This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Perfect matchings in random sparsifications of Dirac hypergraphs

Dong Yeap Kang Dong Yeap Kang, Extremal Combinatorics and Probability Group (ECOPRO), Institute for Basic Science (IBS), Daejeon, South Korea dykang.math@ibs.re.kr Tom Kelly Tom Kelly, School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA tom.kelly@gatech.edu Daniela Kühn Daniela Kühn, School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom D.Kuhn@bham.ac.uk Deryk Osthus Deryk Osthus, School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom D.Osthus@bham.ac.uk  and  Vincent Pfenninger Vincent Pfenninger, Institute of Discrete Mathematics, Graz University of Technology, Graz, Austria pfenninger@math.tugraz.at
Abstract.

For all integers nk>d1n\geq k>d\geq 1, let md(k,n)m_{d}(k,n) be the minimum integer D0D\geq 0 such that every kk-uniform nn-vertex hypergraph \mathcal{H} with minimum dd-degree δd()\delta_{d}(\mathcal{H}) at least DD has an optimal matching. For every fixed integer k3k\geq 3, we show that for nkn\in k\mathbb{N} and p=Ω(nk+1logn)p=\Omega(n^{-k+1}\log n), if \mathcal{H} is an nn-vertex kk-uniform hypergraph with δk1()mk1(k,n)\delta_{k-1}(\mathcal{H})\geq m_{k-1}(k,n), then a.a.s. its pp-random subhypergraph p\mathcal{H}_{p} contains a perfect matching. Moreover, for every fixed integer d<kd<k and γ>0\gamma>0, we show that the same conclusion holds if \mathcal{H} is an nn-vertex kk-uniform hypergraph with δd()md(k,n)+γ(ndkd)\delta_{d}(\mathcal{H})\geq m_{d}(k,n)+\gamma\binom{n-d}{k-d}. Both of these results strengthen Johansson, Kahn, and Vu’s seminal solution to Shamir’s problem and can be viewed as “robust” versions of hypergraph Dirac-type results. In addition, we also show that in both cases above, \mathcal{H} has at least exp((11/k)nlognΘ(n))\exp((1-1/k)n\log n-\Theta(n)) many perfect matchings, which is best possible up to an exp(Θ(n))\exp(\Theta(n)) factor.

Key words and phrases:
perfect matching, random graph, random hypergraph, threshold, Shamir’s problem, absorbing method, spreadness
1991 Mathematics Subject Classification:
05C80, 05C65, 05C70, 05D40
This project has received partial funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 786198, D. Kang, T. Kelly, D. Kühn, D. Osthus, and V. Pfenninger). Dong Yeap Kang was supported by Institute for Basic Science (IBS-R029-Y6).

1. Introduction

A hypergraph is an ordered pair =(V,E)\mathcal{H}=(V,E) of a set VV()V\coloneqq V(\mathcal{H}) of vertices of \mathcal{H} and a set EE()E\coloneqq E(\mathcal{H}) of subsets of VV, where the elements of EE are called the edges of \mathcal{H}. If E()(Vk)E(\mathcal{H})\subseteq\binom{V}{k} for some positive integer kk, then we call \mathcal{H} kk-uniform. We often identify E()E(\mathcal{H}) with \mathcal{H} if its set of vertices is clear. A matching of a hypergraph \mathcal{H} is a set of disjoint edges of \mathcal{H}. An optimal matching of a kk-uniform hypergraph \mathcal{H} is a matching consisting of |V()|/k\lfloor|V(\mathcal{H})|/k\rfloor edges. An optimal matching of a kk-uniform hypergraph \mathcal{H} is called perfect if kk divides |V()||V(\mathcal{H})|.

In a seminal paper by Edmonds [13], it is proved that there exists a polynomial-time algorithm to determine whether a given graph has a perfect matching. However, for k3k\geq 3, it is NP-complete to decide whether a given kk-uniform hypergraph has a perfect matching (see [27, 43]). Thus, it is natural to consider sufficient conditions which force a perfect matching; a minimum degree condition, which is called a Dirac-type condition because of Dirac’s [12] classical result on Hamilton cycles in graphs, is one of the most intensively studied [61, 72]. Perfect matchings in random graphs and hypergraphs have also attracted considerable interest. The so-called Shamir’s problem (see [15]) of determining the threshold for the existence of a perfect matching in a random kk-uniform hypergraph was considered one of the most important problems in probabilistic combinatorics before its resolution by Johansson, Kahn, and Vu [37] in 2008. Our results in this paper connect these two streams of research.

1.1. Perfect matchings in Dirac hypergraphs

For dd\in\mathbb{N}, the minimum dd-degree δd()\delta_{d}(\mathcal{H}) of a hypergraph \mathcal{H} is the minimum of |{e:v1,,vde}||\{e\in\mathcal{H}:v_{1},\dots,v_{d}\in e\}| among all choices of dd distinct vertices v1,,vdV()v_{1},\dots,v_{d}\in V(\mathcal{H}). If \mathcal{H} is kk-uniform, we also call δk1()\delta_{k-1}(\mathcal{H}) the minimum codegree. For nk>d1n\geq k>d\geq 1, let md(k,n)m_{d}(k,n) be the minimum integer D0D\geq 0 such that every kk-uniform nn-vertex hypergraph \mathcal{H} with δd()D\delta_{d}(\mathcal{H})\geq D has an optimal matching, and for each s{0,,k1}s\in\{0,\dots,k-1\}, let

μd¯(s)(k)lim supnnsmodkmd(k,n)(ndkd).\overline{\mu_{d}}^{(s)}(k)\coloneqq\limsup_{\begin{subarray}{c}n\to\infty\\ n\equiv s\>{\rm mod}\>k\end{subarray}}\frac{m_{d}(k,n)}{\binom{n-d}{k-d}}.

Determining the value of md(k,n)m_{d}(k,n), or even just μd¯(s)(k)\overline{\mu_{d}}^{(s)}(k) in many cases, is a major open problem. Rödl, Ruciński, and Szemerédi [65] first proved that mk1(k,n)n/2+o(n)m_{k-1}(k,n)\leq n/2+o(n) for nkn\in k\mathbb{N} (in fact, they showed a tight Hamilton cycle exists if this codegree condition holds). This bound was improved by Kühn and Osthus [52] to n/2+3k2nlognn/2+3k^{2}\sqrt{n\log n}, and Rödl, Ruciński, and Szemerédi [62] improved it further to n/2+O(logn)n/2+O(\log n). Finally, Rödl, Ruciński, and Szemerédi [63] determined mk1(k,n)=n/2k+C(k,n)m_{k-1}(k,n)=n/2-k+C(k,n) for all sufficiently large nkn\in k\mathbb{N}, with C(k,n){3/2,2,5/2,3}C(k,n)\in\{3/2,2,5/2,3\} depending on kk and nn. Rödl, Ruciński, Schacht, and Szemerédi [64] also gave a simple proof for a bound of n/2+k/4n/2+k/4, that does not require nn to be large.

For 1d3k/81\leq d\leq 3k/8 and nkn\in k\mathbb{N}, both the exact and the asymptotic values of md(k,n)m_{d}(k,n) are unknown for many cases. The exact value of md(k,n)m_{d}(k,n) is known for d3k/8d\geq 3k/8 and large nkn\in k\mathbb{N} by a combination of results [21, 71], where md(k,n)=(1/2+o(1))(ndkd)m_{d}(k,n)=(1/2+o(1))\binom{n-d}{k-d} and the exact bound of md(k,n)m_{d}(k,n) follows from the obstructions called divisibility barriers. Khan [45] and independently Kühn, Osthus, and Treglown [55] showed that m1(3,n)=(n12)(2n/32)m_{1}(3,n)=\binom{n-1}{2}-\binom{2n/3}{2} for large n3n\in 3\mathbb{N}. Khan [46] showed that m1(4,n)=(n13)(3n/43)m_{1}(4,n)=\binom{n-1}{3}-\binom{3n/4}{3} for large n4n\in 4\mathbb{N}. Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov [2] related the asymptotics of md(k,n)m_{d}(k,n) and md(k,n)m_{d}^{*}(k,n), where md(k,n)m_{d}^{*}(k,n) is the minimum DD such that every nn-vertex kk-uniform hypergraph with minimum dd-degree at least DD has fractional matching number n/kn/k. Ferber and Kwan [19] showed that the limit of md(k,n)/(ndkd)m_{d}(k,n)/\binom{n-d}{k-d} exists as nkn\in k\mathbb{N} tends to infinity, and it is conjectured [34, 53] that μd¯(0)(k)=max{1/2,1(k1k)kd}\overline{\mu_{d}}^{(0)}(k)=\max\{1/2,1-(\frac{k-1}{k})^{k-d}\}. See [72, Conjecture 1.5] for the exact conjectured value of md(k,n)m_{d}(k,n) when nkn\in k\mathbb{N} is large.

For the other case knk\nmid n, Rödl, Ruciński, and Szemerédi [63] showed that mk1(k,n)n/k+O(logn)m_{k-1}(k,n)\leq n/k+O(\log n), and Han [35] determined mk1(k,n)=n/km_{k-1}(k,n)=\lfloor n/k\rfloor for all sufficiently large nn (and thus μk1¯(s)(k)=1/k\overline{\mu_{k-1}}^{(s)}(k)=1/k for all s0s\neq 0). Han [36, Conjecture 1.10] conjectured an upper bound on μd¯(s)(k)\overline{\mu_{d}}^{(s)}(k) for all d,s[k1]d,s\in[k-1] and proved a matching lower bound on md(k,n)m_{d}(k,n). (Thus, if true, Han’s conjecture implies the limit of md(k,n)/(ndkd)m_{d}(k,n)/\binom{n-d}{k-d} exists as nk+sn\in k\mathbb{N}+s tends to infinity.) See [8, 36, 57] for more background on the non-divisible case, and for more discussion of this topic, see the surveys [61, 72].

1.2. Perfect matchings in random hypergraphs

A random kk-uniform nn-vertex hypergraph k(n,p(n))\mathcal{H}^{k}(n,p(n)) is a kk-uniform hypergraph on nn vertices obtained by choosing each subset of kk vertices to be an edge with probability p(n)p(n) independently at random. Regarding the existence of a perfect matching in a random hypergraph, it is natural to ask for the threshold for k(kn,p(n))\mathcal{H}^{k}(kn,p(n)) to contain a perfect matching.

For k=2k=2, in a seminal paper Erdős and Rényi [14] determined the (sharp) threshold for 2(2n,p(n))\mathcal{H}^{2}(2n,p(n)) to contain a perfect matching. They showed that the probability that k(2n,p(n))\mathcal{H}^{k}(2n,p(n)) has a perfect matching tends to 1 if p(n)=logn+ω(1)2np(n)=\frac{\log n+\omega(1)}{2n} and tends to 0 if p(n)=lognω(1)2np(n)=\frac{\log n-\omega(1)}{2n}.

On the other hand, for k3k\geq 3, it is much more difficult to determine the threshold for the appearance of a perfect matching. In 1979, Shamir (see [15, 67]) asked for the threshold for k(kn,p(n))\mathcal{H}^{k}(kn,p(n)) to contain a perfect matching (a precise and explicit statement was mentioned in [11]). Schmidt and Shamir [67] showed that asymptotically almost surely (which we abbreviate as a.a.s.) k(kn,p(n))\mathcal{H}^{k}(kn,p(n)) has a perfect matching if p(n)=ω(nk+3/2)p(n)=\omega(n^{-k+3/2}). This was further improved by Frieze and Janson [23] to p(n)=ω(nk+4/3)p(n)=\omega(n^{-k+4/3}). Finally, Johansson, Kahn, and Vu [37] proved that the threshold for k(kn,p(n))\mathcal{H}^{k}(kn,p(n)) to contain a perfect matching is Θ(nk+1logn)\Theta(n^{-k+1}\log n), matching the threshold for k(kn,p(n))\mathcal{H}^{k}(kn,p(n)) not to contain an isolated vertex. Recently, Kahn [40] determined the sharp threshold for k(kn,p(n))\mathcal{H}^{k}(kn,p(n)) to contain a perfect matching, as well as the hitting time result [39], which proves the conjecture in [11] in a stronger form.

1.3. Robust version of Dirac-type theorems

For any hypergraph \mathcal{H} and p[0,1]p\in[0,1], let p\mathcal{H}_{p} be a spanning random subhypergraph of \mathcal{H} obtained by choosing each edge ee\in\mathcal{H} with probability pp independently at random. The problem of determining whether a certain property of the original hypergraph \mathcal{H} is retained by p\mathcal{H}_{p} has been studied extensively [1, 3, 10, 28, 38, 50, 51, 59], and results of this nature are referred to as robustness results [69]. For example, Krivelevich, Lee, and Sudakov [50] showed a robust version of Dirac’s theorem that for every nn-vertex graph GG with minimum degree at least n/2n/2, a.a.s. its random subgraph GpG_{p} contains a Hamilton cycle for p=p(n)Clogn/np=p(n)\geq C\log n/n for some absolute constant C>0C>0, providing a common generalization of Dirac’s theorem [12] (when p=1p=1) and the classic result of Pósa [60] (when GKn)G\cong K_{n}) on the threshold for the appearance of a Hamilton cycle in a random graph.

Our first result is the following robust version of hypergraph Dirac-type results on md(k,n)m_{d}(k,n) in the general case 1dk11\leq d\leq k-1. Here, the integer nn is not necessarily divisible by kk. The case k=2k=2 follows from the result by Krivelevich, Lee, and Sudakov [50] on the robust Hamiltonicity.

Theorem 1.1.

Let d,k,sd,k,s\in\mathbb{Z} such that k3k\geq 3, 1dk11\leq d\leq k-1, and 0sk10\leq s\leq k-1. For every γ>0\gamma>0, there exists C>0C>0 such that the following holds for nk+sn\in k\mathbb{N}+s and p=p(n)[0,1]p=p(n)\in[0,1] with pClogn/nk1p\geq C\log n/n^{k-1}. If \mathcal{H} is a kk-uniform nn-vertex hypergraph with δd()(μd¯(s)(k)+γ)(ndkd)\delta_{d}(\mathcal{H})\geq\left(\overline{\mu_{d}}^{(s)}(k)+\gamma\right)\binom{n-d}{k-d}, then a.a.s. a random subhypergraph p\mathcal{H}_{p} contains an optimal matching.

Combining this result with the aforementioned prior work determining md(k,n)m_{d}(k,n) [2, 21, 63, 71], we simultaneously obtain that for every γ>0\gamma>0, as nn\rightarrow\infty, for p=Ω(logn/nk1)p=\Omega(\log n/n^{k-1}), p\mathcal{H}_{p} a.a.s. has a perfect matching when \mathcal{H} is a kk-uniform nn-vertex hypergraph satisfying δd()(1/2+γ)(ndkd)\delta_{d}(\mathcal{H})\geq(1/2+\gamma)\binom{n-d}{k-d} for some d3k/8d\geq 3k/8 when knk\mid n and that p\mathcal{H}_{p} a.a.s. has an optimal matching when \mathcal{H} is a kk-uniform nn-vertex hypergraph satisfying δk1()(1/k+γ)n\delta_{k-1}(\mathcal{H})\geq(1/k+\gamma)n when knk\nmid n. Another interesting feature of this result is that it implies the existence of optimal matchings in random sparsifications of hypergraphs with minimum dd-degree at least (μd¯(s)(k)+γ)(ndkd)\left(\overline{\mu_{d}}^{(s)}(k)+\gamma\right)\binom{n-d}{k-d} even in the cases in which the value of μd¯(s)(k)\overline{\mu_{d}}^{(s)}(k) is not known. Since limn:knmd(k,n)/(ndkd)=μd¯(0)(k)\lim_{n\rightarrow\infty:k\mid n}\left.m_{d}(k,n)\middle/\binom{n-d}{k-d}\right.=\overline{\mu_{d}}^{(0)}(k) [19], for nkn\in k\mathbb{N}, the minimum degree condition in Theorem 1.1 can be replaced by δd()md(k,n)+γ(ndkd)\delta_{d}(\mathcal{H})\geq m_{d}(k,n)+\gamma\binom{n-d}{k-d}.

Our main result is the following robust version of the Dirac-type result by Rödl, Ruciński, and Szemerédi [63].

Theorem 1.2.

Let k3k\geq 3 be an integer. There exists C>0C>0 such that the following holds for nkn\in k\mathbb{N} and p=p(n)[0,1]p=p(n)\in[0,1] with pClogn/nk1p\geq C\log n/n^{k-1}. If \mathcal{H} is a kk-uniform nn-vertex hypergraph with δk1()mk1(k,n)\delta_{k-1}(\mathcal{H})\geq m_{k-1}(k,n), then a.a.s. a random subhypergraph p\mathcal{H}_{p} contains a perfect matching.

The value of pp in both Theorems 1.1 and 1.2 is asymptotically best possible, since it is well known that a.a.s. there are ω(1)\omega(1) isolated vertices in a random kk-uniform nn-vertex hypergraph k(n,p)\mathcal{H}^{k}(n,p) if p(k1)!lognω(1)nk1p\leq\frac{(k-1)!\log n-\omega(1)}{n^{k-1}}. In fact, both results generalize Johansson, Kahn, and Vu’s [37] solution to Shamir’s problem that the threshold for the existence of a perfect matching in k(kn,p(n))\mathcal{H}^{k}(kn,p(n)) is Θ(nk+1logn)\Theta(n^{-k+1}\log n).

We remark that Theorems 1.1 and 1.2 are implied by Theorems 1.5 and 1.6 below, respectively.

1.4. Spreadness and a lower bound on the number of perfect matchings

To prove Theorems 1.1 and 1.2, we use the fractional version of the Kahn–Kalai conjecture [41] (conjectured by Talagrand [70]), recently resolved by Frankston, Kahn, Narayanan, and Park [22]. The Kahn–Kalai conjecture was recently proved in full by Park and Pham [58], but the fractional version is sufficient for our application. A precursor to these results was the main technical ingredient in Alweiss, Lovett, Wu, and Zhang’s [4] breakthrough on the Erdős–Rado sunflower conjecture [16], and the results have been found to have many additional applications. This paper, and the independent work of Pham, Sah, Sawhney, and Simkin [59] (discussed further in the remark at the end of this subsection), are the first to demonstrate an application of the result to robustness of Dirac-type results.

The Frankston–Kahn–Narayanan–Park theorem implies the Johansson–Kahn–Vu solution to Shamir’s problem. Moreover, it reduces our problem to proving that there exists a probability measure on the set of perfect or optimal matchings that is ‘well-spread’. Roughly speaking, this means that the probability measure chooses a perfect matching at random in such a way that no particular set of edges is very likely to be contained in the matching.

Definition 1.3 (Spreadness).

Let \mathcal{H} be a kk-uniform hypergraph and q[0,1]q\in[0,1]. Let ν\nu be a probability measure on the set of matchings of \mathcal{H}, and let MM be a matching in \mathcal{H} chosen at random according to ν\nu. We say that ν\nu is qq-spread if for each s1s\geq 1 and e1,,ese_{1},\dots,e_{s}\in\mathcal{H}, we have

[e1,,esM]qs.\mathbb{P}\left[e_{1},\dots,e_{s}\in M\right]\leq q^{s}.

The next theorem follows from [22, Theorem 1.6]. More precisely, it follows from the derivation of [22, Theorem 1.1] from [22, Theorem 1.6].

Theorem 1.4 (Frankston, Kahn, Narayanan, and Park [22]).

There exists K>0K>0 such that the following holds. Let \mathcal{H} be a kk-uniform nn-vertex hypergraph and q[0,1]q\in[0,1]. If there exists a qq-spread probability measure on the set of optimal matchings of \mathcal{H} and pKqlognp\geq Kq\log n, then a.a.s. there exists an optimal matching in p\mathcal{H}_{p}.

In particular, by Theorem 1.4, it suffices to prove the following results to deduce Theorems 1.1 and 1.2, respectively.

Theorem 1.5.

Let d,k,sd,k,s\in\mathbb{Z} such that k3k\geq 3, 1dk11\leq d\leq k-1, and 0sk10\leq s\leq k-1. For every γ>0\gamma>0, there exist C>0C>0 and n0n_{0}\in\mathbb{N} such that the following holds for all nk+sn\in k\mathbb{N}+s with nn0n\geq n_{0}. For every kk-uniform nn-vertex hypergraph \mathcal{H} with δd()(μd¯(s)(k)+γ)(ndkd)\delta_{d}(\mathcal{H})\geq\left(\overline{\mu_{d}}^{(s)}(k)+\gamma\right)\binom{n-d}{k-d}, there exists a probability measure on the set of optimal matchings in \mathcal{H} which is (C/nk1)(C/n^{k-1})-spread.

Theorem 1.6.

Let k3k\geq 3 be an integer. There exist C>0C>0 and n0n_{0}\in\mathbb{N} such that the following holds for all integers nn0n\geq n_{0} divisible by kk. For every kk-uniform nn-vertex hypergraph \mathcal{H} with δk1()mk1(k,n)\delta_{k-1}(\mathcal{H})\geq m_{k-1}(k,n), there exists a probability measure on the set of perfect matchings in \mathcal{H} which is (C/nk1)(C/n^{k-1})-spread.

For a kk-uniform nn-vertex hypergraph \mathcal{H} with δk1()δn\delta_{k-1}(\mathcal{H})\geq\delta n for some δ>1/2\delta>1/2, there are some earlier results [17, 18, 29] on counting the number of perfect matchings in \mathcal{H}. Recently, Glock, Gould, Joos, Kühn, and Osthus [29] showed that \mathcal{H} has at least exp((11/k)nlognΘ(n))\exp((1-1/k)n\log n-\Theta(n)) perfect matchings, which is best possible up to an exp(Θ(n))\exp(\Theta(n)) factor (this is also implicit in [18]), since this is also an upper bound for the number of perfect matchings in an nn-vertex kk-uniform complete hypergraph. Very recently, Ferber, Hardiman, and Mond [17] sharpened the bound further by showing that \mathcal{H} has at least (1o(1))n|(𝒦nk)|δn/k(1-o(1))^{n}|\mathcal{M}(\mathcal{K}_{n}^{k})|\delta^{n/k} perfect matchings, where |(𝒦nk)||\mathcal{M}(\mathcal{K}_{n}^{k})| is the number of perfect matchings in an nn-vertex complete kk-uniform hypergraph.

As a corollary to Theorems 1.5 and 1.6, we extend the above results of [18, 29] to nn-vertex kk-uniform hypergraphs with minimum dd-degree at least md(k,n)+o(nkd)m_{d}(k,n)+o(n^{k-d}) or minimum codegree at least mk1(k,n)m_{k-1}(k,n). Our bounds are best possible up to an exp(Θ(n))\exp(\Theta(n)) factor.

Corollary 1.7.

Let k3k\geq 3 be an integer and γ(0,1)\gamma\in(0,1). There exist c>0c>0 and n0n_{0}\in\mathbb{N} such that the following holds for all integers nn0n\geq n_{0}.

  1. (i)

    For d[k1]d\in[k-1], if ns(modk)n\equiv s\>({\rm mod}\,\,k), then every kk-uniform nn-vertex hypergraph \mathcal{H} with δd()(μd¯(s)(k)+γ)(ndkd)\delta_{d}(\mathcal{H})\geq\left(\overline{\mu_{d}}^{(s)}(k)+\gamma\right)\binom{n-d}{k-d} has at least exp((11/k)nlogncn)\exp((1-1/k)n\log n-cn) optimal matchings.

  2. (ii)

    If knk\mid n, then every kk-uniform nn-vertex hypergraph \mathcal{H} with δk1()mk1(k,n)\delta_{k-1}(\mathcal{H})\geq m_{k-1}(k,n), has at least exp((11/k)nlogncn)\exp((1-1/k)n\log n-cn) perfect matchings.

Proof.

Let ()\mathcal{M}(\mathcal{H}) be the set of optimal matchings of \mathcal{H}, and let 𝐌{\bf M} be a (C/nk1)(C/n^{k-1})-spread random optimal matching of \mathcal{H} for some C>0C>0 given by Theorems 1.5 or 1.6, where CC is a function of kk and γ\gamma for (i), and a function of kk for (ii).

For each fixed matching M()M\in\mathcal{M}(\mathcal{H}) which consists of n/k\lfloor n/k\rfloor edges e1,,en/ke_{1},\dots,e_{\lfloor n/k\rfloor}, we have that [e1,,en/k𝐌]=[𝐌=M](C/nk1)n/k\mathbb{P}\left[e_{1},\dots,e_{\lfloor n/k\rfloor}\in{\bf M}\right]=\mathbb{P}\left[{\bf M}=M\right]\leq(C/n^{k-1})^{\lfloor n/k\rfloor} since 𝐌{\bf M} is (C/nk1)(C/n^{k-1})-spread. Thus,

1=M()[𝐌=M]|()|(C/nk1)n/k,\displaystyle 1=\sum_{M\in\mathcal{M}(\mathcal{H})}\mathbb{P}\left[{\bf M}=M\right]\leq|\mathcal{M}(\mathcal{H})|(C/n^{k-1})^{\lfloor n/k\rfloor},

which implies |()|(nk1/C)n/k=exp((11/k)nlogn(logC/k)n±klogn)|\mathcal{M}(\mathcal{H})|\geq(n^{k-1}/C)^{\lfloor n/k\rfloor}=\exp((1-1/k)n\log n-(\log C/k)n\pm k\log n), as desired. ∎

Remark.

In independent work, Pham, Sah, Sawhney, and Simkin [59] also proved Theorem 1.5 and its corollaries Corollary 1.7(i) and Theorem 1.1. In addition, they proved a robust version of the Hajnal–Szemerédi theorem [32] regarding embedding a KrK_{r}-factor into an nn-vertex graph with minimum degree at least (11/r)n(1-1/r)n and a robust version of Komlós, Sárközy, and Szemerédi’s [49] proof of Bollobás’ conjecture that an nn-vertex graph with minimum degree at least (1/2+o(1))n(1/2+o(1))n contains any bounded-degree spanning tree. Both of these results are also derived from stronger results concerning spread measures.

1.5. Notation

For kk\in\mathbb{N}, we let [k]{1,,k}[k]\coloneqq\{1,\dots,k\}. For a kk-uniform hypergraph \mathcal{H} and an edge ee\in\mathcal{H}, we often denote by V(e)V(e) the set of vertices incident to ee. For any set SV()S\subseteq V(\mathcal{H}), we denote by [S]\mathcal{H}[S] the subgraph of \mathcal{H} induced by SS. For sets SV()S\subseteq V(\mathcal{H}) and 𝒮(V()k|S|)\mathcal{S}\subseteq\binom{V(\mathcal{H})}{k-\left\lvert S\right\rvert}, we denote by N(S;𝒮)N_{\mathcal{H}}(S;\mathcal{S}) the set of edges ee\in\mathcal{H} such that e=SSe=S\cup S^{\prime} for some S𝒮S^{\prime}\in\mathcal{S}, and d(S;𝒮)|N(S;𝒮)|d_{\mathcal{H}}(S;\mathcal{S})\coloneqq|N_{\mathcal{H}}(S;\mathcal{S})|. We often omit 𝒮\mathcal{S} if 𝒮=(V()k|S|)\mathcal{S}=\binom{V(\mathcal{H})}{k-\left\lvert S\right\rvert} (for example, we write N(S)N_{\mathcal{H}}(S) and d(S)d_{\mathcal{H}}(S)). If |S|=k1\left\lvert S\right\rvert=k-1 and UV()U\subseteq V(\mathcal{H}), we abuse notation and write d(S;U)d_{\mathcal{H}}(S;U) for d(S;{{u}:uU})d_{\mathcal{H}}(S;\{\{u\}\colon u\in U\}). Moreover, for vV()v\in V(\mathcal{H}), we write d(v;𝒮)d_{\mathcal{H}}(v;\mathcal{S}) for d({v};𝒮)d_{\mathcal{H}}(\{v\};\mathcal{S}). For disjoint subsets W1,,WkV()W_{1},\dots,W_{k}\subseteq V(\mathcal{H}), we denote by e(W1,,Wk)e_{\mathcal{H}}(W_{1},\dots,W_{k}) the number of edges ee\in\mathcal{H} with |eWi|=1|e\cap W_{i}|=1 for all i[k]i\in[k]. We denote by ¯\overline{\mathcal{H}} the complement of a kk-uniform hypergraph \mathcal{H} such that V(¯)V()V(\overline{\mathcal{H}})\coloneqq V(\mathcal{H}) and ¯(V()k)\overline{\mathcal{H}}\coloneqq\binom{V(\mathcal{H})}{k}\setminus\mathcal{H}. We take all asymptotic notations o(),O(),Θ(),ω(),Ω()o(\cdot),O(\cdot),\Theta(\cdot),\omega(\cdot),\Omega(\cdot) to be as nn\to\infty, and all of their leading coefficients may depend on parameters other than nn. We say that an event \mathcal{E} holds asymptotically almost surely (a.a.s.) if []=1o(1)\mathbb{P}\left[\mathcal{E}\right]=1-o(1) as nn\rightarrow\infty. For real numbers xx, yy, α\alpha, and β\beta with β0\beta\geq 0, we write x=(α±β)yx=(\alpha\pm\beta)y for (αβ)yx(α+β)y(\alpha-\beta)y\leq x\leq(\alpha+\beta)y. We sometimes state a result with a hierarchy of constants which are chosen from right to left. If we state that the result holds whenever ab1,,bta\ll b_{1},\dots,b_{t}, then this means that there exists a function f:(0,1)t(0,1)f\colon(0,1)^{t}\to(0,1) such that f(b1,,bi~,,bt)f(b1,,bi,,bt)f(b_{1},\dots,\widetilde{b_{i}},\dots,b_{t})\leq f(b_{1},\dots,b_{i},\dots,b_{t}) for 0<bi~bi<10<\widetilde{b_{i}}\leq b_{i}<1 for all i[t]i\in[t] and the result holds for all real numbers 0<a,b1,,bt<10<a,b_{1},\dots,b_{t}<1 with af(b1,,bt)a\leq f(b_{1},\dots,b_{t}). If a reciprocal 1/m1/m appears in such a hierarchy, we implicitly assume that mm is a positive integer. For a set UU and p[0,1]p\in[0,1], a pp-random subset of UU is a random subset UU^{\prime} of UU that contains each element of UU independently with probability pp.

1.6. Proof outline

Here we briefly sketch the proofs of Theorems 1.5 and 1.6. One key idea of both proofs is that we can use the weak hypergraph regularity lemma (Theorem 2.7) to find a distribution on almost perfect matchings which has good spreadness. The weak hypergraph regularity lemma gives us a reduced kk-uniform hypergraph \mathcal{R} such that almost all subsets of V()V(\mathcal{R}) of size dd have large dd-degree. Using Lemma 2.9, we can find an almost perfect matching MM_{\mathcal{R}} of \mathcal{R} such that each edge of MM_{\mathcal{R}} corresponds to a vertex-disjoint pseudorandom kk-partite subhypergraph in which we can easily construct an almost perfect matching with spreadness.

To obtain a distribution on optimal matchings, we use an approach inspired by the method of “iterative absorption” (introduced in [48, 54] and further developed in [5, 6, 7, 30, 31, 42, 56, 66]). Our iterative-absorption approach, combined with the regularity lemma, allows us to ‘bootstrap’ results on the existence of optimal matchings to construct well-spread distributions on optimal matchings. In this approach, we choose a random partition (U1,,U)(U_{1},\dots,U_{\ell}) of the vertex-set of the kk-uniform hypergraph \mathcal{H}, which we call a vertex vortex (Definition 3.1), which a.a.s. satisfies |Ui+1||Ui|/2|U_{i+1}|\sim|U_{i}|/2, |U|=O(n1/k)|U_{\ell}|=O(n^{1/k}), and some additional conditions on degrees of the vertices in [Ui]\mathcal{H}[U_{i}] and [Ui,Ui+1]\mathcal{H}[U_{i},U_{i+1}]. Using the regularity-lemma approach described above, we can find a well-spread distribution on matchings in [Ui]\mathcal{H}[U_{i}] which cover almost all vertices. Then we cover the leftover uncovered vertices in UiU_{i} using edges which intersect Ui+1U_{i+1} in k1k-1 vertices. By the degree conditions of the vertex vortex, there are many choices of such edges, so a random greedy approach yields a distribution with good enough spreadness. After iterating this procedure 1\ell-1 times, it suffices to find an optimal matching in the final subset UU_{\ell} (with a small subset of vertices deleted), in a deterministic way, since |U|=O(n1/k)|U_{\ell}|=O(n^{1/k}) and [e1,,etU]=(|U|/n)kt=(O(1)/nk1)t\mathbb{P}\left[e_{1},\dots,e_{t}\subseteq U_{\ell}\right]=(|U_{\ell}|/n)^{kt}=(O(1)/n^{k-1})^{t} for any tt disjoint edges e1,,ete_{1},\dots,e_{t}\in\mathcal{H}.

In the setting of Theorem 1.5, it is straightforward to find an optimal matching in the final step; the hypergraph induced on the remaining vertices will still be sufficiently dense. For Theorem 1.6, we show that the result of Rödl, Ruciński, and Szemerédi [63] holds ‘robustly’. Roughly speaking, it holds in the hypergraph induced by a random set of vertices, even after deleting a small proportion of the vertices. For this we must consider two cases according to whether the original hypergraph is close to being a ‘critical hypergraph’ (see Definition 4.2) which has minimum codegree mk1(k,n)1m_{k-1}(k,n)-1 and no perfect matching. If the original hypergraph \mathcal{H} is close to being a critical hypergraph, then we may choose an ‘atypical edge’ among Ω(nk1)\Omega(n^{k-1}) candidates (Lemma 6.9) and delete its vertices in advance. This ensures that the subhypergraph of \mathcal{H} induced by the remaining vertices in UU_{\ell} will meet certain ‘divisibility’ conditions and allow us to apply some technical results proved by Rödl, Ruciński, and Szemerédi to find a perfect matching covering the remaining vertices of UU_{\ell}. Moreover, since there are Ω(nk1)\Omega(n^{k-1}) candidates for the atypical edge, we have the desired spreadness property for this edge. In the second case, the original hypergraph \mathcal{H} is not close to being a critical hypergraph. In this case, we prove that there are still many ‘absorbers’ inside UU_{\ell} (Corollary 5.4), which we can use to build an ‘absorbing matching’. As long as the vertices of the absorbing matching are not among those removed from UU_{\ell}, we can transform an almost perfect matching (which covers most of the remaining vertices of UU_{\ell}) into a perfect matching (i.e., one which covers all remaining vertices of UU_{\ell}).

2. Tools

2.1. Concentration inequalities

We will use the following well-known version of the Chernoff bound.

Lemma 2.1 (Chernoff bound).

If XX is the sum of mutually independent Bernoulli random variables, then for all δ[0,1]\delta\in[0,1],

[|X𝔼[X]|δ𝔼[X]]2eδ2𝔼[X]/3.\mathbb{P}\left[|X-\mathbb{E}[X]|\geq\delta\mathbb{E}[X]\right]\leq 2e^{-\delta^{2}\mathbb{E}[X]/3}.
Definition 2.2 (Typical subset).

Let VV be a finite set, and let 2V{\mathcal{F}}\subseteq 2^{V} be a collection of subsets of VV. For p,ε[0,1]p,\varepsilon\in[0,1], a subset UVU\subseteq V is called (p,ε,)(p,\varepsilon,{\mathcal{F}})-typical if the number of elements in {\mathcal{F}} contained in UU is (1±ε)Sp|S|(1\pm\varepsilon)\sum_{S\in{\mathcal{F}}}p^{|S|}.

We will use the following probabilistic lemma which follows from the Kim–Vu polynomial concentration theorem [47]. For the proof, see LABEL:{app:lemma-proofs}.

Lemma 2.3.

Let 1/n1/s,β,ε<11/n\ll 1/s,\beta,\varepsilon<1 and k2k\geq 2. Let VV be a set of size nn. Let p=p(n)[0,1]p=p(n)\in[0,1] such that npεnβnp\geq\varepsilon n^{\beta}. Let (Vs)\mathcal{F}\subseteq\binom{V}{s}, and let UU be a pp-random subset of VV. Then the following holds.

  1. (i)

    If ||εns(np)1/2\left\lvert\mathcal{F}\right\rvert\geq\varepsilon n^{s}(np)^{-1/2}, then with probability at least 1exp(nβ/(10s))1-\exp(-n^{\beta/(10s)}), the set UU is (p,ε,)(p,\varepsilon,{\mathcal{F}})-typical.

  2. (ii)

    If ||εns\left\lvert\mathcal{F}\right\rvert\leq\varepsilon n^{s}, then with probability at least 1exp(nβ/(10s))1-\exp(-n^{\beta/(10s)}), the number of elements of \mathcal{F} contained in UU is at most 2ε(np)s2\varepsilon(np)^{s}.

2.2. Weak hypergraph regularity

We now introduce the weak hypergraph regularity lemma, which states that any kk-uniform hypergraph has a vertex partition into clusters {Vi}0it\{V_{i}\}_{0\leq i\leq t} so that almost all kk-tuples of clusters induce ε\varepsilon-regular subhypergraphs. Since the notion of ε\varepsilon-regularity is ‘weak’, its proof is very similar to the graph version. Readers should not confuse the weak hypergraph regularity lemma with the Frieze–Kannan weak regularity lemma [24].

Definition 2.4 (ε\varepsilon-regular kk-tuple).

Let ε>0\varepsilon>0 and let \mathcal{H} be a kk-uniform hypergraph. We say that a kk-tuple (V1,,Vk)(V_{1},\dots,V_{k}) of mutually disjoint subsets of V()V(\mathcal{H}) is (d,ε)(d,\varepsilon)-regular if e(W1,,Wk)=(d±ε)|W1||Wk|e_{\mathcal{H}}(W_{1},\dots,W_{k})=(d\pm\varepsilon)|W_{1}|\cdots|W_{k}| for every W1V1W_{1}\subseteq V_{1}, …, and WkVkW_{k}\subseteq V_{k} with |W1||Wk|ε|V1||Vk||W_{1}|\cdots|W_{k}|\geq\varepsilon|V_{1}|\cdots|V_{k}|. Moreover, we say that (V1,,Vk)(V_{1},\dots,V_{k}) is ε\varepsilon-regular if it is (d,ε)(d,\varepsilon)-regular for some d>0d>0.

Definition 2.5 (ε\varepsilon-regular partition).

Let ε>0\varepsilon>0, and let \mathcal{H} be a kk-uniform hypergraph. A partition (V0,V1,,Vt)(V_{0},V_{1},\dots,V_{t}) of V()V(\mathcal{H}) is called an ε\varepsilon-regular partition if

  • |V0|εn|V_{0}|\leq\varepsilon n and |V1|==|Vt||V_{1}|=\cdots=|V_{t}|.

  • For all but at most ε(tk)\varepsilon\binom{t}{k} kk-sets {i1,,ik}([t]k)\{i_{1},\dots,i_{k}\}\in\binom{[t]}{k}, the tuple (Vi1,,Vik)(V_{i_{1}},\dots,V_{i_{k}}) is ε\varepsilon-regular.

Definition 2.6 (Reduced hypergraph).

Let \mathcal{H} be a kk-uniform hypergraph, and let (V0,V1,,Vt)(V_{0},V_{1},\dots,V_{t}) be an ε\varepsilon-regular partition of V()V(\mathcal{H}). The (γ,ε)(\gamma,\varepsilon)-reduced hypergraph \mathcal{R} with respect to (V0,V1,,Vt)(V_{0},V_{1},\dots,V_{t}) is the tt-vertex kk-uniform hypergraph with V()=[t]V(\mathcal{R})=[t] and {i1,,ik}\{i_{1},\dots,i_{k}\}\in\mathcal{R} if and only if (Vi1,,Vik)(V_{i_{1}},\dots,V_{i_{k}}) is ε\varepsilon-regular and e(Vi1,,Vik)γ|Vi1||Vik|e_{\mathcal{H}}(V_{i_{1}},\dots,V_{i_{k}})\geq\gamma|V_{i_{1}}|\cdots|V_{i_{k}}|.

Theorem 2.7 (Weak hypergraph regularity lemma [9, 20, 68]).

Let 1/n,1/t1ε,1/t0<11/n,1/t_{1}\ll\varepsilon,1/t_{0}<1. For every nn-vertex kk-uniform hypergraph \mathcal{H}, there exists an ε\varepsilon-regular partition (V0,,Vt)(V_{0},\dots,V_{t}) of V()V(\mathcal{H}) such that t0tt1t_{0}\leq t\leq t_{1}.

The next lemma can be proved with a straightforward adaptation of the proof of [33, Proposition 16], so we defer the proof to Appendix A.

Lemma 2.8.

Let 1/nη1/tεγ<c,1/k11/n\ll\eta\ll 1/t\ll\varepsilon\ll\gamma<c,1/k\leq 1 with k3k\geq 3 and d[k1]d\in[k-1]. Let \mathcal{H} be a kk-uniform nn-vertex hypergraph which satisfies the following.

  • All but at most ηnd\eta n^{d} dd-sets S(V()d)S\in\binom{V(\mathcal{H})}{d} have dd-degree at least c(ndkd)c\binom{n-d}{k-d}.

  • \mathcal{H} admits an ε\varepsilon-regular partition (V0,,Vt)(V_{0},\dots,V_{t}).

Let \mathcal{R} be the (γ/3,ε)(\gamma/3,\varepsilon)-reduced hypergraph with respect to (V1,,Vt)(V_{1},\dots,V_{t}). Then all but at most ε1/2(td)\varepsilon^{1/2}\binom{t}{d} many dd-sets S([t]d)S\in\binom{[t]}{d} have dd-degree at least (cγ)(tdkd)(c-\gamma)\binom{t-d}{k-d} in \mathcal{R}.

2.3. Almost perfect matchings

For 1dk11\leq d\leq k-1, recall that md(k,n)m_{d}(k,n) is the minimum DD such that every nn-vertex kk-uniform hypergraph with minimum dd-degree at least DD has an optimal matching. Let us define

μd¯(k)lim infnmd(k,n)(ndkd).\underline{\mu_{d}}(k)\coloneqq\liminf_{n\to\infty}\frac{m_{d}(k,n)}{\binom{n-d}{k-d}}.

Note that μd¯(k)μd¯(s)(k)\underline{\mu_{d}}(k)\leq\overline{\mu_{d}}^{(s)}(k) for 0sk10\leq s\leq k-1, and μk1¯(k)=1/k\underline{\mu_{k-1}}(k)=1/k, since mk1(k,n)=n/2O(k)m_{k-1}(k,n)=n/2-O(k) for large nkn\in k\mathbb{N} and mk1(k,n)=n/km_{k-1}(k,n)=\lfloor n/k\rfloor for large nkn\notin k\mathbb{N}, as mentioned in Section 1.1. A well-known lower bound on μd¯(k)\underline{\mu_{d}}(k) is 1(k1k)kd1-(\frac{k-1}{k})^{k-d} (see [72, Construction 1.4]).

Now we prove the following lemma which states that if almost all dd-tuples satisfy the degree condition for an optimal matching then there exists an almost perfect matching. We also remark that there are also similar results on almost perfect matchings [25, 26, 44].

Lemma 2.9.

Let 1/nε1ε21/k1/31/n\ll\varepsilon_{1}\ll\varepsilon_{2}\ll 1/k\leq 1/3 with 1dk11\leq d\leq k-1. Let \mathcal{H} be an nn-vertex kk-uniform hypergraph such that d(S)(μd¯(k)+ε2)(ndkd)d_{\mathcal{H}}(S)\geq(\underline{\mu_{d}}(k)+\varepsilon_{2})\binom{n-d}{k-d} for all but at most ε1nd\varepsilon_{1}n^{d} many S(V()d)S\in\binom{V(\mathcal{H})}{d}. Then \mathcal{H} has a matching which covers all but at most 2ε2n2\varepsilon_{2}n vertices.

To prove Lemma 2.9, we use the following lemma [19, Lemma 3.4].

Lemma 2.10 (Ferber and Kwan [19]).

Let 1/nδ1/mεc,1/k<11/n\ll\delta\ll 1/m\ll\varepsilon\ll c,1/k<1. Let 1dk11\leq d\leq k-1. Let \mathcal{H} be an nn-vertex kk-uniform hypergraph such that d(S)(c+ε)(ndkd)d_{\mathcal{H}}(S)\geq(c+\varepsilon)\binom{n-d}{k-d} for all but at most δnd\delta n^{d} many S(V()d)S\in\binom{V(\mathcal{H})}{d}. Let UU be a random subset of V()V(\mathcal{H}) of size mm uniformly chosen from (V()m)\binom{V(\mathcal{H})}{m}. With probability at least 1md(δ+eε3m)1-m^{d}(\delta+e^{-\varepsilon^{3}m}), we have δd([U])(c+ε/2)(mdkd)\delta_{d}(\mathcal{H}[U])\geq(c+\varepsilon/2)\binom{m-d}{k-d}.

Proof of Lemma 2.9.

Let 1/nε11/mε21/k1/n\ll\varepsilon_{1}\ll 1/m\ll\varepsilon_{2}\ll 1/k such that md(k,m)(μd¯(k)+ε2/2)(mdkd)m_{d}(k,m)\leq(\underline{\mu_{d}}(k)+\varepsilon_{2}/2)\binom{m-d}{k-d}. For tn/mt\coloneqq\lfloor n/m\rfloor, let U1,,UtU_{1},\dots,U_{t} be tt disjoint random subsets of V()V(\mathcal{H}) of size mm such that each UiU_{i} has a uniform random distribution from (V()m)\binom{V(\mathcal{H})}{m}. For each i[t]i\in[t], let UiU_{i} be bad if δd([Ui])<(μd¯(k)+ε2/2)(mdkd)\delta_{d}(\mathcal{H}[U_{i}])<(\underline{\mu_{d}}(k)+\varepsilon_{2}/2)\binom{m-d}{k-d}, and otherwise good. By Lemma 2.10, for each i[t]i\in[t], (Ui is bad)md(ε1+eε23m)<ε22\mathbb{P}(\text{$U_{i}$ is bad})\leq m^{d}(\varepsilon_{1}+e^{-\varepsilon_{2}^{3}m})<\varepsilon_{2}^{2}, so the expected number of bad UiU_{i}’s is at most ε22t\varepsilon_{2}^{2}t. By Markov’s inequality, with probability at least 1ε21-\varepsilon_{2}, the number of bad UiU_{i}’s is at most ε2t\varepsilon_{2}t. Fix a choice of U1,,UtU_{1},\dots,U_{t} for which this holds. For each of the good UiU_{i}’s, since md(k,m)(μd¯(k)+ε2/2)(mdkd)δd([Ui])m_{d}(k,m)\leq(\underline{\mu_{d}}(k)+\varepsilon_{2}/2)\binom{m-d}{k-d}\leq\delta_{d}(\mathcal{H}[U_{i}]), there is an optimal matching MiM_{i} of [Ui]\mathcal{H}[U_{i}]. Let MUi:goodMiM\coloneqq\bigcup_{U_{i}:\>\text{good}}M_{i}. Then

|V()V(M)|\displaystyle|V(\mathcal{H})\setminus V(M)| |V()i=1tUi|+Ui:bad|Ui|+Ui:good|UiV(Mi)|\displaystyle\leq\left|V(\mathcal{H})\setminus\bigcup_{i=1}^{t}U_{i}\right|+\sum_{U_{i}:\>\text{bad}}|U_{i}|+\sum_{U_{i}:\>\text{good}}|U_{i}\setminus V(M_{i})|
m1+ε2tm+(k1)(tε2t)\displaystyle\leq m-1+\varepsilon_{2}t\cdot m+(k-1)\cdot(t-\varepsilon_{2}t)
m+ε2n+nk/m<2ε2n,\displaystyle\leq m+\varepsilon_{2}n+nk/m<2\varepsilon_{2}n,

as desired. ∎

3. Vortices and iterative absorption

The main result of this section is Lemma 3.10, which essentially guarantees a O(1/nk1)O(1/n^{k-1})-spread measure on the set of optimal matchings in a kk-uniform hypergraph \mathcal{H} in which a O(1/n11/k)O(1/n^{1-1/k})-random subset of vertices of \mathcal{H} induces a hypergraph with an optimal matching with high probability. To prove this result, we use an ‘iterative absorption’ approach.

3.1. Vortices

Recall from Section 1.6 that a vertex vortex, formally defined below, is a sequence of vertex sets, which all induce relevant properties of the original hypergraph. The first step in the proof of Lemma 3.10 is to randomly partition the vertices of \mathcal{H}, and this partition will be a vertex vortex with high probability.

Definition 3.1 (Vertex vortex).

Let k2k\geq 2, and let \mathcal{H} be a kk-uniform hypergraph on nn vertices. For a positive integer \ell, a vector 𝐩=(p1,,p)\mathbf{p}=(p_{1},\dots,p_{\ell}) of non-negative reals such that pi=1\sum p_{i}=1, an integer d[k1]d\in[k-1], and ε,α1,α2>0\varepsilon,\alpha_{1},\alpha_{2}>0, we say that a partition (U1,,U)(U_{1},\dots,U_{\ell}) of V()V(\mathcal{H}) is an (α1,α2,d,ε,𝐩)(\alpha_{1},\alpha_{2},d,\varepsilon,\mathbf{p})-vortex for \mathcal{H} if

  1. (V1)(\text{V}1)

    |Ui|=(1±ε)pin\left\lvert U_{i}\right\rvert=(1\pm\varepsilon)p_{i}n for all i[]i\in[\ell],

  2. (V2)(\text{V}2)

    d[Ui](S)(α1ε)(pin)kdd_{\mathcal{H}[U_{i}]}(S)\geq(\alpha_{1}-\varepsilon)(p_{i}n)^{k-d} for all i[1]i\in[\ell-1], and all but ε(pin)d\varepsilon(p_{i}n)^{d} many S(Uid)S\in\binom{U_{i}}{d}, and

  3. (V3)(\text{V}3)

    d(v;(Ui{v}k1))(α2ε)(pin)k1d_{\mathcal{H}}(v;\binom{U_{i}\setminus\{v\}}{k-1})\geq(\alpha_{2}-\varepsilon)(p_{i}n)^{k-1} for all i[]i\in[\ell] and vV()v\in V(\mathcal{H}).

Definition 3.2 ((α1,α2,d,ε)(\alpha_{1},\alpha_{2},d,\varepsilon)-dense).

Let k2k\geq 2, let d{1,,k}d\in\{1,\dots,k\}, and let α1,α2,ε[0,1]\alpha_{1},\alpha_{2},\varepsilon\in[0,1]. A kk-uniform hypergraph \mathcal{H} on nn vertices is (α1,α2,d,ε)(\alpha_{1},\alpha_{2},d,\varepsilon)-dense if d(S)α1nkdd_{\mathcal{H}}(S)\geq\alpha_{1}n^{k-d} for all but εnd\varepsilon n^{d} many S(V()d)S\in\binom{V(\mathcal{H})}{d} and d(v)α2nk1d_{\mathcal{H}}(v)\geq\alpha_{2}n^{k-1} for all vV()v\in V(\mathcal{H}).

The next lemma can be proved via a straightforward combination of Chernoff bounds and Lemma 2.3 with the union bound, so we defer it to the appendix.

Lemma 3.3 (Vortex existence lemma).

Let 1/nε<α1,α2,1/k<11/n\ll\varepsilon<\alpha_{1},\alpha_{2},1/k<1 with k3k\geq 3 and d[k1]d\in[k-1]. Let \mathcal{H} be a (α1,α2,d,ε)(\alpha_{1},\alpha_{2},d,\varepsilon)-dense kk-uniform hypergraph on nn vertices. Let k1klog2(n)\ell\coloneqq\left\lceil\frac{k-1}{k}\log_{2}(n)\right\rceil, Ci=12iC_{\ell}\coloneqq\sum_{i=1}^{\ell}2^{-i}, pi1C2ip_{i}\coloneqq\frac{1}{C_{\ell}2^{i}} for each i[]i\in[\ell], and 𝐩(p1,,p)\mathbf{p}\coloneqq(p_{1},\dots,p_{\ell}). Independently for each vertex vV()v\in V(\mathcal{H}), let XvX_{v} be a random variable with values in [][\ell] such that [Xv=i]=pi\mathbb{P}\left[X_{v}=i\right]=p_{i} for each i[]i\in[\ell]. For each i[]i\in[\ell], let Ui{vV():Xv=i}U_{i}\coloneqq\{v\in V(\mathcal{H})\colon X_{v}=i\}. Then we have that a.a.s. (U1,,U)(U_{1},\dots,U_{\ell}) is an (α1,α2,d,2ε,𝐩)(\alpha_{1},\alpha_{2},d,2\varepsilon,\mathbf{p})-vortex for \mathcal{H}.

3.2. Matchings inside vortex sets

To prove Lemma 3.10, we will find a well-spread measure on almost perfect matchings in each ‘level’ of the vertex vortex using the weak hypergraph regularity lemma (Theorem 2.7). The following lemma is key for this approach.

Lemma 3.4 (Random matching in an ε\varepsilon-regular kk-tuple).

Let 1/nεd,1/k<11/n\ll\varepsilon\ll d,1/k<1. Let \mathcal{H} be a kk-partite kk-uniform hypergraph with partition (V1,,Vk)(V_{1},\dots,V_{k}) such that |V1|==|Vk|=n\left\lvert V_{1}\right\rvert=\dots=\left\lvert V_{k}\right\rvert=n and (V1,,Vk)(V_{1},\dots,V_{k}) is ε\varepsilon-regular with density at least dd. Then there exists a (1/(ε2nk1))(1/(\varepsilon^{2}n^{k-1}))-spread probability measure on the set of matchings in \mathcal{H} which cover all but at most 2kε1/kn2k\varepsilon^{1/k}n vertices.

Proof.

We define a probability measure on the set of matchings in \mathcal{H} which cover all but at most 2kε1/kn2k\varepsilon^{1/k}n vertices by randomly constructing a matching MM as follows. Let u1,,unu_{1},\dots,u_{n} be an enumeration of the vertices in V1V_{1}. Let M0M_{0}\coloneqq\varnothing, W0W_{0}\coloneqq\varnothing, and Vi,0ViV_{i,0}\coloneqq V_{i} for each i[k]i\in[k]. We define MjMj1M_{j}\supseteq M_{j-1}, WjWj1W_{j}\supseteq W_{j-1}, Vi,jVi,j1V_{i,j}\subseteq V_{i,j-1} for each i[k]i\in[k] inductively to satisfy |Mj|=n|V2,j||M_{j}|=n-|V_{2,j}|, |Wj||Wj1|+1|W_{j}|\leq|W_{j-1}|+1, and |V2,j|==|Vk,j|=nj+|Wj||V_{2,j}|=\dots=|V_{k,j}|=n-j+|W_{j}| for each j1j\geq 1, until |V2,j|==|Vk,j|<2ε1/kn|V_{2,j}|=\dots=|V_{k,j}|<2\varepsilon^{1/k}n.

Suppose |V2,j1|==|Vk,j1|2ε1/kn|V_{2,j-1}|=\dots=|V_{k,j-1}|\geq 2\varepsilon^{1/k}n. We consider the following two cases:

  • If e(uj,V2,j1,,Vk,j1)<ε2nk1e_{\mathcal{H}}(u_{j},V_{2,j-1},\dots,V_{k,j-1})<\varepsilon^{2}n^{k-1}, then define MjMj1M_{j}\coloneqq M_{j-1}, WjWj1{uj}W_{j}\coloneqq W_{j-1}\cup\{u_{j}\}, and Vi,jVi,j1V_{i,j}\coloneqq V_{i,j-1} for each 2ik2\leq i\leq k.

  • Otherwise, if e(uj,V2,j1,,Vk,j1)ε2nk1e_{\mathcal{H}}(u_{j},V_{2,j-1},\dots,V_{k,j-1})\geq\varepsilon^{2}n^{k-1}, then choose (v2,j,,vk,j)V2,j1××Vk,j1(v_{2,j},\dots,v_{k,j})\in V_{2,j-1}\times\dots\times V_{k,j-1} uniformly at random so that ujv2,jvk,jE(uj,V2,j1,,Vk,j1)u_{j}v_{2,j}\dots v_{k,j}\in E_{\mathcal{H}}(u_{j},V_{2,j-1},\dots,V_{k,j-1}). Define MjMj1{ujv2,jvk,j}M_{j}\coloneqq M_{j-1}\cup\{u_{j}v_{2,j}\dots v_{k,j}\}, WjWj1W_{j}\coloneqq W_{j-1}, and Vi,jVi,j1{vi,j}V_{i,j}\coloneqq V_{i,j-1}\setminus\{v_{i,j}\} for each 2ik2\leq i\leq k.

Let t[n]t\in[n] be the first index such that |V2,t|==|Vk,t|<2ε1/kn|V_{2,t}|=\dots=|V_{k,t}|<2\varepsilon^{1/k}n. If such an index does not exist, then let tnt\coloneqq n. For either of the cases, we have |V2,t|==|Vk,t|>2ε1/kn1|V_{2,t}|=\dots=|V_{k,t}|>2\varepsilon^{1/k}n-1.

Let MMtM\coloneqq M_{t}. Since each edge of \mathcal{H} is added to MM with probability at most 1/(ε2nk1)1/(\varepsilon^{2}n^{k-1}) conditional on all other previous random choices, the resulting measure is 1/(ε2nk1)1/(\varepsilon^{2}n^{k-1})-spread.

Now we aim to bound |Wt||W_{t}|. Indeed, for each j1j\geq 1 such that ujWtu_{j}\in W_{t}, we have

e(uj,V2,t,,Vk,t)e(uj,V2,j1,,Vt,j1)<ε2nk1,e_{\mathcal{H}}(u_{j},V_{2,t},\dots,V_{k,t})\leq e_{\mathcal{H}}(u_{j},V_{2,j-1},\dots,V_{t,j-1})<\varepsilon^{2}n^{k-1},

so e(Wt,V2,t,,Vk,t)<ε2nk1|Wt|ε2nke_{\mathcal{H}}(W_{t},V_{2,t},\dots,V_{k,t})<\varepsilon^{2}n^{k-1}|W_{t}|\leq\varepsilon^{2}n^{k}. Since |V2,t|==|Vk,t|>2ε1/kn1|V_{2,t}|=\dots=|V_{k,t}|>2\varepsilon^{1/k}n-1, if |Wt|>ε1/kn|W_{t}|>\varepsilon^{1/k}n, then |Wt||V2,t||Vk,t|>εnk=ε|V1||Vk||W_{t}||V_{2,t}|\cdots|V_{k,t}|>\varepsilon n^{k}=\varepsilon|V_{1}|\cdots|V_{k}| while e(Wt,V2,t,,Vk,t)<ε2nk<(dε)|W1||V2,t||Vk,t|e_{\mathcal{H}}(W_{t},V_{2,t},\dots,V_{k,t})<\varepsilon^{2}n^{k}<(d-\varepsilon)|W_{1}|\left\lvert V_{2,t}\right\rvert\cdots\left\lvert V_{k,t}\right\rvert, contradicting the assumption that (V1,,Vk)(V_{1},\dots,V_{k}) is ε\varepsilon-regular with density at least dd. Thus, |Wt|ε1/kn|W_{t}|\leq\varepsilon^{1/k}n. This also implies that t<nt<n and |V2,t|==|Vk,t|<2ε1/kn|V_{2,t}|=\dots=|V_{k,t}|<2\varepsilon^{1/k}n; otherwise if t=nt=n, then |V2,n|==|Vk,n|=n(n|Wt|)ε1/kn|V_{2,n}|=\dots=|V_{k,n}|=n-(n-|W_{t}|)\leq\varepsilon^{1/k}n, which contradicts |V2,t|==|Vk,t|>2ε1/kn1|V_{2,t}|=\dots=|V_{k,t}|>2\varepsilon^{1/k}n-1. Since |M|=|Mt|=n|V2,t|n2ε1/kn|M|=|M_{t}|=n-|V_{2,t}|\geq n-2\varepsilon^{1/k}n, the matching MM covers all but at most 2kε1/kn2k\varepsilon^{1/k}n vertices. ∎

The next lemma shows that we can find a well-spread measure on almost perfect matchings within a vortex set UiU_{i}.

Lemma 3.5 (Random Matching inside a vortex set).

Let 1/nδε1ε21/k<11/n\ll\delta\ll\varepsilon_{1}\ll\varepsilon_{2}\ll 1/k<1 with k3k\geq 3 and d[k1]d\in[k-1]. Let \mathcal{H} be a kk-uniform hypergraph on nn vertices such that d(S)(μd¯(k)+ε2)(nkd)d_{\mathcal{H}}(S)\geq(\underline{\mu_{d}}(k)+\varepsilon_{2})\binom{n}{k-d} for all but at most ε1nd\varepsilon_{1}n^{d} many dd-sets S(V()d)S\in\binom{V(\mathcal{H})}{d}. Then there exists a (1/(δnk1))(1/(\delta n^{k-1}))-spread probability measure on the set of matchings in \mathcal{H} which cover all but at most 2ε2n2\varepsilon_{2}n vertices.

Proof.

We define a probability measure on the set of matchings in \mathcal{H} which cover all but at most 2ε2n2\varepsilon_{2}n vertices by randomly constructing a matching MM as follows. Fix new constants t1t_{1}, t0t_{0}, ε\varepsilon, and γ\gamma such that ε11/t11/t0εγε2\varepsilon_{1}\ll 1/t_{1}\ll 1/t_{0}\ll\varepsilon\ll\gamma\ll\varepsilon_{2}. By Theorem 2.7, there exists an ε\varepsilon-regular partition (V0,V1,,Vt)(V_{0},V_{1},\dots,V_{t}) of V()V(\mathcal{H}) with t0tt1t_{0}\leq t\leq t_{1}. Let \mathcal{R} be the (γ/3,ε)(\gamma/3,\varepsilon)-reduced graph with respect to (V0,V1,,Vt)(V_{0},V_{1},\dots,V_{t}). By Lemma 2.8, all but at most ε1/2(td)\varepsilon^{1/2}\binom{t}{d} many dd-sets S([t]d)S\in\binom{[t]}{d} satisfy d(S)(μd¯(k)+ε2/2)(tkd)d_{\mathcal{R}}(S)\geq(\underline{\mu_{d}}(k)+\varepsilon_{2}/2)\binom{t}{k-d}. Thus, by Lemma 2.9, \mathcal{R} has a matching MM_{\mathcal{R}} covering all but at most ε2t\varepsilon_{2}t vertices. Let nn|V0|t(1ε)ntn_{*}\coloneqq\frac{n-\left\lvert V_{0}\right\rvert}{t}\geq(1-\varepsilon)\frac{n}{t}. For each S={i1,,ik}MS=\{i_{1},\dots,i_{k}\}\in M_{\mathcal{R}}, by Lemma 3.4, there exists a probability measure νS\nu_{S} on the set of matchings in [Vi1,,Vik]\mathcal{H}[V_{i_{1}},\dots,V_{i_{k}}] that cover all but at most 2kε1/kn2k\varepsilon^{1/k}n_{*} of the vertices in Vi1VikV_{i_{1}}\cup\dots\cup V_{i_{k}} that is (1/(ε2nk1))(1/(\varepsilon^{2}n_{*}^{k-1}))-spread. Choose M=SMMSM=\bigcup_{S\in M_{\mathcal{R}}}M_{S} where each MSM_{S} is chosen independently at random according to νS\nu_{S}. Since

1ε2nk1tk1ε2(1ε)k1nk11δnk1,\frac{1}{\varepsilon^{2}n_{*}^{k-1}}\leq\frac{t^{k-1}}{\varepsilon^{2}(1-\varepsilon)^{k-1}n^{k-1}}\leq\frac{1}{\delta n^{k-1}},

the probability measure on MM is (1/(δnk1))(1/(\delta n^{k-1}))-spread. Moreover, MM covers all but at most

εn+2kε1/kntk+ε2tn2ε2n\varepsilon n+2k\varepsilon^{1/k}n_{*}\cdot\frac{t}{k}+\varepsilon_{2}t\cdot n_{*}\leq 2\varepsilon_{2}n

vertices of \mathcal{H}, as desired. ∎

3.3. Covering down

The following lemma will be used to cover the vertices in some vertex set UiU_{i} by edges whose other vertices lie in Ui+1U_{i+1}, i.e., we will apply it with AA playing the role of the set of uncovered vertices in UiU_{i} and BB that of Ui+1U_{i+1}.

Lemma 3.6 (Cover-down lemma).

Suppose 1/nηδc,1/k<11/n\ll\eta\ll\delta\ll c,1/k<1. Let \mathcal{H} be a kk-uniform hypergraph on nn vertices, and let (A,B)(A,B) be a partition of V()V(\mathcal{H}) such that |A|ηn\left\lvert A\right\rvert\leq\eta n and for each vAv\in A, d(v;(Bk1))cnk1d_{\mathcal{H}}(v;\binom{B}{k-1})\geq cn^{k-1}. Then there exists a (1/(δnk1))(1/(\delta n^{k-1}))-spread probability measure on the set of matchings MM in \mathcal{H} of size |A|\left\lvert A\right\rvert that cover AA and satisfy |eA|=1\left\lvert e\cap A\right\rvert=1 for each eMe\in M.

Proof.

We define a probability measure on the set of matchings MM in \mathcal{H} of size |A|\left\lvert A\right\rvert that cover AA and |eA|=1\left\lvert e\cap A\right\rvert=1 for each eMe\in M by randomly constructing a matching MM as follows. Let m|A|m\coloneqq\left\lvert A\right\rvert, and let u1,,umu_{1},\dots,u_{m} be an enumeration of the vertices in AA. Independently for each i=1,,mi=1,\dots,m in order, choose Si(Bj=1i1Sjk1)S_{i}\in\binom{B\setminus\bigcup_{j=1}^{i-1}S_{j}}{k-1} such that eiuiSie_{i}\coloneqq u_{i}\cup S_{i}\in\mathcal{H} uniformly at random. Let M{ei:i[m]}M\coloneqq\{e_{i}\colon i\in[m]\}. Note that for each i[m]i\in[m], we have

d(ui;(Bj=1i1Sjk1))\displaystyle d_{\mathcal{H}}\left(u_{i};\binom{B\setminus\bigcup_{j=1}^{i-1}S_{j}}{k-1}\right) d(ui;(Bk1))(k1)|A||B|k2\displaystyle\geq d_{\mathcal{H}}\left(u_{i};\binom{B}{k-1}\right)-(k-1)|A||B|^{k-2}
cnk1(k1)ηnk1cnk12.\displaystyle\geq cn^{k-1}-(k-1)\eta n^{k-1}\geq\frac{cn^{k-1}}{2}.

Hence each edge ee\in\mathcal{H} is added to MM with probability at most 2/(cnk1)1/(δnk1){2}/({cn^{k-1}})\leq{1}/({\delta n^{k-1}}) irrespective of all other random choices. It follows that the resulting measure is (1/(δnk1))({1}/({\delta n^{k-1}}))-spread. ∎

3.4. Spreadness of random matchings

Given a vertex vortex (U1,,U)(U_{1},\dots,U_{\ell}) of a hypergraph \mathcal{H}, we can iteratively apply Lemmas 3.5 and 3.6 1\ell-1 times to obtain a well-spread measure on matchings of \mathcal{H} which cover all vertices of \mathcal{H} not in UU_{\ell}. However, edges in ‘lower levels’ (i.e. UiU_{i} for ii close to \ell) of the vortex may be more likely to appear in this matching than edges in ‘higher levels’ (i.e. UiU_{i} for ii close to 11), so we need to introduce the following ‘weighted’ version of spreadness. Since edges are less likely to appear in the lower levels of a random vortex, the spreadness ‘balances’.

Definition 3.7.

Let \mathcal{H} be a kk-uniform hypergraph, and let 𝐪=(qe)e\mathbf{q}=\left(q_{e}\right)_{e\in\mathcal{H}} where qe[0,1]q_{e}\in[0,1] for every ee\in\mathcal{H}. A probability measure ν\nu on the set of matchings in \mathcal{H} is 𝐪\mathbf{q}-spread if for every SS\subseteq\mathcal{H}, we have

[SM]eSqe,\mathbb{P}\left[S\subseteq M\right]\leq\prod_{e\in S}q_{e},

where MM is chosen at random according to ν\nu.

Given a vertex vortex (U1,,U)(U_{1},\dots,U_{\ell}), the following lemma provides a 𝐪\mathbf{q}-spread measure for appropriately chosen 𝐪\mathbf{q} on matchings which cover all vertices not in UU_{\ell}. For technical reasons discussed later, we also need to control the parity of these matchings, we need these matchings to avoid a small ‘protected’ set UUU_{*}\subseteq U_{\ell}, and we need that these matchings do not cover too many vertices of UU_{\ell}.

Lemma 3.8.

Suppose 1/nδεεc,1/k<11/n\ll\delta\ll\varepsilon_{*}\ll\varepsilon\ll c,1/k<1 with k3k\geq 3, and d[k1]d\in[k-1]. Let k1klog2(n)\ell\coloneqq\left\lceil\frac{k-1}{k}\log_{2}(n)\right\rceil, Ci=12iC_{\ell}\coloneqq\sum_{i=1}^{\ell}2^{-i}, pi1C2ip_{i}\coloneqq\frac{1}{C_{\ell}2^{i}} for each i[]i\in[\ell], and 𝐩(p1,,p)\mathbf{p}\coloneqq(p_{1},\dots,p_{\ell}). Let \mathcal{H} be a kk-uniform hypergraph on nn vertices, and let (U1,,U)(U_{1},\dots,U_{\ell}) be an (μd¯(k)+4ε(kd)!,c,d,ε,𝐩)\left(\frac{\underline{\mu_{d}}(k)+4\varepsilon}{(k-d)!},c,d,\varepsilon_{*},\mathbf{p}\right)-vortex for \mathcal{H}. Let UUU_{*}\subseteq U_{\ell} with |U|ε|U|\left\lvert U_{*}\right\rvert\leq\varepsilon\left\lvert U_{\ell}\right\rvert and s{0,1}s\in\{0,1\}. Let 𝐪(qe)e\mathbf{q}\coloneqq\left(q_{e}\right)_{e\in\mathcal{H}}, where for each ee\in\mathcal{H},

qe{1δ(pin)k1 if eUi for some i[1],1δ(pi+1n)k1 if eUiUi+1 and |eUi|=1 for some i[1],1 if eU, and0 otherwise.q_{e}\coloneqq\left\{\begin{array}[]{l l}\frac{1}{\delta(p_{i}n)^{k-1}}&\text{ if $e\subseteq U_{i}$ for some $i\in[\ell-1]$},\\ \frac{1}{\delta(p_{i+1}n)^{k-1}}&\text{ if $e\subseteq U_{i}\cup U_{i+1}$ and $\left\lvert e\cap U_{i}\right\rvert=1$ for some $i\in[\ell-1]$},\\ 1&\text{ if $e\subseteq U_{\ell}$, and}\\ 0&\text{ otherwise.}\end{array}\right.

Then there exists a 𝐪\mathbf{q}-spread probability measure on the set of matchings MM in \mathcal{H} which satisfy |M|s(mod  2)\left\lvert M\right\rvert\equiv s\>({\rm mod}\,\,2), UV()V(M)UU_{*}\subseteq V(\mathcal{H})\setminus V(M)\subseteq U_{\ell}, and |V(M)U|ε2pn\left\lvert V(M)\cap U_{\ell}\right\rvert\leq\varepsilon^{2}p_{\ell}n.

Proof.

Fix a new constant δ\delta_{*} such that δδε\delta\ll\delta_{*}\ll\varepsilon_{*}. We prove by induction on jj that for each jj such that 0j10\leq j\leq\ell-1, there exists a 𝐪|[U1Uj+1]\mathbf{q}|_{\mathcal{H}[U_{1}\cup\dots\cup U_{j+1}]}-spread probability measure νj\nu_{j} on the set of matchings MM in [U1Uj+1]\mathcal{H}[U_{1}\cup\dots\cup U_{j+1}] which satisfy UV()V(M)Uj+1UU_{*}\subseteq V(\mathcal{H})\setminus V(M)\subseteq U_{j+1}\cup\dots\cup U_{\ell}, |V(M)Uj+1|ε2pj+1n/2\left\lvert V(M)\cap U_{j+1}\right\rvert\leq\varepsilon^{2}p_{j+1}n/2, and eUj+1Ue\not\subseteq U_{j+1}\cup\dots\cup U_{\ell} for each eMe\in M.

To see how the lemma follows from the existence of such ν1\nu_{\ell-1}, note that ν1\nu_{\ell-1} is supported on the set of matchings MM of \mathcal{H} which satisfy UV()V(M)UU_{*}\subseteq V(\mathcal{H})\setminus V(M)\subseteq U_{\ell}, |V(M)U|ε2pn/2|V(M)\cap U_{\ell}|\leq\varepsilon^{2}p_{\ell}n/2, and eUe\not\subseteq U_{\ell} for each eMe\in M. If |M|s(mod  2)|M|\equiv s\>({\rm mod}\,\,2), then let ν({M})ν1({M})\nu(\{M\})\coloneqq\nu_{\ell-1}(\{M\}). Otherwise, we choose an arbitrary edge eM[UV(M)]e_{M}\in\mathcal{H}[U_{\ell}\setminus V(M)] and let ν({M{eM}})ν1({M})\nu(\{M\cup\{e_{M}\}\})\coloneqq\nu_{\ell-1}(\{M\}). Since eUe\not\subseteq U_{\ell} for each eMe\in M and qf=1q_{f}=1 for each f[U]f\in\mathcal{H}[U_{\ell}], ν\nu is a well-defined 𝐪\mathbf{q}-spread probability measure on the set of matchings NN in \mathcal{H} which satisfy |N|s(mod  2)\left\lvert N\right\rvert\equiv s\>({\rm mod}\,\,2), UV()V(N)UU_{*}\subseteq V(\mathcal{H})\setminus V(N)\subseteq U_{\ell}, |V(N)U|ε2pn\left\lvert V(N)\cap U_{\ell}\right\rvert\leq\varepsilon^{2}p_{\ell}n.

We define the desired probability measure by randomly constructing a matching MM as follows. For j=0j=0 the statement trivially holds for M=M=\varnothing. Now let j1j\geq 1, and let νj1\nu_{j-1} be a 𝐪|[U1Uj]\mathbf{q}|_{\mathcal{H}[U_{1}\cup\dots\cup U_{j}]}-spread probability measure on the set of matchings MM_{*} in [U1Uj]\mathcal{H}[U_{1}\cup\dots\cup U_{j}] which satisfy UV()V(M)UjUU_{*}\subseteq V(\mathcal{H})\setminus V(M_{*})\subseteq U_{j}\cup\dots\cup U_{\ell}, |V(M)Uj|ε2pjn/2\left\lvert V(M_{*})\cap U_{j}\right\rvert\leq\varepsilon^{2}p_{j}n/2, and eUjUe\not\subseteq U_{j}\cup\dots\cup U_{\ell} for each eMe\in M_{*}. Let UjU^{\prime}_{j} be the set of vertices in UjU_{j} that are not covered by MM_{*}. Since |Uj|=(1±ε)pjn\left\lvert U_{j}\right\rvert=(1\pm\varepsilon_{*})p_{j}n and by the fact that MM_{*} covers at most ε2pjn/2\varepsilon^{2}p_{j}n/2 vertices in UjU_{j}, we have |Uj|=(1±2ε2)pjn|U^{\prime}_{j}|=(1\pm 2\varepsilon^{2})p_{j}n.

Since (U1,,U)(U_{1},\dots,U_{\ell}) is an (μd¯(k)+4ε(kd)!,c,d,ε,𝐩)\left(\frac{\underline{\mu_{d}}(k)+4\varepsilon}{(k-d)!},c,d,\varepsilon_{*},\mathbf{p}\right)-vortex for \mathcal{H}, for all but ε(pjn)d\varepsilon_{*}(p_{j}n)^{d} many S(Ujd)S\in\binom{U_{j}}{d}, we have that d[Uj](S)(μd¯(k)+4ε(kd)!ε)(pjn)kdμd¯(k)+3ε(kd)!(pjn)kdd_{\mathcal{H}[U_{j}]}(S)\geq\left(\frac{\underline{\mu_{d}}(k)+4\varepsilon}{(k-d)!}-\varepsilon_{*}\right)(p_{j}n)^{k-d}\geq\frac{\underline{\mu_{d}}(k)+3\varepsilon}{(k-d)!}(p_{j}n)^{k-d}. It follows that for all but at most ε(pjn)dε(pjn)d|Uj|d|Uj|dε(12ε2)d|Uj|d2ε|Uj|d\varepsilon_{*}(p_{j}n)^{d}\leq\frac{\varepsilon_{*}(p_{j}n)^{d}}{\left\lvert U_{j}^{\prime}\right\rvert^{d}}|U_{j}^{\prime}|^{d}\leq\frac{\varepsilon_{*}}{(1-2\varepsilon^{2})^{d}}|U_{j}^{\prime}|^{d}\leq 2\varepsilon_{*}|U_{j}^{\prime}|^{d} many S(Ujd)S\in\binom{U_{j}^{\prime}}{d}, we have

d[Uj](S)\displaystyle d_{\mathcal{H}[U_{j}^{\prime}]}(S) μd¯(k)+3ε(kd)!(pjn)kd2ε2(pjn)kdμd¯(k)+2ε(kd)!(pjn)kd\displaystyle\geq\frac{\underline{\mu_{d}}(k)+3\varepsilon}{(k-d)!}(p_{j}n)^{k-d}-2\varepsilon^{2}(p_{j}n)^{k-d}\geq\frac{\underline{\mu_{d}}(k)+2\varepsilon}{(k-d)!}(p_{j}n)^{k-d}
μd¯(k)+2ε(kd)!(|Uj|1+2ε2)kd(μd¯(k)+ε)(|Uj|kd).\displaystyle\geq\frac{\underline{\mu_{d}}(k)+2\varepsilon}{(k-d)!}\left(\frac{|U_{j}^{\prime}|}{1+2\varepsilon^{2}}\right)^{k-d}\geq(\underline{\mu_{d}}(k)+\varepsilon)\binom{|U_{j}^{\prime}|}{k-d}.

By applying Lemma 3.5 with |Uj||U^{\prime}_{j}|, δ\delta_{*}, 2ε2\varepsilon_{*}, ε4/2\varepsilon^{4}/2, kk, dd, [Uj]\mathcal{H}[U_{j}^{\prime}] playing the roles of nn, δ\delta, ε1\varepsilon_{1}, ε2\varepsilon_{2}, kk, dd, \mathcal{H} (noting that each e[Uj]e\in\mathcal{H}[U^{\prime}_{j}] satisfies qe=1δ(pjn)k11δ|Uj|k1q_{e}=\frac{1}{\delta(p_{j}n)^{k-1}}\geq\frac{1}{\delta_{*}|U^{\prime}_{j}|^{k-1}}), there exists a 𝐪|[Uj]\mathbf{q}|_{\mathcal{H}[U^{\prime}_{j}]}-spread probability measure νj\nu_{j}^{\prime} on the set of matchings MjM_{j} in [Uj]\mathcal{H}[U^{\prime}_{j}] that cover all but at most ε4|Uj|\varepsilon^{4}|U^{\prime}_{j}| vertices of UjU^{\prime}_{j}. Let AA be the set of vertices in UjU_{j}^{\prime} not covered by MjM_{j}, and let BUj+1UB\coloneqq U_{j+1}\setminus U_{*}.

Let 𝒢[AB]\mathcal{G}\coloneqq\mathcal{H}[A\cup B]. Note that (12ε)pj+1n|V(𝒢)|=|A|+|B|ε4(1+ε)pjn+(1+ε)pj+1n(1-2\varepsilon)p_{j+1}n\leq|V(\mathcal{G})|=\left\lvert A\right\rvert+\left\lvert B\right\rvert\leq\varepsilon^{4}(1+\varepsilon_{*})p_{j}n+(1+\varepsilon_{*})p_{j+1}n. Using the fact that pj=2pj+1p_{j}=2p_{j+1}, we have |V(𝒢)|=(1±2ε)pj+1n|V(\mathcal{G})|=(1\pm 2\varepsilon)p_{j+1}n and |A|ε3|V(𝒢)|\left\lvert A\right\rvert\leq\varepsilon^{3}|V(\mathcal{G})|. By (V3)(\text{V}3), we have for each vAv\in A, d𝒢(v;(Bk1))(cε)(pj+1n)k1|U||Uj+1|k2(c3ε)(pj+1n)k1c2|V(𝒢)|k1d_{\mathcal{G}}(v;\binom{B}{k-1})\geq(c-\varepsilon_{*})(p_{j+1}n)^{k-1}-\left\lvert U_{*}\right\rvert\left\lvert U_{j+1}\right\rvert^{k-2}\geq(c-3\varepsilon)(p_{j+1}n)^{k-1}\geq\frac{c}{2}|V(\mathcal{G})|^{k-1}. By applying Lemma 3.6 with |V(𝒢)||V(\mathcal{G})|, ε2\varepsilon^{2}, δ\delta_{*}, c2\frac{c}{2}, kk, 𝒢\mathcal{G} playing the roles of nn, η\eta, δ\delta, cc, kk, \mathcal{H} (noting that each e𝒢e\in\mathcal{G} with |eA|=1\left\lvert e\cap A\right\rvert=1 satisfies qe=1δ(pj+1n)k11δ|V(𝒢)|k1q_{e}=\frac{1}{\delta(p_{j+1}n)^{k-1}}\geq\frac{1}{\delta_{*}|V(\mathcal{G})|^{k-1}}), there exists a 𝐪|𝒢\mathbf{q}|_{\mathcal{G}}-spread probability measure νj\nu^{\prime}_{j} on the set of matchings MjM^{\prime}_{j} in 𝒢\mathcal{G} that cover AA and (k1)|A|(k-1)\left\lvert A\right\rvert vertices in BB. Note that MjM^{\prime}_{j} covers (k1)|A|(k1)ε3|V(𝒢)|ε2pj+1n/2(k-1)\left\lvert A\right\rvert\leq(k-1)\varepsilon^{3}|V(\mathcal{G})|\leq\varepsilon^{2}p_{j+1}n/2 vertices in Uj+1U_{j+1}.

It follows that we have randomly constructed the desired matching MMMjMjM\coloneqq M_{*}\cup{M}_{j}\cup M^{\prime}_{j}, and the resulting measure νj\nu_{j} is 𝐪|[U1Uj+1]\mathbf{q}|_{\mathcal{H}[U_{1}\cup\dots\cup U_{j+1}]}-spread, since for every SS\subseteq\mathcal{H}, we have

[SM]\displaystyle\mathbb{P}\left[S\subseteq M\right] =[S[U1Uj]M][S[Uj]Mj|M][S𝒢Mj|M,Mj]\displaystyle=\mathbb{P}\left[S\cap\mathcal{H}[U_{1}\cup\dots\cup U_{j}]\subseteq M_{*}\right]\mathbb{P}\left[S\cap\mathcal{H}[U^{\prime}_{j}]\subseteq{M}_{j}\>\middle|\>M_{*}\right]\mathbb{P}\left[S\cap\mathcal{G}\subseteq M^{\prime}_{j}\>\middle|\>M_{*},{M}_{j}\right]
eSqe.\displaystyle\leq\prod_{e\in S}q_{e}.

It is straightforward to check that UV()V(M)Uj+1UU_{*}\subseteq V(\mathcal{H})\setminus V(M)\subseteq U_{j+1}\cup\dots\cup U_{\ell}, |V(M)Uj+1|ε2pj+1n/2\left\lvert V(M)\cap U_{j+1}\right\rvert\leq\varepsilon^{2}p_{j+1}n/2, and eUj+1Ue\not\subseteq U_{j+1}\cup\dots\cup U_{\ell} for each eMe\in M. ∎

Since we apply Lemma 3.8 to a random vortex (U1,,U)(U_{1},\dots,U_{\ell}), we can extend the random matching MM in a deterministic way without affecting the spreadness of the resulting measure. It is of course crucial that there is at least one way to extend MM to an optimal matching (OM in this definition stands for ‘optimal matching’), which is captured by the following definition.

Definition 3.9 (OM-stability).

For a kk-uniform hypergraph \mathcal{H}, a spanning subhypergraph \mathcal{H}^{\prime} of \mathcal{H}, and ε>0\varepsilon>0, we say that UV()U\subseteq V(\mathcal{H}) is (,ε)(\mathcal{H}^{\prime},\varepsilon)-OM-stable for \mathcal{H} if there exists UUU_{*}\subseteq U with |U|ε|U|\left\lvert U_{*}\right\rvert\leq\varepsilon\left\lvert U\right\rvert and s{0,1}s\in\{0,1\} such that for any matching MM in \mathcal{H}^{\prime} with |M|s(mod  2)\left\lvert M\right\rvert\equiv s\>({\rm mod}\,\,2), UV()V(M)UU_{*}\subseteq V(\mathcal{H})\setminus V(M)\subseteq U, and |V(M)U|ε|U|\left\lvert V(M)\cap U\right\rvert\leq\varepsilon\left\lvert U\right\rvert, we have that V(M)\mathcal{H}-V(M) contains an optimal matching.

In this definition, we only consider matchings inside some subhypergraph \mathcal{H}^{\prime}\subseteq\mathcal{H} in order to maintain some divisibility conditions in the critical case in the proof of Theorem 1.6. We also only consider matchings of a certain parity for similar reasons. The set UU_{*} can be viewed as a set of ‘protected’ vertices. In the non-critical case of Theorem 1.6, we will find an ‘absorbing matching’ on these vertices which can absorb a small set of leftover vertices. This is discussed further in Section 5.

Lemma 3.10.

Let 1/nδδεεc,1/k<11/n\ll\delta\ll\delta_{*}\ll\varepsilon_{*}\ll\varepsilon\ll c,1/k<1 with k3k\geq 3, and d[k1]d\in[k-1]. Let \mathcal{H} be a kk-uniform hypergraph on nn vertices and \mathcal{H}^{\prime} a (μd¯(k)+4ε(kd)!,c,d,ε)\left(\frac{\underline{\mu_{d}}(k)+4\varepsilon}{(k-d)!},c,d,\varepsilon_{*}\right)-dense spanning subhypergraph of \mathcal{H}. Let k1klog2(n)\ell\coloneqq\left\lceil\frac{k-1}{k}\log_{2}(n)\right\rceil, Ci=12iC_{\ell}\coloneqq\sum_{i=1}^{\ell}2^{-i}, and p1C2p_{\ell}\coloneqq\frac{1}{C_{\ell}2^{\ell}}. Suppose that a pp_{\ell}-random subset of V()V(\mathcal{H}) is (,ε)(\mathcal{H}^{\prime},\varepsilon)-OM-stable for \mathcal{H} with probability at least δ\delta_{*}. Then there exists a probability measure on the set of optimal matchings of \mathcal{H} that is 1δnk1\frac{1}{\delta n^{k-1}}-spread.

Proof.

For each i[1]i\in[\ell-1], let pi1C2ip_{i}\coloneqq\frac{1}{C_{\ell}2^{i}}, and let 𝐩(p1,,p)\mathbf{p}\coloneqq(p_{1},\dots,p_{\ell}). Independently for each vertex vV()v\in V(\mathcal{H}), let XvX_{v} be a random variable with values in [][\ell] such that [Xv=i]=pi\mathbb{P}\left[X_{v}=i\right]=p_{i} for each i[]i\in[\ell]. For each i[]i\in[\ell], let Ui{vV():Xv=i}U_{i}\coloneqq\{v\in V(\mathcal{H})\colon X_{v}=i\}. Let 1\mathcal{E}_{1} be the event that (U1,,U)(U_{1},\dots,U_{\ell}) is a (μd¯(k)+4ε(kd)!,c,d,2ε,𝐩)\left(\frac{\underline{\mu_{d}}(k)+4\varepsilon}{(k-d)!},c,d,2\varepsilon_{*},\mathbf{p}\right)-vortex for \mathcal{H}^{\prime}, and let 2\mathcal{E}_{2} be the event that UU_{\ell} is (,ε)(\mathcal{H}^{\prime},\varepsilon)-OM-stable for \mathcal{H}. By Lemma 3.3, [1]1δ/2\mathbb{P}\left[\mathcal{E}_{1}\right]\geq 1-\delta_{*}/2, and by assumption, [2]δ\mathbb{P}\left[\mathcal{E}_{2}\right]\geq\delta_{*}. Hence, [12]δ/2\mathbb{P}\left[\mathcal{E}_{1}\cap\mathcal{E}_{2}\right]\geq\delta_{*}/2.

Suppose that the outcome of Xv,vV()X_{v},v\in V(\mathcal{H}) is such that 12\mathcal{E}_{1}\cap\mathcal{E}_{2} holds. Since UU_{\ell} is (,ε)(\mathcal{H}^{\prime},\varepsilon)-OM-stable for \mathcal{H}, there exists UUU_{*}\subseteq U_{\ell} with |U|ε|U|\left\lvert U_{*}\right\rvert\leq\varepsilon\left\lvert U_{\ell}\right\rvert and s{0,1}s\in\{0,1\} such that for any matching MM of \mathcal{H}^{\prime} with |M|=s(mod  2)\left\lvert M\right\rvert=s\>({\rm mod}\,\,2), UV()V(M)UU_{*}\subseteq V(\mathcal{H})\setminus V(M)\subseteq U_{\ell}, and |V(M)U|ε|U|\left\lvert V(M)\cap U\right\rvert\leq\varepsilon\left\lvert U_{\ell}\right\rvert, we have that V(M)\mathcal{H}-V(M) contains an optimal matching. By Lemma 3.8 with nn, δ\delta_{*}, 2ε2\varepsilon_{*}, ε\varepsilon, cc, kk, dd, \mathcal{H}^{\prime}, UU_{*} playing the roles of nn, δ\delta, ε\varepsilon_{*}, ε\varepsilon, cc, kk, dd, \mathcal{H}, UU_{*}, there is a 𝐪\mathbf{q}-spread probability measure ν\nu_{*} on the set of matchings MM_{*} in \mathcal{H}^{\prime} which satisfy |M|s(mod  2)|M_{*}|\equiv s\>({\rm mod}\,\,2), UV()V(M)UU_{*}\subseteq V(\mathcal{H})\setminus V(M_{*})\subseteq U_{\ell}, and |V(M)U|ε2pn|V(M_{*})\cap U_{\ell}|\leq\varepsilon^{2}p_{\ell}n, where 𝐪\mathbf{q} is as defined in Lemma 3.8. Since 2\mathcal{E}_{2} holds, we can complete the matching MM_{*} to an optimal matching MM of \mathcal{H}. Thus, conditional on the event 12\mathcal{E}_{1}\cap\mathcal{E}_{2}, this procedure defines a probability measure on the set of optimal matchings MM in \mathcal{H}. (For each optimal matching MM, the probability of MM appearing is given by the probability that this procedure outputs MM. Note that for fixed MM, there may be several different ways of arriving at output MM via this procedure.)

We claim that the resulting measure is 2q/δ2q/\delta_{*}-spread, where q4/(δnk1)q\coloneqq 4/(\delta_{*}n^{k-1}). To that end, let s1s\geq 1, and let e1,,ese_{1},\dots,e_{s} be distinct edges of \mathcal{H}. We show that [e1,,esM]2qs/δ(2q/δ)s\mathbb{P}\left[e_{1},\dots,e_{s}\in M\right]\leq 2q^{s}/\delta_{*}\leq(2q/\delta_{*})^{s}. If the edges e1,,ese_{1},\dots,e_{s} do not form a matching in \mathcal{H}, then clearly [e1,,esM]=0\mathbb{P}\left[e_{1},\dots,e_{s}\in M\right]=0 as MM is a matching, so we may assume that the edges e1,,ese_{1},\dots,e_{s} form a matching in \mathcal{H}. Let 𝒫\mathcal{P} denote the set of partitions (S1,S1,,S1,S1,S)(S_{1},S^{\prime}_{1},\dots,S_{\ell-1},S^{\prime}_{\ell-1},S_{\ell}) of {e1,,es}\{e_{1},\dots,e_{s}\} into 212\ell-1 parts. For each P=(S1,S1,,S1,S1,S)𝒫P=(S_{1},S^{\prime}_{1},\dots,S_{\ell-1},S^{\prime}_{\ell-1},S_{\ell})\in\mathcal{P}, let P\mathcal{E}_{P} be the event that

  • eUie\subseteq U_{i} for all i[]i\in[\ell] and eSie\in S_{i} and

  • |eUi|=1|e\cap U_{i}|=1 and |eUi+1|=k1|e\cap U_{i+1}|=k-1 for all i[1]i\in[\ell-1] and eSie\in S_{i}^{\prime}.

Now

[e1,,esM]=P𝒫[e1,,esM|P][P|12].\mathbb{P}\left[e_{1},\dots,e_{s}\in M\right]=\sum_{P\in\mathcal{P}}\mathbb{P}\left[e_{1},\dots,e_{s}\in M\>\middle|\>\mathcal{E}_{P}\right]\mathbb{P}\left[\mathcal{E}_{P}\>\middle|\>\mathcal{E}_{1}\cap\mathcal{E}_{2}\right].

Since {e1,,es}\{e_{1},\dots,e_{s}\} is a matching, for every P=(S1,S1,,S1,S1,S)𝒫P=(S_{1},S^{\prime}_{1},\dots,S_{\ell-1},S^{\prime}_{\ell-1},S_{\ell})\in\mathcal{P}, we have

[P|12][P][12]2δi=1pik|Si|i=11(pipi+1k1)|Si|,\mathbb{P}\left[\mathcal{E}_{P}\>\middle|\>\mathcal{E}_{1}\cap\mathcal{E}_{2}\right]\leq\frac{\mathbb{P}\left[\mathcal{E}_{P}\right]}{\mathbb{P}\left[\mathcal{E}_{1}\cap\mathcal{E}_{2}\right]}\leq\frac{2}{\delta_{*}}\prod_{i=1}^{\ell}p_{i}^{k|S_{i}|}\prod_{i=1}^{\ell-1}\left(p_{i}p_{i+1}^{k-1}\right)^{|S^{\prime}_{i}|},

and by Lemma 3.8,

[e1,,esM|P]i=1qi|Si|i=11qi|Si|,\mathbb{P}\left[e_{1},\dots,e_{s}\in M\>\middle|\>\mathcal{E}_{P}\right]\leq\prod_{i=1}^{\ell}q_{i}^{|S_{i}|}\prod_{i=1}^{\ell-1}{{q_{i}}^{\prime}}^{|S^{\prime}_{i}|},

where qi1/(δ(pin)k1)q_{i}\coloneqq 1/(\delta_{*}(p_{i}n)^{k-1}) and qi1/(δ(pi+1n)k1){q_{i}}^{\prime}\coloneqq 1/(\delta_{*}(p_{i+1}n)^{k-1}) for i[1]i\in[\ell-1] and q1q_{\ell}\coloneqq 1. Since q=4/(δnk1)q=4/(\delta_{*}n^{k-1}), for all i[1]i\in[\ell-1],

qipik=qipipi+1k1=qpi4,q_{i}p_{i}^{k}=q^{\prime}_{i}p_{i}p_{i+1}^{k-1}=\frac{qp_{i}}{4},

and since 1/nδ1/k1/n\ll\delta_{*}\ll 1/k,

qpk=pk(2Cnk1k)k2δnk1=q2.q_{\ell}p_{\ell}^{k}=p_{\ell}^{k}\leq\left(\frac{2}{C_{\ell}n^{\frac{k-1}{k}}}\right)^{k}\leq\frac{2}{\delta_{*}n^{k-1}}=\frac{q}{2}.

Therefore, combining the five equations above, we have

[e1,,esM]\displaystyle\mathbb{P}\left[e_{1},\dots,e_{s}\in M\right] 2δ(S1,S1,,S1,S1,S)𝒫(q2)|S|i=11(qpi4)|Si|(qpi4)|Si|\displaystyle\leq\frac{2}{\delta_{*}}\sum_{(S_{1},S^{\prime}_{1},\dots,S_{\ell-1},S^{\prime}_{\ell-1},S_{\ell})\in\mathcal{P}}\left(\frac{q}{2}\right)^{|S_{\ell}|}\prod_{i=1}^{\ell-1}\left(\frac{qp_{i}}{4}\right)^{|S_{i}|}\left(\frac{qp_{i}}{4}\right)^{|S^{\prime}_{i}|}
=2δqs(12+p14+p14++p14+p14)s2δqs,\displaystyle=\frac{2}{\delta_{*}}q^{s}\left(\frac{1}{2}+\frac{p_{1}}{4}+\frac{p_{1}}{4}+\cdots+\frac{p_{\ell-1}}{4}+\frac{p_{\ell-1}}{4}\right)^{s}\leq\frac{2}{\delta_{*}}q^{s},

so our measure is 2q/δ2q/\delta_{*}-spread, as claimed. Since δδ\delta\ll\delta_{*}, the measure is also 1/(δnk1)1/(\delta n^{k-1})-spread, as desired. ∎

4. OM-stability

In this section, we prove Theorem 1.5, and subject to some lemmas proved in later sections, we also prove Theorem 1.6. Lemma 3.10 essentially reduces these proofs to the problem of proving the hypergraphs under consideration are OM-stable.

4.1. Proof of Theorem 1.5

Together with Lemma 3.10, the next lemma implies spreadness of optimal matchings in the case when we have minimum dd-degree at least (μd¯(s)(k)+o(1))(ndkd)(\overline{\mu_{d}}^{(s)}(k)+o(1))\binom{n-d}{k-d}.

Lemma 4.1.

Let 1/nεγ1/k1/31/n\ll\varepsilon\ll\gamma\ll 1/k\leq 1/3 and d[k1]d\in[k-1]. Let \mathcal{H} be a kk-uniform hypergraph on nn vertices with δd()(μd¯(s)(k)+γ)(ndkd)\delta_{d}(\mathcal{H})\geq\left(\overline{\mu_{d}}^{(s)}(k)+\gamma\right)\binom{n-d}{k-d}, where ns(modk)n\equiv s\>({\rm mod}\>k) for 0sk10\leq s\leq k-1. Let k1klog2(n)\ell\coloneqq\left\lceil\frac{k-1}{k}\log_{2}(n)\right\rceil, Ci=12iC_{\ell}\coloneqq\sum_{i=1}^{\ell}2^{-i}, and p1C2p_{\ell}\coloneqq\frac{1}{C_{\ell}2^{\ell}}. Then a.a.s. a pp_{\ell}-random subset of V()V(\mathcal{H}) is (,ε)(\mathcal{H},\varepsilon)-OM-stable for \mathcal{H}.

Proof.

By the definition of μd¯(s)(k)\overline{\mu_{d}}^{(s)}(k), there exists n0n_{0}\in\mathbb{N} such that md(k,n)<(μd¯(s)(k)+γ/4)(ndkd)m_{d}(k,n^{\prime})<(\overline{\mu_{d}}^{(s)}(k)+\gamma/4)\binom{n^{\prime}-d}{k-d} for all nk+sn^{\prime}\in k\mathbb{N}+s with nn0n^{\prime}\geq n_{0}, and we may assume that nn is sufficiently larger than n0n_{0} so that n1/k/8n0n^{1/k}/8\geq n_{0}, which implies pn/2n0p_{\ell}n/2\geq n_{0}. Let UU be a pp_{\ell}-random subset of V()V(\mathcal{H}). Let \mathcal{E} be the event that |U|=(1±ε)pn\left\lvert U\right\rvert=(1\pm\varepsilon)p_{\ell}n and δd([U])μd¯(s)(k)+γ/3(kd)!(pn)kd\delta_{d}(\mathcal{H}[U])\geq\frac{\overline{\mu_{d}}^{(s)}(k)+\gamma/3}{(k-d)!}(p_{\ell}n)^{k-d}. We show that \mathcal{E} occurs a.a.s. Note that by a Chernoff bound, we have that

[|U|(1±ε)pn]2exp(ε23pn)exp(Ω(n1/k)).\mathbb{P}\left[\left\lvert U\right\rvert\neq(1\pm\varepsilon)p_{\ell}n\right]\leq 2\exp\left(-\frac{\varepsilon^{2}}{3}p_{\ell}n\right)\leq\exp(-\Omega(n^{1/k})).

Note that for each S(V()d)S\in\binom{V(\mathcal{H})}{d}, we have d(S)(μd¯(s)(k)+γ)(ndkd)μd¯(s)(k)+γ/2(kd)!nkd.d_{\mathcal{H}}(S)\geq(\overline{\mu_{d}}^{(s)}(k)+\gamma)\binom{n-d}{k-d}\geq\frac{\overline{\mu_{d}}^{(s)}(k)+\gamma/2}{(k-d)!}n^{k-d}. By Lemma 2.3 (i) and a union bound, with probability at least 1exp(n1/(11k2))1-\exp(-n^{1/(11k^{2})}), we have

δd([U])μd¯(s)(k)+γ/3(kd)!(pn)kd.\delta_{d}(\mathcal{H}[U])\geq\frac{\overline{\mu_{d}}^{(s)}(k)+\gamma/3}{(k-d)!}(p_{\ell}n)^{k-d}.

Hence, \mathcal{E} occurs a.a.s. We show that in this case UU is (,ε)(\mathcal{H},\varepsilon)-OM-stable for \mathcal{H}. Let MM be a matching in \mathcal{H} such that |V(M)U|ε|U||V(M)\cap U|\leq\varepsilon|U| and V()V(M)UV(\mathcal{H})\setminus V(M)\subseteq U. Let UV()V(M)U^{\prime}\coloneqq V(\mathcal{H})\setminus V(M). Note that

δd([U])μd¯(s)(k)+γ/3(kd)!(pn)kdε|U|kdμd¯(s)(k)+γ/4(kd)!|U|kd(μd¯(s)(k)+γ4)(|U|dkd),\delta_{d}(\mathcal{H}[U^{\prime}])\geq\frac{\overline{\mu_{d}}^{(s)}(k)+\gamma/3}{(k-d)!}(p_{\ell}n)^{k-d}-\varepsilon|U|^{k-d}\geq\frac{\overline{\mu_{d}}^{(s)}(k)+\gamma/4}{(k-d)!}|U^{\prime}|^{k-d}\geq\left(\overline{\mu_{d}}^{(s)}(k)+\frac{\gamma}{4}\right)\binom{|U^{\prime}|-d}{k-d},

and since |U|pn/2n0|U^{\prime}|\geq p_{\ell}n/2\geq n_{0} and |U|n(modk)|U^{\prime}|\equiv n\>({\rm mod}\,\,k), we have δd([U])(μd¯(s)(k)+γ/4)(|U|dkd)md(k,|U|)\delta_{d}(\mathcal{H}[U^{\prime}])\geq(\overline{\mu_{d}}^{(s)}(k)+\gamma/4)\binom{|U^{\prime}|-d}{k-d}\geq m_{d}(k,|U^{\prime}|). Therefore, it follows from the definition of md(k,|U|)m_{d}(k,|U^{\prime}|) that [U]=V(M)\mathcal{H}[U^{\prime}]=\mathcal{H}-V(M) contains an optimal matching, as desired. ∎

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5.

Let 1/nδεεγ,1/k1/n\ll\delta\ll\varepsilon_{*}\ll\varepsilon\ll\gamma,1/k with γ(0,1)\gamma\in(0,1) and k3k\geq 3. Let 0sk10\leq s\leq k-1 be an integer such that nk+sn\in k\mathbb{N}+s. Note that δd()(μd¯(s)(k)+γ)(ndkd)μd¯(s)(k)+γ/2(kd)!nkd\delta_{d}(\mathcal{H})\geq(\overline{\mu_{d}}^{(s)}(k)+\gamma)\binom{n-d}{k-d}\geq\frac{\overline{\mu_{d}}^{(s)}(k)+\gamma/2}{(k-d)!}n^{k-d}. Moreover, we have

δ1()1(k1d1)(n1d1)δd()μd¯(s)(k)+γ/22(k1)!nk1.\displaystyle\delta_{1}(\mathcal{H})\geq\frac{1}{\binom{k-1}{d-1}}\binom{n-1}{d-1}\delta_{d}(\mathcal{H})\geq\frac{\overline{\mu_{d}}^{(s)}(k)+\gamma/2}{2(k-1)!}n^{k-1}.

Thus, since εγ\varepsilon\ll\gamma, \mathcal{H} is (μd¯(s)(k)+4ε(kd)!,μd¯(s)(k)+γ/22(k1)!,d,ε)\left(\frac{\overline{\mu_{d}}^{(s)}(k)+4\varepsilon}{(k-d)!},\frac{\overline{\mu_{d}}^{(s)}(k)+\gamma/2}{2(k-1)!},d,\varepsilon_{*}\right)-dense. By Lemmas 3.10 and 4.1, there exists a probability measure on the set of optimal matchings of \mathcal{H} which is 1δnk1\frac{1}{\delta n^{k-1}}-spread, as desired. ∎

4.2. Proof of Theorem 1.6

Now we briefly describe the following critical example mentioned in [63, Section 3]. Note that the critical example for odd kk was introduced in [52].

Definition 4.2 (0(k,n)\mathcal{H}^{0}(k,n)).

Let k,n2k,n\geq 2 be positive integers such that nn is divisible by kk. Let 0(k,n)\mathcal{H}^{0}(k,n) be a kk-uniform nn-vertex hypergraph with an ordered partition (A,B)(A,B) of V(0(k,n))V(\mathcal{H}^{0}(k,n)) such that the following holds.

  • If kk is odd, then |A|\left\lvert A\right\rvert is the unique odd integer in {n21,n212,n2,n2+12}\{\frac{n}{2}-1,\frac{n}{2}-\frac{1}{2},\frac{n}{2},\frac{n}{2}+\frac{1}{2}\} and E(0(k,n))E(\mathcal{H}^{0}(k,n)) is the collection of all subsets of size kk in V(0(k,n))=ABV(\mathcal{H}^{0}(k,n))=A\cup B which intersect AA in an even number of vertices.

  • Otherwise if kk is even, then

    |A|={n2,if nk is odd and n2 is even,n21, otherwise (thus n/kn/2(mod  2)),\left\lvert A\right\rvert=\begin{cases}\frac{n}{2},&\text{if $\frac{n}{k}$ is odd and $\frac{n}{2}$ is even,}\\ \frac{n}{2}-1,&\text{ otherwise (thus $n/k\equiv n/2\>({\rm mod}\,\,2))$,}\end{cases}

    and E(0(k,n))E(\mathcal{H}^{0}(k,n)) is the collection of all subsets of size kk in V(0(k,n))=ABV(\mathcal{H}^{0}(k,n))=A\cup B which intersect AA in an odd number of vertices.

Let δ0(k,n)δk1(0(k,n))\delta^{0}(k,n)\coloneqq\delta_{k-1}(\mathcal{H}^{0}(k,n)). If kk is odd, then

δ0(k,n)={n/2+1kfor n0,2(mod 4)n/2+1/2kfor n1(mod 4)n/2+3/2kfor n3(mod 4).\displaystyle\delta^{0}(k,n)=\begin{cases}n/2+1-k&\text{for }n\equiv 0,2\>({\rm mod}\>4)\\ n/2+1/2-k&\text{for }n\equiv 1\>({\rm mod}\>4)\\ n/2+3/2-k&\text{for }n\equiv 3\>({\rm mod}\>4).\end{cases}

Otherwise if kk is even, then

δ0(k,n)={n/2+1kif n/k is evenn/2+1kif n/k is odd and k/2 is oddn/2+2kif n/k is odd and k/2 is even.\displaystyle\delta^{0}(k,n)=\begin{cases}n/2+1-k&\text{if $n/k$ is even}\\ n/2+1-k&\text{if $n/k$ is odd and $k/2$ is odd}\\ n/2+2-k&\text{if $n/k$ is odd and $k/2$ is even.}\end{cases}

Note that 0(k,n)\mathcal{H}^{0}(k,n) does not contain a perfect matching (for example, see [63, Section 3]), so mk1(k,n)δ0(k,n)+1m_{k-1}(k,n)\geq\delta^{0}(k,n)+1 if knk\mid n. In fact, Rödl, Ruciński, and Szemerédi [63] showed that mk1(k,n)=δ0(k,n)+1m_{k-1}(k,n)=\delta^{0}(k,n)+1 when k3k\geq 3, knk\mid n, and nn is sufficiently large.

We may also use the following definition from [63, Definition 3.3].

Definition 4.3 (ε\varepsilon-containment).

For any ε(0,1)\varepsilon\in(0,1), an nn-vertex kk-uniform hypergraph \mathcal{H} ε\varepsilon-contains another nn-vertex kk-uniform hypergraph 𝒢\mathcal{G} (or 𝒢ε\mathcal{G}\subseteq_{\varepsilon}\mathcal{H}) if there exists an isomorphic copy \mathcal{H}^{\prime} of \mathcal{H} such that V()=V(𝒢)V(\mathcal{H}^{\prime})=V(\mathcal{G}) and |𝒢|εnk|\mathcal{G}\setminus\mathcal{H}^{\prime}|\leq\varepsilon n^{k}.

In the proof of Theorem 1.6, we must consider two cases according to whether \mathcal{H} is close to being critical. The following two lemmas give that a.a.s. a small random subset of vertices is OM-stable in both cases.

Lemma 4.4.

Let 1/nε1/k1/31/n\ll\varepsilon\ll 1/k\leq 1/3 such that knk\mid n. Let \mathcal{H} be a kk-uniform nn-vertex hypergraph with δk1()(1/21/logn)n\delta_{k-1}(\mathcal{H})\geq(1/2-1/\log n)n such that \mathcal{H} ε\varepsilon-contains neither 0(k,n)\mathcal{H}^{0}(k,n) nor 0(k,n)¯\overline{\mathcal{H}^{0}(k,n)}. Let k1klog2(n)\ell\coloneqq\left\lceil\frac{k-1}{k}\log_{2}(n)\right\rceil, Ci=12iC_{\ell}\coloneqq\sum_{i=1}^{\ell}2^{-i}, and p1C2p_{\ell}\coloneqq\frac{1}{C_{\ell}2^{\ell}}. Let UU be a pp_{\ell}-random subset of V()V(\mathcal{H}). Then a.a.s. UU is (,ε)(\mathcal{H},\varepsilon)-OM-stable for \mathcal{H}.

Lemma 4.5.

Let 1/nεη1/k1/31/n\ll\varepsilon\ll\eta\ll 1/k\leq 1/3 such that knk\mid n. Let \mathcal{H} be a kk-uniform nn-vertex hypergraph \mathcal{H} with δk1()mk1(k,n)=δ0(k,n)+1\delta_{k-1}(\mathcal{H})\geq m_{k-1}(k,n)=\delta^{0}(k,n)+1 such that \mathcal{H} ε\varepsilon-contains either 0(k,n)\mathcal{H}^{0}(k,n) or 0(k,n)¯\overline{\mathcal{H}^{0}(k,n)}. Let k1klog2n\ell\coloneqq\lceil\frac{k-1}{k}\log_{2}n\rceil, Ci=12iC_{\ell}\coloneqq\sum_{i=1}^{\ell}2^{-i}, and p1/(C2)p_{\ell}\coloneqq 1/(C_{\ell}2^{\ell}). There are at least εnk1\varepsilon n^{k-1} choices of an edge ee^{*}\in\mathcal{H} such that for each of the choices of ee^{*}, there exists a spanning subhypergraph \mathcal{H}^{\prime} of V(e)\mathcal{H}-V(e^{*}) such that

  1. (O1)({\rm O}1)

    \mathcal{H}^{\prime} is (1/2η,0.153k1(k1)!,k1,η)(1/2-\eta,\>\frac{0.15}{3^{k-1}(k-1)!},\>k-1,\>\eta)-dense, and

  2. (O2)({\rm O}2)

    a.a.s. a pp_{\ell}-random subset of V()V(e)V(\mathcal{H})-V(e^{*}) is (,η)(\mathcal{H}^{\prime},\eta)-OM-stable for V(e)\mathcal{H}-V(e^{*}).

We will prove both lemmas in the next two sections. Subject to these lemmas, we prove Theorem 1.6.

Proof of Theorem 1.6.

Let 1/n0δεη1/k1/31/n_{0}\ll\delta\ll\varepsilon\ll\eta\ll 1/k\leq 1/3. If \mathcal{H} ε\varepsilon-contains neither 0(k,n)\mathcal{H}^{0}(k,n) nor 0(k,n)¯\overline{\mathcal{H}^{0}(k,n)}, then Theorem 1.6 follows by Lemmas 3.10 and 4.4, since mk1(n)=1/km_{k-1}(n)=1/k, δk1()mk1(k,n)n/2O(k)\delta_{k-1}(\mathcal{H})\geq m_{k-1}(k,n)\geq n/2-O(k), and δ1()1k1(n1k2)δk1()nk13(k1)!\delta_{1}(\mathcal{H})\geq\frac{1}{k-1}\binom{n-1}{k-2}\delta_{k-1}(\mathcal{H})\geq\frac{n^{k-1}}{3(k-1)!}. Thus, we may assume that \mathcal{H} ε\varepsilon-contains either 0(k,n)\mathcal{H}^{0}(k,n) or 0(k,n)¯\overline{\mathcal{H}^{0}(k,n)}.

By Lemma 4.5, there are at least εnk1\varepsilon n^{k-1} choices of an edge ee^{*}\in\mathcal{H} satisfying (O1)({\rm O}1) and (O2)({\rm O}2). We choose one of them uniformly at random and let M{e}M^{*}\coloneqq\{e^{*}\}. For each of the choices of ee^{*}, there exists a spanning subhypergraph \mathcal{H}^{\prime} of V(e)\mathcal{H}-V(e^{*}) which is (1/2η,0.153k1(k1)!,k1,η)(1/2-\eta,\>\frac{0.15}{3^{k-1}(k-1)!},\>k-1,\>\eta)-dense by (O1)({\rm O}1), so \mathcal{H}^{\prime} is (1/k+3η,0.153k1(k1)!,k1,ε)(1/k+3\eta,\>\frac{0.15}{3^{k-1}(k-1)!},\>k-1,\>\varepsilon)-dense. By (O2)({\rm O}2) and Lemma 3.10, there exists a probability measure ν\nu on the set of perfect matchings MM^{\prime} of V(e)\mathcal{H}-V(e^{*}) that is 1δnk1\frac{1}{\delta n^{k-1}}-spread, conditioning on the choice of ee^{*}. Let MM^{\prime} be chosen randomly according to ν\nu, and let MMMM\coloneqq M^{*}\cup M^{\prime}. For any disjoint e1,,ete_{1},\dots,e_{t}\in\mathcal{H},

[e1,,etM]\displaystyle\mathbb{P}\left[e_{1},\dots,e_{t}\in M\right] [e1,,etM|M]+i=1t[M={ei}][{e1,,et}{ei}M|M]\displaystyle\leq\mathbb{P}\left[e_{1},\dots,e_{t}\in M^{\prime}\>|\>M^{*}\right]+\sum_{i=1}^{t}\mathbb{P}\left[M^{*}=\{e_{i}\}\right]\mathbb{P}\left[\{e_{1},\dots,e_{t}\}\setminus\{e_{i}\}\subseteq M^{\prime}\>|\>M^{*}\right]
(1δnk1)t+t1δnk1(1δnk1)t1(eδnk1)t.\displaystyle\leq\left(\frac{1}{\delta n^{k-1}}\right)^{t}+t\cdot\frac{1}{\delta n^{k-1}}\cdot\left(\frac{1}{\delta n^{k-1}}\right)^{t-1}\leq\left(\frac{e}{\delta n^{k-1}}\right)^{t}.

Thus, the distribution of MM is eδnk1\frac{e}{\delta n^{k-1}}-spread, as desired. ∎

5. Proof of Lemma 4.4

Roughly speaking the proof of Lemma 4.4 proceeds as follows. We show that \mathcal{H} contains many small absorbing structures. We then use Lemma 2.3 to show that a pp_{\ell}-random subset of vertices UU still contains many of these small absorbers. We use these to build a larger absorbing matching MM of size O(log4(n))O(\log^{4}(n)) in [U]\mathcal{H}[U]. The vertices of MM will be the set UU_{*} of protected vertices that is allowed by the definition of (,ε)(\mathcal{H},\varepsilon)-OM-stable. We let M~\widetilde{M} be any matching in \mathcal{H} such that UV()V(M~)UU_{*}\subseteq V(\mathcal{H})\setminus V(\widetilde{M})\subseteq U and |V(M~)U|ε|U||V(\widetilde{M})\cap U|\leq\varepsilon\left\lvert U\right\rvert. Then the minimum codegree of V(M~)V(M)\mathcal{H}-V(\widetilde{M})-V(M) is still large enough to guarantee a matching that either covers all vertices or all but exactly kk vertices. Finally, we use the absorbing property of MM to complete this matching to a perfect matching in V()V(M~)V(\mathcal{H})-V(\widetilde{M}).

Now we define the absorbing structures that were introduced in [63, Definitions 5.1 and 5.2].

Definition 5.1 (SS-absorbing kk-matchings and SS-absorbing (k+1)(k+1)-matchings).

Let \mathcal{H} be a kk-uniform hypergraph and S={x1,,xk}(V()k)S=\{x_{1},\dots,x_{k}\}\in\binom{V(\mathcal{H})}{k}.

A kk-matching {e1,,ek}\{e_{1},\dots,e_{k}\} in \mathcal{H} is SS-absorbing if there exists a (k+1)(k+1)-matching {e1,,ek,f}\{e^{\prime}_{1},\dots,e^{\prime}_{k},f\} in \mathcal{H} such that

  1. (AM1)(\text{AM}1)

    eiej=e_{i}\cap e^{\prime}_{j}=\varnothing for all iji\neq j,

  2. (AM2)(\text{AM}2)

    eiei={xi}e^{\prime}_{i}\setminus e_{i}=\{x_{i}\} and {yi}eiei\{y_{i}\}\coloneqq e_{i}\setminus e^{\prime}_{i} for all i[k]i\in[k], and

  3. (AM3)(\text{AM}3)

    f={y1,,yk}f=\{y_{1},\dots,y_{k}\}.

A (k+1)(k+1)-matching {e0,,ek}\{e_{0},\dots,e_{k}\} in \mathcal{H} is SS-absorbing if there exists a (k+2)(k+2)-matching {e1,,ek,f,f}\{e^{\prime}_{1}\mathchar 24891\relax\penalty 0\hskip 0.0pt{\dots\mathchar 24891\relax\penalty 0\hskip 0.0pte^{\prime}_{k}}\mathchar 24891\relax\penalty 0\hskip 0.0ptf\mathchar 24891\relax\penalty 0\hskip 0.0ptf^{\prime}\} in \mathcal{H} such that

  1. (AM1)(\text{AM}1^{\prime})

    eiej=e_{i}\cap e^{\prime}_{j}=\varnothing for all iji\neq j,

  2. (AM2)(\text{AM}2^{\prime})

    eiei={xi}e^{\prime}_{i}\setminus e_{i}=\{x_{i}\} and {yi}eiei\{y_{i}\}\coloneqq e_{i}\setminus e^{\prime}_{i} for all i[k]i\in[k], and

  3. (AM3)(\text{AM}3^{\prime})

    fe1={y1}=fe0f\cap e_{1}=\{y_{1}\}=f\setminus e_{0}, f={y0,y2,,yk}f^{\prime}=\{y_{0},y_{2},\dots,y_{k}\}, where {y0}e0f\{y_{0}\}\coloneqq e_{0}\setminus f.

The next lemma follows from [63, Claim 5.1] and [63, Fact 5.3] (see Definition 4.2 for the definition of 0(k,n)\mathcal{H}^{0}(k,n)). It shows that in the setting of Lemma 4.4, \mathcal{H} has many SS-absorbing matchings for each set SS of kk vertices.

Lemma 5.2 ([63]).

Let 1/nε,1/k1/31/n\ll\varepsilon,1/k\leq 1/3 such that knk\mid n. Let \mathcal{H} be a kk-uniform hypergraph on nn vertices with δk1()(1/21/logn)n\delta_{k-1}(\mathcal{H})\geq(1/2-1/\log n)n such that 0(k,n)ε\mathcal{H}^{0}(k,n)\not\subseteq_{\varepsilon}\mathcal{H} and 0(k,n)¯ε\overline{\mathcal{H}^{0}(k,n)}\not\subseteq_{\varepsilon}\mathcal{H}. Then at least one of the following holds.

  1. (a)

    For every SV()S\subseteq V(\mathcal{H}) with |S|=k\left\lvert S\right\rvert=k, there are Ω(nk2/log3(n))\Omega(n^{k^{2}}/\log^{3}(n)) many SS-absorbing kk-matchings in \mathcal{H}.

  2. (b)

    For every SV()S\subseteq V(\mathcal{H}) with |S|=k\left\lvert S\right\rvert=k, there are Ω(nk2+k/log3(n))\Omega(n^{k^{2}+k}/\log^{3}(n)) many SS-absorbing (k+1)(k+1)-matchings in \mathcal{H}.

The next lemma follows from the proof of [63, Fact 5.4]. It says that if we have many SS-absorbing matchings for each set SS of kk vertices in \mathcal{H} then we can build an absorbing matching of size O(log4(n))O(\log^{4}(n)) that can absorb any set of kk vertices.

Lemma 5.3 ([63]).

Let 1/n1/k1/31/n\ll 1/k\leq 1/3. Let \mathcal{H} be a kk-uniform nn-vertex hypergraph. Suppose that at least one of the following holds.

  1. (a)

    For every SV()S\subseteq V(\mathcal{H}) with |S|=k\left\lvert S\right\rvert=k, there are Ω(nk2/log3(n))\Omega(n^{k^{2}}/\log^{3}(n)) many SS-absorbing kk-matchings in \mathcal{H}.

  2. (b)

    For every SV()S\subseteq V(\mathcal{H}) with |S|=k\left\lvert S\right\rvert=k, there are Ω(nk2+k/log3(n))\Omega(n^{k^{2}+k}/\log^{3}(n)) many SS-absorbing (k+1)(k+1)-matchings in \mathcal{H}.

Then \mathcal{H} contains a matching MM of size O(log4(n))O(\log^{4}(n)) such that for each set SV()V(M)S\subseteq V(\mathcal{H})\setminus V(M) with |S|=k\left\lvert S\right\rvert=k, there exists a perfect matching in [V(M)S]\mathcal{H}[V(M)\cup S].

The following corollary is a direct application of Lemma 2.3. We use it to show that for a pp_{\ell}-random subset UU of vertices of \mathcal{H}, the property of \mathcal{H} of having many SS-absorbing matchings is inherited a.a.s. by [U]\mathcal{H}[U].

Corollary 5.4.

Let 1/n1/s1/k1/31/n\ll 1/s\leq 1/k\leq 1/3. Let \mathcal{H} be a kk-uniform nn-vertex hypergraph. Let k1klog2(n)\ell\coloneqq\left\lceil\frac{k-1}{k}\log_{2}(n)\right\rceil, Ci=12iC_{\ell}\coloneqq\sum_{i=1}^{\ell}2^{-i}, and p1C2p_{\ell}\coloneqq\frac{1}{C_{\ell}2^{\ell}}. Let UU be a pp_{\ell}-random subset of V()V(\mathcal{H}), and let \mathcal{M} be a set of ss-matchings in \mathcal{H} with ||=Ω(nsk/log3(n))\left\lvert\mathcal{M}\right\rvert=\Omega(n^{sk}/\log^{3}(n)). Then with probability at least 1exp(n1/6sk2)1-\exp(-n^{1/6sk^{2}}), the number of matchings in \mathcal{M} that are contained in [U]\mathcal{H}[U] is Ω((pn)sk/log3(pn))\Omega((p_{\ell}n)^{sk}/\log^{3}(p_{\ell}n)).

To prove Lemma 4.4, we also need the following result by Han [35].

Theorem 5.5 ([35, Theorem 1.1]).

Let 1/n1/k1/31/n\ll 1/k\leq 1/3 such that kk does not divide nn. Let \mathcal{H} be a kk-uniform hypergraph on nn vertices with δk1()n/k\delta_{k-1}(\mathcal{H})\geq\lfloor n/k\rfloor. Then \mathcal{H} contains an optimal matching.

Now we are ready to prove Lemma 4.4.

Proof of Lemma 4.4.

By Lemma 5.2, at least one of the following holds.

  1. (a)

    For every SV()S\subseteq V(\mathcal{H}) with |S|=k\left\lvert S\right\rvert=k, there are Ω(nk2/log3(n))\Omega(n^{k^{2}}/\log^{3}(n)) many SS-absorbing kk-matchings in \mathcal{H}.

  2. (b)

    For every SV()S\subseteq V(\mathcal{H}) with |S|=k\left\lvert S\right\rvert=k, there are Ω(nk2+k/log3(n))\Omega(n^{k^{2}+k}/\log^{3}(n)) many SS-absorbing (k+1)(k+1)-matchings in \mathcal{H}.

Suppose that (a) holds (the proof for if (b) holds is similar). Let n|U|n_{*}\coloneqq\left\lvert U\right\rvert. We have that a.a.s. n=(1±ε)pnn_{*}=(1\pm\varepsilon)p_{\ell}n and δk1([U])(1/22ε)|U|\delta_{k-1}(\mathcal{H}[U])\geq(1/2-2\varepsilon)\left\lvert U\right\rvert. By Corollary 5.4 and a union bound, it follows that a.a.s. for every S(Uk)S\in\binom{U}{k}, the number of SS-absorbing kk-matchings in [U]\mathcal{H}[U] is Ω(nk2/log3(n))\Omega(n_{*}^{k^{2}}/\log^{3}(n_{*})). Suppose that all of these events occur. By Lemma 5.3, there exists a matching MM in [U]\mathcal{H}[U] of size O(log4(n))O(\log^{4}(n_{*})) such that for each set SUV(M)S\subseteq U\setminus V(M) with |S|=k\left\lvert S\right\rvert=k, there exists a perfect matching in [V(M)S]\mathcal{H}[V(M)\cup S]. Let UV(M)U_{*}\coloneqq V(M), and note that |U|ε|U|\left\lvert U_{*}\right\rvert\leq\varepsilon\left\lvert U\right\rvert. Let M~\widetilde{M} be a matching in \mathcal{H} such that UV()V(M~)UU_{*}\subseteq V(\mathcal{H})\setminus V(\widetilde{M})\subseteq U and |V(M~)U|ε|U||V(\widetilde{M})\cap U|\leq\varepsilon\left\lvert U\right\rvert. Let UV()V(M~)U^{\prime}\coloneqq V(\mathcal{H})\setminus V(\widetilde{M}), and note that |U|n0(modk)\left\lvert U^{\prime}\right\rvert\equiv n\equiv 0\>({\rm mod}\,\,k). Let uUUu\in U^{\prime}\setminus U_{*} and U′′U(U{u})U^{\prime\prime}\coloneqq U^{\prime}\setminus(U_{*}\cup\{u\}). Note that |U′′|k1(modk)\left\lvert U^{\prime\prime}\right\rvert\equiv k-1\>({\rm mod}\,\,k) and δk1([U′′])|U′′|/k\delta_{k-1}(\mathcal{H}[U^{\prime\prime}])\geq\left\lvert U^{\prime\prime}\right\rvert/k. Thus, by Theorem 5.5, [U′′]\mathcal{H}[U^{\prime\prime}] contains a matching MM_{*} covering all but a set SS_{*} of k1k-1 vertices of U′′U^{\prime\prime}. Let SS{u}S\coloneqq S_{*}\cup\{u\}. By the absorption property of MM, [US]\mathcal{H}[U_{*}\cup S] contains a perfect matching MM^{\prime}. Note that MMM_{*}\cup M^{\prime} is a perfect matching in V(M~)=[U]\mathcal{H}-V(\widetilde{M})=\mathcal{H}[U^{\prime}]. Hence, UU is (,ε)(\mathcal{H},\varepsilon)-OM-stable for \mathcal{H}. ∎

6. Proof of Lemma 4.5

Now we briefly sketch the proof of Lemma 4.5. Since \mathcal{H} is close to being a critical hypergraph, there are Ω(nk1)\Omega(n^{k-1}) many ‘atypical’ edges (see Lemma 6.9). After choosing one of them (say ee^{*}) and deleting the vertices from V(e)V(e^{*}), the resulting hypergraph V(e)\mathcal{H}-V(e^{*}) will meet the ‘divisibility condition’ (see Definition 6.7) which ensures a perfect matching even though the minimum codegree is slightly below mk1(k,n)m_{k-1}(k,n) (see Theorem 6.8). For a spanning subhypergraph \mathcal{H}^{\prime} of V(e)\mathcal{H}-V(e^{*}) which consists of all typical edges of V(e)\mathcal{H}-V(e^{*}), by the definition of typical edges, \mathcal{H}^{\prime} is also close to being a critical hypergraph. Thus, \mathcal{H}^{\prime} is ‘dense’ enough to satisfy (O1)({\rm O}1). To show (O2)({\rm O}2), for a pp_{\ell}-random subset UU_{\ell} of V()V(\mathcal{H}^{\prime}), we need to make sure that V(e)V(M)\mathcal{H}-V(e^{*})-V(M^{\prime}) has a perfect matching for any matching MM^{\prime} of \mathcal{H}^{\prime} with 2|M|2\mid|M^{\prime}| and |V(M)U|=o(|U|)|V(M^{\prime})\cap U_{\ell}|=o(|U_{\ell}|). Using the structural properties of \mathcal{H}^{\prime}, we can show that V(e)V(M)\mathcal{H}-V(e^{*})-V(M^{\prime}) is close to being a critical hypergraph and also meets the divisibility condition. Thus, by Theorem 6.8, V(e)V(M)\mathcal{H}-V(e^{*})-V(M^{\prime}) has a perfect matching.

Since the proof of Lemma 4.5 relies on some structural information of \mathcal{H}, we need to introduce several notations first.

Let k3k\geq 3 be an integer, let 0rk0\leq r\leq k be an integer, and let AA and BB be disjoint sets. Let 𝒦r(A,B){eAB:|e|=k,|eA|=r,|eB|=kr}\mathcal{K}_{r}(A,B)\coloneqq\{e\subseteq A\cup B\colon\>|e|=k,\>|e\cap A|=r,\>|e\cap B|=k-r\}. For any kk-uniform hypergraph \mathcal{H} with V()=ABV(\mathcal{H})=A\cup B, let Ej(A,B)𝒦j(A,B)={e:|eA|=j}E_{\mathcal{H}}^{j}(A,B)\coloneqq\mathcal{H}\cap\mathcal{K}_{j}(A,B)=\{e\in\mathcal{H}:|e\cap A|=j\}. We often omit the subscript \mathcal{H} if it is clear. Extending the definition of 0(k,n)\mathcal{H}^{0}(k,n), let us define

0(k,A,B){r: even𝒦r(A,B)for odd kr: odd𝒦r(A,B)for even k.\displaystyle\mathcal{H}^{0}(k,A,B)\coloneqq\begin{cases}\bigcup_{\text{$r$: even}}\mathcal{K}_{r}(A,B)&\text{for odd $k$}\\ \bigcup_{\text{$r$: odd}}\mathcal{K}_{r}(A,B)&\text{for even $k$.}\end{cases}

Note that

0(k,A,B)¯={r: odd𝒦r(A,B)=r: even𝒦r(B,A)for odd kr: even𝒦r(A,B)for even k.\displaystyle\overline{\mathcal{H}^{0}(k,A,B)}=\begin{cases}\bigcup_{\text{$r$: odd}}\mathcal{K}_{r}(A,B)=\bigcup_{\text{$r$: even}}\mathcal{K}_{r}(B,A)&\text{for odd $k$}\\ \bigcup_{\text{$r$: even}}\mathcal{K}_{r}(A,B)&\text{for even $k$.}\end{cases}

Let nn\in\mathbb{N} divisible by kk. If kk is odd, then let a(k,n)a(k,n) be the unique odd integer from {(n+)/2:,21}\{(n+\ell)/2:\ell\in\mathbb{Z},\>-2\leq\ell\leq 1\}. Otherwise if kk is even, then let

a(k,n){n/21for even n/kn/21for odd n/k and odd n/2n/2for odd n/k and even n/2.\displaystyle a(k,n)\coloneqq\begin{cases}n/2-1&\text{for even $n/k$}\\ n/2-1&\text{for odd $n/k$ and odd $n/2$}\\ n/2&\text{for odd $n/k$ and even $n/2$.}\end{cases}
Definition 6.1 (Standard ordered pair).

Let k,n3k,n\geq 3 be positive integers such that knk\mid n. Let AA and BB be disjoint sets such that |A|+|B|=n|A|+|B|=n. An ordered pair (A,B)(A,B) is standard if |A|=a(k,n)|A|=a(k,n) and |B|=na(k,n)|B|=n-a(k,n).

Note that 0(k,n)\mathcal{H}^{0}(k,n) is a kk-uniform nn-vertex hypergraph isomorphic to 0(k,A,B)\mathcal{H}^{0}(k,A,B) for a standard ordered pair (A,B)(A,B).

Definition 6.2 (Types).

Let k,n3k,n\geq 3 be positive integers such that knk\mid n, and let \mathcal{H} be a kk-uniform nn-vertex hypergraph. For ε(0,1)\varepsilon\in(0,1) and an ordered partition (A,B)(A,B) of V()V(\mathcal{H}) such that either |0(k,A,B)|εnk|\mathcal{H}^{0}(k,A,B)\setminus\mathcal{H}|\leq\varepsilon n^{k} or |0(k,A,B)¯|εnk|\overline{\mathcal{H}^{0}(k,A,B)}\setminus\mathcal{H}|\leq\varepsilon n^{k} holds, we define the following.

  1. ()

    If kk is odd and |0(k,A,B)|εnk|\mathcal{H}^{0}(k,A,B)\setminus\mathcal{H}|\leq\varepsilon n^{k}, then we say \mathcal{H} belongs to the type (a)(\rm a) with respect to (ε,A,B)(\varepsilon,A,B).

  2. ()

    If kk is odd and |0(k,A,B)¯|εnk|\overline{\mathcal{H}^{0}(k,A,B)}\setminus\mathcal{H}|\leq\varepsilon n^{k}, then we say \mathcal{H} belongs to the type (b)(\rm b) with respect to (ε,A,B)(\varepsilon,A,B).

  3. ()

    If kk is even and |0(k,A,B)¯|εnk|\overline{\mathcal{H}^{0}(k,A,B)}\setminus\mathcal{H}|\leq\varepsilon n^{k}, then we say \mathcal{H} belongs to the type (c)(\rm c) with respect to (ε,A,B)(\varepsilon,A,B).

  4. ()

    If k0(mod 4)k\equiv 0\>({\rm mod}\>4) and |0(k,A,B)|εnk|\mathcal{H}^{0}(k,A,B)\setminus\mathcal{H}|\leq\varepsilon n^{k}, then we say \mathcal{H} belongs to the type (d)(\rm d) with respect to (ε,A,B)(\varepsilon,A,B).

  5. ()

    If k2(mod 4)k\equiv 2\>({\rm mod}\>4) and |0(k,A,B)|εnk|\mathcal{H}^{0}(k,A,B)\setminus\mathcal{H}|\leq\varepsilon n^{k}, then we say \mathcal{H} belongs to the type (e)(\rm e) with respect to (ε,A,B)(\varepsilon,A,B).

We also say \mathcal{H} belongs to the type α\alpha if it belongs to the type α\alpha with respect to (ε,A,B)(\varepsilon,A,B) for some ε(0,1)\varepsilon\in(0,1) and partition (A,B)(A,B) of V()V(\mathcal{H}).

Definition 6.3 (Typical indices and edges).

Let k3k\geq 3 be a positive integer. For α{(a),(b),(c),(d),(e)}\alpha\in\{{\rm(a)},{\rm(b)},{\rm(c)},\allowbreak{\rm(d)},\allowbreak{\rm(e)}\}, an index r{0,,k}r\in\{0,\dots,k\} is called α\alpha-typical (with respect to kk) if

r{0(mod 2)for α{(a),(c)}1(mod 2)for α{(b),(d),(e)}.\displaystyle r\equiv\begin{cases}0\>({\rm mod}\>2)&\text{for $\alpha\in\{{\rm(a)},{\rm(c)}\}$}\\ 1\>({\rm mod}\>2)&\text{for $\alpha\in\{{\rm(b)},{\rm(d)},{\rm(e)}\}$}.\end{cases}

Otherwise rr is called α\alpha-atypical.

For any kk-uniform hypergraph \mathcal{H} with an ordered partition (A,B)(A,B), an edge ee\in\mathcal{H} is α\alpha-typical with respect to (A,B)(A,B) if eEr(A,B)e\in E_{\mathcal{H}}^{r}(A,B) for an α\alpha-typical index rr. Otherwise an edge ee is called α\alpha-atypical with respect to (A,B)(A,B).

Observation 6.4.

Let k3k\geq 3 be a positive integer, and let α{(a),(b),(c),(d),(e)}\alpha\in\{{\rm(a)},{\rm(b)},{\rm(c)},{\rm(d)},\allowbreak{\rm(e)}\}. For disjoint sets AA and BB,

r:α-typical𝒦r(A,B)={0(k,A,B) if α{(a),(d),(e)} and0(k,A,B)¯ if α{(b),(c)}.\bigcup_{r:\alpha\text{-typical}}\mathcal{K}_{r}(A,B)=\left\{\begin{array}[]{l l}\mathcal{H}^{0}(k,A,B)&\text{ if }\alpha\in\{{\rm(a)},{\rm(d)},{\rm(e)}\}\text{ and}\\ \overline{\mathcal{H}^{0}(k,A,B)}&\text{ if }\alpha\in\{{\rm(b)},{\rm(c)}\}.\end{array}\right.

In particular, for ε(0,1)\varepsilon\in(0,1), a kk-uniform hypergraph \mathcal{H} belongs to the type α\alpha with respect to (ε,A,B)(\varepsilon,A,B) if and only if

r:α-typical|𝒦r(A,B)Er(A,B)|εnk.\sum_{r:\alpha\text{-typical}}|\mathcal{K}_{r}(A,B)\setminus E_{\mathcal{H}}^{r}(A,B)|\leq\varepsilon n^{k}.
Definition 6.5 (Special typical index).

Let k3k\geq 3 be a positive integer, and let \mathcal{H} be a kk-uniform hypergraph which belongs to the type α{(a),(b),(c),(d),(e)}\alpha\in\{{\rm(a)},{\rm(b)},{\rm(c)},{\rm(d)},{\rm(e)}\}. The special α\alpha-typical index for \mathcal{H} is rk1, 1,k2,k/2+1,k/2r^{*}\coloneqq k-1,\>1,\>k-2,\>k/2+1,\>k/2 for α=(a),(b),(c),(d),(e)\alpha={\rm(a)},\>{\rm(b)},\>{\rm(c)},\>{\rm(d)},\>{\rm(e)} respectively.

Proposition 6.6.

Let k3k\geq 3 be a positive integer, and let \mathcal{H} be a kk-uniform hypergraph which belongs to the type α{(a),(b),(c),(d),(e)}\alpha\in\{{\rm(a)},{\rm(b)},{\rm(c)},{\rm(d)},{\rm(e)}\}. Then the special α\alpha-typical index for \mathcal{H} is α\alpha-typical.

Proof.

By Definitions 6.2 and 6.5, since \mathcal{H} belongs to the type α\alpha, the following hold.

  • If α=(a)\alpha={\rm(a)}, then kk is odd, so the special index k1k-1 is even.

  • If α=(b)\alpha={\rm(b)}, then the special index is 11 which is odd.

  • If α=(c)\alpha={\rm(c)}, then kk is even, so the special index k2k-2 is even.

  • If α=(d)\alpha={\rm(d)}, then 4k4\mid k, so the special index k/2+1k/2+1 is odd.

  • If α=(e)\alpha={\rm(e)}, then k2(mod  2)k\equiv 2\>({\rm mod}\,\,2), so the special index k/2k/2 is odd.

Thus, by Definition 6.3, the special α\alpha-typical index for \mathcal{H} is α\alpha-typical. ∎

Definition 6.7 (Divisibility condition).

Let nn be a positive integer divisible by kk. Let (A,B)(A,B) be an ordered pair such that n=|A|+|B|n=|A|+|B|. We say (A,B)(A,B) satisfies the divisibility condition with respect to the type α{(a),(b),(c),(d),(e)}\alpha\in\{{\rm(a)},{\rm(b)},{\rm(c)},{\rm(d)},{\rm(e)}\} if the following hold.

  • If α{(a),(c)}\alpha\in\{{\rm(a)},{\rm(c)}\}, then |A||A| is even.

  • If α=(b)\alpha={\rm(b)}, then |B||B| is even.

  • If α=(d)\alpha={\rm(d)}, then |A||B|2nk(mod 2)\frac{|A|-|B|}{2}\equiv\frac{n}{k}\>({\rm mod}\>2).

  • If α=(e)\alpha={\rm(e)}, then |A||B|2\frac{|A|-|B|}{2} is even.

Now we state two ingredients from [63] which we use in the proof of Lemma 4.5. Here we briefly explain how to deduce the following theorem from the proof of [63, Lemma 3.1]: the hypergraph \mathcal{H} in [63, Lemma 3.1] is only assumed to satisfy δk1()δ0(k,n)+1\delta_{k-1}(\mathcal{H})\geq\delta^{0}(k,n)+1 and that \mathcal{H} ε\varepsilon-contains either 0(k,n)\mathcal{H}^{0}(k,n) or 0(k,n)¯\overline{\mathcal{H}^{0}(k,n)}. In their proof, they began with slightly modifying the standard ordered partition (A,B)(A,B) to (A,B)(A^{\prime},B^{\prime}) to ensure that dEr(A,B)(v)>0.1dKr(A,B)(v)d_{E_{\mathcal{H}}^{r^{*}}(A^{\prime},B^{\prime})}(v)>0.1d_{K_{r^{*}}(A^{\prime},B^{\prime})}(v) for each vV()v\in V(\mathcal{H}) and the special α\alpha-typical index rr^{*} for \mathcal{H}. Then they used Facts 4.5–4.8 of [63] which provides an atypical edge ee, and showed that the partition (AV(e),BV(e))(A^{\prime}\setminus V(e),B^{\prime}\setminus V(e)) satisfies the divisibility condition if (A,B)(A^{\prime},B^{\prime}) does not satisfy the divisibility condition. Since the rest of their proof works for the hypergraphs with minimum codegree at least n/2o(n)n/2-o(n), the minimum degree condition can be relaxed to δk1()n/2o(n)\delta_{k-1}(\mathcal{H})\geq n/2-o(n) if we further assume that (A,B)(A^{\prime},B^{\prime}) satisfies the divisibility condition and that dEr(A,B)(v)>0.1dKr(A,B)(v)d_{E_{\mathcal{H}}^{r^{*}}(A^{\prime},B^{\prime})}(v)>0.1d_{K_{r^{*}}(A^{\prime},B^{\prime})}(v) for each vV()v\in V(\mathcal{H}), as we stated as below.

Theorem 6.8 ([63]).

Let 1/nε1/k1/31/n\ll\varepsilon\ll 1/k\leq 1/3 such that knk\mid n. Let AA^{\prime} and BB^{\prime} be disjoint sets such that n=|A|+|B|n=|A^{\prime}|+|B^{\prime}| and ||A||B||εn||A^{\prime}|-|B^{\prime}||\leq\varepsilon n. If \mathcal{H} is a kk-uniform nn-vertex hypergraph with an ordered partition (A,B)(A^{\prime},B^{\prime}) of V()V(\mathcal{H}), then \mathcal{H} has a perfect matching if the following hold.

  1. (i)

    δk1()n/2εn\delta_{k-1}(\mathcal{H})\geq n/2-\varepsilon n.

  2. (ii)

    The hypergraph \mathcal{H} belongs to some type α{(a),(b),(c),(d),(e)}\alpha\in\{{\rm(a)},{\rm(b)},{\rm(c)},{\rm(d)},{\rm(e)}\} with respect to (ε,A,B)(\varepsilon,A^{\prime},B^{\prime}).

  3. (iii)

    The ordered partition (A,B)(A^{\prime},B^{\prime}) satisfies the divisibility condition with respect to the type α\alpha.

  4. (iv)

    For each vertex vV()v\in V(\mathcal{H}), dEr(A,B)(v)>0.1d𝒦r(A,B)(v)d_{E_{\mathcal{H}}^{r^{*}}(A^{\prime},B^{\prime})}(v)>0.1d_{\mathcal{K}_{r^{*}}(A^{\prime},B^{\prime})}(v), where rr^{*} is the special α\alpha-typical index for \mathcal{H}.

The following lemma shows that there are Ω(nk1)\Omega(n^{k-1}) atypical edges, which follows from the proofs of Facts 4.5–4.8 of [63].

Lemma 6.9 ([63]).

Let 1/nc1/k1/31/n\ll c\ll 1/k\leq 1/3 such that knk\mid n. Let \mathcal{H} be a kk-uniform nn-vertex hypergraph such that δk1()δ0(k,n)+1\delta_{k-1}(\mathcal{H})\geq\delta^{0}(k,n)+1. For any partition {A,B}\{A^{\prime},B^{\prime}\} of V()V(\mathcal{H}) such that |A|,|B|n/10|A^{\prime}|,|B^{\prime}|\geq n/10, the following hold.

  1. ()

    If kk is odd and |A||A^{\prime}| is odd, then |E1(A,B)Ek2(A,B)|cnk1|E_{\mathcal{H}}^{1}(A^{\prime},B^{\prime})\cup E_{\mathcal{H}}^{k-2}(A^{\prime},B^{\prime})|\geq cn^{k-1}.

  2. ()

    If kk is odd and |B||B^{\prime}| is odd, then |Ek1(A,B)E2(A,B)|cnk1|E_{\mathcal{H}}^{k-1}(A^{\prime},B^{\prime})\cup E_{\mathcal{H}}^{2}(A^{\prime},B^{\prime})|\geq cn^{k-1}.

  3. ()

    If kk is even, then |E1(A,B)Ek1(A,B)|cnk1|E_{\mathcal{H}}^{1}(A^{\prime},B^{\prime})\cup E_{\mathcal{H}}^{k-1}(A^{\prime},B^{\prime})|\geq cn^{k-1}.

  4. ()

    If k0(mod  4)k\equiv 0\>({\rm mod}\,\,4) and |A||B|2nk(mod 2)\frac{|A^{\prime}|-|B^{\prime}|}{2}\not\equiv\frac{n}{k}\>({\rm mod}\>2), then |E2(A,B)Ek2(A,B)|cnk1|E_{\mathcal{H}}^{2}(A^{\prime},B^{\prime})\cup E_{\mathcal{H}}^{k-2}(A^{\prime},B^{\prime})|\geq cn^{k-1}.

  5. ()

    If k2(mod  4)k\equiv 2\>({\rm mod}\,\,4), then |E2(A,B)Ek2(A,B)|cnk1|E_{\mathcal{H}}^{2}(A^{\prime},B^{\prime})\cup E_{\mathcal{H}}^{k-2}(A^{\prime},B^{\prime})|\geq cn^{k-1}.

Now we are ready to prove Lemma 4.5.

Proof of Lemma 4.5.

Let 1/nδεη1/k1/31/n\ll\delta\ll\varepsilon\ll\eta\ll 1/k\leq 1/3. Since \mathcal{H} ε\varepsilon-contains either 0(k,n)\mathcal{H}^{0}(k,n) or 0(k,n)¯\overline{\mathcal{H}^{0}(k,n)}, there exists a standard partition (A,B)(A,B) of V()V(\mathcal{H}) such that \mathcal{H} belongs to the type α\alpha with respect to (ε,A,B)(\varepsilon,A,B) for some α{(a),(b),(c),(d),(e)}\alpha\in\{{\rm(a)},{\rm(b)},{\rm(c)},{\rm(d)},{\rm(e)}\}. Let rr^{*} be the special α\alpha-typical index for \mathcal{H}. By [63, Fact 4.4], there exists an ordered partition (A,B)(A^{\prime},B^{\prime}) of V()V(\mathcal{H}) such that the following hold.

  1. (S1)(\text{S}1)

    |AA|=|BB|ε1/2kn|A\triangle A^{\prime}|=|B\triangle B^{\prime}|\leq\varepsilon^{1/2}kn, and thus ||A||B||2ε1/2kn||A^{\prime}|-|B^{\prime}||\leq 2\varepsilon^{1/2}kn.

  2. (S2)(\text{S}2)

    For each vertex vV()v\in V(\mathcal{H}), dEr(A,B)(v)>0.2d𝒦r(A,B)(v)>0.2nk13k1(k1)!d_{E_{\mathcal{H}}^{r^{*}}(A^{\prime},B^{\prime})}(v)>0.2d_{\mathcal{K}_{r^{*}}(A^{\prime},B^{\prime})}(v)>0.2\frac{n^{k-1}}{3^{k-1}(k-1)!}.

Claim 1.

\mathcal{H} belongs to the type α\alpha with respect to (5kε1/2,A,B)(5k\varepsilon^{1/2},A^{\prime},B^{\prime}).

Proof of claim: Note that

|𝒦r(A,B)Er(A,B)|\displaystyle\sum|\mathcal{K}_{r}(A^{\prime},B^{\prime})\setminus E_{\mathcal{H}}^{r}(A^{\prime},B^{\prime})| |𝒦r(A,B)𝒦r(A,B)|\displaystyle\leq\sum|\mathcal{K}_{r}(A^{\prime},B^{\prime})\setminus\mathcal{K}_{r}(A,B)|
+|𝒦r(A,B)Er(A,B)|\displaystyle+\sum|\mathcal{K}_{r}(A,B)\setminus E_{\mathcal{H}}^{r}(A,B)|
+|Er(A,B)Er(A,B)|.\displaystyle+\sum|E_{\mathcal{H}}^{r}(A,B)\setminus E_{\mathcal{H}}^{r}(A^{\prime},B^{\prime})|.

where the summations are taken over all α\alpha-typical indices rr. By Observation 6.4, since \mathcal{H} belongs to the type α\alpha with respect to (ε,A,B)(\varepsilon,A,B), the second term in this sum is at most εnkkε1/2nk\varepsilon n^{k}\leq k\varepsilon^{1/2}n^{k}. By (S1)(\text{S}1), the first and third terms in this sum are each at most 2ε1/2knk2\varepsilon^{1/2}kn^{k}. Thus, again by Observation 6.4, \mathcal{H} belongs to the type α\alpha with respect to (5kε1/2,A,B)(5k\varepsilon^{1/2},A^{\prime},B^{\prime}), as desired. \blacklozenge

Claim 2.

There are at least εnk1\varepsilon n^{k-1} choices of an edge ee^{*}\in\mathcal{H} such that for each of the choices of ee^{*}, the subhypergraph V(e)\mathcal{H}-V(e^{*}) belongs to the type α\alpha with respect to (6kε1/2,A′′,B′′)(6k\varepsilon^{1/2},A^{\prime\prime},B^{\prime\prime}), where A′′AV(e)A^{\prime\prime}\coloneqq A^{\prime}\setminus V(e^{*}) and B′′BV(e)B^{\prime\prime}\coloneqq B^{\prime}\setminus V(e^{*}), and the ordered partition (A′′,B′′)(A^{\prime\prime},B^{\prime\prime}) satisfies the divisibility condition with respect to the type α\alpha.

Proof of claim: By Claim 1 and Observation 6.4, V(e)\mathcal{H}-V(e) belongs to the type α\alpha with respect to (6kε1/2,AV(e),BV(e))(6k\varepsilon^{1/2},A\setminus V(e),B\setminus V(e)) for every ee\in\mathcal{H}, so it suffices to show that there are at least εnk1\varepsilon n^{k-1} choices of an edge ee^{*} such that (AV(e),BV(e))(A^{\prime}\setminus V(e^{*}),B^{\prime}\setminus V(e^{*})) satisfies the divisibility condition with respect to α\alpha.

First, if (A,B)(A^{\prime},B^{\prime}) satisifies the divisibility condition for α\alpha, then by the choice of the special typical index rr^{*}, it is easy to see that the ordered partition (AV(e),BV(e))(A^{\prime}\setminus V(e^{*}),B^{\prime}\setminus V(e^{*})) satisfies the divisibility condition for every eEr(A,B)e^{*}\in E_{\mathcal{H}}^{r^{*}}(A^{\prime},B^{\prime}). In this case, (S2)(\text{S}2) implies that there are sufficiently many choices for ee^{*}.

Thus, we may assume (A,B)(A^{\prime},B^{\prime}) does not satisfy the divisibility condition. Let

E{E1(A,B)Ek2(A,B) if α=(a),Ek1(A,B)E2(A,B) if α=(b),E1(A,B)Ek1(A,B) if α=(c),E2(A,B)Ek2(A,B) if α{(d),(e)}.E^{*}\coloneqq\left\{\begin{array}[]{l l}E_{\mathcal{H}}^{1}(A^{\prime},B^{\prime})\cup E_{\mathcal{H}}^{k-2}(A^{\prime},B^{\prime})&\text{ if $\alpha={\rm(a)}$},\\ E_{\mathcal{H}}^{k-1}(A^{\prime},B^{\prime})\cup E_{\mathcal{H}}^{2}(A^{\prime},B^{\prime})&\text{ if $\alpha={\rm(b)}$},\\ E_{\mathcal{H}}^{1}(A^{\prime},B^{\prime})\cup E_{\mathcal{H}}^{k-1}(A^{\prime},B^{\prime})&\text{ if $\alpha={\rm(c)}$},\\ E_{\mathcal{H}}^{2}(A^{\prime},B^{\prime})\cup E_{\mathcal{H}}^{k-2}(A^{\prime},B^{\prime})&\text{ if $\alpha\in\{{\rm(d),{\rm(e)}\}}$}.\end{array}\right.

Since (A,B)(A^{\prime},B^{\prime}) does not satisfy the divisibility condition, it is also easy to see that in all cases of α\alpha, the ordered partition (AV(e),BV(e))(A^{\prime}\setminus V(e^{*}),B^{\prime}\setminus V(e^{*})) satisfies the divisibility condition for every eEe^{*}\in E^{*}. Moreover, by Lemma 6.9, we have |E|εnk1|E^{*}|\geq\varepsilon n^{k-1}, so there are sufficiently many choices for ee^{*}, as desired. \blacklozenge

Now we fix ee^{*}\in\mathcal{H} satisfying Claim 2. Let us define

(6.1) {0(k,A′′,B′′)if α{(a),(d),(e)},0(k,A′′,B′′)¯if α{(b),(c)}.\displaystyle\mathcal{H}^{\prime}\coloneqq\begin{cases}\mathcal{H}\cap\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime})&\text{if }\alpha\in\{{\rm(a)},{\rm(d)},{\rm(e)}\},\\ \mathcal{H}\cap\overline{\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime})}&\text{if }\alpha\in\{{\rm(b)},{\rm(c)}\}.\end{cases}

Thus, the subhypergraph \mathcal{H}^{\prime} is the collection of the α\alpha-typical edges in V(e)\mathcal{H}-V(e^{*}) with respect to (A′′,B′′)(A^{\prime\prime},B^{\prime\prime}). Since V(e)\mathcal{H}-V(e^{*}) belongs to the type α\alpha with respect to (6kε1/2,A′′,B′′)(6k\varepsilon^{1/2},A^{\prime\prime},B^{\prime\prime}) by Claim 2 and Observation 6.4, \mathcal{H}^{\prime} also belongs to the type α\alpha with respect to (6kε1/2,A′′,B′′)(6k\varepsilon^{1/2},A^{\prime\prime},B^{\prime\prime}).

Claim 3.

The hypergraph \mathcal{H}^{\prime} satisfies the following properties.

  • At least a (1ε1/6)(1-\varepsilon^{1/6})-fraction of (k1)(k-1)-sets S(A′′B′′k1)S\in\binom{A^{\prime\prime}\cup B^{\prime\prime}}{k-1} satisfy d(S)n/210ε1/6knd_{\mathcal{H}^{\prime}}(S)\geq n/2-10\varepsilon^{1/6}kn.

  • For each vertex vA′′B′′v\in A^{\prime\prime}\cup B^{\prime\prime}, dEr(A′′,B′′)(v)>0.15d𝒦r(A′′,B′′)(v)0.15nk13k1(k1)!d_{E_{\mathcal{H}^{\prime}}^{r^{*}}(A^{\prime\prime},B^{\prime\prime})}(v)>0.15d_{\mathcal{K}_{r^{*}}(A^{\prime\prime},B^{\prime\prime})}(v)\geq 0.15\frac{n^{k-1}}{3^{k-1}(k-1)!}.

In particular, since εη\varepsilon\ll\eta, \mathcal{H}^{\prime} is (1/2η,0.153k1(k1)!,k1,η)(1/2-\eta,\>\frac{0.15}{3^{k-1}(k-1)!},\>k-1,\>\eta)-dense.

Proof of claim: Without loss of generality, we may assume that α{(a),(d),(e)}\alpha\in\{{\rm(a)},{\rm(d)},{\rm(e)}\}. For the other case α{(b),(c)}\alpha\in\{{\rm(b)},{\rm(c)}\}, we can just switch the role of 0(k,A′′,B′′)\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime}) and 0(k,A′′,B′′)¯\overline{\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime})}.

For any k1k-1 distinct vertices v1,,vk1A′′B′′v_{1},\dots,v_{k-1}\in A^{\prime\prime}\cup B^{\prime\prime}, depending on the parity of |A′′{v1,,vk1}||A^{\prime\prime}\cap\{v_{1},\dots,v_{k-1}\}|, d0(k,A′′,B′′)(v1,,vk1)d_{\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime})}(v_{1},\dots,v_{k-1}) is either |A′′{v1,,vk1}||A^{\prime\prime}\setminus\{v_{1},\dots,v_{k-1}\}| or |B′′{v1,,vk1}||B^{\prime\prime}\setminus\{v_{1},\dots,v_{k-1}\}|. Thus, since by (S1)(\text{S}1), min{|A′′|,|B′′|}min{|A|,|B|}kn/22ε1/2knk\min\{|A^{\prime\prime}|,|B^{\prime\prime}|\}\geq\min\{|A^{\prime}|,|B^{\prime}|\}-k\geq n/2-2\varepsilon^{1/2}kn-k and max{|A′′|,|B′′|}max{|A|,|B|}n/2+2ε1/2kn\max\{|A^{\prime\prime}|,|B^{\prime\prime}|\}\leq\max\{|A^{\prime}|,|B^{\prime}|\}\leq n/2+2\varepsilon^{1/2}kn, we have

  • δk1(0(k,A′′,B′′))min{|A′′|,|B′′|}(k1)n/23ε1/2kn\delta_{k-1}(\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime}))\geq\min\{|A^{\prime\prime}|,|B^{\prime\prime}|\}-(k-1)\geq n/2-3\varepsilon^{1/2}kn, and

  • Δk1(0(k,A′′,B′′))max{|A′′|,|B′′|}n/2+2ε1/2kn\Delta_{k-1}(\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime}))\leq\max\{|A^{\prime\prime}|,|B^{\prime\prime}|\}\leq n/2+2\varepsilon^{1/2}kn,

where Δk1(0(k,A′′,B′′))max{d0(k,A′′,B′′)(S):S(A′′B′′k1)}\Delta_{k-1}(\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime}))\coloneqq\max\{d_{\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime})}(S):S\in\binom{A^{\prime\prime}\cup B^{\prime\prime}}{k-1}\} is the maximum codegree of 0(k,A′′,B′′)\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime}).

Since 0(k,A′′,B′′)\mathcal{H}^{\prime}\subseteq\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime}), every (k1)(k-1)-set S(A′′B′′k1)S\in\binom{A^{\prime\prime}\cup B^{\prime\prime}}{k-1} satisfies d(S)Δk1(0(k,A′′,B′′))n/2+2ε1/2knd_{\mathcal{H}^{\prime}}(S)\leq\Delta_{k-1}(\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime}))\leq n/2+2\varepsilon^{1/2}kn. Let NN be the number of (k1)(k-1)-sets S(A′′B′′k1)S\in\binom{A^{\prime\prime}\cup B^{\prime\prime}}{k-1} such that d(S)n/210ε1/6knd_{\mathcal{H}^{\prime}}(S)\geq n/2-10\varepsilon^{1/6}kn. Since |0(k,A′′,B′′)|6kε1/2nk|\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime})\setminus\mathcal{H}^{\prime}|\leq 6k\varepsilon^{1/2}n^{k},

ke()ke(0(k,A′′,B′′))6k2ε1/2nk\displaystyle ke(\mathcal{H}^{\prime})\geq ke(\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime}))-6k^{2}\varepsilon^{1/2}n^{k} (|A′′B′′|k1)δk1(0(k,A′′,B′′))6k2ε1/2nk\displaystyle\geq\binom{|A^{\prime\prime}\cup B^{\prime\prime}|}{k-1}\delta_{k-1}(\mathcal{H}^{0}(k,A^{\prime\prime},B^{\prime\prime}))-6k^{2}\varepsilon^{1/2}n^{k}
(|A′′B′′|k1)(n/23ε1/2kn2(k1)!6k2ε1/2n).\displaystyle\geq\binom{|A^{\prime\prime}\cup B^{\prime\prime}|}{k-1}\left(n/2-3\varepsilon^{1/2}kn-2(k-1)!6k^{2}\varepsilon^{1/2}n\right).

On the other hand,

ke()=S(A′′B′′k1)d(S)\displaystyle ke(\mathcal{H}^{\prime})=\sum_{S\in\binom{A^{\prime\prime}\cup B^{\prime\prime}}{k-1}}d_{\mathcal{H}^{\prime}}(S) ((|A′′B′′|k1)N)(n/210ε1/6kn)+N(n/2+2ε1/2kn)\displaystyle\leq\left(\binom{|A^{\prime\prime}\cup B^{\prime\prime}|}{k-1}-N\right)\left(n/2-10\varepsilon^{1/6}kn\right)+N\left(n/2+2\varepsilon^{1/2}kn\right)
=(|A′′B′′|k1)(n/210ε1/6kn)+N(10ε1/6k+2ε1/2k)n.\displaystyle=\binom{|A^{\prime\prime}\cup B^{\prime\prime}|}{k-1}\left(n/2-10\varepsilon^{1/6}kn\right)+N\left(10\varepsilon^{1/6}k+2\varepsilon^{1/2}k\right)n.

Combining both inequalities, since ε1/k\varepsilon\ll 1/k,

N\displaystyle N (|A′′B′′|k1)10ε1/6k3ε1/2k2(k1)!6k2ε1/210ε1/6k+2ε1/2k(|A′′B′′|k1)10ε1/6kε1/3k10ε1/6k\displaystyle\geq\binom{|A^{\prime\prime}\cup B^{\prime\prime}|}{k-1}\frac{10\varepsilon^{1/6}k-3\varepsilon^{1/2}k-2(k-1)!6k^{2}\varepsilon^{1/2}}{10\varepsilon^{1/6}k+2\varepsilon^{1/2}k}\geq\binom{|A^{\prime\prime}\cup B^{\prime\prime}|}{k-1}\frac{10\varepsilon^{1/6}k-\varepsilon^{1/3}k}{10\varepsilon^{1/6}k}
>(1ε1/6)(|A′′B′′|k1),\displaystyle>(1-\varepsilon^{1/6})\binom{|A^{\prime\prime}\cup B^{\prime\prime}|}{k-1},

as desired.

Note that rr^{*} is the special α\alpha-typical index for the hypergraphs \mathcal{H}, V(e)\mathcal{H}-V(e^{*}), and \mathcal{H}^{\prime}. Since \mathcal{H}^{\prime} is the subhypergraph of typical edges of V(e)\mathcal{H}-V(e^{*}), we have Er(A′′,B′′)=EV(e)r(A′′,B′′)E_{\mathcal{H}^{\prime}}^{r^{*}}(A^{\prime\prime},B^{\prime\prime})=E_{\mathcal{H}-V(e^{*})}^{r^{*}}(A^{\prime\prime},B^{\prime\prime}). Moreover, since |AA′′|+|BB′′|=|V(e)|=k|A^{\prime}\setminus A^{\prime\prime}|+|B^{\prime}\setminus B^{\prime\prime}|=|V(e^{*})|=k, we have dEr(A′′,B′′)(v)dEr(A,B)(v)knk2d_{E_{\mathcal{H}^{\prime}}^{r^{*}}(A^{\prime\prime},B^{\prime\prime})}(v)\geq d_{E_{\mathcal{H}}^{r^{*}}(A^{\prime},B^{\prime})}(v)-kn^{k-2} for each vertex vA′′B′′v\in A^{\prime\prime}\cup B^{\prime\prime}. Thus, by (S1)(\text{S}1), we have dEr(A′′,B′′)(v)>0.15d𝒦r(A′′,B′′)(v)d_{E_{\mathcal{H}^{\prime}}^{r^{*}}(A^{\prime\prime},B^{\prime\prime})}(v)>0.15d_{\mathcal{K}_{r^{*}}(A^{\prime\prime},B^{\prime\prime})}(v) as desired. \blacklozenge

Claim 4.

Let MM^{\prime} be a matching in \mathcal{H}^{\prime} such that |M|0(mod 2)|M^{\prime}|\equiv 0\>({\rm mod}\>2) if α{(d),(e)}\alpha\in\{{\rm(d)},{\rm(e)}\}. Then the ordered partition (A′′V(M),B′′V(M))(A^{\prime\prime}\setminus V(M^{\prime}),B^{\prime\prime}\setminus V(M^{\prime})) satisfies the divisibility condition with respect to α\alpha.

Proof of claim: By Claim 2, (A′′,B′′)(A^{\prime\prime},B^{\prime\prime}) satisfies the divisibility condition with respect to the type α\alpha. Now we divide the cases according to the type α\alpha.

Case α{(a),(c)}\alpha\in\{{\rm(a)},{\rm(c)}\}. Since |eA′′|0(mod 2)|e\cap A^{\prime\prime}|\equiv 0\>({\rm mod}\>2) for each ee\in\mathcal{H}^{\prime}, we have |A′′||A′′V(M)|(mod 2)|A^{\prime\prime}|\equiv|A^{\prime\prime}\setminus V(M^{\prime})|\>({\rm mod}\>2).

Case α=(b)\alpha={\rm(b)}. Since |eB′′|0(mod 2)|e\cap B^{\prime\prime}|\equiv 0\>({\rm mod}\>2) for each ee\in\mathcal{H}^{\prime}, we have |B′′||B′′V(M)|(mod 2)|B^{\prime\prime}|\equiv|B^{\prime\prime}\setminus V(M^{\prime})|\>({\rm mod}\>2).

Case α{(d),(e)}\alpha\in\{{\rm(d)},{\rm(e)}\}. Let M={e1,,et}M^{\prime}=\{e_{1},\dots,e_{t}\} for some even integer tt. Let i|eiA′′|\ell_{i}\coloneqq|e_{i}\cap A^{\prime\prime}| for each i[t]i\in[t]. Since |eA′′||e\cap A^{\prime\prime}| is odd for each ee\in\mathcal{H}^{\prime}, we have i1(mod 2)\ell_{i}\equiv 1\>({\rm mod}\>2) for each i[t]i\in[t]. Thus,

|A′′V(M)|=|A′′|(1++t) and |B′′V(M)|=|B′′|kt+(1++t),\displaystyle|A^{\prime\prime}\setminus V(M^{\prime})|=|A^{\prime\prime}|-(\ell_{1}+\dots+\ell_{t})\text{ and }|B^{\prime\prime}\setminus V(M^{\prime})|=|B^{\prime\prime}|-kt+(\ell_{1}+\dots+\ell_{t}),

so |A′′V(M)||B′′V(M)|2=|A′′||B′′|2+kt2(1++t)|A′′||B′′|2(mod 2)\frac{|A^{\prime\prime}\setminus V(M^{\prime})|-|B^{\prime\prime}\setminus V(M^{\prime})|}{2}=\frac{|A^{\prime\prime}|-|B^{\prime\prime}|}{2}+k\frac{t}{2}-(\ell_{1}+\dots+\ell_{t})\equiv\frac{|A^{\prime\prime}|-|B^{\prime\prime}|}{2}\>({\rm mod}\>2). Thus, (A′′V(M),B′′V(M))(A^{\prime\prime}\setminus V(M^{\prime}),B^{\prime\prime}\setminus V(M^{\prime})) satisfies the divisibility condition with respect to α\alpha. \blacklozenge

Now we have all the ingredients to prove Lemma 4.5. By Claim 3(O1)({\rm O}1) holds. To show (O2)({\rm O}2), it suffices to prove the following claim. Recall that k1klog2n\ell\coloneqq\lceil\frac{k-1}{k}\log_{2}n\rceil, Ci=12i=12C_{\ell}\coloneqq\sum_{i=1}^{\ell}2^{-i}=1-2^{-\ell}, and p1/(C2)p_{\ell}\coloneqq 1/(C_{\ell}2^{\ell}).

Claim 5.

Let UU_{\ell} be a pp_{\ell}-random subset of V()=V()V(e)V(\mathcal{H}^{\prime})=V(\mathcal{H})\setminus V(e^{*}). With probability 1o(1)1-o(1), for all matchings MM^{\prime} of \mathcal{H}^{\prime} satisfying 2|M|2\mid|M^{\prime}|, V()V(M)UV(\mathcal{H}^{\prime})\setminus V(M^{\prime})\subseteq U_{\ell}, and |UV(M)|ε|U||U_{\ell}\cap V(M^{\prime})|\leq\varepsilon|U_{\ell}|, the subhypergraph ′′V(e)V(M)\mathcal{H}^{\prime\prime}\coloneqq\mathcal{H}-V(e^{*})-V(M^{\prime}) has a perfect matching.

Proof of claim: First of all, by a Chernoff bound (Lemma 2.1), |U|=(1±ε)pn|U_{\ell}|=(1\pm\varepsilon)p_{\ell}n with probability 1o(1)1-o(1). We apply Theorem 6.8 to show that ′′\mathcal{H}^{\prime\prime} has a perfect matching. To do so, we will show that the following assumptions of Theorem 6.8 hold with probability 1o(1)1-o(1), where A′′′A′′V(M)A^{\prime\prime\prime}\coloneqq A^{\prime\prime}\setminus V(M^{\prime}) and B′′′B′′V(M)B^{\prime\prime\prime}\coloneqq B^{\prime\prime}\setminus V(M^{\prime}).

  1. (1)

    δk1(′′)|U|/2η|U|\delta_{k-1}(\mathcal{H}^{\prime\prime})\geq|U_{\ell}|/2-\eta|U_{\ell}|.

  2. (2)

    ′′\mathcal{H}^{\prime\prime} belongs to the type α\alpha with respect to (η,A′′′,B′′′)(\eta,A^{\prime\prime\prime},B^{\prime\prime\prime}). Thus, in particular, rr^{*} is the special α\alpha-typical index for ′′\mathcal{H}^{\prime\prime}.

  3. (3)

    (A′′′,B′′′)(A^{\prime\prime\prime},B^{\prime\prime\prime}) satisfies the divisibility condition with respect to α\alpha.

  4. (4)

    For each vertex vV(′′)v\in V(\mathcal{H}^{\prime\prime}), dE′′r(A′′′,B′′′)(v)>0.1d𝒦r(A′′′,B′′′)(v)d_{E_{\mathcal{H}^{\prime\prime}}^{r^{*}}(A^{\prime\prime\prime},B^{\prime\prime\prime})}(v)>0.1d_{\mathcal{K}_{r^{*}}(A^{\prime\prime\prime},B^{\prime\prime\prime})}(v).

First of all, Claim 4 shows (3). Now we prove (2). Since \mathcal{H}^{\prime} belongs to the type α\alpha with respect to (6kε1/2,A′′,B′′)(6k\varepsilon^{1/2},A^{\prime\prime},B^{\prime\prime}) (see the discussion below (6.1)), let us define (A′′B′′k){\mathcal{F}}\subseteq\binom{A^{\prime\prime}\cup B^{\prime\prime}}{k} such that

  • r: typical𝒦r(A′′,B′′)\bigcup_{\text{$r$: typical}}\mathcal{K}_{r}(A^{\prime\prime},B^{\prime\prime})\setminus\mathcal{H}^{\prime}\subseteq{\mathcal{F}} and

  • ||=6kε1/2nk±1|{\mathcal{F}}|=6k\varepsilon^{1/2}n^{k}\pm 1.

In particular, {\mathcal{F}} contains all possible typical ‘non-edges’ of \mathcal{H}^{\prime}. By Lemma 2.3 (i), UU_{\ell} is (p,ε,)(p_{\ell},\varepsilon,{\mathcal{F}})-typical with probability 1o(1)1-o(1), so the number of elements in {\mathcal{F}} contained in UU_{\ell} is (1±ε)pk||7kε1/2|U|k(1\pm\varepsilon)p_{\ell}^{k}|{\mathcal{F}}|\leq 7k\varepsilon^{1/2}|U_{\ell}|^{k} with probability 1o(1)1-o(1). Note that the number of elements in {\mathcal{F}} contained in UU_{\ell} is at least the number of all possible typical ‘non-edges’ of \mathcal{H}^{\prime} contained in UU_{\ell}. Thus, |r: typical𝒦r(A′′U,B′′U)[U]|7kε1/2|U|k|\bigcup_{\text{$r$: typical}}\mathcal{K}_{r}(A^{\prime\prime}\cap U_{\ell},B^{\prime\prime}\cap U_{\ell})\setminus\mathcal{H}^{\prime}[U_{\ell}]|\leq 7k\varepsilon^{1/2}|U_{\ell}|^{k}, so [U]\mathcal{H}^{\prime}[U_{\ell}] belongs to the type α\alpha with respect to (7kε1/2,A′′U,B′′U)(7k\varepsilon^{1/2},A^{\prime\prime}\cap U_{\ell},B^{\prime\prime}\cap U_{\ell}). Since \mathcal{H}^{\prime}\subseteq\mathcal{H} and εη1/k\varepsilon\ll\eta\ll 1/k, [U]\mathcal{H}[U_{\ell}] belongs to the type α\alpha with respect to (η/2,A′′U,B′′U)(\eta/2,A^{\prime\prime}\cap U_{\ell},B^{\prime\prime}\cap U_{\ell}). Thus, since εη\varepsilon\ll\eta and |UV(M)|ε|U||U_{\ell}\cap V(M^{\prime})|\leq\varepsilon|U_{\ell}| and (V()V(e))V(M)U(V(\mathcal{H})\setminus V(e^{*}))\setminus V(M^{\prime})\subseteq U_{\ell}, [UV(M)]=′′\mathcal{H}[U_{\ell}\setminus V(M^{\prime})]=\mathcal{H}^{\prime\prime} belongs to the type α\alpha with respect to (η,A′′V(M),B′′V(M))(\eta,A^{\prime\prime}\setminus V(M^{\prime}),B^{\prime\prime}\setminus V(M^{\prime})), proving (2).

Now we prove (1). Since 𝔼[d(S;U)]p(δk1()|V(e)|)\mathbb{E}[d_{\mathcal{H}}(S;U_{\ell})]\geq p_{\ell}(\delta_{k-1}(\mathcal{H})-|V(e^{*})|) for each S(V()k1)S\in\binom{V(\mathcal{H}^{\prime})}{k-1} and |U|=(1±ε)pn|U_{\ell}|=(1\pm\varepsilon)p_{\ell}n with probability 1o(1)1-o(1), by a Chernoff bound (Lemma 2.1) and a union bound, we have δk1([U])(1η)|U|/2\delta_{k-1}(\mathcal{H}[U_{\ell}])\geq(1-\eta)|U_{\ell}|/2 with probability 1o(1)1-o(1). Thus, δk1([U]V(M))(1η)|U|/2|UV(M)|>|U|/2η|U|\delta_{k-1}(\mathcal{H}[U_{\ell}]-V(M^{\prime}))\geq(1-\eta)|U_{\ell}|/2-|U_{\ell}\cap V(M^{\prime})|>|U_{\ell}|/2-\eta|U_{\ell}| with probability 1o(1)1-o(1), which shows (1).

Finally, we prove (4). For each vA′′B′′v\in A^{\prime\prime}\cup B^{\prime\prime}, since UU_{\ell} is a pp_{\ell}-random subset of V()V(\mathcal{H}^{\prime}), we have

  • 𝔼[dE[U]r(A′′U,B′′U)(v)]=pk1dEr(A′′,B′′)(v)\mathbb{E}[d_{E_{\mathcal{H}^{\prime}[U_{\ell}]}^{r^{*}}(A^{\prime\prime}\cap U_{\ell},B^{\prime\prime}\cap U_{\ell})}(v)]=p_{\ell}^{k-1}d_{E_{\mathcal{H}^{\prime}}^{r^{*}}(A^{\prime\prime},B^{\prime\prime})}(v) and

  • 𝔼[d𝒦r(A′′U,B′′U)(v)]=pk1d𝒦r(A′′,B′′)(v)\mathbb{E}[d_{\mathcal{K}_{r^{*}}(A^{\prime\prime}\cap U_{\ell},B^{\prime\prime}\cap U_{\ell})}(v)]=p_{\ell}^{k-1}d_{\mathcal{K}_{r^{*}}(A^{\prime\prime},B^{\prime\prime})}(v).

Let v{e{v}:veEr(A′′,B′′)}{\mathcal{F}}_{v}\coloneqq\{e\setminus\{v\}:v\in e\in E_{\mathcal{H}^{\prime}}^{r^{*}}(A^{\prime\prime},B^{\prime\prime})\}, and let 𝒢v{e{v}:ve𝒦r(A′′,B′′)}\mathcal{G}_{v}\coloneqq\{e\setminus\{v\}:v\in e\in\mathcal{K}_{r^{*}}(A^{\prime\prime},B^{\prime\prime})\}. Applying Lemma 2.3 (i) twice for each vA′′B′′v\in A^{\prime\prime}\cup B^{\prime\prime} and taking union bounds, with probability 1o(1)1-o(1), UU_{\ell} is both (p,ε,v)(p_{\ell},\varepsilon,{\mathcal{F}}_{v})-typical and (p,ε,𝒢v)(p_{\ell},\varepsilon,\mathcal{G}_{v})-typical for all vA′′B′′v\in A^{\prime\prime}\cup B^{\prime\prime}. Thus, for each vUv\in U_{\ell},

dE[U]r(A′′U,B′′U)(v)\displaystyle d_{E_{\mathcal{H}^{\prime}[U_{\ell}]}^{r^{*}}(A^{\prime\prime}\cap U_{\ell},B^{\prime\prime}\cap U_{\ell})}(v) =(1±ε)pk1dEr(A′′,B′′)(v)\displaystyle=(1\pm\varepsilon)p_{\ell}^{k-1}d_{E_{\mathcal{H}^{\prime}}^{r^{*}}(A^{\prime\prime},B^{\prime\prime})}(v)
Claim 3(1ε)pk10.15d𝒦r(A′′,B′′)(v)\displaystyle\hskip-69.12476pt\overset{\text{\lx@cref{creftype~refnum}{claim:proph'}}}{\geq}(1-\varepsilon)p_{\ell}^{k-1}\cdot 0.15d_{\mathcal{K}_{r^{*}}(A^{\prime\prime},B^{\prime\prime})}(v)
(6.2) 0.151ε1+εd𝒦r(A′′U,B′′U)(v),\displaystyle\geq 0.15\cdot\frac{1-\varepsilon}{1+\varepsilon}\cdot d_{\mathcal{K}_{r^{*}}(A^{\prime\prime}\cap U_{\ell},B^{\prime\prime}\cap U_{\ell})}(v),

where the first equality and the last inequality follow since UU_{\ell} is (p,ε,v)(p_{\ell},\varepsilon,{\mathcal{F}}_{v})-typical and (p,ε,𝒢v)(p_{\ell},\varepsilon,\mathcal{G}_{v})-typical, respectively. On the other hand, since rr^{*} is the special α\alpha-typical index for \mathcal{H}^{\prime} and \mathcal{H}^{\prime} is the subhypergraph of typical edges of V(e)\mathcal{H}-V(e^{*}), we have E′′r(A′′′,B′′′)=EV(M)r(A′′′,B′′′)E_{\mathcal{H}^{\prime\prime}}^{r^{*}}(A^{\prime\prime\prime},B^{\prime\prime\prime})=E_{\mathcal{H}^{\prime}-V(M^{\prime})}^{r^{*}}(A^{\prime\prime\prime},B^{\prime\prime\prime}). Thus,

dE′′r(A′′′,B′′′)(v)\displaystyle d_{E_{\mathcal{H}^{\prime\prime}}^{r^{*}}(A^{\prime\prime\prime},B^{\prime\prime\prime})}(v) dE[U]r(A′′U,B′′U)(v)|UV(M)||U|k2\displaystyle\geq d_{E_{\mathcal{H}^{\prime}[U_{\ell}]}^{r^{*}}(A^{\prime\prime}\cap U_{\ell},B^{\prime\prime}\cap U_{\ell})}(v)-|U_{\ell}\cap V(M^{\prime})||U_{\ell}|^{k-2}
(6.2)0.12d𝒦r(A′′U,B′′U)(v)ε|U|k1\displaystyle\hskip-59.8315pt\overset{\eqref{eqn:degree_in_randomset}}{\geq}0.12d_{\mathcal{K}_{r^{*}}(A^{\prime\prime}\cap U_{\ell},B^{\prime\prime}\cap U_{\ell})}(v)-\varepsilon|U_{\ell}|^{k-1}
>0.1d𝒦r(A′′U,B′′U)(v)0.1d𝒦r(A′′′,B′′′)(v).\displaystyle>0.1d_{\mathcal{K}_{r^{*}}(A^{\prime\prime}\cap U_{\ell},B^{\prime\prime}\cap U_{\ell})}(v)\geq 0.1d_{\mathcal{K}_{r^{*}}(A^{\prime\prime\prime},B^{\prime\prime\prime})}(v).

In the penultimate inequality we used that |U||U_{\ell}| is large enough (it is (1±ε)pn(1\pm\varepsilon)p_{\ell}n with probability 1o(1)1-o(1)), and in the final inequality we used V()V(M)UV(\mathcal{H}^{\prime})\setminus V(M^{\prime})\subseteq U_{\ell}. This proves (4). Thus, by Theorem 6.8, ′′\mathcal{H}^{\prime\prime} has a perfect matching with probability 1o(1)1-o(1). \blacklozenge

References

  • [1] P. Allen, J. Böttcher, J. Corsten, E. Davies, M. Jenssen, P. Morris, B. Roberts, and J. Skokan, A robust Corrádi–Hajnal Theorem, arXiv:2209.01116 (2022).
  • [2] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov, Large matchings in uniform hypergraphs and the conjecture of Erdős and Samuels, J. Combin. Theory Ser. A 119 (2012), 1200–1215.
  • [3] Y. Alon and M. Krivelevich, Hitting time of edge disjoint Hamilton cycles in random subgraph processes on dense base graphs, SIAM J. Discrete Math. 36 (2022), 728–754.
  • [4] R. Alweiss, S. Lovett, K. Wu, and J. Zhang, Improved bounds for the sunflower lemma, Ann. of Math. (2) 194 (2021), 795–815.
  • [5] B. Barber, S. Glock, D. Kühn, A. Lo, R. Montgomery, and D. Osthus, Minimalist designs, Random Structures Algorithms 57 (2020), 47–63.
  • [6] B. Barber, D. Kühn, A. Lo, and D. Osthus, Edge-decompositions of graphs with high minimum degree, Adv. Math. 288 (2016), 337–385.
  • [7] B. Barber, D. Kühn, A. Lo, D. Osthus, and A. Taylor, Clique decompositions of multipartite graphs and completion of Latin squares, J. Combin. Theory Ser. A 151 (2017), 146–201.
  • [8] Y. Chang, H. Ge, J. Han, and G. Wang, Matching of given sizes in hypergraphs, SIAM J. Discrete Math. 36 (2022), 2323–2338.
  • [9] F. R. K. Chung, Regularity lemmas for hypergraphs and quasi-randomness, Random Structures Algorithms 2 (1991), 241–252.
  • [10] P. Condon, A. Espuny Díaz, A. Girão, D. Kühn, and D. Osthus, Hamiltonicity of random subgraphs of the hypercube, Mem. Amer. Math. Soc., to appear.
  • [11] C. Cooper, A. Frieze, M. Molloy, and B. Reed, Perfect matchings in random rr-regular, ss-uniform hypergraphs, Combin. Probab. Comput. 5 (1996), 1–14.
  • [12] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69–81.
  • [13] J. Edmonds, Paths, trees, and flowers, Canadian J. Math. 17 (1965), 449–467.
  • [14] P. Erdős and A. Rényi, On the existence of a factor of degree one of a connected random graph, Acta Math. Acad. Sci. Hungar. 17 (1966), 359–368.
  • [15] P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), 25–42.
  • [16] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. Lond. Math. Soc. 1 (1960), 85–90.
  • [17] A. Ferber, L. Hardiman, and A. Mond, Counting Hamiltonian cycles in Dirac hypergraphs, arXiv:2110.15475 (2021).
  • [18] A. Ferber, M. Krivelevich, and B. Sudakov, Counting and packing Hamilton \ell-cycles in dense hypergraphs, J. Comb. 7 (2016), 135–157.
  • [19] A. Ferber and M. Kwan, Dirac-type theorems in random hypergraphs, J. Combin. Theory Ser. B 155 (2022), 318–357.
  • [20] P. Frankl and V. Rödl, The uniformity lemma for hypergraphs, Graphs Combin. 8 (1992), 309–312.
  • [21] P. Frankl and A. Kupavskii, The Erdős matching conjecture and concentration inequalities, J. Combin. Theory Ser. B 157 (2022), 366–400.
  • [22] K. Frankston, J. Kahn, B. Narayanan, and J. Park, Thresholds versus fractional expectation-thresholds, Ann. of Math. (2) 194 (2021), 475–495.
  • [23] A. Frieze and S. Janson, Perfect matchings in random ss-uniform hypergraphs, Random Structures Algorithms 7 (1995), 41–57.
  • [24] A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica 19 (1999), 175–220.
  • [25] W. Gao and J. Han, Minimum codegree threshold for C63C_{6}^{3}-factors in 3-uniform hypergraphs, Combin. Probab. Comput. 26 (2017), 536–559.
  • [26] W. Gao, J. Han, and Y. Zhao, Codegree conditions for tiling complete kk-partite kk-graphs and loose cycles, Combin. Probab. Comput. 28 (2019), 840–870.
  • [27] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, W. H. Freeman & Co., USA, 1979.
  • [28] R. Glebov, Z. Luria, and M. Simkin, Perfect matchings in random subgraphs of regular bipartite graphs, J. Graph Theory 97 (2021), 208–231.
  • [29] S. Glock, S. Gould, F. Joos, D. Kühn, and D. Osthus, Counting Hamilton cycles in Dirac hypergraphs, Combin. Probab. Comput. 30 (2021), 631–653.
  • [30] S. Glock, D. Kühn, A. Lo, R. Montgomery, and D. Osthus, On the decomposition threshold of a given graph, J. Combin. Theory Ser. B 139 (2019), 47–127.
  • [31] S. Glock, D. Kühn, A. Lo, and D. Osthus, The existence of designs via iterative absorption: hypergraph FF-designs for arbitrary FF, Mem. Amer. Math. Soc. 284 (2023), v+131.
  • [32] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Combinatorial theory and its applications, II (Proc. Colloq., Balatonfüred, 1969), North-Holland, Amsterdam, 1970, 601–623.
  • [33] H. Hàn and M. Schacht, Dirac-type results for loose Hamilton cycles in uniform hypergraphs, J. Combin. Theory Ser. B 100 (2010), 332–346.
  • [34] H. Hàn, Y. Person, and M. Schacht, On perfect matchings in uniform hypergraphs with large minimum vertex degree, SIAM J. Discrete Math. 23 (2009), 732–748.
  • [35] J. Han, Near perfect matchings in kk-uniform hypergraphs, Combin. Probab. Comput. 24 (2015), 723–732.
  • [36] by same author, Near perfect matchings in kk-uniform hypergraphs II, SIAM J. Discrete Math. 30 (2016), 1453–1469.
  • [37] A. Johansson, J. Kahn, and V. Vu, Factors in random graphs, Random Structures Algorithms 33 (2008), 1–28.
  • [38] T. Johansson, On Hamilton cycles in Erdős-Rényi subgraphs of large graphs, Random Structures Algorithms 57 (2020), 132–149.
  • [39] J. Kahn, Hitting times for Shamir’s problem, Trans. Amer. Math. Soc. 375 (2022), 627–668.
  • [40] by same author, Asymptotics for Shamir’s problem, Adv. Math. 422 (2023), Paper No. 109019, 39.
  • [41] J. Kahn and G. Kalai, Thresholds and expectation thresholds, Combin. Probab. Comput. 16 (2007), 495–502.
  • [42] D. Y. Kang, T. Kelly, D. Kühn, A. Methuku, and D. Osthus, Thresholds for Latin squares and Steiner triple systems: bounds within a logarithmic factor, Trans. Amer. Math. Soc. 376 (2023), 6623–6662.
  • [43] R. M. Karp, Reducibility among combinatorial problems, Complexity of computer computations, Springer, 1972, 85–103.
  • [44] P. Keevash and R. Mycroft, A geometric theory for hypergraph matching, Mem. Amer. Math. Soc. 233 (2015), vi+95.
  • [45] I. Khan, Perfect matchings in 3-uniform hypergraphs with large vertex degree, SIAM J. Discrete Math. 27 (2013), 1021–1039.
  • [46] by same author, Perfect matchings in 4-uniform hypergraphs, J. Combin. Theory Ser. B 116 (2016), 333–366.
  • [47] J. H. Kim and V. H. Vu, Concentration of multivariate polynomials and its applications, Combinatorica 20 (2000), 417–434.
  • [48] F. Knox, D. Kühn, and D. Osthus, Edge-disjoint Hamilton cycles in random graphs, Random Structures Algorithms 46 (2015), 397–445.
  • [49] J. Komlós, G. N. Sárközy, and E. Szemerédi, Proof of a packing conjecture of Bollobás, Combin. Probab. Comput. 4 (1995), 241–255.
  • [50] M. Krivelevich, C. Lee, and B. Sudakov, Robust Hamiltonicity of Dirac graphs, Trans. Amer. Math. Soc. 366 (2014), 3095–3130.
  • [51] by same author, Long paths and cycles in random subgraphs of graphs with large minimum degree, Random Structures Algorithms 46 (2015), 320–345.
  • [52] D. Kühn and D. Osthus, Matchings in hypergraphs of large minimum degree, J. Graph Theory 51 (2006), 269–280.
  • [53] D. Kühn and D. Osthus, Embedding large subgraphs into dense graphs, Surveys in combinatorics 2009, London Math. Soc. Lecture Note Ser., vol. 365, Cambridge Univ. Press, Cambridge, 2009, 137–167.
  • [54] D. Kühn and D. Osthus, Hamilton decompositions of regular expanders: a proof of Kelly’s conjecture for large tournaments, Adv. Math. 237 (2013), 62–146.
  • [55] D. Kühn, D. Osthus, and A. Treglown, Matchings in 3-uniform hypergraphs, J. Combin. Theory Ser. B 103 (2013), 291–305.
  • [56] M. Kwan, A. Sah, M. Sawhney, and M. Simkin, High-girth Steiner triple systems, arXiv:2201.04554 (2022).
  • [57] H. Lu, X. Yu, and X. Yuan, Nearly perfect matchings in uniform hypergraphs, SIAM J. Discrete Math. 35 (2021), 1022–1049.
  • [58] J. Park and H. T. Pham, A proof of the Kahn-Kalai conjecture, J. Amer. Math. Soc. 37 (2024), 235–243.
  • [59] H. T. Pham, A. Sah, M. Sawhney, and M. Simkin, A toolkit for robust thresholds, arXiv:2210.03064 (2022).
  • [60] L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976), 359–364.
  • [61] V. Rödl and A. Ruciński, Dirac-type questions for hypergraphs—a survey (or more problems for Endre to solve), An irregular mind, Bolyai Soc. Math. Stud., vol. 21, János Bolyai Math. Soc., Budapest, 2010, 561–590.
  • [62] V. Rödl, A. Ruciński, and E. Szemerédi, Perfect matchings in uniform hypergraphs with large minimum degree, European J. Combin. 27 (2006), 1333–1349.
  • [63] by same author, Perfect matchings in large uniform hypergraphs with large minimum collective degree, J. Combin. Theory Ser. A 116 (2009), 613–636.
  • [64] V. Rödl, A. Ruciński, M. Schacht, and E. Szemerédi, A note on perfect matchings in uniform hypergraphs with large minimum collective degree, Comment. Math. Univ. Carolin. 49 (2008), 633–636.
  • [65] V. Rödl, A. Ruciński, and E. Szemerédi, An approximate Dirac-type theorem for kk-uniform hypergraphs, Combinatorica 28 (2008), 229–260.
  • [66] A. Sah, M. Sawhney, and M. Simkin, Threshold for Steiner triple systems, Geom. Funct. Anal. 33 (2023), 1141–1172.
  • [67] J. Schmidt and E. Shamir, A threshold for perfect matchings in random dd-pure hypergraphs, Discrete Math. 45 (1983), 287–295.
  • [68] A. Steger, Die Kleitman–Rothschild Methode, Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 1990.
  • [69] B. Sudakov, Robustness of graph properties, Surveys in combinatorics 2017, London Math. Soc. Lecture Note Ser., vol. 440, Cambridge Univ. Press, Cambridge, 2017, 372–408.
  • [70] M. Talagrand, Are many small sets explicitly small?, Proceedings of the forty-second ACM symposium on Theory of computing, 2010, 13–36.
  • [71] A. Treglown and Y. Zhao, A note on perfect matchings in uniform hypergraphs, Electron. J. Combin. 23 (2016), Paper 1.16, 14.
  • [72] Y. Zhao, Recent advances on Dirac-type problems for hypergraphs, Recent trends in combinatorics, IMA Vol. Math. Appl., vol. 159, Springer, [Cham], 2016, 145–165.

A A Proofs of Lemmas 2.3, 2.8, and 3.3

In this section, we prove Lemmas 2.3, 2.8, and 3.3.

As mentioned, we prove Lemma 2.3 via the polynomial concentration theorem of Kim and Vu [47]. We first give some definitions and then state the theorem. Let nn and rr be integers and let 𝒢\mathcal{G} be a hypergraph on nn vertices in which each edge has size at most rr. Suppose {Xv:vV(𝒢)}\{X_{v}:v\in V(\mathcal{G})\} is a set of mutually independent Bernoulli random variables. We define the random variable

Y𝒢e𝒢veXv.Y_{\mathcal{G}}\coloneqq\sum_{e\in\mathcal{G}}\prod_{v\in e}X_{v}.

For a subset AV(𝒢)A\subseteq V(\mathcal{G}), we define 𝒢A\mathcal{G}_{A} to be the hypergraph with V(𝒢A)V(𝒢)AV(\mathcal{G}_{A})\coloneqq V(\mathcal{G})\setminus A and E(𝒢A){SV(𝒢A):SAE(𝒢)}E(\mathcal{G}_{A})\coloneqq\{S\subseteq V(\mathcal{G}_{A})\colon S\cup A\in E(\mathcal{G})\}. Thus we have

Y𝒢A=e𝒢AeveAXv.Y_{\mathcal{G}_{A}}=\sum_{\begin{subarray}{c}e\in\mathcal{G}\\ A\subseteq e\end{subarray}}\prod_{v\in e\setminus A}X_{v}.

Moreover, for each 0ir0\leq i\leq r, we let

i(𝒢)maxAV(𝒢)|A|=i𝔼[Y𝒢A].{\mathcal{E}}_{i}(\mathcal{G})\coloneqq\max_{\begin{subarray}{c}A\subseteq V(\mathcal{G})\\ \left\lvert A\right\rvert=i\end{subarray}}\mathbb{E}[Y_{\mathcal{G}_{A}}].

Finally, we let (𝒢)max0iri(𝒢){\mathcal{E}}(\mathcal{G})\coloneqq\max_{0\leq i\leq r}{\mathcal{E}}_{i}(\mathcal{G}) and (𝒢)max1iri(𝒢){\mathcal{E}}^{\prime}(\mathcal{G})\coloneqq\max_{1\leq i\leq r}{\mathcal{E}}_{i}(\mathcal{G}).

Theorem A.1 (Kim–Vu polynomial concentration [47]).

In the above setting, we have

[|Y𝒢𝔼[Y𝒢]|>ar((𝒢)(𝒢))1/2λr]2e2eλnr1\mathbb{P}\left[\left\lvert Y_{\mathcal{G}}-\mathbb{E}[Y_{\mathcal{G}}]\right\rvert>a_{r}({\mathcal{E}}(\mathcal{G}){\mathcal{E}}^{\prime}(\mathcal{G}))^{1/2}\lambda^{r}\right]\leq 2e^{2}e^{-\lambda}n^{r-1}

for any λ>1\lambda>1 and ar8rr!1/2a_{r}\coloneqq 8^{r}r!^{1/2}.

Proof of Lemma 2.3.

We first prove (i). Independently for each vVv\in V, let Xv{0,1}X_{v}\in\{0,1\} with [Xv=1]=p\mathbb{P}\left[X_{v}=1\right]=p and let U={vV:Xv=1}U=\{v\in V\colon X_{v}=1\}. Define 𝒢\mathcal{G} to be the hypergraph with V(𝒢)=VV(\mathcal{G})=V and E(𝒢)=E(\mathcal{G})=\mathcal{F}. Note that each edge in 𝒢\mathcal{G} has size ss. Since Y𝒢Y_{\mathcal{G}} is the number of elements of \mathcal{F} that are contained in UU, we have

𝔼[Y𝒢]=||psε(np)s1/2.\displaystyle\mathbb{E}[Y_{\mathcal{G}}]=\left\lvert{\mathcal{F}}\right\rvert p^{s}\geq\varepsilon(np)^{s-1/2}.

Let 1is1\leq i\leq s and AV(𝒢)=VA\subseteq V(\mathcal{G})=V with |A|=i\left\lvert A\right\rvert=i. Note that Y𝒢AY_{\mathcal{G}_{A}} is the number of FF\in{\mathcal{F}} such that AFA\subseteq F and FAUF\setminus A\subseteq U. It follows that

𝔼[Y𝒢A]nsipsi=(np)si(np)s1(np)1/4𝔼[Y𝒢].\displaystyle\mathbb{E}[Y_{\mathcal{G}_{A}}]\leq n^{s-i}p^{s-i}=(np)^{s-i}\leq(np)^{s-1}\leq(np)^{-1/4}\mathbb{E}[Y_{\mathcal{G}}].

Hence (𝒢)=𝔼[Y𝒢]{\mathcal{E}}(\mathcal{G})=\mathbb{E}[Y_{\mathcal{G}}] and (𝒢)(np)1/4𝔼[Y𝒢]{\mathcal{E}}^{\prime}(\mathcal{G})\leq(np)^{-1/4}\mathbb{E}[Y_{\mathcal{G}}]. Now let

λ(ε𝔼[Y𝒢]as((𝒢)(𝒢))1/2)1/s(ε(np)1/8as)1/snβ/(9s).\displaystyle\lambda\coloneqq\left(\frac{\varepsilon\mathbb{E}[Y_{\mathcal{G}}]}{a_{s}({\mathcal{E}}(\mathcal{G}){\mathcal{E}}^{\prime}(\mathcal{G}))^{1/2}}\right)^{1/s}\geq\left(\frac{\varepsilon(np)^{1/8}}{a_{s}}\right)^{1/s}\geq n^{\beta/(9s)}.

By Theorem A.1, we have

[|Y𝒢𝔼[Y𝒢]|>ε𝔼[Y𝒢]]\displaystyle\mathbb{P}\left[\left\lvert Y_{\mathcal{G}}-\mathbb{E}[Y_{\mathcal{G}}]\right\rvert>\varepsilon\mathbb{E}[Y_{\mathcal{G}}]\right] =[|Y𝒢𝔼[Y𝒢]|>as((𝒢)(𝒢))1/2λs]\displaystyle=\mathbb{P}\left[\left\lvert Y_{\mathcal{G}}-\mathbb{E}[Y_{\mathcal{G}}]\right\rvert>a_{s}({\mathcal{E}}(\mathcal{G}){\mathcal{E}}^{\prime}(\mathcal{G}))^{1/2}\lambda^{s}\right]
2e2eλns1exp(nβ/(10s)).\displaystyle\leq 2e^{2}e^{-\lambda}n^{s-1}\leq\exp(-n^{\beta/(10s)}).

Thus with probability at least 1exp(nβ/(10s))1-\exp(-n^{\beta/(10s)}), we have that the number of elements of {\mathcal{F}} contained in UU is (1±ε)𝔼[Y𝒢]=(1±ε)||ps(1\pm\varepsilon)\mathbb{E}[Y_{\mathcal{G}}]=(1\pm\varepsilon)\left\lvert{\mathcal{F}}\right\rvert p^{s}, which concludes the proof.

Now we show that (ii) follows from (i). Let (Vs)\mathcal{F}^{\prime}\subseteq\binom{V}{s} be such that \mathcal{F}\subseteq\mathcal{F}^{\prime} and εns(np)1/2||εns\varepsilon n^{s}(np)^{1/2}\leq\left\lvert\mathcal{F}^{\prime}\right\rvert\leq\varepsilon n^{s}. By (i), with probability at least 1exp(nβ/(10s))1-\exp(-n^{\beta/(10s)}), UU is (p,ε,)(p,\varepsilon,\mathcal{F}^{\prime})-typical. It follows that, with probability at least 1exp(nβ/(10s))1-\exp(-n^{\beta/(10s)}),

|{S:SU}||{S:SU}|(1+ε)ps||2ε(np)s,\left\lvert\{S\in\mathcal{F}\colon S\subseteq U\}\right\rvert\leq\left\lvert\{S\in\mathcal{F}^{\prime}\colon S\subseteq U\}\right\rvert\leq(1+\varepsilon)p^{s}\left\lvert\mathcal{F}^{\prime}\right\rvert\leq 2\varepsilon(np)^{s},

as desired. ∎

Proof of Lemma 2.8.

Let S={i1,,id}([t]d)S=\{i_{1},\dots,i_{d}\}\in\binom{[t]}{d} be good if there are at least (1ε1/2)(tdkd)(1-\varepsilon^{1/2})\binom{t-d}{k-d} many (kd)(k-d)-sets {id+1,,ik}([t]Skd)\{i_{d+1},\dots,i_{k}\}\in\binom{[t]\setminus S}{k-d} such that (Vi1,,Vik)(V_{i_{1}},\dots,V_{i_{k}}) is ε\varepsilon-regular. Since there are at most ε(tk)\varepsilon\binom{t}{k} many kk-sets in ([t]k)\binom{[t]}{k} which are not ε\varepsilon-regular, by an averaging argument, all but at most ε(tk)(kd)ε1/2(tdkd)=ε1/2(td)\frac{\varepsilon\binom{t}{k}\binom{k}{d}}{\varepsilon^{1/2}\binom{t-d}{k-d}}=\varepsilon^{1/2}\binom{t}{d} many dd-sets in ([t]d)\binom{[t]}{d} are good.

Now it suffices to show that every good set in ([t]d)\binom{[t]}{d} has dd-degree at least (cγ)(tdkd)(c-\gamma)\binom{t-d}{k-d} in \mathcal{R}. Suppose, for a contradiction, that a good set S={i1,,id}([t]d)S=\{i_{1},\dots,i_{d}\}\in\binom{[t]}{d} has dd-degree less than (cγ)(tdkd)(c-\gamma)\binom{t-d}{k-d} in \mathcal{R}. Let n|V1|==|Vt|n_{*}\coloneqq|V_{1}|=\dots=|V_{t}|, which satisfies 2n3t(1ε)n/tnn/t\frac{2n}{3t}\leq(1-\varepsilon)n/t\leq n_{*}\leq n/t since ε1/3\varepsilon\leq 1/3. Let NSN_{S} be the set of edges ee\in\mathcal{H} with |eVij|=1|e\cap V_{i_{j}}|=1 for all j[d]j\in[d]. Since all but at most ηnd\eta n^{d} many dd-sets in (Vi1Vidd)\binom{V_{i_{1}}\cup\cdots\cup V_{i_{d}}}{d} have dd-degree at least c(ndkd)c\binom{n-d}{k-d}, we have

|NS|\displaystyle|N_{S}| (ndηnd)c(ndkd)nddn(nd1kd1)nd(ndkd)(cγc/6dkn/n)\displaystyle\geq(n_{*}^{d}-\eta n^{d})c\binom{n-d}{k-d}-n_{*}^{d}\cdot dn_{*}\binom{n-d-1}{k-d-1}\geq n_{*}^{d}\binom{n-d}{k-d}\left(c-\gamma c/6-dkn_{*}/n\right)
nd(cγ/3)(ndkd).\displaystyle\geq n_{*}^{d}(c-\gamma/3)\binom{n-d}{k-d}.

Let (S)\mathcal{E}(S) be the set of (kd)(k-d)-sets {id+1,,ik}([t]Skd)\{i_{d+1},\dots,i_{k}\}\in\binom{[t]\setminus S}{k-d} such that (Vi1,,Vik)(V_{i_{1}},\dots,V_{i_{k}}) is not ε\varepsilon-regular. Since SS is good, we have |(S)|ε1/2(tdkd)|\mathcal{E}(S)|\leq\varepsilon^{1/2}\binom{t-d}{k-d}. Since \mathcal{R} is the (γ/3,ε)(\gamma/3,\varepsilon)-reduced hypergraph, for {id+1,,ik}([t]Skd)(N(S)(S))\{i_{d+1},\dots,i_{k}\}\in\binom{[t]\setminus S}{k-d}\setminus(N_{\mathcal{R}}(S)\cup\mathcal{E}(S)), we have e(Vi1,,Vik)γ/3|Vi1||Vik|=γ/3nke_{\mathcal{H}}(V_{i_{1}},\dots,V_{i_{k}})\leq\gamma/3\cdot|V_{i_{1}}|\cdots|V_{i_{k}}|=\gamma/3\cdot n_{*}^{k}. Note that moreover there are at most εndnkd\varepsilon n_{*}^{d}\cdot n^{k-d} edges eNSe\in N_{S} with eV0e\cap V_{0}\neq\varnothing. Finally, there are at most tkd1nkt^{k-d-1}n_{*}^{k} edges eNSe\in N_{S} with eV0=e\cap V_{0}=\varnothing that contain more than one vertex from ViV_{i} for some i[t]i\in[t]. Recall that by assumption |N(S)|<(cγ)(tdkd)|N_{\mathcal{R}}(S)|<(c-\gamma)\binom{t-d}{k-d}. Hence we have

|NS|\displaystyle|N_{S}| |([t]Skd)(N(S)(S))|γ/3nk+|N(S)(S)|nk+εndnkd+tkd1nk\displaystyle\leq\left\lvert\binom{[t]\setminus S}{k-d}\setminus(N_{\mathcal{R}}(S)\cup\mathcal{E}(S))\right\rvert\gamma/3\cdot n_{*}^{k}+\left\lvert N_{\mathcal{R}}(S)\cup\mathcal{E}(S)\right\rvert n_{*}^{k}+\varepsilon n_{*}^{d}\cdot n^{k-d}+t^{k-d-1}n_{*}^{k}
<(tdkd)γnk/3+(cγ+ε1/2)(tdkd)nk+εndnkd+tkd1nk\displaystyle<\binom{t-d}{k-d}\gamma n_{*}^{k}/3+(c-\gamma+\varepsilon^{1/2})\binom{t-d}{k-d}n_{*}^{k}+\varepsilon n_{*}^{d}\cdot n^{k-d}+t^{k-d-1}n_{*}^{k}
<nd(cγ/3)(ndkd).\displaystyle<n_{*}^{d}(c-\gamma/3)\binom{n-d}{k-d}.

This contradicts the bound NSnd(cγ/3)(ndkd)N_{S}\geq n_{*}^{d}(c-\gamma/3)\binom{n-d}{k-d} obtained above. Thus every good set in ([t]d)\binom{[t]}{d} has dd-degree at least (cγ)(tdkd)(c-\gamma)\binom{t-d}{k-d} in \mathcal{R}. ∎

Proof of Lemma 3.3.

Note that pinpnεn1/kp_{i}n\geq p_{\ell}n\geq\varepsilon n^{1/k} for all i[]i\in[\ell]. For each i[]i\in[\ell], since 𝔼[|Ui|]=pin\mathbb{E}[|U_{i}|]=p_{i}n, by a Chernoff bound and a union bound, with probability at least 1exp(n1/(2k))1-\exp(-n^{1/(2k)}), for all i[]i\in[\ell] we have |Ui|=(1±ε)pin|U_{i}|=(1\pm\varepsilon)p_{i}n. Thus a.a.s.  (V1)(\text{V}1) holds.

We call S(V()d)S\in\binom{V(\mathcal{H})}{d} good if d(S)α1ndd_{\mathcal{H}}(S)\geq\alpha_{1}n^{d}, otherwise we call it bad. Since \mathcal{H} is (α1,α2,d,ε)(\alpha_{1},\alpha_{2},d,\varepsilon)-dense, there are at most εnd\varepsilon n^{d} bad dd-sets in (V()d)\binom{V(\mathcal{H})}{d}. By Lemma 2.3 (ii) and a union bound, we have that, with probability at least 1exp(n1/(11k2))1-\exp(-n^{1/(11k^{2})}), for each i[]i\in[\ell], UiU_{i} contains at most 2ε(pin)d2\varepsilon(p_{i}n)^{d} bad dd-sets. By Lemma 2.3 (i) and a union bound, we have that, with probability at least 1exp(n1/(11k2))1-\exp(-n^{1/(11k^{2})}), for each i[]i\in[\ell] and each good S(V()d)S\in\binom{V(\mathcal{H})}{d}, we have d(S;(Uikd))(α12ε)(pin)kdd_{\mathcal{H}}(S;\binom{U_{i}}{k-d})\geq(\alpha_{1}-2\varepsilon)(p_{i}n)^{k-d}. Hence a.a.s.  (V2)(\text{V}2) holds.

By Lemma 2.3 (i) and a union bound, we have that, with probability at least 1exp(n1/(11k2))1-\exp(-n^{1/(11k^{2})}), for each i[]i\in[\ell] and each vertex vV()v\in V(\mathcal{H}), d(v;(Ui{v}k1))(α22ε)(pin)k1d_{\mathcal{H}}(v;\binom{U_{i}\setminus\{v\}}{k-1})\geq(\alpha_{2}-2\varepsilon)(p_{i}n)^{k-1}. So a.a.s.  (V3)(\text{V}3) holds. ∎