This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Perfect state transfer between real pure states

Chris Godsil1, Stephen Kirkland2, and Hermie Monterde2
Abstract

Pure states correspond to one-dimensional subspaces of โ„‚n\mathbb{C}^{n} represented by unit vectors. In this paper, we develop the theory of perfect state transfer (PST) between real pure states with emphasis on the adjacency and Laplacian matrices as Hamiltonians of a graph representing a quantum spin network. We characterize PST between real pure states based on the spectral information of a graph and prove three fundamental results: (i) every periodic real pure state ๐ฑ\mathbf{x} admits perfect state transfer with another real pure state ๐ฒ\mathbf{y}, (ii) every connected graph admits perfect state transfer between real pure states, and (iii) for any pair of real pure states ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} and for any time ฯ„\tau, there exists a real symmetric matrix MM such that ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} admit perfect state transfer relative to MM at time ฯ„\tau. We also determine all real pure states that admit PST in complete graphs, complete bipartite graphs, paths, and cycles. This leads to a complete characterization of pair and plus state transfer in paths and complete bipartite graphs. We give constructions of graphs that admit PST between real pure states. Finally, using results on the spread of graphs, we prove that amongst all nn-vertex simple unweighted graphs, the least minimum PST time between real pure states is attained by any join graph for the Laplacian case, while it is attained by the join of an empty graph and a complete graph of appropriate sizes for the adjacency case.

Dedicated to Agnes T.ย Paras on the occasion of her 60th birthday

Keywords: quantum walks, perfect state transfer, pure states, graph spectra, adjacency matrix, Laplacian matrix

MSC2010 Classification: 05C50; 81P45

1 Introduction

Throughout, we assume that GG is a simple undirected connected graph on nn vertices with positive edge weights having adjacency matrix AA and Laplacian matrix LL. We say that GG is unweighted if every edge of GG has weight one. A continuous quantum walk on GG is determined by the matrix

UMโ€‹(t):=eiโ€‹tโ€‹M,tโˆˆโ„,U_{M}(t):=e^{itM},\quad t\in\mathbb{R}, (1)

where i2=โˆ’1i^{2}=-1 and MM is a real symmetric matrix called the Hamiltonian associated with GG. Here, MM is indexed by the vertices of GG such that Mu,v=0M_{u,v}=0 if and only if there is no edge between uu and vv. Note that UMโ€‹(t)U_{M}(t) is a complex, symmetric and unitary matrix for each tโˆˆโ„t\in\mathbb{R}. We write UMโ€‹(t)U_{M}(t) as Uโ€‹(t)U(t) if MM is clear from the context. Sometimes, we take MM to be AA or LL. But unless otherwise stated, our results apply to any real symmetric matrix MM that respects the adjacencies of GG. We denote the mร—nm\times n all-ones matrix and nร—nn\times n identity matrix by Jm,nJ_{m,n} and InI_{n}, respectively. We write these matrices as JJ and II if the context is clear.

A quantum state is represented by a positive semidefinite matrix with trace one, known as a density matrix. If the initial state of our quantum walk is represented by a density matrix DD, then the state Dโ€‹(t)D(t) at time tt is given by

Uโ€‹(t)โ€‹Dโ€‹Uโ€‹(โˆ’t),U(t)DU(-t),

where Uโ€‹(โˆ’t)=Uโ€‹(t)ยฏโŠค=Uโ€‹(t)โˆ’1U(-t)=\overline{U(t)}^{\top}=U(t)^{-1} [godsil2017real]. We say that perfect state transfer (PST) occurs between two density matrices D1D_{1} and D2D_{2} if for some time ฯ„>0\tau>0, we have

D2=Uโ€‹(ฯ„)โ€‹D1โ€‹Uโ€‹(โˆ’ฯ„).D_{2}=U(\tau)D_{1}U(-\tau).

We say that perfect state transfer (PST) occurs between two nonzero complex vectors ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} if for some time ฯ„>0\tau>0, there is a unit complex number ฮณ\gamma called phase factor such that

Uโ€‹(ฯ„)โ€‹๐ฑ=ฮณโ€‹๐ฒ.U(\tau)\mathbf{x}=\gamma\mathbf{y}. (2)

The minimum such ฯ„\tau is called the minimum PST time.

A density matrix DD is a pure state if the rank of DD is equal to one, and it is a real state if all its entries are real. Thus, a real pure state DD can be written as D=1โ€–๐ฑโ€–2โ€‹๐ฑ๐ฑโŠคD=\frac{1}{\|\mathbf{x}\|^{2}}\mathbf{x}\mathbf{x}^{\top} for some nonzero vector ๐ฑโˆˆโ„n\mathbf{x}\in\mathbb{R}^{n}, where โˆฅโ‹…โˆฅ\|\cdot\| is the Euclidean norm. For each ๐ฑโˆˆโ„n\mathbf{x}\in\mathbb{R}^{n} with ๐ฑโ‰ ๐ŸŽ\mathbf{x}\neq{\bf{0}}, we let D๐ฑ:=1โ€–๐ฑโ€–2โ€‹๐ฑ๐ฑโŠคD_{\mathbf{x}}:=\frac{1}{\|\mathbf{x}\|^{2}}\mathbf{x}\mathbf{x}^{\top} denote the real pure state associated with ๐ฑ\mathbf{x}. Since the equation D๐ฒ=Uโ€‹(ฯ„)โ€‹D๐ฑโ€‹Uโ€‹(โˆ’ฯ„)D_{\mathbf{y}}=U(\tau)D_{\mathbf{x}}U(-\tau) is equivalent to Uโ€‹(ฯ„)โ€‹๐ฑ=ฮณโ€‹๐ฒU(\tau)\mathbf{x}=\gamma\mathbf{y} for some unit ฮณโˆˆโ„‚\gamma\in\mathbb{C}, the existence of perfect state transfer between real density matrices D๐ฑD_{\mathbf{x}} and D๐ฒD_{\mathbf{y}} is equivalent to perfect state transfer between the real vectors ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y}. Thus, we abuse terminology and also refer to ๐ฑ\mathbf{x} as a real pure state. If uu and vv are two vertices in GG and ss is a non-zero real number, then a real pure state of the form ๐ฑ=๐žu\mathbf{x}=\mathbf{e}_{u} is called a vertex state, while ๐ฑ=๐žu+sโ€‹๐žv\mathbf{x}=\mathbf{e}_{u}+s\mathbf{e}_{v} is called an ss-pair state [kim2024generalization]. In particular, a (โˆ’1)(-1)-pair state is called a pair state and a 11-pair state is called a plus state. Perfect state transfer between vertex states has been extensively studied, see [christandl2004, Coutinho2014, godsil2012state, kay2010perfect, kendon2011perfect] for surveys and [soffia2022state, bhattacharjya2024quantum, coutinho2024no] for more recent work. On the other hand, perfect state transfer between pair states, between plus states, and between ss-pair states has only been investigated recently [bernard2025quantum, Chen2020PairST, kim2024generalization, pal2024quantum]. As Uโ€‹(ฯ„)U(\tau) is unitary, Uโ€‹(ฯ„)โ€‹๐ฑ=ฮณโ€‹๐ฒU(\tau)\mathbf{x}=\gamma\mathbf{y} implies that โ€–๐ฑโ€–=โ€–๐ฒโ€–\|\mathbf{x}\|=\|\mathbf{y}\|. Thus, to simplify our discussion, we examine perfect state transfer between real vectors with the same length, in lieu of density matrices. Throughout, we assume that ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are real vectors with โ€–๐ฑโ€–=โ€–๐ฒโ€–โ‰ 0\|\mathbf{x}\|=\|\mathbf{y}\|\neq 0.

In this paper, we develop the theory of perfect state transfer between real pure states in weighted graphs. In Sections 2 and 4, we extend the concept of eigenvalue supports and strong cospectrality to real pure states. Section 3 deals with periodicity. In particular, we show that periodicity of a real pure state with nonnegative entries is relatively rare whenever MM has nonnegative rational entries, a result that can be viewed as an extension of the relative rarity of vertex periodicity [godsil2010can]. We also provide a simple formula for calculating the minimum period of a periodic real pure state. We devote Section 5 to a characterization of perfect state transfer between real pure states, which extends a characterization of vertex perfect state transfer due to Coutinho [Coutinho2014]. We establish three important facts in this section: (i) every periodic real pure state ๐ฑ\mathbf{x} admits perfect state transfer with another real pure state ๐ฒ\mathbf{y}, (ii) every connected graph admits perfect state transfer between real pure states, and (iii) for any pair of real pure states ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} and for any time ฯ„\tau, there exists a real symmetric matrix MM such that ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} admit perfect state transfer relative to MM at time ฯ„\tau. In Sections 6, 7 and 10, we characterize perfect state transfer between real pure states in complete graphs, cycles, paths and complete bipartite graph. As a consequence, we obtain a characterization of pair and plus state transfer in paths and complete bipartite graphs. While only a few cycles and paths admit vertex perfect state transfer, it turns out that there are infinite families of such graphs that admit perfect state transfer between real pure states. Sections 8 and 9 are dedicated to constructions of graphs with PST between real pure states. In Section 11, we utilize results on the spread of graphs to establish that amongst all nn-vertex unweighted graphs, the minimum PST time between real pure states for the Laplacian case is attained by any join graph, while for the adjacency case, it is attained by the join of an empty graph and a complete graph of appropriate sizes, provided that nn is sufficiently large. Finally, in Section 12, we determine closed form expressions for dkโ€‹fdโ€‹tk|ฯ„\frac{d^{k}f}{dt^{k}}\rvert_{\tau}, where fโ€‹(t)=|๐ฒโŠคโ€‹Uโ€‹(t)โ€‹๐ฑ|2f(t)=|\mathbf{y}^{\top}U(t)\mathbf{x}|^{2} is the fidelity of transfer between real vectors ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y}, and fโ€‹(ฯ„)=1f(\tau)=1. We give sharp bounds on d2โ€‹fdโ€‹t2|ฯ„\frac{d^{2}f}{dt^{2}}\rvert_{\tau}, which describes the sensitivity of the fidelity at time ฯ„\tau with respect to the readout time.

Let ๐ฑโ‰ ๐ŸŽ\mathbf{x}\neq{\bf{0}} be a real vector. Observe that for any time t>0t>0, there is perfect state transfer between ๐ฑ\mathbf{x} and ฮณโ€‹Uโ€‹(t)โ€‹๐ฑ\gamma U(t)\mathbf{x} for some unit ฮณโˆˆโ„‚\gamma\in\mathbb{C}. But as Uโ€‹(t)U(t) has complex entries, we are not guaranteed that ฮณโ€‹Uโ€‹(t)โ€‹๐ฑ\gamma U(t)\mathbf{x} has real entries. Now, suppose ฮณโ€‹Uโ€‹(ฯ„)โ€‹๐ฑ\gamma U(\tau)\mathbf{x} has real entries. In this case, a result of Godsil implies that perfect state transfer between ๐ฑ\mathbf{x} and ฮณโ€‹Uโ€‹(ฯ„)โ€‹๐ฑ\gamma U(\tau)\mathbf{x} is monogamous [godsil2017real, Corollary 5.3]. That is, if there is perfect state transfer between ๐ฑ\mathbf{x} and another vector ๐ฒโˆˆโ„n\mathbf{y}\in\mathbb{R}^{n}, then ๐ฒ=ฮณโ€‹Uโ€‹(ฯ„)โ€‹๐ฑ\mathbf{y}=\gamma U(\tau)\mathbf{x}. If we also assume that ฯ„\tau is the minimum PST time between ๐ฑ\mathbf{x} and ๐ฒ=ฮณโ€‹Uโ€‹(ฯ„)โ€‹๐ฑ\mathbf{y}=\gamma U(\tau)\mathbf{x}, then every PST time is an odd multiple of ฯ„\tau [godsil2017real, Lemma 5.2]. Hence, if t=(2โ€‹k+1)โ€‹ฯ„t=(2k+1)\tau, then

ฮณโ€‹Uโ€‹(t)โ€‹๐ฑ=ฮณโ€‹Uโ€‹(ฯ„)2โ€‹kโ€‹Uโ€‹(ฯ„)โ€‹๐ฑ=Uโ€‹(ฯ„)2โ€‹kโ€‹๐ฒ=ฮณโˆ’2โ€‹kโ€‹๐ฒ.\gamma U(t)\mathbf{x}=\gamma U(\tau)^{2k}U(\tau)\mathbf{x}=U(\tau)^{2k}\mathbf{y}=\gamma^{-2k}\mathbf{y}.

That is, ๐ฒ=ฮณ2โ€‹k+1โ€‹Uโ€‹(t)โ€‹๐ฑ\mathbf{y}=\gamma^{2k+1}U(t)\mathbf{x}. From this, we deduce that for every ฮณโˆˆโ„‚\gamma\in\mathbb{C}, there is at most one real vector in the set {ฮณโ€‹Uโ€‹(t)โ€‹๐ฑ:t>0}\{\gamma U(t)\mathbf{x}:t>0\} distinct from ยฑ๐ฑ\pm\mathbf{x}. This demonstrates that the existence of perfect state transfer between real pure states is a special occurrence, and therefore warrants an investigation.

Our work provides a spectral framework for studying perfect state transfer between real pure states that unifies the study of perfect state transfer between vertices and ss-pair states. We recover known results about perfect state transfer between vertex states, plus states and pair states, and produce new instances of pair and plus state transfer.

2 Eigenvalue supports

Let MM be a Hamiltonian of a graph GG. Since MM is real symmetric, we may write MM in its spectral decomposition:

M=โˆ‘j=1kฮปjโ€‹Ej,M=\sum_{j=1}^{k}\lambda_{j}E_{j}, (3)

where ฮป1,โ€ฆ,ฮปk\lambda_{1},\ldots,\lambda_{k} are the distinct eigenvalues of MM with corresponding eigenprojection matrices E1,โ€ฆ,EkE_{1},\ldots,E_{k}. Combining equations (1) and (3), we obtain a spectral decomposition of Uโ€‹(t)U(t) given by

Uโ€‹(t)=โˆ‘j=1keiโ€‹tโ€‹ฮปjโ€‹Ej.U(t)=\sum_{j=1}^{k}e^{it\lambda_{j}}E_{j}. (4)

Thus, the eigenvalues and eigenvectors of MM completely determine the behaviour of the quantum walk.

Let ๐ฑโˆˆโ„n\mathbf{x}\in\mathbb{R}^{n} with ๐ฑโ‰ ๐ŸŽ\mathbf{x}\neq{\bf{0}}. The eigenvalue support of ๐ฑ\mathbf{x} relative to MM, denoted ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M), is the set

ฯƒ๐ฑโ€‹(M)={ฮปj:Ejโ€‹๐ฑโ‰ ๐ŸŽ}.\sigma_{\mathbf{x}}(M)=\{\lambda_{j}:E_{j}\mathbf{x}\neq{\bf{0}}\}.

Note that ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) is always nonempty. If |ฯƒ๐ฑโ€‹(M)|=1|\sigma_{\mathbf{x}}(M)|=1, then ๐ฑ\mathbf{x} is called a fixed state relative to MM.

Proposition 1.

Let ๐ฑโˆˆโ„n\{๐ŸŽ}\mathbf{x}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\}. If SS is a subset of the set of distinct eigenvalues of MM, then ฯƒ๐ฑโ€‹(M)=S\sigma_{\mathbf{x}}(M)=S if and only if ๐ฑ=โˆ‘jโˆˆS๐ฎj\mathbf{x}=\sum_{j\in S}\mathbf{u}_{j}, where each ๐ฎj\mathbf{u}_{j} is a real eigenvector associated with an eigenvalue ฮปjโˆˆS\lambda_{j}\in S.

Proof.

Let ฯƒ๐ฑโ€‹(M)=S\sigma_{\mathbf{x}}(M)=S. If ฮปjโˆˆS\lambda_{j}\in S, then ๐ฎj:=Ejโ€‹๐ฑ\mathbf{u}_{j}:=E_{j}\mathbf{x} is an eigenvector for MM associated with ฮปj\lambda_{j}. As the EjE_{j}s sum to identity, we obtain ๐ฑ=Iโ€‹๐ฑ=โˆ‘ฮปjโˆˆSEjโ€‹๐ฑ=โˆ‘ฮปjโˆˆS๐ฎj\mathbf{x}=I\mathbf{x}=\sum_{\lambda_{j}\in S}E_{j}\mathbf{x}=\sum_{\lambda_{j}\in S}\mathbf{u}_{j}. The converse is straightforward. โˆŽ

We let ฯ•โ€‹(M,t)\phi(M,t) denote the characteristic polynomial of MM in the variable tt. Adapting the same proof of Proposition 2.4 in [kim2024generalization] yields a more general result.

Lemma 2.

Let ๐ฑโˆˆโ„n\{๐ŸŽ}\mathbf{x}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} and suppose aโ€‹๐ฑa\mathbf{x} has rational entries for some nonzero aโˆˆโ„a\in\mathbb{R}. If ฯ•โ€‹(M,t)\phi(M,t) has integer coefficients, then ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) is closed under taking algebraic conjugates.

If SS is a singleton set in Proposition 1, then we get the following result.

Proposition 3.

A vector ๐ฑโˆˆโ„n\{๐ŸŽ}\mathbf{x}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} is a fixed state if and only if ๐ฑ\mathbf{x} is an eigenvector for MM associated with the lone eigenvalue in ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M).

If ๐ฑ\mathbf{x} is a fixed state, then (4) implies that Uโ€‹(t)โ€‹๐ฑ=eiโ€‹tโ€‹ฮปโ€‹๐ฑU(t)\mathbf{x}=e^{it\lambda}\mathbf{x} for any time tt, where ฮป\lambda is an eigenvalue of MM with associated eigenvector ๐ฑ\mathbf{x}. For connected graphs in particular, a vertex state ๐žu\mathbf{e}_{u} is not an eigenvector for MM, and hence is not a fixed state.

Example 4.

Some examples of fixed pure states include (i) ๐ฑโˆˆspanโก{๐Ÿ}\mathbf{x}\in\operatorname{span}\{{\bf{1}}\}, if GG is regular or M=LM=L, (ii) ๐ฑโˆˆspanโก{๐ฏ}\mathbf{x}\in\operatorname{span}\{\mathbf{v}\}, if ๐ฏ\mathbf{v} is a Perron eigenvector for M=AM=A, and (iii) ๐ฑโˆˆspanโก{๐žuโˆ’๐žv}\mathbf{x}\in\operatorname{span}\{\mathbf{e}_{u}-\mathbf{e}_{v}\}, if u,vu,v are twins in GG.

The covering radius of a set SโІVโ€‹(G)S\subseteq V(G) is the least nonnegative integer rr such that each vertex of GG is at distance at most rr from SS. The covering radius of a vector ๐ฑโˆˆโ„n\mathbf{x}\in\mathbb{R}^{n} is defined to be the covering radius of the set S={uโˆˆVโ€‹(G):๐ฑโŠคโ€‹๐žuโ‰ 0}S=\{u\in V(G):\mathbf{x}^{\top}\mathbf{e}_{u}\neq 0\}. We state Lemma 4.1 in [godsil2012controllable].

Lemma 5.

Suppose ๐ฑโˆˆโ„n\{๐ŸŽ}\mathbf{x}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} is not a fixed state and has covering radius rr. If MM and ๐ฑ\mathbf{x} are entrywise nonnegative, then |ฯƒ๐ฑโ€‹(M)|โ‰ฅr+1|\sigma_{\mathbf{x}}(M)|\geq r+1.

Remark 6.

If GG is a primitive strongly regular graph and S={u,v}S=\{u,v\}, where uu and vv are adjacent, then r=2r=2 but ๐ฑ=๐žuโˆ’๐žv\mathbf{x}=\mathbf{e}_{u}-\mathbf{e}_{v} satisfies |ฯƒ๐ฑโ€‹(M)|=2|\sigma_{\mathbf{x}}(M)|=2. Thus, Lemma 5 need not hold if ๐ฑ\mathbf{x} is not entrywise nonnegative.

3 Periodicity

Definition 7.

Suppose ๐ฑโˆˆโ„n\{๐ŸŽ}\mathbf{x}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} is not a fixed state. We say that ๐ฑ\mathbf{x} is periodic in GG (relative to MM) if there is a time ฯ„>0\tau>0 such that

Uโ€‹(ฯ„)โ€‹๐ฑ=ฮณโ€‹๐ฑU(\tau)\mathbf{x}=\gamma\mathbf{x}

for some unit ฮณโˆˆโ„‚\gamma\in\mathbb{C}. The minimum such ฯ„\tau is called the minimum period of ๐ฑ\mathbf{x}, which we denote by ฯ\rho.

A set SโІโ„S\subseteq\mathbb{R} with at least two elements satisfy the ratio condition if

ฮปpโˆ’ฮปqฮปrโˆ’ฮปsโˆˆโ„š\frac{\lambda_{p}-\lambda_{q}}{\lambda_{r}-\lambda_{s}}\in\mathbb{Q}

for all ฮปp,ฮปq,ฮปr,ฮปsโˆˆS\lambda_{p},\lambda_{q},\lambda_{r},\lambda_{s}\in S with ฮปrโ‰ ฮปs\lambda_{r}\neq\lambda_{s}. Note that SS automatically satisfies the ratio condition whenever |S|=2|S|=2.

Theorem 8.

A vector ๐ฑโˆˆโ„n\mathbf{x}\in\mathbb{R}^{n} is periodic in GG if and only if ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) satisfies the ratio condition. If we also assume that |ฯƒ๐ฑโ€‹(M)|โ‰ฅ3|\sigma_{\mathbf{x}}(M)|\geq 3 and ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) is closed under algebraic conjugates, then ๐ฑ\mathbf{x} is periodic if and only if either (i) ฯƒ๐ฑโ€‹(M)โІโ„ค\sigma_{\mathbf{x}}(M)\subseteq\mathbb{Z} or (ii) each ฮปjโˆˆฯƒ๐ฑโ€‹(M)\lambda_{j}\in\sigma_{\mathbf{x}}(M) is of the form ฮปj=12โ€‹(a+bjโ€‹ฮ”)\lambda_{j}=\frac{1}{2}(a+b_{j}\sqrt{\Delta}), where a,bj,ฮ”a,b_{j},\Delta are integers and ฮ”>1\Delta>1 is square-free.

Proof.

This follows from [Coutinho2021, Corollary 7.3.1], and [Coutinho2021, Theorem 7.6.1]. โˆŽ

The following is straightforward from Theorem 8.

Corollary 9.

Suppose ๐ฑโˆˆโ„n\mathbf{x}\in\mathbb{R}^{n} such that |ฯƒ๐ฑโ€‹(M)|โ‰ฅ3|\sigma_{\mathbf{x}}(M)|\geq 3 and ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) is closed under taking algebraic conjugates. If ๐ฑ\mathbf{x} is periodic, then the elements in ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) differ by at least one.

We now turn our attention to the minimum period.

Lemma 10.

Let GG be a graph and ๐ฑโˆˆโ„n\{๐ŸŽ}\mathbf{x}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} with ฯƒ๐ฑโ€‹(M)={ฮป1,โ€ฆ,ฮปm}\sigma_{\mathbf{x}}(M)=\{\lambda_{1},\ldots,\lambda_{m}\}, where ฮป1>ฮป2\lambda_{1}>\lambda_{2}.

  1. 1.

    If m=2m=2, then ๐ฑ\mathbf{x} is periodic in GG with ฯ=2โ€‹ฯ€ฮป1โˆ’ฮป2\rho=\frac{2\pi}{\lambda_{1}-\lambda_{2}}

  2. 2.

    If mโ‰ฅ3m\geq 3 and ๐ฑ\mathbf{x} is periodic in GG, then ฯ=2โ€‹ฯ€โ€‹qฮป1โˆ’ฮป2\rho=\frac{2\pi q}{\lambda_{1}-\lambda_{2}}, where q=lcmโก(q3,โ€ฆ,qm)q=\operatorname{lcm}(q_{3},\ldots,q_{m}) and the pjp_{j}โ€™s and qjq_{j}โ€™s are integers such that ฮป1โˆ’ฮปjฮป1โˆ’ฮป2=pjqj\frac{\lambda_{1}-\lambda_{j}}{\lambda_{1}-\lambda_{2}}=\frac{p_{j}}{q_{j}} and gcdโก(pj,qj)=1\operatorname{gcd}(p_{j},q_{j})=1.

Proof.

This follows from a simple extension of the proof of [Monterde2022, Theorem 5]. โˆŽ

Corollary 11.

In Lemma 10(2), if we assume in addition that ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) is closed under taking algebraic conjugates, then ฯ=2โ€‹ฯ€gโ€‹ฮ”\rho=\frac{2\pi}{g\sqrt{\Delta}}, where g=gcdโก(ฮป1โˆ’ฮป2ฮ”,ฮป1โˆ’ฮป3ฮ”,โ€ฆ,ฮป1โˆ’ฮปmฮ”)g=\operatorname{gcd}(\frac{\lambda_{1}-\lambda_{2}}{\sqrt{\Delta}},\frac{\lambda_{1}-\lambda_{3}}{\sqrt{\Delta}},\ldots,\frac{\lambda_{1}-\lambda_{m}}{\sqrt{\Delta}}).

Proof.

By Theorem 8, we may write each ฮปj=12โ€‹(a+bjโ€‹ฮ”)\lambda_{j}=\frac{1}{2}(a+b_{j}\sqrt{\Delta}), where ฮ”โ‰ฅ1\Delta\geq 1. Thus, each qjq_{j} in Lemma 10(2) can be written as qj=b1โˆ’b22โ€‹gjq_{j}=\frac{b_{1}-b_{2}}{2g_{j}}, where gj=gcdโก(b1โˆ’bj2,b1โˆ’b22)g_{j}=\operatorname{gcd}\left(\frac{b_{1}-b_{j}}{2},\frac{b_{1}-b_{2}}{2}\right). Therefore, q=lcmโก(q3,โ€ฆ,qm)=lcmโก(b1โˆ’b22โ€‹g3,โ€ฆ,b1โˆ’b22โ€‹gm)=b1โˆ’b22โ€‹g=ฮป1โˆ’ฮป2gโ€‹ฮ”q=\operatorname{lcm}(q_{3},\ldots,q_{m})=\operatorname{lcm}\left(\frac{b_{1}-b_{2}}{2g_{3}},\ldots,\frac{b_{1}-b_{2}}{2g_{m}}\right)=\frac{b_{1}-b_{2}}{2g}=\frac{\lambda_{1}-\lambda_{2}}{g\sqrt{\Delta}}. Applying Lemma 10(2) then yields ฯ=2โ€‹ฯ€โ€‹qฮป1โˆ’ฮป2=2โ€‹ฯ€gโ€‹ฮ”\rho=\frac{2\pi q}{\lambda_{1}-\lambda_{2}}=\frac{2\pi}{g\sqrt{\Delta}}. โˆŽ

Theorem 12.

Let MM and ๐ฑโˆˆโ„n\{๐ŸŽ}\mathbf{x}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} be entrywise nonnegative.

  1. 1.

    If |ฯƒ๐ฑโ€‹(M)|=2|\sigma_{\mathbf{x}}(M)|=2, then ๐ฑ\mathbf{x} is periodic and the covering radius of ๐ฑ\mathbf{x} is at most one.

  2. 2.

    Suppose ๐ฑ\mathbf{x} is periodic relative to MM. If |ฯƒ๐ฑโ€‹(M)|โ‰ฅ3|\sigma_{\mathbf{x}}(M)|\geq 3 and ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) is closed under taking algebraic conjugates, then the covering radius of ๐ฑ\mathbf{x} is at most 2โ€‹k2k, where kk is the maximum row sum of MM.

Proof.

Let rr be the covering radius of ๐ฑ\mathbf{x}. Since MM and ๐ฑ\mathbf{x} are entrywise nonnegative, Lemma 5 yields r+1โ‰ค|ฯƒ๐ฑโ€‹(M)|r+1\leq|\sigma_{\mathbf{x}}(M)|. Combining this with Lemma 10(1) gives us (1). Now, let ฯโ€‹(M)\rho(M) denote the spectral radius of MM. As |ฯƒ๐ฑโ€‹(M)|โ‰ฅ3|\sigma_{\mathbf{x}}(M)|\geq 3, ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) is closed under taking algebraic conjugates and ๐ฑ\mathbf{x} is periodic, Corollary 9 yields |ฯƒ๐ฑโ€‹(M)|โ‰ค2โ€‹ฯโ€‹(M)+1|\sigma_{\mathbf{x}}(M)|\leq 2\rho(M)+1. As ฯโ€‹(M)โ‰คk\rho(M)\leq k, we get r+1โ‰ค|ฯƒ๐ฑโ€‹(M)|โ‰ค2โ€‹ฯโ€‹(M)+1โ‰ค2โ€‹k+1,r+1\leq|\sigma_{\mathbf{x}}(M)|\leq 2\rho(M)+1\leq 2k+1, which yields the desired result in (2). โˆŽ

Remark 13.

Theorem 12 applies to AA. Since we may take M=kโ€‹Iโˆ’LM=kI-L, Theorem 12 also applies to LL.

Theorem 14.

For each k>0k>0, there are only finitely many connected graphs with positive integer weights and maximum degree at most kk such that a vector ๐ฑโ‰ 0\mathbf{x}\neq 0 with nonnegative rational entries is periodic relative to AA or LL.

Proof.

Assume that GG is a connected unweighted graph with maximum degree kk and let ๐ฑ\mathbf{x} be a vector with nonnegative rational entries that is periodic relative to MM. By Lemma 2, ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) is closed under taking algebraic conjugates. Let rr be the covering radius of ๐ฑ\mathbf{x}. Since ๐ฑ\mathbf{x} is not fixed, we have |ฯƒ๐ฑโ€‹(M)|โ‰ฅ2|\sigma_{\mathbf{x}}(M)|\geq 2, and so applying Theorem 12 to Mโˆˆ{A,kโ€‹Iโˆ’L}M\in\{A,kI-L\} yields rโ‰ค2โ€‹kr\leq 2k. As kk is fixed, there are only finitely many connected unweighted graphs with degree at most kk and the covering radius of ๐ฑ\mathbf{x} is bounded above by 2โ€‹k2k. This remains true if we assign positive integer weights to GG. โˆŽ

Theorem 14 generalizes Godsilโ€™s result on periodic vertex states [godsil2010can, Corollary 6.2] and Kim et.ย alโ€™s results on periodic ss-pair states with nonnegative rational entries [kim2024generalization, Corollary 3.5]. We also note that Theorem 14 need not apply if ๐ฑ\mathbf{x} has a positive and a negative entry. See [pal2024quantum] for an infinite family of trees with maximum degree three admitting PST between pair states.

Remark 15.

The argument in the proof of Theorem 14 applies when the Hamiltonian taken is the signless Laplacian matrix. In this case, we obtain the bound rโ‰ค4โ€‹kr\leq 4k in the above proof in lieu of rโ‰ค2โ€‹kr\leq 2k. By Lemma 2, Theorem 14 applies to entrywise nonnegative vectors ๐ฑโ‰ ๐ŸŽ\mathbf{x}\neq{\bf{0}} whenever aโ€‹๐ฑa\mathbf{x} has rational entries for some a>0a>0.

4 Strong cospectrality

Definition 16.

Let ๐ฑ,๐ฒโˆˆโ„n\{๐ŸŽ}\mathbf{x},\mathbf{y}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} with ๐ฒโ‰ ยฑ๐ฑ\mathbf{y}\neq\pm\mathbf{x} and โ€–๐ฑโ€–=โ€–๐ฒโ€–\|\mathbf{x}\|=\|\mathbf{y}\|. We say that ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are strongly cospectral (relative to MM) if for each ฮปjโˆˆฯƒ๐ฑโ€‹(M)\lambda_{j}\in\sigma_{\mathbf{x}}(M), either Ejโ€‹๐ฑ=Ejโ€‹๐ฒE_{j}\mathbf{x}=E_{j}\mathbf{y} or Ejโ€‹๐ฑ=โˆ’Ejโ€‹๐ฒE_{j}\mathbf{x}=-E_{j}\mathbf{y}.

The above definition allows us to partition ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) into two sets ฯƒ๐ฑ,๐ฒ+โ€‹(M)\sigma_{\mathbf{x},\mathbf{y}}^{+}(M) and ฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)\sigma_{\mathbf{x},\mathbf{y}}^{-}(M) given by

ฯƒ๐ฑ,๐ฒ+โ€‹(M)={ฮปj:Ejโ€‹๐ฑ=Ejโ€‹๐ฒโ‰ ๐ŸŽ}andฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)={ฮปj:Ejโ€‹๐ฑ=โˆ’Ejโ€‹๐ฒโ‰ ๐ŸŽ}.\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)=\{\lambda_{j}:E_{j}\mathbf{x}=E_{j}\mathbf{y}\neq{\bf{0}}\}\quad\text{and}\quad\sigma_{\mathbf{x},\mathbf{y}}^{-}(M)=\{\lambda_{j}:E_{j}\mathbf{x}=-E_{j}\mathbf{y}\neq{\bf{0}}\}.

Thus, if ๐ฑ\mathbf{x} is involved in strong cospectrality, then |ฯƒ๐ฑโ€‹(M)|โ‰ฅ2|\sigma_{\mathbf{x}}(M)|\geq 2. Consequently, a fixed state cannot be strongly cospectral with another pure state by Proposition 3.

The proof of our next result is analogous to that of Theorem 3.1 and Lemma 10.1 in [GodsilSmith2024], and so we omit it here.

Lemma 17.

The following are equivalent.

  1. 1.

    For all jj, ๐ฑโŠคโ€‹Ejโ€‹๐ฑ=๐ฒโŠคโ€‹Ejโ€‹๐ฒ\mathbf{x}^{\top}E_{j}\mathbf{x}=\mathbf{y}^{\top}E_{j}\mathbf{y}.

  2. 2.

    For all integers kโ‰ฅ0k\geq 0, ๐ฑโŠคโ€‹Mkโ€‹๐ฑ=๐ฒโŠคโ€‹Mkโ€‹๐ฒ\mathbf{x}^{\top}M^{k}\mathbf{x}=\mathbf{y}^{\top}M^{k}\mathbf{y}.

  3. 3.

    There exists an orthogonal matrix QQ that commutes with MM such that Q2=IQ^{2}=I and Qโ€‹๐ฑ=๐ฒQ\mathbf{x}=\mathbf{y}.

Lemma 18.

If ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are strongly cospectral, then ๐ฑโŠคโ€‹Mkโ€‹๐ฑ=๐ฒโŠคโ€‹Mkโ€‹๐ฒ\mathbf{x}^{\top}M^{k}\mathbf{x}=\mathbf{y}^{\top}M^{k}\mathbf{y} for all integers kโ‰ฅ0k\geq 0.

Proof.

Since Ejโ€‹๐ฑ=ยฑEjโ€‹๐ฒE_{j}\mathbf{x}=\pm E_{j}\mathbf{y}, we get ๐ฑโŠคโ€‹Ejโ€‹๐ฑ=๐ฒโŠคโ€‹Ejโ€‹๐ฒ\mathbf{x}^{\top}E_{j}\mathbf{x}=\mathbf{y}^{\top}E_{j}\mathbf{y}. Invoking Lemma 17(2) yields the desired result. โˆŽ

The following result will prove useful in the latter sections.

Theorem 19.

Let ๐ฑ,๐ฒโˆˆโ„n\{๐ŸŽ}\mathbf{x},\mathbf{y}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} and suppose ๐ฑ=โˆ‘jโˆˆฯƒ๐ฑโ€‹(M)๐ฎj\mathbf{x}=\sum_{j\in\sigma_{\mathbf{x}}(M)}\mathbf{u}_{j}, where each ๐ฎj\mathbf{u}_{j} is a real eigenvector associated with an eigenvalue ฮปjโˆˆฯƒ๐ฑโ€‹(M)\lambda_{j}\in\sigma_{\mathbf{x}}(M). The following are equivalent.

  1. 1.

    The vectors ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are strongly cospectral.

  2. 2.

    There exists an orthogonal matrix QQ that is a polynomial in MM such that Q2=IQ^{2}=I and Qโ€‹๐ฑ=๐ฒQ\mathbf{x}=\mathbf{y}.

  3. 3.

    For some nonempty sets ฯƒ1\sigma_{1} and ฯƒ2\sigma_{2} that partition ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M), we have

    ๐ฑ=โˆ‘ฮปjโˆˆฯƒ1๐ฎj+โˆ‘ฮปjโˆˆฯƒ2๐ฎjand๐ฒ=โˆ‘ฮปjโˆˆฯƒ1๐ฎjโˆ’โˆ‘ฮปjโˆˆฯƒ2๐ฎj.\mathbf{x}=\sum_{\lambda_{j}\in\sigma_{1}}\mathbf{u}_{j}+\sum_{\lambda_{j}\in\sigma_{2}}\mathbf{u}_{j}\quad\text{and}\quad\mathbf{y}=\sum_{\lambda_{j}\in\sigma_{1}}\mathbf{u}_{j}-\sum_{\lambda_{j}\in\sigma_{2}}\mathbf{u}_{j}.

    In this case, ฯƒ๐ฑ,๐ฒ+โ€‹(M)=ฯƒ1\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)=\sigma_{1} and ฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)=ฯƒ2\sigma_{\mathbf{x},\mathbf{y}}^{-}(M)=\sigma_{2}.

Proof.

The proof of the equivalence of (1) and (2) is analogous to that of [GodsilSmith2024, Theorem 10.2]. To prove (1) implies (3), suppose ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are strongly cospectral. Let ฮปkโˆˆฯƒ๐ฑโ€‹(M)=ฯƒ๐ฒโ€‹(M)\lambda_{k}\in\sigma_{\mathbf{x}}(M)=\sigma_{\mathbf{y}}(M). By assumption, Ekโ€‹๐ฑ=๐ฎkE_{k}\mathbf{x}=\mathbf{u}_{k}. Thus, Ekโ€‹๐ฑ=Ekโ€‹๐ฒE_{k}\mathbf{x}=E_{k}\mathbf{y} if and only if Ekโ€‹๐ฒ=๐ฎkE_{k}\mathbf{y}=\mathbf{u}_{k}, while Ekโ€‹๐ฑ=โˆ’Ekโ€‹๐ฒE_{k}\mathbf{x}=-E_{k}\mathbf{y} if and only if Ekโ€‹๐ฒ=โˆ’๐ฎkE_{k}\mathbf{y}=-\mathbf{u}_{k}. Consequently,

๐ฒ=โˆ‘ฮปjโˆˆฯƒ๐ฒโ€‹(M)Ejโ€‹๐ฒ=โˆ‘ฮปjโˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)๐ฎjโˆ’โˆ‘ฮปjโˆˆฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)๐ฎj\displaystyle\mathbf{y}=\sum_{\lambda_{j}\in\sigma_{\mathbf{y}}(M)}E_{j}\mathbf{y}=\sum_{\lambda_{j}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)}\mathbf{u}_{j}-\sum_{\lambda_{j}\in\sigma_{\mathbf{x},\mathbf{y}}^{-}(M)}\mathbf{u}_{j}.

The converse is straightforward. โˆŽ

Remark 20.

Suppose ๐ฑโˆˆโ„n\{๐ŸŽ}\mathbf{x}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} is not a fixed state and let m=|ฯƒ๐ฑโ€‹(M)|m=|\sigma_{\mathbf{x}}(M)|. There are 2mโˆ’1โˆ’12^{m-1}-1 ways to partition ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) into two subsets. By Theorem 19(3), we get 2mโˆ’1โˆ’12^{m-1}-1 vectors ๐ฒ\mathbf{y} that are strongly cospectral with ๐ฑ\mathbf{x} in GG.

The following result generalizes Corollaryย 6.4 of [GodsilSmith2024] to real pure states.

Lemma 21.

If ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are strongly cospectral, then any automorphism of GG that fixes ๐ฒ\mathbf{y} also fixes ๐ฑ\mathbf{x}.

Proof.

Let PP be a permutation matrix representing an automorphism of GG that fixes ๐ฒ\mathbf{y}. That is, Pโ€‹๐ฒ=๐ฒP\mathbf{y}=\mathbf{y} and Pโ€‹Ej=Ejโ€‹PPE_{j}=E_{j}P for each ฮปjโˆˆฯƒ๐ฑโ€‹(M)\lambda_{j}\in\sigma_{\mathbf{x}}(M). Thus, Ejโ€‹๐ฑ=ยฑEjโ€‹๐ฒ=ยฑPโŠคโ€‹Ejโ€‹Pโ€‹๐ฒ=ยฑPโŠคโ€‹Ejโ€‹๐ฒ=PโŠคโ€‹Ejโ€‹๐ฑE_{j}\mathbf{x}=\pm E_{j}\mathbf{y}=\pm P^{\top}E_{j}P\mathbf{y}=\pm P^{\top}E_{j}\mathbf{y}=P^{\top}E_{j}\mathbf{x}. Since the EjE_{j}s sum to identity, the above equation yields Pโ€‹๐ฑ=๐ฑP\mathbf{x}=\mathbf{x}. โˆŽ

5 Perfect state transfer

Recall that a fixed state cannot be involved in strong cospectrality. Hence, we restrict our discussion of PST to vectors that are not eigenvectors for MM.

If ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are vertex states (respectively, pair states, plus states and ss-pair states), then we sometimes use the term vertex PST (respectively, pair PST, plus PST and ss-pair PST) in lieu of PST between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y}.

Lemma 22.

Let ๐ฑ,๐ฒโˆˆโ„n\{๐ŸŽ}\mathbf{x},\mathbf{y}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} with ๐ฒโ‰ ยฑ๐ฑ\mathbf{y}\neq\pm\mathbf{x}. If perfect state transfer occurs between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} in GG at time ฯ„>0\tau>0, then the following hold.

  1. 1.

    The vectors ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are strongly cospectral, and ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are periodic at time 2โ€‹ฯ„2\tau.

  2. 2.

    The minimum PST time between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} is ฯ2\frac{\rho}{2}, where ฯ\rho is given in Lemma 10.

  3. 3.

    If perfect state transfer also occurs between ๐ฑ\mathbf{x} and ๐ณ\mathbf{z} in GG, then ๐ฒ=๐ณ\mathbf{y}=\mathbf{z}.

Proof.

This is immediate from Lemma 2.3, Lemma 5.2 and Corollary 5.3 of [godsil2017real], respectively. โˆŽ

We now provide a characterization of PST between real pure states. Our result applies even if ฯ•โ€‹(M,t)โˆ‰โ„คโ€‹[x]\phi(M,t)\notin\mathbb{Z}[x] (that is, even if ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) is not closed under algebraic conjugates). We denote the largest power of two that divides an integer aa by ฮฝ2โ€‹(a)\nu_{2}(a). We adopt the convention that ฮฝ2โ€‹(0)=+โˆž\nu_{2}(0)=+\infty.

Theorem 23.

Let GG be a graph on nn vertices and let ๐ฑ,๐ฒโˆˆโ„n\{๐ŸŽ}\mathbf{x},\mathbf{y}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} with ๐ฒโ‰ ยฑ๐ฑ\mathbf{y}\neq\pm\mathbf{x}.

  1. 1.

    If |ฯƒ๐ฑโ€‹(M)|=2|\sigma_{\mathbf{x}}(M)|=2, then ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} admit perfect state transfer if and only if they are strongly cospectral.

  2. 2.

    Let ฯƒ๐ฑโ€‹(M)={ฮป1,โ€ฆ,ฮปm}\sigma_{\mathbf{x}}(M)=\{\lambda_{1},\ldots,\lambda_{m}\} for some mโ‰ฅ3m\geq 3. The vectors ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} admit perfect state transfer if and only if ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are strongly cospectral, ฮป1โˆ’ฮปjฮป1โˆ’ฮป2=pjqj\frac{\lambda_{1}-\lambda_{j}}{\lambda_{1}-\lambda_{2}}=\frac{p_{j}}{q_{j}} for each jโ‰ฅ3j\geq 3, where pjp_{j} and qjq_{j} are integers such that gcdโก(pj,qj)=1\operatorname{gcd}(p_{j},q_{j})=1, and one of the following conditions holds.

    1. (a)

      If ฮป1,ฮป2โˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{1},\lambda_{2}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M), then

      ฮฝ2โ€‹(qโ„“)=ฮฝ2โ€‹(qk)>ฮฝ2โ€‹(qh)\nu_{2}(q_{\ell})=\nu_{2}(q_{k})>\nu_{2}(q_{h})

      for all ฮปโ„“,ฮปkโˆˆฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)\lambda_{\ell},\lambda_{k}\in\sigma_{\mathbf{x},\mathbf{y}}^{-}(M) and ฮปhโˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\{ฮป1,ฮป2}\lambda_{h}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)\backslash\{\lambda_{1},\lambda_{2}\}, where each ฮฝ2โ€‹(qh)\nu_{2}(q_{h}) above is absent whenever |ฯƒ๐ฑ,๐ฒ+โ€‹(M)|=2|\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)|=2.

    2. (b)

      If ฮป1โˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{1}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M) and ฮป2โˆˆฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)\lambda_{2}\in\sigma_{\mathbf{x},\mathbf{y}}^{-}(M), then each qjq_{j} is odd, and php_{h} is even if and only if ฮปhโˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{h}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M).

Moreover, the minimum PST time is ฯ2\frac{\rho}{2}, where ฯ\rho is given in Lemma 10.

Proof.

The last statement follows from Lemma 22(2). Thus, we may assume that the minimum PST time is ฯ„=ฯ2\tau=\frac{\rho}{2}, where ฯ\rho is given in Lemma 10. Without loss of generality, let ฮป1โˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{1}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M). For all ฮปhโˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{h}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M) and ฮปโ„“โˆˆฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)\lambda_{\ell}\in\sigma_{\mathbf{x},\mathbf{y}}^{-}(M), equation (2) implies that

eiโ€‹ฯ„โ€‹(ฮป1โˆ’ฮปh)=โˆ’eiโ€‹ฯ„โ€‹(ฮป1โˆ’ฮปโ„“).e^{i\tau(\lambda_{1}-\lambda_{h})}=-e^{i\tau(\lambda_{1}-\lambda_{\ell})}. (5)

By Lemma 22(1), it suffices to prove the converse of (1). Let |ฯƒ๐ฑโ€‹(M)|=2|\sigma_{\mathbf{x}}(M)|=2, and ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} be strongly cospectral. Since ฮป1โˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{1}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M) and ฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)โ‰ โˆ…\sigma_{\mathbf{x},\mathbf{y}}^{-}(M)\neq\varnothing, we have ฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)={ฮป2}\sigma_{\mathbf{x},\mathbf{y}}^{-}(M)=\{\lambda_{2}\}. From equation (5), we get eiโ€‹ฯ„โ€‹(ฮป1โˆ’ฮป2)=โˆ’1e^{i\tau(\lambda_{1}-\lambda_{2})}=-1, and so PST occurs between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} at ฯ„=ฯ€ฮป1โˆ’ฮป2\tau=\frac{\pi}{\lambda_{1}-\lambda_{2}}.

We now prove (2). Suppose PST occurs between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y}. By Lemma 22(1), ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are strongly cospectral and periodic. By Theorem 8, the latter statement is equivalent to ฮป1โˆ’ฮปjฮป1โˆ’ฮป2=pjqj\frac{\lambda_{1}-\lambda_{j}}{\lambda_{1}-\lambda_{2}}=\frac{p_{j}}{q_{j}} for each jโ‰ฅ3j\geq 3, where pjp_{j} and qjq_{j} are integers such that gcdโก(pj,qj)=1\operatorname{gcd}(p_{j},q_{j})=1. In this case, ฯ„=ฯ€โ€‹qฮป1โˆ’ฮป2\tau=\frac{\pi q}{\lambda_{1}-\lambda_{2}}, where q=lcmโก(q3,โ€ฆ,qm)q=\operatorname{lcm}(q_{3},\ldots,q_{m}). To prove (2a), let ฮป2โˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{2}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M). Equation (5) holds if and only if

ฯ„โ€‹(ฮป1โˆ’ฮปโ„“)=ฯ€โ€‹qโ€‹(ฮป1โˆ’ฮปโ„“ฮป1โˆ’ฮป2)=ฯ€โ€‹qโ€‹pโ„“qโ„“โ‰ก{0โ€‹(modย 2โ€‹ฯ€),ifย โ€‹ฮปโ„“โˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)ฯ€โ€‹(modย 2โ€‹ฯ€),ifย โ€‹ฮปโ„“โˆˆฯƒ๐ฑ,๐ฒโˆ’โ€‹(M).\tau\left(\lambda_{1}-\lambda_{\ell}\right)=\pi q\left(\frac{\lambda_{1}-\lambda_{\ell}}{\lambda_{1}-\lambda_{2}}\right)=\frac{\pi qp_{\ell}}{q_{\ell}}\equiv\begin{cases}0\ \text{(mod $2\pi$)},&\text{if }\lambda_{\ell}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)\\ \pi\ \text{(mod $2\pi$)},&\text{if }\lambda_{\ell}\in\sigma_{\mathbf{x},\mathbf{y}}^{-}(M).\end{cases} (6)

Since ฮป2โˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{2}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M), we have ฯ„โ€‹(ฮป1โˆ’ฮป2)=ฯ€โ€‹qโ€‹(ฮป1โˆ’ฮป2ฮป1โˆ’ฮป2)=ฯ€โ€‹qโ‰ก0\tau\left(\lambda_{1}-\lambda_{2}\right)=\pi q\left(\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}-\lambda_{2}}\right)=\pi q\equiv 0 (mod 2โ€‹ฯ€2\pi), and so qq is even. Now, for equation (6) to hold for each ฮปโ„“โˆˆฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)\lambda_{\ell}\in\sigma_{\mathbf{x},\mathbf{y}}^{-}(M), we need each qโ€‹pโ„“qโ„“\frac{qp_{\ell}}{q_{\ell}} to be odd in which case ฮฝ2โ€‹(q)=ฮฝ2โ€‹(qโ„“)\nu_{2}(q)=\nu_{2}(q_{\ell}). Equivalently, the ฮฝ2โ€‹(qโ„“)\nu_{2}(q_{\ell})โ€™s must all be equal. On the other hand, for (6) to hold for each ฮปhโˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{h}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M), we need each qโ€‹phqh\frac{qp_{h}}{q_{h}} to be even. That is, we must have ฮฝ2โ€‹(q)=ฮฝ2โ€‹(qโ„“)>ฮฝ2โ€‹(qh)\nu_{2}(q)=\nu_{2}(q_{\ell})>\nu_{2}(q_{h}) for each ฮปhโˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{h}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M). Thus (2a) holds, and (2b) can be proven similarly. The converse of (2) is straightforward. โˆŽ

Remark 24.

Suppose GG has at least three vertices. If ๐ฑ=๐žu\mathbf{x}=\mathbf{e}_{u} and ๐ฒ=๐žv\mathbf{y}=\mathbf{e}_{v} are strongly cospectral in GG, then |ฯƒ๐ฑโ€‹(M)|โ‰ฅ3|\sigma_{\mathbf{x}}(M)|\geq 3 by [MonterdeELA, Theorem 3.4] and so Theorem 23(1) does not apply to vertex states.

Combining Theorem 19(3) and Theorem 23(1) yields the following result.

Corollary 25.

Let ๐ฑ,๐ฒโˆˆโ„n\{๐ŸŽ}\mathbf{x},\mathbf{y}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\}. If ฯƒ๐ฑโ€‹(M)={ฮป1,ฮป2}\sigma_{\mathbf{x}}(M)=\{\lambda_{1},\lambda_{2}\}, then ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} admit perfect state transfer if and only if ๐ฑ=๐ฎ1+๐ฎ2\mathbf{x}=\mathbf{u}_{1}+\mathbf{u}_{2} and ๐ฒ=๐ฎ1โˆ’๐ฎ2\mathbf{y}=\mathbf{u}_{1}-\mathbf{u}_{2}, where ๐ฎ1,๐ฎ2\mathbf{u}_{1},\mathbf{u}_{2} are real eigenvectors associated with ฮป1,ฮป2\lambda_{1},\lambda_{2}.

Theorem 26.

All connected graphs on nโ‰ฅ2n\geq 2 vertices admit perfect state transfer between real pure states.

Proof.

By assumption, Mโˆˆ{A,L}M\in\{A,L\} has at least two distinct eigenvalues, say ฮป1,ฮป2\lambda_{1},\lambda_{2}. By Corollary 25, there is PST between ๐ฑ=๐ฎ1+๐ฎ2\mathbf{x}=\mathbf{u}_{1}+\mathbf{u}_{2} and ๐ฒ=๐ฎ1โˆ’๐ฎ2\mathbf{y}=\mathbf{u}_{1}-\mathbf{u}_{2}, where ๐ฎ1,๐ฎ2\mathbf{u}_{1},\mathbf{u}_{2} are real eigenvectors associated with ฮป1,ฮป2\lambda_{1},\lambda_{2}. โˆŽ

Remark 27.

The real pure states admitting PST in Theorem 26 have eigenvalue supports of size two. For those with eigenvalue supports of size at least three, periodicity is required by Theorem 23(2) to achieve PST. However, there are graphs for which periodicity does not hold for such real pure states (e.g., conference graphs on nn vertices, where nn is not a perfect square). Thus, the conclusion of Theorem 26 can fail for some connected graphs whenever the real pure states in question have eigenvalue supports of size at least three.

Combining Theorem 23(2) and Theorem 8 yields an extension of [Coutinho2014, Theorem 2.4.4].

Corollary 28.

Let GG be a graph on nn vertices and ๐ฑ,๐ฒโˆˆโ„n\{๐ŸŽ}\mathbf{x},\mathbf{y}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} with ๐ฒโ‰ ยฑ๐ฑ\mathbf{y}\neq\pm\mathbf{x}. If |ฯƒ๐ฑโ€‹(M)|โ‰ฅ3|\sigma_{\mathbf{x}}(M)|\geq 3 and ฯƒ๐ฑโ€‹(M)\sigma_{\mathbf{x}}(M) is closed under algebraic conjugates, then ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} admit perfect state transfer if and only if all conditions below hold.

  1. 1.

    The vectors ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are strongly cospectral.

  2. 2.

    Each eigenvalue ฮปjโˆˆฯƒ๐ฑโ€‹(M)\lambda_{j}\in\sigma_{\mathbf{x}}(M) is of the form ฮปj=12โ€‹(a+bjโ€‹ฮ”)\lambda_{j}=\frac{1}{2}(a+b_{j}\sqrt{\Delta}), where aa, bjb_{j}, and ฮ”\Delta are integers and either ฮ”=1\Delta=1 or ฮ”>1\Delta>1 is a square-free natural number.

  3. 3.

    Let ฮป1โˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{1}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M). For all ฮปhโˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{h}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M) and ฮปโ„“,ฮปkโˆˆฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)\lambda_{\ell},\lambda_{k}\in\sigma_{\mathbf{x},\mathbf{y}}^{-}(M), we have

    ฮฝ2โ€‹(ฮป1โˆ’ฮปhฮ”)>ฮฝ2โ€‹(ฮป1โˆ’ฮปโ„“ฮ”)=ฮฝ2โ€‹(ฮป1โˆ’ฮปkฮ”).\nu_{2}\left(\frac{\lambda_{1}-\lambda_{h}}{\sqrt{\Delta}}\right)>\nu_{2}\left(\frac{\lambda_{1}-\lambda_{\ell}}{\sqrt{\Delta}}\right)=\nu_{2}\left(\frac{\lambda_{1}-\lambda_{k}}{\sqrt{\Delta}}\right).

In the case that there is PST between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y}, the minimum PST time is ฯ€gโ€‹ฮ”\frac{\pi}{g\sqrt{\Delta}}, where gg is given in Corollary 11.

As it turns out, a periodic real pure state always admits PST with another real pure state.

Theorem 29.

If ๐ฑโˆˆโ„n\{๐ŸŽ}\mathbf{x}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} is periodic in GG at time ฯ„\tau, then ๐ฑ\mathbf{x} is involved in perfect state transfer in GG at ฯ„2\frac{\tau}{2}.

Proof.

If |ฯƒ๐ฑโ€‹(M)|=2|\sigma_{\mathbf{x}}(M)|=2, then the same proof used in Theorem 26 works. Now, let |ฯƒ๐ฑโ€‹(M)|โ‰ฅ3|\sigma_{\mathbf{x}}(M)|\geq 3 and suppose ๐ฑ=โˆ‘jโˆˆฯƒ๐ฑโ€‹(M)๐ฎj\mathbf{x}=\sum_{j\in\sigma_{\mathbf{x}}(M)}\mathbf{u}_{j}, where ๐ฎj\mathbf{u}_{j} is a real eigenvector associated with the eigenvalue ฮปjโˆˆฯƒ๐ฑโ€‹(M)\lambda_{j}\in\sigma_{\mathbf{x}}(M). Since ๐ฑ\mathbf{x} is periodic, Theorem 8 implies that we may write ฮป1โˆ’ฮปjฮป1โˆ’ฮป2=pjqj\frac{\lambda_{1}-\lambda_{j}}{\lambda_{1}-\lambda_{2}}=\frac{p_{j}}{q_{j}} for each jโ‰ฅ3j\geq 3, where pj,qjp_{j},q_{j} are integers such that gcdโก(pj,qj)=1\operatorname{gcd}(p_{j},q_{j})=1. If each pjp_{j} and qjq_{j} are odd, then define ๐ฒ:=๐ฎ1โˆ’โˆ‘jโ‰ 1๐ฎj\mathbf{y}:=\mathbf{u}_{1}-\sum_{j\neq 1}\mathbf{u}_{j}. Since |ฯƒ๐ฑ,๐ฒ+โ€‹(M)|=1|\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)|=1, invoking Theorem 23(2b) yields PST between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y}. If some pjp_{j}โ€™s are even and each qjq_{j} is odd, then let ฯƒ1={ฮปj:pjโ€‹is even}\sigma_{1}=\{\lambda_{j}:p_{j}\ \text{is even}\}, ฯƒ2=ฯƒ๐ฑโ€‹(M)\ฯƒ1\sigma_{2}=\sigma_{\mathbf{x}}(M)\backslash\sigma_{1}, and define ๐ฒ:=โˆ‘jโˆˆฯƒ1๐ฎjโˆ’โˆ‘jโˆˆฯƒ2๐ฎj\mathbf{y}:=\sum_{j\in\sigma_{1}}\mathbf{u}_{j}-\sum_{j\in\sigma_{2}}\mathbf{u}_{j}. Note that ฮป1โˆˆฯƒ1\lambda_{1}\in\sigma_{1}, ฮป2โˆˆฯƒ2\lambda_{2}\in\sigma_{2} and ฯƒ๐ฑ,๐ฒ+โ€‹(M)=ฯƒ1\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)=\sigma_{1} has at least two elements. Since ฮป1โˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{1}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M) and ฮป2โˆˆฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)\lambda_{2}\in\sigma_{\mathbf{x},\mathbf{y}}^{-}(M), applying Theorem 23(2b) yields PST between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y}. Finally, if some qjq_{j}โ€™s are even, then let ฯƒ2:={ฮปโ„“:ฮฝ2(qโ„“))=ฮท}\sigma_{2}:=\{\lambda_{\ell}:\nu_{2}(q_{\ell}))=\eta\}, where ฮท=maxjโ‰ฅ3โกฮฝ2โ€‹(qj)>0\eta=\max_{j\geq 3}\nu_{2}(q_{j})>0. Define ๐ฒ=โˆ‘jโˆˆฯƒ1๐ฎjโˆ’โˆ‘jโˆˆฯƒ2๐ฎj\mathbf{y}=\sum_{j\in\sigma_{1}}\mathbf{u}_{j}-\sum_{j\in\sigma_{2}}\mathbf{u}_{j}, where ฯƒ1=ฯƒ๐ฑโ€‹(M)\ฯƒ2\sigma_{1}=\sigma_{\mathbf{x}}(M)\backslash\sigma_{2}. Since ฯƒ๐ฑ,๐ฒ+โ€‹(M)=ฯƒ1\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)=\sigma_{1} has at least two elements and ฮป1,ฮป2โˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\lambda_{1},\lambda_{2}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M), Theorem 23(2a) again yields PST between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y}. In all cases, ๐ฒ\mathbf{y} is unique by Lemma 22(3). Moreover, ๐ฒ\mathbf{y} is real because the ๐ฎj\mathbf{u}_{j}s are all real. โˆŽ

We close this section with the following result.

Theorem 30.

Let ๐ฑ,๐ฒโˆˆโ„n\{๐ŸŽ}\mathbf{x},\mathbf{y}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} with ๐ฒโ‰ ยฑ๐ฑ\mathbf{y}\neq\pm\mathbf{x}. For all ฯ„>0\tau>0 and for all integers m1,m2โ‰ฅ1m_{1},m_{2}\geq 1 such that m1+m2โ‰คnm_{1}+m_{2}\leq n, there exists a real symmetric matrix MM such that perfect state transfer occurs between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} relative to MM at time ฯ„\tau, |ฯƒ๐ฑ,๐ฒ+โ€‹(M)|=m1|\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)|=m_{1} and |ฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)|=m2|\sigma_{\mathbf{x},\mathbf{y}}^{-}(M)|=m_{2}.

Proof.

Let ๐ฑ,๐ฒโˆˆโ„n\mathbf{x},\mathbf{y}\in\mathbb{R}^{n} with ๐ฒโ‰ ยฑ๐ฑ\mathbf{y}\neq\pm\mathbf{x}. Fix ฯ„>0\tau>0 and fix integers m1,m2โ‰ฅ1m_{1},m_{2}\geq 1 such that m1+m2โ‰คnm_{1}+m_{2}\leq n. Since โ€–๐ฑโ€–=โ€–๐ฒโ€–\|\mathbf{x}\|=\|\mathbf{y}\|, it follows that ๐ฑ+๐ฒ\mathbf{x}+\mathbf{y} and ๐ฑโˆ’๐ฒ\mathbf{x}-\mathbf{y} are orthogonal vectors. Since

{๐ฎ1,๐ฎ2}:={1m1โ€‹[๐Ÿm1๐ŸŽm2๐ŸŽnโˆ’(m1+m2)],1m2โ€‹[๐ŸŽm1๐Ÿm2๐ŸŽnโˆ’(m1+m2)]}\{\mathbf{u}_{1},\mathbf{u}_{2}\}:=\left\{\frac{1}{\sqrt{m_{1}}}\left[\begin{array}[]{ccc}{\bf{1}}_{m_{1}}\\ {\bf{0}}_{m_{2}}\\ {\bf{0}}_{n-(m_{1}+m_{2})}\end{array}\right],\frac{1}{\sqrt{m_{2}}}\left[\begin{array}[]{ccc}{\bf{0}}_{m_{1}}\\ {\bf{1}}_{m_{2}}\\ {\bf{0}}_{n-(m_{1}+m_{2})}\end{array}\right]\right\}\quad and {๐ฏ1,๐ฏ2}:={๐ฑ+๐ฒโ€–๐ฑ+๐ฒโ€–,๐ฑโˆ’๐ฒโ€–๐ฑโˆ’๐ฒโ€–}\quad\{\mathbf{v}_{1},\mathbf{v}_{2}\}:=\left\{\frac{\mathbf{x}+\mathbf{y}}{\|\mathbf{x}+\mathbf{y}\|},\frac{\mathbf{x}-\mathbf{y}}{\|\mathbf{x}-\mathbf{y}\|}\right\}

are orthonormal sets, we may extend them to orthonormal bases ๐’ฐ={๐ฎ1,โ€ฆ,๐ฎn}\mathcal{U}=\{\mathbf{u}_{1},\ldots,\mathbf{u}_{n}\} and ๐’ฑ={๐ฏ1,โ€ฆ,๐ฏn}\mathcal{V}=\{\mathbf{v}_{1},\ldots,\mathbf{v}_{n}\} for โ„n\mathbb{R}^{n}, respectively. Then there exists an orthogonal matrix QQ such that Qโ€‹๐ฎj=๐ฏjQ\mathbf{u}_{j}=\mathbf{v}_{j} for each jj. If we write Q=[๐ฐ1,โ€ฆ,๐ฐn]Q=[\mathbf{w}_{1},\ldots,\mathbf{w}_{n}], where ๐ฐ1,โ€ฆ,๐ฐn\mathbf{w}_{1},\ldots,\mathbf{w}_{n} are columns of QQ, then Qโ€‹๐ฎ1=๐ฏ1Q\mathbf{u}_{1}=\mathbf{v}_{1} and Qโ€‹๐ฎ2=๐ฏ2Q\mathbf{u}_{2}=\mathbf{v}_{2} are equivalent to

๐ฑ+๐ฒ=โ€–๐ฑ+๐ฒโ€–m1โ€‹(โˆ‘j=1m1๐ฐj)and๐ฑโˆ’๐ฒ=โ€–๐ฑโˆ’๐ฒโ€–m2โ€‹(โˆ‘j=m1+1m2๐ฐj).\mathbf{x}+\mathbf{y}=\displaystyle\frac{\|\mathbf{x}+\mathbf{y}\|}{\sqrt{m_{1}}}\left(\sum_{j=1}^{m_{1}}\mathbf{w}_{j}\right)\quad\text{and}\quad\mathbf{x}-\mathbf{y}=\displaystyle\frac{\|\mathbf{x}-\mathbf{y}\|}{\sqrt{m_{2}}}\left(\sum_{j=m_{1}+1}^{m_{2}}\mathbf{w}_{j}\right).

Thus, we obtain

๐ฑ=(โˆ‘j=1m1โ€–๐ฑ+๐ฒโ€–2โ€‹m1โ€‹๐ฐj)+(โˆ‘j=m1+1m2โ€–๐ฑโˆ’๐ฒโ€–2โ€‹m2โ€‹๐ฐj)and๐ฒ=(โˆ‘j=1m1โ€–๐ฑ+๐ฒโ€–2โ€‹m1โ€‹๐ฐj)โˆ’(โˆ‘j=m1+1m2โ€–๐ฑโˆ’๐ฒโ€–2โ€‹m2โ€‹๐ฐj)\mathbf{x}=\displaystyle\left(\sum_{j=1}^{m_{1}}\displaystyle\frac{\|\mathbf{x}+\mathbf{y}\|}{2\sqrt{m_{1}}}\mathbf{w}_{j}\right)+\left(\sum_{j=m_{1}+1}^{m_{2}}\displaystyle\frac{\|\mathbf{x}-\mathbf{y}\|}{2\sqrt{m_{2}}}\mathbf{w}_{j}\right)\quad\text{and}\quad\mathbf{y}=\displaystyle\left(\sum_{j=1}^{m_{1}}\displaystyle\frac{\|\mathbf{x}+\mathbf{y}\|}{2\sqrt{m_{1}}}\mathbf{w}_{j}\right)-\left(\sum_{j=m_{1}+1}^{m_{2}}\displaystyle\frac{\|\mathbf{x}-\mathbf{y}\|}{2\sqrt{m_{2}}}\mathbf{w}_{j}\right) (7)

Now, let {ฮธ1,โ€ฆ,ฮธn}\{\theta_{1},\ldots,\theta_{n}\} be a set of nn distinct real numbers and consider the real symmetric matrix

M=โˆ‘j=1nฮธjโ€‹๐ฐjโ€‹๐ฐjโŠคM=\sum_{j=1}^{n}\theta_{j}\mathbf{w}_{j}\mathbf{w}_{j}^{\top}

Since equation (7) holds, Theorem 19(3) implies that ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are strongly cospectral relative to the matrix MM with ฯƒ๐ฑ,๐ฒ+โ€‹(M)={ฮธ1,โ€ฆ,ฮธm1}\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)=\{\theta_{1},\ldots,\theta_{m_{1}}\} and ฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)={ฮธm1+1,โ€ฆ,ฮธm1+m2}\sigma_{\mathbf{x},\mathbf{y}}^{-}(M)=\{\theta_{m_{1}+1},\ldots,\theta_{m_{1}+m_{2}}\}. We proceed with cases.

Case 1. Suppose m1+m2=2m_{1}+m_{2}=2. In this case, choose ฮธ1,ฮธ2\theta_{1},\theta_{2} such that ฮธ1โˆ’ฮธ2=ฯ€ฯ„\theta_{1}-\theta_{2}=\frac{\pi}{\tau}. Since |ฯƒ๐ฑโ€‹(M)|=2|\sigma_{\mathbf{x}}(M)|=2, invoking Theorem 23(1) yields PST between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} relative to MM at time ฯ€ฮธ1โˆ’ฮธ2=ฯ€ฯ€/ฯ„=ฯ„\frac{\pi}{\theta_{1}-\theta_{2}}=\frac{\pi}{\pi/\tau}=\tau.

Case 2. Suppose m1+m2โ‰ฅ3m_{1}+m_{2}\geq 3. In this case, choose ฮธ1,โ€ฆ,ฮธm1+m2\theta_{1},\ldots,\theta_{m_{1}+m_{2}} such that ฮธ1โˆ’ฮธj=ฯ€โ€‹bj/(gโ€‹ฯ„)\theta_{1}-\theta_{j}=\pi b_{j}/(g\tau) where bjb_{j} is even for all jโˆˆ{2,โ€ฆ,m1}j\in\{2,\ldots,m_{1}\}, bjb_{j} is odd otherwise, and g=gcdโก(b2,โ€ฆ,bm1+m2)g=\operatorname{gcd}(b_{2},\ldots,b_{m_{1}+m_{2}}). Observe that

ฮธ1โˆ’ฮธjฮธ1โˆ’ฮธ2=bj/gjb2/gj:=pjqj,\frac{\theta_{1}-\theta_{j}}{\theta_{1}-\theta_{2}}=\frac{b_{j}/g_{j}}{b_{2}/g_{j}}:=\frac{p_{j}}{q_{j}}, (8)

where each gj=gcdโก(bj,b2)g_{j}=\operatorname{gcd}(b_{j},b_{2}). Thus, q=lcmโก(q3,โ€ฆ,qm1+m2)=lcmโก(b2g3,โ€ฆ,b2gm1+m2)=b2gq=\operatorname{lcm}(q_{3},\ldots,q_{m_{1}+m_{2}})=\operatorname{lcm}(\frac{b_{2}}{g_{3}},\ldots,\frac{b_{2}}{g_{m_{1}+m_{2}}})=\frac{b_{2}}{g}. We have two cases. First, if m1=1m_{1}=1, then each pjp_{j} and qjq_{j} is odd. In this case, invoking Theorem 23(2b) yields PST between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} relative to MM at time ฯ€โ€‹qฮธ1โˆ’ฮธ2=ฯ€โ€‹b2/gฯ€โ€‹b2/(gโ€‹ฯ„)=ฯ„\frac{\pi q}{\theta_{1}-\theta_{2}}=\frac{\pi b_{2}/g}{\pi b_{2}/(g\tau)}=\tau. Now, if m1โ‰ฅ2m_{1}\geq 2, then bโ„“b_{\ell} is odd for each ฮธโ„“โˆˆฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)\theta_{\ell}\in\sigma_{\mathbf{x},\mathbf{y}}^{-}(M), and so ฮฝ2โ€‹(gโ„“)=ฮฝ2โ€‹(gcdโก(bโ„“,b2))=0\nu_{2}(g_{\ell})=\nu_{2}(\operatorname{gcd}(b_{\ell},b_{2}))=0. Consequently, ฮฝ2โ€‹(qโ„“)=ฮฝ2โ€‹(b2gโ„“)=ฮฝ2โ€‹(b2)\nu_{2}(q_{\ell})=\nu_{2}(\frac{b_{2}}{g_{\ell}})=\nu_{2}(b_{2}) for each ฮธโ„“โˆˆฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)\theta_{\ell}\in\sigma_{\mathbf{x},\mathbf{y}}^{-}(M). Moreover, bhb_{h} is even for each ฮธhโˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\theta_{h}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M), and so ฮฝ2โ€‹(gh)=ฮฝ2โ€‹(gcdโก(bh,b2))โ‰ฅ1\nu_{2}(g_{h})=\nu_{2}(\operatorname{gcd}(b_{h},b_{2}))\geq 1. Consequently, ฮฝ2โ€‹(qh)=ฮฝ2โ€‹(b2gh)<ฮฝ2โ€‹(b2)\nu_{2}(q_{h})=\nu_{2}(\frac{b_{2}}{g_{h}})<\nu_{2}(b_{2}) for each ฮธhโˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\theta_{h}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M). Equivalently,

ฮฝ2โ€‹(qโ„“)=ฮฝ2โ€‹(qk)>ฮฝ2โ€‹(qh)\nu_{2}(q_{\ell})=\nu_{2}(q_{k})>\nu_{2}(q_{h})

for all ฮธโ„“,ฮธkโˆˆฯƒ๐ฑ,๐ฒโˆ’โ€‹(M)\theta_{\ell},\theta_{k}\in\sigma_{\mathbf{x},\mathbf{y}}^{-}(M) and ฮธhโˆˆฯƒ๐ฑ,๐ฒ+โ€‹(M)\{ฮธ1,ฮธ2}\theta_{h}\in\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)\backslash\{\theta_{1},\theta_{2}\}, where each ฮฝ2โ€‹(qh)\nu_{2}(q_{h}) above is absent whenever |ฯƒ๐ฑ,๐ฒ+โ€‹(M)|=2|\sigma_{\mathbf{x},\mathbf{y}}^{+}(M)|=2. Finally, invoking Theorem 23(2a) yields PST between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} at time ฯ„\tau.

Combining the above two cases yields the desired result. โˆŽ

6 Complete graphs and cycles

Here, we characterize real pure states that exhibit PST in complete graphs and cycles. Since these graphs are regular, it suffices to investigate the quantum walk relative to AA.

Theorem 31.

The vectors ๐ฑ,๐ฒโˆˆโ„n\{๐ŸŽ}\mathbf{x},\mathbf{y}\in\mathbb{R}^{n}\backslash\{{\bf{0}}\} with ๐ฒโ‰ ยฑ๐ฑ\mathbf{y}\neq\pm\mathbf{x} admit perfect state transfer in KnK_{n} if and only if ๐ฒ=๐ฑโˆ’2โ€‹(๐ŸโŠคโ€‹๐ฑ)nโ€‹๐Ÿ\mathbf{y}=\mathbf{x}-\frac{2({\bf{1}}^{\top}\mathbf{x})}{n}{\bf{1}}. In this case, the minimum PST time is ฯ€n\frac{\pi}{n}.

Proof.

For KnK_{n}, UAโ€‹(t)=eโˆ’iโ€‹tโ€‹((eiโ€‹tโ€‹nโˆ’1)โ€‹1nโ€‹J+I).U_{A}(t)=e^{-it}\left((e^{itn}-1)\frac{1}{n}J+I\right). Thus, eiโ€‹tโ€‹UAโ€‹(t)โ€‹๐ฑ=๐ฑ+((eiโ€‹tโ€‹nโˆ’1)โ€‹๐ŸโŠคโ€‹๐ฑn)โ€‹๐Ÿ.e^{it}U_{A}(t)\mathbf{x}=\mathbf{x}+\left(\frac{(e^{itn}-1){\bf{1}}^{\top}\mathbf{x}}{n}\right){\bf{1}}. If ๐ฑ=1nโ€‹๐Ÿ\mathbf{x}=\frac{1}{n}{\bf{1}} or ๐ฑโŸ‚๐Ÿ\mathbf{x}\perp{\bf{1}}, then ๐ฑ\mathbf{x} is fixed. Otherwise, ๐ฑ\mathbf{x} is periodic with ฯ=2โ€‹ฯ€n\rho=\frac{2\pi}{n}. Invoking Corollary 28, ฯ€n\frac{\pi}{n} is the minimum PST time from ๐ฑ\mathbf{x}, in which case we obtain eiโ€‹ฯ€/nโ€‹UAโ€‹(ฯ„)โ€‹๐ฑ=๐ฑโˆ’2โ€‹(๐ŸโŠคโ€‹๐ฑ)nโ€‹๐Ÿe^{i\pi/n}U_{A}(\tau)\mathbf{x}=\mathbf{x}-\frac{2({\bf{1}}^{\top}\mathbf{x})}{n}{\bf{1}}. โˆŽ

Example 32.

In K2K_{2}, if Vโ€‹(K2)={u,v}V(K_{2})=\{u,v\}, then PST happens between ๐žu+sโ€‹๐žv\mathbf{e}_{u}+s\mathbf{e}_{v} and ๐žv+sโ€‹๐žu\mathbf{e}_{v}+s\mathbf{e}_{u} at ฯ€2\frac{\pi}{2} for all sโ‰ ยฑ1s\neq\pm 1. In K3K_{3}, if Vโ€‹(K3)={u,v,w}V(K_{3})=\{u,v,w\}, then PST happens between the pairs {๐žu+2โ€‹๐žw,๐žu+2โ€‹๐žv}\{\mathbf{e}_{u}+2\mathbf{e}_{w},\mathbf{e}_{u}+2\mathbf{e}_{v}\} and {๐žu+12โ€‹๐žw,๐žv+12โ€‹๐žw}\{\mathbf{e}_{u}+\frac{1}{2}\mathbf{e}_{w},\mathbf{e}_{v}+\frac{1}{2}\mathbf{e}_{w}\} both at ฯ€3\frac{\pi}{3}. In K4K_{4}, if Vโ€‹(K4)={u,v,w,x}V(K_{4})=\{u,v,w,x\}, then PST happens between ๐žu+๐žw\mathbf{e}_{u}+\mathbf{e}_{w} and ๐žv+๐žx\mathbf{e}_{v}+\mathbf{e}_{x} at ฯ€4\frac{\pi}{4}.

If ๐ฑ=๐žu+sโ€‹๐žw\mathbf{x}=\mathbf{e}_{u}+s\mathbf{e}_{w}, then ๐ฑโˆ’2โ€‹(๐ŸโŠคโ€‹๐ฑ)nโ€‹๐Ÿ=๐žu+sโ€‹๐žwโˆ’2โ€‹(1+s)nโ€‹๐Ÿ.\mathbf{x}-\frac{2({\bf{1}}^{\top}\mathbf{x})}{n}{\bf{1}}=\mathbf{e}_{u}+s\mathbf{e}_{w}-\frac{2(1+s)}{n}{\bf{1}}. Hence, if s=โˆ’1s=-1 then ๐ฑ\mathbf{x} is fixed, while if sโ‰ โˆ’1s\neq-1, and nโ‰ฅ5n\geq 5 then ๐ฑโˆ’2โ€‹(๐ŸโŠคโ€‹๐ฑ)nโ€‹๐Ÿ\mathbf{x}-\frac{2({\bf{1}}^{\top}\mathbf{x})}{n}{\bf{1}} is not an ss-pair state. Thus, ss-pair PST does not occur in KnK_{n} for all nโ‰ฅ5n\geq 5. Together with Example 32, we have the following result.

Corollary 33.

Perfect state transfer between ss-pair states occurs in KnK_{n} if and only if nโˆˆ{2,3,4}n\in\{2,3,4\}.

For cycles CnC_{n}, we adopt the convention that Vโ€‹(Cn)=โ„คnV(C_{n})=\mathbb{Z}_{n} where vertices j,kj,k are adjacent if and only if |kโˆ’j|โ‰ก1modn.|k-j|\equiv 1\mod n. The eigenvalues and eigenvectors of CnC_{n} are well-known, see [brouwer2011spectra, Section 1.4.3]. For our purposes, we provide normalized eigenvectors for CnC_{n} in the following lemma.

Lemma 34.

The adjacency eigenvalues of CnC_{n} are ฮปj=2โ€‹cosโก(2โ€‹jโ€‹ฯ€/n)\lambda_{j}=2\cos(2j\pi/n), where 0โ‰คjโ‰คโŒŠn2โŒ‹0\leq j\leq\lfloor\frac{n}{2}\rfloor. The associated eigenvector for ฮป0=2\lambda_{0}=2 is ๐ฏ0=1nโ€‹๐Ÿ\mathbf{v}_{0}=\frac{1}{\sqrt{n}}{\bf{1}}, while the associated eigenvector for ฮปn2=โˆ’2\lambda_{\frac{n}{2}}=-2 whenever nn is even is ๐ฏn2=1nโ€‹[1,โˆ’1,1,โˆ’1,โ€ฆ,1,โˆ’1]โŠค\mathbf{v}_{\frac{n}{2}}=\frac{1}{\sqrt{n}}[1,-1,1,-1,\ldots,1,-1]^{\top}. For 1โ‰คj<n21\leq j<\frac{n}{2}, we have the following associated eigenvectors for ฮปj\lambda_{j}:

๐ฏj=2nโ€‹[1โ€‹cosโก(2โ€‹jโ€‹ฯ€n)โ€‹cosโก(4โ€‹jโ€‹ฯ€n)โ€‹โ‹ฏโ€‹cosโก(2โ€‹jโ€‹(nโˆ’1)โ€‹ฯ€n)]โŠค\mathbf{v}_{j}=\sqrt{\frac{2}{n}}\left[1\;\;\cos\left(\frac{2j\pi}{n}\right)\;\;\cos\left(\frac{4j\pi}{n}\right)\;\;\cdots\;\;\cos\left(\frac{2j(n-1)\pi}{n}\right)\right]^{\top}

and

๐ฏnโˆ’j=2nโ€‹[0โ€‹sinโก(2โ€‹jโ€‹ฯ€n)โ€‹sinโก(4โ€‹jโ€‹ฯ€n)โ€‹โ‹ฏโ€‹sinโก(2โ€‹jโ€‹(nโˆ’1)โ€‹ฯ€n)]โŠค\mathbf{v}_{n-j}=\sqrt{\frac{2}{n}}\left[0\;\;\sin\left(\frac{2j\pi}{n}\right)\;\;\sin\left(\frac{4j\pi}{n}\right)\;\;\cdots\;\;\sin\left(\frac{2j(n-1)\pi}{n}\right)\right]^{\top}.

Moreover, {๐ฏ0,โ€ฆ,๐ฏnโˆ’1}\{\mathbf{v}_{0},\ldots,\mathbf{v}_{n-1}\} is an orthonormal basis for โ„n\mathbb{R}^{n}.

We are now ready to characterize real pure states that admit PST in cycles. Since Corollary 25 takes care of the case |ฯƒ๐ฑโ€‹(A)|=2|\sigma_{\mathbf{x}}(A)|=2, we only focus on the case when |ฯƒ๐ฑโ€‹(A)|โ‰ฅ3|\sigma_{\mathbf{x}}(A)|\geq 3.

Theorem 35.

Let nโ‰ฅ3n\geq 3 and ๐ฑ,๐ฒโˆˆโ„n\mathbf{x},\mathbf{y}\in\mathbb{R}^{n}. Suppose |ฯƒ๐ฑโ€‹(A)|โ‰ฅ3|\sigma_{\mathbf{x}}(A)|\geq 3, and ฯƒ๐ฑโ€‹(A)\sigma_{\mathbf{x}}(A) is closed under algebraic conjugates. Then CnC_{n} admits perfect state transfer between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} if and only if either:

  1. 1.

    n=2โ€‹mn=2m, ๐ฑ=aโ€‹๐ฏ0+bโ€‹(ฮฑ1โ€‹๐ฏn6+ฮฑ2โ€‹๐ฏ5โ€‹n6)+cโ€‹(ฮฒ1โ€‹๐ฏn4+ฮฒ2โ€‹๐ฏ3โ€‹n4)+dโ€‹(ฮณ1โ€‹๐ฏn3+ฮณ2โ€‹๐ฏ2โ€‹n3)+eโ€‹๐ฏn2\mathbf{x}=a\mathbf{v}_{0}+b(\alpha_{1}\mathbf{v}_{\frac{n}{6}}+\alpha_{2}\mathbf{v}_{\frac{5n}{6}})+c(\beta_{1}\mathbf{v}_{\frac{n}{4}}+\beta_{2}\mathbf{v}_{\frac{3n}{4}})+d(\gamma_{1}\mathbf{v}_{\frac{n}{3}}+\gamma_{2}\mathbf{v}_{\frac{2n}{3}})+e\mathbf{v}_{\frac{n}{2}} and ๐ฒ=aโ€‹๐ฏ0โˆ’bโ€‹ฮฑ1โ€‹๐ฏn6โˆ’bโ€‹ฮฑ2โ€‹๐ฏ5โ€‹n6+cโ€‹ฮฒ1โ€‹๐ฏn4+cโ€‹ฮฒ2โ€‹๐ฏ3โ€‹n4โˆ’dโ€‹ฮณ1โ€‹๐ฏn3โˆ’dโ€‹ฮณ2โ€‹๐ฏ2โ€‹n3+eโ€‹๐ฏn2\mathbf{y}=a\mathbf{v}_{0}-b\alpha_{1}\mathbf{v}_{\frac{n}{6}}-b\alpha_{2}\mathbf{v}_{\frac{5n}{6}}+c\beta_{1}\mathbf{v}_{\frac{n}{4}}+c\beta_{2}\mathbf{v}_{\frac{3n}{4}}-d\gamma_{1}\mathbf{v}_{\frac{n}{3}}-d\gamma_{2}\mathbf{v}_{\frac{2n}{3}}+e\mathbf{v}_{\frac{n}{2}}, and either

    1. (a)

      If c=0c=0, then mโ‰ก0m\equiv 0 (mod 3). In this case ฯƒ๐ฑโ€‹(M)โІ{ยฑ1,ยฑ2}\sigma_{\mathbf{x}}(M)\subseteq\{\pm 1,\pm 2\}.

    2. (b)

      Else, mโ‰ก0m\equiv 0 (mod 6). In this case, 0โˆˆฯƒ๐ฑโ€‹(M)0\in\sigma_{\mathbf{x}}(M), ฯƒ๐ฑโ€‹(M)โІ{0,ยฑ1,ยฑ2}\sigma_{\mathbf{x}}(M)\subseteq\{0,\pm 1,\pm 2\} and ฯƒ๐ฑโ€‹(M)โ‰ {0,ยฑ2}\sigma_{\mathbf{x}}(M)\neq\{0,\pm 2\}.

  2. 2.

    n=4โ€‹mn=4m, ๐ฑ=aโ€‹๐ฏ0+bโ€‹(ฮฒ1โ€‹๐ฏm+ฮฒ2โ€‹๐ฏ3โ€‹m)+cโ€‹๐ฏ2โ€‹m\mathbf{x}=a\mathbf{v}_{0}+b(\beta_{1}\mathbf{v}_{m}+\beta_{2}\mathbf{v}_{3m})+c\mathbf{v}_{2m} and ๐ฒ=โˆ’aโ€‹๐ฏ0+bโ€‹(ฮฒ1โ€‹๐ฏm+ฮฒ2โ€‹๐ฏ3โ€‹m)โˆ’cโ€‹๐ฏ2โ€‹m\mathbf{y}=-a\mathbf{v}_{0}+b(\beta_{1}\mathbf{v}_{m}+\beta_{2}\mathbf{v}_{3m})-c\mathbf{v}_{2m}. In this case ฯƒ๐ฑโ€‹(M)={0,ยฑ2}\sigma_{\mathbf{x}}(M)=\{0,\pm 2\}.

  3. 3.

    n=12โ€‹mn=12m, ๐ฑ=aโ€‹(ฮฑ1โ€‹๐ฏ3โ€‹m+ฮฑ2โ€‹๐ฏ9โ€‹m)+bโ€‹(ฮฒ1โ€‹๐ฏm+ฮฒ2โ€‹๐ฏ11โ€‹m)+cโ€‹(ฮณ1โ€‹๐ฏ5โ€‹m+ฮณ2โ€‹๐ฏ7โ€‹m)\mathbf{x}=a(\alpha_{1}\mathbf{v}_{3m}+\alpha_{2}\mathbf{v}_{9m})+b(\beta_{1}\mathbf{v}_{m}+\beta_{2}\mathbf{v}_{11m})+c(\gamma_{1}\mathbf{v}_{5m}+\gamma_{2}\mathbf{v}_{7m}) and ๐ฒ=aโ€‹(ฮฑ1โ€‹๐ฏ3โ€‹m+ฮฑ2โ€‹๐ฏ9โ€‹m)โˆ’bโ€‹(ฮฒ1โ€‹๐ฏm+ฮฒ2โ€‹๐ฏ11โ€‹m)โˆ’cโ€‹(ฮณ1โ€‹๐ฏ5โ€‹m+ฮณ2โ€‹๐ฏ7โ€‹m)\mathbf{y}=a(\alpha_{1}\mathbf{v}_{3m}+\alpha_{2}\mathbf{v}_{9m})-b(\beta_{1}\mathbf{v}_{m}+\beta_{2}\mathbf{v}_{11m})-c(\gamma_{1}\mathbf{v}_{5m}+\gamma_{2}\mathbf{v}_{7m}). In this case, ฯƒ๐ฑโ€‹(M)={0,ยฑ3}\sigma_{\mathbf{x}}(M)=\{0,\pm\sqrt{3}\}.

  4. 4.

    n=8โ€‹mn=8m, ๐ฑ=aโ€‹(ฮฑ1โ€‹๐ฏ2โ€‹m+ฮฑ2โ€‹๐ฏ6โ€‹m)+bโ€‹(ฮฒ1โ€‹๐ฏm+ฮฒ2โ€‹๐ฏ7โ€‹m)+cโ€‹(ฮณ1โ€‹๐ฏ3โ€‹m+ฮณ2โ€‹๐ฏ5โ€‹m)\mathbf{x}=a(\alpha_{1}\mathbf{v}_{2m}+\alpha_{2}\mathbf{v}_{6m})+b(\beta_{1}\mathbf{v}_{m}+\beta_{2}\mathbf{v}_{7m})+c(\gamma_{1}\mathbf{v}_{3m}+\gamma_{2}\mathbf{v}_{5m}) and ๐ฒ=aโ€‹(ฮฑ1โ€‹๐ฏ2โ€‹m+ฮฑ2โ€‹๐ฏ6โ€‹m)โˆ’bโ€‹(ฮฒ1โ€‹๐ฏm+ฮฒ2โ€‹๐ฏ7โ€‹m)โˆ’cโ€‹(ฮณ1โ€‹๐ฏ3โ€‹m+ฮณ2โ€‹๐ฏ5โ€‹m)\mathbf{y}=a(\alpha_{1}\mathbf{v}_{2m}+\alpha_{2}\mathbf{v}_{6m})-b(\beta_{1}\mathbf{v}_{m}+\beta_{2}\mathbf{v}_{7m})-c(\gamma_{1}\mathbf{v}_{3m}+\gamma_{2}\mathbf{v}_{5m}). In this case ฯƒ๐ฑโ€‹(M)={0,ยฑ2}\sigma_{\mathbf{x}}(M)=\{0,\pm\sqrt{2}\}.

In all cases above, a,b,c,d,eโˆˆโ„a,b,c,d,e\in\mathbb{R} are such that a2+b2+c2=โ€–๐ฑโ€–2a^{2}+b^{2}+c^{2}=\|\mathbf{x}\|^{2} in (2)-(4) with a,b,cโ‰ 0a,b,c\neq 0, and a2+b2+c2+d2+e2=โ€–๐ฑโ€–2a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=\|\mathbf{x}\|^{2} otherwise. Moreover, (ฮฑ1,ฮฑ2),(ฮฒ1,ฮฒ2),(ฮณ1,ฮณ2)โˆˆโ„2\{(0,0)}(\alpha_{1},\alpha_{2}),(\beta_{1},\beta_{2}),(\gamma_{1},\gamma_{2})\in\mathbb{R}^{2}\backslash\{(0,0)\} such that ฮฑ12+ฮฑ22=ฮฒ12+ฮฒ22=ฮณ12+ฮณ22=1\alpha_{1}^{2}+\alpha_{2}^{2}=\beta_{1}^{2}+\beta_{2}^{2}=\gamma_{1}^{2}+\gamma_{2}^{2}=1. The minimum PST time in (1)-(4) is ฯ€\pi, ฯ€2\frac{\pi}{2}, ฯ€3\frac{\pi}{\sqrt{3}} and ฯ€2\frac{\pi}{\sqrt{2}}, respectively.

Proof.

Let |ฯƒ๐ฑโ€‹(A)|โ‰ฅ3|\sigma_{\mathbf{x}}(A)|\geq 3 and ฯƒ๐ฑโ€‹(A)\sigma_{\mathbf{x}}(A) be closed under taking algebraic conjugates. If ๐ฑ\mathbf{x} is periodic, then the elements in ฯƒ๐ฑโ€‹(A)\sigma_{\mathbf{x}}(A) differ by at least one by Corollary 9. Since |ฮปj|โ‰ค2|\lambda_{j}|\leq 2, we get |ฯƒ๐ฑโ€‹(A)|โ‰ค5|\sigma_{\mathbf{x}}(A)|\leq 5. By Theorem 8, we have two cases.

Case 1. Let ฯƒ๐ฑโ€‹(A)โІโ„ค\sigma_{\mathbf{x}}(A)\subseteq\mathbb{Z} so that ฯƒ๐ฑโ€‹(A)โІ{0,ยฑ1,ยฑ2}\sigma_{\mathbf{x}}(A)\subseteq\{0,\pm 1,\pm 2\}. Invoking Proposition 1, we may write ๐ฑ=aโ€‹๐ฏ0+bโ€‹๐ฎ+cโ€‹๐ฐ+dโ€‹๐ณ+eโ€‹๐ฏn2\mathbf{x}=a\mathbf{v}_{0}+b\mathbf{u}+c\mathbf{w}+d\mathbf{z}+e\mathbf{v}_{\frac{n}{2}}, where a,b,c,d,eโˆˆโ„a,b,c,d,e\in\mathbb{R} with a2+b2+c2+d2+e2=1a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=1, and ๐ฎ,๐ฐ,๐ณ\mathbf{u},\mathbf{w},\mathbf{z} are eigenvectors associated with ฮปn6=1\lambda_{\frac{n}{6}}=1, ฮปn4=0\lambda_{\frac{n}{4}}=0, ฮปn3=โˆ’1\lambda_{\frac{n}{3}}=-1, respectively. The latter implies that we may write ๐ฎ=ฮฑ1โ€‹๐ฏn6+ฮฑ2โ€‹๐ฏ5โ€‹n6\mathbf{u}=\alpha_{1}\mathbf{v}_{\frac{n}{6}}+\alpha_{2}\mathbf{v}_{\frac{5n}{6}}, ๐ฐ=ฮฒ1โ€‹๐ฏn4+ฮฒ2โ€‹๐ฏ3โ€‹n4\mathbf{w}=\beta_{1}\mathbf{v}_{\frac{n}{4}}+\beta_{2}\mathbf{v}_{\frac{3n}{4}}, and ๐ณ=ฮณ1โ€‹๐ฏn3+ฮณ2โ€‹๐ฏ2โ€‹n3\mathbf{z}=\gamma_{1}\mathbf{v}_{\frac{n}{3}}+\gamma_{2}\mathbf{v}_{\frac{2n}{3}}, where (ฮฑ1,ฮฑ2),(ฮฒ1,ฮฒ2),(ฮณ1,ฮณ2)โˆˆโ„2\{(0,0)}(\alpha_{1},\alpha_{2}),(\beta_{1},\beta_{2}),(\gamma_{1},\gamma_{2})\in\mathbb{R}^{2}\backslash\{(0,0)\} satisfying ฮฑ12+ฮฑ22=ฮฒ12+ฮฒ22=ฮณ12+ฮณ22=1\alpha_{1}^{2}+\alpha_{2}^{2}=\beta_{1}^{2}+\beta_{2}^{2}=\gamma_{1}^{2}+\gamma_{2}^{2}=1. From this, it is clear that n=2โ€‹mn=2m for some integer mm. We proceed with two subcases.

  • โ€ข

    Suppose bโ‰ 0b\neq 0 or dโ‰ 0d\neq 0. If c=0c=0, then n6\frac{n}{6} or n3\frac{n}{3} is an integer, which implies that mโ‰ก0m\equiv 0 (mod 3). Otherwise, mโ‰ก0m\equiv 0 (mod 6). This proves (1).

  • โ€ข

    Suppose b=0b=0 and d=0d=0. Then we may rewrite ๐ฑ=aโ€‹๐ฏ0+bโ€ฒโ€‹๐ฐ+cโ€ฒโ€‹๐ฏn2\mathbf{x}=a\mathbf{v}_{0}+b^{\prime}\mathbf{w}+c^{\prime}\mathbf{v}_{\frac{n}{2}}, where ๐ฐ=ฮฒ1โ€‹๐ฏn4+ฮฒ2โ€‹๐ฏ3โ€‹n4\mathbf{w}=\beta_{1}\mathbf{v}_{\frac{n}{4}}+\beta_{2}\mathbf{v}_{\frac{3n}{4}}. Thus, nโ‰ก0n\equiv 0 (mod 4). This proves (2).

Case 2. Let ฯƒ๐ฑโ€‹(A)โІ{a2,12โ€‹(aยฑb1โ€‹ฮ”),12โ€‹(aยฑb2โ€‹ฮ”)}\sigma_{\mathbf{x}}(A)\subseteq\{\frac{a}{2},\frac{1}{2}(a\pm b_{1}\sqrt{\Delta}),\frac{1}{2}(a\pm b_{2}\sqrt{\Delta})\}, where a,b1,b2,ฮ”a,b_{1},b_{2},\Delta are integers such that b1>b2>0b_{1}>b_{2}>0 and ฮ”>1\Delta>1 is square-free. Note that a2\frac{a}{2} is an integer as it is a root of a polynomial with integer coefficients. Since |a2|โ‰ค2|\frac{a}{2}|\leq 2, we get aโˆˆ{0,ยฑ2,ยฑ4}a\in\{0,\pm 2,\pm 4\}. If a=2a=2, then |12โ€‹(2ยฑbjโ€‹ฮ”)|โ‰ค2|\frac{1}{2}(2\pm b_{j}\sqrt{\Delta})|\leq 2 implies that bj=1b_{j}=1 and ฮ”โˆˆ{2,3}\Delta\in\{2,3\}. However, 12โ€‹(2ยฑฮ”)\frac{1}{2}(2\pm\sqrt{\Delta}) are not quadratic integers whenever ฮ”โˆˆ{2,3}\Delta\in\{2,3\}. Thus, aโ‰ 2a\neq 2 and similarly, aโ‰ โˆ’2a\neq-2. Now, if a=0a=0, then |12โ€‹bjโ€‹ฮ”|โ‰ค2|\frac{1}{2}b_{j}\sqrt{\Delta}|\leq 2, where 12โ€‹bj\frac{1}{2}b_{j} is an integer, so we get 12โ€‹bj=1\frac{1}{2}b_{j}=1 and ฮ”โˆˆ{2,3}\Delta\in\{2,3\}. Since b1>b2b_{1}>b_{2} and ฯƒ๐ฑโ€‹(A)\sigma_{\mathbf{x}}(A) is closed under algebraic conjugates, |ฯƒ๐ฑโ€‹(A)|โˆˆ{4,5}|\sigma_{\mathbf{x}}(A)|\in\{4,5\} cannot hapen. Thus, |ฯƒ๐ฑโ€‹(A)|=3|\sigma_{\mathbf{x}}(A)|=3. We have the following subcases.

  • โ€ข

    Let ฮ”=3\Delta=3. Then ฯƒ๐ฑโ€‹(A)={0,ยฑ3}\sigma_{\mathbf{x}}(A)=\{0,\pm\sqrt{3}\}. By Lemma 34, n=12โ€‹mn=12m and jโˆˆ{n4,n12,5โ€‹n12}j\in\{\frac{n}{4},\frac{n}{12},\frac{5n}{12}\}. Therefore, ๐ฑ=aโ€‹๐ณ+bโ€‹๐ฎ+cโ€‹๐ฐ\mathbf{x}=a\mathbf{z}+b\mathbf{u}+c\mathbf{w}, where ๐ณ=ฮฑ1โ€‹๐ฏn4+ฮฑ2โ€‹๐ฏ3โ€‹n4\mathbf{z}=\alpha_{1}\mathbf{v}_{\frac{n}{4}}+\alpha_{2}\mathbf{v}_{\frac{3n}{4}}, ๐ฎ=ฮฒ1โ€‹๐ฏn12+ฮฒ2โ€‹๐ฏ11โ€‹n12\mathbf{u}=\beta_{1}\mathbf{v}_{\frac{n}{12}}+\beta_{2}\mathbf{v}_{\frac{11n}{12}} and ๐ฐ=ฮณ1โ€‹๐ฏ5โ€‹n12+ฮณ2โ€‹๐ฏ7โ€‹n12\mathbf{w}=\gamma_{1}\mathbf{v}_{\frac{5n}{12}}+\gamma_{2}\mathbf{v}_{\frac{7n}{12}}.

  • โ€ข

    Let ฮ”=2\Delta=2. Then ฯƒ๐ฑโ€‹(A)={0,ยฑ2}\sigma_{\mathbf{x}}(A)=\{0,\pm\sqrt{2}\}. A similar argument yields n=8โ€‹mn=8m and ๐ฑ=aโ€‹๐ณ+bโ€‹๐ฎ+cโ€‹๐ฐ\mathbf{x}=a\mathbf{z}+b\mathbf{u}+c\mathbf{w}, where ๐ณ=ฮฑ1โ€‹๐ฏn4+ฮฑ2โ€‹๐ฏ3โ€‹n4\mathbf{z}=\alpha_{1}\mathbf{v}_{\frac{n}{4}}+\alpha_{2}\mathbf{v}_{\frac{3n}{4}}, ๐ฎ=ฮฒ1โ€‹๐ฏn8+ฮฒ2โ€‹๐ฏ7โ€‹n8\mathbf{u}=\beta_{1}\mathbf{v}_{\frac{n}{8}}+\beta_{2}\mathbf{v}_{\frac{7n}{8}} and ๐ฐ=ฮณ1โ€‹๐ฏ3โ€‹n8+ฮณ2โ€‹๐ฏ5โ€‹n8\mathbf{w}=\gamma_{1}\mathbf{v}_{\frac{3n}{8}}+\gamma_{2}\mathbf{v}_{\frac{5n}{8}}.

Combining the two cases above yields (3) and (4). Finally, the Pythagorean relations involving a,b,c,d,ea,b,c,d,e and the pairs (ฮฑ1,ฮฑ2),(ฮฒ1,ฮฒ2),(ฮณ1,ฮณ2)(\alpha_{1},\alpha_{2}),(\beta_{1},\beta_{2}),(\gamma_{1},\gamma_{2}) follows from the fact that {๐ฏj}\{\mathbf{v}_{j}\} is an orthonormal basis for โ„n\mathbb{R}^{n}. โˆŽ

It is known that cycles admit ss-pair state transfer if and only if nโˆˆ{4,6,8}n\in\{4,6,8\} [kim2024generalization]. If we consider real pure states in general, then Theorem 35 implies that there are infinite families of cycles that admit PST.

We close this section with the following example.

Example 36.

Let ๐ฑ=โˆ‘j=0mโˆ’1๐ž4โ€‹j\mathbf{x}=\sum_{j=0}^{m-1}\mathbf{e}_{4j} and ๐ฒ=โˆ‘j=0mโˆ’1๐ž4โ€‹j+2\mathbf{y}=\sum_{j=0}^{m-1}\mathbf{e}_{4j+2} in C4โ€‹mC_{4m}. We may write ๐ฑ=n4โ€‹(๐ฏ0+2โ€‹๐ฏm+๐ฏ2โ€‹m)\mathbf{x}=\frac{\sqrt{n}}{4}(\mathbf{v}_{0}+\sqrt{2}\mathbf{v}_{m}+\mathbf{v}_{2m}) and ๐ฒ=n4โ€‹(๐ฏ0โˆ’2โ€‹๐ฏm+๐ฏ2โ€‹m)\mathbf{y}=\frac{\sqrt{n}}{4}(\mathbf{v}_{0}-\sqrt{2}\mathbf{v}_{m}+\mathbf{v}_{2m}). Invoking Theorem 35(2) with a=c=n4a=c=\frac{\sqrt{n}}{4}, ฮฒ1=1\beta_{1}=1 (so that ฮฒ2=0\beta_{2}=0) and b=n2โ€‹2b=\frac{\sqrt{n}}{2\sqrt{2}} yields PST between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} at time ฯ€2\frac{\pi}{2}. In particular, if m=2m=2, then we recover the fact that C8C_{8} admits plus PST between ๐ฑ=๐ž0+๐ž4\mathbf{x}=\mathbf{e}_{0}+\mathbf{e}_{4} and ๐ฒ=๐ž2+๐ž6\mathbf{y}=\mathbf{e}_{2}+\mathbf{e}_{6} [kim2024generalization]. If m=3m=3, then C12C_{12} admits PST between ๐ฑ=๐ž0+๐ž4+๐ž8\mathbf{x}=\mathbf{e}_{0}+\mathbf{e}_{4}+\mathbf{e}_{8} and ๐ฒ=๐ž2+๐ž6+๐ž10\mathbf{y}=\mathbf{e}_{2}+\mathbf{e}_{6}+\mathbf{e}_{10}. This complements the fact that C12C_{12} does not admit ss-pair PST.

7 Paths

In this section, we characterize adjacency and Laplacian PST between real pure states in paths. We adopt the convention that the vertices of PnP_{n} are labelled so that vertices j,kj,k are adjacent whenever |kโˆ’j|=1.|k-j|=1. We start with the adjacency case. The adjacency eigenvalues and eigenvectors of PnP_{n} are well-known, see [brouwer2011spectra, Section 1.4.4]. Again for our purposes, we provide normalized eigenvectors for Aโ€‹(Pn)A(P_{n}) below.

Lemma 37.

For jโˆˆ{1,โ€ฆ,n}j\in\{1,\ldots,n\}, the adjacency eigenvector of PnP_{n} with eigenvalue ฮผj=2โ€‹cosโก(jโ€‹ฯ€n+1)\mu_{j}=2\cos\left(\frac{j\pi}{n+1}\right) is

๐ณj=2n+1โ€‹[sinโก(jโ€‹ฯ€n+1),sinโก(2โ€‹jโ€‹ฯ€n+1),โ€ฆ,sinโก(nโ€‹jโ€‹ฯ€n+1)]โŠค\mathbf{z}_{j}=\sqrt{\frac{2}{n+1}}\left[\sin\left(\frac{j\pi}{n+1}\right),\sin\left(\frac{2j\pi}{n+1}\right),\ldots,\sin\left(\frac{nj\pi}{n+1}\right)\right]^{\top}.

Moreover, {๐ณ1,โ€ฆ,๐ณn}\{\mathbf{z}_{1},\ldots,\mathbf{z}_{n}\} forms an orthonormal basis for โ„n\mathbb{R}^{n}.

We now characterize real pure states that admit adjacency PST in paths. Again, since Corollary 25 takes care of the case |ฯƒ๐ฑโ€‹(A)|=2|\sigma_{\mathbf{x}}(A)|=2, we only focus on the case when |ฯƒ๐ฑโ€‹(A)|โ‰ฅ3|\sigma_{\mathbf{x}}(A)|\geq 3.

Theorem 38.

Let nโ‰ฅ3n\geq 3. Suppose ๐ฑ,๐ฒโˆˆโ„n\mathbf{x},\mathbf{y}\in\mathbb{R}^{n} such that |ฯƒ๐ฑโ€‹(A)|โ‰ฅ3|\sigma_{\mathbf{x}}(A)|\geq 3 and ฯƒ๐ฑโ€‹(A)\sigma_{\mathbf{x}}(A) is closed under algebraic conjugates. PnP_{n} admits perfect state transfer between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} if and only if either:

  1. 1.

    n+1=6โ€‹mn+1=6m, and either

    1. (a)

      ๐ฑ=aโ€‹๐ณ3โ€‹m+bโ€‹๐ณ2โ€‹m+cโ€‹๐ณ4โ€‹m\mathbf{x}=a\mathbf{z}_{3m}+b\mathbf{z}_{2m}+c\mathbf{z}_{4m} and ๐ฒ=aโ€‹๐ณ3โ€‹mโˆ’bโ€‹๐ณ2โ€‹mโˆ’cโ€‹๐ณ4โ€‹m\mathbf{y}=a\mathbf{z}_{3m}-b\mathbf{z}_{2m}-c\mathbf{z}_{4m},

    2. (b)

      ๐ฑ=aโ€‹๐ณ3โ€‹m+bโ€‹๐ณm+cโ€‹๐ณ5โ€‹m\mathbf{x}=a\mathbf{z}_{3m}+b\mathbf{z}_{m}+c\mathbf{z}_{5m} and ๐ฒ=aโ€‹๐ณ3โ€‹mโˆ’bโ€‹๐ณmโˆ’cโ€‹๐ณ5โ€‹m\mathbf{y}=a\mathbf{z}_{3m}-b\mathbf{z}_{m}-c\mathbf{z}_{5m}, or

  2. 2.

    n+1=4โ€‹mn+1=4m, ๐ฑ=aโ€‹๐ณ2โ€‹m+bโ€‹๐ณm+cโ€‹๐ณ3โ€‹m\mathbf{x}=a\mathbf{z}_{2m}+b\mathbf{z}_{m}+c\mathbf{z}_{3m} and ๐ฒ=aโ€‹๐ณ2โ€‹mโˆ’bโ€‹๐ณmโˆ’cโ€‹๐ณ3โ€‹m\mathbf{y}=a\mathbf{z}_{2m}-b\mathbf{z}_{m}-c\mathbf{z}_{3m}.

In all cases above, a,b,cโˆˆโ„\{0}a,b,c\in\mathbb{R}\backslash\{0\} are such that a2+b2+c2=โ€–๐ฑโ€–2a^{2}+b^{2}+c^{2}=\|\mathbf{x}\|^{2}. Moreover, the minimum PST times in (1a), (1b) and (2) are ฯ€2\frac{\pi}{2}, ฯ€3\frac{\pi}{\sqrt{3}} and ฯ€2\frac{\pi}{\sqrt{2}}, respectively.

Proof.

Let |ฯƒ๐ฑโ€‹(A)|โ‰ฅ3|\sigma_{\mathbf{x}}(A)|\geq 3 and ฯƒ๐ฑโ€‹(A)\sigma_{\mathbf{x}}(A) be closed under algebraic conjugates. As |ฮผj|<2|\mu_{j}|<2, Corollary 9 yields |ฯƒ๐ฑโ€‹(A)|=3|\sigma_{\mathbf{x}}(A)|=3. By Theorem 8, we get two cases. If ฯƒ๐ฑโ€‹(A)โІโ„ค\sigma_{\mathbf{x}}(A)\subseteq\mathbb{Z}, then using the same argument as Case 1 of the proof of Theorem 35 to show (1a). If ฯƒ๐ฑโ€‹(A)={a2,12โ€‹(aยฑbโ€‹ฮ”)}\sigma_{\mathbf{x}}(A)=\{\frac{a}{2},\frac{1}{2}(a\pm b\sqrt{\Delta})\}, then one may use the argument in Case 2 to obtain (1b) and (2). โˆŽ

Example 39.

Let n+1=4โ€‹mn+1=4m and consider ๐ฑ=โˆ‘j=0โŒŠmโˆ’12โŒ‹๐ž8โ€‹j+1โˆ’โˆ‘j=1โŒŠm2โŒ‹๐ž8โ€‹jโˆ’1\mathbf{x}=\sum_{j=0}^{\lfloor\frac{m-1}{2}\rfloor}\mathbf{e}_{8j+1}-\sum_{j=1}^{\lfloor\frac{m}{2}\rfloor}\mathbf{e}_{8j-1} in PnP_{n}. Observe that we can write ๐ฑ=n+12โ€‹2โ€‹(๐ณ2โ€‹m+12โ€‹(๐ณm+๐ณ3โ€‹m))\mathbf{x}=\frac{\sqrt{n+1}}{2\sqrt{2}}(\mathbf{z}_{2m}+\frac{1}{\sqrt{2}}(\mathbf{z}_{m}+\mathbf{z}_{3m})). Invoking Theorem 38(2) with a=2โ€‹b=2โ€‹c=n+12โ€‹2a=\sqrt{2}b=\sqrt{2}c=\frac{\sqrt{n+1}}{2\sqrt{2}}, we get PST between ๐ฑ\mathbf{x} and ๐ฒ=n+12โ€‹2โ€‹(โˆ’๐ณ2โ€‹m+12โ€‹(๐ณm+๐ณ3โ€‹m))=โˆ‘j=0โŒŠmโˆ’12โŒ‹๐ž8โ€‹j+3โˆ’โˆ‘j=1โŒŠm2โŒ‹๐ž8โ€‹jโˆ’3\mathbf{y}=\frac{\sqrt{n+1}}{2\sqrt{2}}(-\mathbf{z}_{2m}+\frac{1}{\sqrt{2}}(\mathbf{z}_{m}+\mathbf{z}_{3m}))=\sum_{j=0}^{\lfloor\frac{m-1}{2}\rfloor}\mathbf{e}_{8j+3}-\sum_{j=1}^{\lfloor\frac{m}{2}\rfloor}\mathbf{e}_{8j-3} at time ฯ€2\frac{\pi}{\sqrt{2}}. In particular, we have:

  1. 1.

    If m=2m=2, then we obtain pair PST between ๐ฑ=๐ž1โˆ’๐ž7\mathbf{x}=\mathbf{e}_{1}-\mathbf{e}_{7} and ๐ฒ=๐ž3โˆ’๐ž5\mathbf{y}=\mathbf{e}_{3}-\mathbf{e}_{5} in P7P_{7}.

  2. 2.

    If m=3m=3, then we obtain PST between ๐ฑ=๐ž1โˆ’๐ž7+๐ž9\mathbf{x}=\mathbf{e}_{1}-\mathbf{e}_{7}+\mathbf{e}_{9} and ๐ฒ=๐ž3โˆ’๐ž5+๐ž11\mathbf{y}=\mathbf{e}_{3}-\mathbf{e}_{5}+\mathbf{e}_{11} in P11P_{11}.

Corollary 40.

Pair perfect state transfer occurs in PnP_{n} relative to AA if and only if nโˆˆ{3,5,7}n\in\{3,5,7\}.

Proof.

Suppose pair PST occurs in PnP_{n} between ๐žuโˆ’๐žw\mathbf{e}_{u}-\mathbf{e}_{w} and ๐žvโˆ’๐žx\mathbf{e}_{v}-\mathbf{e}_{x}. Since {u,w}โ‰ {v,x}\{u,w\}\neq\{v,x\}, we have nโ‰ฅ3n\geq 3. From the proof of Theorem 38, we have |ฯƒ๐žuโˆ’๐žwโ€‹(A)|โ‰ค3|\sigma_{\mathbf{e}_{u}-\mathbf{e}_{w}}(A)|\leq 3. We proceed with two cases.

Case 1. Let |ฯƒ๐žuโˆ’๐žwโ€‹(A)|=2|\sigma_{\mathbf{e}_{u}-\mathbf{e}_{w}}(A)|=2. That is, ๐žuโˆ’๐žw=aโ€‹๐ณj+bโ€‹๐ณk\mathbf{e}_{u}-\mathbf{e}_{w}=a\mathbf{z}_{j}+b\mathbf{z}_{k} and ๐žvโˆ’๐žx=aโ€‹๐ณjโˆ’bโ€‹๐ณk\mathbf{e}_{v}-\mathbf{e}_{x}=a\mathbf{z}_{j}-b\mathbf{z}_{k} with jโ‰ kj\neq k. Adding these two equations yields ๐žu+๐žvโˆ’๐žwโˆ’๐žx=2โ€‹aโ€‹๐ณj\mathbf{e}_{u}+\mathbf{e}_{v}-\mathbf{e}_{w}-\mathbf{e}_{x}=2a\mathbf{z}_{j}. Note that the โ„“\ellth entry of ๐ณj\mathbf{z}_{j} is nonzero if and only if sinโก(jโ€‹โ„“โ€‹ฯ€n+1)โ‰ 0\sin\left(\frac{j\ell\pi}{n+1}\right)\neq 0, or equivalently, n+1n+1 does not divide jโ€‹โ„“j\ell. We now determine the conditions such that ๐ณj\mathbf{z}_{j} has at most four nonzero entries. If n+1โˆˆ{7,9,11}n+1\in\{7,9,11\} or n+1โ‰ฅ13n+1\geq 13, then the Euler totient function yields at least five integers in {1,โ€ฆ,n}\{1,\ldots,n\} that are relatively prime to n+1n+1, and so there are at least five values of โ„“\ell such that n+1n+1 does not divide jโ€‹โ„“j\ell. In this case, ๐ณj\mathbf{z}_{j} has at least five nonzero entries. Now, if n+1โˆˆ{8,10,12}n+1\in\{8,10,12\}, then for all jโˆˆ{1,โ€ฆ,7}j\in\{1,\ldots,7\}, one checks that there are at least five values of โ„“\ell such that n+1n+1 does not divide jโ€‹โ„“j\ell. In this case, we again get that ๐ณj\mathbf{z}_{j} has at least five nonzero entries. For the remaining cases nโˆˆ{3,4,5}n\in\{3,4,5\}, it is easy to check that there is PST between ๐ž1โˆ’๐ž2\mathbf{e}_{1}-\mathbf{e}_{2} and ๐ž3โˆ’๐ž2\mathbf{e}_{3}-\mathbf{e}_{2} in P3P_{3} at ฯ€2\frac{\pi}{\sqrt{2}}, and between ๐ž1โˆ’๐ž5\mathbf{e}_{1}-\mathbf{e}_{5} and ๐ž2โˆ’๐ž4\mathbf{e}_{2}-\mathbf{e}_{4} in P5P_{5} at ฯ€2\frac{\pi}{2}. The latter was also observed in [pal2024quantum].

Case 2. Let |ฯƒ๐žuโˆ’๐žwโ€‹(A)|=3|\sigma_{\mathbf{e}_{u}-\mathbf{e}_{w}}(A)|=3. Theorem 38 allows to us write ๐žuโˆ’๐žw=aโ€‹๐ณn+12+bโ€‹๐ณj+cโ€‹๐ณk\mathbf{e}_{u}-\mathbf{e}_{w}=a\mathbf{z}_{\frac{n+1}{2}}+b\mathbf{z}_{j}+c\mathbf{z}_{k} and ๐žvโˆ’๐žx=aโ€‹๐ณn+12โˆ’bโ€‹๐ณjโˆ’cโ€‹๐ณk\mathbf{e}_{v}-\mathbf{e}_{x}=a\mathbf{z}_{\frac{n+1}{2}}-b\mathbf{z}_{j}-c\mathbf{z}_{k} where j,kโ‰ n+12j,k\neq\frac{n+1}{2}. Adding these two equations yields ๐žu+๐žvโˆ’๐žwโˆ’๐žx=2โ€‹aโ€‹2n+1โ€‹[1,0,โˆ’1,0,1,โ€ฆ]โŠค\mathbf{e}_{u}+\mathbf{e}_{v}-\mathbf{e}_{w}-\mathbf{e}_{x}=2a\sqrt{\frac{2}{n+1}}[1,0,-1,0,1,\ldots]^{\top}. This holds if and only if u,vโˆˆ{1,5}u,v\in\{1,5\}, w,xโˆˆ{3,7}w,x\in\{3,7\}, n=7n=7 and a=12a=\frac{1}{2}. Now, ๐ž1โˆ’๐ž3\mathbf{e}_{1}-\mathbf{e}_{3} is not periodic in P7P_{7}, while pair PST happens between ๐ž1โˆ’๐ž7\mathbf{e}_{1}-\mathbf{e}_{7} and ๐ž3โˆ’๐ž5\mathbf{e}_{3}-\mathbf{e}_{5} at time ฯ€2\frac{\pi}{\sqrt{2}} by Example 39(1).

Combining the two cases above proves the forward direction. The converse is straightforward. โˆŽ

An analogous argument yields P3P_{3} as the only path that admits PST, between ๐ž1+๐ž2\mathbf{e}_{1}+\mathbf{e}_{2} and ๐ž3+๐ž2\mathbf{e}_{3}+\mathbf{e}_{2} in P3P_{3} at ฯ€2\frac{\pi}{\sqrt{2}}.

Corollary 41.

Plus perfect state transfer occurs in PnP_{n} relative to AA if and only if n=3n=3.

Despite the rarity of vertex, pair and plus PST in PnP_{n} relative to AA, Theorem 38 guarantees that there are infinite families of paths that admit PST between real pure states.

We now turn to the Laplacian case. The Laplacian eigenvalues and eigenvectors of PnP_{n} are known, see [brouwer2011spectra, Section 1.4.4]. We provide normalized eigenvectors for Lโ€‹(Pn)L(P_{n}) below.

Lemma 42.

The Laplacian eigenvector of PnP_{n} corresponding to the eigenvalue ฮธj=2โ€‹(1โˆ’cosโก(jโ€‹ฯ€n))\theta_{j}=2\left(1-\cos\left(\frac{j\pi}{n}\right)\right) is

๐ฐj=2nโ€‹[cosโก(jโ€‹ฯ€2โ€‹n),cosโก(3โ€‹jโ€‹ฯ€2โ€‹n),cosโก(5โ€‹jโ€‹ฯ€2โ€‹n),โ€ฆ,cosโก((2โ€‹nโˆ’3)โ€‹jโ€‹ฯ€2โ€‹n),cosโก((2โ€‹nโˆ’1)โ€‹jโ€‹ฯ€2โ€‹n)]โŠค\mathbf{w}_{j}=\sqrt{\frac{2}{n}}\left[\cos\left(\frac{j\pi}{2n}\right),\cos\left(\frac{3j\pi}{2n}\right),\cos\left(\frac{5j\pi}{2n}\right),\ldots,\cos\left(\frac{(2n-3)j\pi}{2n}\right),\cos\left(\frac{(2n-1)j\pi}{2n}\right)\right]^{\top}

for jโˆˆ{0,1,โ€ฆโ€‹nโˆ’1}j\in\{0,1,\ldots n-1\} and ๐ฐ0=1nโ€‹๐Ÿ\mathbf{w}_{0}=\frac{1}{\sqrt{n}}{\bf{1}}. Moreover, {๐ฐ0,โ€ฆ,๐ฐnโˆ’1}\{\mathbf{w}_{0},\ldots,\mathbf{w}_{n-1}\} is an orthonormal basis for โ„n\mathbb{R}^{n}.

The same argument in the proof of Theorem 38 yields an analogous result for the Laplacian case.

Theorem 43.

Let nโ‰ฅ3n\geq 3. Suppose ๐ฑ,๐ฒโˆˆโ„n\mathbf{x},\mathbf{y}\in\mathbb{R}^{n} such that |ฯƒ๐ฑโ€‹(L)|โ‰ฅ3|\sigma_{\mathbf{x}}(L)|\geq 3 and ฯƒ๐ฑโ€‹(L)\sigma_{\mathbf{x}}(L) is closed under algebraic conjugates. Then PnP_{n} admits Laplacian perfect state transfer between ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} if and only if either:

  1. 1.

    n=3โ€‹mn=3m, ๐ฑ=aโ€‹๐ฐ2โ€‹m+bโ€‹๐ฐ3โ€‹m2+cโ€‹๐ฐm+dโ€‹๐ฐ0\mathbf{x}=a\mathbf{w}_{2m}+b\mathbf{w}_{\frac{3m}{2}}+c\mathbf{w}_{m}+d\mathbf{w}_{0}, ๐ฒ=โˆ’aโ€‹๐ฐ2โ€‹m+bโ€‹๐ฐ3โ€‹m2โˆ’cโ€‹๐ฐm+dโ€‹๐ฐ0\mathbf{y}=-a\mathbf{w}_{2m}+b\mathbf{w}_{\frac{3m}{2}}-c\mathbf{w}_{m}+d\mathbf{w}_{0}, and mm is even if bโ‰ 0b\neq 0.

  2. 2.

    n=6โ€‹mn=6m, ๐ฑ=aโ€‹๐ฐ3โ€‹m2+bโ€‹๐ฐm2+cโ€‹๐ฐ5โ€‹m2\mathbf{x}=a\mathbf{w}_{\frac{3m}{2}}+b\mathbf{w}_{\frac{m}{2}}+c\mathbf{w}_{\frac{5m}{2}} and ๐ฒ=aโ€‹๐ฐ3โ€‹m2โˆ’bโ€‹๐ฐm2โˆ’cโ€‹๐ฐ5โ€‹m2\mathbf{y}=a\mathbf{w}_{\frac{3m}{2}}-b\mathbf{w}_{\frac{m}{2}}-c\mathbf{w}_{\frac{5m}{2}}.

  3. 3.

    n=4โ€‹mn=4m, ๐ฑ=aโ€‹๐ฐ2โ€‹m+bโ€‹๐ฐm+cโ€‹๐ฐ3โ€‹m\mathbf{x}=a\mathbf{w}_{2m}+b\mathbf{w}_{m}+c\mathbf{w}_{3m} and ๐ฒ=aโ€‹๐ฐ2โ€‹mโˆ’bโ€‹๐ฐmโˆ’cโ€‹๐ฐ3โ€‹m\mathbf{y}=a\mathbf{w}_{2m}-b\mathbf{w}_{m}-c\mathbf{w}_{3m}.

In all cases, a,b,c,dโˆˆโ„a,b,c,d\in\mathbb{R} are such that a2+b2+c2+d2=โ€–๐ฑโ€–2a^{2}+b^{2}+c^{2}+d^{2}=\|\mathbf{x}\|^{2} in (1) and a2+b2+c2=โ€–๐ฑโ€–2a^{2}+b^{2}+c^{2}=\|\mathbf{x}\|^{2} otherwise. Moreover, the minimum PST times in (2) and (3) are ฯ€3\frac{\pi}{\sqrt{3}} and ฯ€2\frac{\pi}{\sqrt{2}}, respectively, and ฯ€\pi otherwise.

Adapting the proof of Corollary 40 for the Laplacian case yields the following result.

Corollary 44.

Laplacian pair perfect state transfer occurs in PnP_{n} relative to LL if and only if nโˆˆ{3,4}n\in\{3,4\}. Meanwhile, Laplacian plus perfect state transfer occurs in PnP_{n} if and only if n=4n=4.

Remark 45.

We make the following observations about PnP_{n} for nโˆˆ{3,4,5}n\in\{3,4,5\} relative to LL.

  1. 1.

    In P3P_{3}, {๐ž1โˆ’๐ž2,๐ž3โˆ’๐ž2}\{\mathbf{e}_{1}-\mathbf{e}_{2},\mathbf{e}_{3}-\mathbf{e}_{2}\} has PST at ฯ€2\frac{\pi}{2}. Moreover, ๐ž1+๐ž2\mathbf{e}_{1}+\mathbf{e}_{2} and ๐ž3+๐ž2\mathbf{e}_{3}+\mathbf{e}_{2} are strongly cospectral and periodic with ฯƒ๐ฑ,๐ฒ+โ€‹(L)={0,3}\sigma_{\mathbf{x},\mathbf{y}}^{+}(L)=\{0,3\} and ฯƒ๐ฑ,๐ฒโˆ’โ€‹(L)={1}\sigma_{\mathbf{x},\mathbf{y}}^{-}(L)=\{1\}, but they do not admit PST as Corollary 28(3) does not hold.

  2. 2.

    In P4P_{4}, {๐ž1+๐ž4,๐ž2+๐ž3}\{\mathbf{e}_{1}+\mathbf{e}_{4},\mathbf{e}_{2}+\mathbf{e}_{3}\} has PST at ฯ€2\frac{\pi}{2}, {๐ž1โˆ’๐ž2,๐ž3โˆ’๐ž4}\{\mathbf{e}_{1}-\mathbf{e}_{2},\mathbf{e}_{3}-\mathbf{e}_{4}\} has PST at ฯ€2\frac{\pi}{\sqrt{2}}, and {๐ž2โˆ’๐ž3,12โ€‹(๐ž1โˆ’๐ž2+๐ž3โˆ’๐ž4)}\{\mathbf{e}_{2}-\mathbf{e}_{3},\frac{1}{\sqrt{2}}(\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{3}-\mathbf{e}_{4})\} and {๐ž1โˆ’๐ž4,12โ€‹(๐ž1+๐ž2โˆ’๐ž3โˆ’๐ž4)}\{\mathbf{e}_{1}-\mathbf{e}_{4},\frac{1}{\sqrt{2}}(\mathbf{e}_{1}+\mathbf{e}_{2}-\mathbf{e}_{3}-\mathbf{e}_{4})\} have PST at ฯ€2โ€‹2\frac{\pi}{2\sqrt{2}}.

  3. 3.

    In P5P_{5}, {๐ž1โˆ’๐ž5,15โ€‹(๐ž1+2โ€‹๐ž2โˆ’2โ€‹๐ž4โˆ’๐ž5)}\{\mathbf{e}_{1}-\mathbf{e}_{5},\frac{1}{\sqrt{5}}(\mathbf{e}_{1}+2\mathbf{e}_{2}-2\mathbf{e}_{4}-\mathbf{e}_{5})\} and {๐ž2โˆ’๐ž4,15โ€‹(2โ€‹๐ž1โˆ’๐ž2+๐ž4โˆ’2โ€‹๐ž5)}\{\mathbf{e}_{2}-\mathbf{e}_{4},\frac{1}{\sqrt{5}}(2\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{4}-2\mathbf{e}_{5})\} have PST, both at ฯ€5\frac{\pi}{\sqrt{5}}.

In [Chen2020PairST], Laplacian PST between pair states that form edges, also known as edge PST, was characterized for PnP_{n}. It turns out, PnP_{n} admits Laplacian pair PST if and only if it admits Laplacian edge PST.

We end this section with a remark about the PST time between real pure states in paths.

Remark 46.

Let ฯ„n\tau_{n} be the least minimum PST time in PnP_{n}. Relative to AA, we have ฯ„n=ฯ€4โ€‹cosโก(ฯ€n+1)\tau_{n}=\frac{\pi}{4\cos(\frac{\pi}{n+1})}, attained by ๐ฑ=aโ€‹๐ณ1+bโ€‹๐ณn\mathbf{x}=a\mathbf{z}_{1}+b\mathbf{z}_{n} and ๐ฒ=aโ€‹๐ณ1โˆ’bโ€‹๐ณn\mathbf{y}=a\mathbf{z}_{1}-b\mathbf{z}_{n}. Relative to LL, we have ฯ„n=ฯ€2โ€‹(1โˆ’cosโก((nโˆ’1)โ€‹ฯ€n))\tau_{n}=\frac{\pi}{2\left(1-\cos\left(\frac{\left(n-1\right)\pi}{n}\right)\right)} attained by ๐ฑ=aโ€‹๐ฐ0+bโ€‹๐ฐnโˆ’1\mathbf{x}=a\mathbf{w}_{0}+b\mathbf{w}_{n-1} and ๐ฒ=aโ€‹๐ฐ0โˆ’bโ€‹๐ฐnโˆ’1\mathbf{y}=a\mathbf{w}_{0}-b\mathbf{w}_{n-1}. In both cases, ฯ„nโ†’ฯ€4\tau_{n}\rightarrow\frac{\pi}{4} as nโ†’โˆžn\rightarrow\infty.

8 Cartesian product

In this section, we use the Cartesian product to construct larger graphs that admit PST between real pure states. Let GG and HH be weighted graphs on mm and nn vertices, respectively. The Cartesian product of GG and HH, denoted Gโ–กHG\square H, is the graph with vertex set Vโ€‹(G)ร—Vโ€‹(H)V(G)\times V(H) such that

Mโ€‹(Gโ–กH)=Mโ€‹(G)โŠ—In+ImโŠ—Mโ€‹(H),M(G\square H)=M(G)\otimes I_{n}+I_{m}\otimes M(H),

where Mโˆˆ{A,L}M\in\{A,L\}. Hence, UMโ€‹(Gโ–กH)โ€‹(t)=UMโ€‹(G)โ€‹(t)โŠ—UMโ€‹(H)โ€‹(t)U_{M(G\square H)}(t)=U_{M(G)}(t)\otimes U_{M(H)}(t), from which we obtain

UMโ€‹(Gโ–กH)โ€‹(t)โ€‹(๐ฑโŠ—๐ฒ)=UMโ€‹(G)โ€‹(t)โ€‹๐ฑโŠ—UMโ€‹(H)โ€‹(t)โ€‹๐ฒ.U_{M(G\square H)}(t)(\mathbf{x}\otimes\mathbf{y})=U_{M(G)}(t)\mathbf{x}\otimes U_{M(H)}(t)\mathbf{y}.

From the above equation, we get the following result which holds for Mโˆˆ{A,L}M\in\{A,L\}.

Theorem 47.

Let ๐ฑ1,๐ฒ1โˆˆโ„m\mathbf{x}_{1},\mathbf{y}_{1}\in\mathbb{R}^{m} and ๐ฑ2,๐ฒ2โˆˆโ„n\mathbf{x}_{2},\mathbf{y}_{2}\in\mathbb{R}^{n} such that ๐ฑ1โ‰ ยฑ๐ฒ1\mathbf{x}_{1}\neq\pm\mathbf{y}_{1}. Then perfect state transfer occurs between ๐ฑ1โŠ—๐ฑ2\mathbf{x}_{1}\otimes\mathbf{x}_{2} and ๐ฒ1โŠ—๐ฒ2\mathbf{y}_{1}\otimes\mathbf{y}_{2} in Gโ–กHG\square H at time ฯ„\tau if and only if either

  1. 1.

    ๐ฑ2โ‰ ยฑ๐ฒ2\mathbf{x}_{2}\neq\pm\mathbf{y}_{2}, perfect state transfer occurs between ๐ฑ2\mathbf{x}_{2} and ๐ฒ2\mathbf{y}_{2} in HH, and perfect state transfer occurs between ๐ฑ1\mathbf{x}_{1} and ๐ฒ1\mathbf{y}_{1} in GG both at time ฯ„\tau; or

  2. 2.

    ๐ฑ2=ยฑ๐ฒ2\mathbf{x}_{2}=\pm\mathbf{y}_{2} is periodic in HH and perfect state transfer occurs between ๐ฑ1\mathbf{x}_{1} and ๐ฒ1\mathbf{y}_{1} in GG both at time ฯ„\tau.

Corollary 48.

Let r,sโˆˆโ„\{0}r,s\in\mathbb{R}\backslash\{0\} with r=ยฑsr=\pm s. If HH admits perfect state transfer between ๐ža+sโ€‹๐žb\mathbf{e}_{a}+s\mathbf{e}_{b} and ๐žc+rโ€‹๐žd\mathbf{e}_{c}+r\mathbf{e}_{d} at time ฯ„\tau, where {a,b}โ‰ {c,d}\{a,b\}\neq\{c,d\} whenever r=sr=s, then the following hold.

  1. 1.

    If GG admits perfect state transfer between vertex states ๐žu\mathbf{e}_{u} and ๐žv\mathbf{e}_{v} at time ฯ„\tau, then Gโ–กHG\square H admits perfect state transfer between the pure states ๐žuโŠ—(๐ža+sโ€‹๐žb)\mathbf{e}_{u}\otimes(\mathbf{e}_{a}+s\mathbf{e}_{b}) and ๐žvโŠ—(๐žc+rโ€‹๐žd)\mathbf{e}_{v}\otimes(\mathbf{e}_{c}+r\mathbf{e}_{d}) at time ฯ„\tau.

  2. 2.

    If GG is periodic at a vertex states ๐žu\mathbf{e}_{u} at time ฯ„\tau, then Gโ–กHG\square H admits perfect state transfer between the pure states ๐žuโŠ—(๐ža+sโ€‹๐žb)\mathbf{e}_{u}\otimes(\mathbf{e}_{a}+s\mathbf{e}_{b}) and ๐žuโŠ—(๐žc+rโ€‹๐žd)\mathbf{e}_{u}\otimes(\mathbf{e}_{c}+r\mathbf{e}_{d}) at time ฯ„\tau.

Since ๐žuโŠ—(๐ža+sโ€‹๐žb)\mathbf{e}_{u}\otimes(\mathbf{e}_{a}+s\mathbf{e}_{b}) is an ss-pair state in Gโ–กHG\square H, the above corollary with r=sr=s can be used to construct infinite families of graphs with ss-pair PST.

Example 49.

Consider the hypercube QdQ_{d} of dimension dโ‰ฅ1d\geq 1, which is known to admit PST between any pair of antipodal vertices ๐žu\mathbf{e}_{u} and ๐žv\mathbf{e}_{v} at time ฯ€2\frac{\pi}{2}. The following hold for all dโ‰ฅ1d\geq 1.

  • โ€ข

    By Corollary 48(1) and Example 36, Qdโ–กC8Q_{d}\square C_{8} admits PST between {๐žuโŠ—(๐ž0+๐ž4),๐žvโŠ—(๐ž2+๐ž6)}\{\mathbf{e}_{u}\otimes(\mathbf{e}_{0}+\mathbf{e}_{4}),\mathbf{e}_{v}\otimes(\mathbf{e}_{2}+\mathbf{e}_{6})\}, and Qdโ–กC12Q_{d}\square C_{12} admits PST between {๐žuโŠ—(๐ž0+๐ž4+๐ž8),๐žvโŠ—(๐ž2+๐ž6+๐ž10)}\{\mathbf{e}_{u}\otimes(\mathbf{e}_{0}+\mathbf{e}_{4}+\mathbf{e}_{8}),\mathbf{e}_{v}\otimes(\mathbf{e}_{2}+\mathbf{e}_{6}+\mathbf{e}_{10})\} at ฯ€2\frac{\pi}{2}.

  • โ€ข

    By Corollary 48 and [kim2024generalization, Theorem 6.5(iv-vi)], Qdโ–กC6Q_{d}\square C_{6} admits PST between {๐žuโŠ—(๐ž0โˆ’๐ž2),๐žvโŠ—(๐ž3โˆ’๐ž5)}\{\mathbf{e}_{u}\otimes(\mathbf{e}_{0}-\mathbf{e}_{2}),\mathbf{e}_{v}\otimes(\mathbf{e}_{3}-\mathbf{e}_{5})\} at ฯ€2\frac{\pi}{2}, and between {๐žuโŠ—(๐ž0+2โ€‹๐ž2),๐žuโŠ—(๐ž0+2โ€‹๐ž4)}\{\mathbf{e}_{u}\otimes(\mathbf{e}_{0}+2\mathbf{e}_{2}),\mathbf{e}_{u}\otimes(\mathbf{e}_{0}+2\mathbf{e}_{4})\} and {๐žuโŠ—(๐ž0+12โ€‹๐ž2),๐žuโŠ—(๐ž4+12โ€‹๐ž2)}\{\mathbf{e}_{u}\otimes(\mathbf{e}_{0}+\frac{1}{2}\mathbf{e}_{2}),\mathbf{e}_{u}\otimes(\mathbf{e}_{4}+\frac{1}{2}\mathbf{e}_{2})\} at ฯ€\pi.

  • โ€ข

    By Corollary 48(1) and Remark 45(1,2), we get PST in Qdโ–กP3Q_{d}\square P_{3} and Qdโ–กP4Q_{d}\square P_{4} relative to LL between the pairs {๐žuโŠ—(๐ž1โˆ’๐ž2),๐žvโŠ—(๐ž3โˆ’๐ž2)}\{\mathbf{e}_{u}\otimes(\mathbf{e}_{1}-\mathbf{e}_{2}),\mathbf{e}_{v}\otimes(\mathbf{e}_{3}-\mathbf{e}_{2})\} and {๐žuโŠ—(๐ž1+๐ž4),๐žvโŠ—(๐ž2+๐ž3)}\{\mathbf{e}_{u}\otimes(\mathbf{e}_{1}+\mathbf{e}_{4}),\mathbf{e}_{v}\otimes(\mathbf{e}_{2}+\mathbf{e}_{3})\} at ฯ€2\frac{\pi}{2}, respectively.

Example 50.

Let M=AM=A and consider P3โ–กnP_{3}^{\square n}, the Cartesian product of nโ‰ฅ1n\geq 1 copies of P3P_{3}. This graph admits PST at time ฯ€2\frac{\pi}{\sqrt{2}} between any pair of vertices ๐žu\mathbf{e}_{u} and ๐žv\mathbf{e}_{v} at distance 2โ€‹n2n. By Corollary 48(1) and Example 39(1), (P3โ–กn)โ–กP7(P_{3}^{\square n})\square P_{7} admits PST between {๐žuโŠ—(๐ž1โˆ’๐ž7),๐žvโŠ—(๐ž3โˆ’๐ž5)}\{\mathbf{e}_{u}\otimes(\mathbf{e}_{1}-\mathbf{e}_{7}),\mathbf{e}_{v}\otimes(\mathbf{e}_{3}-\mathbf{e}_{5})\} at ฯ€2\frac{\pi}{\sqrt{2}} for all nโ‰ฅ1n\geq 1. Moreover, by Corollary 48(1) with [kim2024generalization, Theorem 6.5(vii)], (P3โ–กn)โ–กC8(P_{3}^{\square n})\square C_{8} admits PST between {๐žuโŠ—(๐ž0โˆ’๐ž2),๐žvโŠ—(๐ž4โˆ’๐ž6)}\{\mathbf{e}_{u}\otimes(\mathbf{e}_{0}-\mathbf{e}_{2}),\mathbf{e}_{v}\otimes(\mathbf{e}_{4}-\mathbf{e}_{6})\} at ฯ€2\frac{\pi}{\sqrt{2}} for all nโ‰ฅ1n\geq 1.

9 Joins

Let GG and HH be weighted graphs on mm and nn vertices, respectively. The join of GG and HH, denoted GโˆจHG\vee H, is obtained from taking a copy of GG and a copy of HH and adding all edges between GG and HH with weight one. Throughout, we assume that GG and HH are kk- and โ„“\ell-regular graphs, respectively whenever we deal with M=AM=A.

Let ฮป\lambda and ฮผ\mu be nonzero eigenvalues of Lโ€‹(G)L(G) and Lโ€‹(H)L(H), respectively. From [Alvir2016, Equation 33], the transition matrix of GโˆจHG\vee H relative to LL is given by

ULโ€‹(t)=1m+nโ€‹J+eiโ€‹tโ€‹(m+n)mโ€‹nโ€‹(m+n)โ€‹[n2โ€‹Jโˆ’mโ€‹nโ€‹Jโˆ’mโ€‹nโ€‹Jm2โ€‹J]+โˆ‘ฮป>0eiโ€‹tโ€‹(ฮป+n)โ€‹[Eฮป๐ŸŽ๐ŸŽ๐ŸŽ]+โˆ‘ฮผ>0eiโ€‹tโ€‹(ฮผ+m)โ€‹[๐ŸŽ๐ŸŽ๐ŸŽFฮผ],\begin{split}U_{L}(t)&=\frac{1}{m+n}J+\frac{e^{it(m+n)}}{mn(m+n)}\left[\begin{array}[]{ccccc}n^{2}J&-mnJ\\ -mnJ&m^{2}J\end{array}\right]+\sum_{\lambda>0}e^{it(\lambda+n)}\left[\begin{array}[]{cc}E_{\lambda}&{\bf{0}}\\ {\bf{0}}&{\bf{0}}\end{array}\right]+\sum_{\mu>0}e^{it(\mu+m)}\left[\begin{array}[]{cc}{\bf{0}}&{\bf{0}}\\ {\bf{0}}&F_{\mu}\end{array}\right],\end{split} (9)

whenever GG and HH are connected. If GG (respectively, HH) is disconnected, then we add the term eiโ€‹tโ€‹nโ€‹[E0โˆ’1mโ€‹J๐ŸŽ๐ŸŽ๐ŸŽ]e^{itn}\left[\begin{array}[]{cc}E_{0}-\frac{1}{m}J&{\bf{0}}\\ {\bf{0}}&{\bf{0}}\end{array}\right] (respectively, eiโ€‹tโ€‹mโ€‹[๐ŸŽ๐ŸŽ๐ŸŽF0โˆ’1nโ€‹J]e^{itm}\left[\begin{array}[]{cc}{\bf{0}}&{\bf{0}}\\ {\bf{0}}&F_{0}-\frac{1}{n}J\end{array}\right]) in the third (respectively, fourth) summand in (9).

Suppose further that GG and HH are kk- and โ„“\ell-regular graphs, respectively. Let ฮป<k\lambda<k and ฮผ<โ„“\mu<\ell be eigenvalues of Aโ€‹(G)A(G) and Aโ€‹(H)A(H) respectively. Let ฮปยฑ=12โ€‹(k+โ„“ยฑฮ”)\lambda^{\pm}=\frac{1}{2}(k+\ell\pm\sqrt{\Delta}), where ฮ”=(kโˆ’โ„“)2+4โ€‹mโ€‹n\Delta=(k-\ell)^{2}+4mn. From [Coutinho2021, Equation 12.2.1], the transition matrix of GโˆจHG\vee H relative to AA is given by

UAโ€‹(t)=eiโ€‹tโ€‹ฮป+mโ€‹ฮ”โ€‹(kโˆ’ฮปโˆ’)โ€‹๐ฎ๐ฎโŠค+eiโ€‹tโ€‹ฮปโˆ’mโ€‹ฮ”โ€‹(ฮป+โˆ’k)โ€‹๐ฏ๐ฏโŠค+โˆ‘ฮป<keiโ€‹tโ€‹ฮปโ€‹[Eฮป๐ŸŽ๐ŸŽ๐ŸŽ]+โˆ‘ฮผ<โ„“eiโ€‹tโ€‹ฮผโ€‹[๐ŸŽ๐ŸŽ๐ŸŽFฮผ],\begin{split}U_{A}(t)&=\frac{e^{it\lambda^{+}}}{m\sqrt{\Delta}(k-\lambda^{-})}\mathbf{u}\mathbf{u}^{\top}+\frac{e^{it\lambda^{-}}}{m\sqrt{\Delta}(\lambda^{+}-k)}\mathbf{v}\mathbf{v}^{\top}+\sum_{\lambda<k}e^{it\lambda}\left[\begin{array}[]{cc}E_{\lambda}&{\bf{0}}\\ {\bf{0}}&{\bf{0}}\end{array}\right]+\sum_{\mu<\ell}e^{it\mu}\left[\begin{array}[]{cc}{\bf{0}}&{\bf{0}}\\ {\bf{0}}&F_{\mu}\end{array}\right],\end{split} (10)

whenever GG and HH are connected, where ๐ฎ=[(kโˆ’ฮปโˆ’)โ€‹๐Ÿmmโ€‹๐Ÿn]\mathbf{u}=\left[\begin{array}[]{ccccc}(k-\lambda^{-}){\bf{1}}_{m}\\ m{\bf{1}}_{n}\end{array}\right] and ๐ฏ=[(kโˆ’ฮป+)โ€‹๐Ÿmmโ€‹๐Ÿn]\mathbf{v}=\left[\begin{array}[]{ccccc}(k-\lambda^{+}){\bf{1}}_{m}\\ m{\bf{1}}_{n}\end{array}\right]. If GG (respectively, HH) is disconnected, then we include the term eiโ€‹tโ€‹kโ€‹[E0โˆ’1mโ€‹J๐ŸŽ๐ŸŽ๐ŸŽ]e^{itk}\left[\begin{array}[]{cc}E_{0}-\frac{1}{m}J&{\bf{0}}\\ {\bf{0}}&{\bf{0}}\end{array}\right] (respectively, eiโ€‹tโ€‹โ„“โ€‹[๐ŸŽ๐ŸŽ๐ŸŽF0โˆ’1nโ€‹J]e^{it\ell}\left[\begin{array}[]{cc}{\bf{0}}&{\bf{0}}\\ {\bf{0}}&F_{0}-\frac{1}{n}J\end{array}\right]) in the third (respectively, fourth) summand in equation (10). For more about quantum walks on join graphs, see [kirkland2023quantum].

The join operation can be used to construct larger graphs that admit PST between real pure states.

Theorem 51.

Let ๐ฑ1,๐ฒ1โˆˆโ„m\mathbf{x}_{1},\mathbf{y}_{1}\in\mathbb{R}^{m} and ๐ฑ2,๐ฒ2โˆˆโ„n\mathbf{x}_{2},\mathbf{y}_{2}\in\mathbb{R}^{n} be unit vectors such that ๐ŸโŠคโ€‹๐ฑ1=๐ŸโŠคโ€‹๐ฑ2=0{\bf{1}}^{\top}\mathbf{x}_{1}={\bf{1}}^{\top}\mathbf{x}_{2}=0. If GG and HH are connected, then the following hold relative to Mโˆˆ{A,L}M\in\{A,L\}.

  1. 1.

    GG admits perfect state transfer between ๐ฑ1\mathbf{x}_{1} and ๐ฒ1\mathbf{y}_{1} if and only if GโˆจHG\vee H admits perfect state transfer between [๐ฑ1๐ŸŽ]\left[\begin{array}[]{cc}\mathbf{x}_{1}\\ {\bf{0}}\end{array}\right] and [๐ฒ1๐ŸŽ]\left[\begin{array}[]{cc}\mathbf{y}_{1}\\ {\bf{0}}\end{array}\right] at the same time.

  2. 2.

    Suppose GG admits perfect state transfer between ๐ฑ1\mathbf{x}_{1} and ๐ฒ1\mathbf{y}_{1} and HH admits perfect state transfer between ๐ฑ2\mathbf{x}_{2} and ๐ฒ2\mathbf{y}_{2} both at time ฯ„\tau. If ฯ„โ€‹(ฮปโˆ’ฮธ+ฮดโ€‹(nโˆ’m))โ‰ก0\tau(\lambda-\theta+\delta(n-m))\equiv 0 (mod 2โ€‹ฯ€2\pi) for some ฮปโˆˆฯƒ๐ฑ1,๐ฒ1+โ€‹(M)\lambda\in\sigma_{\mathbf{x}_{1},\mathbf{y}_{1}}^{+}(M), ฮธโˆˆฯƒ๐ฑ2,๐ฒ2+โ€‹(M)\theta\in\sigma_{\mathbf{x}_{2},\mathbf{y}_{2}}^{+}(M) and ฮดโˆˆ{0,1}\delta\in\{0,1\}, then GโˆจHG\vee H admits perfect state transfer between [๐ฑ1๐ฑ2]\left[\begin{array}[]{cc}\mathbf{x}_{1}\\ \mathbf{x}_{2}\end{array}\right] and [๐ฒ1๐ฒ2]\left[\begin{array}[]{cc}\mathbf{y}_{1}\\ \mathbf{y}_{2}\end{array}\right] at time ฯ„\tau relative to M=LM=L whenever ฮด=1\delta=1 and relative to M=AM=A whenever ฮด=0\delta=0.

Proof.

Let UGโ€‹(t)U_{G}(t) denote the transition matrix of GG relative to LL. As ๐ŸโŠคโ€‹๐ฑ1=0{\bf{1}}^{\top}\mathbf{x}_{1}=0, equation (9) yields

ULโ€‹(t)โ€‹[๐ฑ1๐ŸŽ]=[eiโ€‹tโ€‹nโ€‹UGโ€‹(t)โ€‹๐ฑ1๐ŸŽ]U_{L}(t)\left[\begin{array}[]{cc}\mathbf{x}_{1}\\ {\bf{0}}\end{array}\right]=\left[\begin{array}[]{cc}e^{itn}U_{G}(t)\mathbf{x}_{1}\\ {\bf{0}}\end{array}\right]\quad and UAโ€‹(t)โ€‹[๐ฑ1๐ŸŽ]=[UGโ€‹(t)โ€‹๐ฑ1๐ŸŽ]\quad U_{A}(t)\left[\begin{array}[]{cc}\mathbf{x}_{1}\\ {\bf{0}}\end{array}\right]=\left[\begin{array}[]{cc}U_{G}(t)\mathbf{x}_{1}\\ {\bf{0}}\end{array}\right].

From these equations, (1) is straightforward. We now prove (2). Since ๐ŸโŠคโ€‹๐ฑ1=๐ŸโŠคโ€‹๐ฑ2=0{\bf{1}}^{\top}\mathbf{x}_{1}={\bf{1}}^{\top}\mathbf{x}_{2}=0, the same argument yields

ULโ€‹(t)โ€‹[๐ฑ1๐ฑ2]=[eiโ€‹tโ€‹nโ€‹UGโ€‹(t)โ€‹๐ฑ1๐ŸŽ]+[๐ŸŽeiโ€‹tโ€‹mโ€‹UHโ€‹(t)โ€‹๐ฑ2]=[eiโ€‹tโ€‹nโ€‹UGโ€‹(t)โ€‹๐ฑ1eiโ€‹tโ€‹mโ€‹UHโ€‹(t)โ€‹๐ฑ2].U_{L}(t)\left[\begin{array}[]{cc}\mathbf{x}_{1}\\ \mathbf{x}_{2}\end{array}\right]=\left[\begin{array}[]{cc}e^{itn}U_{G}(t)\mathbf{x}_{1}\\ {\bf{0}}\end{array}\right]+\left[\begin{array}[]{cc}{\bf{0}}\\ e^{itm}U_{H}(t)\mathbf{x}_{2}\end{array}\right]=\left[\begin{array}[]{cc}e^{itn}U_{G}(t)\mathbf{x}_{1}\\ e^{itm}U_{H}(t)\mathbf{x}_{2}\end{array}\right]. (11)

As PST occurs between ๐ฑj\mathbf{x}_{j} and ๐ฒj\mathbf{y}_{j} for jโˆˆ{1,2}j\in\{1,2\} at ฯ„\tau, we have UGโ€‹(ฯ„)โ€‹๐ฑ1=ฮณ1โ€‹๐ฒ1U_{G}(\tau)\mathbf{x}_{1}=\gamma_{1}\mathbf{y}_{1} and UHโ€‹(ฯ„)โ€‹๐ฑ2=ฮณ2โ€‹๐ฒ2U_{H}(\tau)\mathbf{x}_{2}=\gamma_{2}\mathbf{y}_{2}, where ฮณ1=eiโ€‹ฯ„โ€‹ฮป\gamma_{1}=e^{i\tau\lambda} and ฮณ2=eiโ€‹ฯ„โ€‹ฮธ\gamma_{2}=e^{i\tau\theta} for all ฮปโˆˆฯƒ๐ฑ1,๐ฒ1+โ€‹(L)\lambda\in\sigma_{\mathbf{x}_{1},\mathbf{y}_{1}}^{+}(L) and ฮธโˆˆฯƒ๐ฑ2,๐ฒ2+โ€‹(L)\theta\in\sigma_{\mathbf{x}_{2},\mathbf{y}_{2}}^{+}(L). Thus, if ฯ„โ€‹(ฮปโˆ’ฮธ+nโˆ’m)โ‰ก0\tau(\lambda-\theta+n-m)\equiv 0 (mod 2โ€‹ฯ€2\pi) for some ฮปโˆˆฯƒ๐ฑ1,๐ฒ1+โ€‹(M)\lambda\in\sigma_{\mathbf{x}_{1},\mathbf{y}_{1}}^{+}(M) and ฮธโˆˆฯƒ๐ฑ2,๐ฒ2+โ€‹(M)\theta\in\sigma_{\mathbf{x}_{2},\mathbf{y}_{2}}^{+}(M), then ฯ„โ€‹(n+ฮป)โ‰กฯ„โ€‹(m+ฮธ)\tau(n+\lambda)\equiv\tau(m+\theta) (mod 2โ€‹ฯ€2\pi), and so eiโ€‹ฯ„โ€‹(n+ฮป)=eiโ€‹ฯ„โ€‹(m+ฮธ)e^{i\tau(n+\lambda)}=e^{i\tau(m+\theta)}. Thus, ULโ€‹(ฯ„)โ€‹[๐ฑ1๐ฑ2]=[eiโ€‹ฯ„โ€‹nโ€‹UGโ€‹(ฯ„)โ€‹๐ฑ1eiโ€‹ฯ„โ€‹mโ€‹UHโ€‹(ฯ„)โ€‹๐ฑ2]=[eiโ€‹ฯ„โ€‹(n+ฮป)โ€‹๐ฒ1eiโ€‹ฯ„โ€‹(m+ฮธ)โ€‹๐ฒ2]=eiโ€‹ฯ„โ€‹(n+ฮป)โ€‹[๐ฒ1๐ฒ2]U_{L}(\tau)\left[\begin{array}[]{cc}\mathbf{x}_{1}\\ \mathbf{x}_{2}\end{array}\right]=\left[\begin{array}[]{cc}e^{i\tau n}U_{G}(\tau)\mathbf{x}_{1}\\ e^{i\tau m}U_{H}(\tau)\mathbf{x}_{2}\end{array}\right]=\left[\begin{array}[]{cc}e^{i\tau(n+\lambda)}\mathbf{y}_{1}\\ e^{i\tau(m+\theta)}\mathbf{y}_{2}\end{array}\right]=e^{i\tau(n+\lambda)}\left[\begin{array}[]{cc}\mathbf{y}_{1}\\ \mathbf{y}_{2}\end{array}\right] by equation (11). This proves that PST occurs between [๐ฑ1๐ฑ2]\left[\begin{array}[]{cc}\mathbf{x}_{1}\\ \mathbf{x}_{2}\end{array}\right] and [๐ฒ1๐ฒ2]\left[\begin{array}[]{cc}\mathbf{y}_{1}\\ \mathbf{y}_{2}\end{array}\right] in GโˆจHG\vee H. The same argument applies to M=AM=A except that eiโ€‹tโ€‹ne^{itn} and eiโ€‹tโ€‹me^{itm} in (11) are both absent. โˆŽ

10 Complete bipartite graphs

In this section, we characterize PST between real pure states in the complete bipartite graph Km,nK_{m,n}. We only focus on the case when |ฯƒ๐ฑโ€‹(M)|โ‰ฅ3|\sigma_{\mathbf{x}}(M)|\geq 3, starting with the adjacency case.

Theorem 52.

Let ๐ฑ=[๐ฑ1๐ฑ2],๐ฒโˆˆโ„m+n\mathbf{x}=\begin{bmatrix}\mathbf{x}_{1}\\ \mathbf{x}_{2}\end{bmatrix},\mathbf{y}\in\mathbb{R}^{m+n}, where ๐ฑ1โˆˆโ„m\mathbf{x}_{1}\in\mathbb{R}^{m} and |ฯƒ๐ฑโ€‹(A)|โ‰ฅ3|\sigma_{\mathbf{x}}(A)|\geq 3. Let ๐ณ\mathbf{z} and ๐ฏยฑ=[nโ€‹๐Ÿmยฑmโ€‹๐Ÿn]\mathbf{v}^{\pm}=\begin{bmatrix}\sqrt{n}{\bf{1}}_{m}\\ \pm\sqrt{m}{\bf{1}}_{n}\end{bmatrix} be eigenvectors for Aโ€‹(Km,n)A(K_{m,n}) associated with 0 and ยฑmโ€‹n\pm\sqrt{mn} respectively. Then ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} admit adjacency perfect state transfer in Km,nK_{m,n} if and only if ๐ฑโˆˆspanโก{๐ฏ+,๐ฏโˆ’,๐ณ}\mathbf{x}\in\operatorname{span}\{\mathbf{v}^{+},\mathbf{v}^{-},\mathbf{z}\}, ๐ฑโˆ‰spanโก๐’ฐ\mathbf{x}\notin\operatorname{span}\mathcal{U} for any two-subset ๐’ฐ\mathcal{U} of {๐ฏ+,๐ฏโˆ’,๐ณ}\{\mathbf{v}^{+},\mathbf{v}^{-},\mathbf{z}\} and ๐ฒ=๐ฑโˆ’2โ€‹[1mโ€‹(๐ŸโŠคโ€‹๐ฑ1)โ€‹๐Ÿ1nโ€‹(๐ŸโŠคโ€‹๐ฑ2)โ€‹๐Ÿ]\mathbf{y}=\mathbf{x}-2\begin{bmatrix}\frac{1}{m}({\bf{1}}^{\top}\mathbf{x}_{1}){\bf{1}}\\ \frac{1}{n}({\bf{1}}^{\top}\mathbf{x}_{2}){\bf{1}}\end{bmatrix}. Moreover, the minimum PST time is ฯ€mโ€‹n\frac{\pi}{\sqrt{mn}}.

Proof.

Since Km,n=OmโˆจOnK_{m,n}=O_{m}\vee O_{n}, (10) yields the following spectral decomposition for Aโ€‹(Km,n)A(K_{m,n}):

UAโ€‹(t)=[Imโˆ’1mโ€‹J00Inโˆ’1nโ€‹J]+eiโ€‹tโ€‹mโ€‹n2โ€‹mโ€‹nโ€‹[nโ€‹Jmโ€‹nโ€‹Jmโ€‹nโ€‹Jmโ€‹J]+eโˆ’iโ€‹tโ€‹mโ€‹n2โ€‹mโ€‹nโ€‹[nโ€‹Jโˆ’mโ€‹nโ€‹Jโˆ’mโ€‹nโ€‹Jmโ€‹J].U_{A}(t)=\begin{bmatrix}I_{m}-\frac{1}{m}J&0\\ 0&I_{n}-\frac{1}{n}J\end{bmatrix}+\frac{e^{it\sqrt{mn}}}{2mn}\begin{bmatrix}nJ&\sqrt{mn}J\\ \sqrt{mn}J&mJ\end{bmatrix}+\frac{e^{-it\sqrt{mn}}}{2mn}\begin{bmatrix}nJ&-\sqrt{mn}J\\ -\sqrt{mn}J&mJ\end{bmatrix}. (12)

Taking ๐ฒ=UAโ€‹(ฯ€mโ€‹n)โ€‹๐ฑ\mathbf{y}=U_{A}(\frac{\pi}{\sqrt{mn}})\mathbf{x} yields the desired conclusion. โˆŽ

Corollary 53.

Pair perfect state transfer occurs in Km,nK_{m,n} relative to AA if and only if either

  1. 1.

    (m,n)โˆˆ{(1,2),(2,1)}(m,n)\in\{(1,2),(2,1)\}, between ๐žuโˆ’๐žw\mathbf{e}_{u}-\mathbf{e}_{w} and ๐žuโˆ’๐žx\mathbf{e}_{u}-\mathbf{e}_{x}, where uu is a degree two vertex.

  2. 2.

    m=n=2m=n=2, between ๐žuโˆ’๐žw\mathbf{e}_{u}-\mathbf{e}_{w} and ๐žvโˆ’๐žx\mathbf{e}_{v}-\mathbf{e}_{x}, where {u,w}\{u,w\} and {v,x}\{v,x\} are non-incident edges.

Proof.

Note that ๐žuโˆ’๐žw\mathbf{e}_{u}-\mathbf{e}_{w} is fixed whenever uu and ww are non-adjacent. Now, suppose uu and ww are adjacent. Then equation (12) yields UAโ€‹(t)โ€‹(๐žuโˆ’๐žw)=[๐žuโˆ’2mโ€‹๐Ÿโˆ’(๐žwโˆ’2nโ€‹๐Ÿ)]U_{A}(t)(\mathbf{e}_{u}-\mathbf{e}_{w})=\begin{bmatrix}\mathbf{e}_{u}-\frac{2}{m}{\bf{1}}\\ -(\mathbf{e}_{w}-\frac{2}{n}{\bf{1}})\end{bmatrix}, and so (1) and (2) are immediate. โˆŽ

Corollary 54.

Plus perfect state transfer occurs in Km,nK_{m,n} relative to AA if and only if either (i) one of the two conditions in Corollary 53 hold with the pair states turned into plus states, or (ii) m=4m=4 or n=4n=4, between ๐žu+๐žw\mathbf{e}_{u}+\mathbf{e}_{w} and ๐žv+๐žx\mathbf{e}_{v}+\mathbf{e}_{x}, where {u,w,v,x}\{u,w,v,x\} is a bipartition of size four.

Proof.

If uu and ww are adjacent, then the same argument in Corollary 53 proves statement (i). Otherwise, equation (12) yields UAโ€‹(t)โ€‹(๐žu+๐žw)=[๐žu+๐žwโˆ’4mโ€‹๐Ÿ๐ŸŽ]U_{A}(t)(\mathbf{e}_{u}+\mathbf{e}_{w})=\begin{bmatrix}\mathbf{e}_{u}+\mathbf{e}_{w}-\frac{4}{m}{\bf{1}}\\ {\bf{0}}\end{bmatrix}, and so statement (ii) is immediate. โˆŽ

The minimum PST time in Corollaries 53 and 54 is ฯ€mโ€‹n\frac{\pi}{\sqrt{mn}}.

For the Laplacian case, equation (9) gives us the transition matrix for Km,nK_{m,n}:

ULโ€‹(t)=1m+nโ€‹J+eiโ€‹tโ€‹(m+n)mโ€‹nโ€‹(m+n)โ€‹[n2โ€‹Jโˆ’mโ€‹nโ€‹Jโˆ’mโ€‹nโ€‹Jm2โ€‹J]+eiโ€‹tโ€‹nโ€‹[Imโˆ’1mโ€‹J๐ŸŽ๐ŸŽ๐ŸŽ]+eiโ€‹tโ€‹mโ€‹[๐ŸŽ๐ŸŽ๐ŸŽInโˆ’1nโ€‹J].U_{L}(t)=\frac{1}{m+n}J+\frac{e^{it(m+n)}}{mn(m+n)}\left[\begin{array}[]{cc}n^{2}J&-mnJ\\ -mnJ&m^{2}J\end{array}\right]+e^{itn}\left[\begin{array}[]{cc}I_{m}-\frac{1}{m}J&{\bf{0}}\\ {\bf{0}}&{\bf{0}}\end{array}\right]+e^{itm}\left[\begin{array}[]{cc}{\bf{0}}&{\bf{0}}\\ {\bf{0}}&I_{n}-\frac{1}{n}J\end{array}\right].

Using the same argument in the proof of Theorem 52 yields an analogous result for the Laplacian case.

Theorem 55.

Let ๐ฑ=[๐ฑ1๐ฑ2],๐ฒโˆˆโ„m+n\mathbf{x}=\begin{bmatrix}\mathbf{x}_{1}\\ \mathbf{x}_{2}\end{bmatrix},\mathbf{y}\in\mathbb{R}^{m+n}, where ๐ฑ1โˆˆโ„m\mathbf{x}_{1}\in\mathbb{R}^{m} and where |ฯƒ๐ฑโ€‹(L)|โ‰ฅ3|\sigma_{\mathbf{x}}(L)|\geq 3. Let ๐ฎ\mathbf{u}, ๐ฏ\mathbf{v} and ๐ฐ\mathbf{w} be eigenvectors for Lโ€‹(Km,n)L(K_{m,n}) associated with mm, nn and m+nm+n respectively. Then ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} admit Laplacian perfect state transfer in Km,nK_{m,n} if and only if ๐ฑโˆˆspanโก{๐Ÿ,๐ฎ,๐ฏ,๐ฐ}\mathbf{x}\in\operatorname{span}\{{\bf{1}},\mathbf{u},\mathbf{v},\mathbf{w}\}, ๐ฑโˆ‰spanโก๐’ฐ\mathbf{x}\notin\operatorname{span}\mathcal{U} for any two-subset ๐’ฐ\mathcal{U} of {๐Ÿ,๐ฎ,๐ฏ,๐ฐ}\{{\bf{1}},\mathbf{u},\mathbf{v},\mathbf{w}\} and either

  1. 1.

    ฮฝ2โ€‹(m)=ฮฝ2โ€‹(n)\nu_{2}(m)=\nu_{2}(n) and ๐ฒ=[โˆ’๐ฑ1+2mโ€‹(๐ŸโŠคโ€‹๐ฑ1)โ€‹๐Ÿโˆ’๐ฑ2+2nโ€‹(๐ŸโŠคโ€‹๐ฑ2)โ€‹๐Ÿ]\mathbf{y}=\begin{bmatrix}-\mathbf{x}_{1}+\frac{2}{m}({\bf{1}}^{\top}\mathbf{x}_{1}){\bf{1}}\\ -\mathbf{x}_{2}+\frac{2}{n}({\bf{1}}^{\top}\mathbf{x}_{2}){\bf{1}}\end{bmatrix}

  2. 2.

    ฮฝ2โ€‹(m)>ฮฝ2โ€‹(n)\nu_{2}(m)>\nu_{2}(n) and ๐ฒ=[โˆ’๐ฑ1+2m+nโ€‹((๐ŸโŠคโ€‹๐ฑ2)+(๐ŸโŠคโ€‹๐ฑ1))โ€‹๐Ÿ๐ฑ2+2m+nโ€‹((๐ŸโŠคโ€‹๐ฑ1)โˆ’mnโ€‹(๐ŸโŠคโ€‹๐ฑ2))โ€‹๐Ÿ]\mathbf{y}=\begin{bmatrix}-\mathbf{x}_{1}+\frac{2}{m+n}(({\bf{1}}^{\top}\mathbf{x}_{2})+({\bf{1}}^{\top}\mathbf{x}_{1})){\bf{1}}\\ \mathbf{x}_{2}+\frac{2}{m+n}(({\bf{1}}^{\top}\mathbf{x}_{1})-\frac{m}{n}({\bf{1}}^{\top}\mathbf{x}_{2})){\bf{1}}\end{bmatrix}.

  3. 3.

    ฮฝ2โ€‹(m)<ฮฝ2โ€‹(n)\nu_{2}(m)<\nu_{2}(n) and ๐ฒ=[๐ฑ1+2m+nโ€‹((๐ŸโŠคโ€‹๐ฑ2)โˆ’nmโ€‹(๐ŸโŠคโ€‹๐ฑ1))โ€‹๐Ÿโˆ’๐ฑ2+2m+nโ€‹((๐ŸโŠคโ€‹๐ฑ1)+(๐ŸโŠคโ€‹๐ฑ2))โ€‹๐Ÿ]\mathbf{y}=\begin{bmatrix}\mathbf{x}_{1}+\frac{2}{m+n}(({\bf{1}}^{\top}\mathbf{x}_{2})-\frac{n}{m}({\bf{1}}^{\top}\mathbf{x}_{1})){\bf{1}}\\ -\mathbf{x}_{2}+\frac{2}{m+n}(({\bf{1}}^{\top}\mathbf{x}_{1})+({\bf{1}}^{\top}\mathbf{x}_{2})){\bf{1}}\end{bmatrix}.

The minimum PST time in all cases above is ฯ€gcdโก(m,n)\frac{\pi}{\operatorname{gcd}(m,n)}.

We finish this section by characterizing Laplacian pair and plus PST in complete bipartite graphs.

Corollary 56.

Laplacian pair perfect state transfer occurs in Km,nK_{m,n} if and only if either Corollary 53(2) holds or (m,n)โˆˆ{(2,4โ€‹k),(4โ€‹k,2)}(m,n)\in\{(2,4k),(4k,2)\} for any integer kโ‰ฅ1k\geq 1. In particular, perfect state transfer occurs between ๐žuโˆ’๐žw\mathbf{e}_{u}-\mathbf{e}_{w} and ๐žvโˆ’๐žw\mathbf{e}_{v}-\mathbf{e}_{w} in K2,4โ€‹kK_{2,4k}, where {u,v}\{u,v\} is a partite set of size two and wโˆˆVโ€‹(Km,n)\{u,v}w\in V(K_{m,n})\backslash\{u,v\}.

Proof.

If uu and ww are non-adjacent, then ๐žuโˆ’๐žw\mathbf{e}_{u}-\mathbf{e}_{w} is fixed. Otherwise, ๐žuโˆ’๐žw\mathbf{e}_{u}-\mathbf{e}_{w} has eigenvalue support {m,n,m+n}\{m,n,m+n\}. Applying Theorem 55(1) with ๐ฑ1=๐žu\mathbf{x}_{1}=\mathbf{e}_{u} and ๐ฑ2=โˆ’๐žw\mathbf{x}_{2}=-\mathbf{e}_{w} yields the desired conclusion. โˆŽ

In [chen2019edge], it was shown that K2,4โ€‹kK_{2,4k} admits Laplacian pair PST. Thus, C4C_{4} and K2,4โ€‹kK_{2,4k} are the only complete bipartite graphs that admit pair PST by Corollary 56. For plus state transfer, we have the following:

Corollary 57.

Laplacian plus perfect state transfer occurs in Km,nK_{m,n} if and only if either

  1. 1.

    m=n=2m=n=2, between ๐žu+๐žw\mathbf{e}_{u}+\mathbf{e}_{w} and ๐žv+๐žx\mathbf{e}_{v}+\mathbf{e}_{x}, where either (i) {u,w}\{u,w\} and {v,x}\{v,x\} are non-incident edges or (ii) {u,w}\{u,w\} and {v,x}\{v,x\} are the two partite sets of size two, or

  2. 2.

    (m,n)โˆˆ{(4,4โ€‹k),(4โ€‹k,4)}(m,n)\in\{(4,4k),(4k,4)\} for any odd kk, between ๐žu+๐žw\mathbf{e}_{u}+\mathbf{e}_{w} and ๐žv+๐žx\mathbf{e}_{v}+\mathbf{e}_{x}, where {u,w,v,x}\{u,w,v,x\} is a partite set of size four.

Proof.

First, suppose uu and ww are adjacent. If ฮฝ2โ€‹(m)=ฮฝ2โ€‹(n)\nu_{2}(m)=\nu_{2}(n), then Theorem 55(1) yields ๐ฒ=[๐žuโˆ’2mโ€‹๐Ÿ๐žwโˆ’2nโ€‹๐Ÿ]\mathbf{y}=\begin{bmatrix}\mathbf{e}_{u}-\frac{2}{m}{\bf{1}}\\ \mathbf{e}_{w}-\frac{2}{n}{\bf{1}}\end{bmatrix}. This proves (1i). Now, if ฮฝ2โ€‹(m)>ฮฝ2โ€‹(n)\nu_{2}(m)>\nu_{2}(n), then Theorem 55(2) gives us ๐ฒ=[โˆ’๐žu+4m+nโ€‹๐Ÿ๐žw+2m+nโ€‹(1โˆ’mn)โ€‹๐Ÿ]\mathbf{y}=\begin{bmatrix}-\mathbf{e}_{u}+\frac{4}{m+n}{\bf{1}}\\ \mathbf{e}_{w}+\frac{2}{m+n}(1-\frac{m}{n}){\bf{1}}\end{bmatrix}, which is not a plus state for any mm and nn. Similarly for the case ฮฝ2โ€‹(m)<ฮฝ2โ€‹(n)\nu_{2}(m)<\nu_{2}(n). Now, suppose uu and ww are non-adjacent. If ฮฝ2โ€‹(m)=ฮฝ2โ€‹(n)\nu_{2}(m)=\nu_{2}(n), then Theorem 55(1) again yields ๐ฒ=[โˆ’๐žuโˆ’๐žw+4mโ€‹๐Ÿ๐ŸŽ]\mathbf{y}=\begin{bmatrix}-\mathbf{e}_{u}-\mathbf{e}_{w}+\frac{4}{m}{\bf{1}}\\ {\bf{0}}\end{bmatrix}. From this, (2) follows. If ฮฝ2โ€‹(m)>ฮฝ2โ€‹(n)\nu_{2}(m)>\nu_{2}(n), then Theorem 55(2) implies that ๐ฒ=[โˆ’๐žuโˆ’๐žw+4m+nโ€‹๐Ÿ4m+nโ€‹๐Ÿ]\mathbf{y}=\begin{bmatrix}-\mathbf{e}_{u}-\mathbf{e}_{w}+\frac{4}{m+n}{\bf{1}}\\ \frac{4}{m+n}{\bf{1}}\end{bmatrix}, which yields (1ii). If ฮฝ2โ€‹(m)<ฮฝ2โ€‹(n)\nu_{2}(m)<\nu_{2}(n), then one gets the same result by applying Theorem 55(3). โˆŽ

11 Minimizing PST time

The following result determines the vectors ๐ฑ\mathbf{x} and graphs GG such that the minimum period of ๐ฑ\mathbf{x} in GG is the least amongst all unweighted connected nn-vertex graphs.

Theorem 58.

Let ๐ฑโˆˆโ„n\mathbf{x}\in\mathbb{R}^{n}. The following hold.

  1. 1.

    Amongst all connected unweighted nn-vertex graphs, ๐ฑ\mathbf{x} attains the least minimum period in GG relative to LL if and only if G=G1โˆจG2G=G_{1}\vee G_{2} with |Vโ€‹(Gi)|=ni|V(G_{i})|=n_{i} for iโˆˆ{1,2}i\in\{1,2\}, n=n1+n2,n=n_{1}+n_{2}, and ๐ฑโˆˆspanโก{๐Ÿn,[n2โ€‹๐Ÿn1โˆ’n1โ€‹๐Ÿn2]}\mathbf{x}\in\operatorname{span}\left\{{\bf{1}}_{n},\begin{bmatrix}n_{2}{\bf{1}}_{n_{1}}\\ -n_{1}{\bf{1}}_{n_{2}}\end{bmatrix}\right\}.

  2. 2.

    There exists an integer N>0N>0 such that for all connected unweighted nn-vertex graphs with nโ‰ฅNn\geq N, ๐ฑ\mathbf{x} attains the least minimum period in GG relative to AA if and only if G=OaโˆจKnโˆ’aG=O_{a}\vee K_{n-a} with a=โŒˆn3โŒ‰a=\lceil\frac{n}{3}\rceil, and ๐ฑโˆˆspanโก{[โˆ’ฮปโˆ’โ€‹๐Ÿaaโ€‹๐Ÿnโˆ’a],[โˆ’ฮป+โ€‹๐Ÿaaโ€‹๐Ÿnโˆ’a]}\mathbf{x}\in\operatorname{span}\left\{\begin{bmatrix}-\lambda^{-}{\bf{1}}_{a}\\ a{\bf{1}}_{n-a}\end{bmatrix},\begin{bmatrix}-\lambda^{+}{\bf{1}}_{a}\\ a{\bf{1}}_{n-a}\end{bmatrix}\right\}, where ฮปยฑ=12โ€‹(nโˆ’aโˆ’1ยฑ(nโˆ’aโˆ’1)2+4โ€‹aโ€‹(nโˆ’a))\lambda^{\pm}=\frac{1}{2}(n-a-1\pm\sqrt{(n-a-1)^{2}+4a(n-a)}).

Moreover, for 1 and 2, we have ฯ=2โ€‹ฯ€n\rho=\frac{2\pi}{n} and ฯ=2โ€‹ฯ€(nโˆ’aโˆ’1)2+4โ€‹aโ€‹(nโˆ’a)โ‰ˆฯ€โ€‹3n\rho=\frac{2\pi}{\sqrt{(n-a-1)^{2}+4a(n-a)}}\approx\frac{\pi\sqrt{3}}{n}, respectively.

Proof.

Let ฮป1\lambda_{1} and ฮป2\lambda_{2} be the largest and smallest eigenvalues of MM. We first prove 1. By assumption, 0 is a simple eigenvalue of Lโ€‹(G)L(G) with eigenvector ๐Ÿn{\bf{1}}_{n}. Moreover, every eigenvalue ฮป\lambda of Lโ€‹(G)L(G) satisfies ฮปโ‰คn\lambda\leq n with equality if and only if GG is a join graph. Thus, for any two eigenvalues ฮป1\lambda_{1} and ฮป2\lambda_{2} of Lโ€‹(G)L(G), the Laplacian spread ฮป1โˆ’ฮป2\lambda_{1}-\lambda_{2} is maximum if and only if ฮป1=n\lambda_{1}=n and ฮป2=0\lambda_{2}=0. Invoking Lemma 10, the least minimum period is attained if and only if G=G1โˆจG2G=G_{1}\vee G_{2} for some graphs GiG_{i} on nin_{i} vertices, iโˆˆ{1,2}i\in\{1,2\} and ฯƒ๐ฑโ€‹(L)={0,n}\sigma_{\mathbf{x}}(L)=\{0,n\}, in which case ฯ=2โ€‹ฯ€n\rho=\frac{2\pi}{n} and [n2โ€‹๐Ÿn1โˆ’n1โ€‹๐Ÿn2]\begin{bmatrix}n_{2}{\bf{1}}_{n_{1}}\\ -n_{1}{\bf{1}}_{n_{2}}\end{bmatrix} is the eigenvector associated with nn. To prove 2, we use a result due to Breen, Riasanovsky, Tait and Urschel [BRTU] states that there is an N>0N>0 such that if nโ‰ฅN,n\geq N, the maximum adjacency spread ฮป1โˆ’ฮป2\lambda_{1}-\lambda_{2} over all connected nn-vertex graphs is attained uniquely by the complete split graph G=OaโˆจKnโˆ’a.G=O_{a}\vee K_{n-a}. In this case, we have ฮป1=ฮป+\lambda_{1}=\lambda^{+}, ฮป2=ฮปโˆ’\lambda_{2}=\lambda^{-} and ฮปยฑ=12โ€‹(nโˆ’aโˆ’1ยฑ(nโˆ’aโˆ’1)2+4โ€‹aโ€‹(nโˆ’a))\lambda^{\pm}=\frac{1}{2}(n-a-1\pm\sqrt{(n-a-1)^{2}+4a(n-a)}) so that ฮป1โˆ’ฮป2=(nโˆ’aโˆ’1)2+4โ€‹aโ€‹(nโˆ’a)โ‰ˆ2โ€‹n3.\lambda_{1}-\lambda_{2}=\sqrt{(n-a-1)^{2}+4a(n-a)}\approx\frac{2n}{\sqrt{3}}. The same argument used in the above case yields the desired conclusion. โˆŽ

Corollary 59.

Let ๐ฑ,๐ฒโˆˆโ„n\mathbf{x},\mathbf{y}\in\mathbb{R}^{n}.

  1. 1.

    Amongst all connected unweighted nn-vertex graphs, ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} attain the least minimum PST time relative to LL if and only if the conditions in Theorem 58(1) hold and

    ๐ฒ=1nโ€‹(๐ŸnโŠคโ€‹๐ฑ)โ€‹๐Ÿnโˆ’1n1โ€‹n2โ€‹(n1+n2)โ€‹([n2โ€‹๐Ÿn1โˆ’n1โ€‹๐Ÿn2]โŠคโ€‹๐ฑ)โ€‹[n2โ€‹๐Ÿn1โˆ’n1โ€‹๐Ÿn2].\mathbf{y}=\frac{1}{n}({\bf{1}}_{n}^{\top}\mathbf{x}){\bf{1}}_{n}-\frac{1}{n_{1}n_{2}(n_{1}+n_{2})}\left(\begin{bmatrix}n_{2}{\bf{1}}_{n_{1}}\\ -n_{1}{\bf{1}}_{n_{2}}\end{bmatrix}^{\top}\mathbf{x}\right)\begin{bmatrix}n_{2}{\bf{1}}_{n_{1}}\\ -n_{1}{\bf{1}}_{n_{2}}\end{bmatrix}.

  2. 2.

    There exists an integer N>0N>0 such that amongst all connected unweighted nn-vertex graphs with nโ‰ฅNn\geq N, ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} attain the least minimum PST time relative to AA if and only if the conditions in Theorem 58(2) hold and ๐ฒ\mathbf{y} has the form below, where Dยฑ=ยฑaโ€‹(ฮปยฑ)โ€‹(nโˆ’aโˆ’1)2+4โ€‹aโ€‹(nโˆ’a)D^{\pm}=\pm a(\lambda^{\pm})\sqrt{(n-a-1)^{2}+4a(n-a)}.

    ๐ฒ=1Dโˆ’โ€‹([โˆ’ฮปโˆ’โ€‹๐Ÿaaโ€‹๐Ÿnโˆ’a]โŠคโ€‹๐ฑ)โ€‹[โˆ’ฮปโˆ’โ€‹๐Ÿaaโ€‹๐Ÿnโˆ’a]โˆ’1D+โ€‹([โˆ’ฮป+โ€‹๐Ÿaaโ€‹๐Ÿnโˆ’a]โŠคโ€‹๐ฑ)โ€‹[โˆ’ฮป+โ€‹๐Ÿaaโ€‹๐Ÿnโˆ’a]\mathbf{y}=\frac{1}{D^{-}}\left(\begin{bmatrix}-\lambda^{-}{\bf{1}}_{a}\\ a{\bf{1}}_{n-a}\end{bmatrix}^{\top}\mathbf{x}\right)\begin{bmatrix}-\lambda^{-}{\bf{1}}_{a}\\ a{\bf{1}}_{n-a}\end{bmatrix}-\frac{1}{D^{+}}\left(\begin{bmatrix}-\lambda^{+}{\bf{1}}_{a}\\ a{\bf{1}}_{n-a}\end{bmatrix}^{\top}\mathbf{x}\right)\begin{bmatrix}-\lambda^{+}{\bf{1}}_{a}\\ a{\bf{1}}_{n-a}\end{bmatrix}.

The minimum PST time in (1) is ฯ€n\frac{\pi}{n}, and (for all sufficiently large nn) ฯ€(nโˆ’aโˆ’1)2+4โ€‹aโ€‹(nโˆ’a),\frac{\pi}{\sqrt{(n-a-1)^{2}+4a(n-a)}}, otherwise.

Proof.

This follows from Theorems 23(1) and 58, and the fact that |ฯƒ๐ฑโ€‹(M)|=2|\sigma_{\mathbf{x}}(M)|=2. โˆŽ

We close this section with the following remark.

Remark 60.

As nโ†’โˆžn\rightarrow\infty, the least minimum PST times in Corollary 59 both tend to 0, in contrast to the least minimum PST time for paths which tend to ฯ€4\frac{\pi}{4} by Remark 46. Thus, the join graphs in Corollary 59 are desirable if a smaller minimum PST time is preferred.

12 Sensitivity with respect to readout time

Suppose PST occurs between real unit vectors ๐ฑ,๐ฒโˆˆโ„n\mathbf{x},\mathbf{y}\in\mathbb{R}^{n} relative to MM at time ฯ„\tau. Define f:โ„+โ†’[0,1]f:\mathbb{R}^{+}\rightarrow[0,1] as

fโ€‹(t)=|๐ฒโŠคโ€‹eiโ€‹tโ€‹Mโ€‹๐ฑ|2.f(t)=|\mathbf{y}^{\top}e^{itM}\mathbf{x}|^{2}.

If ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} are not unit vectors, then we may define the above function as fโ€‹(t)=1โ€–๐ฑโ€–2โ€‹|๐ฒโŠคโ€‹eiโ€‹tโ€‹Mโ€‹๐ฑ|2f(t)=\frac{1}{\|\mathbf{x}\|^{2}}|\mathbf{y}^{\top}e^{itM}\mathbf{x}|^{2}. This adds a constant factor of 1โ€–๐ฑโ€–2\frac{1}{\|\mathbf{x}\|^{2}} to the above function, and so in order to simplify our calculations, we shall only deal with real unit vectors in this section.

Note that fโ€‹(t)f(t) is the analogue of the fidelity of state transfer from ๐ฑ\mathbf{x} to ๐ฒ\mathbf{y} at time tt. Following the proof of Theorem 2.2 in [Ksens], we find that for each kโˆˆโ„•,k\in\mathbb{N},

dkโ€‹fdโ€‹tk|ฯ„={(โˆ’1)kmod42โ€‹โˆ‘j=0k(โˆ’1)jโ€‹(kj)โ€‹(๐ฒโŠคโ€‹Mjโ€‹๐ฒ)โ€‹(๐ฒโŠคโ€‹Mkโˆ’jโ€‹๐ฒ)ifโ€‹kโ€‹isโ€‹even0ifโ€‹kโ€‹isโ€‹odd.\frac{d^{k}f}{dt^{k}}\Big{|}_{\tau}=\begin{cases}(-1)^{\frac{k\mod 4}{2}}\displaystyle\sum_{j=0}^{k}(-1)^{j}{{k}\choose{j}}(\mathbf{y}^{\top}M^{j}\mathbf{y})(\mathbf{y}^{\top}M^{k-j}\mathbf{y})&{\rm{if}}\ k\ \rm{is\ even}\\ 0&{\rm{if}}\ k\ \rm{is\ odd}.\end{cases} (13)

Moreover, by Lemma 18, we have ๐ฑโŠคโ€‹Mkโ€‹๐ฑ=๐ฒโŠคโ€‹Mkโ€‹๐ฒ\mathbf{x}^{\top}M^{k}\mathbf{x}=\mathbf{y}^{\top}M^{k}\mathbf{y} for all integers kโ‰ฅ0k\geq 0.

There is practical interest in determining how large or small d2โ€‹fdโ€‹t2|ฯ„\frac{d^{2}f}{dt^{2}}\Big{|}_{\tau} can be, since that will give intuition on what features govern the sensitivity of the fidelity with respect to the readout time. Taking k=2k=2 in (13) yields

d2โ€‹fdโ€‹t2|ฯ„=โˆ’2โ€‹(๐ฒโŠคโ€‹M2โ€‹๐ฒโˆ’(๐ฒโŠคโ€‹Mโ€‹๐ฒ)2).\begin{split}\frac{d^{2}f}{dt^{2}}\Big{|}_{\tau}=-2(\mathbf{y}^{\top}M^{2}\mathbf{y}-(\mathbf{y}^{\top}M\mathbf{y})^{2}).\end{split} (14)

Let ฯƒ๐ฒโ€‹(M)={ฮป1,โ€ฆ,ฮปโ„“}\sigma_{\mathbf{y}}(M)=\{\lambda_{1},\ldots,\lambda_{\ell}\} and write ๐ฒ=โˆ‘j=1โ„“cjโ€‹๐ฏj\mathbf{y}=\sum_{j=1}^{\ell}c_{j}\mathbf{v}_{j} where each ๐ฏj\mathbf{v}_{j} is a unit vector associated with ฮปj\lambda_{j}, each scalar cjโˆˆโ„\{0}c_{j}\in\mathbb{R}\backslash\{0\} and โˆ‘j=1โ„“cj2=1\sum_{j=1}^{\ell}c_{j}^{2}=1. Then

d2โ€‹fdโ€‹t2|ฯ„=2โ€‹((๐ฒโŠคโ€‹Mโ€‹๐ฒ)2โˆ’๐ฒโŠคโ€‹M2โ€‹๐ฒ)=2โ€‹((โˆ‘j=1โ„“ajโ€‹ฮปj)2โˆ’โˆ‘j=1โ„“ajโ€‹ฮปj2),\frac{d^{2}f}{dt^{2}}\Big{|}_{\tau}=2((\mathbf{y}^{\top}M\mathbf{y})^{2}-\mathbf{y}^{\top}M^{2}\mathbf{y})=2\left(\left(\sum_{j=1}^{\ell}a_{j}\lambda_{j}\right)^{2}-\sum_{j=1}^{\ell}a_{j}\lambda_{j}^{2}\right),

where aj=cj2a_{j}=c_{j}^{2} for each j=1,โ€ฆ,โ„“.j=1,\ldots,\ell. Observe that from the Cauchy-Scwarz inequality,

(โˆ‘j=1โ„“ajโ€‹ฮปj)2=(โˆ‘j=1โ„“(cjโ€‹ฮปj)โ€‹cj)2โ‰ค(โˆ‘j=1โ„“cj2โ€‹ฮปj2)โ€‹(โˆ‘j=1โ„“cj2)=โˆ‘j=1โ„“ajโ€‹ฮปj2.\left(\sum_{j=1}^{\ell}a_{j}\lambda_{j}\right)^{2}=\left(\sum_{j=1}^{\ell}(c_{j}\lambda_{j})c_{j}\right)^{2}\leq\left(\sum_{j=1}^{\ell}c_{j}^{2}\lambda_{j}^{2}\right)\left(\sum_{j=1}^{\ell}c_{j}^{2}\right)=\sum_{j=1}^{\ell}a_{j}\lambda_{j}^{2}.

We thus deduce that d2โ€‹fdโ€‹t2|ฯ„โ‰ค0.\frac{d^{2}f}{dt^{2}}\Big{|}_{\tau}\leq 0. This upper bound may be approached arbitrarily closely when ๐ฑ\mathbf{x} is of the form ฯตโ€‹๐ฎ+1โˆ’ฯต2โ€‹๐ฏ,\epsilon\mathbf{u}+\sqrt{1-\epsilon^{2}}\mathbf{v}, where ๐ฎ\mathbf{u} and ๐ฏ\mathbf{v} are unit eigenvectors corresponding to different eigenvalues, and |ฯต|>0|\epsilon|>0 is small. Furthermore, from (14), we obtain d2โ€‹fdโ€‹t2|ฯ„=0\frac{d^{2}f}{dt^{2}}\Big{|}_{\tau}=0 if and only if ๐ฒ\mathbf{y} is a unit eigenvector for MM. However, this implies that ๐ฒ\mathbf{y} is fixed by Proposition 3. That is, ๐ฒ\mathbf{y} cannot exhibit strong cospectrality, a contradiction to the fact that ๐ฒ\mathbf{y} is involved in PST. Therefore, d2โ€‹fdโ€‹t2|ฯ„<0\frac{d^{2}f}{dt^{2}}\Big{|}_{\tau}<0.

Next we seek the minimum value of (โˆ‘j=1โ„“ajโ€‹ฮปj)2โˆ’โˆ‘j=1โ„“ajโ€‹ฮปj2(\sum_{j=1}^{\ell}a_{j}\lambda_{j})^{2}-\sum_{j=1}^{\ell}a_{j}\lambda_{j}^{2} subject to the constraint that โˆ‘j=1โ„“aj=1\sum_{j=1}^{\ell}a_{j}=1 and ajโ‰ฅ0a_{j}\geq 0 for all j=1,โ€ฆ,โ„“.j=1,\ldots,\ell. Suppose that we have distinct indices j1,j2j_{1},j_{2} such that aj1,aj2>0.a_{j_{1}},a_{j_{2}}>0. For each j=1,โ€ฆ,โ„“j=1,\ldots,\ell, consider the coefficients bjb_{j} given by bj=ajb_{j}=a_{j} whenever jโ‰ j1,j2,bj1=aj1+ฯตj\neq j_{1},j_{2},b_{j_{1}}=a_{j_{1}}+\epsilon, and bj2=aj2โˆ’ฯต,b_{j_{2}}=a_{j_{2}}-\epsilon, where ฯต\epsilon is sufficiently small. It is straightforward to show that

(โˆ‘j=1โ„“bjโ€‹ฮปj)2โˆ’โˆ‘j=1โ„“bjโ€‹ฮปj2=(โˆ‘j=1โ„“ajโ€‹ฮปj)2โˆ’โˆ‘j=1โ„“ajโ€‹ฮปj2+ฯตโ€‹(ฮปj1โˆ’ฮปj2)โ€‹(2โ€‹โˆ‘j=1โ„“ajโ€‹ฮปjโˆ’(ฮปj1+ฮปj2))+ฯต2โ€‹(ฮปj1โˆ’ฮปj2)2.\begin{split}\left(\sum_{j=1}^{\ell}b_{j}\lambda_{j}\right)^{2}-\sum_{j=1}^{\ell}b_{j}\lambda_{j}^{2}&=\left(\sum_{j=1}^{\ell}a_{j}\lambda_{j}\right)^{2}-\sum_{j=1}^{\ell}a_{j}\lambda_{j}^{2}+\epsilon(\lambda_{j_{1}}-\lambda_{j_{2}})\left(2\sum_{j=1}^{\ell}a_{j}\lambda_{j}-(\lambda_{j_{1}}+\lambda_{j_{2}})\right)+\epsilon^{2}(\lambda_{j_{1}}-\lambda_{j_{2}})^{2}.\end{split} (15)

Observe that if there is a third index j3โ‰ j1,j2j_{3}\neq j_{1},j_{2} such that aj3>0,a_{j_{3}}>0, then because ฮปj2โ‰ ฮปj3\lambda_{j_{2}}\neq\lambda_{j_{3}}, we get that one of 2โ€‹โˆ‘j=1โ„“ajโ€‹ฮปjโˆ’(ฮปj1+ฮปj2)2\sum_{j=1}^{\ell}a_{j}\lambda_{j}-(\lambda_{j_{1}}+\lambda_{j_{2}}) and 2โ€‹โˆ‘j=1โ„“ajโ€‹ฮปjโˆ’(ฮปj1+ฮปj3)2\sum_{j=1}^{\ell}a_{j}\lambda_{j}-(\lambda_{j_{1}}+\lambda_{j_{3}}) is nonzero. In particular, if 2โ€‹โˆ‘j=1โ„“ajโ€‹ฮปjโˆ’(ฮปj1+ฮปj2)โ‰ 02\sum_{j=1}^{\ell}a_{j}\lambda_{j}-(\lambda_{j_{1}}+\lambda_{j_{2}})\neq 0, then by virtue of (15), we can choose a value of ฯต\epsilon so that

(โˆ‘j=1โ„“bjโ€‹ฮปj)2โˆ’โˆ‘j=1โ„“bjโ€‹ฮปj2<(โˆ‘j=1โ„“ajโ€‹ฮปj)2โˆ’โˆ‘j=1โ„“ajโ€‹ฮปj2.\left(\sum_{j=1}^{\ell}b_{j}\lambda_{j}\right)^{2}-\sum_{j=1}^{\ell}b_{j}\lambda_{j}^{2}<\left(\sum_{j=1}^{\ell}a_{j}\lambda_{j}\right)^{2}-\sum_{j=1}^{\ell}a_{j}\lambda_{j}^{2}.

In this case, (โˆ‘j=1โ„“ajโ€‹ฮปj)2โˆ’โˆ‘j=1โ„“ajโ€‹ฮปj2(\sum_{j=1}^{\ell}a_{j}\lambda_{j})^{2}-\sum_{j=1}^{\ell}a_{j}\lambda_{j}^{2} cannot attain the minimum value. So in order to find the minimum value, it suffices to focus on expressions of the form (aโ€‹ฮปj1+(1โˆ’a)โ€‹ฮปj2)2โˆ’(aโ€‹ฮปj12+(1โˆ’a)โ€‹ฮปj22)(a\lambda_{j_{1}}+(1-a)\lambda_{j_{2}})^{2}-(a\lambda_{j_{1}}^{2}+(1-a)\lambda_{j_{2}}^{2}) where aโˆˆ[0,1]a\in[0,1] and ฮปj1,ฮปj2โˆˆ{ฮป1,โ€ฆ,ฮปโ„“}.\lambda_{j_{1}},\lambda_{j_{2}}\in\{\lambda_{1},\ldots,\lambda_{\ell}\}. Let ฮปmax,ฮปmin\lambda_{\max},\lambda_{\min} denote the largest and smallest elements of {ฮป1,โ€ฆ,ฮปโ„“},\{\lambda_{1},\ldots,\lambda_{\ell}\}, respectively. Since

(aโ€‹ฮปj1+(1โˆ’a)โ€‹ฮปj2)2โˆ’(aโ€‹ฮปj12+(1โˆ’a)โ€‹ฮปj22)=โˆ’aโ€‹(1โˆ’a)โ€‹(ฮปj1โˆ’ฮปj2)2,(a\lambda_{j_{1}}+(1-a)\lambda_{j_{2}})^{2}-(a\lambda_{j_{1}}^{2}+(1-a)\lambda_{j_{2}}^{2})=-a(1-a)(\lambda_{j_{1}}-\lambda_{j_{2}})^{2},

we find that the minimum value for d2โ€‹fdโ€‹t2|ฯ„\frac{d^{2}f}{dt^{2}}\Big{|}_{\tau} is given by โˆ’12โ€‹(ฮปmaxโˆ’ฮปmin)2-\frac{1}{2}(\lambda_{\max}-\lambda_{\min})^{2}, which is attained by ๐ฑ=12โ€‹(๐ฎ+๐ฏ)\mathbf{x}=\frac{1}{\sqrt{2}}(\mathbf{u}+\mathbf{v}) and ๐ฒ=12โ€‹(๐ฎโˆ’๐ฏ),\mathbf{y}=\frac{1}{\sqrt{2}}(\mathbf{u}-\mathbf{v}), where ๐ฎ,๐ฏ\mathbf{u},\mathbf{v} are unit eigenvectors corresponding to ฮปmax\lambda_{\max} and ฮปmin,\lambda_{\min}, respectively.

We summarize the above discussion as follows.

Theorem 61.

Suppose perfect state transfer occurs between unit vectors ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} at time ฯ„\tau relative to MM. Let ฮปmax=maxโกฯƒ๐ฑโ€‹(M),ฮปmin=minโกฯƒ๐ฑโ€‹(M).\lambda_{\max}=\max\sigma_{\mathbf{x}}(M),\lambda_{\min}=\min\sigma_{\mathbf{x}}(M). Then

0>d2โ€‹fdโ€‹t2|ฯ„โ‰ฅโˆ’12โ€‹(ฮปmaxโˆ’ฮปmin)2.0>\ \frac{d^{2}f}{dt^{2}}\bigg{|}_{\tau}\ \geq\ -\frac{1}{2}(\lambda_{\max}-\lambda_{\min})^{2}.
Example 62.

Consider the Petersen graph with adjacency matrix A,A, which has eigenvalues 3,1,โˆ’23,1,-2. Let ๐ฏ1,๐ฏ2,๐ฏ3\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3} be unit eigenvectors corresponding to 3,13,1 and โˆ’2,-2, respectively and form ๐ฑโˆˆโ„10\mathbf{x}\in\mathbb{R}^{10} as ๐ฑ=c1โ€‹๐ฏ1+c2โ€‹๐ฏ2+c3โ€‹๐ฏ3\mathbf{x}=c_{1}\mathbf{v}_{1}+c_{2}\mathbf{v}_{2}+c_{3}\mathbf{v}_{3} where c1,c2,c3โˆˆโ„\{0},c12+c22+c32=1.c_{1},c_{2},c_{3}\in\mathbb{R}\backslash\{0\},c_{1}^{2}+c_{2}^{2}+c_{3}^{2}=1. Setting ๐ฒ=โˆ’c1โ€‹๐ฏ1โˆ’c2โ€‹๐ฏ2+c3โ€‹๐ฏ3\mathbf{y}=-c_{1}\mathbf{v}_{1}-c_{2}\mathbf{v}_{2}+c_{3}\mathbf{v}_{3}, we find that there is PST from ๐ฑ๐ฑโŠค\mathbf{x}\mathbf{x}^{\top} to ๐ฒ๐ฒโŠค\mathbf{y}\mathbf{y}^{\top} at time ฯ€.\pi. According to Theorem 61, d2โ€‹fdโ€‹t2|ฯ€\frac{d^{2}f}{dt^{2}}\Big{|}_{\pi} is bounded above by 0 and below by โˆ’252.-\frac{25}{2}.

Combining Theorem 61 with the proof of Corollary 59, we obtain the connected unweighted nn-vertex graphs and the unit vectors admitting PST that attain the least value of d2โ€‹fdโ€‹t2|ฯ„\frac{d^{2}f}{dt^{2}}\bigg{|}_{\tau}. These unit vectors have the most sensitive fidelity with respect to the PST time, and these are precisely those that minimize the PST time amongst all connected unweighted nn-vertex graphs.

Corollary 63.

Amongst all connected unweighted nn-vertex graphs that admit perfect state transfer between unit vectors at time ฯ„\tau relative to LL (respectively, relative to AA), the least value of d2โ€‹fdโ€‹t2|ฯ„\frac{d^{2}f}{dt^{2}}\bigg{|}_{\tau} is attained by the join graph in Theorem 58(1) (respectively, Theorem 58(2)) and unit vectors ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y}, where ๐ฒ\mathbf{y} is given in Corollary 59(1) (respectively, Corollary 59(2)).


Acknowledgement. C.ย Godsil is supported by NSERC grant no.ย RGPIN-9439. S.ย Kirkland is supported by NSERC grant no.ย RGPIN-2025-05547. H.ย Monterde is supported by the University of Manitoba Faculty of Science and Faculty of Graduate Studies. We thank the Department of Mathematics and the Graduate Mathematics Society at the University of Manitoba for supporting the research visit of C.ย Godsil, where we all started to work on this project.

References