This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Over-Approximation of Fluid Models

Max Tschaikowski The author is with the Technische Universität Wien, Austria (e-mail: max.tschaikowski@tuwien.ac.at).
Abstract

Fluid models are a popular formalism in the quantitative modeling of biochemical systems and analytical performance models. The main idea is to approximate a large-scale Markov chain by a compact set of ordinary differential equations (ODEs). Even though it is often crucial for a fluid model under study to satisfy some given properties, a formal verification is usually challenging. This is because parameters are often not known precisely due to finite-precision measurements and stochastic noise. In this paper, we present a novel technique that allows one to efficiently compute formal bounds on the reachable set of time-varying nonlinear ODE systems that are subject to uncertainty. To this end, we a) relate the reachable set of a nonlinear fluid model to a family of inhomogeneous continuous time Markov decision processes and b) provide optimal and suboptimal solutions for the family by relying on optimal control theory. The proposed technique is efficient and can be expected to provide tight bounds. We demonstrate its potential by comparing it with a state-of-the-art over-approximation approach.

Index Terms:
Nonlinear systems, Uncertain systems, Markov processes, Optimal control

I Introduction

In the last decades, fluid (or mean-field) models underlying biochemical and computer systems have gained a lot of momentum. Possible examples are chemical reaction networks [1], optical switches [2] and layered queueing networks [3]. The main idea is to approximate the original stochastic model which is usually given in terms of a large-scale continuous time Markov chain (CTMC) by means of a compact system of ordinary differential equations (ODEs). When the number of agents (molecules, jobs, nodes etc.) present in the system tends to infinity, the simulation runs of a suitably scaled version of the CTMC can be shown to converge in probability to the deterministic solution of the underlying fluid model [4, 5]. The law of mass action from chemistry [6], for instance, has been shown to be the fluid model of a CTMC semantics stated on the molecule level [4].

Unfortunately, a precise parameterization of a fluid model is often not possible due to finite-precision measurements or stochastic noise [7, 8]. Hence, in order to verify that a nonlinear fluid model satisfies some given property in the presence of parameter functions that are subject to uncertainty, it becomes necessary to estimate the reachable set. This is because a finite set of possible ODE solutions (i.e., a proper subset of the reachable set) can only be used establish the presence of property violations but does not suffice to exclude their existence in general [9, 10]. Another reason is that closed-form expressions for reachable sets of nonlinear ODE systems are not known in general [11].

The estimation of reachable sets of continuous ODE systems is of crucial importance in the field of control engineering and has received a lot of attention over the decades. Linear ODE systems with uncertainties (alternatively, disturbances) are well-understood because in this case the reachable set can be shown to be convex. The situation where also matrix coefficients are uncertain [12], however, is more challenging than the standard control theoretical setting of additive uncertainties [13, 14, 15, 16]. Bounding the reachable set of nonlinear ODE systems is more difficult and there is a number of different techniques which complement each other. The abstraction approach approximates a nonlinear ODE system locally by an affine mapping [17, 18, 19] or a multivariate polynomial [20, 21]. The error can then be estimated using Taylor approximation and interval arithmetic [19, 22]. While abstraction techniques can cover many practical models, in general it is computationally prohibitive to obtain tight over-approximations for larger nonlinear systems [19, 23]. Lyapunov-like functions [9, 24, 25, 26, 27] known from the stability theory of ODE systems provide an alternative to abstraction techniques. Despite the fact that they often lead to tight bounds, their automatic computation is only possible in special cases [26]. In [28, 29, 30] it has been observed that over-approximation can be encoded as an optimal control problem. While theoretically appealing, the approach relies on the Hamilton-Jacobi equation, a partial differential equation which can only be solved for dynamical systems with few variables [31]. In a similar vein of research, [7, 32] used the necessary optimality conditions of Pontryagin’s principle [31] to derive heuristic estimations on reachable sets of nonlinear ODE systems.

Contributions. In the present paper, we introduce an over-approximation technique for the reachable sets of fluid models. The main idea is to exploit the fact that nonlinear fluid models can be related to the linear Kolmogorov equations of CTMCs. More specifically, the technical novelty of the present work is to prove that i)i) a nonlinear fluid model can be over-approximated by solving a family inhomogeneous continuous time Markov decision processes (ICTMDPs) [33] with continuous action spaces and; ii)ii) to show that the family of ICTMDPs can be solved efficiently by modifying the strict version of Pontryagin’s principle [34] which is sufficient for optimality. This allows one to estimate the reachable set of an, in general, nonlinear ODE system by studying the reachable sets of a family of linear ODE systems.

For nonlinear fluid models, the proposed approach a) is efficient; b) induces bounds that can be expected to be tight and; c) allows for an algorithmic treatment in the case where the ODE system is given by multivariate polynomials, thus covering in particular biochemical models. A comparison with the state-of-the-art tool for reachability analysis CORA [35] in the context of the well-known SIRS model from epidemiology [7] confirms the potential of the proposed technique.

Related work on CTMDPs. With efficient solution techniques dating back to the sixties, CTMDPs [33] belong to one of the best studied classes of optimization problems. While there exists a large body of literature on homogeneous CTMDPs, however, much less is known about the inhomogeneous case. Moreover, most works on CTMDPs interpret controls as policies, meaning that only a subclass of uncertainties is admissible [36, Section 8.3]. Additionally, the cost function of interest is often either the discounted or the average cost [33] which cannot be used for the over-approximation of Kolmogorov equations. To the best of our knowledge, the only work which has studied the case of inhomogeneous CTMDPs featuring continuous action spaces and time dependent policies with respect to a cost which can be used for over-approximation is [37]. In this work, three concrete queueing systems were analyzed using Pontryagin’s principle [31]. For each of the three models, the underlying necessary conditions were shown to be already sufficient for optimality.

Paper outline. Section II provides a high-level discussion of our approach using a concrete example. Section III continues by introducing agent networks, a rich class of ODE systems that can be covered by our technique. In Section IV we first relate the reachable set of the original nonlinear ODE system underlying an agent network to the solution of a family of ICTMDPs. Afterwards, we present in Sections IV-AIV-D an efficient solution approach to ICTMDPs. Section V compares a prototype implementation of the approach with CORA, while Section VI discusses how the approach complements existing approximation techniques. Section VII concludes the paper.

Notation. For nonempty sets AA and \mathcal{I}, let AA^{\mathcal{I}} denote the set of all functions from \mathcal{I} to AA. Note that elements of AA^{\mathcal{I}} can be interpreted as vectors with values in AA and coordinates in \mathcal{I}. We write xxx\leq x^{\prime} for x,xx,x^{\prime}\in\mathbb{R}^{\mathcal{I}} whenever xixix_{i}\leq x^{\prime}_{i} for all ii\in\mathcal{I}. The equality of two functions ff and gg, instead, is denoted by fgf\equiv g. By 𝒮\mathcal{S} we refer to the finite set of (agent) states; elements V𝒮V\in\mathbb{R}^{\mathcal{S}} of the reachable set of an ODE system are called concentrations instead. The derivative with respect to time of a function V[0;T]𝒮V\in[0;T]\to\mathbb{R}^{\mathcal{S}} is denoted by V˙\dot{V}. Instead, 𝟙\mathds{1} denotes the characteristic function.

II The Main Idea in a Nutshell

We first discuss the problem and the proposed solution on the example of the SIRS model from epidemiology [38] that is given by the nonlinear ODE system

V˙Sκβ\displaystyle\dot{V}^{\kappa_{\beta}}_{S} =VSκβVIκβ+VRκβ\displaystyle=-V^{\kappa_{\beta}}_{S}V^{\kappa_{\beta}}_{I}+V^{\kappa_{\beta}}_{R}
V˙Iκβ\displaystyle\dot{V}^{\kappa_{\beta}}_{I} =κβVIκβ+VSκβVIκβ\displaystyle=-\kappa_{\beta}V^{\kappa_{\beta}}_{I}+V^{\kappa_{\beta}}_{S}V^{\kappa_{\beta}}_{I}
V˙Rκβ\displaystyle\dot{V}^{\kappa_{\beta}}_{R} =VRκβ+κβVIκβ,\displaystyle=-V^{\kappa_{\beta}}_{R}+\kappa_{\beta}V^{\kappa_{\beta}}_{I},

where VSκβ,VIκβV^{\kappa_{\beta}}_{S},V^{\kappa_{\beta}}_{I} and VRκβV^{\kappa_{\beta}}_{R} refers to the concentration of susceptible, infected and recovered agents, respectively, and κβ\kappa_{\beta} denotes the positive time-varying recovery rate parameter. We are interested in the case where the parameter function κβ\kappa_{\beta} is uncertain. More specifically, we assume that κβκ^β+uβ\kappa_{\beta}\equiv\hat{\kappa}_{\beta}+u_{\beta}, where κ^β\hat{\kappa}_{\beta} is a known function resembling the nominal (or average) recovery parameter function, while uβu_{\beta} is an unknown uncertainty which satisfies |uβ()|δβ()|u_{\beta}(\cdot)|\leq\delta_{\beta}(\cdot) for some known function δβ\delta_{\beta}. With this, the above ODE system rewrites to

V˙Suβ\displaystyle\dot{V}^{u_{\beta}}_{S} =VSuβVIuβ+VRuβ\displaystyle=-V^{u_{\beta}}_{S}V^{u_{\beta}}_{I}+V^{u_{\beta}}_{R} (1)
V˙Iuβ\displaystyle\dot{V}^{u_{\beta}}_{I} =(κ^β+uβ)VIuβ+VSuβVIuβ\displaystyle=-(\hat{\kappa}_{\beta}+u_{\beta})V^{u_{\beta}}_{I}+V^{u_{\beta}}_{S}V^{u_{\beta}}_{I}
V˙Ruβ\displaystyle\dot{V}^{u_{\beta}}_{R} =VRuβ+(κ^β+uβ)VIuβ\displaystyle=-V^{u_{\beta}}_{R}+(\hat{\kappa}_{\beta}+u_{\beta})V^{u_{\beta}}_{I}

The nominal solution V0V^{0} corresponds to the case where κβκ^β\kappa_{\beta}\equiv\hat{\kappa}_{\beta}, i.e., when uβ0u_{\beta}\equiv 0. In practice, nominal parameter functions arise from finite-precision measurements, average behavior etc., while uncertainties account for the precision of measurements, conservative parameter estimations and stochastic noise.

Problem to solve. For a given time horizon T>0T>0, we seek to provide, for each 0tT0\leq t\leq T, a superset which contains the reachable set (t)={Vuβ(t)|uβ()|δβ()}\mathcal{R}(t)=\{V^{u_{\beta}}(t)\mid|u_{\beta}(\cdot)|\leq\delta_{\beta}(\cdot)\}. To this end, we bound the maximal deviation of VuβV^{u_{\beta}} from the nominal trajectory V0V^{0}, i.e., for each B{S,I,R}B\in\{S,I,R\}, we formally estimate the function

B(t)=sup{|VBuβ(t)VB0(t)||uβ()|δβ()}\displaystyle\mathcal{E}_{B}(t)=\sup\{|V_{B}^{u_{\beta}}(t)-V_{B}^{0}(t)|\ \mid\ |u_{\beta}(\cdot)|\leq\delta_{\beta}(\cdot)\} (2)

Since VBuβ(t)=VB0(t)+VBuβ(t)VB0(t)V_{B}^{u_{\beta}}(t)=V_{B}^{0}(t)+V_{B}^{u_{\beta}}(t)-V_{B}^{0}(t), we infer

VB0(t)B(t)VBuβ(t)VB0(t)+B(t)V_{B}^{0}(t)-\mathcal{E}_{B}(t)\leq V_{B}^{u_{\beta}}(t)\leq V_{B}^{0}(t)+\mathcal{E}_{B}(t)

for all 0tT0\leq t\leq T and B{S,I,R}B\in\{S,I,R\}. With this, it holds that

(t)B{S,I,R}[VB0(t)B(t);VB0(t)+B(t)],\mathcal{R}(t)\subseteq\prod_{B\in\{S,I,R\}}\big{[}V_{B}^{0}(t)-\mathcal{E}_{B}(t);V_{B}^{0}(t)+\mathcal{E}_{B}(t)\big{]},

i.e., (t)\mathcal{R}(t) can be estimated by bounding the positive function =(S(),I(),R())\mathcal{E}=(\mathcal{E}_{S}(\cdot),\mathcal{E}_{I}(\cdot),\mathcal{E}_{R}(\cdot)). In what follows, we present a technique addressing this task.

First Step: Decoupling. Since the formal estimation of nonlinear dynamical systems is difficult, we relate the solution of (1) to that of a special linear ODE system. More specifically, we relate (1) to the linear Kolmogorov equations of a suitable CTMC. To this end, we first note that (1) is induced by the law of mass action [39] and the chemical reactions

S+I\displaystyle S+I \xlongrightarrow1I+I,\displaystyle\xlongrightarrow{1}I+I, I\displaystyle I \xlongrightarrowκ^β+uβR,\displaystyle\xlongrightarrow{\hat{\kappa}_{\beta}+u_{\beta}}R, R\displaystyle R \xlongrightarrow1S\displaystyle\xlongrightarrow{1}S (3)

The first reaction of (3) states that an infected agent can infect a susceptible one, while the second reaction implies that an infected agent eventually recovers. Instead, the third reaction expresses the fact that a recovered agent eventually loses its immunity and becomes susceptible again.

Apart from inducing the ODE system (1), the chemical reactions (3) induce also a probabilistic model. Intuitively, given a large group of agents interacting according to (3), the stochastic behavior of a single agent in the group is given in terms of a CTMC with the states S,I,RS,I,R such that at time tt the transition rate

 from state S into state I is VIuβ(t);\displaystyle\quad\bullet\text{ from state $S$ into state $I$ is $V^{u_{\beta}}_{I}(t)$;} (4)
 from state I into state R is κ^β(t)+uβ(t);\displaystyle\quad\bullet\text{ from state $I$ into state $R$ is $\hat{\kappa}_{\beta}(t)+u_{\beta}(t)$;}
 from state R into state S is 1.\displaystyle\quad\bullet\text{ from state $R$ into state $S$ is $1$.}

The transition rate from state SS into state II accounts for the fact that the probability of being infected is directly proportional to the concentration of infected agents.

The transition rates provided above imply that the transient probabilities of the CTMC satisfy the Kolmogorov equations

π˙Suβ\displaystyle\dot{\pi}^{u_{\beta}}_{S} =VIuβπSuβ+πRuβ\displaystyle=-V^{u_{\beta}}_{I}\pi^{u_{\beta}}_{S}+\pi^{u_{\beta}}_{R} (5)
π˙Iuβ\displaystyle\dot{\pi}^{u_{\beta}}_{I} =(κ^β+uβ)πIuβ+VIuβπSuβ\displaystyle=-(\hat{\kappa}_{\beta}+u_{\beta})\pi^{u_{\beta}}_{I}+V^{u_{\beta}}_{I}\pi^{u_{\beta}}_{S}
π˙Ruβ\displaystyle\dot{\pi}^{u_{\beta}}_{R} =πRuβ+(κ^β+uβ)πIuβ,\displaystyle=-\pi^{u_{\beta}}_{R}+(\hat{\kappa}_{\beta}+u_{\beta})\pi^{u_{\beta}}_{I},

where πSuβ(t)\pi^{u_{\beta}}_{S}(t), πIuβ(t)\pi^{u_{\beta}}_{I}(t) and πRuβ(t)\pi^{u_{\beta}}_{R}(t) denotes the probability that the fixed agent is susceptible, infected and recovered at time tt, respectively.

We now make the pivotal observation that the solution πuβ\pi^{u_{\beta}} of (5) with the initial condition given by πuβ(0)=Vuβ(0)\pi^{u_{\beta}}(0)=V^{u_{\beta}}(0) is also a solution of (1), i.e., πuβVuβ\pi^{u_{\beta}}\equiv V^{u_{\beta}}. (To see this, replace each πAuβ\pi^{u_{\beta}}_{A} with VAuβV_{A}^{u_{\beta}} in (5).) Hence, if we are given VIuβV^{u_{\beta}}_{I}, the nonlinear ODE system (1) can be expressed in terms of the linear Kolmogorov equations (5).

Unfortunately, we cannot use (5) directly to estimate \mathcal{E} from (2) because of the term VIuβV^{u_{\beta}}_{I}. We tackle this problem by replacing VIuβV^{u_{\beta}}_{I} by VI0+uIV^{0}_{I}+u_{I}, where V0V^{0} is the nominal trajectory of (1) in the case of uβ0u_{\beta}\equiv 0 and uIu_{I} is a new uncertainty function that satisfies |uI()|εI()|u_{I}(\cdot)|\leq\varepsilon_{I}(\cdot) for some positive function εI\varepsilon_{I}. This yields the linear ODE system

π˙Suβ,uI\displaystyle\dot{\pi}^{u_{\beta},u_{I}}_{S} =(VI0+uI)πSuβ,uI+πRuβ,uI\displaystyle=-(V^{0}_{I}+u_{I})\pi^{u_{\beta},u_{I}}_{S}+\pi^{u_{\beta},u_{I}}_{R} (6)
π˙Iuβ,uI\displaystyle\dot{\pi}^{u_{\beta},u_{I}}_{I} =(κ^β+uβ)πIuβ,uI+(VI0+uI)πSuβ,uI\displaystyle=-(\hat{\kappa}_{\beta}+u_{\beta})\pi^{u_{\beta},u_{I}}_{I}+(V^{0}_{I}+u_{I})\pi^{u_{\beta},u_{I}}_{S}
π˙Ruβ,uI\displaystyle\dot{\pi}^{u_{\beta},u_{I}}_{R} =πRuβ,uI+(κ^β+uβ)πIuβ,uI\displaystyle=-\pi^{u_{\beta},u_{I}}_{R}+(\hat{\kappa}_{\beta}+u_{\beta})\pi^{u_{\beta},u_{I}}_{I}

The key observation is that for any uβu_{\beta}, the uncertainty uI:=VIuβVI0u_{I}:=V^{u_{\beta}}_{I}-V^{0}_{I} induces a solution of (6) which coincides with the solution of (5), meaning that πuβ,uIVuβ\pi^{u_{\beta},u_{I}}\equiv V^{u_{\beta}} whenever πuβ,uI(0)=Vuβ(0)\pi^{u_{\beta},u_{I}}(0)=V^{u_{\beta}}(0).

Moreover, (6) is a linear ODE system that is decoupled from (1). Thus, instead of considering the maximal deviation of VuβV^{u_{\beta}} from V0V^{0}, \mathcal{E}, the above discussion motivates to focus on the maximal deviation of πuβ,uI\pi^{u_{\beta},u_{I}} from π0,0\pi^{0,0}, i.e.,

(ΦB(ε))(t)=sup{|πBuβ,uI(t)πB0,0(t)||uβ()|δβ() and |uI()|εI()},(\Phi_{B}(\varepsilon))(t)=\sup\{|\pi_{B}^{u_{\beta},u_{I}}(t)-\pi_{B}^{0,0}(t)|\\ |u_{\beta}(\cdot)|\leq\delta_{\beta}(\cdot)\text{ and }|u_{I}(\cdot)|\leq\varepsilon_{I}(\cdot)\},

where ε=(εS(),εI(),εR())\varepsilon=(\varepsilon_{S}(\cdot),\varepsilon_{I}(\cdot),\varepsilon_{R}(\cdot)) is a positive function, B{S,I,R}B\in\{S,I,R\} and π0,0\pi^{0,0} denotes the nominal solution of (6) when uβ0u_{\beta}\equiv 0 and uI0u_{I}\equiv 0.

Intuitively, Φ\Phi takes a guess ε=(εS,εI,εR)\varepsilon=(\varepsilon_{S},\varepsilon_{I},\varepsilon_{R}) for \mathcal{E} as input and provides the new guess Φ(ε)=(ΦS(ε),ΦI(ε),ΦR(ε))\Phi(\varepsilon)=(\Phi_{S}(\varepsilon),\Phi_{I}(\varepsilon),\Phi_{R}(\varepsilon)) for \mathcal{E}. Our goal is to find an ε\varepsilon that satisfies (ΦB(ε))(t)εB(t)(\Phi_{B}(\varepsilon))(t)\leq\varepsilon_{B}(t) for all B{S,I,R}B\in\{S,I,R\} and 0tT0\leq t\leq T (or Φ(ε)ε\Phi(\varepsilon)\leq\varepsilon for short). This is because εI\varepsilon_{I} is a guess for a bound on |VIuβVI0||V_{I}^{u_{\beta}}-V_{I}^{0}|, while Φ(ε)ε\Phi(\varepsilon)\leq\varepsilon implies that |πIuβ,uIπI0,0||\pi_{I}^{u_{\beta},u_{I}}-\pi_{I}^{0,0}| is bounded by εI\varepsilon_{I} whenever |uI||u_{I}| itself is bounded by εI\varepsilon_{I}. Building on this intuition, we will prove that Φ(ε)ε\Phi(\varepsilon)\leq\varepsilon implies ε\mathcal{E}\leq\varepsilon and provide an algorithm that computes, whenever possible, the smallest such positive function ε\varepsilon.

Second Step: Approximation of Kolmogorov equations. The above discussion shows that an estimation of \mathcal{E} requires one to evaluate the function Φ\Phi. Thanks to the fact that (6) arises from (5) by decoupling, it can be seen that (6) describes the Kolmogorov equations of a CTMC with time-varying uncertain transition rates that are not coupled to the ODE system (1). This, in turn, allows one to compute any value of Φ\Phi by solving a family of tractable optimization problems. More specifically, the value (ΦB(ε))(t^)(\Phi_{B}(\varepsilon))(\hat{t}) can be computed by determining two uncertainty functions uβu^{\ast}_{\beta} and uIu^{\ast}_{I} such that

πBuβ,uI(t^)=opt{πBuβ,uI(t^)πuβ,uI solves (6) and|uβ()|δβ(),|uI()|εI()},\pi_{B}^{u^{\ast}_{\beta},u^{\ast}_{I}}(\hat{t})=\texttt{opt}\{\pi_{B}^{u_{\beta},u_{I}}(\hat{t})\mid\pi^{u_{\beta},u_{I}}\text{ solves~(\ref{ex_eq_sir_atomic_uu}) and}\\ |u_{\beta}(\cdot)|\leq\delta_{\beta}(\cdot),|u_{I}(\cdot)|\leq\varepsilon_{I}(\cdot)\}, (7)

with πuβ,uI(0)=Vuβ(0)\pi^{u_{\beta},u_{I}}(0)=V^{u_{\beta}}(0) and opt{inf,sup}\texttt{opt}\in\{\inf,\sup\}. By interpreting the uncertainty functions uβu^{\ast}_{\beta} and uIu^{\ast}_{I} as optimal controls, (7) defines an optimal control problem with cost πBuβ,uI(t^)\pi_{B}^{u_{\beta},u_{I}}(\hat{t}).

A major result of the paper shows that uncertainty functions uβu^{\ast}_{\beta} and uIu^{\ast}_{I} can be efficiently computed by relying on a strict version of Pontryagin’s principle which is sufficient for optimality. Apart from solving (7) exactly, this allows one to devise an efficient procedure for the formal estimation of \mathcal{E} whose bounds can be expected to be tight.

III Technical Preliminaries

In this section, we introduce agent networks (ANs), a class of nonlinear ODE systems to which our over-approximation technique can be applied. ANs are, essentially, chemical reactions networks whose reaction rate functions are not restricted to the law of mass action. The distinctive feature of ANs is that their dynamics can be related to the linear Kolmogorov equations of CTMCs.

Definition 1.

An agent network (AN) is a triple (𝒮,𝒦,)(\mathcal{S},\mathcal{K},\mathcal{F}) of a finite set of states 𝒮={A1,,A|𝒮|}\mathcal{S}=\{A_{1},\ldots,A_{|\mathcal{S}|}\}, parameters 𝒦\mathcal{K} and reaction rate functions \mathcal{F}. Each reaction rate function Θj:0𝒮𝒦0\Theta_{j}:\mathbb{R}_{\geq 0}^{\mathcal{S}\cup\mathcal{K}}\rightarrow\mathbb{R}_{\geq 0}

  • describes the rate at which reaction jj occurs;

  • takes concentration and parameter vectors V>0𝒮V\in\mathbb{R}_{>0}^{\mathcal{S}} and κ>0𝒦\kappa\in\mathbb{R}_{>0}^{\mathcal{K}}, respectively;

  • is accompanied by a multiset RjR_{j} of atomic transitions of the form AlAlA_{l}\to A_{l^{\prime}}, where AlAlA_{l}\to A_{l^{\prime}} describes an agent in state AlA_{l} interacting and changing state to AlA_{l^{\prime}}.

From a multiset RjR_{j}, we can extract two integer valued |𝒮||\mathcal{S}|-vectors djd_{j} and cjc_{j}, counting how many agents in each state are transformed during a reaction (respectively produced and consumed). Specifically, for each 1j||1\leq j\leq|\mathcal{F}|, let cjl,djl0c_{jl},d_{jl}\in\mathbb{N}_{0} be such that

cj,l=AlAlRj1anddj,l=AlAlRj1.c_{j,l}=\sum_{A_{l}\to A_{l^{\prime}}\in R_{j}}1\quad\text{and}\quad d_{j,l^{\prime}}=\sum_{A_{l}\to A_{l^{\prime}}\in R_{j}}1.

With these vectors, we can express the jj-th reaction in the chemical reaction style [4] as follows:

cj,1A1++cj,|𝒮|A|𝒮|\xlongrightarrowΘjdj,1A1++dj,|𝒮|A|𝒮|\displaystyle c_{j,1}A_{1}+\ldots+c_{j,|\mathcal{S}|}A_{|\mathcal{S}|}\xlongrightarrow{\Theta_{j}}d_{j,1}A_{1}+\ldots+d_{j,|\mathcal{S}|}A_{|\mathcal{S}|} (8)

We next introduce the ODE semantics of an AN.

Definition 2.

For a given AN (𝒮,𝒦,)(\mathcal{S},\mathcal{K},\mathcal{F}), a continuous parameter function κ^:[0;T]>0𝒦\hat{\kappa}:[0;T]\to\mathbb{R}_{>0}^{\mathcal{K}} and a piecewise continuous function δ:[0;T]>0𝒦\delta:[0;T]\to\mathbb{R}^{\mathcal{K}}_{>0} with δα()<κ^α()\delta_{\alpha}(\cdot)<\hat{\kappa}_{\alpha}(\cdot) with α𝒦\alpha\in\mathcal{K}, let

𝒰𝒦δ:={u:[0;T]>0𝒦|uα()|δα()and u is measurable}\mathcal{U}_{\mathcal{K}}^{\delta}:=\{u:[0;T]\to\mathbb{R}_{>0}^{\mathcal{K}}\mid|u_{\alpha}(\cdot)|\leq\delta_{\alpha}(\cdot)\\ \text{and }u\text{ is measurable}\}

denote the set of admissible uncertainties. Then, the reachable set of (𝒮,𝒦,)(\mathcal{S},\mathcal{K},\mathcal{F}) with respect to 𝒰𝒦δ\mathcal{U}_{\mathcal{K}}^{\delta} is given by the solution set {Vuu𝒰𝒦δ}\{V^{u}\mid u\in\mathcal{U}_{\mathcal{K}}^{\delta}\}, where VuV^{u} solves

V˙Bu(t)\displaystyle\dot{V}^{u}_{B}(t) =FB(Vu(t),κ^(t)+u(t))\displaystyle=F_{B}(V^{u}(t),\hat{\kappa}(t)+u(t)) (9)
:=1j||(dj,Bcj,B)Θj(Vu(t),κ^(t)+u(t))\displaystyle:=\sum_{1\leq j\leq|\mathcal{F}|}(d_{j,B}-c_{j,B})\Theta_{j}\big{(}V^{u}(t),\hat{\kappa}(t)+u(t)\big{)}

for all B𝒮B\in\mathcal{S}. The reachable set at time 0tT0\leq t\leq T is given by (t)={Vu(t)u𝒰𝒦δ}\mathcal{R}(t)=\{V^{u}(t)\mid u\in\mathcal{U}_{\mathcal{K}}^{\delta}\}.

The following example demonstrates Definition 1 and 2 in the context of the SIRS model from Section II. In particular, we remark the following.

Remark 1.

Throughout the paper, the SIRS model from Section II is used to explain definitions and statements. All example environments refer to it.

Example 1.

Consider the agent network ({S,I,R},(\{S,I,R\}, {β},\{\beta\}, {Θ1,Θ2,Θ3})\{\Theta_{1},\Theta_{2},\Theta_{3}\}) given by

R1={SI,II},\displaystyle R_{1}\!=\!\{S\to I,I\to I\}, R2={IR},\displaystyle R_{2}\!=\!\{I\to R\}, R3={RS},\displaystyle R_{3}\!=\!\{R\to S\},
Θ1(V,κ)=VSVI,\displaystyle\Theta_{1}(V,\kappa)\!=\!V_{S}V_{I}, Θ2(V,κ)=κβVI,\displaystyle\Theta_{2}(V,\kappa)\!=\!\kappa_{\beta}V_{I}, Θ3(V,κ)=VR,\displaystyle\Theta_{3}(V,\kappa)\!=\!V_{R},

where V=(VS,VI,VR)V=(V_{S},V_{I},V_{R}) and κ=(κβ)\kappa=(\kappa_{\beta}). Let the time-varying uncertain recovery rate parameter be given by κβκ^β+uβ\kappa_{\beta}\equiv\hat{\kappa}_{\beta}+u_{\beta}, where κ^β\hat{\kappa}_{\beta} denotes the nominal trajectory and u=(uβ)𝒰{β}δu=(u_{\beta})\in\mathcal{U}^{\delta}_{\{\beta\}} is the uncertainty function for some positive δ=(δβ)\delta=(\delta_{\beta}) such that δβ<κ^β\delta_{\beta}<\hat{\kappa}_{\beta}. The AN induces the reactions

S+I\displaystyle S+I \xlongrightarrowVSVII+I,\displaystyle\xlongrightarrow{V_{S}V_{I}}I+I, I\displaystyle I \xlongrightarrow(κ^β+uβ)VIR,\displaystyle\xlongrightarrow{(\hat{\kappa}_{\beta}+u_{\beta})V_{I}}R, R\displaystyle R \xlongrightarrowVRS,\displaystyle\xlongrightarrow{V_{R}}S, (10)

while the ODE system (9) is given by (1).

In the following, we assume that an AN (𝒮,𝒦,)(\mathcal{S},\mathcal{K},\mathcal{F}) is accompanied by a finite time horizon T>0T>0, a positive initial condition V(0)>0𝒮V(0)\in\mathbb{R}^{\mathcal{S}}_{>0} and a Lipschitz continuous parameter function κ^[0;T]>0𝒦\hat{\kappa}\in[0;T]\to\mathbb{R}_{>0}^{\mathcal{K}}. Moreover, we require that each function Θj\Theta_{j}

  1. i)i)

    is analytic in (V,κ)(V,\kappa) and linear in κ\kappa, i.e., it holds that Θj(V,cκ+cκ)=cΘj(V,κ)+cΘj(V,κ)\Theta_{j}(V,c\kappa+c^{\prime}\kappa^{\prime})=c\Theta_{j}(V,\kappa)+c^{\prime}\Theta_{j}(V,\kappa^{\prime});

  2. ii)ii)

    satisfies Θj(V)=0\Theta_{j}(V)=0 whenever VAl=0V_{A_{l}}=0 and cj,l>0c_{j,l}>0, where cj,lc_{j,l} is as in (8).

Condition i)i) enforces the existence of a unique solution (9) and allows us to apply Pontryagin’s principle in Section IV-A, while condition ii)ii) says essentially that the jj-th reaction (8) can only take place when all its reactants have a positive concentration.

We wish to point out that i)i) and ii)ii) can be easily checked because analytic functions are closed under summation, multiplication and composition. Additionally, functions Θj\Theta_{j} often enjoy a simple form in practical models (in the case of biochemistry, for instance, they are given in terms of monomials).

With i)i) and ii)ii) in place, the following can be proven.

Proposition 1.

In the case i)i) and ii)ii) hold true, (9) admits a unique solution VuV^{u} on [0;T][0;T] for any uncertainty function u𝒰𝒦δu\in\mathcal{U}^{\delta}_{\mathcal{K}}. Moreover, there exists an η>0\eta>0 such that Vu(t)η𝒮V^{u}(t)\in\mathbb{R}^{\mathcal{S}}_{\geq\eta} for all u𝒰𝒦δu\in\mathcal{U}^{\delta}_{\mathcal{K}} and 0tT0\leq t\leq T.

Proof.

Local existence and uniqueness are ensured by [31, Section 3.3.1]. Let us define W(0):=V(0)W(0):=V(0),

W˙B(t)\displaystyle\dot{W}_{B}(t) =GB(t,W(t)):=1j||cj,BΘj(W(t),κ^(t)+δ(t))\displaystyle\!=\!G_{B}(t,W(t))\!:=-\!\sum_{1\leq j\leq|\mathcal{F}|}\!c_{j,B}\Theta_{j}\big{(}W(t),\hat{\kappa}(t)\!+\!\delta(t)\big{)}

for all B𝒮B\in\mathcal{S} and let e(α)𝒦e(\alpha)\in\mathbb{R}^{\mathcal{K}} denote the vector with e(α)α=1e(\alpha)_{\alpha^{\prime}}=1 if α=α\alpha=\alpha^{\prime} and e(α)α=0e(\alpha)_{\alpha^{\prime}}=0 when αα\alpha\neq\alpha^{\prime}. With this, ii)ii) implies for all 1j||1\leq j\leq|\mathcal{F}| and u𝒰𝒦δu\in\mathcal{U}^{\delta}_{\mathcal{K}} that

Θj(W,κ^+u)\displaystyle\Theta_{j}\big{(}W,\hat{\kappa}+u\big{)} Θj(W,κ^)+α𝒦δαΘj(W,e(α))\displaystyle\leq\Theta_{j}(W,\hat{\kappa})+\sum_{\alpha\in\mathcal{K}}\delta_{\alpha}\Theta_{j}(W,e(\alpha))

because the function Θj\Theta_{j} is nonnegative. Hence, V˙u(t)=F(Vu(t),κ^(t)+u(t))G(t,Vu(t))\dot{V}^{u}(t)=F(V^{u}(t),\hat{\kappa}(t)+u(t))\geq G(t,V^{u}(t)), thus implying that VuWV^{u}\geq W for all u𝒰𝒦δu\in\mathcal{U}^{\delta}_{\mathcal{K}}. We next show that WW is positive on [0;T][0;T]. To this end, let us assume towards a contradiction that there is 0<τT0<\tau\leq T such that WA(τ)=0W_{A}(\tau)=0 for some A𝒮A\in\mathcal{S}. Thanks to the continuity of WW, we may assume without loss of generality that WW is positive on [0;τ)[0;\tau). With 𝒲(s):=W(τs)\mathcal{W}(s):=W(\tau-s), it holds that 𝒲˙(s)=G(τs,𝒲(s))\dot{\mathcal{W}}(s)=-G(\tau-s,\mathcal{W}(s)). There exists a sufficiently small interval [0;τ)[0;\tau^{\prime}) on which Euler’s sequence given by (𝒲l)l0(\mathcal{W}^{l})_{l\geq 0}, where 𝒲0:=𝒲(0)\mathcal{W}^{0}:=\mathcal{W}(0) and 𝒲l+1:=𝒲lΔtG(τlΔt,𝒲l)\mathcal{W}^{l+1}:=\mathcal{W}^{l}-\Delta t\cdot G(\tau-l\Delta t,\mathcal{W}^{l}), converges to a local solution of 𝒲\mathcal{W} [40]. By construction, the sequence has to converge to a positive function on (0;τ)(0;\tau^{\prime}) as Δt0\Delta t\to 0. However, thanks to ii)ii), 𝒲A0=0\mathcal{W}_{A}^{0}=0 implies 𝒲Ak=0\mathcal{W}_{A}^{k}=0 for all k0k\geq 0 regardless how small Δt>0\Delta t>0 is, thus yielding a contradiction. Moreover, since W>0W>0 and B𝒮FB(Vu(t),κ^(t)+u(t))=0\sum_{B\in\mathcal{S}}F_{B}(V^{u}(t),\hat{\kappa}(t)+u(t))=0 for all t0t\geq 0, we also infer the existence of VuV^{u} on the whole [0;T][0;T]. ∎

It can be seen that atomic transitions enforce conservation of mass, i.e., the creation and destruction of agents is ruled out at the first sight. This problem, however, can be alleviated by the introduction of artificial agent states, see [41].

Kolmogorov Equations of Agent Networks. Thanks to the fact that the dynamics of an AN arise from atomic transitions, it is possible to define a CTMC underlying a given AN which Kolmogorov equations are closely connected to the ODE system (9).

Definition 3.

For a given AN (𝒮,𝒦,)(\mathcal{S},\mathcal{K},\mathcal{F}), define

rB,C(V,κ)=1j||BCRjΘj(V,κ)/VBr_{B,C}(V,\kappa)=\sum_{1\leq j\leq|\mathcal{F}|\ \mid\ B\rightarrow C\,\in\,R_{j}}\Theta_{j}(V,\kappa)/V_{B}

for all B,C𝒮B,C\in\mathcal{S} with BCB\neq C, V>0𝒮V\in\mathbb{R}^{\mathcal{S}}_{>0} and κ>0𝒦\kappa\in\mathbb{R}_{>0}^{\mathcal{K}}. Then, the coupled CTMC (Xu(t))t0(X^{u}(t))_{t\geq 0} underlying (𝒮,𝒦,)(\mathcal{S},\mathcal{K},\mathcal{F}) and u𝒰𝒦δu\in\mathcal{U}_{\mathcal{K}}^{\delta} has state space 𝒮\mathcal{S} and its transition rate from state BB into state CC at time tt is rB,C(Vu(t),κ^(t)+u(t))r_{B,C}(V^{u}(t),\hat{\kappa}(t)+u(t)). The coupled Kolmogorov equations of (Xu(t))t0(X^{u}(t))_{t\geq 0} are

π˙Bu(t)\displaystyle\dot{\pi}^{u}_{B}(t) =fB(πu(t),Vu(t),κ^(t)+u(t))\displaystyle=f_{B}\big{(}\pi^{u}(t),V^{u}(t),\hat{\kappa}(t)+u(t)\big{)} (11)
:=C:CBrB,C(Vu(t),κ^(t)+u(t))πBu(t)\displaystyle:=-\sum_{C:C\neq B}r_{B,C}(V^{u}(t),\hat{\kappa}(t)+u(t))\pi^{u}_{B}(t)
+C:CBrC,B(Vu(t),κ^(t)+u(t))πCu(t)\displaystyle\qquad+\sum_{C:C\neq B}r_{C,B}(V^{u}(t),\hat{\kappa}(t)+u(t))\pi^{u}_{C}(t)

In the context of the SIRS example, Definition 3 gives rise to the transition rates (4), the uncertainty function u=(uβ)u=(u_{\beta}) and the Kolmogorov equations (5). This is because the atomic transitions SIS\to I, IRI\to R and RSR\to S appear only in R1R_{1}, R2R_{2} and R3R_{3} of Example 1, respectively, thus yielding

rS,I(Vu(t),κ^(t)+u(t))\displaystyle r_{S,I}(V^{u}(t),\hat{\kappa}(t)+u(t)) =Θ1(Vu(t),κ^(t)+u(t))/VSu(t)\displaystyle=\Theta_{1}(V^{u}(t),\hat{\kappa}(t)+u(t))/V^{u}_{S}(t)
rI,R(Vu(t),κ^(t)+u(t))\displaystyle r_{I,R}(V^{u}(t),\hat{\kappa}(t)+u(t)) =Θ2(Vu(t),κ^(t)+u(t))/VIu(t)\displaystyle=\Theta_{2}(V^{u}(t),\hat{\kappa}(t)+u(t))/V^{u}_{I}(t)
rR,S(Vu(t),κ^(t)+u(t))\displaystyle r_{R,S}(V^{u}(t),\hat{\kappa}(t)+u(t)) =Θ3(Vu(t),κ^(t)+u(t))/VRu(t),\displaystyle=\Theta_{3}(V^{u}(t),\hat{\kappa}(t)+u(t))/V^{u}_{R}(t),

where Θ1,Θ2\Theta_{1},\Theta_{2} and Θ3\Theta_{3} are as in Example 1.

The next pivotal observation establishes a relation between the ODE system (9) and the Kolmogorov equations (11).

Proposition 2.

For any uncertainty u𝒰𝒦δu\in\mathcal{U}_{\mathcal{K}}^{\delta} and

πu(0)=V(0),\displaystyle\pi^{u}(0)=V(0), (12)

the solution of (11) exists on [0;T][0;T] and satisfies πu(t)=Vu(t)\pi^{u}(t)=V^{u}(t) for all 0tT0\leq t\leq T.

Proof.

Note that (11) rewrites into (9) if πBu\pi^{u}_{B} and π˙Bu\dot{\pi}^{u}_{B} is replaced with VBuV^{u}_{B} and V˙Bu\dot{V}^{u}_{B} for all B𝒮B\in\mathcal{S}, respectively. With this, the claim follows from Proposition 1. ∎

In the context of the SIRS example, Proposition 2 states that the solutions of (1) and (5) coincide whenever πu(0)=V(0)\pi^{u}(0)=V(0).

It is possible to prove that (9) and (11) are the fluid limits of certain CTMC sequences in the case where πu(0)=V(0)/V(0)1\pi^{u}(0)=V(0)/\lVert V(0)\rVert_{1} and the number of agents in the system tends to infinity, see [5, 41, 42] for details. We will not elaborate on this relation further because it is not required for the understanding of our over-approximation technique.

IV Over-Approximation Technique

As anticipated in Section II and III, we estimate the reachable set of an AN with respect to an uncertainty set 𝒰𝒦δ\mathcal{U}_{\mathcal{K}}^{\delta}, i.e., we bound (t)={Vu(t)u𝒰𝒦δ}\mathcal{R}(t)=\{V^{u}(t)\mid u\in\mathcal{U}_{\mathcal{K}}^{\delta}\} for each 0tT0\leq t\leq T. To this end, we study the maximal deviation from the nominal trajectory V0V^{0} attainable across 𝒰𝒦δ\mathcal{U}_{\mathcal{K}}^{\delta}.

Definition 4.

For a given AN (𝒮,𝒦,)(\mathcal{S},\mathcal{K},\mathcal{F}) with uncertainty set 𝒰𝒦δ\mathcal{U}_{\mathcal{K}}^{\delta}, the maximal deviation at time tt of (9) from V0V^{0} is

B(t)=supu𝒰𝒦δ|VBu(t)VB0(t)|\displaystyle\mathcal{E}_{B}(t)=\sup_{u\in\mathcal{U}_{\mathcal{K}}^{\delta}}|V_{B}^{u}(t)-V_{B}^{0}(t)| (13)

with B𝒮B\in\mathcal{S} and =(B)B𝒮\mathcal{E}=(\mathcal{E}_{B})_{B\in\mathcal{S}}. With this, it holds that

(t)B𝒮[VB0(t)B(t);VB0(t)+B(t)]\mathcal{R}(t)\subseteq\prod_{B\in\mathcal{S}}\big{[}V_{B}^{0}(t)-\mathcal{E}_{B}(t);V_{B}^{0}(t)+\mathcal{E}_{B}(t)\big{]}

By Proposition 2, any trajectory VuV^{u} of (9) coincides with the trajectory πu\pi^{u} of (11) if πu(0)=V(0)\pi^{u}(0)=V(0). Even though this allows one to relate the reachable set of a nonlinear system to that of a linear one, the transition rates of the coupled CTMC (Xu(t))t0(X^{u}(t))_{t\geq 0} depend on VuV^{u}. We address this by decoupling the transition rates of the coupled CTMC from VuV^{u}.

Definition 5.

For ε<V0\varepsilon<V^{0} and 𝔲=(u𝒦,u𝒮)𝒰𝒦δ×𝒰𝒮ε\mathfrak{u}=(u_{\mathcal{K}},u_{\mathcal{S}})\in\mathcal{U}_{\mathcal{K}}^{\delta}\times\mathcal{U}_{\mathcal{S}}^{\varepsilon}, let (𝒟𝔲(t))t0(\mathcal{D}^{\mathfrak{u}}(t))_{t\geq 0} be the decoupled CTMC with transition rates (rB,C(V0(t)+u𝒮(t),κ^(t)+u𝒦(t)))B,C\big{(}r_{B,C}(V^{0}(t)+u_{\mathcal{S}}(t),\hat{\kappa}(t)+u_{\mathcal{K}}(t))\big{)}_{B,C} and the decoupled Kolmogorov equations

π˙𝔲(t)\displaystyle\dot{\pi}^{\mathfrak{u}}(t) =h(t,π𝔲(t),(u𝒦(t),u𝒮(t)))\displaystyle=h\big{(}t,\pi^{\mathfrak{u}}(t),(u_{\mathcal{K}}(t),u_{\mathcal{S}}(t))\big{)} (14)
:=f(π𝔲(t),V0(t)+u𝒮(t),κ^(t)+u𝒦(t)),\displaystyle:=f\big{(}\pi^{\mathfrak{u}}(t),V^{0}(t)+u_{\mathcal{S}}(t),\hat{\kappa}(t)+u_{\mathcal{K}}(t)\big{)},

where ff is as in Definition 3 and 𝒰𝒮ε\mathcal{U}_{\mathcal{S}}^{\varepsilon} is defined similarly to 𝒰𝒦δ\mathcal{U}_{\mathcal{K}}^{\delta} from Definition 2.

In the context of the AN from Example 1, the decoupled Kolmogorov equations (14) are given by (6) with 𝔲(u𝒦,u𝒮)((uβ),(uI))𝒰𝒦δ×𝒰𝒮ε\mathfrak{u}\equiv(u_{\mathcal{K}},u_{\mathcal{S}})\equiv((u_{\beta}),(u_{I}))\in\mathcal{U}_{\mathcal{K}}^{\delta}\times\mathcal{U}_{\mathcal{S}}^{\varepsilon} =𝒰{β}δ×𝒰{S,I,R}ε=\mathcal{U}_{\{\beta\}}^{\delta}\times\mathcal{U}_{\{S,I,R\}}^{\varepsilon}. This is because the transition rates of the decoupled CTMC are

rS,I(V0(t)+u𝒮(t),κ^(t)+u𝒦(t))\displaystyle r_{S,I}(V^{0}(t)+u_{\mathcal{S}}(t),\hat{\kappa}(t)+u_{\mathcal{K}}(t)) =VI0(t)+uI(t)\displaystyle=V^{0}_{I}(t)+u_{I}(t) (15)
rI,R(V0(t)+u𝒮(t),κ^(t)+u𝒦(t))\displaystyle r_{I,R}(V^{0}(t)+u_{\mathcal{S}}(t),\hat{\kappa}(t)+u_{\mathcal{K}}(t)) =κ^β(t)+uβ(t)\displaystyle=\hat{\kappa}_{\beta}(t)+u_{\beta}(t)
rR,S(V0(t)+u𝒮(t),κ^(t)+u𝒦(t))\displaystyle r_{R,S}(V^{0}(t)+u_{\mathcal{S}}(t),\hat{\kappa}(t)+u_{\mathcal{K}}(t)) =1\displaystyle=1

A direct comparison with the transition rates of the coupled CTMC given in (4) reveals that the original transition rate from SS into II, VIuβ(t)V_{I}^{u_{\beta}}(t), is replaced with VI0(t)+uI(t)V_{I}^{0}(t)+u_{I}(t).

Remark 2.

Note that V0V^{0} can be efficiently computed using a numerical ODE solver and by setting uu in (9) to zero.

The next result relates the original ODE system (9) to the decoupled Kolmogorov equations (14).

Proposition 3.

Assume that <V0\mathcal{E}<V^{0}. Then, for any u𝒦𝒰𝒦δu_{\mathcal{K}}\in\mathcal{U}_{\mathcal{K}}^{\delta}, there exists some u𝒮𝒰𝒮u_{\mathcal{S}}\in\mathcal{U}_{\mathcal{S}}^{\mathcal{E}} such that the solution of (14) subject to the initial condition V(0)V(0) satisfies π𝔲(t)=Vu𝒦(t)\pi^{\mathfrak{u}}(t)=V^{u_{\mathcal{K}}}(t) for all 0tT0\leq t\leq T.

Proof.

For ε\varepsilon with ε<V0\mathcal{E}\leq\varepsilon<V^{0}, the definition of \mathcal{E} implies that u𝒮:=Vu𝒦V0𝒰𝒮εu_{\mathcal{S}}:=V^{u_{\mathcal{K}}}-V^{0}\in\mathcal{U}_{\mathcal{S}}^{\varepsilon} for any u𝒦𝒰𝒦δu_{\mathcal{K}}\in\mathcal{U}_{\mathcal{K}}^{\delta}. Since πu𝒦,u𝒮\pi^{u_{\mathcal{K}},u_{\mathcal{S}}} from (14) coincides with πu𝒦\pi^{u_{\mathcal{K}}} from (11), Proposition 2 yields the claim. ∎

To provide an estimation of \mathcal{E} using the Kolmogorov equations (14), we next define Φ(ε)\Phi(\varepsilon) as the maximal deviation from the nominal trajectory π0\pi^{0} that can be attained across the uncertainties u𝒦𝒰𝒦δu_{\mathcal{K}}\in\mathcal{U}_{\mathcal{K}}^{\delta} and u𝒮𝒰𝒮εu_{\mathcal{S}}\in\mathcal{U}_{\mathcal{S}}^{\varepsilon}.

Definition 6.

For a piecewise continuous function ε<V0\varepsilon<V^{0}, let Φ(ε)=(ΦB(ε))B𝒮\Phi(\varepsilon)=(\Phi_{B}(\varepsilon))_{B\in\mathcal{S}} be given by

(ΦB(ε))(t)=supu𝒦𝒰𝒦δsupu𝒮𝒰𝒮ε|πB𝔲(t)πB0(t)|\displaystyle(\Phi_{B}(\varepsilon))(t)=\sup_{u_{\mathcal{K}}\in\mathcal{U}_{\mathcal{K}}^{\delta}}\sup_{u_{\mathcal{S}}\in\mathcal{U}_{\mathcal{S}}^{\varepsilon}}|\pi_{B}^{\mathfrak{u}}(t)-\pi_{B}^{0}(t)|

(ΦB(ε))(t)(\Phi_{B}(\varepsilon))(t) denotes the maximal deviation of πB𝔲(t)\pi^{\mathfrak{u}}_{B}(t) from πB0(t)\pi_{B}^{0}(t), where π0\pi^{0} arises from π𝔲\pi^{\mathfrak{u}} in (14) if 𝔲=0\mathfrak{u}=0.

As discussed in Section II, the goal is to find a positive function ε\varepsilon such that Φ(ε)ε\Phi(\varepsilon)\leq\varepsilon. This ensures that |π𝔲π0|ε|\pi^{\mathfrak{u}}-\pi^{0}|\leq\varepsilon for any 𝔲=(u𝒦,u𝒮)𝒰𝒦δ×𝒰𝒮ε\mathfrak{u}=(u_{\mathcal{K}},u_{\mathcal{S}})\in\mathcal{U}_{\mathcal{K}}^{\delta}\times\mathcal{U}_{\mathcal{S}}^{\varepsilon} and implies, as stated in the next important result, that ε\mathcal{E}\leq\varepsilon.

Theorem 1.

If Φ(ε)ε\Phi(\varepsilon)\leq\varepsilon, then ε\mathcal{E}\leq\varepsilon.

Remark 3.

For the benefit of presentation, we prove Theorem 1 in Section IV-B by invoking the strict version of Pontryagin’s principle presented in Section IV-A.

A direct consequence of Theorem 1 is that a fixed point ε\varepsilon^{\ast} of εΦ(ε)\varepsilon\mapsto\Phi(\varepsilon) estimates \mathcal{E} from above whenever ε<V0\varepsilon^{\ast}<V^{0}.

The next result describes an algorithm for the computation of the least fixed point ε\varepsilon^{\ast}.

Theorem 2.

Fix some small ε(0)>0\varepsilon^{(0)}>0 and set

ε(k+1):={Φ(ε(k)),ε(k)<V0,otherwise\varepsilon^{(k+1)}:=\begin{cases}\Phi(\varepsilon^{(k)})&,\ \varepsilon^{(k)}<V^{0}\\ \infty&,\ \text{otherwise}\end{cases}

for all k0k\geq 0. If limkε(k)=ε\lim_{k\to\infty}\varepsilon^{(k)}=\varepsilon such that ε\varepsilon\neq\infty, then ε\varepsilon is the smallest fixed point of Φ\Phi which satisfies εε(0)\varepsilon\geq\varepsilon^{(0)}.

Proof.

Obviously, Φ\Phi is monotonic increasing, i.e., εε\varepsilon\leq\varepsilon^{\prime} implies Φ(ε)Φ(ε)\Phi(\varepsilon)\leq\Phi(\varepsilon^{\prime}). With this, Kleene’s fixed point theorem yields the claim. ∎

Note that the computation of the sequence (ε(k))k(\varepsilon^{(k)})_{k} can be terminated if ε(k+1)<V0\varepsilon^{(k+1)}<V^{0} is violated because in such case no bound can be obtained.

IV-A Optimal Solutions for inhomogeneous CTMDPs

In each step of the fixed point iteration from Theorem 2, a new value of Φ\Phi has to be computed. To this end, for any 0t^T0\leq\hat{t}\leq T and A𝒮A\in\mathcal{S}, we have to

obtain the minimal (maximal) value of πA(t^)  such that π˙(t)=h(t,π(t),(u𝒦(t),u𝒮(t))) subject to (12) and (u𝒦,u𝒮)𝒰𝒦δ×𝒰𝒮ε\text{obtain the minimal (maximal) value of $\pi_{A}(\hat{t})$ }\\ \text{ such that }\dot{\pi}(t)=h\big{(}t,\pi(t),(u_{\mathcal{K}}(t),u_{\mathcal{S}}(t))\big{)}\\ \text{ subject to (\ref{eq_init_pi}) and $(u_{\mathcal{K}},u_{\mathcal{S}})\in\mathcal{U}_{\mathcal{K}}^{\delta}\times\mathcal{U}_{\mathcal{S}}^{\varepsilon}$} (16)

While the solution of such optimization problems is particulary challenging in the case of nonlinear dynamics, time-varying systems such as (16) are easier to come by. This is because (16) is a linear system with additive and multiplicative uncertainties. More formally, (16) is linear in concentrations variables if the parameter variables are fixed and linear in parameter variables when the concentration variables are fixed.

Remark 4.

It is worth noting that (16) can be rewritten in the case of minimization (maximization is similar) to

min{V(0)1𝔼[𝟙𝒟𝔲(t^)=A]π𝔲(0)=V(0)/V(0)1 and 𝔲𝒰𝒦δ×𝒰𝒮ε}\min\{\lVert V(0)\rVert_{1}\cdot\mathbb{E}[\mathds{1}_{\mathcal{D}^{\mathfrak{u}}(\hat{t})=A}]\mid\\ \pi^{\mathfrak{u}}(0)=V(0)/\lVert V(0)\rVert_{1}\text{ and }\mathfrak{u}\in\mathcal{U}_{\mathcal{K}}^{\delta}\times\mathcal{U}_{\mathcal{S}}^{\varepsilon}\} (17)

This defines a CTMDP with finite state space 𝒮\mathcal{S} and action space (α𝒦[δα(t);δα(t)])×(A𝒮[εA(t);εA(t)])\big{(}\prod_{\alpha\in\mathcal{K}}[-\delta_{\alpha}(t);\delta_{\alpha}(t)]\big{)}\times\big{(}\prod_{A\in\mathcal{S}}[-\varepsilon_{A}(t);\varepsilon_{A}(t)]\big{)} at time tt. The CTMDP is inhomogeneous due to the presence of the function V0V^{0} in the transition rates from Definition 5.

For the benefit of presentation, we write in that what follows 𝔲𝒰𝒦𝒮𝔟\mathfrak{u}\in\mathcal{U}_{\mathcal{K}\cup\mathcal{S}}^{\mathfrak{b}} instead of (u𝒦,u𝒮)𝒰𝒦δ×𝒰𝒮ε(u_{\mathcal{K}},u_{\mathcal{S}})\in\mathcal{U}_{\mathcal{K}}^{\delta}\times\mathcal{U}_{\mathcal{S}}^{\varepsilon}, where 𝔟α=δα\mathfrak{b}_{\alpha}=\delta_{\alpha} and 𝔟A=εA\mathfrak{b}_{A}=\varepsilon_{A} for all α𝒦\alpha\in\mathcal{K} and A𝒮A\in\mathcal{S}, respectively. Moreover, we recall that a solution of a differential inclusion z˙G(z)\dot{z}\in G(z) is any absolutely continuous function zz which satisfies z˙G(z)\dot{z}\in G(z) almost everywhere.

We solve (16) by modifying the strict version of Pontryagin’s principle [34] which is sufficient for optimality. Our modification of [34] is less general than the original because it is stated for CTMCs but it makes weaker assumptions (the concavity of H^\hat{H} is required on positive values only).

Theorem 3.

For any p𝒮p\in\mathbb{R}^{\mathcal{S}}, let H(t,π,(u𝒦,u𝒮),p)=A𝒮pAhA(t,π,(u𝒦,u𝒮))H(t,\pi,(u_{\mathcal{K}},u_{\mathcal{S}}),p)=\sum_{A\in\mathcal{S}}p_{A}h_{A}(t,\pi,(u_{\mathcal{K}},u_{\mathcal{S}})) and assume that, for any 0tt^0\leq t\leq\hat{t} and p0𝒮p\in\mathbb{R}_{\geq 0}^{\mathcal{S}}, the function

πH^(t,π,p)=max{H(t,π,(u𝒦,u𝒮),p)u𝒦α𝒦[δα(t);δα(t)],u𝒮A𝒮[εA(t);εA(t)]}\pi\mapsto\hat{H}(t,\pi,p)=\max\big{\{}H(t,\pi,(u_{\mathcal{K}},u_{\mathcal{S}}),p)\mid\\ u_{\mathcal{K}}\in\prod_{\alpha\in\mathcal{K}}[-\delta_{\alpha}(t);\delta_{\alpha}(t)],u_{\mathcal{S}}\in\prod_{A\in\mathcal{S}}[-\varepsilon_{A}(t);\varepsilon_{A}(t)]\big{\}}

is concave on >0𝒮\mathbb{R}_{>0}^{\mathcal{S}}. Then, any solution of the differential inclusion

π˙(t)\displaystyle\dot{\pi}(t) h(t,π(t),u(t,π,p))\displaystyle\in h(t,\pi(t),u^{\ast}(t,\pi,p))
p˙(t)\displaystyle\dot{p}(t) B𝒮pB(πhB)(t,π(t),u(t))\displaystyle\in-\sum_{B\in\mathcal{S}}p_{B}(\partial_{\pi}h_{B})(t,\pi(t),u^{\ast}(t))
u(t)\displaystyle u^{\ast}(t) argmax(u𝒦,u𝒮)H(t,π(t),(u𝒦,u𝒮),p(t))\displaystyle\in\operatorname*{arg\,max}_{(u_{\mathcal{K}},u_{\mathcal{S}})}H\big{(}t,\pi(t),(u_{\mathcal{K}},u_{\mathcal{S}}),p(t)\big{)}

subject to (12) and p(t^)𝟙{A=}()p(\hat{t})\equiv-\mathds{1}_{\{A=\cdot\}}(\cdot) (p(t^)𝟙{A=}()p(\hat{t})\equiv\mathds{1}_{\{A=\cdot\}}(\cdot)) minimizes (maximizes) the value of πA(t^)\pi_{A}(\hat{t}).

Proof.

The proof follows the argumentation of [34]. Fix some u𝒦𝒰𝒦δ𝒞([0;t^])u_{\mathcal{K}}\in\mathcal{U}_{\mathcal{K}}^{\delta}\cap\mathcal{C}([0;\hat{t}]) and u𝒮𝒰𝒮ε𝒞([0;t^])u_{\mathcal{S}}\in\mathcal{U}_{\mathcal{S}}^{\varepsilon}\cap\mathcal{C}([0;\hat{t}]) and let π\pi denote the solution underlying π˙(t)=h(t,π(t),(u𝒦(t),u𝒮(t)))\dot{\pi}(t)=h(t,\pi(t),(u_{\mathcal{K}}(t),u_{\mathcal{S}}(t))). Note that it suffices to consider continuous uncertainties because standard results from ODE theory and functional analysis ensure that the maximal value Φ(ε)\Phi(\varepsilon) can be attained by continuous uncertainties, that is

(ΦB(ε))(t^)=supu𝒦𝒞𝒦δsupu𝒮𝒞𝒮ε|πB𝔲(t^)πB0(t^)|,(\Phi_{B}(\varepsilon))(\hat{t})=\sup_{u_{\mathcal{K}}\in\mathcal{C}^{\delta}_{\mathcal{K}}}\sup_{u_{\mathcal{S}}\in\mathcal{C}_{\mathcal{S}}^{\varepsilon}}|\pi_{B}^{\mathfrak{u}}(\hat{t})-\pi_{B}^{0}(\hat{t})|,

where 𝒞𝒦δ=𝒰𝒦δ𝒞([0;t^])\mathcal{C}^{\delta}_{\mathcal{K}}=\mathcal{U}^{\delta}_{\mathcal{K}}\cap\mathcal{C}([0;\hat{t}]) and 𝒞𝒮ε=𝒰𝒮ε𝒞([0;t^])\mathcal{C}^{\varepsilon}_{\mathcal{S}}=\mathcal{U}^{\varepsilon}_{\mathcal{S}}\cap\mathcal{C}([0;\hat{t}]). For the ease of notation, let π\pi^{\ast}, pp and uu^{\ast} denote a solution of the differential inclusion and set

ph\displaystyle p\cdot h^{\prime} :=ph(t,π,u)\displaystyle:=p\cdot h(t,\pi,u^{\ast})
ph\displaystyle p\cdot h^{\ast} :=ph(t,π,u)\displaystyle:=p\cdot h(t,\pi^{\ast},u^{\ast})
π(ph)\displaystyle\partial_{\pi}(p\cdot h^{\ast}) :=p(πh)(t,π,u),\displaystyle:=p\cdot(\partial_{\pi}h)(t,\pi^{\ast},u^{\ast}),

where \cdot denotes the dot product. Thanks to the fact that p˙(t)=p(t)(πh)(t,π(t),u(t))\dot{p}(t)=-p(t)\cdot(\partial_{\pi}h)(t,\pi^{\ast}(t),u^{\ast}(t)), integration by parts yields

0t^p˙(ππ)𝑑t=[p(ππ)]0t^0t^p(hh)𝑑t\displaystyle\int_{0}^{\hat{t}}\dot{p}\cdot(\pi-\pi^{\ast})dt=[p\cdot(\pi-\pi^{\ast})]_{0}^{\hat{t}}-\int_{0}^{\hat{t}}p\cdot(h-h^{\ast})dt

With this, it holds that

0\displaystyle 0 0t^(phph+π(ph)(ππ))𝑑t\displaystyle\geq\int_{0}^{\hat{t}}\big{(}p\cdot h^{\prime}-p\cdot h^{\ast}+\partial_{\pi}(p\cdot h^{\ast})\cdot(\pi^{\ast}-\pi)\big{)}dt
=0t^(phph+p˙(ππ))𝑑t\displaystyle=\int_{0}^{\hat{t}}\big{(}p\cdot h^{\prime}-p\cdot h^{\ast}+\dot{p}\cdot(\pi-\pi^{\ast})\big{)}dt
=0t^(phphph+ph)𝑑t+[p(ππ)]0t^\displaystyle=\int_{0}^{\hat{t}}\big{(}p\cdot h^{\prime}-p\cdot h^{\ast}-p\cdot h+p\cdot h^{\ast}\big{)}dt+[p\cdot(\pi-\pi^{\ast})]_{0}^{\hat{t}}
[p(ππ)]0t^\displaystyle\geq[p\cdot(\pi-\pi^{\ast})]_{0}^{\hat{t}}
=p(t^)(π(t^)π(t^)),\displaystyle=p(\hat{t})\cdot(\pi(\hat{t})-\pi^{\ast}(\hat{t})),

where the first inequality is implied by the concavity of πph\pi\mapsto p\cdot h^{\ast}, while the second inequality follows from the definition of php\cdot h^{\prime} and the choice of uu^{\ast}. In the case where we seek to maximize the value of πA(t^)\pi_{A}(\hat{t}), we note that p(t^)=𝟙{A=}p_{\cdot}(\hat{t})=\mathds{1}_{\{A=\cdot\}} yields 0πA(t^)πA(t^)0\geq\pi_{A}(\hat{t})-\pi^{\ast}_{A}(\hat{t}). Since the case of minimization is similar, the proof is complete. ∎

We next identify structural conditions on (𝒟𝔲(t))t0(\mathcal{D}^{\mathfrak{u}}(t))_{t\geq 0} which can be easily checked and that imply the technical requirement of concavity of Theorem 3.

  • (A1)

    For any B,C𝒮B,C\in\mathcal{S} and 0tT0\leq t\leq T, there exist Lipschitz continuous kBC,kiBC[0;T]0k^{B\to C},k^{B\to C}_{i}\in[0;T]\to\mathbb{R}_{\geq 0} such that the transition rate function rB,Cr_{B,C} from Definition 3 satisfies

    rB,C(V0(t)+u𝒮,κ^(t)+u𝒦)=kBC(t)+i𝒦𝒮kiBC(t)uir_{B,C}\big{(}V^{0}(t)+u_{\mathcal{S}},\hat{\kappa}(t)+u_{\mathcal{K}}\big{)}\\ =k^{B\to C}(t)+\sum_{i\in\mathcal{K}\cup\mathcal{S}}k^{B\to C}_{i}(t)u_{i}

    for all u𝒦𝒦u_{\mathcal{K}}\in\mathbb{R}^{\mathcal{K}} and u𝒮𝒮u_{\mathcal{S}}\in\mathbb{R}^{\mathcal{S}}.

  • (A2)

    For each i𝒦𝒮i\in\mathcal{K}\cup\mathcal{S}, there exist unique Bi,Ci𝒮B_{i},C_{i}\in\mathcal{S} such that kiBC0k_{i}^{B\to C}\not\equiv 0 implies B=BiB=B_{i}, C=CiC=C_{i} and kiBC>0k_{i}^{B\to C}>0.

Assumption (A1) requires, essentially, the transition rate functions to be linear in the uncertainties, while (A2) forbids the same uncertainty to affect more than one transition of the decoupled CTMC (𝒟𝔲(t))t0(\mathcal{D}^{\mathfrak{u}}(t))_{t\geq 0}.

The next example demonstrates that our running example satisfies condition (A1) and (A2).

Example 2.

Recall that the transition rates of the decoupled CTMC of Example 1 are given by (15). Hence, kSIVI0k^{S\to I}\equiv V^{0}_{I}, kIRκ^βk^{I\to R}\equiv\hat{\kappa}_{\beta} and kRS1k^{R\to S}\equiv 1 and (A1) holds true. Condition (A2), instead, follows with BI=SB_{I}=S, CI=IC_{I}=I, kISI1k_{I}^{S\to I}\equiv 1 and Bβ=IB_{\beta}=I, Cβ=RC_{\beta}=R, kβIR1k_{\beta}^{I\to R}\equiv 1.

The following crucial theorem can be shown in the presence of (A1)(A2)\textbf{(A1)}-\textbf{(A2)}. We wish to stress that the result can be also applied to an ICTMDP which is not induced by an AN.

Theorem 4.

Assume that (A1)(A2)\textbf{(A1)}-\textbf{(A2)} hold true and fix some A𝒮A\in\mathcal{S}. Then, the differential inclusion

p˙B(t)\displaystyle\dot{p}_{B}(t) C𝒮(pB(t)pC(t))kBC(t)\displaystyle\in\sum_{C\in\mathcal{S}}(p_{B}(t)-p_{C}(t))k^{B\to C}(t) (18)
+i𝒦𝒮:Bi=B(pB(t)pCi(t))kiBCi(t)ui(t,p(t))\displaystyle\quad+\sum_{\begin{subarray}{c}i\in\mathcal{K}\cup\mathcal{S}:\\ B_{i}=B\end{subarray}}(p_{B}(t)-p_{C_{i}}(t))k_{i}^{B\to C_{i}}(t)u^{\ast}_{i}(t,p(t))

subject to pB(t^)=𝟙{A=B}p_{B}(\hat{t})=-\mathds{1}_{\{A=B\}} (pB(t^)=𝟙{A=B}p_{B}(\hat{t})=\mathds{1}_{\{A=B\}}), with B𝒮B\in\mathcal{S}, 0tt^0\leq t\leq\hat{t} and

ψi(t,p(t))\displaystyle\psi_{i}(t,p(t)) =(pCi(t)pBi(t))kiBiCi(t),\displaystyle=\big{(}p_{C_{i}}(t)-p_{B_{i}}(t)\big{)}k_{i}^{B_{i}\to C_{i}}(t),
ui(t,p(t))\displaystyle u^{\ast}_{i}(t,p(t)) {{𝔟i(t)},ψi(t,p(t))>0[𝔟i(t);𝔟i(t)],ψi(t,p(t))=0{𝔟i(t)},ψi(t,p(t))<0,\displaystyle\in\begin{cases}\{\mathfrak{b}_{i}(t)\}&,\ \psi_{i}(t,p(t))>0\\ [-\mathfrak{b}_{i}(t);\mathfrak{b}_{i}(t)]&,\ \psi_{i}(t,p(t))=0\\ \{-\mathfrak{b}_{i}(t)\}&,\ \psi_{i}(t,p(t))<0,\end{cases} (19)

for i𝒦𝒮i\in\mathcal{K}\cup\mathcal{S}, has a solution. Moreover, for any solution pp of (18), (4), the underlying solution π\pi that satisfies (12) and

π˙(t)\displaystyle\dot{\pi}(t) =h(t,π(t),u(t,p(t))),0tt^\displaystyle=h\big{(}t,\pi(t),u^{\ast}(t,p(t))\big{)},\quad 0\leq t\leq\hat{t} (20)

minimizes (maximizes) the value πA(t^)\pi_{A}(\hat{t}).

Proof.

In the following, we verify that a solution of (18)-(20) is a solution of the differential inclusion from Theorem 3. To this end, we first observe that

H(t,π,(u𝒦,u𝒮),p)=B𝒮pBhB(t,π,(u𝒦,u𝒮))\displaystyle H\big{(}t,\pi,(u_{\mathcal{K}},u_{\mathcal{S}}),p\big{)}=\sum_{B\in\mathcal{S}}p_{B}h_{B}(t,\pi,(u_{\mathcal{K}},u_{\mathcal{S}}))
=B,C𝒮(pCpB)(kBC+i𝒦𝒮kiBCui)πB\displaystyle\quad=\sum_{B,C\in\mathcal{S}}(p_{C}-p_{B})\Big{(}k^{B\to C}+\sum_{i\in\mathcal{K}\cup\mathcal{S}}k_{i}^{B\to C}u_{i}\Big{)}\pi_{B}
=B,C𝒮(pCpB)kBCπB\displaystyle\quad=\sum_{B,C\in\mathcal{S}}(p_{C}-p_{B})k^{B\to C}\pi_{B}
+i𝒦𝒮(pCipBi)πBikiBiCiui\displaystyle\qquad+\sum_{i\in\mathcal{K}\cup\mathcal{S}}(p_{C_{i}}-p_{B_{i}})\pi_{B_{i}}k_{i}^{B_{i}\to C_{i}}u_{i}

Hence, we infer that

maxu𝒦,u𝒮H(t,π,(u𝒦,u𝒮),p)=B,C𝒮(pCpB)kBCπB\displaystyle\max_{u_{\mathcal{K}},u_{\mathcal{S}}}H(t,\pi,(u_{\mathcal{K}},u_{\mathcal{S}}),p)=\sum_{B,C\in\mathcal{S}}(p_{C}-p_{B})k^{B\to C}\pi_{B}
+i𝒦𝒮maxui((pCipBi)kiBiCiπBi)ui\displaystyle\qquad+\sum_{i\in\mathcal{K}\cup\mathcal{S}}\max_{u_{i}}\big{(}(p_{C_{i}}-p_{B_{i}})k^{B_{i}\to C_{i}}_{i}\pi_{B_{i}}\big{)}u_{i}

This and Theorem 3 show that an optimal control uu^{\ast} must satisfy (4). Moreover, it implies that

maxu𝒦,u𝒮H(t,λπ+(1λ)π,(u𝒦,u𝒮),p)=λmaxu𝒦,u𝒮H(t,π,(u𝒦,u𝒮),p)+(1λ)maxu𝒦,u𝒮H(t,π,(u𝒦,u𝒮),p)\max_{u_{\mathcal{K}},u_{\mathcal{S}}}H(t,\lambda\pi+(1-\lambda)\pi^{\prime},(u_{\mathcal{K}},u_{\mathcal{S}}),p)\\ =\lambda\max_{u_{\mathcal{K}},u_{\mathcal{S}}}H(t,\pi,(u_{\mathcal{K}},u_{\mathcal{S}}),p)\\ +(1-\lambda)\max_{u_{\mathcal{K}},u_{\mathcal{S}}}H(t,\pi^{\prime},(u_{\mathcal{K}},u_{\mathcal{S}}),p)

for all 0λ10\leq\lambda\leq 1 and π,π>0𝒮\pi,\pi^{\prime}\in\mathbb{R}_{>0}^{\mathcal{S}}, thus yielding linearity (and thus also concavity) of H^\hat{H} on >0𝒮\mathbb{R}_{>0}^{\mathcal{S}}. The last statement follows by noting that

p˙E\displaystyle-\dot{p}_{E} =πE(B,C𝒮(pCpB)kBCπB\displaystyle=\partial_{\pi_{E}}\Big{(}\sum_{B,C\in\mathcal{S}}(p_{C}-p_{B})k^{B\to C}\pi_{B}
+i𝒦𝒮(pCipBi)kiBiCiπBiui)\displaystyle\quad+\sum_{i\in\mathcal{K}\cup\mathcal{S}}(p_{C_{i}}-p_{B_{i}})k^{B_{i}\to C_{i}}_{i}\pi_{B_{i}}u_{i}\Big{)}
=C𝒮(pCpE)kEC\displaystyle=\sum_{C\in\mathcal{S}}(p_{C}-p_{E})k^{E\to C}
+i:Bi=E(pCipE)kiECiui\displaystyle\quad+\sum_{i:B_{i}=E}(p_{C_{i}}-p_{E})k^{E\to C_{i}}_{i}u_{i}

for all E𝒮E\in\mathcal{S}. ∎

We wish to stress that Theorem 4 ensures that any solution pp of the differential inclusion (18), (4) induces an ODE solution π\pi of (20) such that πA(t^)=πA(t^)\pi_{A}(\hat{t})=\pi_{A}^{\ast}(\hat{t}), where πA(t^)\pi^{\ast}_{A}(\hat{t}) denotes the solution of (16). This stands in stark contrast to the standard version of Pontryagin’s principle [31] which provides only necessary conditions for optimality, meaning that the value πA(t^)\pi_{A}(\hat{t}) arising from the standard version [31] may fail to satisfy πA(t^)=πA(t^)\pi_{A}(\hat{t})=\pi^{\ast}_{A}(\hat{t}).

Solving a differential inclusion is a challenging task and requires one to assume in practice that it does not exhibit sliding or gazing modes [43, 44]. Fortunately, the next crucial results states that it is possible to obtain a specific solution of the differential inclusion (18), (4) by solving a Lipschitz continuous ODE system.

Theorem 5.

By replacing (4) with

ui(t,p(t))={𝔟i(t),ψi(t,p(t))0𝔟i(t),ψi(t,p(t))<0\displaystyle u^{\ast}_{i}(t,p(t))=\begin{cases}\mathfrak{b}_{i}(t)&,\ \psi_{i}(t,p(t))\geq 0\\ -\mathfrak{b}_{i}(t)&,\ \psi_{i}(t,p(t))<0\end{cases} (21)

the differential inclusion (18) becomes an ODE system which is Lipschitz continuous in tt and pp. With this change in place, the statement of Theorem 4 remains valid.

Proof.

Let 𝒫\mathcal{P} denote the drift of the ODE system (18) which underlies (21), that is

𝒫B(t,p)=C𝒮(pBpC)kBC(t)+i𝒦𝒮(pBipCi)kiBiCi(t)ui(t,p),\mathcal{P}_{B}(t,p)=\sum_{C\in\mathcal{S}}(p_{B}-p_{C})k^{B\to C}(t)\\ +\sum_{i\in\mathcal{K}\cup\mathcal{S}}(p_{B_{i}}-p_{C_{i}})k_{i}^{B_{i}\to C_{i}}(t)u^{\ast}_{i}(t,p),

with uu^{\ast} being as in (21). Fix some (t~,p~)[0;t^]×𝒮(\tilde{t},\tilde{p})\in[0;\hat{t}]\times\mathbb{R}^{\mathcal{S}} and pick further two sequences (tl,pl)l(t^{l},p^{l})_{l} and (τl,l)l(\tau^{l},\wp^{l})_{l} in [0;t^]×𝒮[0;\hat{t}]\times\mathbb{R}^{\mathcal{S}} which converge both to (t~,p~)(\tilde{t},\tilde{p}) as ll\to\infty. We first show that 𝒫B(tl,pl)𝒫B(τl,l)0\mathcal{P}_{B}(t^{l},p^{l})-\mathcal{P}_{B}(\tau^{l},\wp^{l})\to 0 as ll\to\infty. To this end, it suffices to observe that any i𝒦𝒮i\in\mathcal{K}\cup\mathcal{S} with ψi(t~,p~)=0\psi_{i}(\tilde{t},\tilde{p})=0 implies p~Bip~Ci=0\tilde{p}_{B_{i}}-\tilde{p}_{C_{i}}=0 (recall that kiBC0k_{i}^{B\to C}\not\equiv 0 yields kiBC>0k_{i}^{B\to C}>0). Hence, it holds that

|(pBilpCil)kiBiCi(tl)ui(tl,pl)\displaystyle|(p^{l}_{B_{i}}-p^{l}_{C_{i}})k_{i}^{B_{i}\to C_{i}}(t^{l})u^{\ast}_{i}(t^{l},p^{l})-
(BilCil)kiBiCi(τl)ui(τl,l)|\displaystyle\qquad(\wp^{l}_{B_{i}}-\wp^{l}_{C_{i}})k_{i}^{B_{i}\to C_{i}}(\tau^{l})u^{\ast}_{i}(\tau^{l},\wp^{l})|
sup0tt^𝔟i(t)kiBiCi(t)(|pBilpCil|+|BilCil|)0\displaystyle\quad\leq\sup_{0\leq t\leq\hat{t}}\mathfrak{b}_{i}(t)k_{i}^{B_{i}\to C_{i}}(t)\big{(}|p^{l}_{B_{i}}-p^{l}_{C_{i}}|+|\wp^{l}_{B_{i}}-\wp^{l}_{C_{i}}|\big{)}\to 0

as ll\to\infty. This shows the continuity of 𝒫\mathcal{P}. To see also the Lipschitzianity, define

Gi+\displaystyle G^{+}_{i} ={(t,p)[0;t^]×𝒮pCipBi>0}\displaystyle=\{(t,p)\in[0;\hat{t}]\times\mathbb{R}^{\mathcal{S}}\mid p_{C_{i}}-p_{B_{i}}>0\}
Gi\displaystyle G^{-}_{i} ={(t,p)[0;t^]×𝒮pCipBi<0}\displaystyle=\{(t,p)\in[0;\hat{t}]\times\mathbb{R}^{\mathcal{S}}\mid p_{C_{i}}-p_{B_{i}}<0\}

for each i𝒦𝒮i\in\mathcal{K}\cup\mathcal{S} with kiBiCi0k_{i}^{B_{i}\to C_{i}}\not\equiv 0. Note that ψi(t,p)>0\psi_{i}(t,p)>0 if and only if pCipBi>0p_{C_{i}}-p_{B_{i}}>0 because kiBiCi>0k_{i}^{B_{i}\to C_{i}}>0 whenever kiBiCi0k_{i}^{B_{i}\to C_{i}}\not\equiv 0. Moreover, for any s{1,+1}𝒦𝒮s\in\{-1,+1\}^{\mathcal{K}\cup\mathcal{S}}, 𝒫\mathcal{P} is Lipschitz continuous on any bounded subset of iGisi\bigcap_{i}G^{s_{i}}_{i} because kiBiCik_{i}^{B_{i}\to C_{i}} and kBiCik^{B_{i}\to C_{i}} are Lipschitz continuous on [0;t^][0;\hat{t}]. This shows that 𝒫\mathcal{P} is Lipschitz continuous on any bounded subset of siGisi\bigcup_{s}\bigcap_{i}G^{s_{i}}_{i}. With this, the continuity of 𝒫\mathcal{P} implies that 𝒫\mathcal{P} is Lipschitz continuous on any bounded subset of [0;t^]×𝒮[0;\hat{t}]\times\mathbb{R}^{\mathcal{S}}. ∎

In the remainder of the paper, we replace (4) by (21). Theorem 5 ensures that (18) admits a unique solution pp and that the underlying optimal uncertainty u(,p())u^{\ast}(\cdot,p(\cdot)) induces the minimal (maximal) value πA(t^)\pi_{A}^{\ast}(\hat{t}) via (21) and (20).

Refer to caption
(a)
Refer to caption
(b)
Figure 1: Visualization of the optimal control uu^{\ast} and the underlying solution πI\pi_{I}^{\ast} of (20) whose value πI(3.0)\pi_{I}^{\ast}(3.0) solves the minimization problem (16) in the case of δβ0.05\delta_{\beta}\equiv 0.05, εI0.10\varepsilon_{I}\equiv 0.10, πS0(0)=4\pi^{0}_{S}(0)=4, πI0(0)=1\pi^{0}_{I}(0)=1 and πR0(0)=1\pi^{0}_{R}(0)=1.

The next example demonstrates Theorem 4 and 5 in the context of the SIRS model from Example 1.

Example 3.

We have seen in Example 2 that our running example satisfies the requirements of Theorem 4. In particular, if κ^1\hat{\kappa}\equiv 1, then (18) and (21) rewrite to

p˙S(t)\displaystyle\dot{p}_{S}(t) =(VI(t)+uI(t,p(t)))(pS(t)pI(t))\displaystyle=\big{(}V_{I}(t)+u^{\ast}_{I}(t,p(t))\big{)}(p_{S}(t)-p_{I}(t)) (22)
p˙I(t)\displaystyle\dot{p}_{I}(t) =(κ^(t)+uβ(t,p(t)))(pI(t)pR(t))\displaystyle=\big{(}\hat{\kappa}(t)+u^{\ast}_{\beta}(t,p(t))\big{)}(p_{I}(t)-p_{R}(t))
p˙R(t)\displaystyle\dot{p}_{R}(t) =pR(t)pS(t)\displaystyle=p_{R}(t)-p_{S}(t)

and

uI(t,p(t))\displaystyle u^{\ast}_{I}(t,p(t)) ={εI(t),pI(t)pS(t)0εI(t),pI(t)pS(t)<0\displaystyle=\begin{cases}\varepsilon_{I}(t)&,\ p_{I}(t)-p_{S}(t)\geq 0\\ -\varepsilon_{I}(t)&,\ p_{I}(t)-p_{S}(t)<0\end{cases}
uβ(t,p(t))\displaystyle u^{\ast}_{\beta}(t,p(t)) ={δβ(t),pR(t)pI(t)0δβ(t),pR(t)pI(t)<0\displaystyle=\begin{cases}\delta_{\beta}(t)&,\ p_{R}(t)-p_{I}(t)\geq 0\\ -\delta_{\beta}(t)&,\ p_{R}(t)-p_{I}(t)<0\end{cases}

respectively. The minimal value of, say, πI𝔲(t^)\pi^{\mathfrak{u}}_{I}(\hat{t}) can be obtained as follows. First, solve the ODE system (22) where the boundary condition is given by pI(t^)=1p_{I}(\hat{t})=-1 and pS(t^)=pR(t^)=0p_{S}(\hat{t})=p_{R}(\hat{t})=0. Afterwards, using the obtained solution pp, solve the ODE system (20) using the controls uI(,p())u^{\ast}_{I}(\cdot,p(\cdot)) and uβ(,p())u^{\ast}_{\beta}(\cdot,p(\cdot)). A possible solution is visualized in Figure 1.

While Theorem 5 solves the problem from a theoretical point of view, it has to be noted that a numerical solution p¯\underline{p} of the Lipschitz continuous ODE system (4), (21) is an approximation of the true solution pp. Hence, for any t~\tilde{t} with ψi(t~,p(t~))0\psi_{i}(\tilde{t},p(\tilde{t}))\approx 0, the computation of the optimal uncertainty ui(t~)u_{i}(\tilde{t}) may be hindered by the numerical errors underlying the ODE solver. The next crucial result addresses this issue by stating that, essentially, for each such t~\tilde{t} the choice of ui(t~)u_{i}(\tilde{t}) is not important.

Theorem 6.

For any ξ>0\xi>0, it is possible to efficiently compute some ζ>0\zeta>0 such that the following holds. If 𝔲𝒰𝒦𝒮𝔟\mathfrak{u}\in\mathcal{U}_{\mathcal{K}\cup\mathcal{S}}^{\mathfrak{b}} is such that for all i𝒦𝒮i\in\mathcal{K}\cup\mathcal{S} it holds that 𝔲i(t)=ui(t,p(t))\mathfrak{u}_{i}(t)=u^{\ast}_{i}(t,p(t)) whenever |ψi(t,p(t))|ζ|\psi_{i}(t,p(t))|\geq\zeta, then |πA𝔲(t^)πA(t^)|ξ|\pi_{A}^{\mathfrak{u}}(\hat{t})-\pi_{A}^{\ast}(\hat{t})|\leq\xi, where πA𝔲\pi_{A}^{\mathfrak{u}} and πA\pi_{A}^{\ast} is the solution of (14) and (16), respectively.

Proof.

With c1:=2sup{𝔟i(t)i𝒦𝒮,0tT}c_{1}:=2\sup\{\mathfrak{b}_{i}(t)\mid i\in\mathcal{K}\cup\mathcal{S},0\leq t\leq T\}, c2:=V(0)1max{|kiBiCi(t)|i𝒦𝒮,0tT}c_{2}:=\lVert V(0)\rVert_{1}\cdot\max\{|k^{B_{i}\to C_{i}}_{i}(t)|\mid i\in\mathcal{K}\cup\mathcal{S},0\leq t\leq T\} and ζ=ξ/(T|𝒦𝒮|c1c2)\zeta=\xi/(T\cdot|\mathcal{K}\cup\mathcal{S}|c_{1}c_{2}), let the function u𝒰𝒦𝒮𝔟u\in\mathcal{U}_{\mathcal{K}\cup\mathcal{S}}^{\mathfrak{b}} be such that ui(t)=ui(t,p(t))u_{i}(t)=u_{i}^{\ast}(t,p(t)) whenever |pCi(t)pBi(t)|ζ|p_{C_{i}}(t)-p_{B_{i}}(t)|\geq\zeta. Using the same notation as in the proof of Theorem 3, we infer in the case when p(t^)𝟙{A=}()p(\hat{t})\equiv\mathds{1}_{\{A=\cdot\}}(\cdot) the following:

0\displaystyle 0 =0t^(phph+π(ph)(ππ))𝑑t\displaystyle=\int_{0}^{\hat{t}}\big{(}p\cdot h^{\prime}-p\cdot h^{\ast}+\partial_{\pi}(p\cdot h^{\ast})\cdot(\pi^{\ast}-\pi)\big{)}dt
=0t^(phph+p˙(ππ))𝑑t\displaystyle=\int_{0}^{\hat{t}}\big{(}p\cdot h^{\prime}-p\cdot h^{\ast}+\dot{p}\cdot(\pi-\pi^{\ast})\big{)}dt
=0t^(phphph+ph)𝑑t+[p(ππ)]0t^\displaystyle=\int_{0}^{\hat{t}}\big{(}p\cdot h^{\prime}-p\cdot h^{\ast}-p\cdot h+p\cdot h^{\ast}\big{)}dt+[p\cdot(\pi-\pi^{\ast})]_{0}^{\hat{t}}
=0t^(phph)𝑑t+p(t^)(π(t^)π(t^))\displaystyle=\int_{0}^{\hat{t}}\big{(}p\cdot h^{\prime}-p\cdot h)dt+p(\hat{t})\cdot(\pi(\hat{t})-\pi^{\ast}(\hat{t}))
=0t^(phph)𝑑t+πA(t^)πA(t^),\displaystyle=\int_{0}^{\hat{t}}\big{(}p\cdot h^{\prime}-p\cdot h)dt+\pi_{A}(\hat{t})-\pi^{\ast}_{A}(\hat{t}),

where the first identity holds true because πph\pi\mapsto p\cdot h^{\ast} is linear (see proof of Theorem 4), while the other identities follow as in the proof of Theorem 3. The above calculation yields

|πA(t^)πA(t^)|\displaystyle|\pi_{A}(\hat{t})-\pi^{\ast}_{A}(\hat{t})| =|0t^(phph)𝑑t|\displaystyle=\Big{|}\int_{0}^{\hat{t}}\big{(}p\cdot h^{\prime}-p\cdot h)dt\Big{|}
=|0t^i𝒦𝒮(pCi(t)pBi(t))πBi(t)\displaystyle=\Big{|}\int_{0}^{\hat{t}}\sum_{i\in\mathcal{K}\cup\mathcal{S}}(p_{C_{i}}(t)-p_{B_{i}}(t))\cdot\pi_{B_{i}}(t)\cdot\ldots
kiBiCi(t)(ui(t,p(t))ui(t))dt|\displaystyle\qquad\ldots\cdot k_{i}^{B_{i}\to C_{i}}(t)\cdot(u_{i}^{\ast}(t,p(t))-u_{i}(t))dt\Big{|}
T|𝒦𝒮|c1c2ζ\displaystyle\leq T|\mathcal{K}\cup\mathcal{S}|c_{1}c_{2}\zeta
=ξ,\displaystyle=\xi,

where the second equality follows from the proof of Theorem 4. ∎

The above theorem states, essentially, that the choice of ui(t)u_{i}(t) is irrelevant at all time points tt with |ψi(t,p(t))|<ζ|\psi_{i}(t,p(t))|<\zeta. Hence, an uncertainty 𝔲\mathfrak{u} that is induced by a numerical solution of (18) can be used to solve (16).

We end the section by mentioning the following generalization of Theorem 4.

Remark 5.

The statement of Theorem 4 extends to the case where one seeks to minimize (maximize) the linear combination A𝒮σAπA(t^)\sum_{A\in\mathcal{S}}\sigma_{A}\pi_{A}(\hat{t}), where σ𝒮\sigma\in\mathbb{R}^{\mathcal{S}}. The corresponding boundary condition of (18) is given by p(t^)=σp(\hat{t})=-\sigma (p(t^)=σp(\hat{t})=\sigma).

IV-B Proof of Theorem 1

Armed with Theorem 4 and Theorem 5, we are now in a position to prove Theorem 1 under the assumption that the decoupled CTMC from Definition 5 satisfies (A1) and (A2). The assumption will be dropped in Section IV-C.

Proof of Theorem 1.

Let us assume towards a contradiction that δ\delta and ε\varepsilon are positive piecewise constant functions, that κ^\hat{\kappa} is analytic and that there exists an analytic uncertainty function u𝒦𝒰𝒦δu_{\mathcal{K}}\in\mathcal{U}_{\mathcal{K}}^{\delta}, a time 0<t^T0<\hat{t}\leq T and some A𝒮A\in\mathcal{S} such that |VAu𝒦(t^)VA0(t^)|=εA(t^)|V^{u_{\mathcal{K}}}_{A}(\hat{t})-V^{0}_{A}(\hat{t})|=\varepsilon_{A}(\hat{t}) and |VBu𝒦(t)VB0(t)|<εB(t)|V^{u_{\mathcal{K}}}_{B}(t)-V^{0}_{B}(t)|<\varepsilon_{B}(t) for all B𝒮B\in\mathcal{S} and 0t<t^0\leq t<\hat{t}. Since εA(t^)>0\varepsilon_{A}(\hat{t})>0, we may assume without loss of generality that VAu𝒦(t^)>VA0(t^)V_{A}^{u_{\mathcal{K}}}(\hat{t})>V_{A}^{0}(\hat{t}). With this, we consider the optimization problem

compute the maximal value of πA(u𝒦,u𝒮)(t^)  such that π˙(t)=h(t,π(t),(u𝒦(t),u𝒮(t))) subject to (12) and (u𝒦,u𝒮)𝒰𝒦δ×𝒰𝒮ε,\text{compute the maximal value of $\pi^{(u^{\prime}_{\mathcal{K}},u^{\prime}_{\mathcal{S}})}_{A}(\hat{t})$ }\\ \text{ such that }\dot{\pi}(t)=h\big{(}t,\pi(t),(u^{\prime}_{\mathcal{K}}(t),u^{\prime}_{\mathcal{S}}(t))\big{)}\\ \text{ subject to (\ref{eq_init_pi}) and $(u^{\prime}_{\mathcal{K}},u^{\prime}_{\mathcal{S}})\in\mathcal{U}_{\mathcal{K}}^{\delta}\times\mathcal{U}_{\mathcal{S}}^{\varepsilon}$}, (23)

where hh is as in (14). Let πA(t^)\pi^{\ast}_{A}(\hat{t}) denote the solution of (23) and set 𝔲:=(u𝒦,u𝒮)\mathfrak{u}:=(u_{\mathcal{K}},u_{\mathcal{S}}) with u𝒮:=Vu𝒦V0u_{\mathcal{S}}:=V^{u_{\mathcal{K}}}-V^{0}. Since εA(t^)=|πA𝔲(t^)πA0(t^)||πA(t^)πA0(t^)|=(ΦA(ε))(t^)εA(t^)\varepsilon_{A}(\hat{t})=|\pi_{A}^{\mathfrak{u}}(\hat{t})-\pi_{A}^{0}(\hat{t})|\leq|\pi_{A}^{\ast}(\hat{t})-\pi_{A}^{0}(\hat{t})|=(\Phi_{A}(\varepsilon))(\hat{t})\leq\varepsilon_{A}(\hat{t}), we infer πA(t^)=πA𝔲(t^)\pi^{\ast}_{A}(\hat{t})=\pi_{A}^{\mathfrak{u}}(\hat{t}). Hence, 𝔲\mathfrak{u} is an optimal control and Theorem 4 and 5 imply that ui(t)=ui(t)u_{i}(t)=u_{i}^{\ast}(t) whenever ψi(t,p(t))0\psi_{i}(t,p(t))\neq 0, where ui(t)u_{i}^{\ast}(t) is as in (21), i𝒦𝒮i\in\mathcal{K}\cup\mathcal{S} and pp solves (18) and (21). At the same time, the analyticity of u𝒦u_{\mathcal{K}}, κ^\hat{\kappa} and (Θj)j(\Theta_{j})_{j} implies that u𝒮=Vu𝒦V0u_{\mathcal{S}}=V^{u_{\mathcal{K}}}-V^{0} is analytic as well [41]. Since δ\delta and ε\varepsilon are piecewise constant and none of the uiu_{i} can be locally constant (otherwise the uiu_{i} in question would be constant on the whole [0;T][0;T] by the identity theorem), we infer that ψi(,p())0\psi_{i}(\cdot,p(\cdot))\equiv 0 for all i𝒦𝒮i\in\mathcal{K}\cup\mathcal{S}. Recall from the proof of Theorem 6 that

πA(t^)πA𝔲(t^)=0t^(phph)𝑑t\displaystyle\pi^{\ast}_{A}(\hat{t})-\pi_{A}^{\mathfrak{u}}(\hat{t})=\int_{0}^{\hat{t}}\big{(}p\cdot h^{\prime}-p\cdot h)dt (24)

and that the Hamiltonian H(t′′,π′′,(u𝒦′′,u𝒮′′),p′′)H(t^{\prime\prime},\pi^{\prime\prime},(u^{\prime\prime}_{\mathcal{K}},u^{\prime\prime}_{\mathcal{S}}),p^{\prime\prime}) is invariant with respect to the value of ui′′u^{\prime\prime}_{i} when ψi(t′′,p′′)=0\psi_{i}(t^{\prime\prime},p^{\prime\prime})=0. This, the above discussion and (24) imply that πA(t^)=πA(u𝒦,u𝒮)(t^)\pi^{\ast}_{A}(\hat{t})=\pi_{A}^{(u^{\prime}_{\mathcal{K}},u^{\prime}_{\mathcal{S}})}(\hat{t}) for any uncertainty (u𝒦,u𝒮)(u^{\prime}_{\mathcal{K}},u^{\prime}_{\mathcal{S}}). As this contradicts VAu𝒦(t^)>VA0(t^)V_{A}^{u_{\mathcal{K}}}(\hat{t})>V_{A}^{0}(\hat{t}), we infer the statement of the theorem in the case where δ\delta and ε\varepsilon are piecewise constant and u𝒦u_{\mathcal{K}} and κ^\hat{\kappa} are analytic. Thanks to the fact that analytic and piecewise constant functions are dense in set of bounded measurable functions on [0;T][0;T], this suffices the claim. ∎

IV-C Sub-Optimal Solutions for inhomogeneous CTMDPs

It may happen that the decoupled CTMC from Definition 5 violates (A1) or (A2). We next discuss a procedure which allows one to transform a CTMC violating (A1)-(A2) into one which satisfies (A1)-(A2). We convey the main ideas using concrete examples.

The extension of Example 1 discussed next induces a decoupled CTMC which violates (A1).

Example 4.

Consider the agent network ({S,I,R},(\{S,I,R\}, {α,β},\{\alpha,\beta\}, {Θ1,Θ2,Θ3})\{\Theta_{1},\Theta_{2},\Theta_{3}\}) given by

R1={SI,II},\displaystyle R_{1}\!=\!\{S\to I,I\to I\}, R2={IR},\displaystyle R_{2}\!=\!\{I\to R\}, R3={RS},\displaystyle R_{3}\!=\!\{R\to S\},
Θ1(V,κ)=καVSVI,\displaystyle\Theta_{1}(V,\kappa)\!=\!\kappa_{\alpha}V_{S}V_{I}, Θ2(V,κ)=κβVI,\displaystyle\Theta_{2}(V,\kappa)\!=\!\kappa_{\beta}V_{I}, Θ3(V,κ)=VR,\displaystyle\Theta_{3}(V,\kappa)\!=\!V_{R},

where V=(VS,VI,VR)V=(V_{S},V_{I},V_{R}) and κ=(κα,κβ)\kappa=(\kappa_{\alpha},\kappa_{\beta}). Let the time-varying uncertain infection and recovery parameter functions be given by κακ^α+uα\kappa_{\alpha}\equiv\hat{\kappa}_{\alpha}+u_{\alpha} and κβκ^β+uβ\kappa_{\beta}\equiv\hat{\kappa}_{\beta}+u_{\beta}, respectively, where u=(uα,uβ)𝒰{α,β}δu=(u_{\alpha},u_{\beta})\in\mathcal{U}^{\delta}_{\{\alpha,\beta\}} and δ=(δα,δβ)\delta=(\delta_{\alpha},\delta_{\beta}). Then, the AN induces the reactions

S+I\displaystyle S+I \xlongrightarrow(κ^α+uα)VSVII+I,\displaystyle\xlongrightarrow{(\hat{\kappa}_{\alpha}+u_{\alpha})V_{S}V_{I}}I+I, I\displaystyle I \xlongrightarrow(κ^β+uβ)VIR,\displaystyle\xlongrightarrow{(\hat{\kappa}_{\beta}+u_{\beta})V_{I}}R, R\displaystyle R \xlongrightarrowVRS\displaystyle\xlongrightarrow{V_{R}}S

and the transition rates of the decoupled CTMC from Definition 5 are given by

rS,I(V0+u𝒮,κ^+u𝒦)\displaystyle r_{S,I}(V^{0}+u_{\mathcal{S}},\hat{\kappa}+u_{\mathcal{K}}) =(κ^α+uα)(VI0+uI)\displaystyle=(\hat{\kappa}_{\alpha}+u_{\alpha})(V^{0}_{I}+u_{I})
rI,R(V0+u𝒮,κ^+u𝒦)\displaystyle r_{I,R}(V^{0}+u_{\mathcal{S}},\hat{\kappa}+u_{\mathcal{K}}) =κ^β+uβ\displaystyle=\hat{\kappa}_{\beta}+u_{\beta}
rR,S(V0+u𝒮,κ^+u𝒦)\displaystyle r_{R,S}(V^{0}+u_{\mathcal{S}},\hat{\kappa}+u_{\mathcal{K}}) =1\displaystyle=1

Since

(κ^α+uα)(VI0+uI)=κ^αVI0+κ^αuI+uαVI0+uαuI(\hat{\kappa}_{\alpha}+u_{\alpha})(V^{0}_{I}+u_{I})=\hat{\kappa}_{\alpha}V^{0}_{I}+\hat{\kappa}_{\alpha}u_{I}+u_{\alpha}V^{0}_{I}+u_{\alpha}u_{I}

leads to the nonlinear term uαuIu_{\alpha}u_{I}, the decoupled CTMC does not satisfy (A1).

The idea is to substitute any nonlinear expression of uncertainties by a new uncertainty that bounds the original nonlinear expression. For instance, in the case of Example 4, we substitute uαuIu_{\alpha}u_{I} with the new uncertainty uα|Iu_{\alpha|I} and set 𝔟α|I:=𝔟α𝔟I\mathfrak{b}_{\alpha|I}:=\mathfrak{b}_{\alpha}\mathfrak{b}_{I} because |uα()uI()|𝔟α()𝔟I()|u_{\alpha}(\cdot)u_{I}(\cdot)|\leq\mathfrak{b}_{\alpha}(\cdot)\mathfrak{b}_{I}(\cdot).

This motivates the following concept.

Definition 7.

For ε<V0\varepsilon<V^{0} a family of transition rates (r^B,C)B,C(\hat{r}_{B,C})_{B,C} is an envelope of the transition rates (rB,C)B,C(r_{B,C})_{B,C} from Definition 5 if there exist Lipschitz continuous functions kBC,kiBC[0;T]0k^{B\to C},k^{B\to C}_{i}\in[0;T]\to\mathbb{R}_{\geq 0}, an index set \mathcal{I} with (𝒦𝒮)=\mathcal{I}\cap(\mathcal{K}\cup\mathcal{S})=\emptyset and a piecewise continuous function b:[0;T]>0b:[0;T]\to\mathbb{R}^{\mathcal{I}}_{>0} such that for all (u𝒦,u𝒮)𝒰𝒦δ×𝒰𝒮ε(u_{\mathcal{K}},u_{\mathcal{S}})\in\mathcal{U}_{\mathcal{K}}^{\delta}\times\mathcal{U}_{\mathcal{S}}^{\varepsilon} one can pick a u𝒰bu_{\mathcal{I}}\in\mathcal{U}_{\mathcal{I}}^{b} so that

rB,C(V0(t)+u𝒮(t),κ^(t)+u𝒦(t))=kBC(t)+i𝒦𝒮kiBC(t)ui(t)r^B,C(t,u𝒦(t),u𝒮(t),u(t)):=r_{B,C}\big{(}V^{0}(t)+u_{\mathcal{S}}(t),\hat{\kappa}(t)+u_{\mathcal{K}}(t)\big{)}\\ =\underbrace{k^{B\to C}(t)+\sum_{i\in\mathcal{K}\cup\mathcal{S}\cup\mathcal{I}}k^{B\to C}_{i}(t)u_{i}(t)}_{\displaystyle\hat{r}_{B,C}(t,u_{\mathcal{K}}(t),u_{\mathcal{S}}(t),u_{\mathcal{I}}(t)):=}

for all 0tT0\leq t\leq T.

A possible envelope of the decoupled CTMC from Example 4 is given by r^I,R:=rI,R\hat{r}_{I,R}:=r_{I,R}, r^R,S:=rR,S\hat{r}_{R,S}:=r_{R,S} and

r^S,I(t,u𝒦(t),u𝒮(t),u(t))\displaystyle\hat{r}_{S,I}(t,u_{\mathcal{K}}(t),u_{\mathcal{S}}(t),u_{\mathcal{I}}(t))
:=κ^α(t)VI0(t)+κ^α(t)uI(t)+uα(t)VI0(t)+uα|I(t),\displaystyle\qquad:=\hat{\kappa}_{\alpha}(t)V^{0}_{I}(t)+\hat{\kappa}_{\alpha}(t)u_{I}(t)+u_{\alpha}(t)V^{0}_{I}(t)+u_{\alpha|I}(t),

with ={α|I}\mathcal{I}=\{\alpha|I\} and 𝔟α|I:=𝔟α𝔟I\mathfrak{b}_{\alpha|I}:=\mathfrak{b}_{\alpha}\mathfrak{b}_{I}.

By construction, any envelope satisfies (A1). It may however happen that an envelope does not satisfy (A2). To see this on an example, we extend Example 4 to the multi-class SIRS model [7] in which the overall population of agents is partitioned into classes, thus providing a better picture of the actual spread dynamics [38].

Example 5.

With N2N\geq 2 being the number of classes, the multi-class SIRS agent network is given by the atomic reactions

R1ν,μ\displaystyle R^{\nu,\mu}_{1} ={SνIν,IμIμ},\displaystyle=\{S_{\nu}\to I_{\nu},I_{\mu}\to I_{\mu}\}, Θ1ν,μ(V,κ)\displaystyle\Theta^{\nu,\mu}_{1}(V,\kappa) =καν,μVSνVIμ,\displaystyle=\kappa_{\alpha_{\nu,\mu}}V_{S_{\nu}}V_{I_{\mu}},
R2ν\displaystyle R^{\nu}_{2} ={IνRν},\displaystyle=\{I_{\nu}\to R_{\nu}\}, Θ2ν(V,κ)\displaystyle\Theta^{\nu}_{2}(V,\kappa) =κβνVIν,\displaystyle=\kappa_{\beta_{\nu}}V_{I_{\nu}},
R3ν\displaystyle R^{\nu}_{3} ={RνSν},\displaystyle=\{R_{\nu}\to S_{\nu}\}, Θ3ν(V,κ)\displaystyle\Theta^{\nu}_{3}(V,\kappa) =κγνVRν,\displaystyle=\kappa_{\gamma_{\nu}}V_{R_{\nu}},

where 1ν,μN1\leq\nu,\mu\leq N. In the case where all rates are subject to uncertainty, the reactions are

Sν+Iμ\displaystyle S_{\nu}+I_{\mu} \xlongrightarrow(κ^αν,μ+uαν,μ)VSνVIμIν+Iμ\displaystyle\xlongrightarrow{(\hat{\kappa}_{\alpha_{\nu,\mu}}+u_{\alpha_{\nu,\mu}})V_{S_{\nu}}V_{I_{\mu}}}I_{\nu}+I_{\mu} (25)
Iν\displaystyle I_{\nu} \xlongrightarrow(κ^βν+uβν)VIνRν\displaystyle\xlongrightarrow{(\hat{\kappa}_{\beta_{\nu}}+u_{\beta_{\nu}})V_{I_{\nu}}}R_{\nu}
Rν\displaystyle R_{\nu} \xlongrightarrow(κ^γν+uγν)VRνSν\displaystyle\xlongrightarrow{(\hat{\kappa}_{\gamma_{\nu}}+u_{\gamma_{\nu}})V_{R_{\nu}}}S_{\nu}

The first reaction expresses the fact that a susceptible agent of class ν\nu may be infected by an infected agent from class μ\mu. The transition rates of the decoupled CTMC are

rSν,Iν(V0+u𝒮,κ^+u𝒦)\displaystyle r_{S_{\nu},I_{\nu}}(V^{0}+u_{\mathcal{S}},\hat{\kappa}+u_{\mathcal{K}}) =μ(κ^αν,μ+uαν,μ)(VIμ0+uIμ)\displaystyle=\sum_{\mu}(\hat{\kappa}_{\alpha_{\nu,\mu}}+u_{\alpha_{\nu,\mu}})(V^{0}_{I_{\mu}}+u_{I_{\mu}})
rIν,Rν(V0+u𝒮,κ^+u𝒦)\displaystyle r_{I_{\nu},R_{\nu}}(V^{0}+u_{\mathcal{S}},\hat{\kappa}+u_{\mathcal{K}}) =κ^βν+uβν\displaystyle=\hat{\kappa}_{\beta_{\nu}}+u_{\beta_{\nu}}
rRν,Sν(V0+u𝒮,κ^+u𝒦)\displaystyle r_{R_{\nu},S_{\nu}}(V^{0}+u_{\mathcal{S}},\hat{\kappa}+u_{\mathcal{K}}) =κ^γν+uγν\displaystyle=\hat{\kappa}_{\gamma_{\nu}}+u_{\gamma_{\nu}}

The nonlinear terms uαν,μuIμu_{\alpha_{\nu,\mu}}u_{I_{\mu}} prevent the decoupled CTMC to satisfy (A1). Similarly to Example 4, we thus consider the envelope

r^Sν,Iν\displaystyle\hat{r}_{S_{\nu},I_{\nu}} :=μ(κ^αν,μVIμ0+κ^αν,μuIμ+uαν,μVIμ0+uαν,μ|Iμ)\displaystyle:=\sum_{\mu}\big{(}\hat{\kappa}_{\alpha_{\nu,\mu}}V^{0}_{I_{\mu}}+\hat{\kappa}_{\alpha_{\nu,\mu}}u_{I_{\mu}}+u_{\alpha_{\nu,\mu}}V^{0}_{I_{\mu}}+u_{\alpha_{\nu,\mu}|I_{\mu}}\big{)}
r^Iν,Rν\displaystyle\hat{r}_{I_{\nu},R_{\nu}} :=κ^βν+uβν\displaystyle:=\hat{\kappa}_{\beta_{\nu}}+u_{\beta_{\nu}}
r^Rν,Sν\displaystyle\hat{r}_{R_{\nu},S_{\nu}} :=κ^γν+uγν\displaystyle:=\hat{\kappa}_{\gamma_{\nu}}+u_{\gamma_{\nu}} (26)

with 𝔟αν,μ|Iμ:=𝔟αν,μ𝔟Iμ\mathfrak{b}_{\alpha_{\nu,\mu}|I_{\mu}}:=\mathfrak{b}_{\alpha_{\nu,\mu}}\mathfrak{b}_{I_{\mu}}. Unfortunately, envelope (5) violates (A2) because each uIμu_{I_{\mu}} is contained in r^S1,I1\hat{r}_{S_{1},I_{1}}, …, r^SN,IN\hat{r}_{S_{N},I_{N}}.

We continue by observing that envelope (5) can be transformed into a set of transition rates which satisfies (A1) and (A2). Indeed, if we substitute in each r^Sν,Iν\hat{r}_{S_{\nu},I_{\nu}} from (5) the uncertainty uIμu_{I_{\mu}} with uIν,μu_{I_{\nu,\mu}}, the transition rates

r~Sν,Iν\displaystyle\tilde{r}_{S_{\nu},I_{\nu}} :=μ(κ^αν,μVIμ0+κ^αν,μuIν,μ+uαν,μVIμ0+uαν,μ|Iμ)\displaystyle:=\sum_{\mu}\Big{(}\hat{\kappa}_{\alpha_{\nu,\mu}}V^{0}_{I_{\mu}}+\hat{\kappa}_{\alpha_{\nu,\mu}}u_{I_{\nu,\mu}}+u_{\alpha_{\nu,\mu}}V^{0}_{I_{\mu}}+u_{\alpha_{\nu,\mu}|I_{\mu}}\big{)}
r~Iν,Rν\displaystyle\tilde{r}_{I_{\nu},R_{\nu}} :=κ^βν+uβν\displaystyle:=\hat{\kappa}_{\beta_{\nu}}+u_{\beta_{\nu}}
r~Rν,Sν\displaystyle\tilde{r}_{R_{\nu},S_{\nu}} :=κ^γν+uγν\displaystyle:=\hat{\kappa}_{\gamma_{\nu}}+u_{\gamma_{\nu}} (27)

define a CTMC which satisfies (A1) and (A2). This is because every uncertainty function uiu_{i}, where i𝒦𝒮i\in\mathcal{K}\cup\mathcal{S}\cup\mathcal{I} and

\displaystyle\mathcal{I} ={αν,μ|Iμ1ν,μN}{Iν,μ1ν,μN}\displaystyle=\{\alpha_{\nu,\mu}|I_{\mu}\mid 1\leq\nu,\mu\leq N\}\cup\{I_{\nu,\mu}\mid 1\leq\nu,\mu\leq N\}

with 𝔟Iν,μ:=𝔟Iμ\mathfrak{b}_{I_{\nu,\mu}}:=\mathfrak{b}_{I_{\mu}} and 𝔟αν,μ|Iμ:=𝔟αν,μ𝔟Iμ\mathfrak{b}_{\alpha_{\nu,\mu}|I_{\mu}}:=\mathfrak{b}_{\alpha_{\nu,\mu}}\mathfrak{b}_{I_{\mu}}, appears in exactly one transition rate r~B,C\tilde{r}_{B,C}.

This above discussion motivates the following.

Definition 8.

Assume that (r^B,C)B,C(\hat{r}_{B,C})_{B,C} is an envelope of (rB,C)B,C(r_{B,C})_{B,C} given by

r^B,C=kBC+i𝒦𝒮kiBCui\hat{r}_{B,C}=k^{B\to C}+\sum_{i\in\mathcal{K}\cup\mathcal{S}\cup\mathcal{I}}k^{B\to C}_{i}u_{i}

for all B,C𝒮B,C\in\mathcal{S} and let 0˙1=𝒦𝒮\mathcal{I}_{0}\dot{\cup}\mathcal{I}_{1}=\mathcal{K}\cup\mathcal{S}\cup\mathcal{I} be such that (r^B,C)B,C(\hat{r}_{B,C})_{B,C} violates (A2) for each i1i\in\mathcal{I}_{1}. Then, the transition rate r~B,C\tilde{r}_{B,C} arises from r^B,C\hat{r}_{B,C} by substituting each occurrence of uiu_{i} in r^B,C\hat{r}_{B,C} with ui|BCu_{i|B\to C}, where i1i\in\mathcal{I}_{1}. By setting 𝔟i|BC:=𝔟i\mathfrak{b}_{i|B\to C}:=\mathfrak{b}_{i}, the coarsening of (r^B,C)B,C(\hat{r}_{B,C})_{B,C} is given by (r~B,C)B,C(\tilde{r}_{B,C})_{B,C}.

Remark 6.

Note that (IV-C) is, up to a renaming of indices, a coarsening of the envelope (5). This can be seen by substituting each uIν,μu_{I_{\nu,\mu}} with uIμ|SνIνu_{I_{\mu}|S_{\nu}\to I_{\nu}}.

The next result states that the coarsening of an envelope of the decoupled CTMC from Definition 5 allows one to estimate \mathcal{E} from Definition 4.

Theorem 7.

Given the decoupled CTMC from Definition 5, let us assume that (r^B,C)B,C(\hat{r}_{B,C})_{B,C} is an envelope for (rB,C)B,C(r_{B,C})_{B,C}. Let further (r~B,C)B,C(\tilde{r}_{B,C})_{B,C} denote the coarsening of (r^B,C)B,C(\hat{r}_{B,C})_{B,C} as given in Definition 8 and let

π~˙𝔲~(t)\displaystyle\dot{\tilde{\pi}}^{\mathfrak{\tilde{u}}}(t) =h~(t,π~𝔲~(t),𝔲~(t))\displaystyle=\tilde{h}(t,\tilde{\pi}^{\mathfrak{\tilde{u}}}(t),\mathfrak{\tilde{u}}(t))
:=C:CBr~B,C(t,𝔲~(t))π~B𝔲~(t)\displaystyle:=-\sum_{C:C\neq B}\tilde{r}_{B,C}(t,\mathfrak{\tilde{u}}(t))\tilde{\pi}^{\mathfrak{\tilde{u}}}_{B}(t)
+C:CBr~C,B(t,𝔲~(t))π~C𝔲~(t)\displaystyle\qquad+\sum_{C:C\neq B}\tilde{r}_{C,B}(t,\mathfrak{\tilde{u}}(t))\tilde{\pi}^{\mathfrak{\tilde{u}}}_{C}(t) (28)

denote the Kolmogorov equations underlying the coarsening (r~B,C)B,C(\tilde{r}_{B,C})_{B,C}. Set further π~𝔲(0)=V(0)\tilde{\pi}^{\mathfrak{u}}(0)=V(0) and

(ΨB(ε))(t)=sup{|π~B𝔲~(t)π~B0(t)||𝔲~𝒰𝒦δ×𝒰𝒮ε×𝒰b}(\Psi_{B}(\varepsilon))(t)=\sup\big{\{}|\tilde{\pi}_{B}^{\mathfrak{\tilde{u}}}(t)-\tilde{\pi}_{B}^{0}(t)|\ \big{|}\ \mathfrak{\tilde{u}}\in\mathcal{U}^{\delta}_{\mathcal{K}}\times\mathcal{U}^{\varepsilon}_{\mathcal{S}}\times\mathcal{U}^{b}_{\mathcal{I}}\big{\}}

Then, applying the fixed point iteration algorithm of Theorem 2 to Ψ\Psi instead of Φ\Phi yields a bound on \mathcal{E}. Moreover, Theorem 4 and Theorem 5 carry over to the extended set of uncertainties 𝒰𝒦δ×𝒰𝒮ε×𝒰b\mathcal{U}^{\delta}_{\mathcal{K}}\times\mathcal{U}^{\varepsilon}_{\mathcal{S}}\times\mathcal{U}^{b}_{\mathcal{I}} and can be used to compute Ψ\Psi.

Algorithm 1 Over-Approximation Routine.
0: An agent network (𝒮,𝒦,)(\mathcal{S},\mathcal{K},\mathcal{F}) and uncertainty set 𝒰𝒦δ\mathcal{U}_{\mathcal{K}}^{\delta}, a finite time horizon T>0T>0, some (small) positive function ε(0)\varepsilon^{(0)} and a numerical threshold η(0;1)\eta\in(0;1).
0: Formal bound of \mathcal{E} from Definition 4.
1:compute the transition rates (rB,C)B,C(r_{B,C})_{B,C} of the
2:     decoupled CTMC from Definition 5
3:if (rB,C)B,C(r_{B,C})_{B,C} violates (A1) then
4:  compute an envelope (r~B,C)B,C(\tilde{r}_{B,C})_{B,C} of (rB,C)B,C(r_{B,C})_{B,C}
5:else
6:  set (r~B,C)B,C(\tilde{r}_{B,C})_{B,C} to (rB,C)B,C(r_{B,C})_{B,C} and \mathcal{I} to \emptyset
7:end if
8:compute the coarsening (r^B,C)B,C(\hat{r}_{B,C})_{B,C} of (r~B,C)B,C(\tilde{r}_{B,C})_{B,C}
9:set ε𝑜𝑙𝑑\varepsilon^{\mathit{old}} to zero ε(0)\varepsilon^{(0)}
10:while true do
11:  compute Ψ(ε𝑜𝑙𝑑)\Psi(\varepsilon^{\mathit{old}}) from Theorem 7 using Theorem 4
12:  set ε𝑛𝑒𝑤\varepsilon^{\mathit{new}} to Ψ(ε𝑜𝑙𝑑)\Psi(\varepsilon^{\mathit{old}})
13:  if not (ε𝑛𝑒𝑤<V0\varepsilon^{\mathit{new}}<V^{0}then
14:   return  \infty
15:  else if (ηmaxA𝒮,t[0;T]|εA𝑛𝑒𝑤(t)εA𝑜𝑙𝑑(t)|\eta\geq\max_{A\in\mathcal{S},t\in[0;T]}|\varepsilon^{\mathit{new}}_{A}(t)-\varepsilon^{\mathit{old}}_{A}(t)|) then
16:   return  ε𝑛𝑒𝑤\varepsilon^{\mathit{new}}
17:  end if
18:  set ε𝑜𝑙𝑑\varepsilon^{\mathit{old}} to ε𝑛𝑒𝑤\varepsilon^{\mathit{new}}
19:end while
Proof.

To see that Ψ(ε)ε\Psi(\varepsilon)\leq\varepsilon implies ε\mathcal{E}\leq\varepsilon, let ε\varepsilon, δ\delta, κ^\hat{\kappa}, u𝒦u_{\mathcal{K}}, u𝒮u_{\mathcal{S}}, 𝔲\mathfrak{u}, t^\hat{t} and AA be as in the proof from Section IV-B. Then, it holds that εA(t^)=|πA𝔲(t^)πA0(t^)||π~A(t^)π~A0(t^)|=(ΨA(ε))(t^)εA(t^)\varepsilon_{A}(\hat{t})=|\pi_{A}^{\mathfrak{u}}(\hat{t})-\pi_{A}^{0}(\hat{t})|\leq|\tilde{\pi}_{A}^{\ast}(\hat{t})-\tilde{\pi}_{A}^{0}(\hat{t})|=(\Psi_{A}(\varepsilon))(\hat{t})\leq\varepsilon_{A}(\hat{t}), where π~A(t^)\tilde{\pi}_{A}^{\ast}(\hat{t}) solves

compute the maximal value of π~A(u𝒦,u𝒮,u)(t^)  such that π~˙(t)=h~(t,π~(t),(u𝒦(t),u𝒮(t),u(t))), (12) and (u𝒦,u𝒮,u)𝒰𝒦δ×𝒰𝒮ε×𝒰b\text{compute the maximal value of $\tilde{\pi}^{(u^{\prime}_{\mathcal{K}},u^{\prime}_{\mathcal{S}},u^{\prime}_{\mathcal{I}})}_{A}(\hat{t})$ }\\ \text{ such that }\dot{\tilde{\pi}}(t)=\tilde{h}\big{(}t,\tilde{\pi}(t),(u^{\prime}_{\mathcal{K}}(t),u^{\prime}_{\mathcal{S}}(t),u^{\prime}_{\mathcal{I}}(t))\big{)},\\ \text{ (\ref{eq_init_pi}) and $(u^{\prime}_{\mathcal{K}},u^{\prime}_{\mathcal{S}},u^{\prime}_{\mathcal{I}})\in\mathcal{U}_{\mathcal{K}}^{\delta}\times\mathcal{U}_{\mathcal{S}}^{\varepsilon}\times\mathcal{U}_{\mathcal{I}}^{b}$}

and the inequality |πA𝔲(t^)πA0(t^)||π~A(t^)π~A0(t^)||\pi_{A}^{\mathfrak{u}}(\hat{t})-\pi_{A}^{0}(\hat{t})|\leq|\tilde{\pi}_{A}^{\ast}(\hat{t})-\tilde{\pi}_{A}^{0}(\hat{t})| holds true because the definition of the envelope and the coarsening of an envelope ensure that for any function (u𝒦,u𝒮)𝒰𝒦δ×𝒰𝒮ε(u_{\mathcal{K}},u_{\mathcal{S}})\in\mathcal{U}_{\mathcal{K}}^{\delta}\times\mathcal{U}_{\mathcal{S}}^{\varepsilon} there exists some function u𝒰bu_{\mathcal{I}}\in\mathcal{U}_{\mathcal{I}}^{b} such that

rB,C(V0(t)+u𝒮(t),κ^(t)+u𝒦(t))=kBC(t)+i𝒦𝒮kiBC(t)ui(t)=r~B,C(t,u𝒦(t),u𝒮(t),u(t))r_{B,C}\big{(}V^{0}(t)+u_{\mathcal{S}}(t),\hat{\kappa}(t)+u_{\mathcal{K}}(t)\big{)}\\ =k^{B\to C}(t)+\sum_{i\in\mathcal{K}\cup\mathcal{S}\cup\mathcal{I}}k^{B\to C}_{i}(t)u_{i}(t)\\ =\tilde{r}_{B,C}(t,u_{\mathcal{K}}(t),u_{\mathcal{S}}(t),u_{\mathcal{I}}(t))

for all 0tT0\leq t\leq T. This implies π~A(t^)=πA𝔲(t^)\tilde{\pi}_{A}^{\ast}(\hat{t})=\pi_{A}^{\mathfrak{u}}(\hat{t}). Moreover, it can be observed that Theorem 4 and Theorem 5 hold for any CTMC which transition rates satisfy (A1) and (A2). Hence, they can be used to compute π~A(t^)\tilde{\pi}_{A}^{\ast}(\hat{t}) (just replace the index set 𝒦𝒮\mathcal{K}\cup\mathcal{S} with 𝒦𝒮I\mathcal{K}\cup\mathcal{S}\cup I). This and the definition of the envelope and the coarsening of an envelope ensure the existence of some u𝒰bu_{\mathcal{I}}\in\mathcal{U}_{\mathcal{I}}^{b} such that 𝔲~=(u𝒦,u𝒮,u)\mathfrak{\tilde{u}}=(u_{\mathcal{K}},u_{\mathcal{S}},u_{\mathcal{I}}) is optimal, i.e., π~A(t^)=π~A𝔲~(t^)\tilde{\pi}_{A}^{\ast}(\hat{t})=\tilde{\pi}_{A}^{\mathfrak{\tilde{u}}}(\hat{t}). In the case bi()b_{i}(\cdot) is piecewise constant for all ii\in\mathcal{I}, the argumentation from Section IV-B leads to the desired contradiction. With this, the density argument from Section IV-B implies that ε\mathcal{E}\leq\varepsilon. Since Ψ\Psi is monotonic increasing, the proof is complete. ∎

It is interesting to note that Theorem 1 allows one to derive bounds on \mathcal{E} from Definition 4 using any estimation technique that applies to (16). Put different, Theorem 4 and 5 can be replaced, in principle, by any over-approximation technique applicable to time-varying linear systems with uncertain additive and multiplicative uncertainties. Note, however, that the bounds obtained by Theorem 4 and 5 cannot be improved if the decoupled CTMC satisfies (A1)-(A2) and can be expected to be tight even if (A1)-(A2) are violated because Theorem 7 relies on optimal control theory.

Algorithm 2 Envelope computation for agent networks that have as reaction rate functions \mathcal{F} multivariate polynomials.
0: Transition rates (rB,C)B,C(r_{B,C})_{B,C} given in terms of polynomials with variables {VA0(t)A𝒮}{uii𝒮𝒦}\{V_{A}^{0}(t)\mid A\in\mathcal{S}\}\cup\{u_{i}\mid i\in\mathcal{S}\cup\mathcal{K}\}
0: Envelope (r~B,C)B,C(\tilde{r}_{B,C})_{B,C} of (rB,C)B,C(r_{B,C})_{B,C}, index set \mathcal{I} of new uncertainties
set \mathcal{I} to \emptyset
for all B,C𝒮B,C\in\mathcal{S} do
  for each nonlinear uncertainty i𝒦𝒮uiei\prod_{i\in\mathcal{K}\cup\mathcal{S}}u_{i}^{e_{i}} in rB,Cr_{B,C} do
   add ee to \mathcal{I}, where e0𝒦𝒮e\in\mathbb{N}_{0}^{\mathcal{K}\cup\mathcal{S}} denotes the exponent
     of the current monomial
   replace i𝒦𝒮uiei\prod_{i\in\mathcal{K}\cup\mathcal{S}}u_{i}^{e_{i}} by the new uncertainty ueu_{e}
   set 𝔟e()\mathfrak{b}_{e}(\cdot) to i𝒦𝒮𝔟iei()\prod_{i\in\mathcal{K}\cup\mathcal{S}}\mathfrak{b}_{i}^{e_{i}}(\cdot)
  end for
end for
return  (rB,C)B,C(r_{B,C})_{B,C} and \mathcal{I}

IV-D Algorithm

The previous sections gives rise to Algorithm 1 which summarizes all steps of our approximation technique. Apart from line 4 that has to compute an envelope of the transition rates of the decoupled CTMC from Definition 5 (see Definition 7), all steps of Algorithm 1 can be automatized. Indeed, the computation of the coarsening in line 8 is the variable substitution introduced in Definition 8, while Ψ(ε𝑜𝑙𝑑)\Psi(\varepsilon^{\mathit{old}}) in line 11 can be obtained by applying, for any A𝒮A\in\mathcal{S} and 0t^T0\leq\hat{t}\leq T, Theorem 4 in order to compute the maximal and minimal value of π~A𝔲~(t^)\tilde{\pi}^{\mathfrak{\tilde{u}}}_{A}(\hat{t}) across all 𝔲~𝒰𝒦δ×𝒰𝒮ε×𝒰b\mathfrak{\tilde{u}}\in\mathcal{U}^{\delta}_{\mathcal{K}}\times\mathcal{U}^{\varepsilon}_{\mathcal{S}}\times\mathcal{U}^{b}_{\mathcal{I}}.

Computation of an envelope. In the case the reaction rate functions of the agent network are multivariate polynomials as in the case of our running example discussed in Example 1-5, the envelope from line 4 can be efficiently computed by Algorithm 2. This makes our approach particularly suited to models from the field of biochemistry. Note that Algorithm 2 replaces any product of uncertainties by a new uncertainty and bounds it by the maximal value of the replaced product similarly to the discussion following Example 4.

Computation of Ψ\Psi. We conclude the section by discussing a rigorous and a heuristic implementation of line 11. In the case of the former, one has to combine Theorem 45 and 6 with a verified numerical ODE solver as [45] that provides apart from a numerical solution also an estimation of the underlying numerical error [40]. Additionally to the numerical error, one has to account for the discretization error arising in the computation of Ψ(ε)\Psi(\varepsilon), where the idea is to evaluate (Ψ(ε))()(\Psi(\varepsilon))(\cdot) only at grid points t^l\hat{t}_{l} from 𝒯(Δt)={0,Δt,2Δt,,T}\mathcal{T}(\Delta t)=\{0,\Delta t,2\Delta t,\ldots,T\} by computing the maximal and minimal value of π~A𝔲~(t^l)\tilde{\pi}^{\mathfrak{\tilde{u}}}_{A}(\hat{t}_{l}) from (7) for all A𝒮A\in\mathcal{S} and t^l𝒯(Δt)\hat{t}_{l}\in\mathcal{T}(\Delta t).

The following result can be proven.

Theorem 8.

For any positive function ε<V0\varepsilon<V^{0} and ξ(0;1)\xi\in(0;1), the function t(Ψ(ε))(t)t\mapsto(\Psi(\varepsilon))(t) can be approximated with precision ξ\xi by solving 4|𝒮|ΛTξ14|\mathcal{S}|\Lambda T\xi^{-1} ODE systems of size |𝒮||\mathcal{S}|, where

Λmax{h~(t,π~,(u𝒦,u𝒮,u))0tT,π~V(0)1 and |ui|sup0tT𝔟i(t)}\Lambda\geq\max\big{\{}\lVert\tilde{h}(t,\tilde{\pi},(u_{\mathcal{K}},u_{\mathcal{S}},u_{\mathcal{I}}))\rVert_{\infty}\mid 0\leq t\leq T,\\ \lVert\tilde{\pi}\rVert_{\infty}\leq\lVert V(0)\rVert_{1}\text{ and }|u_{i}|\leq\sup_{0\leq t\leq T}\mathfrak{b}_{i}(t)\big{\}} (29)

and h~\tilde{h} denotes the Kolmogorov equations underlying the transition rates (r^B,C)B,C(\hat{r}_{B,C})_{B,C} from Algorithm 1.

CORA Algorithm 1 for 𝒯(0.04)\mathcal{T}(0.04) Algorithm 1 for 𝒯(0.03)\mathcal{T}(0.03)
DD |𝒮||\mathcal{S}| |𝒦||\mathcal{K}| Run time supt(t)Bound on\stackrel{{\scriptstyle\text{\normalsize Bound on}}}{{\sup_{t}\lVert\mathcal{E}(t)\rVert_{\infty}}} Run time supt(t)Bound on\stackrel{{\scriptstyle\text{\normalsize Bound on}}}{{\sup_{t}\lVert\mathcal{E}(t)\rVert_{\infty}}} Run time supt(t)Bound on\stackrel{{\scriptstyle\text{\normalsize Bound on}}}{{\sup_{t}\lVert\mathcal{E}(t)\rVert_{\infty}}}
1 3 3 0m 0.187 2m 0.158 3m 0.163
2 6 8 1m 0.238 4m 0.124 6m 0.130
3 9 15 1m 0.296 8m 0.109 11m 0.116
4 12 24 2m 0.377 13m 0.100 17m 0.109
5 15 35 4m 0.494 18m 0.096 24m 0.103
6 18 48 5m 0.694 19m 0.091 29m 0.101
7 21 63 30m 0.091 43m 0.094
8 24 80 40m 0.084 53m 0.096
9 27 99 50m 0.087 65m 0.096
10 30 120 61m 0.091 78m 0.095
TABLE I: Results obtained by applying CORA and the heuristic implementation of Algorithm 1 to the SIRS model (V). While CORA terminated for D6D\leq 6, no estimations could be obtained in the case of D7D\geq 7 due to out-of-memory errors. The heuristic implementation of Algorithm 1, instead, is slower than CORA but scales to larger systems and provides tight bounds.
Proof.

We prove that we need to solve 2|𝒮|ΛTξ12|\mathcal{S}|\Lambda T\xi^{-1} instances of (18) and (20), respectively. To this end, we first note that π~𝔲~\tilde{\pi}^{\mathfrak{\tilde{u}}} from (7) is absolutely continuous and has derivative h~(,π~𝔲~,𝔲~)\tilde{h}(\cdot,\tilde{\pi}^{\mathfrak{\tilde{u}}},\mathfrak{\tilde{u}}) almost everywhere. This yields

π~𝔲~(t2)π~𝔲~(t1)=t1t2h~(s,π~𝔲~(s),𝔲~(s))𝑑s\tilde{\pi}^{\mathfrak{\tilde{u}}}(t_{2})-\tilde{\pi}^{\mathfrak{\tilde{u}}}(t_{1})=\int_{t_{1}}^{t_{2}}\tilde{h}(s,\tilde{\pi}^{\mathfrak{\tilde{u}}}(s),\mathfrak{\tilde{u}}(s))ds

for any 0t1t2T0\leq t_{1}\leq t_{2}\leq T. Since π~𝔲~(t)V(0)1\lVert\tilde{\pi}^{\mathfrak{\tilde{u}}}(t)\rVert_{\infty}\leq\lVert V(0)\rVert_{1} for all 0tT0\leq t\leq T, we infer that π~𝔲~(t2)π~𝔲~(t1)Λ|t2t1|\lVert\tilde{\pi}^{\mathfrak{\tilde{u}}}(t_{2})-\tilde{\pi}^{\mathfrak{\tilde{u}}}(t_{1})\rVert_{\infty}\leq\Lambda|t_{2}-t_{1}|. This implies that we miss the actual value of (Ψ(ε))()(\Psi_{\cdot}(\varepsilon))(\cdot) by at most ΛΔt\Lambda\Delta t if we compute the maximal and minimal value of π~A𝔲~(t^l)\tilde{\pi}^{\mathfrak{\tilde{u}}}_{A}(\hat{t}_{l}) for all A𝒮A\in\mathcal{S} and t^l𝒯(Δt)={0,Δt,2Δt,,T}\hat{t}_{l}\in\mathcal{T}(\Delta t)=\{0,\Delta t,2\Delta t,\ldots,T\}. With this, we note that ΛΔtξ\Lambda\Delta t\leq\xi implies Δtξ/Λ\Delta t\leq\xi/\Lambda which, in turn, induces T/Δt=ΛTξ1T/\Delta t=\Lambda T\xi^{-1} grid points. Since we need to compute the minimum and maximum value of π~A𝔲(t^l)\tilde{\pi}^{\mathfrak{u}}_{A}(\hat{t}_{l}) for all A𝒮A\in\mathcal{S} and t^l𝒯(Δt)\hat{t}_{l}\in\mathcal{T}(\Delta t), this yields the claim. ∎

Apart from the rigorous implementation, our approach allows for a heuristic implementation. Here, instead of using a verified numerical ODE solver, one invokes a standard ODE solver in which the numerical error is minimized heuristically by varying the integration step size [40]. Similarly, one accounts heuristically for the discretization underlying 𝒯(Δt)\mathcal{T}(\Delta t) by gradually refining an initially coarse discretization of [0;T][0;T] until the approximations of Ψ\Psi are reasonably close.

We wish to point out that both implementations naturally apply to parallelization because each single ODE system can be solved independently from the others.

V Numerical Evaluation

In this section we study the potential of our technique by applying it on the multi-class SIRS model from Section IV-C. To this end, we implemented an experimental prototype of the heuristic version from Section IV-D in Matlab by relying on the (non-verified) numerical ODE solver provided by the Matlab command ode45s. The heuristic implementation was compared with the state-of-the-art reachability analysis tool CORA [35] that covers nonlinear ODE systems with multiplicative uncertainty functions.

All experiments were performed on a 3.2 GHz Intel Core i5 machine with 8 GB of RAM. The Matlab solver ode45s was invoked with its default settings. For CORA, instead, the time step was set to 0.0040.004, while the expert settings were chosen as in the nonlinear tank example from the CORA manual [46]. The main findings are as follows.

  • The bounds obtained by the heuristic implementation are tight;

  • CORA is faster than the heuristic implementation in the case of smaller systems;

  • The heuristic implementation scales to models that cannot be covered by CORA.

The above confirms the discussion from Section IV-D concerning the complexity of our approach. Indeed, for smaller ODE systems, our approach is inferior to CORA because of the discretization of the time interval [0;T][0;T]. However, for abstraction approaches such as CORA it is computationally prohibitive to obtain tight over-approximations for larger nonlinear systems in general. Instead, our approach requires to solve 4|𝒮|ΛTξ14|\mathcal{S}|\Lambda T\xi^{-1} ODE systems of size |𝒮||\mathcal{S}|, see Theorem 8. Moreover, at least as far as the heuristic implementation is considered, we were able to obtain tight bounds. In summary, we argue that our technique has the potential to complement state-of-the-art over-approximation approaches.

Multi-class SIRS Model. The global dynamics underlying (25) is given by

V˙Sνu𝒦\displaystyle\dot{V}^{u_{\mathcal{K}}}_{S_{\nu}} =μ(κ^αν,μ+uαν,μ)VSνu𝒦VIμu𝒦+(κ^γν+uγν)VRνu𝒦\displaystyle=-\sum_{\mu}(\hat{\kappa}_{\alpha_{\nu,\mu}}+u_{\alpha_{\nu,\mu}})V^{u_{\mathcal{K}}}_{S_{\nu}}V^{u_{\mathcal{K}}}_{I_{\mu}}+(\hat{\kappa}_{\gamma_{\nu}}+u_{\gamma_{\nu}})V^{u_{\mathcal{K}}}_{R_{\nu}}
V˙Iνu𝒦\displaystyle\dot{V}^{u_{\mathcal{K}}}_{I_{\nu}} =(κ^βν+uβν)VIνu𝒦+μ(κ^αν,μ+uαν,μ)VSνu𝒦VIμu𝒦\displaystyle=-(\hat{\kappa}_{\beta_{\nu}}+u_{\beta_{\nu}})V^{u_{\mathcal{K}}}_{I_{\nu}}+\sum_{\mu}(\hat{\kappa}_{\alpha_{\nu,\mu}}+u_{\alpha_{\nu,\mu}})V^{u_{\mathcal{K}}}_{S_{\nu}}V^{u_{\mathcal{K}}}_{I_{\mu}}
V˙Rνu𝒦\displaystyle\dot{V}^{u_{\mathcal{K}}}_{R_{\nu}} =(κ^γν+uγν)VRνu𝒦+(κ^βν+uβν)VIνu𝒦\displaystyle=-(\hat{\kappa}_{\gamma_{\nu}}+u_{\gamma_{\nu}})V^{u_{\mathcal{K}}}_{R_{\nu}}+(\hat{\kappa}_{\beta_{\nu}}+u_{\beta_{\nu}})V^{u_{\mathcal{K}}}_{I_{\nu}} (30)

where uαν,μu_{\alpha_{\nu,\mu}}, uβνu_{\beta_{\nu}}, uγνu_{\gamma_{\nu}} are time-varying uncertain functions and 1ν,μD1\leq\nu,\mu\leq D for some D1D\geq 1. The system has 3D3D ODE variables and D2+2DD^{2}+2D uncertainties. As discussed in Section IV-C, the transition rates (IV-C) define a function Ψ\Psi as in Theorem 7 that can be used to estimate the function \mathcal{E} underlying (V).

In our experiments, we randomly chose κ^αν,μ1.00\hat{\kappa}_{\alpha_{\nu,\mu}}\equiv 1.00, κ^βν2.00\hat{\kappa}_{\beta_{\nu}}\equiv 2.00, κ^γν3.00\hat{\kappa}_{\gamma_{\nu}}\equiv 3.00 and VSνu𝒦(0)=4.00+0.10(ν1)V^{u_{\mathcal{K}}}_{S_{\nu}}(0)=4.00+0.10(\nu-1), VIνu𝒦(0)=VRνu𝒦(0)=1.00V^{u_{\mathcal{K}}}_{I_{\nu}}(0)=V^{u_{\mathcal{K}}}_{R_{\nu}}(0)=1.00 for all 1ν,μD1\leq\nu,\mu\leq D. The time horizon was set to T=3.00T=3.00, while all parameters were subject to uncertainties with modulus not higher than ζ=0.03\zeta=0.03, i.e., 𝔟θ(t)=ζ\mathfrak{b}_{\theta}(t)=\zeta for all θ𝒦\theta\in\mathcal{K} and 0tT0\leq t\leq T.

Table I and Figure 2 summarize our findings. With increasing DD, the tightness of the bounds provided by CORA decreases while the corresponding running times increase. In principle, the tightness can be improved by using stricter parameters (e.g., by decreasing the step size). This, however, increases the time and space requirements. Likewise, the over-approximation of larger models requires more resources in general. On our machine, for instance, D7D\geq 7 or time steps below 0.0040.004 led to out-of-memory errors. The heuristic implementation of Algorithm 1, instead, scales to larger instances of the running example and provides tight bounds. Indeed, since the Λ\Lambda from (29) can be chosen as 6D6D in the case of the ODE system (25), Theorem 8 implies that one has to solve 4|𝒮|ΛTξ1=216D2ξ14|\mathcal{S}|\Lambda T\xi^{-1}=216D^{2}\xi^{-1} ODE systems of size 3D3D in order to guarantee that a numerical approximation of Ψ(ε)\Psi(\varepsilon) from Theorem 7 misses the actual value of Ψ(ε)\Psi(\varepsilon) by at most ξ>0\xi>0. We approximated the values of Ψ\Psi from Algorithm 1 using discretizations 𝒯(0.04)\mathcal{T}(0.04) and 𝒯(0.03)\mathcal{T}(0.03), where

𝒯(Δt)=({lΔtl0}{3})[0;3]\mathcal{T}(\Delta t)=(\{l\Delta t\mid l\geq 0\}\cup\{3\})\cap[0;3]

The run times account for the computation of the sequence (ε(k))k(\varepsilon^{(k)})_{k} from Algorithm 1 with η=104\eta=10^{-4}. In agreement with Theorem 8, the running times exhibit a polynomial growth. Moreover, discretizations 𝒯(0.04)\mathcal{T}(0.04) and 𝒯(0.03)\mathcal{T}(0.03) induce bounds that are reasonably close.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 2: Reachable set estimation of (V) in case of D=1D=1 and ζ=0.03\zeta=0.03. The gray area visualizes the estimation of CORA, while the dotted lines depict the one underlying the heuristic version of Algorithm 1 for 𝒯(0.04)\mathcal{T}(0.04). It can be seen that both techniques provide tight bounds, even though those of CORA appear to become less strict as time increases.

VI Discussion

While Pontryagin’s principle and its extensions to systems with uncertain parameters have been used in the context of reachability analysis [7, 32], to the best of our knowledge, the principle has not been applied in the context of formal over-approximation of a general class of nonlinear ODE systems. This is because the principle is in general only a necessary condition for optimality, while its strict versions [34, 47] require concavity or convexity which is rarely satisfied by nonlinear ODE models. Additionally, Pontryagin’s principle induces in general a differential inclusion which can only be solved under additional assumptions [43, 44]. The present work addresses those problems by a) approximating the original nonlinear ODE system by a family of linear Kolmogorov equations (14) with multiplicative and additive uncertainties and; by b) showing that each family member can be over-approximated tightly and efficiently using a modified version of the strict version of Pontryagin’s principle [34].

The proposed approach is complementary to existing approximation techniques. Indeed, while it is less efficient than approaches that are based on monotonic systems and differential inequalities [48, 49, 22, 8], it may provide tighter bounds because it relies on optimal control theory. Instead, for approaches based on abstraction [21, 35] and the Hamilton-Jacobi equation [29, 30], in general it becomes computationally prohibitive to obtain tight over-approximations for larger nonlinear systems [19, 23]. Another point worth stressing is that many approaches applicable to nonlinear ODE models assume time-invariant uncertain parameters and uncertain initial conditions, while the present technique focusses on nonlinear ODE systems with time-varying uncertain parameters and fixed initial conditions. Since the proposed approximation technique relies on the availability of a concrete nominal solution, a direct extension to sets of initial conditions seems not to be possible. This notwithstanding we wish stress that it is particulary suited to systems biology where initial concentrations can be measured while reaction rates are often difficult to obtain and may vary with time.

VII Conclusion

In this work we presented an over-approximation technique for nonlinear ODE systems with time-varying uncertain parameters. Our approach provides verifiable bounds in terms of a family of linear Kolmogorov equations with uncertain additive and multiplicative time-varying parameters. To ensure efficient computation and tight estimations, we have established, to the best of our knowledge, a novel efficiently computable solution technique for a class of inhomogeneous continuous time Markov decision processes.

The presented over-approximation technique is efficient and can be expected to provide tight bounds because it relies on optimal control theory and allows for an algorithmic treatment in the case where the ODE system is given by multivariate polynomials. This makes it particularly suited to models from (bio)chemistry.

By comparing our approach with a state-of-the-art over-approximation technique in the context of the multi-class SIRS model from epidemiology [7], we have provided numerical evidence for the potential of our approach. The most pressing line of future work is the development of a tool which provides a rigorous implementation of the technique.

Acknowledgement

The author thanks Mirco Tribastone for helpful discussions. Parts of the work have been conducted when the author was with IMT Lucca. The author is supported by a Lise Meitner Fellowship that is funded by the Austrian Science Fund (FWF) under grant number M 2393-N32 (COCO).

References

  • [1] L. Cardelli, A. Csikász-Nagy, N. Dalchau, M. Tribastone, and M. Tschaikowski, “Noise Reduction in Complex Biological Switches.” Scientific reports, 2016.
  • [2] B. V. Houdt and L. Bortolussi, “Fluid limit of an asynchronous optical packet switch with shared per link full range wavelength conversion,” in SIGMETRICS, 2012, pp. 113–124.
  • [3] M. Tribastone, “A Fluid Model for Layered Queueing Networks,” IEEE Transactions on Software Engineering, vol. 39, no. 6, pp. 744–756, 2013.
  • [4] T. G. Kurtz, “The relationship between stochastic and deterministic models for chemical reactions,” The Journal of Chemical Physics, vol. 57, no. 7, pp. 2976–2978, 1972.
  • [5] L. Bortolussi, J. Hillston, D. Latella, and M. Massink, “Continuous approximation of collective system behaviour: A tutorial,” Performance Evaluation, vol. 70, no. 5, pp. 317–349, 2013.
  • [6] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin, “Maximal aggregation of polynomial dynamical systems,” Proceedings of the National Academy of Sciences, vol. 114, no. 38, pp. 10 029 –10 034, 2017.
  • [7] L. Bortolussi and N. Gast, “Mean Field Approximation of Uncertain Stochastic Models,” in DSN, 2016.
  • [8] M. Tschaikowski and M. Tribastone, “Approximate Reduction of Heterogenous Nonlinear Models With Differential Hulls,” IEEE Transactions Automatic Control, vol. 61, no. 4, pp. 1099–1104, 2016.
  • [9] S. Prajna, “Barrier certificates for nonlinear model validation,” Automatica, vol. 42, no. 1, pp. 117–126, 2006.
  • [10] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems,” Automatica, vol. 44, no. 11, pp. 2724–2734, 2008.
  • [11] G. Lafferriere, G. J. Pappas, and S. Yovine, A New Class of Decidable Hybrid Systems, 1999.
  • [12] M. Althoff, C. Le Guernic, and B. H. Krogh, “Reachable Set Computation for Uncertain Time-Varying Linear Systems,” in HSCC, 2011, pp. 93–102.
  • [13] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal Techniques for Reachability Analysis,” in HSCC, N. Lynch and B. H. Krogh, Eds., 2000.
  • [14] A. Girard, C. Le Guernic, and O. Maler, “Efficient Computation of Reachable Sets of Linear Time-Invariant Systems with Inputs,” in HSCC, 2006.
  • [15] A. Girard and C. Le Guernic, “Efficient reachability analysis for linear systems using support functions,” in IFAC, 2008.
  • [16] S. Bak and P. S. Duggirala, “HyLAA: A Tool for Computing Simulation-Equivalent Reachability for Linear Systems,” in HSCC, 2017, pp. 173–178.
  • [17] E. Asarin, T. Dang, and A. Girard, “Reachability Analysis of Nonlinear Systems Using Conservative Approximation,” in HSCC, 2003.
  • [18] A. Donzé and O. Maler, “Systematic Simulation Using Sensitivity Analysis,” in HSCC. Springer, 2007, pp. 174–189.
  • [19] M. Althoff, “Reachability Analysis of Nonlinear Systems using Conservative Polynomialization and Non-Convex Sets,” in HSCC, 2013, pp. 173–182.
  • [20] M. Berz and K. Makino, “Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models,” Reliable Computing, vol. 4, no. 4, pp. 361–369, 1998.
  • [21] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An Analyzer for Non-linear Hybrid Systems,” in CAV, 2013, pp. 258–263.
  • [22] J. K. Scott and P. I. Barton, “Bounds on the reachable sets of nonlinear control systems,” Automatica, vol. 49, no. 1, pp. 93 – 100, 2013.
  • [23] P. S. Duggirala and M. Viswanathan, “Parsimonious, Simulation Based Verification of Linear Systems,” in CAV, 2016, pp. 477–494.
  • [24] D. Angeli, “A Lyapunov approach to incremental stability properties,” IEEE Trans. Automat. Contr., vol. 47, no. 3, pp. 410–421, 2002.
  • [25] M. Zamani and R. Majumdar, “A Lyapunov approach in incremental stability,” in CDC, 2011.
  • [26] A. Girard and G. J. Pappas, “Approximate bisimulations for nonlinear dynamical systems,” in CDC. IEEE, Jun. 2005, pp. 684–689.
  • [27] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. S. Duggirala, Automatic Reachability Analysis for Nonlinear Hybrid Models with C2E2, 2016, pp. 531–538.
  • [28] A. M. Bayen, E. Crück, and C. J. Tomlin, “Guaranteed overapproximations of unsafe sets for continuous and hybrid systems: Solving the Hamilton-Jacobi equation using viability techniques,” in HSCC, 2002, pp. 90–104.
  • [29] J. Lygeros, “On reachability and minimum cost optimal control,” Automatica, vol. 40, no. 6, pp. 917–927, 2004.
  • [30] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games,” IEEE TAC, vol. 50, no. 7, pp. 947–957, 2005.
  • [31] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press, 2011.
  • [32] H. Frankowska, “The Maximum Principle for an Optimal Solution to a Differential Inclusion with End Points Constraints,” SIAM Journal on Control and Optimization, vol. 25, no. 1, pp. 145–157, 1987.
  • [33] X. Guo and O. Hernandez-Lerma, Continuous-Time Markov Decision Processes. Springer Verlag, 2009.
  • [34] M. I. Kamien and N. L. Schwartz, “Sufficient conditions in optimal control theory,” Journal of Economic Theory, vol. 3, no. 2, pp. 207 – 214, 1971.
  • [35] M. Althoff, “An introduction to CORA 2015,” in Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems, 2015.
  • [36] N. B uerle and U. Rieder, Markov Decision Processes with Application to Finance. Springer Verlag, 2011.
  • [37] R. C. Hampshire and W. A. Massey, Dynamic Optimization with Applications to Dynamic Rate Queues, ch. Chapter 10, pp. 208–247.
  • [38] G. Iacobelli and M. Tribastone, “Lumpability of fluid models with heterogeneous agent types,” in DSN, 2013, pp. 1–11.
  • [39] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin, “Forward and Backward Bisimulations for Chemical Reaction Networks,” in CONCUR, 2015, pp. 226–239.
  • [40] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1971.
  • [41] L. Bortolussi and J. Hillston, “Model checking single agent behaviours by fluid approximation,” Information and Computation, vol. 242, pp. 183–226, 2015.
  • [42] R. Darling and J. Norris, “Differential equation approximations for Markov chains,” Probability Surveys, vol. 5, pp. 37–79, 2008.
  • [43] A. Dontchev and F. Lempio, “Difference Methods for Differential Inclusions: A Survey,” SIAM Review, vol. 34, no. 2, pp. 263–294, 1992.
  • [44] L. Bortolussi, “Hybrid Limits of Continuous Time Markov Chains,” in QEST, 2011, pp. 3–12.
  • [45] O. Bouissou and M. Martel, “GRKLib: a guaranteed Runge-Kutta library,” in GAMM - IMACS SCAN, 2007.
  • [46] M. Althoff, “Cora 2016 manual.” [Online]. Available: http://www.i6.in.tum.de/pub/Main/SoftwareCORA/Cora2016Manual.pdf
  • [47] V. Azhmyakov and J. Raisch, “Convex control systems and convex optimal control problems with constraints,” IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 993–998, 2008.
  • [48] N. Ramdani, N. Meslem, and Y. Candau, “Reachability of uncertain nonlinear systems using a nonlinear hybridization,” in HSCC, 2008, pp. 415–428.
  • [49] ——, “Computing reachable sets for uncertain nonlinear monotone systems,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 263 – 278, 2010, iFAC World Congress 2008.
[Uncaptioned image] Max Tschaikowski is a Lise Meitner Fellow at the Technische Universität Wien, Austria. Prior to it, he was a non-tenure-track Assistant Professor at IMT Lucca, Italy, a Research Fellow at the University of Southampton, UK, and a Research Assistant at the LMU in Munich, Germany. He was awarded a Diplom in mathematics and a Ph.D. in computer science by the LMU in 2010 and 2014, respectively. His research focusses on the construction, reduction and verification of quantitative models.