=m.\displaystyle R_{j}^{*}=\begin{cases}R_{j},&\textrm{for}\quad j=1,2,...,J\\ 0,&\textrm{for}\quad j=J+1,J+2,...,m-1\\ n-m-\sum_{j=1}^{J}R_{j},&\textrm{for}\quad j=m.\end{cases}

Note that Case II includes Case I when J=mJ=m, with Xm+1:m:n=X_{m+1:m:n}=\infty.

The value of TT plays a very important role to determine the censoring scheme (R1,,Rm)(R_{1},...,R_{m}). In particular, as per requirement, TT can be tuned to have a shorter experimental time, or to have a higher probability of observing large lifetimes. When TT\to\infty, the scheme is the conventional progressive Type-II censoring, and when T0T\to 0, it is the conventional Type-II censoring. Although, choosing an optimal TT is an important issues, it is not pursued here.

To model competing risks data, there are two possible approaches - the latent failure time modelling approach (Cox [5]) and the cause-specific hazard modelling approach (Prentice et al. [18]). However, as Kundu [7] observed, when the underlying lifetime distribution is exponential or Weibull, the two approaches lead to the same likelihood, though the interpretation of different probabilities under these two approaches may be different. In this paper, we use the latent failure time modelling approach of Cox [5]. We assume that the lifetimes under each competing risk factors follow a Weibull distribution.

Here are the notations we use in this paper:
XiX_{i}: lifetime under cause ii, ii=1,2
XX: observed lifetime, i.e., Min{X1,X2}\{X_{1},X_{2}\}
TT: ideal duration of the test
𝑹=(R1,,Rm)\boldsymbol{R}=(R_{1},...,R_{m}): pre-specified progressive censoring scheme
𝑹=(R1,,Rm)\boldsymbol{R}^{*}=(R_{1}^{*},...,R_{m}^{*}): adaptive progressive censoring scheme
δ\delta: indicator variable to indicate the type of failure (1 if failure is from cause 1; 2 if failure is from cause 2)
IiI_{i}: index set of failures from cause ii, ii=1, 2, i.e., Ii={j:δj=i}I_{i}=\{j:\delta_{j}=i\}
|Ii||I_{i}|: cardinality of IiI_{i}; We assume that |Ii|=mi|I_{i}|=m_{i}, ii=1, 2 and m=m1+m2m=m_{1}+m_{2}
We(α,λ)(\alpha,\lambda): Weibull distribution with probability density function αλxα1eλxα\alpha\lambda x^{\alpha-1}e^{-\lambda x^{\alpha}}; x>0x>0.

We assume that X1X_{1} and X2X_{2} are independently distributed Weibull random variables with a common shape parameter, and different scale parameters, i.e., X1X_{1}\sim We(α,λ1)(\alpha,\lambda_{1}), and X2X_{2}\sim We(α,λ2)(\alpha,\lambda_{2}).

3 Order restricted Inference

3.1 Likelihood inference

It is common to encounter situations where one of the competing risk factors is more dominating compared to the other. In these cases, one can expect to observe more failures from this dominating risk factor, compared to the other risk factor. To incorporate this information into the model, we can impose an order restriction on the scale parameters of the assumed distributions. That is, we can assume that λ1>λ2\lambda_{1}>\lambda_{2}, and develop inferences with this order restriction.

Let X1X_{1} and X2X_{2} denote the lifetimes corresponding to the two risk factors that independently follow We(α,λ1)(\alpha,\lambda_{1}) and We(α,λ2)(\alpha,\lambda_{2}), respectively. Further, suppose λ2=βλ1\lambda_{2}=\beta\lambda_{1}, where 0<β10<\beta\leq 1. We develop inferences under Case-II, as it includes Case-I. The likelihood function in Case-II is

L(𝜽|Data)\displaystyle L(\boldsymbol{\theta}|Data)\propto αmλ1mβm2i=1mxi:m:nα1×eλ1(1+β)i=1m(Ri+1)xi:m:nα,\displaystyle\alpha^{m}\lambda_{1}^{m}\beta^{m_{2}}\prod_{i=1}^{m}x_{i:m:n}^{\alpha-1}\times e^{-\lambda_{1}(1+\beta)\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}}, (2)

where 𝜽=(α,λ1,β)\boldsymbol{\theta}=(\alpha,\lambda_{1},\beta), with the corresponding log-likelihood function

logL(𝜽|Data)=\displaystyle\log L(\boldsymbol{\theta}|Data)= m(logα+logλ1)+m2logβ+(α1)i=1nlogxi:m:n\displaystyle\,m(\log\alpha+\log\lambda_{1})+m_{2}\log\beta+(\alpha-1)\sum_{i=1}^{n}\log x_{i:m:n}
λ1(1+β)i=1m(Ri+1)xi:m:nα.\displaystyle-\lambda_{1}(1+\beta)\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}. (3)

From (3), we can obtain the likelihood equation for λ1\lambda_{1}, and by solving it for fixed α\alpha and β\beta, we get the maximum likelihood estimate (MLE) for λ\lambda as

λ^1(α,β)=m(1+β)i=1m(Ri+1)xi:m:nα.\widehat{\lambda}_{1}(\alpha,\beta)=\frac{m}{(1+\beta)\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}}. (4)

Substituting λ^1(α,β)\widehat{\lambda}_{1}(\alpha,\beta) in (3), the profile-log-likelihood function of α\alpha and β\beta is obtained as

p(α,β)=p1(α)+p2(β),p(\alpha,\beta)=p_{1}(\alpha)+p_{2}(\beta),

where

p1(α)\displaystyle p_{1}(\alpha) =mlogαmlog(i=1m(Ri+1)xi:m:nα)+(α1)i=1mlogxi:m:n,\displaystyle=m\log\alpha-m\log(\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha})+(\alpha-1)\sum_{i=1}^{m}\log x_{i:m:n}, (5)
p2(β)\displaystyle p_{2}(\beta) =mlog(1+β)+m2logβ.\displaystyle=-m\log(1+\beta)+m_{2}\log\beta.

If m2<m1m_{2}<m_{1}, the MLE of β\beta can be found by solving p2(β)β=0\frac{\partial p_{2}(\beta)}{\partial\beta}=0. In this case, we have the MLE for β\beta as

β^=m2m1.\widehat{\beta}=\frac{m_{2}}{m_{1}}.

Note that p2(β)p_{2}(\beta) is an increasing function of β\beta for m2m1m_{2}\geq m_{1}. Thus, the MLE of β\beta in this case is 1. Clearly, the MLE for λ2\lambda_{2} can be obtained as

λ^2=β^λ^1.\widehat{\lambda}_{2}=\widehat{\beta}\widehat{\lambda}_{1}.

Lemma: p1(α)p_{1}(\alpha) is a unimodal function in α\alpha.

Proof: Note that

p1(α)=mαmi=1m(Ri+1)xi:m:nαlogxi:m:ni=1m(Ri+1)xi:m:nα+i=1mlogxi:m:n,p_{1}^{\prime}(\alpha)=\frac{m}{\alpha}-m\frac{\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}\log x_{i:m:n}}{\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}}+\sum_{i=1}^{m}\log x_{i:m:n},

and

p1′′(α)=mα2mg(α)g′′(α){g(α)}2{g(α)}2,p_{1}^{\prime\prime}(\alpha)=-\frac{m}{\alpha^{2}}-m\frac{g(\alpha)g^{\prime\prime}(\alpha)-\{g^{\prime}(\alpha)\}^{2}}{\{g(\alpha)\}^{2}},

where

g(α)=i=1m(Ri+1)xi:m:nα,g(α)=i=1m(Ri+1)xi:m:nαlogxi:m:ng(\alpha)=\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha},\quad g^{\prime}(\alpha)=\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}\log x_{i:m:n}

and

g′′(α)=i=1m(Ri+1)xi:m:nα(logxi:m:n)2.g^{\prime\prime}(\alpha)=\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}(\log x_{i:m:n})^{2}.

Note that

g(α)g′′(α){g(α)}2\displaystyle g(\alpha)g^{\prime\prime}(\alpha)-\{g^{\prime}(\alpha)\}^{2} =1i<jm(Ri+1)(Rj+1)(logxi:m:nlogxj:m:n)20.\displaystyle=\sum_{1\leq i<j\leq m}(R_{i}^{*}+1)(R_{j}^{*}+1)(\log x_{i:m:n}-\log x_{j:m:n})^{2}\geq 0.

Thus, p1(α)p_{1}(\alpha) is concave. Then, noting that p1(α)p_{1}(\alpha)\to-\infty as α0\alpha\to 0 or α\alpha\to\infty, it follows immediately that p1(α)p_{1}(\alpha) is unimodal. ∎

Now, since p1(α)p_{1}(\alpha) is unimodal, to obtain MLE of α\alpha, a simple one-dimensional optimization technique like the Newton-Raphson, or the bisection method can be employed. Alternatively, one can use a fixed-point equation approach like the following. Note that equating p(α)p^{\prime}(\alpha) to zero and rearranging the resulting equation, we have

α=[i=1m(Ri+1)xi:m:nαlogxi:m:ni=1m(Ri+1)xi:m:nα1mi=1mlogxi:m:n]1=h(α).\alpha=\bigg{[}\frac{\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}\log x_{i:m:n}}{\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}}-\frac{1}{m}\sum_{i=1}^{m}\log x_{i:m:n}\bigg{]}^{-1}=h(\alpha).

Therefore, the following simple iterative algorithm is proposed to obtain MLEs of model parameters.

Algorithm:
Step 1: Start with an initial value α(0)\alpha^{(0)}
Step 2: Update by α(1)=h(α(0))\alpha^{(1)}=h(\alpha^{(0)})
Step 3: At the (k+1)(k+1)-th step, obtain α(k+1)=h(α(k))\alpha^{(k+1)}=h(\alpha^{(k)})
Step 4: Stop when |α(k+1)α(k)|<ϵ|\alpha^{(k+1)}-\alpha^{(k)}|<\epsilon, for some pre-fixed ϵ>0\epsilon>0, and take α^=α(k+1)\widehat{\alpha}=\alpha^{(k+1)}
Step 5: Calculate β^={m2m1if m1>m21if m1m2\widehat{\beta}=\begin{cases}\frac{m_{2}}{m_{1}}&\text{if }m_{1}>m_{2}\\ 1&\text{if }m_{1}\leq m_{2}\end{cases}
Step 6: From (4), calculate λ^1(α^,β^)\widehat{\lambda}_{1}(\widehat{\alpha},\widehat{\beta})
Step 7: Finally, calculate λ^2=β^λ^1\widehat{\lambda}_{2}=\widehat{\beta}\widehat{\lambda}_{1}.

3.2 Bayesian inference

Note that the MLEs of the unknown parameters do not exist in closed from, and hence the further analyses are based on the asymptotic properties of the MLEs. Therefore, it seems that the Bayesian inference is a natural alternative. In this subsection, we consider Bayesian inference of adaptive progressively Type-II censored competing risks data under the order restriction λ1>λ2\lambda_{1}>\lambda_{2}, with the same reparameterization λ2=βλ1\lambda_{2}=\beta\lambda_{1}, 0<β10<\beta\leq 1. Following the approach of Berger and Sun [3], Kundu and Gupta [9], and Kundu [8], here it is assumed that λ1\lambda_{1} has a gamma prior with shape a1>0a_{1}>0 and scale b1>0b_{1}>0. Thus, the prior probability density function (PDF) of λ1\lambda_{1} is given by

π1(λ1)λ1a11eb1λ1 for λ1>0.\displaystyle\pi_{1}(\lambda_{1})\propto\lambda_{1}^{a_{1}-1}e^{-b_{1}\lambda_{1}}\quad\text{ for }\quad\lambda_{1}>0.

We also assume that the prior distribution of the shape parameter α\alpha is a gamma distribution with shape a2>0a_{2}>0 and scale b2>0b_{2}>0 having PDF

π2(α)αa21eb2α for α>0.\displaystyle\pi_{2}(\alpha)\propto\alpha^{a_{2}-1}e^{-b_{2}\alpha}\quad\text{ for }\quad\alpha>0.

As β(0, 1]\beta\in(0,\,1] and beta distribution is a quite flexible distribution with support (0, 1], we assume that β\beta has a beta prior with hyper parameters a3>0a_{3}>0 and b3>0b_{3}>0 and PDF

π3(β)βa31(1β)b31 for 0<β1.\displaystyle\pi_{3}(\beta)\propto\beta^{a_{3}-1}(1-\beta)^{b_{3}-1}\quad\text{ for }\quad 0<\beta\leq 1.

It is also assumed that λ1\lambda_{1}, α\alpha, and β\beta are apriori independently distributed. Now, based on the likelihood function in (2), the priors π1()\pi_{1}(\cdot), π2()\pi_{2}(\cdot), and π3()\pi_{3}(\cdot), the posterior PDF of λ1\lambda_{1}, α\alpha, and β\beta can be written as

π~1(λ1,α,β|Data)λ1m+a11αm+a21βm2+a31(1β)b31eA1(α,β)λ1A2α,\displaystyle\widetilde{\pi}_{1}(\lambda_{1},\,\alpha,\,\beta|Data)\propto\lambda_{1}^{m+a_{1}-1}\alpha^{m+a_{2}-1}\beta^{m_{2}+a_{3}-1}(1-\beta)^{b_{3}-1}e^{-A_{1}(\alpha,\,\beta)\lambda_{1}-A_{2}\alpha}, (6)

for λ1>0\lambda_{1}>0, α>0\alpha>0, and 0<β<10<\beta<1, where A1(α,β)=b1+(1+β)i=1m(Ri+1)xi:m:nαA_{1}(\alpha,\,\beta)=b_{1}+(1+\beta)\sum_{i=1}^{m}(R^{*}_{i}+1)x_{i:m:n}^{\alpha} and A2=b2i=1mlogxi:m:nA_{2}=b_{2}-\sum_{i=1}^{m}\log x_{i:m:n}. The Bayes estimate (BE) of some parametric function h(λ1,α,β)h(\lambda_{1},\,\alpha,\,\beta) under squared error loss function is given by

h^BE(λ1,α,β)=0001h(λ1,α,β)π~1(λ1,α,β|Data)𝑑β𝑑λ1𝑑α.\displaystyle\widehat{h}_{BE}(\lambda_{1},\,\alpha,\,\beta)=\int_{0}^{\infty}\int_{0}^{\infty}\int_{0}^{1}h(\lambda_{1},\,\alpha,\,\beta)\widetilde{\pi}_{1}(\lambda_{1},\,\alpha,\,\beta|Data)d\beta d\lambda_{1}d\alpha. (7)

In general the integration in (7) does not exist in close form. Hence, we propose a simulation consistent algorithm based on importance sampling technique to compute BE and to construct credible interval (CRI) of some parametric function.

Let T1,,TlT_{1},\,\ldots,\,T_{l} denote a random sample of size ll from a We(ν,λ)(\nu,\,\lambda) distribution having CDF F()F(\cdot). As one can write

ln(log(1F(x)))=lnλ+νlnx,\ln\left(-\log\left(1-F(x)\right)\right)=\ln\lambda+\nu\ln x,

ν\nu can be estimated using a simple linear regression

yi=μ+νzi+ei,y_{i}=\mu+\nu z_{i}+e_{i},

where yi=ln(log(1i0.5l))y_{i}=\ln\left(-\log\left(1-\frac{i-0.5}{l}\right)\right), zi=lnTi:lz_{i}=\ln T_{i:l}, and μ=lnλ\mu=\ln\lambda. We use this method to find an approximate estimate for α\alpha, which will be used to generate sample using importance sampling scheme. Let α~1\widetilde{\alpha}_{1} and α~2\widetilde{\alpha}_{2} be the estimates of α\alpha that are found using the linear regression method based on the failures corresponding to I1I_{1} and I2I_{2}, respectively. Also define α~=12(α~1+α~2)\widetilde{\alpha}=\frac{1}{2}\left(\widetilde{\alpha}_{1}+\widetilde{\alpha}_{2}\right).

Note that the posterior PDF given in (6) can be expressed as

π~1(λ1,α,β|Data)w(α,β)π~4(λ1|α,β)π~3(β)π~2(α),\displaystyle\widetilde{\pi}_{1}(\lambda_{1},\,\alpha,\,\beta|Data)\propto w(\alpha,\,\beta)\widetilde{\pi}_{4}(\lambda_{1}|\alpha,\,\beta)\widetilde{\pi}_{3}(\beta)\widetilde{\pi}_{2}(\alpha),
where
w(α,β)=αm+a22βm2+a31(1β)b31eα(A2b)A1(m+a1)(α,β),\displaystyle w(\alpha,\,\beta)=\alpha^{m+a_{2}-2}\beta^{m_{2}+a_{3}-1}(1-\beta)^{b_{3}-1}e^{-\alpha(A_{2}-b)}A_{1}^{-(m+a_{1})}(\alpha,\,\beta),
π~2(α)=b2αebα,\displaystyle\widetilde{\pi}_{2}(\alpha)=b^{2}\alpha e^{-b\alpha},
π~3(β)=1,\displaystyle\widetilde{\pi}_{3}(\beta)=1,
π~4(λ1|α,β)=A1m+a1(α,β)Γ(m+a1)λ1m+a11eA1(α,β)λ1,\displaystyle\widetilde{\pi}_{4}(\lambda_{1}|\alpha,\,\beta)=\frac{A_{1}^{m+a_{1}}(\alpha,\,\beta)}{\Gamma(m+a_{1})}\lambda_{1}^{m+a_{1}-1}e^{-A_{1}(\alpha,\,\beta)\lambda_{1}},
b=2α~.\displaystyle b=\frac{2}{\widetilde{\alpha}}.

Therefore, the following algorithm is proposed to obtain BE and CRI of a parametric function, say h(λ1,α,β)h\left(\lambda_{1},\,\alpha,\,\beta\right).

Algorithm:
Step 1: Generate α1\alpha_{1} from π~2()\widetilde{\pi}_{2}(\cdot).
Step 2: Generate β1\beta_{1} from π~3()\widetilde{\pi}_{3}(\cdot).
Step 3: Generate λ11\lambda_{11} from π~4(|α1,β1)\widetilde{\pi}_{4}(\cdot|\alpha_{1},\,\beta_{1}).
Step 4: Repeat the steps 1, 2, and 3, MM times to get (λ1i,αi,βi)(\lambda_{1i},\,\alpha_{i},\,\beta_{i}), i=1, 2,,Mi=1,\,2,\,\ldots,\,M.
Step 5: Calculate wi=w(αi,βi)w_{i}=w(\alpha_{i},\,\beta_{i}) for i=1, 2,,Mi=1,\,2,\,\ldots,\,M.
Step 6: Calculate wi=wij=1Mwjw^{*}_{i}=\frac{w_{i}}{\sum_{j=1}^{M}w_{j}} for i=1, 2,,Mi=1,\,2,\,\ldots,\,M.
Step 7: Calculate hi=h(λ1i,αi,βi)h_{i}=h(\lambda_{1i},\,\alpha_{i},\,\beta_{i}) for i=1, 2,,Mi=1,\,2,\,\ldots,\,M.
Step 8: Approximate h^BE(λ1,α,β)\widehat{h}_{BE}(\lambda_{1},\,\alpha,\,\beta) by i=1Mwihi\sum_{i=1}^{M}w^{*}_{i}h_{i}.
Step 9: Order hih_{i}’s in ascending order to obtain h(1)h(2)<h(M)h_{(1)}\leq h_{(2)}\leq\ldots<h_{(M)}. Order wiw^{*}_{i}’s accordingly to get w(1),w(2),,w(M)w_{(1)},\,w_{(2)},\,\ldots,\,w_{(M)}. Note that w(1)w_{(1)}, w(2)w_{(2)}, \ldots, w(M)w_{(M)} may not be ordered.
Step 10: Construct a 100(1γ)%100(1-\gamma)\% CRI as [h(j1),h(j2)][h_{(j_{1})},\,h_{(j_{2})}], where j1<j2j_{1}<j_{2} satisfy

i=j1j2w(i)1γ<i=j1j2+1w(i).\displaystyle\sum_{i=j_{1}}^{j_{2}}w_{(i)}\leq 1-\gamma<\sum_{i=j_{1}}^{j_{2}+1}w_{(i)}. (8)

Step 11: Construct the 100(1γ)%100(1-\gamma)\% height posterior density CRI as [h(j1),h(j2)][h_{(j_{1}^{*})},\,h_{(j_{2}^{*})}], where j1<j2j_{1}^{*}<j_{2}^{*} satisfy

i=j1j2w(i)1γ<i=j1j2+1w(i) and h(j2)h(j1)h(j2)h(j1),\displaystyle\sum_{i=j_{1}^{*}}^{j_{2}^{*}}w_{(i)}\leq 1-\gamma<\sum_{i=j_{1}^{*}}^{j_{2}^{*}+1}w_{(i)}\text{ and }h_{(j_{2}^{*})}-h_{(j_{1}^{*})}\leq h_{(j_{2})}-h_{(j_{1})},

for all j1j_{1} and j2j_{2} satisfying (8).

Note that choices of π~2(α),π~3(β),π4(λ1|α,β)\widetilde{\pi}_{2}(\alpha),\,\widetilde{\pi}_{3}(\beta),\,\pi_{4}(\lambda_{1}|\alpha,\,\beta), and w(α,β)w(\alpha,\,\beta) may not be optimal, but we have noticed that these choices work quite well. The trivial choice of π~2()\widetilde{\pi}_{2}(\cdot) would be a gamma PDF with shape m+a21m+a_{2}-1 and scale A2A_{2}. However, this choice needs the re-scaling of original data points so that scale parameter A2>0A_{2}>0. We have also noticed that with the trivial choice of π~2()\widetilde{\pi}_{2}(\cdot) the generated values of α\alpha, in some cases, are such that the weight w(α,β)w(\alpha,\,\beta) concentrates on one or two points. Hence, we find a crude estimate of α\alpha using the liner regression technique as described above and choose π~2()\widetilde{\pi}_{2}(\cdot) such that the mean of the PDF is α~\widetilde{\alpha}.

4 Inference without order restriction

Ren and Gui [19] considered inferential issues under a similar setup. The authors assumed that the latent lifetimes follow Weibull distributions with different shape and scale parameters under different risk factors. It may be noted that in this case the profile log-likelihood function of the shape parameters can be expressed as a sum of two functions, where the first function is the profile log-likelihood function of shape parameter corresponding to the first latent failure time, and the second function is the profile log-likelihood function of shape parameter corresponding to the second latent failure time. Consequently, the implementation of inferential techniques becomes easier when shape parameters are assumed to be different compared to when shape parameters are assumed to be same. As we will compare the order restricted inference with unrestricted inference, in this section we briefly describe the inferential techniques when there is no order restriction on parameters of the lifetime distributions of the competing causes and when shape parameters are assumed to be same. Here also, all derivations are carried out under Case-II of adaptive progressive censoring as it includes Case-I as a special case.

4.1 Likelihood inference

In this case, the log-likelihood function of 𝜻=(α,λ1,λ2)\boldsymbol{\zeta}=(\alpha,\,\lambda_{1},\,\lambda_{2}) is

logL(𝜻|Data)=\displaystyle\log L(\boldsymbol{\zeta}|Data)= mlogα+m1logλ1+m2logλ2+(α1)i=1mlogxi:m:n\displaystyle\,m\log\alpha+m_{1}\log\lambda_{1}+m_{2}\log\lambda_{2}+(\alpha-1)\sum_{i=1}^{m}\log x_{i:m:n}
(λ1+λ2)i=1m(Ri+1)xi:m:nα.\displaystyle-(\lambda_{1}+\lambda_{2})\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}. (9)

For fixed α\alpha, equating the first-order derivatives of the log-likelihood function in (9) with respect to λ1\lambda_{1} and λ2\lambda_{2} to zero, we obtain

λ^1(α)=m1i=1m(Ri+1)xi:m:nαandλ^2(α)=m2i=1m(Ri+1)xi:m:nα.\widehat{\lambda}_{1}(\alpha)=\frac{m_{1}}{\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}}\quad\text{and}\quad\widehat{\lambda}_{2}(\alpha)=\frac{m_{2}}{\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}}.

Substituting λ^1(α)\widehat{\lambda}_{1}(\alpha) and λ^2(α)\widehat{\lambda}_{2}(\alpha) in (9), the profile log-likelihood in α\alpha is obtained as

p3(α)=mlogαmlog(i=1m(Ri+1)xi:m:nα)+(α1)i=1mlogxi:m:n,p_{3}(\alpha)=m\log\alpha-m\log\bigg{(}\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}\bigg{)}+(\alpha-1)\sum_{i=1}^{m}\log x_{i:m:n},

which is same as the profile log-likelihood function p1(α)p_{1}(\alpha) as given in (5). Therefore, p3(α)p_{3}(\alpha) is a unimodal function in α\alpha, and hence, the MLE of α\alpha can easily be obtained using a one-dimensional optimization technique. Once the MLE of α\alpha is obtained, the MLEs of λ1\lambda_{1} and λ2\lambda_{2} can be obtained as λ^1(α^)\widehat{\lambda}_{1}\left(\widehat{\alpha}\right) and λ^2(α^)\widehat{\lambda}_{2}\left(\widehat{\alpha}\right), respectively, where α^\widehat{\alpha} is the MLE of α\alpha.

4.2 Bayesian inference

Here it is assumed that λ1\lambda_{1}, λ2\lambda_{2}, and α\alpha have gamma priors with the prior PDFs

π4(λ1)λ1a41eb4λ1 for λ1>0,\displaystyle\pi_{4}(\lambda_{1})\propto\lambda_{1}^{a_{4}-1}e^{-b_{4}\lambda_{1}}\text{ for }\lambda_{1}>0,
π5(λ2)λ2a51eb5λ2 for λ2>0,\displaystyle\pi_{5}(\lambda_{2})\propto\lambda_{2}^{a_{5}-1}e^{-b_{5}\lambda_{2}}\text{ for }\lambda_{2}>0,
π6(α)αa61eb6α for α>0.\displaystyle\pi_{6}(\alpha)\propto\alpha^{a_{6}-1}e^{-b_{6}\alpha}\text{ for }\alpha>0.

It is further assumed that α\alpha, λ1\lambda_{1}, and λ2\lambda_{2} are independently distributed. Now, the joint posterior PDF of α\alpha, λ1\lambda_{1}, and λ2\lambda_{2} can be expressed as follows: For λ1>0\lambda_{1}>0, λ2>0\lambda_{2}>0, and α>0\alpha>0,

π~5(λ1,λ2,α|Data)λ1m1+a41λ2m2+a51αm+a61eA3(α)λ1A4(α)λ2A5α,\displaystyle\widetilde{\pi}_{5}(\lambda_{1},\,\lambda_{2},\,\alpha|Data)\propto\lambda_{1}^{m_{1}+a_{4}-1}\lambda_{2}^{m_{2}+a_{5}-1}\alpha^{m+a_{6}-1}e^{-A_{3}(\alpha)\lambda_{1}-A_{4}(\alpha)\lambda_{2}-A_{5}\alpha},

where A3(α)=b4+i=1m(Ri+1)xi:m:nαA_{3}(\alpha)=b_{4}+\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}, A4(α)=b5+i=1m(Ri+1)xi:m:nαA_{4}(\alpha)=b_{5}+\sum_{i=1}^{m}(R_{i}^{*}+1)x_{i:m:n}^{\alpha}, and A5=b6i=1mlogxi:m:nA_{5}=b_{6}-\sum_{i=1}^{m}\log x_{i:m:n}. The BE of some function of λ1\lambda_{1}, λ2\lambda_{2}, and α\alpha, say g(λ1,λ2,α)g(\lambda_{1},\,\lambda_{2},\,\alpha), under squared error loss function is the posterior expectation of g(λ1,λ2,α)g(\lambda_{1},\,\lambda_{2},\,\alpha), which is given by

g^BE(λ1,λ2,α)=000g(λ1,λ2,α)π~5(λ1,λ2,α|Data)𝑑λ1𝑑λ2𝑑α,\displaystyle\widehat{g}_{BE}(\lambda_{1},\,\lambda_{2},\,\alpha)=\int_{0}^{\infty}\int_{0}^{\infty}\int_{0}^{\infty}g(\lambda_{1},\,\lambda_{2},\,\alpha)\widetilde{\pi}_{5}(\lambda_{1},\,\lambda_{2},\,\alpha|Data)d\lambda_{1}d\lambda_{2}d\alpha,

provided it exists. Note that thee posterior PDF of λ1,λ2\lambda_{1},\,\lambda_{2}, and α\alpha can be rewritten as follows:

π~5(λ1,λ2,α|Data)v(α)π~6(λ1|α)π~7(λ2|α)π~2(α),\displaystyle\widetilde{\pi}_{5}(\lambda_{1},\,\lambda_{2},\,\alpha|Data)\propto v(\alpha)\widetilde{\pi}_{6}(\lambda_{1}|\alpha)\widetilde{\pi}_{7}(\lambda_{2}|\alpha)\widetilde{\pi}_{2}(\alpha),

where

v(α)=αm+a62eα(A5b)A3(m1+a4)(α)A4(m2+a5)(α),\displaystyle v(\alpha)=\alpha^{m+a_{6}-2}e^{-\alpha(A_{5}-b)}A_{3}^{-(m_{1}+a_{4})}(\alpha)A_{4}^{-(m_{2}+a_{5})}(\alpha),
π~6(λ1|α)=A3m1+a4(α)Γ(m1+a4)λ1m1+a41eλ1A3(α),\displaystyle\widetilde{\pi}_{6}(\lambda_{1}|\alpha)=\frac{A_{3}^{m_{1}+a_{4}}(\alpha)}{\Gamma(m_{1}+a_{4})}\lambda_{1}^{m_{1}+a_{4}-1}e^{-\lambda_{1}A_{3}(\alpha)},
π~7(λ2|α)=A4m2+a5(α)Γ(m2+a5)λ2m2+a51eλ2A4(α),\displaystyle\widetilde{\pi}_{7}(\lambda_{2}|\alpha)=\frac{A_{4}^{m_{2}+a_{5}}(\alpha)}{\Gamma(m_{2}+a_{5})}\lambda_{2}^{m_{2}+a_{5}-1}e^{-\lambda_{2}A_{4}(\alpha)},

and π~2()\widetilde{\pi}_{2}(\cdot) is defined in Section 3.2. Now, a simulation consistent algorithm, like the previous section, can be used to compute BEs and to construct CRIs of the model parameters.

5 Simulation study

Computational works for this article have been carried out by using the R software. For each unit, two lifetimes corresponding to the two independent competing causes of failure are generated from Weibull distributions with different scale parameters and same shape parameter. The lifetime and cause of failure of a unit are then determined by identifying the minimum of the two lifetimes. The total number of units on test, i.e., nn is taken as 50, and the number of observed failures, i.e., mm is taken as 40. Progressive Type-II censoring is incorporated into the simulation study according to three different schemes, namely, 𝑹=\boldsymbol{R}= (0,,0,10)(0,...,0,10), (10,0,,0)(10,0,...,0), and (0,,10,,0)(0,...,10,...,0), i.e., the right censoring, first step censoring plan (FSP), and one step censoring plan (OSP), respectively. Two different values for the time controlling parameter TT are considered, namely, 0.25 and 0.75. Two values for the shape parameter have been chosen, namely, 0.5 and 1.5, as they correspond to two very different shapes for the Weibull distributions. For each value of the shape parameter, the scale parameters are taken as (λ1,λ2)=(1.2, 1)\left(\lambda_{1},\,\lambda_{2}\right)=(1.2,\,1) and (1.4, 1)(1.4,\,1). Note that the values of β\beta are 11.2\frac{1}{1.2} and 11.4\frac{1}{1.4} for (λ1,λ2)=(1.2, 1)(\lambda_{1},\,\lambda_{2})=\left(1.2,\,1\right) and (1.4, 1)\left(1.4,\,1\right), respectively.

Parametric bootstrap confidence intervals for several parameters are computed and performances are judged through extensive numerical simulation. To construct parametric bootstrap confidence interval of a parametric function, say τ()\tau(\cdot), BB bootstrap MLEs of τ()\tau(\cdot) are calculated. Let these MLEs be denoted by τ^1,τ^2,,τ^B\widehat{\tau}^{*}_{1},\,\widehat{\tau}^{*}_{2},\,\ldots,\,\widehat{\tau}^{*}_{B}. Percentile bootstrap confidence intervals are obtained simply by choosing appropriate percentiles of bootstrap MLEs. Alternatively, one may consider the following bootstrap confidence interval, which will be called parametric bootstrap confidence interval in this article to distinguish from percentile bootstrap confidence interval. A 100(1γ)%100\left(1-\gamma\right)\% parametric bootstrap confidence interval is given by (τ^bτzγ/2vτ,τ^bτ+zγ/2vτ)(\widehat{\tau}-b_{\tau}-z_{\gamma/2}\sqrt{v_{\tau}},\,\widehat{\tau}-b_{\tau}+z_{\gamma/2}\sqrt{v_{\tau}}), where bτ=τ^¯τ^,vτ=1B1i=1B(τ^iτ^¯)2, and τ^¯=1Bi=1Bτ^ib_{\tau}=\overline{\widehat{\tau}^{*}}-\widehat{\tau},\quad v_{\tau}=\frac{1}{B-1}\sum_{i=1}^{B}\left(\widehat{\tau}_{i}^{*}-\overline{\widehat{\tau}^{*}}\right)^{2},\text{ and }\overline{\widehat{\tau}^{*}}=\frac{1}{B}\sum_{i=1}^{B}\widehat{\tau}_{i}^{*}.

Tables 14 show performances of point and interval estimates corresponding to likelihood and Bayesian inference under the order restricted setup. In these tables, we report bias and means square error (MSE) for both MLEs and BEs of the relevant parameters. The nominal level for bootstrap confidence intervals and CRIs is taken to be 95%. The coverage probabilities and average lengths of different intervals are reported. The coverage probabilities are abbreviated as CPB for parametric bootstrap confidence interval, CPP for percentile bootstrap confidence interval, CPS for symmetric CRI, and CPH for highest posterior density CRI. Similarly, average lengths are abbreviated. To compare the performance of order restricted inference with unrestricted inference, we also compute same set of performance measures when no order restriction are imposed and the corresponding results are reported in Tables 58.

In Tables 14, we notice that performance of the MLEs and the Bayes estimates of the scale parameters are quite comparable with respect to bias and mean squared error (MSE), while the Bayes estimate for the shape parameter α\alpha is better than the corresponding MLE, specially for OSP. In these tables, we notice that coverage probabilities and average lengths of the two Bayesian credible intervals are quite similar, and the coverage probabilities for these intervals are very close to the nominal confidence level 95%. However, the two bootstrap confidence intervals are somewhat different than the other intervals. The parametric bootstrap, and the percentile bootstrap confidence intervals seem to be wider than the CRIs. Particularly for the shape parameter α\alpha, the average length of the parametric bootstrap confidence interval is significantly larger than that for the other intervals for α\alpha. As a result, the coverage probability of the parametric bootstrap confidence interval for α\alpha is significantly above the nominal confidence level. Moreover, this phenomenon is particularly true for FSP and OSP. Different magnitudes of the test time controlling parameter TT do not seem to have any impact on the coverage probabilities and average lengths of different confidence intervals.

The simulation results for the unrestricted case are presented in Tables 58. By comparing the entries of Tables 1 and 5, it is observed that the performances of MLE and BE of λ2\lambda_{2} (scale parameter corresponding to non-dominating risk factor) improve significantly in the presence of order restriction on the scale parameters. The performances of MLE and BE of λ1\lambda_{1} (scale parameter corresponding to dominating risk factor) also improve to some extend when order restriction is imposed. The performances of the estimators of shape parameter improve significantly under the order restriction for FSP, while for Type-II censoring or for OSP, the performance are seems to be equivalent. The same trend is noticed for other choices of the parameters.

6 Illustrative example

In this section, we present analysis of a dataset to numerically illustrate the methods of inference developed in this paper. The dataset is simulated using the procedure described in Section 5. For this dataset, the total number of units on test, i.e., nn, is 100 while the number of observed failures, i.e., mm, is 90. The two Weibull distributions corresponding to the two competing risk factors are taken as We(α=1.5,λ1=1.5)(\alpha=1.5,\lambda_{1}=1.5), and We(α=1.5,λ2=1.0)(\alpha=1.5,\lambda_{2}=1.0). The one-step censoring plan (OSP), i.e., 𝑹=(0,,10,,0)\boldsymbol{R}=(0,...,10,...,0) is used to incorporate progressive Type-II censoring. The time controlling parameter TT is taken as 0.5.

It is observed that the number of failures from the two causes, i.e., m1m_{1} and m2m_{2}, are 58 and 32, respectively. The mean lifetimes corresponding to the two causes of failure are 0.464 and 0.459, respectively, with respective standard deviations 0.343 and 0.290.

Given the data, it may be of interest to know whether the two scale parameters for the two competing risk factors are really different or not. If the two scale parameters cannot be taken to be different, then the competing risks modelling is not meaningful in this case. We thus test a hypothesis

Ho:λ1=λ2=λ(say),againstH1:λ1λ2.H_{o}:\lambda_{1}=\lambda_{2}=\lambda(\textrm{say}),\quad\textrm{against}\quad H_{1}:\lambda_{1}\neq\lambda_{2}.

This hypotheses can be tested using likelihood ratio test (LRT). The test statistic is computed as

Λ=2(l^Hol^HoH1)=7.619\Lambda=-2(\hat{l}_{H_{o}}-\hat{l}_{H_{o}\cup H_{1}})=7.619

where l^Ho\hat{l}_{H_{o}} and l^HoH1\hat{l}_{H_{o}\cup H_{1}} are the maximized log-likelihood values for the restricted and unrestricted models, respectively. It is known that Λ\Lambda follows asymptotically a χ2\chi^{2}-distribution with one degree of freedom under null hypothesis. At 5% level this null hypothesis of equality is rejected, as χ0.05;12=3.84\chi^{2}_{0.05;1}=3.84.

Refer to caption
Figure 1: Plot of profile log-likelihood function of α\alpha under order restriction

The plot of profile log-likelihood function, p1(α)p_{1}(\alpha), is provided in the Figure 1. It is clear from the figure that the MLE of α\alpha is near to 1.5. We take 1.5 as initial guess to implement iterative method to find the MLE of α\alpha by maximizing (5). The point and interval estimates of the model parameter based on this dataset with order restriction on the scale parameters are reported in Table 9. Table 10 gives the point and interval estimates for the model parameters obtained based on this dataset when no restriction is imposed on the scale parameters.

7 Conclusion

In this article, we have discussed analysis of adaptive Type-II progressively censored competing risks data under order restriction on the scale parameters. The order restriction comes naturally if it is known that one risk factor dominates the other. The MLEs of the model parameters are derived, and parametric bootstrap confidence intervals are obtained. Bayes estimates of the model parameters are also derived, and construction of symmetric and highest posterior density credible intervals are discussed. Through an extensive Monte Carlo simulation study, the performance of the proposed methods are assessed. We also compare the performances of different estimators of different parameters under order restriction with those in unrestricted situation.

Through the simulation study, we observe that the Bayesian methods perform better than the classical methods at least for small samples under order restriction on the scale parameters. It is also noticed that the performances of estimators of scale parameter corresponding to lifetime of the non-dominating risk factor improve significantly when order restriction is used. The performances of the estimators of scale parameter corresponding to lifetime of the dominating risk factor are also improved. The performances of the estimators of the common shape parameter improve significantly under the order restriction for FSP, while for Type-II censoring or for OSP, the performances seem to be equivalent.

If we assume that the latent failure times have We(α1,λ1)We(\alpha_{1},\,\lambda_{1}) and We(α2,λ2)We\left(\alpha_{2},\,\lambda_{2}\right) distributions, respectively, under risk factors 1 and 2, it is quite difficult to find a necessary and sufficient condition such that the mean lifetime under risk factor 1 is less than that under risk factor 2. However, one may consider a sufficient condition on the parameters such that ordering on mean lifetimes holds true. One such sufficient condition can described as follows. Let us reparameterize as θi=λi1αi\theta_{i}=\lambda_{i}^{\frac{1}{\alpha_{i}}} for i=1, 2i=1,\,2. Then, α1>α2\alpha_{1}>\alpha_{2} and θ1>θ2\theta_{1}>\theta_{2} is a set of sufficient conditions. Under this conditions, the analysis can be performed in a similar way as described in Section 3.2. More work is needed along this direction.

Table 1: Performance of MLEs, Bayes estimates, confidence intervals, and credible intervals for (α,λ1,β)(\alpha,\lambda_{1},\beta) = (1.5, 1.2, 1/1.2) under order restriction.
Likelihood Based Bayesian
𝑹\boldsymbol{R} TT Par Bias MSE CPB ALB CPP ALP Bias MSE CPS ALS CPH ALH
(0,…,0,10) 0.25 α\alpha 0.07 0.055 0.956 0.91 0.920 0.90 0.05 0.052 0.944 0.83 0.947 0.82
λ1\lambda_{1} 0.12 0.128 0.986 1.53 0.884 1.48 0.17 0.131 0.950 1.15 0.962 1.12
λ2\lambda_{2} 0.04 0.081 0.934 1.13 0.971 1.12 -0.01 0.060 0.953 0.91 0.942 0.88
β\beta -0.03 0.034 0.896 0.71 0.939 0.63 -0.09 0.018 0.985 0.52 0.968 0.49
0.75 α\alpha 0.06 0.051 0.955 0.90 0.921 0.89 0.06 0.051 0.950 0.83 0.950 0.82
λ1\lambda_{1} 0.11 0.114 0.995 1.51 0.882 1.46 0.17 0.134 0.944 1.16 0.960 1.12
λ2\lambda_{2} 0.05 0.083 0.936 1.16 0.960 1.14 -0.01 0.058 0.946 0.91 0.939 0.88
β\beta -0.02 0.035 0.876 0.71 0.922 0.62 -0.09 0.018 0.982 0.52 0.967 0.49
(10,0,…,0) 0.25 α\alpha 0.12 0.362 0.983 2.72 0.915 1.27 0.04 0.041 0.937 0.73 0.937 0.72
λ1\lambda_{1} 0.08 0.093 0.982 1.46 0.915 1.27 0.13 0.089 0.942 0.98 0.951 0.95
λ2\lambda_{2} -0.00 0.062 0.944 1.05 0.957 1.01 -0.04 0.043 0.928 0.78 0.918 0.76
β\beta -0.03 0.032 0.910 0.71 0.946 0.62 -0.09 0.018 0.982 0.52 0.966 0.49
0.75 α\alpha 0.12 0.394 0.992 2.80 0.908 1.31 0.04 0.038 0.948 0.73 0.943 0.72
λ1\lambda_{1} 0.06 0.093 0.979 1.35 0.911 1.27 0.13 0.088 0.942 0.99 0.948 0.95
λ2\lambda_{2} 0.00 0.057 0.943 1.04 0.961 1.01 -0.04 0.042 0.935 0.78 0.924 0.76
β\beta -0.02 0.033 0.908 0.71 0.944 0.62 -0.09 0.019 0.982 0.52 0.967 0.49
(0,…,10,…,0) 0.25 α\alpha 0.05 0.051 0.976 0.91 0.931 0.89 0.06 0.053 0.944 0.83 0.946 0.82
λ1\lambda_{1} 0.12 0.113 0.991 1.52 0.894 1.46 0.17 0.125 0.944 1.15 0.963 1.12
λ2\lambda_{2} 0.03 0.071 0.947 1.14 0.974 1.12 -0.01 0.055 0.954 0.91 0.948 0.88
β\beta -0.02 0.033 0.899 0.71 0.945 0.62 -0.09 0.019 0.982 0.52 0.965 0.49
0.75 α\alpha 0.09 0.127 0.980 1.41 0.891 1.01 0.05 0.040 0.949 0.73 0.948 0.72
λ1\lambda_{1} 0.10 0.103 0.987 1.44 0.890 1.37 0.15 0.101 0.949 1.04 0.959 1.01
λ2\lambda_{2} 0.02 0.067 0.928 1.08 0.957 1.05 -0.03 0.046 0.948 0.82 0.939 0.80
β\beta -0.03 0.033 0.908 0.71 0.943 0.62 -0.09 0.019 0.980 0.52 0.967 0.49
Table 2: Performance of MLEs, Bayes estimates, confidence intervals, and credible intervals for (α,λ1,β)(\alpha,\lambda_{1},\beta) = (0.5, 1.2, 1/1.2) under order restriction.
Likelihood Based Bayesian
𝑹\boldsymbol{R} TT Par Bias MSE CPB ALB CPP ALP Bias MSE CPS ALS CPH ALH
(0,…,0,10) 0.25 α\alpha 0.02 0.006 0.966 0.30 0.916 0.30 0.02 0.006 0.947 0.28 0.947 0.27
λ1\lambda_{1} 0.12 0.117 0.989 1.53 0.879 1.48 0.16 0.125 0.951 1.15 0.959 1.10
λ2\lambda_{2} 0.05 0.072 0.950 1.16 0.975 1.14 -0.01 0.055 0.959 0.90 0.949 0.87
β\beta -0.02 0.032 0.904 0.71 0.950 0.62 -0.09 0.018 0.989 0.52 0.974 0.49
0.75 α\alpha 0.02 0.006 0.961 0.30 0.922 0.30 0.02 0.006 0.942 0.28 0.943 0.27
λ1\lambda_{1} 0.12 0.126 0.991 1.54 0.867 1.49 0.16 0.124 0.950 1.15 0.963 1.11
λ2\lambda_{2} 0.03 0.070 0.939 1.15 0.961 1.13 -0.01 0.055 0.952 0.90 0.943 0.87
β\beta -0.03 0.034 0.887 0.71 0.936 0.62 -0.09 0.019 0.984 0.52 0.970 0.49
(10,0,…,0) 0.25 α\alpha 0.04 0.041 0.993 0.92 0.901 0.37 0.02 0.004 0.952 0.25 0.950 0.24
λ1\lambda_{1} 0.09 0.100 0.981 1.39 0.908 1.29 0.13 0.084 0.952 0.99 0.960 0.96
λ2\lambda_{2} 0.01 0.064 0.934 1.05 0.948 1.02 -0.03 0.040 0.952 0.79 0.940 0.77
β\beta -0.03 0.033 0.893 0.71 0.934 0.62 -0.09 0.018 0.987 0.52 0.967 0.49
0.75 α\alpha 0.04 0.052 0.996 0.95 0.914 0.38 0.02 0.004 0.944 0.25 0.945 0.24
λ1\lambda_{1} 0.07 0.103 0.984 1.44 0.926 1.29 0.13 0.087 0.945 0.99 0.956 0.96
λ2\lambda_{2} 0.01 0.073 0.948 1.11 0.952 1.01 -0.03 0.042 0.951 0.79 0.937 0.77
β\beta -0.02 0.033 0.911 0.71 0.945 0.62 -0.09 0.018 0.984 0.52 0.968 0.49
(0,…,10,…,0) 0.25 α\alpha 0.03 0.012 0.986 0.46 0.887 0.36 0.01 0.004 0.946 0.24 0.946 0.24
λ1\lambda_{1} 0.10 0.103 0.990 1.46 0.893 1.38 0.15 0.101 0.950 1.04 0.957 1.01
λ2\lambda_{2} 0.04 0.071 0.941 1.11 0.947 1.08 -0.03 0.045 0.947 0.83 0.937 0.81
β\beta -0.02 0.033 0.907 0.71 0.939 0.62 -0.09 0.019 0.983 0.52 0.964 0.49
0.75 α\alpha 0.04 0.017 0.983 0.47 0.877 0.37 0.02 0.004 0.949 0.24 0.949 0.24
λ1\lambda_{1} 0.11 0.112 0.984 1.46 0.881 1.38 0.14 0.101 0.947 1.04 0.957 1.01
λ2\lambda_{2} 0.04 0.073 0.933 1.12 0.949 1.08 -0.02 0.045 0.953 0.83 0.940 0.81
β\beta -0.02 0.032 0.899 0.71 0.935 0.62 -0.09 0.018 0.988 0.52 0.971 0.49
Table 3: Performance of MLEs, Bayes estimates, confidence intervals, and credible intervals for (α,λ1,β)(\alpha,\lambda_{1},\beta) = (1.5, 1.4, 1/1.4) under order restriction.
Likelihood Based Bayesian
𝑹\boldsymbol{R} TT Par Bias MSE CPB ALB CPP ALP Bias MSE CPS ALS CPH ALH
(0,…,0,10) 0.25 α\alpha 0.07 0.057 0.958 0.90 0.918 0.89 0.06 0.051 0.946 0.83 0.945 0.82
λ1\lambda_{1} 0.11 0.167 0.976 1.77 0.917 1.71 0.15 0.156 0.957 1.36 0.962 1.31
λ2\lambda_{2} 0.06 0.099 0.945 1.27 0.967 1.25 0.03 0.069 0.964 1.01 0.957 0.99
β\beta 0.00 0.036 0.929 0.71 0.964 0.63 -0.02 0.014 0.988 0.56 0.971 0.53
0.75 α\alpha 0.06 0.052 0.964 0.90 0.919 0.89 0.06 0.052 0.946 0.83 0.946 0.82
λ1\lambda_{1} 0.13 0.182 0.985 1.81 0.897 1.75 0.16 0.175 0.949 1.38 0.959 1.33
λ2\lambda_{2} 0.05 0.092 0.944 1.27 0.969 1.24 0.04 0.076 0.959 1.02 0.955 1.00
β\beta 0.01 0.038 0.925 0.70 0.962 0.63 -0.02 0.014 0.988 0.56 0.972 0.53
(10,0,…,0) 0.25 α\alpha 0.14 0.504 0.980 2.72 0.913 1.12 0.05 0.039 0.946 0.73 0.944 0.72
λ1\lambda_{1} 0.07 0.136 0.971 1.58 0.924 1.47 0.11 0.105 0.956 1.16 0.956 1.12
λ2\lambda_{2} 0.03 0.082 0.939 1.15 0.955 1.11 0.01 0.052 0.955 0.88 0.948 0.86
β\beta 0.01 0.038 0.920 0.70 0.962 0.63 -0.02 0.014 0.987 0.56 0.974 0.53
0.75 α\alpha 0.14 0.484 0.993 2.83 0.905 1.12 0.05 0.040 0.950 0.73 0.949 0.72
λ1\lambda_{1} 0.08 0.148 0.979 1.63 0.916 1.49 0.11 0.107 0.948 1.16 0.952 1.12
λ2\lambda_{2} 0.03 0.079 0.948 1.15 0.957 1.11 0.01 0.052 0.952 0.88 0.946 0.86
β\beta -0.00 0.037 0.924 0.70 0.967 0.63 -0.02 0.014 0.988 0.56 0.974 0.53
(0,…,10,…,0) 0.25 α\alpha 0.06 0.049 0.975 0.93 0.923 0.90 0.06 0.051 0.947 0.83 0.946 0.82
λ1\lambda_{1} 0.11 0.163 0.978 1.81 0.913 1.74 0.14 0.166 0.954 1.35 0.962 1.31
λ2\lambda_{2} 0.07 0.109 0.956 1.30 0.964 1.27 0.04 0.074 0.961 1.01 0.953 0.99
β\beta 0.01 0.037 0.923 0.71 0.960 0.63 -0.02 0.014 0.990 0.56 0.979 0.53
0.75 α\alpha 0.09 0.109 0.989 1.37 0.904 1.09 0.05 0.040 0.946 0.73 0.946 0.72
λ1\lambda_{1} 0.10 0.144 0.980 1.68 0.923 1.59 0.12 0.131 0.952 1.23 0.957 1.19
λ2\lambda_{2} 0.06 0.098 0.952 1.25 0.958 1.20 0.02 0.062 0.956 0.93 0.947 0.90
β\beta 0.00 0.038 0.928 0.70 0.960 0.63 -0.02 0.015 0.985 0.56 0.971 0.53
Table 4: Performance of MLEs, Bayes estimates, confidence intervals, and credible intervals for (α,λ1,β)(\alpha,\lambda_{1},\beta) = (0.5, 1.4, 1/1.4) under order restriction.
Likelihood Based Bayesian
𝑹\boldsymbol{R} TT Par Bias MSE CPB ALB CPP ALP Bias MSE CPS ALS CPH ALH
(0,…,0,10) 0.25 α\alpha 0.02 0.006 0.968 0.30 0.920 0.30 0.02 0.006 0.947 0.28 0.947 0.27
λ1\lambda_{1} 0.11 0.149 0.981 1.78 0.922 1.71 0.15 0.166 0.954 1.37 0.962 1.31
λ2\lambda_{2} 0.06 0.086 0.956 1.27 0.965 1.25 0.04 0.072 0.963 1.02 0.961 0.99
β\beta 0.01 0.038 0.919 0.70 0.956 0.63 -0.02 0.014 0.989 0.56 0.977 0.53
0.75 α\alpha 0.02 0.006 0.952 0.30 0.921 0.30 0.02 0.006 0.947 0.28 0.947 0.27
λ1\lambda_{1} 0.11 0.163 0.980 1.78 0.902 1.71 0.15 0.160 0.956 1.37 0.959 1.31
λ2\lambda_{2} 0.06 0.102 0.949 1.27 0.956 1.25 0.04 0.072 0.960 1.02 0.956 0.99
β\beta 0.01 0.038 0.922 0.70 0.959 0.63 -0.02 0.014 0.989 0.56 0.975 0.53
(10,0,…,0) 0.25 α\alpha 0.05 0.054 0.989 0.93 0.904 0.38 0.01 0.004 0.948 0.24 0.948 0.24
λ1\lambda_{1} 0.07 0.139 0.977 1.74 0.919 1.47 0.11 0.099 0.961 1.16 0.965 1.12
λ2\lambda_{2} 0.03 0.084 0.938 1.26 0.947 1.11 0.01 0.048 0.970 0.89 0.962 0.87
β\beta 0.01 0.038 0.919 0.70 0.954 0.63 -0.02 0.014 0.990 0.56 0.975 0.53
0.75 α\alpha 0.05 0.044 0.995 0.96 0.892 0.37 0.02 0.004 0.952 0.25 0.953 0.24
λ1\lambda_{1} 0.07 0.134 0.973 1.61 0.922 1.48 0.11 0.108 0.956 1.16 0.956 1.13
λ2\lambda_{2} 0.04 0.078 0.953 1.17 0.965 1.12 0.01 0.051 0.961 0.89 0.953 0.87
β\beta 0.01 0.036 0.930 0.71 0.969 0.63 -0.02 0.014 0.991 0.56 0.977 0.53
(0,…,10,…,0) 0.25 α\alpha 0.03 0.011 0.987 0.46 0.906 0.36 0.02 0.004 0.946 0.24 0.946 0.24
λ1\lambda_{1} 0.10 0.142 0.974 1.72 0.909 1.61 0.12 0.128 0.952 1.22 0.954 1.18
λ2\lambda_{2} 0.04 0.080 0.949 1.23 0.965 1.18 0.02 0.059 0.956 0.93 0.952 0.90
β\beta 0.00 0.037 0.917 0.70 0.957 0.63 -0.02 0.014 0.989 0.55 0.975 0.53
0.75 α\alpha 0.03 0.012 0.989 0.46 0.897 0.36 0.02 0.004 0.954 0.24 0.951 0.24
λ1\lambda_{1} 0.11 0.142 0.978 1.71 0.897 1.60 0.12 0.123 0.953 1.22 0.958 1.18
λ2\lambda_{2} 0.05 0.081 0.944 1.23 0.958 1.18 0.02 0.058 0.959 0.93 0.955 0.90
β\beta 0.00 0.037 0.921 0.70 0.952 0.63 -0.02 0.014 0.988 0.56 0.976 0.53
Table 5: Performance of MLEs, Bayes estimates, confidence intervals, and credible intervals for (α,λ1,λ2)(\alpha,\lambda_{1},\lambda_{2}) = (1.5, 1.2, 1) under unrestricted case.
Likelihood Based Bayesian
𝑹\boldsymbol{R} TT Par Bias MSE CPB ALB CPP ALP Bias MSE CPS ALS CPH ALH
(0,…,0,10) 0.25 α\alpha 0.06 0.051 0.964 0.90 0.914 0.89 0.06 0.054 0.943 0.83 0.946 0.83
λ1\lambda_{1} 0.08 0.119 0.965 1.47 0.940 1.43 0.09 0.131 0.944 1.23 0.948 1.19
λ2\lambda_{2} 0.06 0.094 0.965 1.31 0.936 1.28 0.08 0.106 0.938 1.10 0.938 1.07
0.75 α\alpha 0.06 0.049 0.966 0.90 0.932 0.89 0.05 0.049 0.950 0.83 0.948 0.82
λ1\lambda_{1} 0.09 0.115 0.963 1.50 0.934 1.48 0.08 0.118 0.943 1.22 0.946 1.18
λ2\lambda_{2} 0.08 0.094 0.964 1.33 0.922 1.30 0.06 0.093 0.946 1.09 0.944 1.05
(10,0,…,0) 0.25 α\alpha 0.10 0.339 0.990 2.76 0.919 1.11 0.05 0.040 0.947 0.73 0.944 0.72
λ1\lambda_{1} 0.06 0.112 0.961 1.30 0.937 1.26 0.05 0.092 0.941 1.08 0.937 1.05
λ2\lambda_{2} 0.04 0.085 0.954 1.16 0.934 1.13 0.04 0.076 0.940 0.98 0.932 0.95
0.75 α\alpha 0.12 0.292 0.996 2.84 0.898 1.16 0.04 0.040 0.941 0.73 0.939 0.72
λ1\lambda_{1} 0.06 0.095 0.966 1.33 0.945 1.27 0.04 0.089 0.945 1.07 0.938 1.04
λ2\lambda_{2} 0.05 0.083 0.959 1.18 0.937 1.14 0.05 0.074 0.940 0.98 0.937 0.95
(0,…,10,…,0) 0.25 α\alpha 0.06 0.057 0.963 0.92 0.909 0.90 0.06 0.053 0.947 0.83 0.948 0.83
λ1\lambda_{1} 0.11 0.134 0.976 1.49 0.928 1.48 0.09 0.126 0.949 1.23 0.952 1.20
λ2\lambda_{2} 0.07 0.107 0.958 1.31 0.916 1.28 0.07 0.099 0.943 1.10 0.940 1.07
0.75 α\alpha 0.08 0.121 0.988 1.38 0.885 1.05 0.05 0.040 0.949 0.73 0.947 0.72
λ1\lambda_{1} 0.06 0.106 0.959 1.42 0.940 1.37 0.06 0.099 0.944 1.12 0.942 1.09
λ2\lambda_{2} 0.08 0.094 0.968 1.25 0.932 1.21 0.05 0.082 0.943 1.01 0.941 0.98
Table 6: Performance of MLEs, Bayes estimates, confidence intervals, and credible intervals for (α,λ1,λ2)(\alpha,\lambda_{1},\lambda_{2}) = (0.5, 1.2, 1) under unrestricted case.
Likelihood Based Bayesian
𝑹\boldsymbol{R} TT Par Bias MSE CPB ALB CPP ALP Bias MSE CPS ALS CPH ALH
(0,…,0,10) 0.25 α\alpha 0.02 0.006 0.965 0.30 0.920 0.29 0.02 0.006 0.941 0.28 0.940 0.28
λ1\lambda_{1} 0.07 0.114 0.965 1.45 0.931 1.42 0.09 0.122 0.946 1.23 0.949 1.19
λ2\lambda_{2} 0.07 0.092 0.966 1.30 0.931 1.27 0.07 0.100 0.945 1.10 0.940 1.06
0.75 α\alpha 0.02 0.006 0.956 0.30 0.923 0.30 0.02 0.006 0.949 0.28 0.951 0.27
λ1\lambda_{1} 0.09 0.118 0.965 1.49 0.937 1.46 0.08 0.117 0.952 1.22 0.948 1.18
λ2\lambda_{2} 0.07 0.090 0.964 1.32 0.937 1.29 0.07 0.091 0.948 1.09 0.945 1.05
(10,0,…,0) 0.25 α\alpha 0.05 0.083 0.986 0.93 0.906 0.38 0.01 0.004 0.949 0.24 0.948 0.24
λ1\lambda_{1} 0.05 0.115 0.953 1.34 0.940 1.29 0.05 0.091 0.946 1.08 0.939 1.06
λ2\lambda_{2} 0.04 0.092 0.954 1.19 0.939 1.16 0.04 0.072 0.943 0.98 0.942 0.96
0.75 α\alpha 0.06 0.107 0.990 0.95 0.899 0.38 0.01 0.004 0.948 0.25 0.950 0.24
λ1\lambda_{1} 0.05 0.118 0.960 1.33 0.929 1.28 0.04 0.085 0.946 1.07 0.941 1.05
λ2\lambda_{2} 0.03 0.093 0.942 1.17 0.929 1.14 0.05 0.070 0.946 0.98 0.943 0.96
(0,…,10,…,0) 0.25 α\alpha 0.03 0.013 0.982 0.46 0.906 0.36 0.01 0.004 0.947 0.24 0.950 0.24
λ1\lambda_{1} 0.06 0.108 0.953 1.40 0.929 1.35 0.06 0.099 0.946 1.12 0.943 1.09
λ2\lambda_{2} 0.05 0.086 0.954 1.24 0.934 1.20 0.05 0.076 0.945 1.01 0.939 0.98
0.75 α\alpha 0.03 0.014 0.983 0.46 0.910 0.36 0.02 0.004 0.948 0.24 0.949 0.24
λ1\lambda_{1} 0.05 0.097 0.957 1.41 0.938 1.36 0.06 0.100 0.949 1.13 0.945 1.10
λ2\lambda_{2} 0.05 0.081 0.953 1.26 0.931 1.23 0.06 0.083 0.943 1.02 0.938 0.99
Table 7: Performance of MLEs, Bayes estimates, confidence intervals, and credible intervals for (α,λ1,λ2)(\alpha,\lambda_{1},\lambda_{2}) = (1.5, 1.4, 1) under unrestricted case.
Likelihood Based Bayesian
𝑹\boldsymbol{R} TT Par Bias MSE CPB ALB CPP ALP Bias MSE CPS ALS CPH ALH
(0,…,0,10) 0.25 α\alpha 0.06 0.053 0.968 0.90 0.919 0.89 0.055 0.052 0.947 0.83 0.950 0.82
λ1\lambda_{1} 0.11 0.186 0.965 1.78 0.913 1.74 0.116 0.180 0.944 1.45 0.945 1.41
λ2\lambda_{2} 0.09 0.115 0.969 1.43 0.935 1.40 0.082 0.111 0.945 1.17 0.947 1.13
0.75 α\alpha 0.05 0.047 0.967 0.90 0.930 0.89 0.055 0.052 0.948 0.83 0.946 0.82
λ1\lambda_{1} 0.08 0.148 0.964 1.73 0.934 1.68 0.111 0.183 0.947 1.44 0.949 1.40
λ2\lambda_{2} 0.07 0.101 0.960 1.38 0.933 1.35 0.081 0.115 0.948 1.17 0.948 1.13
(10,0,…,0) 0.25 α\alpha 0.13 0.455 0.984 2.73 0.916 1.10 0.040 0.039 0.945 0.73 0.944 0.72
λ1\lambda_{1} 0.06 0.138 0.967 1.59 0.933 1.50 0.069 0.123 0.944 1.25 0.945 1.21
λ2\lambda_{2} 0.04 0.095 0.949 1.27 0.937 1.22 0.044 0.084 0.936 1.03 0.932 1.00
0.75 α\alpha 0.12 0.408 0.996 2.83 0.899 1.11 0.043 0.040 0.942 0.73 0.943 0.72
λ1\lambda_{1} 0.07 0.137 0.969 1.59 0.940 1.50 0.064 0.120 0.941 1.24 0.941 1.21
λ2\lambda_{2} 0.04 0.083 0.962 1.26 0.951 1.21 0.047 0.083 0.940 1.03 0.935 1.00
(0,…,10,…,0) 0.25 α\alpha 0.06 0.049 0.982 0.92 0.929 0.89 0.060 0.054 0.942 0.83 0.944 0.83
λ1\lambda_{1} 0.09 0.168 0.971 1.75 0.936 1.70 0.114 0.181 0.946 1.45 0.947 1.40
λ2\lambda_{2} 0.07 0.104 0.959 1.40 0.938 1.36 0.086 0.120 0.941 1.17 0.941 1.13
0.75 α\alpha 0.10 0.118 0.985 1.40 0.886 1.11 0.047 0.039 0.946 0.73 0.948 0.72
λ1\lambda_{1} 0.10 0.146 0.969 1.71 0.929 1.63 0.079 0.138 0.948 1.30 0.946 1.27
λ2\lambda_{2} 0.07 0.088 0.968 1.36 0.941 1.30 0.059 0.089 0.946 1.08 0.944 1.04
Table 8: Performance of MLEs, Bayes estimates, confidence intervals, and credible intervals for (α,λ1,λ2)(\alpha,\lambda_{1},\lambda_{2}) = (0.5, 1.4, 1) under unrestricted case.
Likelihood Based Bayesian
𝑹\boldsymbol{R} TT Par Bias MSE CPB ALB CPP ALP Bias MSE CPS ALS CPH ALH
(0,…,0,10) 0.25 α\alpha 0.02 0.006 0.966 0.30 0.927 0.30 0.021 0.006 0.949 0.28 0.952 0.28
λ1\lambda_{1} 0.11 0.175 0.968 1.78 0.918 1.73 0.117 0.175 0.949 1.45 0.949 1.40
λ2\lambda_{2} 0.07 0.109 0.954 1.41 0.942 1.38 0.078 0.109 0.949 1.17 0.944 1.12
0.75 α\alpha 0.02 0.006 0.962 0.30 0.909 0.30 0.020 0.006 0.949 0.28 0.949 0.28
λ1\lambda_{1} 0.11 0.159 0.964 1.78 0.937 1.73 0.114 0.178 0.941 1.44 0.944 1.40
λ2\lambda_{2} 0.08 0.115 0.957 1.42 0.933 1.38 0.077 0.108 0.948 1.17 0.944 1.12
(10,0,…,0) 0.25 α\alpha 0.04 0.028 0.995 0.92 0.904 0.37 0.017 0.005 0.942 0.25 0.945 0.24
λ1\lambda_{1} 0.06 0.131 0.964 1.60 0.938 1.50 0.068 0.122 0.949 1.25 0.945 1.22
λ2\lambda_{2} 0.05 0.099 0.953 1.28 0.926 1.23 0.046 0.080 0.947 1.04 0.941 1.01
0.75 α\alpha 0.05 0.055 0.993 0.95 0.903 0.38 0.016 0.004 0.947 0.25 0.948 0.24
λ1\lambda_{1} 0.06 0.140 0.955 1.56 0.936 1.49 0.061 0.120 0.941 1.25 0.936 1.22
λ2\lambda_{2} 0.03 0.091 0.944 1.25 0.936 1.21 0.048 0.080 0.945 1.04 0.939 1.01
(0,…,10,…,0) 0.25 α\alpha 0.03 0.012 0.986 0.46 0.890 0.37 0.016 0.004 0.946 0.24 0.948 0.24
λ1\lambda_{1} 0.10 0.160 0.965 1.72 0.928 1.64 0.071 0.133 0.947 1.30 0.943 1.26
λ2\lambda_{2} 0.07 0.092 0.969 1.37 0.939 1.31 0.055 0.086 0.947 1.07 0.943 1.04
0.75 α\alpha 0.03 0.018 0.984 0.47 0.906 0.37 0.015 0.005 0.937 0.24 0.938 0.24
λ1\lambda_{1} 0.08 0.143 0.963 1.69 0.929 1.60 0.084 0.146 0.939 1.31 0.941 1.28
λ2\lambda_{2} 0.06 0.090 0.956 1.34 0.935 1.28 0.056 0.090 0.948 1.08 0.943 1.04
Table 9: MLEs and 95% confidence intervals constructed using parametric bootstrap (BB), percentile bootstrap (PB), and Bayes estimates and 95% symmetric (SCRI) and HPD credible interval (HPD CRI) for model parameters based on the simulated dataset when there is order restriction on parameters.
Likelihood Bayesian
Parameter MLE BB PB BE SCRI HPD CRI
α\alpha 1.49 (1.22, 1.72) (1.30, 1.81) 1.49 (1.26, 1.75) (1.27, 1.76)
λ1\lambda_{1} 1.62 (1.11, 2.04) (1.23, 2.16) 1.58 (1.19, 2.06) (1.19, 2.04)
λ2\lambda_{2} 0.89 (0.53, 1.20) (0.62, 1.27) 0.91 (0.64, 1.26) (0.61, 1.22)
Table 10: MLEs and 95% confidence intervals constructed using parametric bootstrap (BB), percentile bootstrap (PB), and Bayes estimates and 95% symmetric (SCRI) and HPD credible interval (HPD CRI) for model parameters based on the simulated dataset when there is no order restriction on parameters.
Likelihood Bayesian
Parameter MLE BB PB BE SCRI HPD CRI
α\alpha 1.49 (1.23, 1.73) (1.286, 1.770) 1.49 (1.26, 1.74) (1.25, 1.72)
λ1\lambda_{1} 1.62 (1.13, 2.05) (1.213, 2.125) 1.61 (1.20, 2.09) (1.18, 2.05)
λ2\lambda_{2} 0.89 (0.52, 1.20) (0.605, 1.283) 0.89 (0.60, 1.24) (0.60, 1.23)

Acknowledgements

The research of Ayon Ganguly is supported by the Mathematical Research Impact Centric Support (File no. MTR/2017/000700) from the Science and Engineering Research Board, Department of Science and Technology, Government of India.
Debanjan Mitra thanks Indian Institute of Management Udaipur for financial support to carry out this research.

References

  • [1] Balakrishnan, N., Beutner, E., and Kateri, M. Order restricted inference for exponential step-stress models. IEEE Transactions on Reliability 58 (2009), 132–142.
  • [2] Balakrishnan, N., and Cramer, E. The art of Progressive censoring: applications to reliability and quality. Birkhäuser, Boston, 2014.
  • [3] Berger, J. O., and Sun, D. Bayesian analysis for the Poly-Weibull distribution. Journal of American Statistical Association 88 (1993), 1412–1418.
  • [4] Burkschat, M. On optimality of extremal schemes in progressive type II censoring. Journal of Statistical Planning and Inference (2008), 1647–1659.
  • [5] Cox, D. R. The analysis of exponentially distributed lifetimes with two types of failures. Journal of the Royal Statistical Society, Series B 21 (1959), 411–421.
  • [6] David, H. A., and Nagaraja, H. N. Order statistics, 3 ed. John Wiley and Sons, New York, 2003.
  • [7] Kundu, D. Parameter estimation of the partially complete time and type of failure data. Biometrical Journal 46 (2004), 165–179.
  • [8] Kundu, D. Bayesian inference and life testing plan for Weibull distribution in presence of progressive censoring. Technometrics 50 (2008), 144–154.
  • [9] Kundu, D., and Gupta, R. Estimation of P(Y<X)P(Y<X) for Weibull distribution. IEEE Transactions on Reliability 55 (2006), 270–280.
  • [10] Mahto, A., Lodhi, C., Tripathi, Y., and Wang, L. Inference for partially observed competing risks model for Kumaraswamy distribution under generalized progressive hybrid censoring. Journal of Applied Statistics (2021).
  • [11] Ng, H. K. T., Chan, P. S., and Balakrishnan, N. Optimum progressive censoring plan for the Weibull distribution. Technometrics 46 (2004), 470–481.
  • [12] Ng, H. K. T., Kundu, D., and Chan, P. S. Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme. Naval Research Logistics 56 (2009), 687–698.
  • [13] Pal, A., Mitra, S., and Kundu, D. Bayesian order restricted inference of a weibull multi-step step-stress model. Journal of Statistical Theory and Practice 15 (2021).
  • [14] Pal, A., Mitra, S., and Kundu, D. Order restricted classical inference of a weibull multiple step-stress model. Journal of Applied Statistics 48 (2021), 623 –645.
  • [15] Pareek, B., Kundu, D., and Kumar, S. On progressively censored competing risks data for Weibull distributions. Computational Statistics and Data Analysis 53 (2009), 4083–4094.
  • [16] Pascual, F. Accelerated life test planning with independent Weibull competing risks with known shape parameter. IEEE Transactions on Reliability 56 (2007), 85–93.
  • [17] Pascual, F. Accelerated life test planning with independent Weibull competing risks. IEEE Transactions on Reliability 57 (2008), 435–444.
  • [18] Prentice, R. L., Kalbfleish, J., Peterson, J. A., Flurnoy, N., Farewell, V. T., and Breslow, N. The analysis of failure time points in presence of competing risks. Biometrics 34 (1978), 541 – 544.
  • [19] Ren, J., and Gui, W. Statistical analysis of adaptive type-II progressively censored competing risks for Weibull moels. Applied Mathematical Modelling 98 (2021), 323–342.
  • [20] Samanta, D., Ganguly, A., Kundu, D., and Mitra, S. Order restricted Bayesian inference for exponential simple step-stress model. Communication in Statistics - Simulation and Computation 46 (2017), 1113–1135.