This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Corresponding author: ]leishu@fudan.edu.cn

Persistent spin dynamics and absence of spin freezing in the 𝑯H-𝑻T phase diagram of the 2D triangular antiferromagnet YbMgGaO4

Zhaofeng Ding    Zihao Zhu    Jian Zhang    Cheng Tan    Yanxing Yang State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China    Douglas E. MacLaughlin Department of Physics and Astronomy, University of California, Riverside, California 92521, USA    Lei Shu [ State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Abstract

We report results of muon spin relaxation and rotation (μ\muSR) experiments on the spin-liquid candidate YbMgGaO4. No static magnetism 0.003μB\gtrsim 0.003\mu_{B} per Yb ion, ordered or disordered, is observed down to 22 mK, a factor of two lower in temperature than previous measurements. Persistent (temperature-independent) spin dynamics are observed up to 0.20 K and at least 1 kOe, thus extending previous zero-field μ\muSR results over a substantial region of the HH-TT phase diagram. Knight shift measurements in a 10-kOe transverse field reveal two lines with nearly equal amplitudes. Inhomogeneous muon depolarization in a longitudinal field, previously characterized by stretched-exponential relaxation due to spatial inhomogeneity, is fit equally well with two exponentials, also of equal amplitudes. We attribute these results to two interstitial muon sites in the unit cell, rather than disorder or other spatial distribution. Further evidence for this attribution is found from agreement between the ratio of the two measured relaxation rates and calculated mean-square local Yb3+ dipolar fields at candidate muon sites. Zero-field data can be understood as a combination of two-exponential dynamic relaxation and quasistatic nuclear dipolar fields.

I INTRODUCTION

In 1973 Anderson Anderson (1973) proposed an exotic magnetic state in the two-dimensional (2D) triangular-lattice Heisenberg antiferromagnet where local spins are highly entangled with no spin freezing. A clear experimental identification of such a quantum spin liquid (QSL) material is much desired, for its own sake and for potential applications in quantum computation and possible relation to novel phenomena such as high-temperature superconductivity, topological order, and Mott insulators Anderson (1987); Lee (2008); Balents (2010); Savary and Balents (2017); Zhou et al. (2017). Many materials with geometrically-frustrated lattices have been proposed as candidate spin liquids (see, e.g., Uemura et al. (1994); Shimizu et al. (2003); Nakatsuji et al. (2006); Helton et al. (2007); Okamoto et al. (2007); Itou et al. (2008); Li et al. (2015a)). Whether there is a QSL among these candidates remains controversial, however.

YbMgGaO4 is a quasi-2D triangular-lattice antiferromagnet that has attracted considerable attention as a QSL candidate Li et al. (2015a, b, 2016a); Xu et al. (2016); Shen et al. (2016); Paddison et al. (2017); Li et al. (2017a, b); Shen et al. (2018); Zhang et al. (2018); Ma et al. (2018); Li et al. (2019). No spin ordering was observed down to 0.06 K from thermodynamic and transport measurements  Li et al. (2015a); Xu et al. (2016). The low-temperature heat capacity exhibits a power-law temperature dependence with an exponent close to the theoretical value of 2/3 for a U(1)U(1) QSL. An anisotropic spin interaction was observed and discussed as important to stabilize a possible QSL ground state Li et al. (2015b). Inelastic neutron scattering measurements Shen et al. (2016); Paddison et al. (2017); Li et al. (2017b, 2019) provided evidence for a QSL state with a spinon Fermi surface by observing continuous spin excitations. High-field time-domain terahertz spectroscopy measurements Zhang et al. (2018) characterized YbMgGaO4 as an easy-plane XXZ antiferromagnet. Theoretical treatments predict a proposed spinon Fermi surface U(1)U(1) spin liquid  Li et al. (2016b, 2017c); Li and Chen (2017).

Whether or not there is a QSL state in YbMgGaO4 is still under debate. Evidence against a QSL includes thermal conductivity measurements that did not observe the expected magnetic excitation contribution down to 0.050 K Xu et al. (2016). Furthermore, a frequency-dependent cusp was observed at \sim0.1 K in ac susceptibility measurements Ma et al. (2018), suggesting a spin-glass-like transition, although the dc magnetization saturates at low temperatures with no evidence for spin freezing up to 10 kOe Li et al. (2019). Proposed alternative ground states Luo et al. (2017); Zhu et al. (2017); Parker and Balents (2018); Kimchi et al. (2018) involve various forms of ordered or disordered static magnetism, but without definite predictions for transition temperatures.

Muon spin rotation and relaxation (μ\muSR) Schenck (1985); *Blundell99; *Brewer03; *Yaouanc11 is a powerful technique to probe local magnetism in solids, and has been widely used to study spin-liquid candidates (e.g., Uemura et al. (1994); Bert et al. (2009); Pratt et al. (2011); Clark et al. (2013); Khuntia et al. (2016); Li et al. (2016a); Pratt (2018)). A μ\muSR study of YbMgGaO4 by Y. Li et al. Li et al. (2016a) showed no static or long-range magnetic order in zero field (ZF) down to 0.048 K, which was taken as evidence for a U(1)U(1) QSL ground state. Below 10 K the ZF muon spin polarization Pμ(t)P_{\mu}(t) exhibited so-called stretched-exponential relaxation Pμ(t)=exp[(λt)β]P_{\mu}(t)=\exp[-(\lambda^{\ast}t)^{\beta}], where λ\lambda^{\ast} is a characteristic relaxation rate and β<1\beta<1 is the stretching exponent. Stretched exponentials are used as phenomenological models for spatially inhomogeneous distributions of relaxation rates Johnston (2006). In YbMgGaO4 β0.95\beta\approx 0.95 at 10 K Li et al. (2016a); the ZF relaxation was nearly exponential. With decreasing temperature β\beta decreased considerably, suggesting the onset of spatial inhomogeneity. At 70 mK λ\lambda^{\ast} was continuously suppressed by an applied longitudinal field (LF) up to 1.8 kOe. The field dependence of β\beta was not reported.

This article reports μ\muSR experiments on single-crystalline YbMgGaO4 that extend the work of Li et al. Li et al. (2016a). Positive-muon (μ+\mu^{+}) frequency and relaxation measurements were carried out for temperatures down to 22 mK and applied fields up to 10 kOe. Fourier transforms of μ\muSR data taken in a transverse field (TF) HT=10H_{T}=10 kOe (Sec. III.1) reveal two lines with equal amplitudes but significantly different frequency (Knight) shifts. We attribute the lines to two distinct μ+\mu^{+} interstitial stopping sites near the two inequivalent oxygen ions in the YbMgGaO4 unit cell, as previously suggested Li et al. (2016a). The corrected Knight shifts KcorrK_{\mathrm{corr}} are nearly temperature-independent below 1 K, as is the bulk susceptibility χmol\chi_{\mathrm{mol}} at this field (Ref. Li et al. (2019), supplement). The ratio Kcorr/χmolK_{\mathrm{corr}}/\chi_{\mathrm{mol}} is roughly consistent with calculated Yb3+ dipolar fields at candidate μ+\mu^{+} sites.

μ+\mu^{+} spin relaxation data were taken for longitudinal fields HLH_{L} up to 8 kOe at 22 mK, 0.20 K, and 5.83 K (Sec. III.2), and in ZF over the temperature range 22 mK–5.8 K (Sec. III.3). In light of the TF-μ\muSR results summarized above, LF asymmetry spectra for T=22T=22 mK and HL25H_{L}\geqslant 25 Oe, where the relaxation is purely dynamic Schenck (1985); *Blundell99; *Brewer03; *Yaouanc11, were fit by a sum of two exponentials (rates λ1\lambda_{1} and λ2\lambda_{2}), rather than the stretched exponential used previously Li et al. (2016a). A sum of two exponentials and a stretched exponential are both sub-exponential forms (i.e., exhibit upward curvature on a log-linear plot), and can be difficult to distinguish [See; forexample; ]Johnston06.

With equal amplitudes of the two exponentials, the observed ratio λ2/λ1=0.03(1)\lambda_{2}/\lambda_{1}=0.03(1) is field-independent and in rough agreement with the ratio of calculated mean-square Yb3+ dipolar fields. This is expected if the sub-exponential relaxation is due to differences in coupling fields rather than inhomogeneity in the spin dynamics. It is additional evidence for the two-site scenario.

For lower HLH_{L} the contributions of static nuclear dipolar fields must be considered (stretched-exponential fits alone mix the static and dynamic contributions). Fits of relaxation functions appropriate to this situation Schenck (1985); *Blundell99; *Brewer03; *Yaouanc11 (Sec. III.2) to the data then allow determination of λ1(HL)\lambda_{1}(H_{L}) down to HL=0H_{L}=0.

The paper is organized as follows. Section II describes the YbMgGaO4 sample and its crystal structure, briefly summarizes the μ\muSR technique, and gives details of the experiment. Results of TF, LF, and ZF experiments are reported in Sec. III and are discussed in Sec. IV. Section V summarizes our conclusions.

II EXPERIMENT

II.1 Sample

Plate-like high-quality single crystals of YbMgGaO4 were grown by a floating-zone method and characterized as reported previously Ma et al. (2018). Figure 1

Refer to caption
Figure 1: Two-thirds of the unit cell of YbMgGaO4 Li et al. (2015a, b). Blue spheres: Yb. Green spheres: Mg/Ga. Red spheres: O. Small gray spheres: candidate μ+\mu^{+} sites μ\mu1 and μ2\mu 2 (see text).

shows two-thirds of a hexagonal unit cell of YbMgGaO4 (space group R3¯mR\bar{3}m, No. 166) Li et al. (2015a, b). Mg and Ga ions are distributed randomly on the indicated sites, leading to unavoidable local disorder in the structure. There are two inequivalent oxygen locations (O1 and O2) in the unit cell. The triangular 2D Yb3+ layers are well separated by two Mg/Ga planes and four O1/O2 planes (Yb3+ layer spacing 8.377 Å), and inter-layer magnetic interaction is weak.

Implanted positive muons in oxides are likely to stop near O2- ions. To date there are no reported calculations of μ+\mu^{+} site locations in YbMgGaO4 [Forareview; see]Bonfa16. In lieu of such information, we consider candidate sites that are centered with respect to oxygen nearest neighbors. There are two such crystallographically inequivalent sites (μ\mu1 and μ\mu2), shown in Fig. 1. Dipolar magnetic fields from neighboring Yb3+ ions and nuclei are unlikely to be very different if the actual μ+\mu^{+} sites are closer to O2- ions.

II.2 The 𝝁\muSR technique

In a typical μ\muSR experiment Schenck (1985); *Blundell99; *Brewer03; *Yaouanc11, \sim100% spin-polarized positive muons are implanted into the sample and stop at interstitial sites. Each μ+\mu^{+} precesses in the (in general fluctuating) local field at its site, and at the time of its decay (mean lifetime 2.2μ{\sim}2.2~{}\mus) emits a positron preferentially in the direction of the μ+\mu^{+} spin. Positrons are detected by an array of scintillation counters, and a histogram N(t)N(t) of count rate vs time after implantation is obtained from each counter.

For two identical counters on opposite sides of the sample, the μ\muSR asymmetry time spectrum A(t)=[N1(t)N2(t)]/[N1(t)+N2(t)]A(t)=[N_{1}(t)-N_{2}(t)]/[N_{1}(t)+N_{2}(t)] is proportional to the component Pμ(t)P_{\mu}(t) of the ensemble μ+\mu^{+} spin polarization 𝐏μ(t)\mathbf{P}_{\mu}(t) along the axis joining the counters and the sample. Corrections for differences in counter geometries and efficiencies are straightforward Schenck (1985); Blundell (1999); Brewer (2003); Yaouanc and Dalmas de Réotier (2011). Unlike its cousin NMR, which, apart from NQR and field-cycling techniques, requires a strong applied magnetic field to polarize the nuclear spins, the polarized μ+\mu^{+} beam allows μ\muSR to be carried out in arbitrary fields.

Experiments may be considered in three classes:

  • In high TF-μ\muSR, the precession frequency in a paramagnet is shifted from its value in vacuo. The fractional frequency shift KK (often called the Knight shift after its discoverer Knight (1949)) and its inhomogeneous distribution (often the main contribution to the linewidth) provide a microscopic characterization of the field-induced static magnetization.

  • In sufficiently strong LF-μ\muSR, the resultant of applied and any local static fields is essentially parallel to the initial μ+\mu^{+} spin orientation. This results in “decoupling” of the static fields, and the remaining relaxation is purely dynamic in origin Hayano et al. (1979).

  • In ZF- and weak LF-μ\muSR, the time evolution of Pμ(t)P_{\mu}(t) is due to either or both of two mechanisms: (1) decay due to dynamic fluctuations of the local fields, and (2) μ+\mu^{+} spin precession in the resultant of a distribution of (quasi)static local fields and the applied field, if any (static Kubo-Toyabe (KT) relaxation Hayano et al. (1979)). The latter are normally due to nuclear dipolar fields.

    This situation can be modeled by a dynamically-damped static KT function GKT(t)G_{\mathrm{KT}}(t):

    Pμ(t)=Gd(t)GKT(t),P_{\mu}(t)=G_{d}(t)\,G_{\mathrm{KT}}(t)\,, (1)

    where the dynamic damping function Gd(t)G_{d}(t) is often a simple exponential but can be more complex (as in the present work). Choices of GKT(t)G_{\mathrm{KT}}(t) are discussed below in Sec. III.2.2. It is, however, often difficult to disentangle static and dynamic relaxation contributions from ZF-μ\muSR data alone; this is one reason why strong LF-μ\muSR is valuable.

II.3 Experimental details

A mosaic of YbMgGaO4 single crystals (total mass 0.3\approx 0.3 g) was mounted on a pure silver sample holder using diluted GE varnish, with the crystal cc axes parallel to the μ+\mu^{+} beam direction. μ\muSR experiments were carried out using the dilution refrigerator spectrometer at the M15 beam line of TRIUMF, Vancouver, Canada. Field zeroing to 10{\lesssim}10 mOe was achieved using a variation of the method of Morris and Heffner Morris and Heffner (2003).

Data were taken over the temperature range 22 mK–8 K. Due to the large low-temperature specific heat of YbMgGaO4 Xu et al. (2016), temperatures were stabilized for 15 minutes before taking data. ZF- and LF-μ\muSR data were taken with the initial μ+\mu^{+} ensemble spin polarization parallel to the crystal cc axes. For TF-μ\muSR the μ+\mu^{+} spins were rotated by 90{\sim}90^{\circ} before implantation. Data were analyzed using the Paul Scherrer Institute musrfit fitting program Suter and Wojek (2012) and the TRIUMF physica programming environment 111http://computing.triumf.ca/legacy/physica/.

III RESULTS

III.1 Transverse-field 𝝁\muSR

TF-μ\muSR experiments were carried out in YbMgGaO4 over the temperature range 26 mK–0.825 K in a transverse applied field HT=10H_{T}=10 kOe. Representative Fourier transforms of TF asymmetry time spectra are shown in Fig. 2.

Refer to caption
Figure 2: Fourier-transform (FT) μ+\mu^{+} spectra from YbMgGaO4, HT=10H_{T}=10 kOe. (a) Wide-frequency FTs at 26 mK (blue) and 0.825 K (red). The narrow peak is distorted (broadened) by strong apodization. (b) Narrow-frequency FT, T=0.825T=0.825 K. Curves: Fourier transforms of Gaussian terms 1–3 [Eq. (2)] and their sum (see text).

They exhibit three lines: line 1 [Fig. 2(a)], which is very broad and shifted to higher frequency, and lines 2 and 3 [Fig. 2(b)], which are narrow and overlap considerably.

The original TF asymmetry time spectra ATF(t)A^{\mathrm{TF}}(t) (not shown) were therefore fit by a sum of three Gaussian-damped oscillating components:

ATF(t)=i=13AiTFexp(12σi2t2)cos(ωit+φ),A^{\mathrm{TF}}(t)=\sum_{i=1}^{3}A_{i}^{\mathrm{TF}}\exp(-{\textstyle\frac{1}{2}}\sigma_{i}^{2}t^{2})\cos(\omega_{i}t+\varphi)\,, (2)

where a common phase φ\varphi was assumed. Parameter values for T=26T=26 mK are listed in Table 1.

Table 1: Parameters AiTFA_{i}^{\mathrm{TF}}, ωi\omega_{i}, and σi\sigma_{i} from fits of Eq. (2) to μ+\mu^{+} asymmetry time spectra from YbMgGaO4, HT=10H_{T}=10 kOe, T=26T=26 mK. Hyperfine coupling constants AhfA_{\mathrm{hf}} and hyperfine fields HhfH_{\mathrm{hf}} (experimental and calculated dipolar) are discussed in the text.
line ii AiTFA_{i}^{\mathrm{TF}} ωi/2π\omega_{i}/2\pi σi\sigma_{i} AhfA_{\mathrm{hf}} Hhf(exp)H_{\mathrm{hf}}^{(\mathrm{exp})} Hhf(dip)H_{\mathrm{hf}}^{(\mathrm{dip})} 222From lattice sums of nuclear dipolar fields.
(MHz) (μs1\mu\text{s}^{-1}) (mol/emu) (kOe/μB\mu_{B} per Yb) (kOe/μB\mu_{B} per Yb)
1 0.140(7) 140.2(3) 32.5(1.3) 0.23(1) 1.26(6) -1.174 (μ\mu1)
2 0.149(5) 136.760(5) 1.47(2) 0.13(1) 0.73(5) 0.897 (μ\mu2)
3 0.027(5) 136.23(1) 1.04(5)

Amplitudes A1TFA_{1}^{\mathrm{TF}} and A2TFA_{2}^{\mathrm{TF}} from the fits are nearly equal and considerably larger than A3TFA_{3}^{\mathrm{TF}}. The curves in Fig. 2 are Fourier transforms of the Gaussian asymmetry terms in Eq. (2), with parameters from the fits: frequencies ωi/2π\omega_{i}/2\pi, widths σi/2π\sigma_{i}/2\pi, and areas proportional to AiA_{i}. Their sum is normalized to the experimental Fourier transform in Fig. 2(b).

One of the three lines arises from muons that miss the sample and stop in the silver sample holder, and the other two are from the sample. Line 3, which is the narrowest, is assumed to be the “silver” signal, and ω3/2π\omega_{3}/2\pi is used as the reference frequency for the Knight shifts of the other two components. Additional evidence for this attribution is discussed below in Sec. III.2.1. The sample lines are numbered in order of their shifts (Fig. 2), consistent with the μ+\mu^{+} site numbering in order of their distance from the nearest Yb3+ layer (Fig. 1).

In order for Knight shifts to reflect local magnetism, a correction must be made for the contributions to the raw shift KrawK_{\mathrm{raw}} from macroscopic Lorentz and demagnetizing fields  Carter et al. (1977); *Akashin92:

Kcorr=KrawALdχmol,K_{\mathrm{corr}}=K_{\mathrm{raw}}-A_{\mathrm{Ld}}\,\chi_{\mathrm{mol}}\,, (3)

where ALd=4π(13D)/vmolA_{\mathrm{Ld}}=4\pi\left(\textstyle{\frac{1}{3}}-D\right)/v_{\mathrm{mol}}, χmol\chi_{\mathrm{mol}} is the molar bulk susceptibility, DD is the sample demagnetization coefficient, and vmolv_{\mathrm{mol}} is the molar volume (50.6 cm3/mol for YbMgGaO4). For field normal to the thin mosaic samples, DD is estimated to be 0.8(1), so that ALd=0.12(2)A_{\mathrm{Ld}}=-0.12(2) mol emu-1. This correction can be important in μ\muSR shift measurements.

The rates σi\sigma_{i} in Table 1 are faster than the dynamic rates discussed below in Secs. III.2 and III.3, particularly for line 3. σi\sigma_{i} is therefore attributed to static distributions of TF frequencies, most likely related to the crystalline-electric-field randomness observed in neutron scattering Li et al. (2017a), which lead to rms widths δK=σ/ω3\delta K=\sigma/\omega_{3} of Knight shift distributions. We do not fully understand the large difference between σ1\sigma_{1} and σ2\sigma_{2}.

The temperature dependencies of KrawK_{\mathrm{raw}}, KcorrK_{\mathrm{corr}}, and δK\delta K for lines 1 and 2 are given in Fig. 3.

Refer to caption
Figure 3: Temperature dependence of μ+\mu^{+} Knight shifts in YbMgGaO4 (Fig. 2). (a) Line 1. (b) Line 2. Open squares: raw shifts KrawK_{\mathrm{raw}}. Filled squares: corrected shifts KcorrK_{\mathrm{corr}} (see text). Circles: rms distribution widths δK=σ/ω3\delta K=\sigma/\omega_{3} (Table 1).

The error in KcorrK_{\mathrm{corr}} is largely due to uncertainty in ALdA_{\mathrm{Ld}} [Eq. (3)]. Over the temperature range of the data both the Knight shifts and χmol(T)=M(T)/H\chi_{\mathrm{mol}}(T)=M(T)/H in 10 kOe Li et al. (2019) are practically constant.

The relation between the Knight shift and χmol\chi_{\mathrm{mol}} is often analyzed using the Clogston-Jaccarino relation Clogston and Jaccarino (1961)

Kcorr(T)=K0+Ahfχmol(T),K_{\mathrm{corr}}(T)=K_{0}+A_{\mathrm{hf}}\,\chi_{\mathrm{mol}}(T)\,, (4)

where AhfA_{\mathrm{hf}} is the hyperfine coupling constant and temperature is an implicit variable. In the present case there is not enough temperature dependence to either quantity for this procedure to be reliable. Instead, we assume K0K_{0} in Eq. (4) is negligible, as would be expected in a magnetic insulator, so that Ahf=Kcorr/χmolA_{\mathrm{hf}}=K_{\mathrm{corr}}/\chi_{\mathrm{mol}}. The hyperfine field HhfH_{\mathrm{hf}} (the local field at a μ+\mu^{+} site per μB\mu_{B} of paramagnetic moment on the local-moment sites) is given by Hhf=NAμBAhfH_{\mathrm{hf}}=N_{A}\mu_{B}A_{\mathrm{hf}}, where NAN_{A} is Avogadro’s number.

Values of AhfA_{\mathrm{hf}} and HhfH_{\mathrm{hf}} for the two lines are given in Table 1. Also included in Table 1 are calculated Yb3+ dipolar hyperfine fields at each of the two candidate μ+\mu^{+} sites discussed in Sec. II.1 (Appendix A); local-moment/μ+\mu^{+} coupling fields are expected to be predominantly dipolar in insulators Schenck (1985). The calculated and measured values are of the same order of magnitude, but with a discrepancy in sign for line 1. This is not understood, but it may mean that the location of site μ\mu1 is incorrect.

III.2 Longitudinal-field 𝝁\muSR

III.2.1 HL25H_{L}\geqslant 25 Oe; two-exponential relaxation

We first consider data for HLH_{L} strong enough to decouple any nuclear dipolar fields at μ+\mu^{+} sites. Then the relaxation is purely dynamic, and its analysis is simplified.

The observation of two sample lines in TF-μ\muSR and their identification with distinct μ+\mu^{+} sites motivates fitting the data to a sum of two exponentials

Ad(t)=A0i=12fiexp(λit)+AAg,A_{d}(t)=A_{0}\sum_{i=1}^{2}f_{i}\exp(-\lambda_{i}t)+A_{\mathrm{Ag}}\,, (5)

rather than the stretched exponential used previously Li et al. (2016a). Here A0A_{0} is the initial sample asymmetry, λ1\lambda_{1} and λ2\lambda_{2} are the fast and slow relaxation rates, respectively, AAgA_{\mathrm{Ag}} is the asymmetry of the background silver signal noted above in Sec. III.1, and f1+f2=1f_{1}+f_{2}=1. Good fits to the data (Appendix B) were obtained using Eq. (5) with f2f_{2} fixed at 0.52 from the amplitudes of the TF lines (Table 1). This is a posteriori justification for the assumption that lines 1 and 2 arise from the sample; the amplitude of line 3 is too small to produce significantly sub-exponential relaxation.

The field dependencies of the fast rate λ1\lambda_{1} and the ratio λ2/λ1\lambda_{2}/\lambda_{1} at T=22T=22 mK are shown in Fig. 4 for intermediate fields.

Refer to caption
Figure 4: Field dependencies of dynamical relaxation rates from two-exponential fits to LF-μ\muSR data in YbMgGaO4, T=22T=22 mK. (a) Rapid relaxation rate λ1\lambda_{1}. (b) Ratio of rates λ2/λ1\lambda_{2}/\lambda_{1}.

For 25OeHL500Oe25~{}\text{Oe}\lesssim H_{L}\lesssim 500~{}\text{Oe}, the ratio λ2/λ1=0.03(1)\lambda_{2}/\lambda_{1}=0.03(1) is basically constant, and agrees roughly with the value 0.021 from a lattice sum of uncorrelated mean-square Yb3+ dipolar fields at the candidate μ+\mu^{+} sites (Appendix A). This is expected in the fast-fluctuation (motionally narrowed) limit if the fluctuation rates at the two sites are the same and the correlation length for the fluctuations is short Miao et al. (2016).

Its small value makes λ2\lambda_{2} difficult to measure accurately. Furthermore, for HL800H_{L}\gtrsim 800 Oe, λ1\lambda_{1} becomes too slow to permit distinguishing the two components from data in the μ\muSR time window (Appendix B), so that λ2\lambda_{2} cannot be determined at high fields. This together with its observed proportionality to λ1\lambda_{1} (Fig. 4) justifies consideration only of the latter in the following.

The increase of λ2/λ1\lambda_{2}/\lambda_{1} at 14 Oe (Fig. 4) signals the onset of static relaxation at low fields. As discussed below in Sec. IV, in zero and low fields a static (Gaussian) local-field component reduces the sub-exponential character of the relaxation, thereby increasing λ2/λ1\lambda_{2}/\lambda_{1} in the now-incorrect two-exponential fit.

III.2.2 0HL80\leqslant H_{L}\lesssim 8 kOe; two-exponential + KT static relaxation

In the presence of static nuclear dipolar local fields, both static and dynamic processes contribute to μ+\mu^{+} relaxation at low LF. For the two-site scenario, the asymmetry function becomes

A(HL,t)\displaystyle A(H_{L},t) =\displaystyle= A0i=12fiexp(λit)GKT(HL,Δi,t)\displaystyle A_{0}\sum_{i=1}^{2}f_{i}\exp(-\lambda_{i}t)G_{\mathrm{KT}}(H_{L},\Delta_{i},t) (6)
+AAg,\displaystyle+A_{\mathrm{Ag}}\,,

where GKT(HL,Δ,t)G_{\mathrm{KT}}(H_{L},\Delta,t) is the static KT function for Gaussian local-field distributions Hayano et al. (1979). Here Δ/γμ\Delta/\gamma_{\mu} is the rms width of the Gaussian field distribution, where γμ/2π=1.3553×104Hz G1\gamma_{\mu}/2\pi=1.3553\times 10^{4}~{}\text{Hz~{}G}^{-1} is the μ+\mu^{+} gyromagnetic ratio. In YbMgGaO4 we attribute this distribution to nuclear dipolar fields: Δi=Δinuc\Delta_{i}=\Delta_{i}^{\mathrm{nuc}}.

Equation (6) is also valid for HL=0H_{L}=0, where it is most sensitive to the values of the Δinuc\Delta_{i}^{\mathrm{nuc}}. These were determined by fits of Eq. (6) to ZF data, discussed in more detail in Sec. III.3. For fits to the LF data, λ2/λ1\lambda_{2}/\lambda_{1} and the Δinuc\Delta_{i}^{\mathrm{nuc}} were fixed at 0.03 and their ZF values, respectively.

Figure 5

Refer to caption
Figure 5: LF-μ\muSR asymmetry spectra in YbMgGaO4, T=22T=22 mK, 0HL80\leqslant H_{L}\lesssim 8 kOe, after subtraction of a non-relaxing signal from the sample holder. Curves: fits of Eq. (6) to the data.

shows asymmetry spectra for representative values of HLH_{L}. At low fields the field dependence is dominated by decoupling of the static relaxation, with its characteristic field independence at early times. At higher fields the predominantly dynamic relaxation becomes slower with increasing field as previously reported Li et al. (2016a).

The field dependencies of λ1\lambda_{1} at temperatures of 22 mK, 0.20 K, and 5.83 K are shown in Fig. 6,

Refer to caption
Figure 6: Field dependencies of dynamic relaxation rates from fits to LF-μ\muSR data in YbMgGaO4, T=22T=22 mK (circles), 0.20 K (squares), and 5.83 K (diamonds). λ1\lambda_{1}: fast rate from two-exponential-damped static Gaussian KT fits. λ\lambda^{\ast}: stretched-exponential rate from Ref. Li et al. (2016a), T=70T=70 mK (triangles). Straight line: power-law fit to 22-mK data for 25OeHL225~{}\text{Oe}\leqslant H_{L}\leqslant 2 kOe.

together with stretched-exponential rates λ\lambda^{\ast} for T=70T=70 mK from Ref. Li et al. (2016a). The λ1\lambda_{1} values for 22 mK are in agreement with the two-exponential fit results for HL45H_{L}\gtrsim 45 Oe, since GKT(HL,Δ,t)1G_{\mathrm{KT}}(H_{L},\Delta,t)\to 1 for HLΔ/γμH_{L}\gg\Delta/\gamma_{\mu}. λ1(HL)\lambda_{1}(H_{L}) and λ(HL)\lambda^{\ast}(H_{L}) follow the same trend, but do not agree quantitatively because the assumed relaxation functions are different.

The straight line in Fig. 6 is a power-law fit to the 22-mK data for 25OeHL225~{}\text{Oe}\leqslant H_{L}\leqslant 2 kOe, almost two decades of field values. Power-law behavior is a form of time-field scaling Keren and Bazalitsky (2000), since Pμ(HL,t)=Pμ[λi(HL)t]=Pμ(HLxt)P_{\mu}(H_{L},t)=P_{\mu}[\lambda_{i}(H_{L})t]=P_{\mu}(H_{L}^{-x}t) for λiHLx\lambda_{i}\propto H_{L}^{-x}. Time-field scaling is in general indicative of long-lived spin correlations with a power-law divergence in the noise spectrum as ω0\omega\to 0. This result is consistent with the conclusion of Li et al. Li et al. (2016a) from a more detailed analysis.

At 5.83 K the rates are reduced, and exhibit a plateau for HL40H_{L}\gtrsim 40 Oe. The rather abrupt crossover may be to a normal paramagnetic state, in which local-moment fluctuations are independent of both field and temperature Moriya (1956).

III.3 Zero-field 𝝁\muSR

III.3.1 ZF asymmetry spectra

Extraction of parameters in Eq. (6) from fits in ZF and weak LF that include static nuclear dipolar relaxation is difficult, because the data are smooth and without distinguishing features (Figs. 5 and 7). Fits with all parameters free lead to excessive scatter, so that it is necessary to fix as many parameters as possible.

Fixing f2=0.52f_{2}=0.52 and λ2/λ1=0.03\lambda_{2}/\lambda_{1}=0.03 have been discussed above. The Δinuc\Delta_{i}^{\mathrm{nuc}} were then allowed to vary, leading to fits (not shown) with excessive scatter but reasonably temperature-independent Δinuc\Delta_{i}^{\mathrm{nuc}} values below \sim0.5 K. The data were finally refit with Δinuc\Delta_{i}^{\mathrm{nuc}} fixed at their averages Δ1nuc=0.21(2)μs1\Delta_{1}^{\mathrm{nuc}}=0.21(2)~{}\mu\text{s}^{-1} and Δ2nuc=0.15(1)μs1\Delta_{2}^{\mathrm{nuc}}=0.15(1)~{}\mu\text{s}^{-1}. No temperature dependence of the nuclear dipolar relaxation is expected in the absence of μ+\mu^{+} diffusion, which is unlikely at low temperatures Schenck (1985).

ZF-μ\muSR asymmetry spectra for T=22T=22 mK, 0.17 K, and 6.00 K are shown in Fig. 7,

Refer to caption
Figure 7: ZF asymmetry spectra from YbMgGaO4, T=22T=22 mK (triangles), 0.17 K (squares) and 6.00 K (circles), after subtraction of a non-relaxing signal from the silver sample holder. Solid curves: fits of Eq. (6) to the data. Dotted curve: stretched-exponential fit for 22 mK. Dashed curve: fit spectrum for 22 mK with additional static Gaussian relaxation, moments 0.003μB0.003\,\mu_{B} per Yb ion. Dash-dot curve: fit spectrum for 22 mK with additional static spin-glass relaxation, moment-concentration product μ=0.003μB/c\mu=0.003\,\mu_{B}/c per Yb ion (see text).

again with the silver background signal subtracted. The solid curves are fits of Eq. (6) to the data. The temperature dependence of the overall relaxation over this range is weak because of the temperature-independent static KT contribution, and there is essentially no temperature dependence between 0.17 K and 22 mK. We observe no oscillating signal due to long-range magnetic order and no initial rapid relaxation or asymmetry loss due to short-range magnetic order Miao et al. (2016) down to 22 mK. The dotted curve is a stretched-exponential fit for T=22T=22 mK, illustrating the similarity between it and the two-exponential fit. The dashed and dash-dot curves are discussed in the next section.

III.3.2 Limits on static magnetism

To determine upper bounds on static magnetism in YbMgGaO4, two scenarios are considered: equal (small) moments on all Yb3+ ions (moment concentration c=1c=1), and the dilute spin-glass limit for small cc. For each of these we begin with the ZF data and fit to Eq. (6) for T=22T=22 mK. Upper bounds μub\mu_{\mathrm{ub}} on the static moment per Yb ion are chosen, and the corresponding calculated asymmetry spectra are compared with the data. The upper bounds are then adjusted to yield well-resolved increases in relaxation. The results are shown in Fig. 7 for the c=1c=1 and dilute limits by the dashed and dash-dot curves, respectively.

For c=1c=1 the Yb3+ dipolar field contribution from disordered Yb3+ moments is Gaussian Uemura et al. (1985), and additional ZF relaxation below a transition temperature increases the values of the Gaussian rates Δi\Delta_{i} in Eq. (6333Long-range magnetic order gives rise to oscillation, which for low frequency varies quadratically with time and cannot be distinguished from a slow Gaussian. The disordered estimate therefore also applies to this case.. Gaussian rms field widths (Δi(0)/γμ)/μB(\Delta_{i}^{\mathrm{(0)}}/\gamma_{\mu})/\mu_{B} per Yb ion were calculated from dipole-field lattice sums (Appendix A) at the candidate μ+\mu^{+} sites μ\mu1 and μ\mu2 of Fig. 1, yielding Δ1(0)=147μs1/μB\Delta_{1}^{\mathrm{(0)}}=147~{}\mu\text{s}^{-1}/\mu_{B} and Δ2(0)=46μs1/μB\Delta_{2}^{\mathrm{(0)}}=46~{}\mu\text{s}^{-1}/\mu_{B}.

An upper bound μub\mu_{\mathrm{ub}} on the static moment per Yb ion is found by comparing Eq. (6) with increased rates Δi=[(Δinuc)2+(μubΔi(0))2]1/2\Delta_{i}^{\prime}=\left[(\Delta_{i}^{\mathrm{nuc}})^{2}+(\mu_{\mathrm{ub}}\Delta_{i}^{\mathrm{(0)}})^{2}\right]^{1/2} to the data. The choice μub=0.003μB\mu_{\mathrm{ub}}=0.003\,\mu_{B} per Yb ion results in the dashed curve in Fig. 7, which exhibits a well-resolved increase. For comparison, dc susceptibility measurements in YbMgGa)4 Ma et al. (2018); Li et al. (2019), which, like μ\muSR, probe the bulk magnetization, yield paramagnetic Curie-Weiss and saturated moments 3μB\sim 3\,\mu_{B} per Yb ion.

We next consider dilute (disordered) static Yb3+ moments. The Lorentzian ZF KT relaxation function Uemura et al. (1985)

GKTLor(a.t)=23+13(1at)exp(at)G_{\mathrm{KT}}^{\mathrm{Lor}}(a.t)=\frac{2}{3}+\frac{1}{3}(1-at)\exp(-at) (7)

is expected from dipolar coupling to a static random spin system in the dilute limit. Here a/γμa/\gamma_{\mu} is the half-width of the Lorentzian dipolar field distribution Uemura et al. (1985);

a=(π/2)1/2cμΔ(0),a=(\pi/2)^{1/2}c\mu\Delta^{\mathrm{(0)}}\,, (8)

where μ\mu is the moment per (dilute) Yb ion per Bohr magneton. The resulting relaxation function is derived from Eq. (6) by multiplying each term by GKTLor(ai,t)G_{\mathrm{KT}}^{\mathrm{Lor}}(a_{i},t). We choose a value μub=0.003/c\mu_{\mathrm{ub}}=0.003/c (e.g., for concentration c=0.01c=0.01 μub=0.3μB\mu_{\mathrm{ub}}=0.3\mu_{B} per Yb ion) and determine the aia_{i} from Eq. (8), resulting in the dash-dot curve in Fig. 7. Again, the increase is well resolved.

Somewhat surprisingly, the sample-average c=1c=1 and dilute bounds are identical. The results cannot be taken as quantitative, however, since they involve the assumed μ+\mu^{+} sites and do not employ a well-defined resolution criterion. They are solely intended to demonstrate the basic sensitivity of the μ\muSR technique to weak static magnetism.

III.3.3 Temperature dependence of zero-field rates

Figure 8

Refer to caption
Figure 8: Temperature dependencies of ZF μ+\mu^{+} relaxation rates in YbMgGaO4 from fits of Eq. (6) to the data. Circles: this work, from fits of Eq. (6) to the data. Triangles: results of Li et al. Li et al. (2016a).

shows the temperature dependence of the ZF dynamic relaxation rate λ1(T)\lambda_{1}(T) (circles) from fits of Eq. (6) to the data discussed above, and also gives λ(T)\lambda^{\ast}(T) from Li et al. Li et al. (2016a) (triangles). With decreasing temperature, the rates increase and saturate below \sim0.5 K, exhibiting persistent spin dynamics down to the lowest temperatures. The scatter in λ1(T)\lambda_{1}(T) is mainly due to the fact that in ZF the dynamic relaxation is only a fraction of the total relaxation.

The difference between λ1(T)\lambda_{1}(T) and λ(T)\lambda^{\ast}(T) is again a consequence of the different assumed relaxation functions. Furthermore, as noted above, in ZF and weak LF “pure” stretched-exponential fits [i.e., without the factor GKT(HL,Δ,t)G_{\mathrm{KT}}(H_{L},\Delta,t) of Eq. (6)] mix the static and dynamic contributions.

IV DISCUSSION

Our μ\muSR study extends previous results Li et al. (2016a) concerning the nature of the ground state and low-lying excitations in YbMgGaO4. The observation of the same field dependence λ1(HL)\lambda_{1}(H_{L}) at 22 mK and 0.20 K for fields up to 0.8 kOe (Fig. 6) complements the previously-reported temperature independence of ZF μ+\mu^{+} relaxation below \sim0.4 K Li et al. (2016a), and is strong evidence that the system is in a temperature-independent state over this region in the HH-TT phase diagram.

IV.1 Limits on spin freezing

μ\muSR experiments are extremely sensitive to static magnetism, ordered or disordered Schenck (1985), in the present case with an upper limit 103μB{\sim}10^{-3}\mu_{B} per Yb ion on any sample-average static Yb3+ moment down to 22 mK (Sec. III.3.2). This is a strong constraint on proposals involving magnetic ground states Luo et al. (2017); Zhu et al. (2017); Parker and Balents (2018); Kimchi et al. (2018), although in the disordered local-singlet valence solid Kimchi et al. (2018) the “ultimate fate of the …defect spins is unknown.”

The lack of spin freezing is in apparent contradiction with the observation of a cusp in the low-field ac susceptibility of YbMgGaO4 at \sim0.1 K Ma et al. (2018), and the conclusion that a spin-glass-like transition occurs there. We note that suppression of static order by the muon itself, a possible explanation of this discrepancy, has been shown to be unlikely Keren (2004). We also note that large static Yb3+ moments in a macroscopic spurious phase would result in a fraction of the ZF asymmetry spectrum with oscillations or rapid relaxation. This is not seen at the level of a few percent. The resolution of these issues is not clear, and more work will be required to elucidate the impact of the present results on the QSL debate.

IV.2 Characterization of sample inhomogeneity, consequences for ZF results

Our μ\muSR results suggest reinterpretation of some of the previous work. The observation of two equal-amplitude lines in the TF-μ\muSR data is evidence for the two μ+\mu^{+} stopping sites in the two inequivalent O2- lattice planes. This, rather than, for example, Mg2+/Ga3+ site mixing Li et al. (2017a), is the main source of inhomogeneity in the dynamic relaxation, and strongly suggests a two-exponential analysis of LF- and ZF-μ\muSR data [Eqs. (5) and (6)] rather than a stretched-exponential analysis.

The fact that good fits can be obtained with either two-exponential or stretched-exponential functions is not surprising. In general, the relaxation function P(t)P(t) associated with a spatially inhomogeneous distribution P(λ)P(\lambda) of rates λ\lambda is given by the Laplace transform

P(t)=P(λ)exp(λt)𝑑λ.P(t)=\int_{-\infty}^{\infty}P(\lambda)\exp(-\lambda t)\,d\lambda\,. (9)

Two-exponential and stretched-exponential functions are effectively two choices of P(λ)P(\lambda).

Solving Eq. (9) for P(λ)P(\lambda) is a mathematically ill-posed problem Press et al. (1992); P(t)P(t) is not sensitive to the form of P(λ)P(\lambda). The difficulty is greater when the range of the independent variable is limited, as it is for μ\muSR asymmetry spectra by the muon lifetime 444This is the problem in the present case. At late enough times, the sum of two exponentials with very different rates differs significantly from a stretched exponential. We also note that for P(t)=exp[(λt)β]P(t)=\exp[-(\lambda^{\ast}t)^{\beta}], the relation of λ\lambda^{\ast} to P(λ)P(\lambda) depends on β\beta; λ\lambda^{\ast} is not simply an average rate, and one should not compare values of λ\lambda^{\ast} for different values of β\beta Johnston (2006).

The temperature dependence of β\beta in fits to ZF data is also consistent with the two-exponential scenario. (Quasi)static relaxation in ZF and weak LF by nuclear dipolar fields should not be ignored, although the lack of structure in the μ+\mu^{+} asymmetry spectra and the limitation imposed by the muon lifetime make the analysis difficult. We argue that the reported increase of β\beta with increasing temperature in ZF stretched-exponential fits is not a temperature-dependent effect of the spin dynamics Li et al. (2016a). Instead, the decrease of ZF dynamic relaxation with increasing temperature (Fig. 8) increases the importance of the temperature-independent “super-exponential” (Gaussian) nuclear dipolar field distribution. This renders the overall ZF relaxation function less sub-exponential at high temperatures, leading to β1\beta\approx 1 at \sim10 K Li et al. (2016a).

V CONCLUSIONS

We have carried out μ\muSR experiments on single-crystalline samples of the candidate spin liquid YbMgGaO4, which complement and extend earlier work Li et al. (2016a). The spatial inhomogeneity that gives rise to sub-exponential μ+\mu^{+} spin relaxation is attributed to two distinct μ+\mu^{+} stopping sites in the unit cell, rather than Mg2+/Ga3+ site mixing or other local disorder. With an upper bound of 3×103μB{\sim}3\times 10^{-3}\mu_{B}/Yb ion, no static magnetism, ordered or disordered, is observed down to 22 mK, a factor of two lower in temperature than previous measurements. The field dependence of the μ+\mu^{+} spin relaxation is the same in functional form and relaxation rate at 22 mK and 0.20 K up to at least 1 kOe. These results indicate persistent (i.e.,temperature-independent) spin dynamics with no spin freezing for this field and temperature range, thus extending the previous ZF results Li et al. (2016a) over a substantial region of the HH-TT phase diagram.

Acknowledgements.
We wish to thank Z. Ma for providing single crystals of YbMgGaO4, and S. Y. Li for fruitful discussions. We are very grateful to the TRIUMF CMMS μ\muSR support staff for their help during the experiments. This research was supported by the National Key Research and Development Program of China (Nos. 2016YFA0300503 and 2017YFA0303104), the National Natural Science Foundation of China under Grant No. 11774061, and Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01). Research at the University of California, Riverside (UCR) was supported by the UCR Academic Senate.

Appendix A Dipolar lattice sums

The dipolar lattice-sum calculation is straightforward. The software sets up a general orthorhombic lattice (with a non-primitive unit cell for a triangular structure such as that of YbMgGaO4). 1-μB\mu_{B} local moments are placed at lattice sites in the magnetic structure (with or without a net moment in the unit cell) and candidate μ+\mu^{+} stopping sites in the unit cell are designated. For each μ+\mu^{+} site, dipolar fields from the local moments are summed between an inner cutoff radius (if desired) and an outer Lorentz sphere radius RLorR_{\mathrm{Lor}}. The value of RLorR_{\mathrm{Lor}} is chosen so that larger values have negligible effect; typically RLor=200R_{\mathrm{Lor}}=200 Å, containing 10510^{5}10610^{6} moments, is sufficient. For a paramagnet the moments are all in the same direction, induced by the applied field, and the shift is given by the resultant field in that direction. Mean-square fields, which are involved in fluctuation-induced dynamic relaxation, are calculated by summing the squared magnitudes of the individual moment fields. The calculated fields are in units of [field] per μB\mu_{B} local moment. No Lorentz or demagnetizing corrections are made.

Appendix B Two-exponential fits

Figure 9

Refer to caption
Figure 9: Log-linear plots of LF asymmetry spectra from YbMgGaO4, T=22T=22 mK, after subtraction of a non-relaxing signal from the silver sample holder. Curves: fits of Eq. (5) to the data. The visibly faster slow-component relaxation at 14.7 Oe is attributed to static nuclear dipolar fields.

shows log-linear plots of representative LF asymmetry spectra at 22 mK, 14.7OeHL8.0914.7~{}\text{Oe}\leqslant H_{L}\leqslant 8.09 kOe. Upward curvature is clearly visible. The curves are two-exponential fits to Eq. (5) with the slowly-relaxing fraction f2f_{2} fixed at 0.52 (see main text). The fits are good at all fields, but for HL=14.7H_{L}=14.7 Oe the upward curvature is reduced. As discussed in Secs. III.2.1 and IV, this is expected at low enough LF to permit static relaxation by nuclear dipolar fields. For HL1H_{L}\gtrsim 1 kOe, the overall relaxation has slowed enough so that the late-time slow exponential is no longer visible in the experimental time window.

References

  • Anderson (1973) P. W. Anderson, Resonating valence bonds: A new kind of insulator?, Mater. Res. Bull. 8, 153 (1973).
  • Anderson (1987) P. W. Anderson, The Resonating Valence Bond State in La2CuO4 and Superconductivity, Science 235, 1196 (1987).
  • Lee (2008) P. A. Lee, An End to the Drought of Quantum Spin Liquids, Science 321, 1306 (2008).
  • Balents (2010) L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010).
  • Savary and Balents (2017) L. Savary and L. Balents, Quantum spin liquids: a review, Rep. Prog. Phys. 80, 016502 (2017).
  • Zhou et al. (2017) Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states, Rev. Mod. Phys. 89, 025003 (2017).
  • Uemura et al. (1994) Y. J. Uemura, A. Keren, K. Kojima, L. P. Le, G. M. Luke, W. D. Wu, Y. Ajiro, T. Asano, Y. Kuriyama, M. Mekata, H. Kikuchi, and K. Kakurai, Spin Fluctuations in Frustrated Kagomé Lattice System SrCr8Ga4O19 Studied by Muon Spin Relaxation, Phys. Rev. Lett. 73, 3306 (1994).
  • Shimizu et al. (2003) Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Spin Liquid State in an Organic Mott Insulator with a Triangular Lattice, Phys. Rev. Lett. 91, 107001 (2003).
  • Nakatsuji et al. (2006) S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T. Sakakibara, J. v. Duijn, L. Balicas, J. N. Millican, R. T. Macaluso, and J. Y. Chan, Metallic Spin-Liquid Behavior of the Geometrically Frustrated Kondo Lattice Pr2Ir2O7Phys. Rev. Lett. 96, 087204 (2006).
  • Helton et al. (2007) J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Yoshida, Y. Takano, A. Suslov, Y. Qiu, J.-H. Chung, D. G. Nocera, and Y. S. Lee, Spin Dynamics of the Spin-1/21/2 Kagome Lattice Antiferromagnet ZnCu3(OH)6Cl2Phys. Rev. Lett. 98, 107204 (2007).
  • Okamoto et al. (2007) Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Spin-Liquid State in the S=1/2S=1/2 Hyperkagome Antiferromagnet Na4Ir3O8Phys. Rev. Lett. 99, 137207 (2007).
  • Itou et al. (2008) T. Itou, A. Oyamada, S. Maegawa, M. Tamura, and R. Kato, Quantum spin liquid in the spin-1/21/2 triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2Phys. Rev. B 77, 104413 (2008).
  • Li et al. (2015a) Y. Li, H. Liao, Z. Zhang, S. Li, F. Jin, L. Ling, L. Zhang, Y. Zou, L. Pi, Z. Yang, J. Wang, Z. Wu, and Q. Zhang, Gapless quantum spin liquid ground state in the two-dimensional spin-1/2 triangular antiferromagnet YbMgGaO4Sci. Rep. 5, 16419 (2015a).
  • Li et al. (2015b) Y. Li, G. Chen, W. Tong, L. Pi, J. Liu, Z. Yang, X. Wang, and Q. Zhang, Rare-Earth Triangular Lattice Spin Liquid: A Single-Crystal Study of YbMgGaO4Phys. Rev. Lett. 115, 167203 (2015b).
  • Li et al. (2016a) Y. Li, D. Adroja, P. K. Biswas, P. J. Baker, Q. Zhang, J. Liu, A. A. Tsirlin, P. Gegenwart, and Q. Zhang, Muon Spin Relaxation Evidence for the U(1) Quantum Spin-Liquid Ground State in the Triangular Antiferromagnet YbMgGaO4Phys. Rev. Lett. 117, 097201 (2016a).
  • Xu et al. (2016) Y. Xu, J. Zhang, Y. S. Li, Y. J. Yu, X. C. Hong, Q. M. Zhang, and S. Y. Li, Absence of Magnetic Thermal Conductivity in the Quantum Spin-Liquid Candidate YbMgGaO4Phys. Rev. Lett. 117, 267202 (2016).
  • Shen et al. (2016) Y. Shen, Y.-D. Li, H. Wo, Y. Li, S. Shen, B. Pan, Q. Wang, H. C. Walker, P. Steffens, M. Boehm, Y. Hao, D. L. Quintero-Castro, L. W. Harriger, M. D. Frontzek, L. Hao, S. Meng, Q. Zhang, G. Chen, and J. Zhao, Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate, Nature 540, 559 (2016).
  • Paddison et al. (2017) J. A. M. Paddison, M. Daum, Z. Dun, G. Ehlers, Y. Liu, M. B. Stone, H. Zhou, and M. Mourigal, Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4Nat. Phys. 13, 117 (2017).
  • Li et al. (2017a) Y. Li, D. Adroja, R. I. Bewley, D. Voneshen, A. A. Tsirlin, P. Gegenwart, and Q. Zhang, Crystalline Electric-Field Randomness in the Triangular Lattice Spin-Liquid YbMgGaO4Phys. Rev. Lett. 118, 107202 (2017a).
  • Li et al. (2017b) Y. Li, D. Adroja, D. Voneshen, R. I. Bewley, Q. Zhang, A. A. Tsirlin, and P. Gegenwart, Nearest-neighbour resonating valence bonds in YbMgGaO4Nat. Commun. 8, 15814 (2017b).
  • Shen et al. (2018) Y. Shen, Y. Li, H. Walker, P. Steffens, M. Boehm, X. Zhang, S. Shen, H. Wo, G. Chen, and J. Zhao, Fractionalized excitations in the partially magnetized spin liquid candidate YbMgGaO4Nat. Commun. 9, 4138 (2018).
  • Zhang et al. (2018) X. Zhang, F. Mahmood, M. Daum, Z. Dun, J. A. M. Paddison, N. J. Laurita, T. Hong, H. Zhou, N. P. Armitage, and M. Mourigal, Hierarchy of exchange interactions in the triangular-lattice spin liquid YbMgGaO4Phys. Rev. X 8, 031001 (2018).
  • Ma et al. (2018) Z. Ma, J. Wang, Z.-Y. Dong, J. Zhang, S. Li, S.-H. Zheng, Y. Yu, W. Wang, L. Che, K. Ran, S. Bao, Z. Cai, P. Čermák, A. Schneidewind, S. Yano, J. S. Gardner, X. Lu, S.-L. Yu, J.-M. Liu, S. Li, J.-X. Li, and J. Wen, Spin-Glass Ground State in a Triangular-Lattice Compound YbZnGaO4Phys. Rev. Lett. 120, 087201 (2018).
  • Li et al. (2019) Y. Li, S. Bachus, B. Liu, I. Radelytskyi, A. Bertin, A. Schneidewind, Y. Tokiwa, A. A. Tsirlin, and P. Gegenwart, Rearrangement of Uncorrelated Valence Bonds Evidenced by Low-Energy Spin Excitations in YbMgGaO4{\mathrm{YbMgGaO}}_{4}Phys. Rev. Lett. 122, 137201 (2019).
  • Li et al. (2016b) Y.-D. Li, X. Wang, and G. Chen, Anisotropic spin model of strong spin-orbit-coupled triangular antiferromagnets, Phys. Rev. B 94, 035107 (2016b).
  • Li et al. (2017c) Y.-D. Li, Y.-M. Lu, and G. Chen, Spinon Fermi surface U(1)U(1) spin liquid in the spin-orbit-coupled triangular-lattice Mott insulator YbMgGaO4Phys. Rev. B 96, 054445 (2017c).
  • Li and Chen (2017) Y.-D. Li and G. Chen, Detecting spin fractionalization in a spinon Fermi surface spin liquid, Phys. Rev. B 96, 075105 (2017).
  • Luo et al. (2017) Q. Luo, S. Hu, B. Xi, J. Zhao, and X. Wang, Ground-state phase diagram of an anisotropic spin-12\frac{1}{2} model on the triangular lattice, Phys. Rev. B 95, 165110 (2017).
  • Zhu et al. (2017) Z. Zhu, P. A. Maksimov, S. R. White, and A. L. Chernyshev, Disorder-Induced Mimicry of a Spin Liquid in YbMgGaO4Phys. Rev. Lett. 119, 157201 (2017).
  • Parker and Balents (2018) E. Parker and L. Balents, Finite-temperature behavior of a classical spin-orbit-coupled model for YbMgGaO4{\mathrm{YbMgGaO}}_{4} with and without bond disorder, Phys. Rev. B 97, 184413 (2018).
  • Kimchi et al. (2018) I. Kimchi, A. Nahum, and T. Senthil, Valence Bonds in Random Quantum Magnets: Theory and Application to YbMgGaO4{\mathrm{YbMgGaO}}_{4}Phys. Rev. X 8, 031028 (2018).
  • Schenck (1985) A. Schenck, Muon Spin Rotation Spectroscopy: Principles and Applications in Solid State Physics (A. Hilger, Bristol & Boston, 1985).
  • Blundell (1999) S. J. Blundell, Spin-polarized muons in condensed matter physics, Contemp. Phys. 40, 175 (1999).
  • Brewer (2003) J. H. Brewer, in Digital Encyclopedia of Applied Physics, edited by G. L. Trigg, E. S. Vera, and W. Greulich (Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, 2003).
  • Yaouanc and Dalmas de Réotier (2011) A. Yaouanc and P. Dalmas de Réotier, Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter, International Series of Monographs on Physics (Oxford University Press, New York, 2011).
  • Bert et al. (2009) F. Bert, A. Olariu, A. Zorko, P. Mendels, J. C. Trombe, F. Duc, M. A. d. Vries, A. Harrison, A. D. Hillier, J. Lord, A. Amato, and C. Baines, Frustrated magnetism in the quantum Kagome Herbertsmithite ZnCu3(OH)6Cl2 antiferromagnet, J. Phys. Conf. Ser. 145, 012004 (2009).
  • Pratt et al. (2011) F. L. Pratt, P. J. Baker, S. J. Blundell, T. Lancaster, S. Ohira-Kawamura, C. Baines, Y. Shimizu, K. Kanoda, I. Watanabe, and G. Saito, Magnetic and non-magnetic phases of a quantum spin liquid, Nature 471, 612 (2011).
  • Clark et al. (2013) L. Clark, J. C. Orain, F. Bert, M. A. De Vries, F. H. Aidoudi, R. E. Morris, P. Lightfoot, J. S. Lord, M. T. F. Telling, P. Bonville, J. P. Attfield, P. Mendels, and A. Harrison, Gapless Spin Liquid Ground State in the S=1/2S\mathbf{=}1/2 Vanadium Oxyfluoride Kagome Antiferromagnet [NH4]2[C7H14N][V7O6F18][{\mathrm{NH}}_{4}{]}_{2}[{\mathrm{C}}_{7}{\mathrm{H}}_{14}\mathrm{N}][{\mathrm{V}}_{7}{\mathrm{O}}_{6}{\mathrm{F}}_{18}]Phys. Rev. Lett. 110, 207208 (2013).
  • Khuntia et al. (2016) P. Khuntia, F. Bert, P. Mendels, B. Koteswararao, A. V. Mahajan, M. Baenitz, F. C. Chou, C. Baines, A. Amato, and Y. Furukawa, Spin Liquid State in the 3D Frustrated Antiferromagnet PbCuTe2O6: NMR and Muon Spin Relaxation Studies, Phys. Rev. Lett. 116, 107203 (2016).
  • Pratt (2018) F. L. Pratt, Probing Quantum Critical Spin Liquids with μ\muSR, JPSJ Conf. Proc. 21, 011002 (2018), Proceedings of the 14th International Conference on Muon Spin Rotation, Relaxation and Resonance (μ\muSR2017).
  • Johnston (2006) D. C. Johnston, Stretched exponential relaxation arising from a continuous sum of exponential decays, Phys. Rev. B 74, 184430 (2006).
  • Bonfà and De Renzi (2016) P. Bonfà and R. De Renzi, Toward the Computational Prediction of Muon Sites and Interaction Parameters, J. Phys. Soc. Jpn. 85, 091014 (2016).
  • Knight (1949) W. D. Knight, Nuclear Magnetic Resonance Shift in Metals, Phys. Rev. 76, 1259 (1949).
  • Hayano et al. (1979) R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T. Yamazaki, and R. Kubo, Zero-and low-field spin relaxation studied by positive muons, Phys. Rev. B 20, 850 (1979).
  • Morris and Heffner (2003) G. D. Morris and R. H. Heffner, A method of achieving accurate zero-field conditions using muonium, Physica B 326, 252 (2003).
  • Suter and Wojek (2012) A. Suter and B. Wojek, Musrfit: A free platform-independent framework for μ\muSR data analysis, Phys. Procedia 30, 69 (2012), 12th International Conference on Muon Spin Rotation, Relaxation and Resonance (μ\muSR2011).
  • Note (1) http://computing.triumf.ca/legacy/physica/.
  • Carter et al. (1977) G. C. Carter, L. H. Bennett, and D. J. Kahan, Metallic shifts in NMR, in Progress in Materials Science, Vol. 20 (Pergamon Press, Oxford & New York, 1977) pp. 58–59.
  • Akishin and Gaganov (1992) P. Akishin and I. Gaganov, The macroscopic demagnetizing effects in cylindrical and rectangular box samples, J. Magn. Magn. Mater. 110, 175 (1992).
  • Clogston and Jaccarino (1961) A. M. Clogston and V. Jaccarino, Susceptibilities and Negative Knight Shifts of Intermetallic Compounds, Phys. Rev. 121, 1357 (1961).
  • Miao et al. (2016) X. F. Miao, L. Caron, J. Cedervall, P. C. M. Gubbens, P. Dalmas de Réotier, A. Yaouanc, F. Qian, A. R. Wildes, H. Luetkens, A. Amato, N. H. van Dijk, and E. Brück, Short-range magnetic correlations and spin dynamics in the paramagnetic regime of (Mn,Fe)(P,Si)2(\text{Mn},\text{Fe}){}_{2}(\text{P},\text{Si})Phys. Rev. B 94, 014426 (2016).
  • Keren and Bazalitsky (2000) A. Keren and G. Bazalitsky, Muon polarization in the presence of exotic spin correlations, Physica B 289-290, 205 (2000).
  • Moriya (1956) T. Moriya, Nuclear magnetic relaxation in antiferromagnetics, Progr. Theoret. Phys. (Kyoto) 16, 23 (1956).
  • Uemura et al. (1985) Y. J. Uemura, T. Yamazaki, D. R. Harshman, M. Senba, and E. J. Ansaldo, Muon-spin relaxation in AuFe and CuMn spin glasses, Phys. Rev. B 31, 546 (1985).
  • Note (2) Long-range magnetic order gives rise to oscillation, which for low frequency varies quadratically with time and cannot be distinguished from a slow Gaussian. The disordered estimate therefore also applies to this case.
  • Keren (2004) A. Keren, Muons as probes of dynamical spin fluctuations: some new aspects, J. Phys. Condens. Matter 16, S4603­ (2004).
  • Press et al. (1992) W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, New York, 1992) Chap. 18, 2nd ed.
  • Note (3) This is the problem in the present case. At late enough times, the sum of two exponentials with very different rates differs significantly from a stretched exponential.