This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Performance Analysis of Irregular Repetition Slotted Aloha with Multi-Cell Interference

Chirag Ramesh Srivatsa, and Chandra R. Murthy This work was financially supported by the Qualcomm Innovation Fellowship and the Young Faculty Research Grant from MeitY, Govt. of India. 0000-0002-3732-4733 0000-0003-4901-9434 Dept. of CPS and Dept. of ECE, Indian Institute of Science, Bangalore, India (e-mail: {chiragramesh, cmurthy}@iisc.ac.in).
Abstract

Irregular repetition slotted aloha (IRSA) is a massive random access protocol in which users transmit several replicas of their packet over a frame to a base station. Existing studies have analyzed IRSA in the single-cell (SC) setup, which does not extend to the more practically relevant multi-cell (MC) setup due to the inter-cell interference. In this work, we analyze MC IRSA, accounting for pilot contamination and multiuser interference. Via numerical simulations, we illustrate that, in practical settings, MC IRSA can have a drastic loss of throughput, up to 70%, compared to SC IRSA. Further, MC IRSA requires a significantly higher training length (about 4-5x compared to SC IRSA), in order to support the same user density and achieve the same throughput. We also provide insights into the impact of the pilot length, number of antennas, and signal to noise ratio on the performance of MC IRSA.

Index Terms:
Irregular repetition slotted aloha, pilot contamination, multi-cell interference, massive random access

I Introduction

Massive machine-type communications (mMTC) require random access protocols that serve large numbers of users [1, 2]. One such protocol is irregular repetition slotted aloha (IRSA), a successive interference cancellation (SIC) aided protocol in which users transmit multiple packet replicas in different resource blocks (RBs) [3]. Channel estimation in IRSA is accomplished using training or pilot sequences transmitted by the users at the start of their packets. Assigning mutually orthogonal pilots to users avoids pilot contamination, but is prohibitive in mMTC, since the pilot overhead would be proportional to the total number of users [4]. Thus, pilot contamination (PC), which reduces the accuracy of channel estimation and makes the estimates correlated [5], is unavoidable in mMTC, and significantly degrades the throughput of IRSA. PC is caused by both within-cell and out-of-cell users, termed intra-cell PC and inter-cell PC, respectively. The goal of this paper is to analyze the performance of IRSA, accounting for both intra-cell PC and inter-cell PC.

Initial studies on IRSA with focused on MAC [3] and path loss channels [6]. IRSA has been analyzed in a single-cell (SC) setup, accounting for intra-cell PC, estimation errors, path loss, and MIMO fading [7, 8]. Multi-user interference from users within the same cell is termed intra-cell interference and from users across cells is termed inter-cell interference. In the SC setup, only intra-cell interference affects the decoding of users since users do not face inter-cell interference. In practice, multiple base stations (BSs) are deployed to cover a large region, and thus inter-cell interference is inevitable [9]. Furthermore, MC processing (e.g., MC MMSE combining of signals) schemes can achieve better performance compared to SC processing, since it accounts for inter-cell interference [10].

Our main contributions in this paper are as follows:

  1. 1.

    We derive the channel estimates in MC IRSA accounting for path loss, MIMO fading, intra-cell PC, and inter-cell PC.

  2. 2.

    We analyze the SINR achieved in MC IRSA, accounting for PC, channel estimation errors, intra-cell interference, and inter-cell interference.

  3. 3.

    We provide insights into the effect of system parameters such as number of antennas, pilot length, and SNR on the throughput performance of MC IRSA.

To the best of our knowledge, no existing work has analyzed the effect of MC interference on IRSA. Through numerical simulations, we show that inter-cell PC and inter-cell interference result in up to 70% loss in throughput compared to the SC setup. This loss can be overcome by using about 454-5x longer pilot sequences. Thus, it is vital to account for the effects of MC interference, in order to obtain realistic insights into the performance of IRSA.

Notation: The symbols aa, 𝐚\mathbf{a}, 𝐀\mathbf{A}, [𝐀]i,:[\mathbf{A}]_{i,\mathrel{\mathop{\mathchar 58\relax}}}, [𝐀]:,j[\mathbf{A}]_{\mathrel{\mathop{\mathchar 58\relax}},j}, 𝟎N\mathbf{0}_{N}, 𝟏N,\mathbf{1}_{N}, and 𝐈N\mathbf{I}_{N} denote a scalar, a vector, a matrix, the iith row of 𝐀\mathbf{A}, the jjth column of 𝐀\mathbf{A}, all-zero vector of length NN, all ones vector of length NN, and an identity matrix of size N×NN\times N, respectively. [𝐚]𝒮[\mathbf{a}]_{\mathcal{S}} and [𝐀]:,𝒮[\mathbf{A}]_{\mathrel{\mathop{\mathchar 58\relax}},\mathcal{S}} denote the elements of 𝐚\mathbf{a} and the columns of 𝐀\mathbf{A} indexed by the set 𝒮\mathcal{S}, respectively. diag(𝐚)\text{diag}(\mathbf{a}) is a diagonal matrix with diagonal entries given by 𝐚\mathbf{a}. [N][N] denotes the set {1,2,,N}\{1,2,\ldots,N\}. |||\cdot|, \|\cdot\|, and []H[\cdot]^{H} denote the magnitude (or cardinality of a set), 2\ell_{2} norm, and Hermitian operators.

II System Model

We consider an uplink MC system with QQ cells, where each cell has an NN-antenna BS located at its center. We refer to the BS at the center of the qqth cell as the qqth BS. Every cell has MM single antenna users arbitrarily deployed within the cell who wish to communicate with their own BS. The time-frequency resource is divided into TT RBs. These TT RBs are common to all the cells, and thus, a total of QMQM users contend over the TT RBs. Each user randomly accesses a subset of the available RBs according to the IRSA protocol, and transmit packet replicas in the chosen RBs. Each replica comprises of a header containing pilot symbols for channel estimation, and a payload containing data and error correction symbols.

Refer to caption
Figure 1: An uplink MC system with QQ cells.

The access of the RBs by the users can be represented by an access pattern matrix 𝐆=[𝐆1,𝐆2,,𝐆Q]{0,1}T×QM\mathbf{G}=[\mathbf{G}_{1},\mathbf{G}_{2},\ldots,\mathbf{G}_{Q}]\in\{0,1\}^{T\times QM}. Here 𝐆j{0,1}T×M\mathbf{G}_{j}\in\{0,1\}^{T\times M} represents the access pattern matrix of the users in the jjth cell, and gtji=[𝐆j]tig_{tji}=[\mathbf{G}_{j}]_{ti} is the access coefficient such that gtji=1g_{tji}=1 if the iith user in the jjth cell transmits in the ttth RB, and gtji=0g_{tji}=0 otherwise. The iith user in the jjth cell samples its repetition factor djid_{ji} from a preset probability distribution. It then chooses djid_{ji} RBs from the TT RBs uniformly at random for transmission. The access pattern matrix is known at the BS, which is made possible by using pseudo-random matrices generated from a seed that is available at the BS and the users [8]. This can be done in an offline fashion.

The received signal at any BS in the ttth RB is a superposition of the packets transmitted by the users who choose to transmit in the ttth RB, across all cells. In the pilot phase, the iith user in the jjth cell transmits a pilot 𝐩jiτ\mathbf{p}_{ji}\in\mathbb{C}^{\tau} in all the RBs that it has chosen to transmit in, where τ\tau denotes the length of the pilot sequence. The received pilot signal at the qqth BS in the ttth RB, denoted by 𝐘tqpN×τ\mathbf{Y}_{tq}^{p}\in\mathbb{C}^{N\times\tau}, is

𝐘tqp\displaystyle{\mathbf{Y}_{tq}^{p}} =j=1Qi=1Mgtji𝐡tjiq𝐩jiH+𝐍tqp,\displaystyle=\textstyle{\sum\nolimits_{j=1}^{Q}\sum\nolimits_{i=1}^{M}}g_{tji}\mathbf{h}_{tji}^{q}\mathbf{p}_{ji}^{H}+{\mathbf{N}_{tq}^{p}}, (1)

where 𝐍tqpN×τ\mathbf{N}_{tq}^{p}\in\mathbb{C}^{N\times\tau} is the additive complex white Gaussian noise at the qqth BS with [𝐍tqp]nri.i.d.𝒞𝒩(0,N0)[{\mathbf{N}_{tq}^{p}}]_{nr}\mathrel{\overset{\text{i.i.d.}}{\scalebox{1.5}[1.0]{$\sim$}}}\mathcal{CN}(0,N_{0}) n[N],r[τ]\forall\ n\in[N],\ r\in[\tau] and t[T]t\in[T], and N0N_{0} is the noise variance. Here, 𝐡tjiqN\mathbf{h}_{tji}^{q}\in\mathbb{C}^{N} is the uplink channel vector between the iith user in the jjth cell and the qqth BS on the ttth RB. The fading is modeled as block-fading, quasi-static and Rayleigh distributed. The uplink channel is distributed as 𝐡tjiqi.i.d.𝒞𝒩(𝟎N,βjiqσh2𝐈N),t[T],i[M]\mathbf{h}_{tji}^{q}\mathrel{\overset{\text{i.i.d.}}{\scalebox{1.5}[1.0]{$\sim$}}}\mathcal{CN}(\mathbf{0}_{N},\beta_{ji}^{q}\sigma_{h}^{2}\mathbf{I}_{N}),\ \forall\ t\in[T],\ i\in[M] and j[Q]j\in[Q], where σh2\sigma_{h}^{2} is the fading variance, and βjiq\beta_{ji}^{q} is the path loss coefficient between the iith user in the jjth cell and the qqth BS.

In the data phase, the received data signal at the qqth BS in the ttth RB is denoted by 𝐲tqN\mathbf{y}_{tq}\in\mathbb{C}^{N} and is given by

𝐲tq\displaystyle{\mathbf{y}_{tq}} =j=1Qi=1Mgtji𝐡tjiqxji+𝐧tq,\displaystyle=\textstyle{\sum\nolimits_{j=1}^{Q}\sum\nolimits_{i=1}^{M}}g_{tji}\mathbf{h}_{tji}^{q}x_{ji}+{\mathbf{n}_{tq}}, (2)

where xjix_{ji} is a data symbol with 𝔼[xji]=0\mathbb{E}[x_{ji}]=0 and 𝔼[|xji|2]=pji\mathbb{E}[|x_{ji}|^{2}]=p_{ji}, i.e., with transmit power pjip_{ji}, and 𝐧tqN\mathbf{n}_{tq}\in\mathbb{C}^{N} is the complex additive white Gaussian noise at the BS, with [𝐧tq]ni.i.d.𝒞𝒩(0,N0),[\mathbf{n}_{tq}]_{n}\mathrel{\overset{\text{i.i.d.}}{\scalebox{1.5}[1.0]{$\sim$}}}\mathcal{CN}(0,N_{0}), n[N]\forall\ n\in[N] and t[T]t\in[T].

II-1 SIC-based Decoding

In this work, the decoding of a packet is abstracted into an signal to interference plus noise ratio (SINR) threshold model. Here, if the SINR of a packet in a given RB in any decoding iteration exceeds a threshold γth\gamma_{\text{th}}, then the packet can be decoded correctly [6, 11].

We now describe the performance evaluation of IRSA via the SINR threshold model. In each cell, the BS computes channel estimates and the SINRs of all users in all RBs. If it finds a user with SINR γth\geq\gamma_{\text{th}} in some RB, it marks that user’s packet as decoded, and performs SIC from all RBs in which the same user has transmitted a replica. This process of estimation and decoding is carried out iteratively. Decoding stops when no more users are decoded in two successive iterations. The throughput is calculated as the number of correctly decoded packets divided by the number of RBs.

II-2 Power Control

To ensure fairness among users within each cell, we implement a power control policy. Each user performs path loss inversion with respect to the BS in its own cell [12]. That is, the iith user in the jjth cell transmits its symbol xjix_{ji} at a power pjip_{ji}, i.e., 𝔼[|xji|2]=pji\mathbb{E}[|x_{ji}|^{2}]=p_{ji}, according to pji=P/βjijp_{ji}={P}/{\beta_{ji}^{j}}, where PP is a design parameter. The same power control policy is used in the pilot phase where the transmit power of the iith user in the jjth cell is pjiP=Pτ/βjijp_{ji}^{P}={P_{\tau}}/{\beta_{ji}^{j}}, and PτPP_{\tau}\geq P is a design parameter, with 𝐩ji2=τpjiP\|\mathbf{p}_{ji}\|^{2}=\tau p_{ji}^{P}. This ensures a uniform SNR at the BS across all users, with the pilot SNR being Pτσh2/N0P_{\tau}\sigma_{h}^{2}/N_{0} and the data SNR being Pσh2/N0P\sigma_{h}^{2}/N_{0}. This ensures the power disparity between cell edge users and users located near the BS is reduced, thus ensuring fairness [12].

III Channel Estimation

Channel estimation is performed based on the received pilot signal in each cell. The signals and the channel estimates are indexed by the decoding iteration kk, since they are recomputed in every iteration. We denote the set of users in the jjth cell who have not yet been decoded up to the kkth decoding iteration by 𝒮kj\mathcal{S}_{kj}. For some m𝒮kjm\in\mathcal{S}_{kj}, let 𝒮kjm𝒮kj{m},\mathcal{S}_{kj}^{m}\triangleq\mathcal{S}_{kj}\setminus\{m\}, with 𝒮1j=[M]\mathcal{S}_{1j}=[M]. Let the set of all cell indices be denoted by 𝒬{1,2,,Q}\mathcal{Q}\triangleq\{1,2,\ldots,Q\}, and let 𝒬q𝒬{q}\mathcal{Q}^{q}\triangleq\mathcal{Q}\setminus\{q\}. The received pilot signal at the qqth BS in the ttth RB in the kkth decoding iteration is given by

𝐘tqpk\displaystyle{\mathbf{Y}_{tq}^{pk}} =i𝒮kqgtqi𝐡tqiq𝐩qiH+j𝒬qi𝒮1jgtji𝐡tjiq𝐩jiH+𝐍tqp,\displaystyle=\textstyle{\sum\limits_{i\in\mathcal{S}_{kq}}}g_{tqi}\mathbf{h}_{tqi}^{q}\mathbf{p}_{qi}^{H}+\textstyle{\sum\limits_{j\in\mathcal{Q}^{q}}\sum\limits_{i\in\mathcal{S}_{1j}}}g_{tji}\mathbf{h}_{tji}^{q}\mathbf{p}_{ji}^{H}+{\mathbf{N}_{tq}^{p}}, (3)

where the first term contains signals from users within the qqth cell who have not yet been decoded up to the kkth decoding iteration, i.e., i𝒮kq\forall i\in\mathcal{S}_{kq}. The second term contains signals from all users outside the qqth cell, i.e., from every i𝒮1j,j𝒬qi\in\mathcal{S}_{1j},\forall j\in\mathcal{Q}^{q}. We note that there is no coordination among BSs, and thus, all the users outside the qqth cell do not get decoded by the qqth BS, and they permanently interfere with the decoding of users in other cells, across all the decoding iterations.

Let 𝒢tq{i𝒮1q|gtqi=1}\mathcal{G}_{tq}\triangleq\{i\in\mathcal{S}_{1q}|g_{tqi}=1\} denote the set of users within the qqth cell who have transmitted in the ttth RB, with Mtq=|𝒢tq|M_{tq}=|\mathcal{G}_{tq}|. We denote the set of users in the qqth cell who have transmitted on the ttth RB but have not yet been decoded up to the kkth decoding iteration by tqqk𝒢tq𝒮kq,\mathcal{M}_{tq}^{qk}\triangleq\mathcal{G}_{tq}\cap\mathcal{S}_{kq}, with Mtqqk|tqqk|{M}_{tq}^{qk}\triangleq|\mathcal{M}_{tq}^{qk}|. Let 𝐇tjq[𝐡tj1q,𝐡tj2q,𝐡tjMq]\mathbf{H}_{tj}^{q}\triangleq[\mathbf{h}_{tj1}^{q},\mathbf{h}_{tj2}^{q},\ldots\mathbf{h}_{tjM}^{q}] contain the uplink channels between all the users in the jjth cell and the qqth BS, with 𝐇tqqk[𝐇tqq]:,tqqk\mathbf{H}_{tq}^{qk}\triangleq[\mathbf{H}_{tq}^{q}]_{\mathrel{\mathop{\mathchar 58\relax}},\mathcal{M}_{tq}^{qk}} and 𝐇tjqk[𝐇tjq]:,𝒢tj,j𝒬q\mathbf{H}_{tj}^{qk}\triangleq[\mathbf{H}_{tj}^{q}]_{\mathrel{\mathop{\mathchar 58\relax}},\mathcal{G}_{tj}},\forall j\in\mathcal{Q}^{q}. Let 𝐏j[𝐩j1,𝐩j2,,𝐩jM]\mathbf{P}_{j}\triangleq[\mathbf{p}_{j1},\mathbf{p}_{j2},\ldots,\mathbf{p}_{jM}] contain the pilots of all users within the jjth cell, with 𝐏tqqk[𝐏q]:,tqqk\mathbf{P}_{tq}^{qk}\triangleq[\mathbf{P}_{q}]_{\mathrel{\mathop{\mathchar 58\relax}},\mathcal{M}_{tq}^{qk}} and 𝐏tjqk[𝐏j]:,𝒢tj,j𝒬q\mathbf{P}_{tj}^{qk}\triangleq[\mathbf{P}_{j}]_{\mathrel{\mathop{\mathchar 58\relax}},\mathcal{G}_{tj}},\forall j\in\mathcal{Q}^{q}. Let 𝐁jqσh2diag(βj1q,βj2q,,βjMq)\mathbf{B}_{j}^{q}\triangleq\sigma_{h}^{2}\text{diag}(\beta_{j1}^{q},\beta_{j2}^{q},\ldots,\beta_{jM}^{q}) contain the path loss coefficients between the users within the jjth cell and the qqth BS, with 𝐁tqqk[𝐁qq]:,tqqk\mathbf{B}_{tq}^{qk}\triangleq[\mathbf{B}_{q}^{q}]_{\mathrel{\mathop{\mathchar 58\relax}},\mathcal{M}_{tq}^{qk}} and 𝐁tjqk[𝐁jq]:,𝒢tj,j𝒬q\mathbf{B}_{tj}^{qk}\triangleq[\mathbf{B}_{j}^{q}]_{\mathrel{\mathop{\mathchar 58\relax}},\mathcal{G}_{tj}},\forall j\in\mathcal{Q}^{q}. Thus, the received pilot signal from (3) can be written as

𝐘tqpk\displaystyle{\mathbf{Y}_{tq}^{pk}} =𝐇tqqk𝐏tqqkH+j𝒬q𝐇tjqk𝐏tjqkH+𝐍tqp=𝐇¯tqqk𝐏¯tqkH+𝐍tqp,\displaystyle=\mathbf{H}_{tq}^{qk}\mathbf{P}_{tq}^{qkH}\!\!+\!\!\textstyle{\sum\limits_{j\in\mathcal{Q}^{q}}}\mathbf{H}_{tj}^{qk}\mathbf{P}_{tj}^{qkH}\!\!+\!{\mathbf{N}_{tq}^{p}}=\bar{\mathbf{H}}_{tq}^{qk}\bar{\mathbf{P}}_{tq}^{kH}\!+\!{\mathbf{N}_{tq}^{p}},

where 𝐇¯tqqk[𝐇tqqk,𝐇t1qk,,𝐇tq1qk,𝐇tq+1qk,,𝐇tQqk]N×M¯tqqk\bar{\mathbf{H}}_{tq}^{qk}\triangleq[\mathbf{H}_{tq}^{qk},\mathbf{H}_{t1}^{qk},\ldots,\mathbf{H}_{tq-1}^{qk},\mathbf{H}_{tq+1}^{qk},\ldots,\mathbf{H}_{tQ}^{qk}]\in\mathbb{C}^{N\times\bar{M}_{tq}^{qk}}, with M¯tqqkMtqqk+j𝒬qMtj\bar{M}_{tq}^{qk}\triangleq{M}_{tq}^{qk}+\sum_{j\in\mathcal{Q}^{q}}{M}_{tj}, and 𝐏¯tqk[𝐏tqqk,𝐏t1qk,,𝐏tq1qk,𝐏tq+1qk,,𝐏tQqk]τ×M¯tqqk\bar{\mathbf{P}}_{tq}^{k}\triangleq[\mathbf{P}_{tq}^{qk},\mathbf{P}_{t1}^{qk},\ldots,\mathbf{P}_{tq-1}^{qk},\mathbf{P}_{tq+1}^{qk},\ldots,\mathbf{P}_{tQ}^{qk}]\in\mathbb{C}^{\tau\times\bar{M}_{tq}^{qk}}. We define 𝐁¯tqqk[𝐁tqqk,𝐁t1qk,,𝐁tq1qk,𝐁tq+1qk,,𝐁tQqk]M¯tqqk×M¯tqqk\bar{\mathbf{B}}_{tq}^{qk}\triangleq[\mathbf{B}_{tq}^{qk},\mathbf{B}_{t1}^{qk},\ldots,\mathbf{B}_{tq-1}^{qk},\mathbf{B}_{tq+1}^{qk},\ldots,\mathbf{B}_{tQ}^{qk}]\in\mathbb{C}^{\bar{M}_{tq}^{qk}\times\bar{M}_{tq}^{qk}} to derive the channel estimate. Let 𝐂¯tqk𝐏¯tqk𝐁¯tqqk(𝐏¯tqkH𝐏¯tqk𝐁¯tqqk+N0𝐈M¯tqqk)1,\bar{\mathbf{C}}_{t}^{qk}\!\triangleq\!\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}(\bar{\mathbf{P}}_{tq}^{kH}\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}+N_{0}\mathbf{I}_{\bar{M}_{tq}^{qk}})^{-1}\!\!, be split as 𝐂¯tqk=[𝐂tqqk,𝐂t1qk,,𝐂tq1qk,𝐂tq+1qk,,𝐂tQqk]\bar{\mathbf{C}}_{t}^{qk}=[\mathbf{C}_{tq}^{qk},\mathbf{C}_{t1}^{qk},\ldots,\mathbf{C}_{tq-1}^{qk},\mathbf{C}_{tq+1}^{qk},\ldots,\mathbf{C}_{tQ}^{qk}], and 𝐜tjiqk[𝐂tjqk]:,i\mathbf{c}_{tji}^{qk}\triangleq[{\mathbf{C}}_{tj}^{qk}]_{\mathrel{\mathop{\mathchar 58\relax}},i}.

Theorem 1.

The minimum mean squared error (MMSE) channel estimate 𝐇¯^tqqk\hat{\bar{\mathbf{H}}}_{tq}^{qk} of 𝐇¯tqqk\bar{\mathbf{H}}_{tq}^{qk} in the ttth RB in the kkth decoding iteration at the qqth BS can be calculated as

𝐇¯^tqqk\displaystyle\hat{\bar{\mathbf{H}}}_{tq}^{qk} =𝐘tqpk𝐏¯tqk𝐁¯tqqk(𝐏¯tqkH𝐏¯tqk𝐁¯tqqk+N0𝐈M¯tqqk)1.\displaystyle={\mathbf{Y}_{tq}^{pk}}\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}(\bar{\mathbf{P}}_{tq}^{kH}\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}+N_{0}\mathbf{I}_{\bar{M}_{tq}^{qk}})^{-1}. (4)

Further, the estimation error 𝐡~tjiqk𝐡^tjiqk𝐡tjiq\tilde{\mathbf{h}}_{tji}^{qk}\triangleq\hat{\mathbf{h}}_{tji}^{qk}-{\mathbf{h}}_{tji}^{q} is distributed as 𝐡~tjiqk𝒞𝒩(𝟎N,δtjiqk𝐈N)\tilde{\mathbf{h}}_{tji}^{qk}\sim\mathcal{CN}(\mathbf{0}_{N},\delta_{tji}^{qk}\mathbf{I}_{N}), where δtjiqk\delta_{tji}^{qk} is calculated as

δtjiqk=βjiqσh2(N0𝐜tjiqk2+n𝒮kji|𝐩qnH𝐜tjiqk|2gtqnβqnqσh2+l𝒬qn𝒮1j|𝐩lnH𝐜tjiqk|2gtlnβlnqσh2N0𝐜tjiqk2+n𝒮kj|𝐩qnH𝐜tjiqk|2gtqnβqnqσh2+l𝒬qn𝒮1j|𝐩lnH𝐜tjiqk|2gtlnβlnqσh2).\displaystyle\delta_{tji}^{qk}=\beta_{ji}^{q}\sigma_{h}^{2}\left(\!\!\frac{\begin{array}[]{l}N_{0}\|\mathbf{c}_{tji}^{qk}\|^{2}+\sum\nolimits_{n\in\mathcal{S}_{kj}^{i}}|\mathbf{p}_{qn}^{H}\mathbf{c}_{tji}^{qk}|^{2}g_{tqn}\beta_{qn}^{q}\sigma_{h}^{2}\\ +\sum\nolimits_{l\in\mathcal{Q}^{q}}\sum\nolimits_{n\in\mathcal{S}_{1j}}|\mathbf{p}_{ln}^{H}\mathbf{c}_{tji}^{qk}|^{2}g_{tln}\beta_{ln}^{q}\sigma_{h}^{2}\end{array}}{\begin{array}[]{l}N_{0}\|\mathbf{c}_{tji}^{qk}\|^{2}+\sum\nolimits_{n\in\mathcal{S}_{kj}}|\mathbf{p}_{qn}^{H}\mathbf{c}_{tji}^{qk}|^{2}g_{tqn}\beta_{qn}^{q}\sigma_{h}^{2}\\ +\sum\nolimits_{l\in\mathcal{Q}^{q}}\sum\nolimits_{n\in\mathcal{S}_{1j}}|\mathbf{p}_{ln}^{H}\mathbf{c}_{tji}^{qk}|^{2}g_{tln}\beta_{ln}^{q}\sigma_{h}^{2}\end{array}}\!\!\right)\!\!.
Proof.

See Appendix A. ∎

Remark 1: The estimate 𝐇¯^tqqk\hat{\bar{\mathbf{H}}}_{tq}^{qk} can also be calculated as 𝐇¯^tqqk=𝐘tqpk(𝐏¯tqk𝐁¯tqqk𝐏¯tqkH+N0𝐈τ)1𝐏¯tqk𝐁¯tqqk,\hat{\bar{\mathbf{H}}}_{tq}^{qk}={\mathbf{Y}_{tq}^{pk}}(\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}\bar{\mathbf{P}}_{tq}^{kH}+N_{0}\mathbf{I}_{\tau})^{-1}\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}, (a τ×τ\tau\times\tau inverse.) Theorem 1 is applicable for any choice of (possibly non-orthogonal) pilots. We now discuss the case where pilots are reused by users within and across cells.

III-1 Pilot Reuse

Channel estimation is done based on a pilot codebook {ϕi}i=1τ\{\bm{\phi}_{i}\}_{i=1}^{\tau} of τ\tau orthogonal pilots [12], with each ϕiτ\bm{\phi}_{i}\in\mathbb{C}^{\tau}, such that ϕiHϕj=0,ij\bm{\phi}_{i}^{H}\bm{\phi}_{j}=0,\forall i\neq j, and ϕi2=τPτ\|\bm{\phi}_{i}\|^{2}=\tau P_{\tau}. Here PτP_{\tau} is the pilot power, and the pilot codebook is the same across all cells. Each user uses a pilot from this codebook, and thus, many users share the same pilot sequence, possibly, both within the cell and out of the cell, leading to pilot contamination. Since τ<M\tau<M, both intra-cell PC and inter-cell PC occur.

Let 𝒫ji\mathcal{P}_{ji} denote the set of users that reuse the pilot of the iith user in the jjth cell. With this codebook, the channel estimate is distributed as 𝐡^tjiqk𝒞𝒩(𝟎N,ςtjiqk𝐈N)\hat{\mathbf{h}}_{tji}^{qk}\sim\mathcal{CN}(\mathbf{0}_{N},\varsigma_{tji}^{qk}\mathbf{I}_{N}), where ςtjiqk=τPτgtjiβjiq2σh4(N0+n𝒮kj𝒫jiτPτgtqnβqnqσh2+l𝒬qn𝒮1j𝒫liτPτgtlnβlnqσh2),\varsigma_{tji}^{qk}=\dfrac{\tau P_{\tau}g_{tji}\beta_{ji}^{q2}\sigma_{h}^{4}}{\left(\begin{array}[]{l}N_{0}+\sum\nolimits_{n\in\mathcal{S}_{kj}\cap\mathcal{P}_{ji}}\tau P_{\tau}g_{tqn}\beta_{qn}^{q}\sigma_{h}^{2}\\ +\sum\nolimits_{l\in\mathcal{Q}^{q}}\sum\nolimits_{n\in\mathcal{S}_{1j}\cap\mathcal{P}_{li}}\tau P_{\tau}g_{tln}\beta_{ln}^{q}\sigma_{h}^{2}\end{array}\right)}, and the estimation error variance is calculated as δtjiqk=βjiqσh2ςtjiqk.\delta_{tji}^{qk}=\beta_{ji}^{q}\sigma_{h}^{2}-\varsigma_{tji}^{qk}.

IV Performance Analysis

Let ρtqmk\rho_{tqm}^{k} denote the SINR of the mmth user in the qqth cell at the qqth BS in the ttth RB in the kkth decoding iteration. Similar to (2), the received data signal at the qqth BS in the ttth RB in the kkth decoding iteration is given by

𝐲tqk\displaystyle{\mathbf{y}_{tq}^{k}} =i𝒮kqgtqi𝐡tqiqxqi+j𝒬qi𝒮1jgtji𝐡tjiqxji+𝐧tq.\displaystyle=\textstyle{\sum\limits_{i\in\mathcal{S}_{kq}}}g_{tqi}\mathbf{h}_{tqi}^{q}x_{qi}+\textstyle{\sum\limits_{j\in\mathcal{Q}^{q}}\sum\limits_{i\in\mathcal{S}_{1j}}}g_{tji}\mathbf{h}_{tji}^{q}x_{ji}+{\mathbf{n}_{tq}}. (5)
y~tqmk=gtqmxqm𝐚tqmkH𝐡^tqmqkgtqmxqm𝐚tqmkH𝐡~tqmqk+i𝒮kqmgtqixqi𝐚tqmkH𝐡tqiq+j𝒬qi𝒮1jgtjixji𝐚tqmkH𝐡tjiq+𝐚tqmkH𝐧tq.\displaystyle\tilde{y}_{tqm}^{k}=g_{tqm}x_{qm}\mathbf{a}_{tqm}^{kH}\hat{\mathbf{h}}_{tqm}^{qk}-g_{tqm}x_{qm}\mathbf{a}_{tqm}^{kH}\tilde{\mathbf{h}}_{tqm}^{qk}+\textstyle{\sum\limits_{i\in\mathcal{S}_{kq}^{m}}}g_{tqi}x_{qi}\mathbf{a}_{tqm}^{kH}\mathbf{h}_{tqi}^{q}+\textstyle{\sum\limits_{j\in\mathcal{Q}^{q}}\sum\limits_{i\in\mathcal{S}_{1j}}}g_{tji}x_{ji}\mathbf{a}_{tqm}^{kH}\mathbf{h}_{tji}^{q}+\mathbf{a}_{tqm}^{kH}{\mathbf{n}_{tq}}. (6)

We use a combining vector 𝐚tqmkN\mathbf{a}_{tqm}^{k}\in\mathbb{C}^{N} to obtain the post-combined data signal y~tqmk=𝐚tqmkH𝐲tqk\tilde{y}_{tqm}^{k}=\mathbf{a}_{tqm}^{kH}{\mathbf{y}_{tq}^{k}} as in (6), with 𝐡~tqmqk\tilde{\mathbf{h}}_{tqm}^{qk} as defined in Theorem 1. This combined signal, used to decode the mmth user in the qqth cell, is composed of five terms. The first term gtqmxqm𝐚tqmkH𝐡^tqmqkg_{tqm}x_{qm}\mathbf{a}_{tqm}^{kH}\hat{\mathbf{h}}_{tqm}^{qk} is the useful signal component of the mmth user; the term gtqmxqm𝐚tqmkH𝐡~tqmqkg_{tqm}x_{qm}\mathbf{a}_{tqm}^{kH}\tilde{\mathbf{h}}_{tqm}^{qk} arises due to the estimation error 𝐡~tqmk\tilde{\mathbf{h}}_{tqm}^{k}; the term i𝒮kqmgtqixqi𝐚tqmkH𝐡tqiq\sum\nolimits_{i\in\mathcal{S}_{kq}^{m}}g_{tqi}x_{qi}\mathbf{a}_{tqm}^{kH}\mathbf{h}_{tqi}^{q} represents the intra-cell interference from the users within the qqth cell who have transmitted in the ttth RB and have not yet been decoded up to the kkth decoding iteration; the term j𝒬qi𝒮1jgtjixji𝐚tqmkH𝐡tjiq\sum\nolimits_{j\in\mathcal{Q}^{q}}\sum\nolimits_{i\in\mathcal{S}_{1j}}g_{tji}x_{ji}\mathbf{a}_{tqm}^{kH}\mathbf{h}_{tji}^{q} models the inter-cell interference from users outside the qqth cell; and the last term 𝐚tqmkH𝐧tq\mathbf{a}_{tqm}^{kH}{\mathbf{n}_{tq}} is the additive noise. We now present the SINR for all the users.

Theorem 2.

The signal to interference plus noise ratio (SINR) achieved by the mmth user within the qqth cell at the qqth BS in the ttth RB and the kkth decoding iteration can be written as

ρtqmk\displaystyle\rho_{tqm}^{k} =𝙶𝚊𝚒𝚗tqmkN0+𝙸𝚗𝙲𝙸tqmk+𝙴𝚜𝚝tqmk+𝙸𝙲𝙸tqmk,m𝒮kq,\displaystyle\!=\!\dfrac{{\tt{Gain}}_{tqm}^{k}}{N_{0}+{\tt{InCI}}_{tqm}^{k}+{\tt{Est}}_{tqm}^{k}+{\tt{ICI}}_{tqm}^{k}},\forall m\in\mathcal{S}_{kq}, (7)

where

𝙶𝚊𝚒𝚗tqmk\displaystyle{\tt{Gain}}_{tqm}^{k} pqmgtqm|𝐚tqmkH𝐡^tqmqk|2/𝐚tqmk2,\displaystyle\triangleq p_{qm}g_{tqm}\textstyle{{|{\mathbf{a}}_{tqm}^{kH}\hat{\mathbf{h}}_{tqm}^{qk}|^{2}}/{\|{\mathbf{a}}_{tqm}^{k}\|^{2}}},
𝙸𝚗𝙲𝙸tqmk\displaystyle{\tt{InCI}}_{tqm}^{k} i𝒮kqmpqigtqi|𝐚tqmkH𝐡^tqiqk|2/𝐚tqmk2,\displaystyle\triangleq\textstyle{\sum\nolimits_{i\in\mathcal{S}_{kq}^{m}}}p_{qi}g_{tqi}{|{\mathbf{a}}_{tqm}^{kH}\hat{\mathbf{h}}_{tqi}^{qk}|^{2}}/{\|{\mathbf{a}}_{tqm}^{k}\|^{2}},
𝙴𝚜𝚝tqmk\displaystyle{\tt{Est}}_{tqm}^{k} i𝒮kqpqigtqiδtqiqk+j𝒬qi𝒮1jpjigtjiδtjiqk,\displaystyle\triangleq\textstyle{\sum\nolimits_{i\in\mathcal{S}_{kq}}}p_{qi}g_{tqi}\delta_{tqi}^{qk}+\textstyle{\sum\nolimits_{j\in\mathcal{Q}^{q}}\sum\nolimits_{i\in\mathcal{S}_{1j}}}p_{ji}g_{tji}\delta_{tji}^{qk},
𝙸𝙲𝙸tqmk\displaystyle{\tt{ICI}}_{tqm}^{k} j𝒬qi𝒮1jpjigtji|𝐚tqmkH𝐡^tjiqk|2/𝐚tqmk2.\displaystyle\triangleq\textstyle{\sum\nolimits_{j\in\mathcal{Q}^{q}}\sum\nolimits_{i\in\mathcal{S}_{1j}}}p_{ji}g_{tji}{|{\mathbf{a}}_{tqm}^{kH}\hat{\mathbf{h}}_{tji}^{qk}|^{2}}/{\|{\mathbf{a}}_{tqm}^{k}\|^{2}}.

The channel estimates 𝐡^tjiqk\hat{\mathbf{h}}_{tji}^{qk} and the error variances δtjiqk\delta_{tji}^{qk} in the above expressions are obtained from Theorem 1.

Proof.

See Appendix B. ∎

Remark 2: The SINR derived in Theorem 2 holds for any choice of the combining vector 𝐚tqmk\mathbf{a}_{tqm}^{k}, the pilots, and the power control policy. The first Mtqqk{M}_{tq}^{qk} columns of the combining matrix 𝐀tqkN×M¯tqqk\mathbf{A}_{tq}^{k}\in\mathbb{C}^{N\times\bar{M}_{tq}^{qk}} is used at the qqth BS to decode the Mtqqk{M}_{tq}^{qk} users within the qqth cell who have not yet been decoded up to the kkth decoding iteration in the ttth RB. The SINR in (7) is maximized by multi-cell MMSE combining [10], under which the optimal combining matrix can be evaluated as

𝐀tqk=𝐇¯^tqqk𝐃¯ptqqk((N0+𝙴𝚜𝚝tmk)𝐈M¯tqqk+𝐇¯^tqqH𝐇¯^tqqk𝐃¯ptqqk)1,\displaystyle\mathbf{A}_{tq}^{k}=\hat{\bar{\mathbf{H}}}_{tq}^{qk}\bar{\mathbf{D}}_{ptq}^{qk}((N_{0}+{\tt{Est}}_{tm}^{k})\mathbf{I}_{\bar{M}_{tq}^{qk}}+\hat{\bar{\mathbf{H}}}_{tq}^{qH}\hat{\bar{\mathbf{H}}}_{tq}^{qk}\bar{\mathbf{D}}_{ptq}^{qk})^{-1}\!\!\!\!\!\!,
=((N0+𝙴𝚜𝚝tmk)𝐈N+𝐇¯^tqqk𝐃¯ptqqk𝐇¯^tqqH)1𝐇¯^tqqk𝐃¯ptqqk,\displaystyle=((N_{0}+{\tt{Est}}_{tm}^{k})\mathbf{I}_{N}+\hat{\bar{\mathbf{H}}}_{tq}^{qk}\bar{\mathbf{D}}_{ptq}^{qk}\hat{\bar{\mathbf{H}}}_{tq}^{qH})^{-1}\hat{\bar{\mathbf{H}}}_{tq}^{qk}\bar{\mathbf{D}}_{ptq}^{qk},

where 𝐃pjdiag(pj1,pj2,,pjM)\mathbf{D}_{pj}\!\!\triangleq\!\!\text{diag}(p_{j1},p_{j2},\ldots,p_{jM}) contains the power coefficients of the users within the jjth cell, 𝐃¯ptqqk[𝐃ptqqk,𝐃pt1qk,,𝐃ptq1qk,𝐃ptq+1qk,,𝐃ptQqk]M¯tqqk×M¯tqqk\bar{\mathbf{D}}_{ptq}^{qk}\triangleq[\mathbf{D}_{ptq}^{qk},\mathbf{D}_{pt1}^{qk},\ldots,\mathbf{D}_{ptq-1}^{qk},\mathbf{D}_{ptq+1}^{qk},\ldots,\mathbf{D}_{ptQ}^{qk}]\in\mathbb{C}^{\bar{M}_{tq}^{qk}\times\bar{M}_{tq}^{qk}}, 𝐃ptqqk[𝐃pq]:,tqqk\mathbf{D}_{ptq}^{qk}\triangleq[\mathbf{D}_{pq}]_{\mathrel{\mathop{\mathchar 58\relax}},\mathcal{M}_{tq}^{qk}}, and 𝐃ptjqk[𝐃pj]:,𝒢tj,j𝒬q\mathbf{D}_{ptj}^{qk}\triangleq[\mathbf{D}_{pj}]_{\mathrel{\mathop{\mathchar 58\relax}},\mathcal{G}_{tj}},\forall j\in\mathcal{Q}^{q}. We note that the above MC processing outperforms the application of SC processing applied to the MC setup [10].

We now present simple and interpretable expressions for the SINR in the massive MIMO (large NN) regime, and with maximal ratio combining, i.e., 𝐚tqmk=𝐡^tqmqk\mathbf{a}_{tqm}^{k}=\hat{\mathbf{h}}_{tqm}^{qk} [10].

Theorem 3.

As the number of antennas NN gets large, the SINR with maximal ratio combining converges almost surely to

ρ¯tqmk\displaystyle\overline{\rho}_{tqm}^{k} =𝚂𝚒𝚐tqmkϵtqmk(N0+𝙸𝚗𝚝𝙽𝙲tqmk)+𝙸𝚗𝚝𝙲tqmk,\displaystyle=\frac{{\tt Sig}_{tqm}^{k}}{\epsilon_{tqm}^{k}(N_{0}+{\tt IntNC}_{tqm}^{k})+{\tt IntC}_{tqm}^{k}}, (8)

where 𝚂𝚒𝚐tqmk{\tt Sig}_{tqm}^{k} is the desired signal, 𝙸𝚗𝚝𝙽𝙲tqmk{\tt IntNC}_{tqm}^{k} represents the non-coherent interference, and 𝙸𝚗𝚝𝙲tqmk{\tt IntC}_{tqm}^{k} represents the coherent interference. These can be evaluated as

ϵtqmk\displaystyle\epsilon_{tqm}^{k}\! =(N0𝐜tqmqk2+n𝒮kj|𝐩qnH𝐜tqmqk|2gtqnβqnqσh2+l𝒬qn𝒮1j|𝐩lnH𝐜tqmqk|2gtlnβlnqσh2),\displaystyle=\!\left(\!\!\!\begin{array}[]{l}N_{0}\|\mathbf{c}_{tqm}^{qk}\|^{2}+\sum\nolimits_{n\in\mathcal{S}_{kj}}|\mathbf{p}_{qn}^{H}\mathbf{c}_{tqm}^{qk}|^{2}g_{tqn}\beta_{qn}^{q}\sigma_{h}^{2}\\ +\sum\nolimits_{l\in\mathcal{Q}^{q}}\sum\nolimits_{n\in\mathcal{S}_{1j}}|\mathbf{p}_{ln}^{H}\mathbf{c}_{tqm}^{qk}|^{2}g_{tln}\beta_{ln}^{q}\sigma_{h}^{2}\end{array}\!\!\!\right)\!\!,
𝚂𝚒𝚐tqmk\displaystyle{\tt Sig}_{tqm}^{k}\! =Npqmgtqm(ϵtqmk)2,\displaystyle=\!Np_{qm}g_{tqm}(\epsilon_{tqm}^{k})^{2}\!\!,
𝙸𝚗𝚝𝙽𝙲tqmk\displaystyle{\tt IntNC}_{tqm}^{k}\! =(pqmgtqmδtqmqk+n𝒮kjpqngtqnβqnqσh2+l𝒬qn𝒮1jplngtlnβlnqσh2),\displaystyle=\!\left(\!\!\!\begin{array}[]{l}p_{qm}g_{tqm}\delta_{tqm}^{qk}+\sum\nolimits_{n\in\mathcal{S}_{kj}}p_{qn}g_{tqn}\beta_{qn}^{q}\sigma_{h}^{2}\\ +\sum\nolimits_{l\in\mathcal{Q}^{q}}\sum\nolimits_{n\in\mathcal{S}_{1j}}p_{ln}g_{tln}\beta_{ln}^{q}\sigma_{h}^{2}\end{array}\!\!\!\right)\!\!,
𝙸𝚗𝚝𝙲tqmk\displaystyle{\tt IntC}_{tqm}^{k}\! =N(n𝒮kj|𝐩qnH𝐜tqmqk|2pqngtqnβqnq2σh4+l𝒬qn𝒮1j|𝐩lnH𝐜tqmqk|2plngtlnβlnq2σh4).\displaystyle=\!N\!\left(\!\!\!\!\begin{array}[]{l}\sum\nolimits_{n\in\mathcal{S}_{kj}}|\mathbf{p}_{qn}^{H}\mathbf{c}_{tqm}^{qk}|^{2}p_{qn}g_{tqn}\beta_{qn}^{q2}\sigma_{h}^{4}\\ +\sum\nolimits_{l\in\mathcal{Q}^{q}}\sum\nolimits_{n\in\mathcal{S}_{1j}}|\mathbf{p}_{ln}^{H}\mathbf{c}_{tqm}^{qk}|^{2}p_{ln}g_{tln}\beta_{ln}^{q2}\sigma_{h}^{4}\end{array}\!\!\!\!\right)\!\!.
Proof.

See Appendix C. ∎

Remark 3: 𝙸𝚗𝚝𝙽𝙲tqmk{\tt IntNC}_{tqm}^{k} represents the non-coherent interference that arises due to estimation errors, intra-cell interference, and inter-cell interference. 𝙸𝚗𝚝𝙲tqmk{\tt IntC}_{tqm}^{k} is the coherent interference that arises due to intra-cell PC and inter-cell PC. The former does not scale with the number of antennas NN, whereas the latter scales linearly with NN. Both inter-cell PC and inter-cell interference degrade the performance of the system [9], and thus it is vital to account for both while analyzing the performance of IRSA.

V Numerical Results

In this section, the derived SINR analysis is used to evaluate the throughput of MC IRSA via Monte Carlo simulations and provide insights into the impact of various system parameters on the performance of the system. In each simulation, we generate independent realizations of the user locations, the access pattern matrix, and the channels. The throughput in each run is calculated as described in Sec. II-1, and the effective system throughput is calculated by averaging over the runs. We consider a set of Q=9Q=9 square cells, stacked in a 3×33\times 3 grid, and report the performance of the center cell [5]. Each cell has MM users spread uniformly at random across an area of 250×250250\times 250 m2, with the BS at the center [10].111Due to path loss inversion, the area of the cell does not significantly affect the throughput, but affects the area spectral efficiency, which we do not analyze here.

Refer to caption
Figure 2: Effect of load LL with τ=M\tau=M.
Refer to caption
Figure 3: Impact of pilot length τ\tau with N=32N=32.
Refer to caption
Figure 4: Effect of number of antennas NN with τ=M\tau=M.
Refer to caption
Figure 5: Impact of SNR with τ=M\tau=M.

The results in this section are for T=50T=50 RBs, Ns=103N_{s}=10^{3} Monte Carlo runs, σh2=1\sigma_{h}^{2}=1, SINR threshold γth=10\gamma_{\text{th}}=10. The number of users contending for the TT RBs in each cell is computed based on the load LL as M=LTM=\lfloor LT\rceil. The path loss is calculated as βjiq\beta_{ji}^{q} (dB) =37.6log10(djiq/10m)=-37.6\log_{10}(d_{ji}^{q}/10{\text{m}}), where djiqd_{ji}^{q} is the distance of the iith user in the jjth cell from the qqth BS [10]. The pilot sequences are chosen as the columns of the τ×τ\tau\times\tau discrete Fourier transform matrix normalized to have column norm τPτ\sqrt{\tau P_{\tau}}. The soliton distribution [7] with dmax=8d_{\max}=8 maximum repetitions is used to generate the repetition factor djid_{ji}, for the iith user in the jjth cell, whose access vector is formed by uniformly randomly choosing djid_{ji} RBs from TT RBs without replacement [3].222The soliton distribution has been shown to achieve 96% of the throughput that can be achieved with the optimal repetition distribution [6]. The access pattern matrix is formed by stacking the access vectors of all the users. The power level is set to P=Pτ=10P=P_{\tau}=10 dBm [10] and N0N_{0} is chosen such that the data and pilot SNR are 1010 dB, unless otherwise stated.

In Fig. 2, we show the effect of the load LL on the center cell’s throughput 𝒯C\mathcal{T}_{C}. All the curves increase linearly till a peak, which is the desired region of operation, and then drop quickly to zero as the system becomes interference limited. All the users’ packets are successfully decoded in the linear region of increase, and at high LL, beyond the peak, the throughputs drop to zero. For N=8,γth=10,N=8,\gamma_{\rm th}=10, we see a 70% drop in the peak throughput from 𝒯C=4\mathcal{T}_{C}=4 at L=4L=4 for SC to 𝒯C=1.2\mathcal{T}_{C}=1.2 at L=1.2L=1.2 for MC. This is because users face a high degree of inter-cell interference in the MC setup, unlike the SC setup, especially at high LL. In the SC setup, the peak throughput reduces from 𝒯C=4\mathcal{T}_{C}=4 for N=8N=8 to 𝒯C=3\mathcal{T}_{C}=3 at L=3L=3 for N=4N=4. This trend is similar to the MC setup for which the peak throughputs are 𝒯C=4,2.6,1.2\mathcal{T}_{C}=4,2.6,1.2 for N=32,16,8N=32,16,8, respectively. This is because the system’s interference suppression ability with MMSE combining reduces as we decrease NN [10]. This holds true with γth=6\gamma_{\rm th}=6 also, which corresponds to a lower SINR threshold, and consequently higher 𝒯C\mathcal{T}_{C}. To summarize, at high LL, there is a high degree of inter-cell interference which SC processing does not account for, resulting in a substantial drop in performance.

Fig. 3 studies the impact of the pilot length τ\tau. The performance of SC IRSA at all LL is optimal (note that the throughput is upper bounded by LL) for τ>10\tau>10. In MC IRSA, nearly optimal throughputs are achieved for L=1,2,3L=1,2,3 at τ=10,30,40\tau=10,30,40, respectively. The throughput for L=4L=4 does not improve much with τ\tau. At high LL, the impact of inter-cell interference is severe, as expected. Increasing τ\tau implies that each cell has a higher number of orthogonal pilots, and hence can help in reducing intra-cell PC, but the system is still impacted by inter-cell PC and inter-cell interference. Thus, we see that MC IRSA requires significantly higher τ\tau (at least 454-5x) to overcome inter-cell PC and inter-cell interference to achieve the same performance as that of SC IRSA.

In Fig. 4, we study the effect of NN for L=1,2,3,4L=1,2,3,4, with SNR =10,5=10,-5 dB. Nearly optimal throughputs can be achieved with N=8,16,32,32N=8,16,32,32 for SNR =10=10 dB, and with N=64N=64 for SNR =5=-5 dB. The system performance improves because of the array gain and higher interference suppression ability at high NN. This aids in reducing not only intra-cell interference, but also inter-cell interference. However, as discussed in Remark 3, the SINRs of the users have a coherent interference component that scales with NN. Thus, while an increase in NN helps reducing intra-cell interference and inter-cell interference, and improves the system performance, it does not reduce intra-cell PC and inter-cell PC. Similar observations about NN can be made where we study the impact of SNR in Fig. 5. At very low SNR, the system is noise limited, and increasing NN does not help increase the throughput, which is at zero. For N=16N=16, the throughput is always zero and nearly zero for L=4L=4 and L=3L=3, respectively. Optimal throughputs are obtained at higher SNRs for N=32N=32 and 6464. Since boosting transmit powers of the users scales both the signal and interference components equally, the SINR does not increase, and therefore the system performance saturates with SNR. To summarize, increasing τ\tau, NN, and the SNR can judiciously help reduce the impact of intra-cell PC and inter-cell PC, as well as intra-cell interference and inter-cell interference.

VI Conclusions

This paper studied the effect of MC interference, namely inter-cell PC and inter-cell interference, on the performance of IRSA. The users across cells perform path loss inversion with respect to their own BSs and employ a τ\tau-length pilot codebook for channel estimation. Firstly, the channel estimates were derived, accounting for path loss, MIMO fading, intra-cell PC, and intra-cell interference. The corresponding SINR of all the users were derived accounting for channel estimation errors, inter-cell PC, and inter-cell interference. It was seen that MC IRSA had a significant degradation in performance compared to SC IRSA, even resulting in up to 70% loss of throughput in certain regimes. Recuperating this loss requires at least 454-5x larger pilot length in MC IRSA to yield the same performance as that of SC IRSA. Increasing τ,N\tau,N, and SNR helped improve the performance of MC IRSA. These results underscore the importance of accounting for multiuser interference in analyzing IRSA in multi-cell settings. Future work could include design of optimal pilot sequences to reduce PC and density evolution [3] to obtain the asymptotic throughput.

References

  • [1] X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson, N. Al-Dhahir, and R. Schober, “Massive access for 5G and beyond,” IEEE J. Sel. Areas Commun., vol. 39, no. 3, pp. 615–637, 2021.
  • [2] N. H. Mahmood, H. Alves, O. A. López, M. Shehab, D. P. M. Osorio, and M. Latva-Aho, “Six key features of machine type communication in 6G,” in 2020 6G SUMMIT, 2020.
  • [3] G. Liva, “Graph-based analysis and optimization of contention resolution diversity slotted ALOHA,” IEEE Trans. Commun., vol. 59, no. 2, pp. 477–487, February 2011.
  • [4] Y. Wu, X. Gao, S. Zhou, W. Yang, Y. Polyanskiy, and G. Caire, “Massive access for future wireless communication systems,” IEEE Wireless Commun., vol. 27, no. 4, pp. 148–156, 2020.
  • [5] N. Krishnan, R. D. Yates, and N. B. Mandayam, “Uplink linear receivers for multi-cell multiuser MIMO with pilot contamination: Large system analysis,” IEEE Trans. Wireless Commun., vol. 13, pp. 4360–4373, 2014.
  • [6] E. E. Khaleghi, C. Adjih, A. Alloum, and P. Muhlethaler, “Near-far effect on coded slotted ALOHA,” in Proc. PIMRC, Oct 2017.
  • [7] C. R. Srivatsa and C. R. Murthy, “Throughput analysis of PDMA/IRSA under practical channel estimation,” in Proc. SPAWC, July 2019.
  • [8] C. R. Srivatsa and C. R. Murthy, “On the impact of channel estimation on the design and analysis of IRSA based systems,” arXiv:2112.07242, 2021.
  • [9] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell TDD systems,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2640–2651, 2011.
  • [10] E. Björnson, J. Hoydis, and L. Sanguinetti, Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency, 2017.
  • [11] C. R. Srivatsa and C. R. Murthy, “User activity detection for irregular repetition slotted ALOHA based MMTC,” arXiv:2111.06140, 2021.
  • [12] F. Mirhosseini, A. Tadaion, and S. M. Razavizadeh, “Spectral efficiency of dense multicell massive MIMO networks in spatially correlated channels,” IEEE Trans. Veh. Technol., vol. 70, pp. 1307–1316, 2021.
  • [13] R. Couillet and M. Debbah, Random matrix methods for wireless communications.   Cambridge University Press, 2011.

Appendix A Proof of Theorem 1

The minimum mean squared error (MMSE) channel estimate 𝐇¯^tqqk\hat{\bar{\mathbf{H}}}_{tq}^{qk} of the channel matrix 𝐇¯tqqk\bar{\mathbf{H}}_{tq}^{qk} in the ttth RB in the kkth decoding iteration at the qqth BS can be calculated as

𝐇¯^tqqk\displaystyle\hat{\bar{\mathbf{H}}}_{tq}^{qk} =𝐘tqpk𝐏¯tqk𝐁¯tqqk(𝐏¯tqkH𝐏¯tqk𝐁¯tqqk+N0𝐈M¯tqqk)1.\displaystyle={\mathbf{Y}_{tq}^{pk}}\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}(\bar{\mathbf{P}}_{tq}^{kH}\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}+N_{0}\mathbf{I}_{\bar{M}_{tq}^{qk}})^{-1}. (9)

A-1 Channel estimation

The received signal is first vectorized as

𝐲¯tqk\displaystyle\overline{\mathbf{y}}_{tq}^{k} vec(𝐘tqpk)=(𝐏¯tqk𝐈N)𝐡tqk+𝐧¯tq,\displaystyle\triangleq\text{vec}({\mathbf{Y}}_{tq}^{pk})=(\bar{\mathbf{P}}_{tq}^{k*}\otimes\mathbf{I}_{N}){\mathbf{h}}_{tq}^{k}+\overline{\mathbf{n}}_{tq}, (10)

where 𝐡tqkvec(𝐇¯tqqk){\mathbf{h}}_{tq}^{k}\triangleq\text{vec}(\bar{\mathbf{H}}_{tq}^{qk}), 𝐧¯tqvec(𝐍tqp)\overline{\mathbf{n}}_{tq}\triangleq\text{vec}(\mathbf{N}_{tq}^{p}), and \otimes is the Kronecker product. The MMSE estimate is 𝐡^tqk𝔼𝐳[𝐡tqk]\hat{\mathbf{h}}_{tq}^{k}\triangleq\mathop{{}\mathbb{E}_{\mathbf{z}}}[{\mathbf{h}}_{tq}^{k}], where 𝐳=𝐲¯tqk\mathbf{z}=\overline{\mathbf{y}}_{tq}^{k}. The estimation error 𝐡~tqk\tilde{\mathbf{h}}_{tq}^{k} \triangleq 𝐡^tqk𝐡tqk\hat{\mathbf{h}}_{tq}^{k}-{\mathbf{h}}_{tq}^{k} is uncorrelated with the estimate and with 𝐳\mathbf{z}. The conditional statistics of a Gaussian random vector 𝐱\mathbf{x} are

𝔼𝐳[𝐱]\displaystyle\mathop{{}\mathbb{E}_{\mathbf{z}}}\left[{\mathbf{x}}\right] =𝔼[𝐱]+𝐊𝐱𝐳𝐊𝐳𝐳1(𝐳𝔼[𝐳]),\displaystyle=\mathop{{}\mathbb{E}}\left[{\mathbf{x}}\right]+\mathbf{K}_{\mathbf{x}\mathbf{z}}\mathbf{K}_{\mathbf{z}\mathbf{z}}^{-1}\left(\mathbf{z}-\mathop{{}\mathbb{E}}\left[{\mathbf{z}}\right]\right), (11)
𝐊𝐱𝐱|𝐳\displaystyle\mathbf{K}_{\mathbf{xx}|\mathbf{z}} =𝐊𝐱𝐱𝐊𝐱𝐳𝐊𝐳𝐳1𝐊𝐳𝐱.\displaystyle=\mathbf{K}_{\mathbf{x}\mathbf{x}}-\mathbf{K}_{\mathbf{x}\mathbf{z}}\mathbf{K}_{\mathbf{z}\mathbf{z}}^{-1}\mathbf{K}_{\mathbf{z}\mathbf{x}}. (12)

Here, 𝐊𝐱𝐱,\mathbf{K}_{\mathbf{x}\mathbf{x}}, 𝐊𝐱𝐱|𝐳,\mathbf{K}_{\mathbf{xx}|\mathbf{z}}, and 𝐊𝐱𝐳\mathbf{K}_{\mathbf{x}\mathbf{z}} are the unconditional covariance of 𝐱\mathbf{x}, the conditional covariance of 𝐱\mathbf{x} conditioned on 𝐳\mathbf{z}, and the cross-covariance of 𝐱&𝐳\mathbf{x}\ \&\ \mathbf{z} respectively. From (11), the MMSE estimate 𝐡^tqk\hat{\mathbf{h}}_{tq}^{k} of the channel can be evaluated as

𝐡^tqk=𝔼[𝐡tqk]+𝔼[𝐡tqk𝐲¯tqkH]𝔼[𝐲¯tqk𝐲¯tqkH]1(𝐲¯tqk𝔼[𝐲¯tqk]).\displaystyle\hat{\mathbf{h}}_{tq}^{k}=\mathop{{}\mathbb{E}}{[{\mathbf{h}}_{tq}^{k}]}+\mathop{{}\mathbb{E}}{[{\mathbf{h}}_{tq}^{k}{\overline{\mathbf{y}}_{tq}^{kH}}]}\mathop{{}\mathbb{E}}[\overline{\mathbf{y}}_{tq}^{k}{\overline{\mathbf{y}}_{tq}^{kH}}]^{-1}(\overline{\mathbf{y}}_{tq}^{k}-\mathop{{}\mathbb{E}}{[\overline{\mathbf{y}}_{tq}^{k}]}).

The terms in the above expression can be calculated as

𝔼[𝐡tqk𝐲¯tqkH]=𝐁¯tqqk𝐏¯tqkT𝐈N,\displaystyle\mathop{{}\mathbb{E}}{[{\mathbf{h}}_{tq}^{k}{\overline{\mathbf{y}}_{tq}^{kH}}]}=\bar{\mathbf{B}}_{tq}^{qk}\bar{\mathbf{P}}_{tq}^{kT}\otimes\mathbf{I}_{N},
𝔼[𝐲¯tqk𝐲¯tqkH]=(𝐏¯tqk𝐁¯tqqk𝐏¯tqkT+N0𝐈τ)𝐈N,\displaystyle\mathop{{}\mathbb{E}}[\overline{\mathbf{y}}_{tq}^{k}{\overline{\mathbf{y}}_{tq}^{kH}}]=(\bar{\mathbf{P}}_{tq}^{k*}\bar{\mathbf{B}}_{tq}^{qk}\bar{\mathbf{P}}_{tq}^{kT}+N_{0}\mathbf{I}_{\tau})\otimes\mathbf{I}_{N},
𝐡^tqk=(𝐁¯tqqk𝐏¯tqkT(𝐏¯tqk𝐁¯tqqk𝐏¯tqkT+N0𝐈τ)1𝐈N)𝐲¯tqk,\displaystyle\qquad\hat{\mathbf{h}}_{tq}^{k}=(\bar{\mathbf{B}}_{tq}^{qk}\bar{\mathbf{P}}_{tq}^{kT}(\bar{\mathbf{P}}_{tq}^{k*}\bar{\mathbf{B}}_{tq}^{qk}\bar{\mathbf{P}}_{tq}^{kT}+N_{0}\mathbf{I}_{\tau})^{-1}\otimes\mathbf{I}_{N})\overline{\mathbf{y}}_{tq}^{k},

and thus, the MMSE estimate 𝐇¯^tqqk\hat{\bar{\mathbf{H}}}_{tq}^{qk} of 𝐇¯tqqk\bar{\mathbf{H}}_{tq}^{qk} is

𝐇¯^tqqk\displaystyle\hat{\bar{\mathbf{H}}}_{tq}^{qk} =𝐘tqpk(𝐏¯tqk𝐁¯tqqk𝐏¯tqkH+N0𝐈τ)1𝐏¯tqk𝐁¯tqqk\displaystyle={\mathbf{Y}_{tq}^{pk}}(\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}\bar{\mathbf{P}}_{tq}^{kH}+N_{0}\mathbf{I}_{\tau})^{-1}\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk} (13)
=(a)𝐘tqpk𝐏¯tqk𝐁¯tqqk(𝐏¯tqkH𝐏¯tqk𝐁¯tqqk+N0𝐈M¯tqqk)1,\displaystyle\stackrel{{\scriptstyle(a)}}{{=}}{\mathbf{Y}_{tq}^{pk}}\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}(\bar{\mathbf{P}}_{tq}^{kH}\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}+N_{0}\mathbf{I}_{\bar{M}_{tq}^{qk}})^{-1}, (14)

where (a)(a) follows from (𝐀𝐁+𝐈)1𝐀(\mathbf{AB}+\mathbf{I})^{-1}\mathbf{A} == 𝐀(𝐁𝐀+𝐈)1\mathbf{A}(\mathbf{BA}+\mathbf{I})^{-1}.

A-2 Error variance

The conditional covariance of 𝐡tjiq{\mathbf{h}}_{tji}^{q} is calculated conditioned on the knowledge of 𝐳=𝐡^tjiqk\mathbf{z}=\hat{\mathbf{h}}_{tji}^{qk}. Let 𝐂¯tqk𝐏¯tqk𝐁¯tqqk(𝐏¯tqkH𝐏¯tqk𝐁¯tqqk+N0𝐈M¯tqqk)1\bar{\mathbf{C}}_{t}^{qk}\!\triangleq\!\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}(\bar{\mathbf{P}}_{tq}^{kH}\bar{\mathbf{P}}_{tq}^{k}\bar{\mathbf{B}}_{tq}^{qk}+N_{0}\mathbf{I}_{\bar{M}_{tq}^{qk}})^{-1}\!\! be split as 𝐂¯tqk=[𝐂tqqk,𝐂t1qk,,𝐂tq1qk,𝐂tq+1qk,,𝐂tQqk]\bar{\mathbf{C}}_{t}^{qk}=[\mathbf{C}_{tq}^{qk},\mathbf{C}_{t1}^{qk},\ldots,\mathbf{C}_{tq-1}^{qk},\mathbf{C}_{tq+1}^{qk},\ldots,\mathbf{C}_{tQ}^{qk}], and 𝐜tjiqk[𝐂tjqk]:,i\mathbf{c}_{tji}^{qk}\triangleq[{\mathbf{C}}_{tj}^{qk}]_{\mathrel{\mathop{\mathchar 58\relax}},i}. Thus, we can evaluate

𝐊𝐡tjiq𝐡tjiq\displaystyle\mathbf{K}_{{\mathbf{h}}_{tji}^{q}{\mathbf{h}}_{tji}^{q}} =𝔼[𝐡tjiq𝐡tjiqH]=βjiqσh2𝐈N,\displaystyle=\mathbb{E}[{\mathbf{h}}_{tji}^{q}{\mathbf{h}}_{tji}^{qH}]=\beta_{ji}^{q}\sigma_{h}^{2}\mathbf{I}_{N},
𝐊𝐡tjiq𝐳\displaystyle\mathbf{K}_{{\mathbf{h}}_{tji}^{q}\mathbf{z}} =𝔼[𝐡tjiq𝐡^tjiqkH]=𝐩jiH𝐜tjiqkgtjiβjiqσh2𝐈N,\displaystyle=\mathbb{E}[{\mathbf{h}}_{tji}^{q}\hat{\mathbf{h}}_{tji}^{qkH}]=\mathbf{p}_{ji}^{H}\mathbf{c}_{tji}^{qk}g_{tji}\beta_{ji}^{q}\sigma_{h}^{2}\mathbf{I}_{N},
𝐊𝐳𝐳=\displaystyle\mathbf{K}_{{\mathbf{z}}\mathbf{z}}\!= (N0𝐜tjiqk2+n𝒮kj|𝐩qnH𝐜tjiqk|2gtqnβqnqσh2+l𝒬qn𝒮1j|𝐩lnH𝐜tjiqk|2gtlnβlnqσh2)𝐈N.\displaystyle\!\left(\!\!\begin{array}[]{l}N_{0}\|\mathbf{c}_{tji}^{qk}\|^{2}+\sum\nolimits_{n\in\mathcal{S}_{kj}}|\mathbf{p}_{qn}^{H}\mathbf{c}_{tji}^{qk}|^{2}g_{tqn}\beta_{qn}^{q}\sigma_{h}^{2}\\ +\sum\nolimits_{l\in\mathcal{Q}^{q}}\sum\nolimits_{n\in\mathcal{S}_{1j}}|\mathbf{p}_{ln}^{H}\mathbf{c}_{tji}^{qk}|^{2}g_{tln}\beta_{ln}^{q}\sigma_{h}^{2}\end{array}\!\!\right)\!\mathbf{I}_{N}.

Thus, the conditional covariance is

𝐊𝐡tjiq𝐡tjiq|𝐳=𝐊𝐡tjiq𝐡tjiq𝐊𝐡tjiq𝐳𝐊𝐳𝐳1𝐊𝐳𝐡tjiqδtjiqk𝐈N,\displaystyle\mathbf{K}_{{\mathbf{h}}_{tji}^{q}{\mathbf{h}}_{tji}^{q}|\mathbf{z}}=\mathbf{K}_{{\mathbf{h}}_{tji}^{q}{\mathbf{h}}_{tji}^{q}}-\mathbf{K}_{{\mathbf{h}}_{tji}^{q}\mathbf{z}}\mathbf{K}_{\mathbf{z}\mathbf{z}}^{-1}\mathbf{K}_{\mathbf{z}{\mathbf{h}}_{tji}^{q}}\triangleq\delta_{tji}^{qk}\mathbf{I}_{N},

where δtjiqk\delta_{tji}^{qk} is calculated as

δtjiqk=βjiqσh2(N0𝐜tjiqk2+n𝒮kji|𝐩qnH𝐜tjiqk|2gtqnβqnqσh2+l𝒬qn𝒮1j|𝐩lnH𝐜tjiqk|2gtlnβlnqσh2N0𝐜tjiqk2+n𝒮kj|𝐩qnH𝐜tjiqk|2gtqnβqnqσh2+l𝒬qn𝒮1j|𝐩lnH𝐜tjiqk|2gtlnβlnqσh2).\displaystyle\delta_{tji}^{qk}=\beta_{ji}^{q}\sigma_{h}^{2}\left(\!\!\frac{\begin{array}[]{l}N_{0}\|\mathbf{c}_{tji}^{qk}\|^{2}+\sum\nolimits_{n\in\mathcal{S}_{kj}^{i}}|\mathbf{p}_{qn}^{H}\mathbf{c}_{tji}^{qk}|^{2}g_{tqn}\beta_{qn}^{q}\sigma_{h}^{2}\\ +\sum\nolimits_{l\in\mathcal{Q}^{q}}\sum\nolimits_{n\in\mathcal{S}_{1j}}|\mathbf{p}_{ln}^{H}\mathbf{c}_{tji}^{qk}|^{2}g_{tln}\beta_{ln}^{q}\sigma_{h}^{2}\end{array}}{\begin{array}[]{l}N_{0}\|\mathbf{c}_{tji}^{qk}\|^{2}+\sum\nolimits_{n\in\mathcal{S}_{kj}}|\mathbf{p}_{qn}^{H}\mathbf{c}_{tji}^{qk}|^{2}g_{tqn}\beta_{qn}^{q}\sigma_{h}^{2}\\ +\sum\nolimits_{l\in\mathcal{Q}^{q}}\sum\nolimits_{n\in\mathcal{S}_{1j}}|\mathbf{p}_{ln}^{H}\mathbf{c}_{tji}^{qk}|^{2}g_{tln}\beta_{ln}^{q}\sigma_{h}^{2}\end{array}}\!\!\right)\!\!.

The conditional autocorrelation follows as

𝔼𝐳[𝐡tjiq𝐡tjiqH]\displaystyle\mathbb{E}_{\mathbf{z}}[{\mathbf{h}}_{tji}^{q}{\mathbf{h}}_{tji}^{qH}] =𝐊𝐡tjiq𝐡tjiq|𝐳+𝔼𝐳[𝐡tjiq]𝔼𝐳[𝐡tjiq]H\displaystyle=\mathbf{K}_{{\mathbf{h}}_{tji}^{q}{\mathbf{h}}_{tji}^{q}|\mathbf{z}}+\mathbb{E}_{\mathbf{z}}[{\mathbf{h}}_{tji}^{q}]\mathbb{E}_{\mathbf{z}}[{\mathbf{h}}_{tji}^{q}]^{H}
=δtjiqk𝐈N+𝐡^tjiqk𝐡^tjiqkH.\displaystyle=\delta_{tji}^{qk}\mathbf{I}_{N}+\hat{\mathbf{h}}_{tji}^{qk}\hat{\mathbf{h}}_{tji}^{qkH}.

The unconditional and conditional means of the estimation error are 𝔼[𝐡~tjiqk]=𝔼[𝐡^tjiqk𝐡tjiq]=0\mathbb{E}[\tilde{\mathbf{h}}_{tji}^{qk}]=\mathbb{E}[\hat{\mathbf{h}}_{tji}^{qk}-{\mathbf{h}}_{tji}^{q}]=0 and 𝔼𝐳[𝐡~tjiqk]=𝔼𝐳[𝐡^tjiqk𝐡tjiq]=𝐡^tjiqk𝐡^tjiqk=0.\mathbb{E}_{\mathbf{z}}[\tilde{\mathbf{h}}_{tji}^{qk}]=\mathbb{E}_{\mathbf{z}}[\hat{\mathbf{h}}_{tji}^{qk}-{\mathbf{h}}_{tji}^{q}]=\hat{\mathbf{h}}_{tji}^{qk}-\hat{\mathbf{h}}_{tji}^{qk}=0. The conditional autocovariance of the error therefore simplifies as

𝐊𝐡~tjiqk𝐡~tjiqk|𝐳=𝔼𝐳[𝐡~tjiqk𝐡~tjiqkH]\displaystyle\mathbf{K}_{\tilde{\mathbf{h}}_{tji}^{qk}\tilde{\mathbf{h}}_{tji}^{qk}|\mathbf{z}}=\mathbb{E}_{\mathbf{z}}[\tilde{\mathbf{h}}_{tji}^{qk}\tilde{\mathbf{h}}_{tji}^{qkH}]
=𝔼𝐳[𝐡tjiq𝐡tjiqH]𝐡^tjiqk𝐡^tjiqkH=δtjiqk𝐈N,\displaystyle\ \ \ =\mathbb{E}_{\mathbf{z}}[{\mathbf{h}}_{tji}^{q}{\mathbf{h}}_{tji}^{qH}]-\hat{\mathbf{h}}_{tji}^{qk}\hat{\mathbf{h}}_{tji}^{qkH}=\delta_{tji}^{qk}\mathbf{I}_{N},

and thus, δtjiqk\delta_{tji}^{qk} is also the variance of the estimation error.

Appendix B Proof of Theorem 2

In order to calculate the SINR, we first evaluate the power of the received signal, which is calculated conditioned on the knowledge of the channel estimates 𝐳vec(𝐇¯^tqqk)\mathbf{z}\triangleq\text{vec}(\hat{\bar{\mathbf{H}}}_{tq}^{qk}) as 𝔼𝐳[|y~tqmk|2]=𝔼𝐳[|i=15Ti|2]\mathbb{E}_{\mathbf{z}}[|\tilde{y}_{tqm}^{k}|^{2}]=\mathbb{E}_{\mathbf{z}}[|\sum_{i=1}^{5}T_{i}|^{2}]. Since noise is uncorrelated with data, 𝔼𝐳[T1T5H]\mathbb{E}_{\mathbf{z}}[T_{1}T_{5}^{H}] =𝔼𝐳[T2T5H]=\mathbb{E}_{\mathbf{z}}[T_{2}T_{5}^{H}] =𝔼𝐳[T3T5H]=𝔼𝐳[T4T5H]=0=\mathbb{E}_{\mathbf{z}}[T_{3}T_{5}^{H}]=\mathbb{E}_{\mathbf{z}}[T_{4}T_{5}^{H}]={0}. Since MMSE estimates are uncorrelated with their errors [10], 𝔼𝐳[T1T2H]=0\mathbb{E}_{\mathbf{z}}[T_{1}T_{2}^{H}]={0}. Finding the other components requires 𝔼𝐳[xjixjl]\mathbb{E}_{\mathbf{z}}[x_{ji}x_{jl}] for ili\neq l which can be found as 𝔼𝐳[xjixjl]=𝔼𝐳[xji]𝔼𝐳[xjl]=0\mathbb{E}_{\mathbf{z}}[x_{ji}x_{jl}]=\mathbb{E}_{\mathbf{z}}[x_{ji}]\mathbb{E}_{\mathbf{z}}[x_{jl}]=0. Thus, all the five terms are uncorrelated and the power in the received signal is just a sum of the powers of the individual components 𝔼𝐳[|y~tqmk|2]=i=15𝔼𝐳[|Ti|2]\mathbb{E}_{\mathbf{z}}[|\tilde{y}_{tqm}^{k}|^{2}]=\sum_{i=1}^{5}\mathbb{E}_{\mathbf{z}}[|T_{i}|^{2}]. We now compute the powers of each of the components. The useful signal power is

𝔼𝐳[|T1|2]\displaystyle\mathbb{E}_{\mathbf{z}}[|T_{1}|^{2}] =𝔼𝐳[|𝐚tqmkH𝐡^tqmqkgtqmxqm|2]\displaystyle=\mathbb{E}_{\mathbf{z}}[|\mathbf{a}_{tqm}^{kH}\hat{\mathbf{h}}_{tqm}^{qk}g_{tqm}x_{qm}|^{2}]
=pqmgtqm2|𝐚tqmkH𝐡^tqmqk|2.\displaystyle=p_{qm}g_{tqm}^{2}|\mathbf{a}_{tqm}^{kH}\hat{\mathbf{h}}_{tqm}^{qk}|^{2}.

The desired gain is written as

𝙶𝚊𝚒𝚗tqmk\displaystyle{\tt{Gain}}_{tqm}^{k} 𝔼𝐳[|T1|2]𝐚tqmk2=pqmgtqm|𝐚tqmkH𝐡^tqmqk|2𝐚tqmk2.\displaystyle\triangleq\frac{\mathbb{E}_{\mathbf{z}}[|T_{1}|^{2}]}{\|\mathbf{a}_{tqm}^{k}\|^{2}}=p_{qm}g_{tqm}\frac{|\mathbf{a}_{tqm}^{kH}\hat{\mathbf{h}}_{tqm}^{qk}|^{2}}{\|\mathbf{a}_{tqm}^{k}\|^{2}}. (15)

The power of the estimation error is expressed as

𝔼𝐳[|T2|2]\displaystyle\mathbb{E}_{\mathbf{z}}[|T_{2}|^{2}] =𝔼𝐳[|𝐚tqmkH𝐡~tqmqkgtqmxqm|2]\displaystyle=\mathbb{E}_{\mathbf{z}}[|\mathbf{a}_{tqm}^{kH}\tilde{\mathbf{h}}_{tqm}^{qk}g_{tqm}x_{qm}|^{2}]
=pqmgtqm2δtqmqk𝐚tqmk2.\displaystyle=p_{qm}g_{tqm}^{2}\delta_{tqm}^{qk}\|\mathbf{a}_{tqm}^{k}\|^{2}.

Next, the power of the intra-cell interference term T3T_{3} is

𝔼𝐳[|T3|2]=𝔼𝐳[|𝐚tqmkHi𝒮kqmgtqi𝐡tqiqxqi|2]\displaystyle\mathbb{E}_{\mathbf{z}}[|T_{3}|^{2}]=\mathbb{E}_{\mathbf{z}}[|\mathbf{a}_{tqm}^{kH}\textstyle{\sum\nolimits_{i\in\mathcal{S}_{kq}^{m}}}g_{tqi}{\mathbf{h}}_{tqi}^{q}x_{qi}|^{2}]
=i𝒮kqmpqigtqi2𝐚tqmkH𝔼𝐳[𝐡tqiq𝐡tqiqH]𝐚tqmk\displaystyle\ \ \ \ =\textstyle{\sum\nolimits_{i\in\mathcal{S}_{kq}^{m}}}p_{qi}g_{tqi}^{2}\mathbf{a}_{tqm}^{kH}\mathbb{E}_{\mathbf{z}}[{\mathbf{h}}_{tqi}^{q}{\mathbf{h}}_{tqi}^{qH}]\mathbf{a}_{tqm}^{k}
=i𝒮kqmpqigtqi2𝐚tqmkH(δtqiqk𝐈N+𝐡^tqiqk𝐡^tqiqkH)𝐚tqmk\displaystyle\ \ \ \ =\textstyle{\sum\nolimits_{i\in\mathcal{S}_{kq}^{m}}}p_{qi}g_{tqi}^{2}\mathbf{a}_{tqm}^{kH}(\delta_{tqi}^{qk}\mathbf{I}_{N}+\hat{\mathbf{h}}_{tqi}^{qk}\hat{\mathbf{h}}_{tqi}^{qkH})\mathbf{a}_{tqm}^{k}
=i𝒮kqmpqigtqi2(𝐚tqmk2δtqiqk+|𝐚tqmkH𝐡^tqiqk|2).\displaystyle\ \ \ \ =\textstyle{\sum\nolimits_{i\in\mathcal{S}_{kq}^{m}}}p_{qi}g_{tqi}^{2}(\|\mathbf{a}_{tqm}^{k}\|^{2}\delta_{tqi}^{qk}+|\mathbf{a}_{tqm}^{kH}\hat{\mathbf{h}}_{tqi}^{qk}|^{2}).

Then, the power of the inter-cell interference term T4T_{4} is

𝔼𝐳[|T4|2]=𝔼𝐳[|𝐚tqmkHj𝒬qi𝒮1jgtji𝐡tjiqxji|2]\displaystyle\mathbb{E}_{\mathbf{z}}[|T_{4}|^{2}]=\mathbb{E}_{\mathbf{z}}[|\mathbf{a}_{tqm}^{kH}\textstyle{\sum\nolimits_{j\in\mathcal{Q}^{q}}\sum\nolimits_{i\in\mathcal{S}_{1j}}}g_{tji}{\mathbf{h}}_{tji}^{q}x_{ji}|^{2}]
=j𝒬qi𝒮1jpjigtji2𝐚tqmkH𝔼𝐳[𝐡tjiq𝐡tjiqH]𝐚tqmk\displaystyle\ \ \ \ =\textstyle{\sum\nolimits_{j\in\mathcal{Q}^{q}}\sum\nolimits_{i\in\mathcal{S}_{1j}}}p_{ji}g_{tji}^{2}\mathbf{a}_{tqm}^{kH}\mathbb{E}_{\mathbf{z}}[{\mathbf{h}}_{tji}^{q}{\mathbf{h}}_{tji}^{qH}]\mathbf{a}_{tqm}^{k}
=j𝒬qi𝒮1jpjigtji2𝐚tqmkH(δtjiqk𝐈N+𝐡^tjiqk𝐡^tjiqkH)𝐚tqmk\displaystyle\ \ \ \ =\textstyle{\sum\nolimits_{j\in\mathcal{Q}^{q}}\sum\nolimits_{i\in\mathcal{S}_{1j}}}p_{ji}g_{tji}^{2}\mathbf{a}_{tqm}^{kH}(\delta_{tji}^{qk}\mathbf{I}_{N}+\hat{\mathbf{h}}_{tji}^{qk}\hat{\mathbf{h}}_{tji}^{qkH})\mathbf{a}_{tqm}^{k}
=j𝒬qi𝒮1jpjigtji2(𝐚tqmk2δtjiqk+|𝐚tqmkH𝐡^tjiqk|2).\displaystyle\ \ \ \ =\textstyle{\sum\nolimits_{j\in\mathcal{Q}^{q}}\sum\nolimits_{i\in\mathcal{S}_{1j}}}p_{ji}g_{tji}^{2}(\|\mathbf{a}_{tqm}^{k}\|^{2}\delta_{tji}^{qk}+|\mathbf{a}_{tqm}^{kH}\hat{\mathbf{h}}_{tji}^{qk}|^{2}).

Let ν=𝔼𝐳[|T2|2]+𝔼𝐳[|T3|2]+𝔼𝐳[|T4|2]\nu=\mathbb{E}_{\mathbf{z}}[|T_{2}|^{2}]+\mathbb{E}_{\mathbf{z}}[|T_{3}|^{2}]+\mathbb{E}_{\mathbf{z}}[|T_{4}|^{2}] represent the joint contribution of estimation errors and multi-user interference components of the other users (both within the qqth cell and outside the qqth cell). Since gtjig_{tji} is binary, its powers are dropped. We now split ν/𝐚tqmk2\nu/\|\mathbf{a}_{tqm}^{k}\|^{2} into the sum of the estimation error component 𝙴𝚜𝚝tqmk{\tt{Est}}_{tqm}^{k}, intra-cell interference 𝙸𝚗𝙲𝙸tqmk{\tt{InCI}}_{tqm}^{k} and inter-cell interference 𝙸𝙲𝙸tqmk{\tt{ICI}}_{tqm}^{k} as follows

𝙴𝚜𝚝tqmk\displaystyle{\tt{Est}}_{tqm}^{k} =i𝒮kqpqigtqiδtqiqk+j𝒬qi𝒮1jpjigtjiδtjiqk,\displaystyle=\textstyle{\sum\nolimits_{i\in\mathcal{S}_{kq}}}p_{qi}g_{tqi}\delta_{tqi}^{qk}+\textstyle{\sum\nolimits_{j\in\mathcal{Q}^{q}}\sum\nolimits_{i\in\mathcal{S}_{1j}}}p_{ji}g_{tji}\delta_{tji}^{qk},
𝙸𝚗𝙲𝙸tqmk\displaystyle{\tt{InCI}}_{tqm}^{k} =i𝒮kqmpqigtqi|𝐚tqmkH𝐡^tqiqk|2/𝐚tqmk2,\displaystyle=\textstyle{\sum\nolimits_{i\in\mathcal{S}_{kq}^{m}}}p_{qi}g_{tqi}{|{\mathbf{a}}_{tqm}^{kH}\hat{\mathbf{h}}_{tqi}^{qk}|^{2}}/{\|{\mathbf{a}}_{tqm}^{k}\|^{2}},
𝙸𝙲𝙸tqmk\displaystyle{\tt{ICI}}_{tqm}^{k} =j𝒬qi𝒮1jpjigtji|𝐚tqmkH𝐡^tjiqk|2/𝐚tqmk2.\displaystyle=\textstyle{\sum\nolimits_{j\in\mathcal{Q}^{q}}\sum\nolimits_{i\in\mathcal{S}_{1j}}}p_{ji}g_{tji}{|{\mathbf{a}}_{tqm}^{kH}\hat{\mathbf{h}}_{tji}^{qk}|^{2}}/{\|{\mathbf{a}}_{tqm}^{k}\|^{2}}.

The noise power is calculated as

𝔼𝐳[|T5|2]\displaystyle\mathbb{E}_{\mathbf{z}}[|T_{5}|^{2}] =𝔼𝐳[|𝐚tqmk𝐧tq|2]=N0𝐚tqmk2.\displaystyle=\mathbb{E}_{\mathbf{z}}[|\mathbf{a}_{tqm}^{k}\mathbf{n}_{tq}|^{2}]=N_{0}\|\mathbf{a}_{tqm}^{k}\|^{2}. (16)

A meaningful SINR expression can be written out by dividing the useful gain from (15) by the sum of the interference and the noise powers (from ν\nu and (16)) [10]. Note that the interference component is comprised of the estimation error term and the signal powers of other users who have also transmitted in the same RB (from both in-cell and out-of-cell users). SINR can thus be evaluated as in (7) for all users. The SINR can be calculated by plugging in the channel estimates as detailed in Theorem 2.

Appendix C Proof of Theorem 3

As the number of antennas gets large, both 𝐡^tqmqk2\|\hat{\mathbf{h}}_{tqm}^{qk}\|^{2} and |𝐡^tqmqkH𝐡^tjiqk|2|\hat{\mathbf{h}}_{tqm}^{qkH}\hat{\mathbf{h}}_{tji}^{qk}|^{2} converge almost surely (a.s.) to their deterministic equivalents [13]. Evaluating the deterministic equivalents as in [13] and plugging into the SINR expression in place of the original terms, we can find an approximation to the SINR in the high antenna regime. As NN gets large, the SINR with maximal ratio combining converges almost surely (ρtqmka.s.ρ¯tqmk{\rho}_{tqm}^{k}\stackrel{{\scriptstyle\text{a.s.}}}{{\longrightarrow}}\overline{\rho}_{tqm}^{k}) to

ρ¯tqmk\displaystyle\overline{\rho}_{tqm}^{k} =𝚂𝚒𝚐tqmkϵtqmk(N0+𝙸𝚗𝚝𝙽𝙲tqmk)+𝙸𝚗𝚝𝙲tqmk,\displaystyle=\frac{{\tt Sig}_{tqm}^{k}}{\epsilon_{tqm}^{k}(N_{0}+{\tt IntNC}_{tqm}^{k})+{\tt IntC}_{tqm}^{k}},

where 𝚂𝚒𝚐tqmk{\tt Sig}_{tqm}^{k} is the desired signal, 𝙸𝚗𝚝𝙽𝙲tqmk{\tt IntNC}_{tqm}^{k} represents the non-coherent interference, and 𝙸𝚗𝚝𝙲tqmk{\tt IntC}_{tqm}^{k} represents the coherent interference. These can be evaluated as

ϵtqmk\displaystyle\epsilon_{tqm}^{k}\!\! =(N0𝐜tqmqk2+n𝒮kj|𝐩qnH𝐜tqmqk|2gtqnβqnqσh2+l𝒬qn𝒮1j|𝐩lnH𝐜tqmqk|2gtlnβlnqσh2),\displaystyle=\!\!\left(\!\!\begin{array}[]{l}N_{0}\|\mathbf{c}_{tqm}^{qk}\|^{2}+\sum\nolimits_{n\in\mathcal{S}_{kj}}|\mathbf{p}_{qn}^{H}\mathbf{c}_{tqm}^{qk}|^{2}g_{tqn}\beta_{qn}^{q}\sigma_{h}^{2}\\ +\sum\nolimits_{l\in\mathcal{Q}^{q}}\sum\nolimits_{n\in\mathcal{S}_{1j}}|\mathbf{p}_{ln}^{H}\mathbf{c}_{tqm}^{qk}|^{2}g_{tln}\beta_{ln}^{q}\sigma_{h}^{2}\end{array}\!\!\right)\!\!,
𝚂𝚒𝚐tqmk\displaystyle{\tt Sig}_{tqm}^{k}\!\! =Npqmgtqm(ϵtqmk)2,\displaystyle=\!\!Np_{qm}g_{tqm}(\epsilon_{tqm}^{k})^{2}\!\!,
𝙸𝚗𝚝𝙽𝙲tqmk\displaystyle{\tt IntNC}_{tqm}^{k}\!\! =(pqmgtqmδtqmqk+n𝒮kjpqngtqnβqnqσh2+l𝒬qn𝒮1jplngtlnβlnqσh2),\displaystyle=\!\!\left(\!\!\begin{array}[]{l}p_{qm}g_{tqm}\delta_{tqm}^{qk}+\sum\nolimits_{n\in\mathcal{S}_{kj}}p_{qn}g_{tqn}\beta_{qn}^{q}\sigma_{h}^{2}\\ +\sum\nolimits_{l\in\mathcal{Q}^{q}}\sum\nolimits_{n\in\mathcal{S}_{1j}}p_{ln}g_{tln}\beta_{ln}^{q}\sigma_{h}^{2}\end{array}\!\!\right)\!\!,
𝙸𝚗𝚝𝙲tqmk\displaystyle{\tt IntC}_{tqm}^{k}\!\! =N(n𝒮kj|𝐩qnH𝐜tqmqk|2pqngtqnβqnq2σh4+l𝒬qn𝒮1j|𝐩lnH𝐜tqmqk|2plngtlnβlnq2σh4).\displaystyle=\!\!N\!\left(\!\!\!\begin{array}[]{l}\sum\nolimits_{n\in\mathcal{S}_{kj}}|\mathbf{p}_{qn}^{H}\mathbf{c}_{tqm}^{qk}|^{2}p_{qn}g_{tqn}\beta_{qn}^{q2}\sigma_{h}^{4}\\ +\sum\nolimits_{l\in\mathcal{Q}^{q}}\sum\nolimits_{n\in\mathcal{S}_{1j}}|\mathbf{p}_{ln}^{H}\mathbf{c}_{tqm}^{qk}|^{2}p_{ln}g_{tln}\beta_{ln}^{q2}\sigma_{h}^{4}\end{array}\!\!\!\right)\!\!.

Here, δtqmqk\delta_{tqm}^{qk} and 𝐜tqmqk{\mathbf{c}}_{tqm}^{qk} are obtained from Theorems 1 and 2, respectively, for the three estimation schemes. The above expressions are obtained by setting 𝐚tqmk=𝐡^tqmqk\mathbf{a}_{tqm}^{k}=\hat{\mathbf{h}}_{tqm}^{qk} [10] and replacing each of the terms involving 𝐡^tjiqk\hat{\mathbf{h}}_{tji}^{qk} in (7) with their respective deterministic equivalents.