This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Permanental inequalities for totally positive matrices

Mark Skandera and Daniel Soskin
Abstract.

We characterize ratios of permanents of (generalized) submatrices which are bounded on the set of all totally positive matrices. This provides a permanental analog of results of Fallat, Gekhtman, and Johnson [Adv. Appl. Math. 30 no. 3, (2003) pp. 442–470] concerning ratios of matrix minors. We also extend work of Drake, Gerrish, and the first author [Electron. J. Combin., 11 no. 1, (2004) Note 6] by characterizing the differences of monomials in [x1,1,x1,2,,xn,n]\mathbb{Z}[x_{1,1},x_{1,2},\dotsc,x_{n,n}] which evaluate positively on the set of all totally positive n×nn\times n matrices.

1. Introduction

Given an n×nn\times n matrix A=(ai,j)A=(a_{i,j}) and subsets I,J[n]:={1,,n}I,J\subseteq[n]:=\{1,\dotsc,n\}, let AI,J=(ai,j)iI,jJA_{I,J}=(a_{i,j})_{i\in I,j\in J} denote the (I,J)(I,J)-submatrix of AA. For |I|=|J||I|=|J|, call det(AI,J)\det(A_{I,J}) the (I,J)(I,J)-minor of AA. A real n×nn\times n matrix AA is called totally positive (totally nonnegative) if every minor of AA is positive (nonnegative). Let nTPnTNN\mathcal{M}^{\textsc{TP}}_{n}\subset\mathcal{M}^{\textsc{TNN}}_{n} denote these sets of matrices.

These and the set nHPS\mathcal{M}^{\textsc{HPS}}_{n} of n×nn\times n Hermitian positive semidefinite matrices arise in many areas of mathematics, and for more than a century mathematicians have been studying inequalities satisfied by their matrix entries. (See, e.g., [8].) Many such inequalities involve minors and permanents. For instance inequalities of Fischer [9], Fan [4], and Lieb [15] state that for all matrices AnTNNnHPSA\in\mathcal{M}^{\textsc{TNN}}_{n}\cup\mathcal{M}^{\textsc{HPS}}_{n}, and for all I[n]I\subseteq[n] and Ic:=[n]II^{c}:=[n]\smallsetminus I, we have

(1) det(A)det(AI,I)det(AIc,Ic),per(A)per(AI,I)per(AIc,Ic).\begin{gathered}\det(A)\leq\det(A_{I,I})\det(A_{I^{c},I^{c}}),\\ \mathrm{per}(A)\geq\mathrm{per}(A_{I,I})\;\mathrm{per}(A_{I^{c},I^{c}}).\end{gathered}

Koteljanskii’s inequality [13], [14] states that for AnTNNnHPSA\in\mathcal{M}^{\textsc{TNN}}_{n}\cup\mathcal{M}^{\textsc{HPS}}_{n} and for all I,J[n]I,J\subseteq[n] we have

(2) det(AIJ,IJ)det(AIJ,IJ)det(AI,I)det(AJ,J).\det(A_{I\cup J,I\cup J})\det(A_{I\cap J,I\cap J})\leq\det(A_{I,I})\det(A_{J,J}).

Many open questions about inequalities exist and seem difficult. For instance, it is known which 88-tuples (I,J,K,L,I,J,K,L)(I,J,K,L,I^{\prime},J^{\prime},K^{\prime},L^{\prime}) of subsets satisfy

(3) det(AI,I)det(AJ,J)det(AK,K)det(AL,L)\det(A_{I,I^{\prime}})\det(A_{J,J^{\prime}})\leq\det(A_{K,K^{\prime}})\det(A_{L,L^{\prime}})

for all AnTNNA\in\mathcal{M}^{\textsc{TNN}}_{n} [7], [16], but few permanental analogs of such inequalities are known. While some of these 88-tuples also satisfiy

(4) per(AI,I)per(AJ,J)per(AK,K)per(AL,L),\mathrm{per}(A_{I,I^{\prime}})\;\mathrm{per}(A_{J,J^{\prime}})\geq\mathrm{per}(A_{K,K^{\prime}})\;\mathrm{per}(A_{L,L^{\prime}}),

this second inequality is not true in general. For example, the natural permanental analog

(5) per(AIJ,IJ)per(AIJ,IJ)per(AI,I)per(AJ,J),\mathrm{per}(A_{I\cup J,I\cup J})\;\mathrm{per}(A_{I\cap J,I\cap J})\geq\mathrm{per}(A_{I,I})\;\mathrm{per}(A_{J,J}),

of (2) holds neither for all AnHPSA\in\mathcal{M}^{\textsc{HPS}}_{n} nor for all AnTNNA\in\mathcal{M}^{\textsc{TNN}}_{n}. (See [17, §6] for a counterexample with n=3n=3.)

Let us put aside nHPS\mathcal{M}^{\textsc{HPS}}_{n} and consider conjectured inequalities of the form

(6) product1product2\mathrm{product}_{1}\leq\mathrm{product}_{2}

involving minors and permanents of matrices in nTNN\mathcal{M}^{\textsc{TNN}}_{n} and nTP\mathcal{M}^{\textsc{TP}}_{n}. One strategy for studying (6) is to view the difference product2product1\mathrm{product}_{2}-\mathrm{product}_{1} as a polynomial

(7) f(x):=f(x1,1,x1,2,,xn,n)[x]:=[x1,1,x1,2,,xn,n]f(x):=f(x_{1,1},x_{1,2},\dotsc,x_{n,n})\in\mathbb{Z}[x]:=\mathbb{Z}[x_{1,1},x_{1,2},\dotsc,x_{n,n}]

in matrix entries. Then the validity of the inequality (6) is equivalent to the statement that for all A=(ai,j)nTNNA=(a_{i,j})\in\mathcal{M}^{\textsc{TNN}}_{n}, we have

(8) f(A):=f(a1,1,a1,2,,an,n)0.f(A):=f(a_{1,1},a_{1,2},\dotsc,a_{n,n})\geq 0.

We call a polynomial (7) with this property a totally nonnegative polynomial. Since nTP\mathcal{M}^{\textsc{TP}}_{n} is dense in nTNN\mathcal{M}^{\textsc{TNN}}_{n}, the inequality (8) holds for all AnTPA\in\mathcal{M}^{\textsc{TP}}_{n} if and only if it holds for all AnTNNA\in\mathcal{M}^{\textsc{TNN}}_{n}.

A second strategy for studying (variations of) a potential inequality (6) is to ask for which positive constants k1k_{1}, k2k_{2} the modified inequalities

(9) k1product1product2k2product1k_{1}\cdot\mathrm{product}_{1}\leq\mathrm{product}_{2}\leq k_{2}\cdot\mathrm{product}_{1}

hold for all AnTNNA\in\mathcal{M}^{\textsc{TNN}}_{n}. Bounds of k1=1k_{1}=1 or k2=1k_{2}=1 imply the inequality (6) or its reverse to hold; other bounds give information not apparent in the proof or disproof of (6). Equivalently, we may view the ratio of product2\mathrm{product}_{2} to product1\mathrm{product}_{1} as a rational function

(10) R(x):=R(x1,1,x1,2,,xn,n)(x):=(x1,1,x1,2,,xn,n)R(x):=R(x_{1,1},x_{1,2},\dotsc,x_{n,n})\in\mathbb{Q}(x):=\mathbb{Q}(x_{1,1},x_{1,2},\dotsc,x_{n,n})

in matrix entries, and we may ask for upper and lower bounds as xx varies over nTP\mathcal{M}^{\textsc{TP}}_{n}. While a ratio (10) is not defined everywhere on nTNN\mathcal{M}^{\textsc{TNN}}_{n}, the density of nTP\mathcal{M}^{\textsc{TP}}_{n} in nTNN\mathcal{M}^{\textsc{TNN}}_{n} allows us to restrict our attention to nTP\mathcal{M}^{\textsc{TP}}_{n}: we have

(11) k1R(x)k2k_{1}\leq R(x)\leq k_{2}

for all xnTPx\in\mathcal{M}^{\textsc{TP}}_{n} if and only if the same inequalities hold for all xnTNNx\in\mathcal{M}^{\textsc{TNN}}_{n} such that R(x)R(x) is defined. Clearly the lower bound k1k_{1} is interesting only when positive, since products of minors and permanents of totally nonnegative matrices are trivially bounded below by 0.

A characterization of all ratios of the form

(12) det(xI,I)det(xJ,J)det(xK,K)det(xL,L),I,I,,L,L[n],\frac{\det(x_{I,I^{\prime}})\det(x_{J,J^{\prime}})}{\det(x_{K,K^{\prime}})\det(x_{L,L^{\prime}})},\qquad I,I^{\prime},\dotsc,L,L^{\prime}\subset[n],

which are bounded above and/or nontrivially bounded below on nTP\mathcal{M}^{\textsc{TP}}_{n} follows from work in [7] and [16]. Each ratio (12) is bounded above and/or below by 11, and for each nn, factors as a product of elements of a finite set of indecomposable ratios. This result was extended in [11] to include ratios of products of arbitrarily many minors

(13) det(xI1,I1)det(xIp,Ip)det(xJ1,J1)det(xJp,Jp).\frac{\det(x_{I_{1},I^{\prime}_{1}})\cdots\det(x_{I_{p},I^{\prime}_{p}})}{\det(x_{J_{1},J^{\prime}_{1}})\cdots\det(x_{J_{p},J^{\prime}_{p}})}.

Again, each of these factors as a product of elements belonging to a finite set of indecomposable ratios. For n=3n=3, each ratio (13) is bounded above and/or below by 11; for n4n\geq 4, such bounds are conjectured [3].

While the permanental version (5) of Koteljanskii’s inequality is false, we will show in Section 3 that the corresponding ratio is bounded above and nontrivially below. Specifically,

(14) 1|IJ|!|IJ|!per(xI,I)per(xJ,J)per(xIJ,IJ)per(xIJ,IJ)|I|!|J|!\frac{1}{|I\cup J|!~{}|I\cap J|!}\leq\frac{\mathrm{per}(x_{I,I})\;\mathrm{per}(x_{J,J})}{\mathrm{per}(x_{I\cup J,I\cup J})\;\mathrm{per}(x_{I\cap J,I\cap J})}\leq|I|!~{}|J|!

for all I,J[n]I,J\subseteq[n] and xnTPx\in\mathcal{M}^{\textsc{TP}}_{n}. The failure of (5), combined with (14), exposes a difference between ratios of minors and of permanents: unlike the bounded ratios in (12), not all bounded ratios of permanents are bounded by 11. Thus it is natural to ask which ratios

(15) R(x)=per(xI1,I1)per(xI2,I2)per(xIr,Ir)per(xJ1,J1)per(xJ2,J2)per(xJq,Jq)R(x)=\frac{\text{per}(x_{I_{1},I^{\prime}_{1}})\text{per}(x_{I_{2},I^{\prime}_{2}})\cdots\text{per}(x_{I_{r},I^{\prime}_{r}})}{\text{per}(x_{J_{1},J^{\prime}_{1}})\text{per}(x_{J_{2},J^{\prime}_{2}})\cdots\text{per}(x_{J_{q},J^{\prime}_{q}})}

are bounded above and/or nontrivially below as real-valued functions on nTP\mathcal{M}^{\textsc{TP}}_{n}, and to state bounds.

In Section 2 we describe a multigrading of the coordinate ring [x]\mathbb{Z}[x] of n×nn\times n matrices. Extending work in [6], we define a partial order on the monomials in [x]\mathbb{Z}[x] which characterizes the differences xi,jci,jxi,jdi,j\smash{\prod x_{i,j}^{c_{i,j}}-\prod x_{i,j}^{d_{i,j}}} which are totally nonnegative polynomials. This leads to our main results in Section 3 which characterize ratios (15) which are bounded above and nontrivially below as real-valued functions on nTP\mathcal{M}^{\textsc{TP}}_{n}. We provide some such bounds, which are not necessarily tight. We finish in Section 4 with some open questions.

2. A multigrading of [x1,1,x1,2,,xn,n]\mathbb{Z}[x_{1,1},x_{1,2},\dotsc,x_{n,n}] and the total nonnegativity order

We will find it convenient to view degree-rr monomials in [x]\mathbb{Z}[x] in terms of permutations in the symmetric group 𝔖r\mathfrak{S}_{r} and multisets of [n][n]. In particular, given permutations v,w𝔖rv,w\in\mathfrak{S}_{r} define the monomial

xv,w:=xv1,w1xvr,wr.x^{v,w}:=x_{v_{1},w_{1}}\cdots x_{v_{r},w_{r}}.

Define an rr-element multiset of [n][n] to be a nondecreasing rr-tuple of elements of [n][n]. In exponential notation, we write iki^{k} to represent kk consecutive occurrences of ii in such an rr-tuple, e.g.,

(16) (1,1,2,3)=122131,(1,2,2,2)=1123.(1,1,2,3)=1^{2}2^{1}3^{1},\qquad(1,2,2,2)=1^{1}2^{3}.

Two rr-element multisets

(17) M=(m1,,mr)=1α1nαn,O=(o1,,or)=1β1nβn,M=(m_{1},\dotsc,m_{r})=1^{\alpha_{1}}\cdots n^{\alpha_{n}},\qquad O=(o_{1},\dotsc,o_{r})=1^{\beta_{1}}\cdots n^{\beta_{n}},

determine a generalized submatrix xM,Ox_{M,O} of xx by (xM,O)i,j:=xmi,oj(x_{M,O})_{i,j}:=x_{m_{i},o_{j}}. For example, when n=3n=3, we have the 4×44\times 4 generalized submatrix and monomial

(18) x1123,1222=[x1,1x1,2x1,2x1,2x1,1x1,2x1,2x1,2x2,1x2,2x2,2x2,2x3,1x3,2x3,2x3,2],(x1123,1222)1234,4312=x1,2x1,2x2,1x3,2.x_{1123,1222}=\begin{bmatrix}x_{1,1}&x_{1,2}&x_{1,2}&x_{1,2}\\ x_{1,1}&x_{1,2}&x_{1,2}&x_{1,2}\\ x_{2,1}&x_{2,2}&x_{2,2}&x_{2,2}\\ x_{3,1}&x_{3,2}&x_{3,2}&x_{3,2}\end{bmatrix}\negthickspace,\qquad(x_{1123,1222})^{1234,4312}=x_{1,2}x_{1,2}x_{2,1}x_{3,2}.

The ring [x]\mathbb{Z}[x] has a natural multigrading

(19) [x]=r0M,O𝒜M,O,\mathbb{Z}[x]=\bigoplus_{r\geq 0}\bigoplus_{M,O}\mathcal{A}_{M,O},

where the second direct sum is over pairs (M,O)(M,O) of rr-element multisets of [n][n], and

(20) 𝒜M,O:=span{(xM,O)e,w|w𝔖r}.\mathcal{A}_{M,O}:=\mathrm{span}_{\mathbb{Z}}\{(x_{M,O})^{e,w}\,|\,w\in\mathfrak{S}_{r}\}.

More precisely, for MM, OO as in (17), a basis for 𝒜M,O\mathcal{A}_{M,O} is given by all monomials

(21) i,j[n]xi,jci,j\prod_{i,j\in[n]}\negthickspace x_{i,j}^{c_{i,j}}

with C=(ci,j)Matn×n()C=(c_{i,j})\in\mathrm{Mat}_{n\times n}(\mathbb{N}) satisfying

(22) ci,1++ci,n=αi,c1,j++cn,j=βjfor i,j=1,,n.c_{i,1}+\cdots+c_{i,n}=\alpha_{i},\quad c_{1,j}+\cdots+c_{n,j}=\beta_{j}\quad\text{for }i,j=1,\dotsc,n.

One may express a monomial (21) in the form (xM,O)e,w(x_{M,O})^{e,w} by the following algorithm.

Algorithm 2.1.

Given a monomial (21) in 𝒜M,O\mathcal{A}_{M,O} with MM, OO as in (17),

  1. (i)

    Define the rearrangement u=u1uru=u_{1}\cdots u_{r} of OO by writing (21) with variables in lexicographic order as xm1,u1xmr,urx_{m_{1},u_{1}}\cdots x_{m_{r},u_{r}}.

  2. (ii)

    Let j1<<jβ1j_{1}<\cdots<j_{\beta_{1}} be the positions of the β1\beta_{1} ones in uu, let jβ1+1<<jβ1+β2j_{\beta_{1}+1}<\cdots<j_{\beta_{1}+\beta_{2}} be the positions of the β2\beta_{2} twos in uu, etc.

  3. (iii)

    For i=1,,ri=1,\dotsc,r, define wji=iw_{j_{i}}=i.

  4. (iv)

    Call the resulting word w=w(C)w=w(C).

For example, it is easy to check that for n=3n=3 and multisets (1123,1222)=(122131,112330)(1123,1222)=(1^{2}2^{1}3^{1},1^{1}2^{3}3^{0}) of {1,2,3}\{1,2,3\}, the graded component 𝒜1123,1222\mathcal{A}_{1123,1222} of [x1,1,x1,2,,x3,3]\mathbb{Z}[x_{1,1},x_{1,2},\dotsc,x_{3,3}] is spanned by monomials (21), where C=(ci,j)C=(c_{i,j}) is one of the matrices

(23) [110010010],[020100010],[020010100]\begin{bmatrix}1&1&0\\ 0&1&0\\ 0&1&0\end{bmatrix}\negthickspace,\quad\begin{bmatrix}0&2&0\\ 1&0&0\\ 0&1&0\end{bmatrix}\negthickspace,\quad\begin{bmatrix}0&2&0\\ 0&1&0\\ 1&0&0\end{bmatrix}

having row sums (2,1,1)(2,1,1) and column sums (1,3,0)(1,3,0). These are

(24) x1,1x1,2x2,2x3,2,x1,22x2,1x3,2,x1,22x2,2x3,1,x_{1,1}x_{1,2}x_{2,2}x_{3,2},\quad x_{\smash{1,2}}^{2}x_{2,1}x_{3,2},\quad\smash{x_{1,2}^{2}}x_{2,2}x_{3,1},

with column index sequences equal to the rearrangements 12221222, 22122212, 22212221 of 12221222. Algorithm 2.1 then produces permutations 12341234, 23142314, 23412341 in 𝔖4\mathfrak{S}_{4}, and we may express the monomials (24) as

(25) (x1123,1222)1234,1234,(x1123,1222)1234,2314,(x1123,1222)1234,2341.(x_{1123,1222})^{1234,1234},\quad(x_{1123,1222})^{1234,2314},\quad(x_{1123,1222})^{1234,2341}.

For rr-element multisets MM, OO of [n][n], the monomials in 𝒜M,O\mathcal{A}_{M,O} are closely related to parabolic subgroups of 𝔖r\mathfrak{S}_{r} with standard generators s1,,sr1s_{1},\dotsc,s_{r-1}, and double cosets of the form Wι(M)wWι(O)W_{\iota(M)}wW_{\iota(O)} where ww belongs to 𝔖r\mathfrak{S}_{r}, WJW_{J} is the subgroup of 𝔖r\mathfrak{S}_{r} generated by JJ, and

(26) ι(M):={s1,,sr1}{sα1,sα1+α2,,srαn}={sj|mj=mj+1},ι(O):={s1,,sr1}{sβ1,sβ1+β2,,srβn}={sj|oj=oj+1}.\begin{gathered}\iota(M):=\{s_{1},\dotsc,s_{r-1}\}\smallsetminus\{s_{\alpha_{1}},s_{\alpha_{1}+\alpha_{2}},\dotsc,s_{r-\alpha_{n}}\}=\{s_{j}\,|\,m_{j}=m_{j+1}\},\\ \iota(O):=\{s_{1},\dotsc,s_{r-1}\}\smallsetminus\{s_{\beta_{1}},s_{\beta_{1}+\beta_{2}},\dotsc,s_{r-\beta_{n}}\}=\{s_{j}\,|\,o_{j}=o_{j+1}\}.\end{gathered}

It is easy to see that the map Mι(M)M\mapsto\iota(M) is bijective: one recovers M=1α1nαnM=1^{\alpha_{1}}\cdots n^{\alpha_{n}} from the generators not in ι(M)\iota(M) as in (26). It is known that each double coset has unique minimal and maximal elements with respect to the Bruhat order on 𝔖r\mathfrak{S}_{r}, defined by declaring vwv\leq w if each reduced expression si1sis_{i_{1}}\cdots s_{i_{\ell}} for ww contains a subword which is a reduced expression for vv. (See, e.g., [2], [5].) Let Wι(M)\W/Wι(O)W_{\iota(M)}\backslash W/W_{\iota(O)} denote the set of all double cosets of W=𝔖rW=\mathfrak{S}_{r} determined by rr-element multisets MM, OO.

Proposition 2.2.

Fix rr-element multisets MM, OO as in (17). The double cosets Wι(M)\W/Wι(O)W_{\iota(M)}\backslash W/W_{\iota(O)} satisfy the following.

  1. (i)

    Each double coset has a unique Bruhat-minimal element uu satisfying su>usu>u for all sι(M)s\in\iota(M) and us>uus>u for all sι(O)s\in\iota(O); it has a unique Bruhat-maximal element uu^{\prime} satisfying su<usu^{\prime}<u^{\prime} for all sι(M)s\in\iota(M) and us<uu^{\prime}s<u^{\prime} for all sι(O)s\in\iota(O).

  2. (ii)

    We have Wι(M)vWι(O)=Wι(M)wWι(O)W_{\iota(M)}vW_{\iota(O)}=W_{\iota(M)}wW_{\iota(O)} if and only if (xM,O)e,v=(xM,O)e,w(x_{M,O})^{e,v}=(x_{M,O})^{e,w}.

  3. (iii)

    The cardinality |Wι(M)\W/Wι(O)||W_{\iota(M)}\backslash W/W_{\iota(O)}| is the dimension of 𝒜M,O\mathcal{A}_{M,O}, equivalently, the number of matrices in Matn×n()\mathrm{Mat}_{n\times n}(\mathbb{N}) having row sums (α1,,αn)(\alpha_{1},\dotsc,\alpha_{n}) and column sums (β1,,βn)(\beta_{1},\dotsc,\beta_{n}).

  4. (iv)

    Each permutation ww produced by Algorithm 2.1 is the unique Bruhat-minimal element of its coset Wι(M)wWι(O)W_{\iota(M)}wW_{\iota(O)}.

Proof.

(i) See [5].

(ii) The dimension of 𝒜M,O\mathcal{A}_{M,O} is the cardinality of the set {(xM,O)e,w|w𝔖r}\{(x_{M,O})^{e,w}\,|\,w\in\mathfrak{S}_{r}\}. But we have (xM,O)e,v=(xM,O)e,w(x_{M,O})^{e,v}=(x_{M,O})^{e,w} if and only if when we partition the r×rr\times r permutation matrices P(v)P(v), P(w)P(w) of vv, ww into blocks by drawing bars after rows α1,α1+α2,,rαn\alpha_{1},\alpha_{1}+\alpha_{2},\dotsc,r-\alpha_{n} and after columns β1,β1+β2,,rβn\beta_{1},\beta_{1}+\beta_{2},\dotsc,r-\beta_{n}, the corresponding blocks of P(v)P(v) and P(w)P(w) contain equal numbers of ones. It follows that for fixed w𝔖rw\in\mathfrak{S}_{r}, the set {v𝔖r|(xM,O)e,v=(xM,O)e,w}\{v\in\mathfrak{S}_{r}\,|\,(x_{M,O})^{e,v}=(x_{M,O})^{e,w}\} is Wι(M)wWι(O)W_{\iota(M)}wW_{\iota(O)}.

(iii) This follows from (ii), where ci,jc_{i,j} is the number of ones in block (i,j)(i,j) of the permutation matrix of any permutation belonging to the double coset.

(iv) By Step (i) of the algorithm, subwords w1wα1w_{1}\cdots w_{\alpha_{1}}, wα1+1wα1+α2w_{\alpha_{1}+1}\cdots w_{\alpha_{1}+\alpha_{2}}, etc., of w(C)w(C) are increasing. It follows that for any generator sι(M)s\in\iota(M) we have sw>wsw>w. By Step (ii) of the algorithm, letters 1,,β11,\dotsc,\beta_{1} appear in increasing order in w(C)w(C), as do β1+1,,β1+β2\beta_{1}+1,\dotsc,\beta_{1}+\beta_{2}, etc. It follows that for any generator wι(O)w\in\iota(O) we have ws>wws>w. ∎

For any subsets II, JJ of generators of 𝔖r\mathfrak{S}_{r}, the Bruhat order on 𝔖r\mathfrak{S}_{r} induces a poset structure on WI\W/WJW_{I}\backslash W/W_{J} as follows. We declare WIvWJWIwWJW_{I}vW_{J}\leq W_{I}wW_{J} if elements of the cosets satisfy any of the three (equivalent) inequalities in the Bruhat order on 𝔖r\mathfrak{S}_{r} [5, Lem. 2.2].

  1. (i)

    The minimal element of WIvWJW_{I}vW_{J} is less than or equal to the minimal element of WIwWJW_{I}wW_{J}.

  2. (ii)

    The maximal element of WIvWJW_{I}vW_{J} is less than or equal to the maximal element of WIwWJW_{I}wW_{J}.

  3. (iii)

    At least one element of WIvWJW_{I}vW_{J} is less than or equal to at least one element of WIwWJW_{I}wW_{J}.

We call this poset the Bruhat order on WI\W/WJW_{I}\backslash W/W_{J}. A fourth equivalent inequality can be stated in terms of matrices of exponents defined by monomials in 𝒜M,O\mathcal{A}_{M,O}. (See, e.g., [12].) Given a matrix C=(ci,j)Matn×n()C=(c_{i,j})\in\mathrm{Mat}_{n\times n}(\mathbb{N}), define the matrix C=(ci,j)Matn×n()C^{*}=(c^{*}_{i,j})\in\mathrm{Mat}_{n\times n}(\mathbb{N}) by

(27) ci,j=sum of entries of C[i],[j].c^{*}_{i,j}=\text{sum of entries of $C_{[i],[j]}$}.
Proposition 2.3.

Fix monomials

(xM,O)e,v=i,jxi,jci,j,(xM,O)e,w=i,jxi,jdi,j,(x_{M,O})^{e,v}=\prod_{i,j}x_{i,j}^{c_{i,j}},\quad(x_{M,O})^{e,w}=\prod_{i,j}x_{i,j}^{d_{i,j}},

in 𝒜M,O\mathcal{A}_{M,O} and define matrices CC^{*}, DD^{*} as in (27). Then we have Wι(M)vWι(O)Wι(M)wWι(O)W_{\iota(M)}vW_{\iota(O)}\leq W_{\iota(M)}wW_{\iota(O)} in the Bruhat order if and only if CDC^{*}\geq D^{*} in the componentwise order.

The Bruhat order on Wι(M)\W/Wι(O)W_{\iota(M)}\backslash W/W_{\iota(O)} is closely related to certain totally nonnegative polynomials in 𝒜M,O\mathcal{A}_{M,O}. Indeed, when M=O=1nM=O=1^{n}, totally nonnegative polynomials of the form xe,vxe,wx^{e,v}-x^{e,w} are characterized by the Bruhat order on 𝔖n\mathfrak{S}_{n} [6].

Theorem 2.4.

For v,w𝔖nv,w\in\mathfrak{S}_{n}, the polynomial xe,vxe,wx^{e,v}-x^{e,w} is totally nonnegative if and only if vwv\leq w in the Bruhat order.

We will now extend this result to all monomials in [x]\mathbb{Z}[x]. Let us define a partial order T\leq_{T} on all monomials in [x]\mathbb{Z}[x] by declaring (xM,O)e,vT(xP,Q)e,w(x_{M,O})^{e,v}\leq_{T}(x_{P,Q})^{e,w} if (xP,Q)e,w(xM,O)e,v(x_{P,Q})^{e,w}-(x_{M,O})^{e,v} is a totally nonnegative polynomial. We call this the total nonnegativity order on monomials in [x]\mathbb{Z}[x]. It is not hard to show that the total nonnegativity order is a disjoint union of its restrictions to the multigraded components (19) of [x]\mathbb{Z}[x].

Lemma 2.5.

Monomials

(28) i,jxi,jci,j,i,jxi,jdi,j\prod_{i,j}\negthinspace x_{i,j}^{c_{i,j}},\quad\prod_{i,j}\negthinspace x_{i,j}^{d_{i,j}}

are comparable in the total nonnegativity order only if they belong to the same multigraded component of [x]\mathbb{Z}[x].

Proof.

For k,[n]k,\ell\in[n] and t0t\in\mathbb{R}_{\geq 0}, define the n×nn\times n matrix Ek,(t)=(ei,jk,)i,j[n]E^{k,\ell}(t)=(e_{i,j}^{k,\ell})_{i,j\in[n]} by

(29) ei,jk,={tif ik and j,1otherwise.e_{i,j}^{k,\ell}=\begin{cases}t&\text{if $i\leq k$ and $j\leq\ell$},\\ 1&\text{otherwise}.\end{cases}

This matrix is totally nonnegative if t1t\geq 1, or k=nk=n, or =n\ell=n.

Suppose that the monomials belong to components 𝒜M,O\mathcal{A}_{M,O} and 𝒜M,O\mathcal{A}_{M^{\prime},O^{\prime}} of [x]\mathbb{Z}[x], with MM, OO, as in (17) and

M=1α1nαn,O=1β1nβn.M^{\prime}=1^{\alpha_{1}^{\prime}}\cdots n^{\alpha_{n}^{\prime}},\qquad O^{\prime}=1^{\beta_{1}^{\prime}}\cdots n^{\beta_{n}^{\prime}}.

If MMM\neq M^{\prime}, then let k[n]k\in[n] be the least index appearing with different multiplicities in the two multisets. Evaluating the monomials (28) at Ek,n(t)E^{k,n}(t) yields tα1++αkt^{\alpha_{1}+\cdots+\alpha_{k}} and tα1++αkt^{\alpha^{\prime}_{1}+\cdots+\alpha^{\prime}_{k}}. The difference of these can be made positive or negative by choosing t<1t<1 or t>1t>1. On the other hand, if OOO\neq O^{\prime}, then the evalulation of the monomials (28) at matrices of the form En,(t)E^{n,\ell}(t) leads to a similar conclusion. ∎

Theorem 2.6.

Fix rr-element multisets M=1α1nαnM=1^{\alpha_{1}}\cdots n^{\alpha_{n}}, O=1β1nβnO=1^{\beta_{1}}\cdots n^{\beta_{n}} as in (17), and matrices C,DMatn×n()C,D\in\mathrm{Mat}_{n\times n}(\mathbb{N}) with row and column sums (α1,,αn)(\alpha_{1},\dotsc,\alpha_{n}), (β1,,βn)(\beta_{1},\dotsc,\beta_{n}), and define the polynomial

f(x)=i,jxi,jci,ji,jxi,jdi,jf(x)=\prod_{i,j}\negthinspace x_{i,j}^{c_{i,j}}-\prod_{i,j}\negthinspace x_{i,j}^{d_{i,j}}

in 𝒜M,O\mathcal{A}_{M,O}. Then the following are equivalent.

  1. (i)

    f(x)f(x) is totally nonnegative.

  2. (ii)

    CDC^{*}\geq D^{*} in the componentwise order.

  3. (iii)

    w(C)w(D)w(C)\leq w(D) in the Bruhat order on 𝔖r\mathfrak{S}_{r}.

  4. (iv)

    f(x)f(x) is equal to a sum of products of the form det(xI,J)xu1,v1xur2,vr2\det(x_{I,J})x_{u_{1},v_{1}}\cdots x_{u_{r-2},v_{r-2}} in 𝒜M,O\mathcal{A}_{M,O} with |I|=|J|=2|I|=|J|=2.

Proof.

(i \Rightarrow ii) Suppose CDC^{*}\not\geq D^{*} in the componentwise order and let (k,)(k,\ell) the the lexicographically least pair satisfying ck,<dk,c^{*}_{k,\ell}<d^{*}_{k,\ell}. Now choose t>1t>1 and evaluate f(x)f(x) at the totally nonnegative matrix Ek,(t)E^{k,\ell}(t) to obtain tck,tdk,<0t^{c^{*}_{k,\ell}}-t^{d^{*}_{k,\ell}}<0. It follows that f(x)f(x) is not a totally nonnegative polynomial.

(ii \Rightarrow iii) This follows from Proposition 2.3 and the definition of the Bruhat order on double cosets.

(iii \Rightarrow iv) Suppose that w(C)w(D)w(C)\leq w(D) and let p=(w(D))(w(C))p=\ell(w(D))-\ell(w(C)). Then there exist a sequence

w(C)=y(0)<y(1)<<y(p1)<y(p)=w(D)w(C)=y^{(0)}<y^{(1)}<\cdots<y^{(p-1)}<y^{(p)}=w(D)

of permutations and a sequence ((i0,j0),,(ip1,jp1))((i_{0},j_{0}),\dotsc,(i_{p-1\negthinspace},j_{p-1})) of transpositions in 𝔖r\mathfrak{S}_{r} such that we have

y(k)=(ik1,jk1)y(k1),(y(k))=(y(k1))+1y^{(k)}=(i_{k-1\negthinspace},j_{k-1})y^{(k-1)},\qquad\ell(y^{(k)})=\ell(y^{(k-1)})+1

for k=1,,pk=1,\dotsc,p. We may thus write f(x)=(xM,O)e,w(C)(xM,O)e,w(D)f(x)=(x_{M,O})^{e,w(C)}-(x_{M,O})^{e,w(D)} as the telescoping sum

((xM,O)e,y(0)(xM,O)e,y(1))+((xM,O)e,y(1)(xM,O)e,y(2))++((xM,O)e,y(p1)(xM,O)e,y(p)),\Big{(}\negthinspace(x_{M,O})^{e,y^{(0)}}\negthickspace-(x_{M,O})^{e,y^{(1)}}\Big{)}+\Big{(}\negthinspace(x_{M,O})^{e,y^{(1)}}\negthickspace-(x_{M,O})^{e,y^{(2)}}\Big{)}+\cdots+\Big{(}\negthinspace(x_{M,O})^{e,y^{(p-1)}}\negthickspace-(x_{M,O})^{e,y^{(p)}}\Big{)},

where each parenthesized difference either has the desired form or is 0.

(iv \Rightarrow i) A sum of products of minors is a totally nonnegative polynomial. ∎

For example, let us revisit the monomials (24) – (25) in the graded component 𝒜1123,1222\mathcal{A}_{1123,1222} of [x1,1,x1,2,,x3,3]\mathbb{Z}[x_{1,1},x_{1,2},\dotsc,x_{3,3}]. It is easy to see that 1234<2314<23411234<2314<2341 in the Bruhat order on 𝔖4\mathfrak{S}_{4} and that the application of (27) to the corresponding matrices in (23) yields the componentwise comparisons

(30) [122133144][022133144][022033144].\begin{bmatrix}1&2&2\\ 1&3&3\\ 1&4&4\end{bmatrix}\geq\begin{bmatrix}0&2&2\\ 1&3&3\\ 1&4&4\end{bmatrix}\geq\begin{bmatrix}0&2&2\\ 0&3&3\\ 1&4&4\end{bmatrix}\negthickspace.

Thus we have (x1123,1222)1234,1234T(x1123,1222)1234,2314T(x1123,1222)1234,2341(x_{1123,1222})^{1234,1234}\geq_{T}(x_{1123,1222})^{1234,2314}\geq_{T}(x_{1123,1222})^{1234,2341}, i.e.,

x1,1x1,2x2,2x3,2Tx1,22x2,1x3,2Tx1,22x2,2x3,1.x_{1,1}x_{1,2}x_{2,2}x_{3,2}\ \geq_{T}\ x_{\smash{1,2}}^{2}x_{2,1}x_{3,2}\ \geq_{T}\ \smash{x_{1,2}^{2}}x_{2,2}x_{3,1}.

Furthermore, the chain 1234<2134<2314<23411234<2134<2314<2341 in the Bruhat order on 𝔖4\mathfrak{S}_{4} with

(31) 2134=(1,2)1234,2314=(2,3)2134,2341=(3,4)23142134=(1,2)1234,\quad 2314=(2,3)2134,\quad 2341=(3,4)2314

allows us to write x1,1x1,2x2,2x3,2x1,22x2,1x3,2x_{1,1}x_{1,2}x_{2,2}x_{3,2}-x_{\smash{1,2}}^{2}x_{2,1}x_{3,2} as

((x1123,1222)1234,1234(x1123,1222)1234,2134)+((x1123,1222)1234,2134(x1123,1222)1234,2314)=det[x1,1x1,2x1,1x2,2]x2,2x3,2+x1,2det[x1,1x1,2x2,1x2,2]x3,2,\begin{gathered}\Big{(}\negthinspace(x_{1123,1222})^{1234,1234}-(x_{1123,1222})^{1234,2134}\Big{)}\,+\,\Big{(}\negthinspace(x_{1123,1222})^{1234,2134}-(x_{1123,1222})^{1234,2314}\Big{)}\\ =\det\negthinspace\begin{bmatrix}x_{1,1}&x_{1,2}\\ x_{1,1}&x_{2,2}\end{bmatrix}\negthinspace x_{2,2}x_{3,2}\,+\,x_{1,2}\det\negthinspace\begin{bmatrix}x_{1,1}&x_{1,2}\\ x_{2,1}&x_{2,2}\end{bmatrix}\negthinspace x_{3,2},\end{gathered}

and to write x1,22x2,1x3,2x1,22x2,2x3,1x_{\smash{1,2}}^{2}x_{2,1}x_{3,2}-\smash{x_{1,2}^{2}}x_{2,2}x_{3,1} as

((x1123,1222)1234,2314(x1123,1222)1234,2341)=x1,22det[x2,1x2,2x3,1x3,2].\Big{(}\negthinspace(x_{1123,1222})^{1234,2314}-(x_{1123,1222})^{1234,2341}\Big{)}=x_{1,2}^{2}\det\negthinspace\begin{bmatrix}x_{2,1}&x_{2,2}\\ x_{3,1}&x_{3,2}\end{bmatrix}\negthinspace.

3. Main results

Let nTP\mathcal{M}^{\textsc{TP}}_{n} be the set of totally positive n×nn\times n matrices. To characterize ratios of products of permanents which are bounded above and/or nontrivially bounded below on the set nTP\mathcal{M}^{\textsc{TP}}_{n}, we first consider necessary conditions on the multisets of rows and columns appearing in such ratios. Let

(32) R(x)=per(xI1,I1)per(xI2,I2)per(xIr,Ir)per(xJ1,J1)per(xJ2,J2)per(xJq,Jq),R(x)=\frac{\mathrm{per}(x_{I_{1},I^{\prime}_{1}})\mathrm{per}(x_{I_{2},I^{\prime}_{2}})\cdots\mathrm{per}(x_{I_{r},I^{\prime}_{r}})}{\mathrm{per}(x_{J_{1},J^{\prime}_{1}})\mathrm{per}(x_{J_{2},J^{\prime}_{2}})\cdots\mathrm{per}(x_{J_{q},J^{\prime}_{q}})},

be such a ratio, where

(33) (I1,,Ir),(I1,,Ir),(J1,,Jq),(J1,,Jq)(I_{1},\dotsc,I_{r}),\quad(I^{\prime}_{1},\dotsc,I^{\prime}_{r}),\quad(J_{1},\dotsc,J_{q}),\quad(J^{\prime}_{1},\dotsc,J^{\prime}_{q})

are multisets of [n][n] satisfying |Ik|=|Ik||I_{k}|=|I^{\prime}_{k}|, |Jk|=|Jk||J_{k}|=|J^{\prime}_{k}| for all kk. In order for R(x)R(x) to be bounded above or nontrivially bounded below on nTP\mathcal{M}^{\textsc{TP}}_{n} the multisets (33) must be related in terms of an operation which we call multiset union. Given multisets M=1α1nαnM=1^{\alpha_{1}}\cdots n^{\alpha_{n}}, O=1β1nβnO=1^{\beta_{1}}\cdots n^{\beta_{n}} of [n][n], define their multiset union to be

(34) MO:=1α1+β1nαn+βn.M\Cup O:=1^{\alpha_{1}+\beta_{1}}\cdots n^{\alpha_{n}+\beta_{n}}.

For example, 11241233=111223341124\Cup 1233=11122334.

Proposition 3.1.

Given multiset sequences as in (33), a ratio (32) can be bounded above or nontrivially bounded below on nTP\mathcal{M}^{\textsc{TP}}_{n} only if we have the multiset equalities

(35) I1Ir=J1Jq,I1Ir=J1Jq.I_{1}\Cup\cdots\Cup I_{r}=J_{1}\Cup\cdots\Cup J_{q},\qquad I^{\prime}_{1}\Cup\cdots\Cup I^{\prime}_{r}=J^{\prime}_{1}\Cup\cdots\Cup J^{\prime}_{q}.
Proof.

Given a multiset KK, let μi(K)\mu_{i}(K) denote the multiplicity of ii in KK, and define

(36) αi=k=1rμi(Ik),βi=k=1rμi(Ik),αi=k=1qμi(Jk),βi=k=1qμi(Jk).\alpha_{i}=\sum_{k=1}^{r}\mu_{i}(I_{k}),\quad\beta_{i}=\sum_{k=1}^{r}\mu_{i}(I^{\prime}_{k}),\quad\alpha^{\prime}_{i}=\sum_{k=1}^{q}\mu_{i}(J_{k}),\quad\beta^{\prime}_{i}=\sum_{k=1}^{q}\mu_{i}(J^{\prime}_{k}).

Assume that the multiset equalities (35) do not hold, e.g., for some ii we have αiαi\alpha_{i}\neq\alpha^{\prime}_{i}. Let AA be a totally positive matrix and construct a family of matrices (A(t))t>0(A(t))_{t>0} by scaling row ii of AA by tt. Clearly, each matrix A(t)A(t) is totally positive, since each minor det(A(t)I,J)\det(A(t)_{I,J}) equals either det(AI,J)\det(A_{I,J}) or tt times this. Furthermore, we have R(A(t))=tαiαiR(A)R(A(t))=t^{\alpha_{i}-\alpha^{\prime}_{i}}R(A), since each permanent with row multiset KK containing ii is scaled by tμi(K)t^{\mu_{i}(K)}. Thus, by letting tt approach 0 or ++\infty, we can make R(A(t))R(A(t)) arbitrarily large or arbitrarily close to 0. The same is true if we have βiβi\beta_{i}\neq\beta^{\prime}_{i}. ∎

To state sufficient conditions for the boundedness of ratios (32) we observe that it is possible to bound the permanent above and below as follows.

Proposition 3.2.

For any n×nn\times n totally nonnegative matrix A=(ai,j)A=(a_{i,j}) we have

(37) a1,1an,nper(A)n!a1,1an,n.a_{1,1}\cdots a_{n,n}\leq\mathrm{per}(A)\leq n!\cdot a_{1,1}\cdots a_{n,n}.
Proof.

The first inequality follows from the fact that a1,w1an,wn>0a_{1,w_{1}}\negthinspace\cdots a_{n,w_{n}}>0 for all w𝔖nw\in\mathfrak{S}_{n}. The second inequality follows from the fact (Theorem 2.4) that a1,1an,na1,w1an,wna_{1,1}\cdots a_{n,n}\leq a_{1,w_{1}}\negthinspace\cdots a_{n,w_{n}} for all w𝔖nw\in\mathfrak{S}_{n}. ∎

Now we state our main result, which characterizes ratios R(x)R(x) as in (32) which are bounded above for xnTPx\in\mathcal{M}^{\textsc{TP}}_{n}.

Theorem 3.3.

Let rational function

(38) R(x)=per(xI1,I1)per(xI2,I2)per(xIr,Ir)per(xJ1,J1)per(xJ2,J2)per(xJq,Jq)R(x)=\frac{\mathrm{per}(x_{I_{1},I^{\prime}_{1}})\mathrm{per}(x_{I_{2},I^{\prime}_{2}})\cdots\mathrm{per}(x_{I_{r},I^{\prime}_{r}})}{\mathrm{per}(x_{J_{1},J^{\prime}_{1}})\mathrm{per}(x_{J_{2},J^{\prime}_{2}})\cdots\mathrm{per}(x_{J_{q},J^{\prime}_{q}})}

have index sets which satisfy (35), and define matrices C=(ci,j)C=(c_{i,j}), C=(ci,j)C^{*}=(c^{*}_{i,j}), D=(di,j)D=(d_{i,j}), D=(di,j)D^{*}=(d^{*}_{i,j}) by

(39) (xI1,I1)e,e(xIr,Ir)e,e=xi,jci,j,(xJ1,J1)e,e(xJq,Jq)e,e=xi,jdi,j,(x_{I_{1},I^{\prime}_{1}})^{e,e}\cdots(x_{I_{r},I^{\prime}_{r}})^{e,e}=\prod x_{i,j}^{c_{i,j}},\qquad(x_{J_{1},J^{\prime}_{1}})^{e,e}\cdots(x_{J_{q},J^{\prime}_{q}})^{e,e}=\prod x_{i,j}^{d_{i,j}},

and (27). Then R(x)R(x) is bounded above on the set of totally positive matrices if and only if CDC^{*}\leq D^{*} in the componentwise order. In this case, it is bounded above by |I1|!|Ir|!|I_{1}|!\cdots|I_{r}|!\;.

Proof.

Suppose that CDC^{*}\nleq D^{*}. Then for some indices (k,)(k,\ell) we have ck,>dk,c^{*}_{k,\ell}>d^{*}_{k,\ell}. Define the matrix B(t)=(bi,j(t))B(t)=(b_{i,j}(t)) by

bi,j(t)={tif ik and j,1otherwise.b_{i,j}(t)=\begin{cases}t&\text{if $i\leq k$ and $j\leq\ell$},\\ 1&\text{otherwise}.\end{cases}

Now, we have R(B(t))=p(t)q(t)R(B(t))=\frac{p(t)}{q(t)} where deg(p(t))=ci,j>di,j=deg(q(t))\deg(p(t))=c^{*}_{i,j}>d^{*}_{i,j}=\deg(q(t)). Thus we have

limtR(B(t))=tci,jdi,j=.\lim_{t\rightarrow\infty}R(B(t))=t^{c^{*}_{i,j}-d^{*}_{i,j}}=\infty.

Assume therefore that we have CDC^{*}\leq D^{*} and let AA be any n×nn\times n totally positive matrix. Applying the inequalities of Proposition 3.2 to the numerator and denominator of R(A)R(A) respectively, we see that R(A)R(A) is at most

(40) |I1|!(AI1,I1)e,e|Ir|!(AIr,Ir)e,e(AJ1,J1)e,e(AJq,Jq)e,e=|I1|!|Ir|!ai,jci,jai,jdi,j.\frac{|I_{1}|!(A_{I_{1},I^{\prime}_{1}})^{e,e}\cdots|I_{r}|!(A_{I_{r},I^{\prime}_{r}})^{e,e}}{(A_{J_{1},J^{\prime}_{1}})^{e,e}\cdots(A_{J_{q},J^{\prime}_{q}})^{e,e}}=\frac{|I_{1}|!\cdots|I_{r}|!\prod a_{i,j}^{c_{i,j}}}{\prod a_{i,j}^{d_{i,j}}}.

By (Bruhat result), this is at most |I1|!|Ir|!|I_{1}|!\cdots|I_{r}|!\ .

Observe that Theorem 3.3 guarantees no nontrivial lower bound for R(x)R(x) and gives an upper bound which is sometimes tight. Indeed the ratio

x1,2x2,1x1,1x2,2\frac{x_{1,2}x_{2,1}}{x_{1,1}x_{2,2}}

attains all values in the open interval (0,1)(0,1) as xx varies over matrices in 2TP\mathcal{M}^{\textsc{TP}}_{2}. On the other hand, special cases of the ratios in Theorem 3.3 can be shown to have both upper and nontrivial lower bounds.

Corollary 3.4.

For ratio R(x)R(x) and matrices CC, DD defined as in Theorem 3.3, if C=DC=D, then R(x)R(x) is bounded above and below by

(41) 1|J1|!|Jq|!R(x)|I1|!|Ir|!,\frac{1}{|J_{1}|!\cdots|J_{q}|!}\leq R(x)\leq|I_{1}|!\cdots|I_{r}|!\;,

for xnTPx\in\mathcal{M}^{\textsc{TP}}_{n}.

For example, consider the ratio

(42) R(x)=per(x12,34)per(x34,12)x1,3x2,4x3,1x4,2R(x)=\frac{\mathrm{per}(x_{12,34})\mathrm{per}(x_{34,12})}{x_{1,3}x_{2,4}x_{3,1}x_{4,2}}

with |I1|=|I2|=2|I_{1}|=|I_{2}|=2, |J1|=|J2|=|J3|=|J4|=1|J_{1}|=|J_{2}|=|J_{3}|=|J_{4}|=1, and

(43) C=D=[0010000110000100].C=D=\begin{bmatrix}0&0&1&0\\ 0&0&0&1\\ 1&0&0&0\\ 0&1&0&0\end{bmatrix}.

By Corollary 3.4, we have

11!4R(x)2!2.\frac{1}{1!^{4}}\leq R(x)\leq 2!^{2}.

It is easy to see that R(x)R(x) attains values arbitrarily close to 44 as xx approaches the matrix of all ones. It is also possible to show that R(x)R(x) attains values arbitrarily close to 11. Indeed, consider the matrix A=A(ϵ)=(ai,j)A=A(\epsilon)=(a_{i,j}) defined by

(44) A(ϵ)=[11ϵϵ3121ϵϵ121ϵ3ϵ11],A(\epsilon)=\begin{bmatrix}1&1&\epsilon&\epsilon^{3}\\ 1&2&1&\epsilon\\ \epsilon&1&2&1\\ \epsilon^{3}&\epsilon&1&1\end{bmatrix},

where ϵ\epsilon is positive and close to 0. To see that A(ϵ)A(\epsilon) is totally positive, it suffices to verify the positivity of the sixteen minors det(A[a1,b1],[a2,b2])\det(A_{[a_{1},b_{1}],[a_{2},b_{2}]}) indexed by pairs of intervals, at least one of which contains 11 [10, Thm. 9]. Observe that we have a1,j>0a_{1,j}>0 and ai,1>0a_{i,1}>0 for all i,ji,j. Also,

det(A12,12)=1,\displaystyle\det(A_{12,12})=1,
det(A12,23)=det(A23,12)=12ϵ,\displaystyle\det(A_{12,23})=\det(A_{23,12})=1-2\epsilon,
det(A12,34)=det(A34,12)=ϵ2ϵ3,\displaystyle\det(A_{12,34})=\det(A_{34,12})=\epsilon^{2}-\epsilon^{3},
det(A123,123)=1+2ϵ2ϵ2,\displaystyle\det(A_{123,123})=1+2\epsilon-2\epsilon^{2},
det(A123,234)=det(A234,123)=14ϵ+ϵ2+3ϵ3,\displaystyle\det(A_{123,234})=\det(A_{234,123})=1-4\epsilon+\epsilon^{2}+3\epsilon^{3},
det(A)=4ϵ6ϵ22ϵ3+9ϵ42ϵ53ϵ6.\displaystyle\det(A)=4\epsilon-6\epsilon^{2}-2\epsilon^{3}+9\epsilon^{4}-2\epsilon^{5}-3\epsilon^{6}.

It follows that we have

limϵ0+R(A)=limϵ0+(ϵ2ϵ3)2ϵ4=limϵ0+12ϵ+ϵ2=1.\lim_{\epsilon\rightarrow 0^{+}}R(A)=\lim_{\epsilon\rightarrow 0^{+}}\frac{(\epsilon^{2}-\epsilon^{3})^{2}}{\epsilon^{4}}=\lim_{\epsilon\rightarrow 0^{+}}1-2\epsilon+\epsilon^{2}=1.

In the case that all submatrices in (38) are principal, the necessary condition (35) for boundedness is in fact sufficient to guarantee the existence of upper and nontrivial lower bounds.

Corollary 3.5.

For ratio RR as in Theorem 3.3, if all submatrices in R(x)R(x) are principal, (Ik=IkI_{k}=I^{\prime}_{k}, Jk=JkJ_{k}=J^{\prime}_{k} for all kk), then R(x)R(x) is bounded above and below as in (41).

Proof.

For principal submatrices xI1,I1,x_{I_{1},I_{1}},\dotsc, the condition (35) implies the equality of the matrices CC and DD in (39): this matrix is diagonal with (i,i)(i,i) entry equal to the multiplicity of ii in I1IrI_{1}\Cup\cdots\Cup I_{r}. ∎

For example, consider the ratio

(45) per(xI,I)per(xJ,J)per(xIJ,IJ)per(xIJ,IJ)\frac{\mathrm{per}(x_{I,I})\;\mathrm{per}(x_{J,J})}{\mathrm{per}(x_{I\cup J,I\cup J})\;\mathrm{per}(x_{I\cap J,I\cap J})}

coming from the (false) permanental version (5) of Koteljanskii’s inequality (2). By Corollary 3.5, the four principal submatrices of xx imply that the exponent matrices CC and DD are equal and diagonal with (i,i)(i,i) entry equal to the multiplicity of ii in IJI\Cup J. Thus Corollary 3.4 gives the lower and upper bounds

(46) 1|IJ|!|IJ|!,|I|!|J|!\frac{1}{|I\cup J|!\;|I\cap J|!},\qquad|I|!\;|J|!

as claimed in (14). These bounds are not in general tight. Consider the special case

(47) 13!1!per(x12,12)per(x23,23)per(x123,123)per(x2,2)(2!)2\frac{1}{3!1!}\leq\frac{\mathrm{per}(x_{12,12})\mathrm{per}(x_{23,23})}{\mathrm{per}(x_{123,123})\mathrm{per}(x_{2,2})}\leq(2!)^{2}

with

(48) C=D=[100020001].C=D=\begin{bmatrix}1&0&0\\ 0&2&0\\ 0&0&1\end{bmatrix}.

We improve (47) as follows.

Proposition 3.6.

For x3TPx\in\mathcal{M}^{\textsc{TP}}_{3} we have

(49) 12per(x12,12)per(x23,23)per(x123,123)per(x2,2)2.\frac{1}{2}\leq\frac{\mathrm{per}(x_{12,12})\mathrm{per}(x_{23,23})}{\mathrm{per}(x_{123,123})\mathrm{per}(x_{2,2})}\leq 2.
Proof.

The first inequality follows from expanding

2per(x12,12)per(x23,23)per(x123,123)per(x2,2)2\cdot\mathrm{per}(x_{12,12})\mathrm{per}(x_{23,23})-\mathrm{per}(x_{123,123})\mathrm{per}(x_{2,2})

and grouping terms as

(x11x222x33x13x222x31)+(x12x21x22x33x12x22x23x31)+(x12x21x23x32x13x21x22x32)\displaystyle(x_{11}x^{2}_{22}x_{33}-x_{13}x^{2}_{22}x_{31})+(x_{12}x_{21}x_{22}x_{33}-x_{12}x_{22}x_{23}x_{31})+(x_{12}x_{21}x_{23}x_{32}-x_{13}x_{21}x_{22}x_{32})
+x11x22x23x32+x12x21x23x32\displaystyle\quad+x_{11}x_{22}x_{23}x_{32}+x_{12}x_{21}x_{23}x_{32}
=det(x13,13)x222+det(x23,13)x12x22+det(x12,23)x21x32+x11x22x23x32+x12x21x23x32.\displaystyle=\det(x_{13,13})x^{2}_{22}+\det(x_{23,13})x_{12}x_{22}+\det(x_{12,23})x_{21}x_{32}+x_{11}x_{22}x_{23}x_{32}+x_{12}x_{21}x_{23}x_{32}.

Similarly, the second inequality follows from expanding

2per(x123,123)per(x2,2)per(x12,12)per(x23,23)2\cdot\mathrm{per}(x_{123,123})\mathrm{per}(x_{2,2})-\mathrm{per}(x_{12,12})\mathrm{per}(x_{23,23})

and grouping terms as

x11x222x33+det(x23,23)x12x21+2x12x22x23x31+x11x22x23x32+2x13x21x22x32+2x13x222x31.x_{11}x^{2}_{22}x_{33}+\det(x_{23,23})x_{12}x_{21}+2x_{12}x_{22}x_{23}x_{31}+x_{11}x_{22}x_{23}x_{32}+2x_{13}x_{21}x_{22}x_{32}+2x_{13}x^{2}_{22}x_{31}.

The authors believe that even these bounds are not tight. The smallest and greatest values for (49) that we have found are 2/32/3 and 121/114121/114, respectively.

4. Future directions

It would be interesting to characterize the ratios (15) which are bounded by 11, i.e., to solve the following problem.

Problem 4.1.

Characterize the differences

(50) per(xJ1,J1)per(xJq,Jq)per(xI1,I1)per(xIr,Ir)\mathrm{per}(x_{J_{1},J^{\prime}_{1}})\cdots\mathrm{per}(x_{J_{q},J^{\prime}_{q}})-\mathrm{per}(x_{I_{1},I^{\prime}_{1}})\cdots\mathrm{per}(x_{I_{r},I^{\prime}_{r}})

which are totally nonnegative polynomials.

To consider a special case, it is possible to show that for small nn, the sets I=[2n]2I=[2n]\smallsetminus 2\mathbb{Z}, J=[2n]2J=[2n]\cap 2\mathbb{Z} define a totally nonnegative polynomial

(51) per(x[n],[n])per(x[n+1,2n],[n+1,2n])per(xI,I)per(xJ,J).\mathrm{per}(x_{[n],[n]})\;\mathrm{per}(x_{[n+1,2n],[n+1,2n]})-\mathrm{per}(x_{I,I})\;\mathrm{per}(x_{J,J}).

If this polynomial is totally nonnegative in general, then it provides a permanental analog of the known totally nonnegative polynomial

det(xI,I)det(xJ,J)det(x[n,n])det(x[n+1,2n],[n+1,2n]).\det(x_{I,I})\det(x_{J,J})-\det(x_{[n,n]})\det(x_{[n+1,2n],[n+1,2n]}).
Conjecture 4.2.

The polynomial (51) is totally nonnegative for all nn.

Other families of possible inequalities are suggested by the known inequalities appearing in Proposition 3.2. In particular, the first inequality there compares the permanent to a product of permanents of 1×11\times 1 matrices. Comparing further to products of permanents of the form

(52) per(xI1,I1)per(xIr,Ir),\mathrm{per}(x_{I_{1},I_{1}})\cdots\mathrm{per}(x_{I_{r},I_{r}}),

we obtain polynomials of the forms

(53) per(x)per(xI1,I1)per(xIr,Ir),per(xI1,I1)per(xIr,Ir)x1,1xn,n,\mathrm{per}(x)-\mathrm{per}(x_{I_{1},I_{1}})\cdots\mathrm{per}(x_{I_{r},I_{r}}),\qquad\mathrm{per}(x_{I_{1},I_{1}})\cdots\mathrm{per}(x_{I_{r},I_{r}})-x_{1,1}\cdots x_{n,n},

which are totally nonnegative because they belong to span{xe,w|w𝔖n}\mathrm{span}_{\mathbb{N}}\{x^{e,w}\,|\,w\in\mathfrak{S}_{n}\}. It is natural to ask if the cardinalities of the index sets determine whether a difference of the form (50) is totally nonnegative, but this is not the case. It is natural then to ask how averages of such products compare to one another. This problem is open. (See [1], [17, Prob. 5.3].)

Problem 4.3.

Characterize the pairs of partitions λ=(λ1,,λr)\lambda=(\lambda_{1},\dotsc,\lambda_{r}), μ=(μ1,,μq)\mu=(\mu_{1},\dotsc,\mu_{q}) such that

(54) (I1,,Ir)|Ik|=λkper(xI1,I1)per(xIr,Ir)(nλ1,,λr)(J1,,Jq)|Jk|=μkper(xJ1,J1)per(xJq,Jq)(nμ1,,μr)\sum_{\begin{subarray}{c}(I_{1},\dotsc,I_{r})\\ |I_{k}|=\lambda_{k}\end{subarray}}\frac{\mathrm{per}(x_{I_{1},I_{1}})\cdots\mathrm{per}(x_{I_{r},I_{r}})}{\tbinom{n}{\lambda_{1},\dotsc,\lambda_{r}}}-\sum_{\begin{subarray}{c}(J_{1},\dotsc,J_{q})\\ |J_{k}|=\mu_{k}\end{subarray}}\frac{\mathrm{per}(x_{J_{1},J_{1}})\cdots\mathrm{per}(x_{J_{q},J_{q}})}{\tbinom{n}{\mu_{1},\dotsc,\mu_{r}}}

is totally nonnegative.

Now consider generalizing the second inequality in Proposition 3.2 to products of permanents of the form (52). Differences of the form

(55) per(xI1,I1)per(xIr,Ir)|I1|!|Ir|!per(x)n!\frac{\mathrm{per}(x_{I_{1},I_{1}})\cdots\mathrm{per}(x_{I_{r},I_{r}})}{|I_{1}|!\cdots|I_{r}|!}-\frac{\mathrm{per}(x)}{n!}

are not totally nonnegative, while differences of the form

(56) x1,1xn,nper(xI1,I1)per(xIr,Ir)|I1|!|Ir|!x_{1,1}\cdots x_{n,n}-\frac{\mathrm{per}(x_{I_{1},I_{1}})\cdots\mathrm{per}(x_{I_{r},I_{r}})}{|I_{1}|!\cdots|I_{r}|!}

are (by Proposition 3.2). It is natural then to ask about the averages of differences (55), over all set partitions (I1,,Ir)(I_{1},\dotsc,I_{r}) of a partition λ\lambda.

Problem 4.4.

Decide if for fixed λ=(λ1,,λr)\lambda=(\lambda_{1},\dotsc,\lambda_{r}), the polynomial

(I1,,Ir)|Ik|=λkper(xI1,I1)per(xIr,Ir)per(x)\sum_{\begin{subarray}{c}(I_{1},\dotsc,I_{r})\\ |I_{k}|=\lambda_{k}\end{subarray}}\mathrm{per}(x_{I_{1},I_{1}})\cdots\mathrm{per}(x_{I_{r},I_{r}})-\mathrm{per}(x)

is totally nonnegative.

To illustrate (55) and Problem 4.4, let us consider the case that n=3n=3. It is straightforward to show that

(57) per(x12,12)x3,32!1!per(x)3!,\frac{\mathrm{per}(x_{12,12})x_{3,3}}{2!1!}-\frac{\mathrm{per}(x)}{3!},

equivalently, 3per(x12,12)x3,3per(x)3\mathrm{per}(x_{12,12})x_{3,3}-\mathrm{per}(x), is totally nonnegative because the latter expression equals a sum of matrix minors. Similarly,

(58) per(x23,23)x1,12!1!per(x)3!,\frac{\mathrm{per}(x_{23,23})x_{1,1}}{2!1!}-\frac{\mathrm{per}(x)}{3!},

is totally nonnegative. On the other hand,

(59) per(x13,13)x2,22!1!per(x)3!,\frac{\mathrm{per}(x_{13,13})x_{2,2}}{2!1!}-\frac{\mathrm{per}(x)}{3!},

is not, because its evaluation at

[110111111]\begin{bmatrix}1&1&0\\ 1&1&1\\ 1&1&1\end{bmatrix}

is negative. On the other hand, two times the sum of the three differences (57) – (59) is

2x1,1x2,2x3,3x1,2x2,3x3,1x1,3x2,1x3,2,2x_{1,1}x_{2,2}x_{3,3}-x_{1,2}x_{2,3}x_{3,1}-x_{1,3}x_{2,1}x_{3,2},

which is totally nonnegative by Theorem 2.4.

References

  • [1] W. W. Barrett and C. R. Johnson. Majorization monotonicity of symmetrized Fischer products. Linear and Multilinear Algebra, 34, 1 (1993) pp. 67–74.
  • [2] A. Björner and F. Brenti. Combinatorics of Coxeter groups, vol. 231 of Graduate Texts in Mathmatics. Springer, New York (2005).
  • [3] A. Boocher and B. Froehle. On generators of bounded ratios of minors for totally positive matrices. Linear Algebra Appl., 428, 7 (2008) pp. 1664–1684.
  • [4] D. Carlson. Weakly sign-symmetric matrices and some determinantal inequalities. In Colloquium Mathematicum, vol. 17. Institute of Mathematics Polish Academy of Sciences (1967), pp. 123–129.
  • [5] J. M. Douglass. An inversion formula for relative Kazhdan-Luszig polynomials. Comm. Algebra, 18, 2 (1990) pp. 371–387.
  • [6] B. Drake, S. Gerrish, and M. Skandera. Two new criteria for comparison in the Bruhat order. Electron. J. Combin., 11, 1 (2004). Note 6, 4 pp. (electronic).
  • [7] S. M. Fallat, M. I. Gekhtman, and C. R. Johnson. Multiplicative principal-minor inequalities for totally nonnegative matrices. Adv. Appl. Math., 30, 3 (2003) pp. 442–470.
  • [8] S. M. Fallat and C. R. Johnson. Totally nonnegative matrices. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2011).
  • [9] E. Fischer. Über den Hadamardschen Determinantensatz. Arch. Math. (Basel), 13 (1908) pp. 32–40.
  • [10] S. Fomin and A. Zelevinsky. Total positivity: Tests and parametrizations. Math. Intelligencer, 22, 1 (2000) pp. 23–33.
  • [11] M. Gekhtman and D. Soskin. On bounded ratios of minors of totally positive matrices (2022). Preprint math.RA/2204.11962 on ArXiv.
  • [12] C. Hohlweg and M. Skandera. A note on Bruhat order and double coset representatives (2005). Preprint math.CO/0511611 on ArXiv.
  • [13] D. M. Koteljanskiĭ. A property of sign-symmetric matrices. Amer. Math. Soc. Transl. (2), 27 (1963) pp. 19–23.
  • [14] D. M. Kotelyanskiĭ. On a property of sign-symmetric matrices. Uspehi Matem. Nauk (N.S.), 8, 4(56) (1953) pp. 163–167.
  • [15] E. H. Lieb. Proofs of some conjectures on permanents. J. Math. Mech., 16 (1966) pp. 127–134.
  • [16] M. Skandera. Inequalities in products of minors of totally nonnegative matrices. J. Algebraic Combin., 20, 2 (2004) pp. 195–211.
  • [17] M. Skandera and D. Soskin. Barrett–Johnson inequalities for totally nonnegative matrices (2022). Preprint math.CO/2209.06466 on ArXiv.