This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Photon escape in the extremal Kerr black hole spacetime

Kota Ogasawara kota@tap.scphys.kyoto-u.ac.jp Theoretical Astrophysics Group, Department of Physics, Kyoto University, Kyoto 606-8502, Japan    Takahisa Igata igata@post.kek.jp KEK Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
Abstract

We consider necessary and sufficient conditions for photons emitted from an arbitrary spacetime position of the extremal Kerr black hole to escape to infinity. The radial equation of motion determines the necessary conditions for photons emitted from r=rr=r_{*} to escape to infinity, and the polar angle equation of motion further restricts the allowed region of photon motion. From these two conditions, we provide a method to visualize a two-dimensional photon impact parameter space that allows photons to escape to infinity, i.e., the escapable region. Finally, we completely identify the escapable region for the extremal Kerr black hole spacetime. This study has generalized our previous result [K. Ogasawara and T. Igata, Phys. Rev. D 103, 044029 (2021)], which focused only on light sources near the horizon, to the classification covering light sources in the entire region.

preprint: KUNS-2900preprint: KEK-Cosmo-0279preprint: KEK-TH-2363

I Introduction

In recent years, the observation of the vicinity of a black hole has made great progress. A bright ring structure and associated shadow of the M87 galactic center were discovered in 2019 by the Event Horizon Telescope Collaboration Akiyama:2019cqa . This result suggests that the central object is a supermassive black hole. However, the possibility that the central object is a horizonless compact object has not yet been dismissed Cardoso:2019rvt . In general, the difference between a black hole and a black hole candidate will be noticeable in phenomena near the horizon. Therefore, it is important to detect signals, i.e., photons, coming from the vicinity of the horizon radius of a central object and identify them uniquely and accurately. As the observation progresses in the future, we will be able to clarify various properties of central objects. The black hole observations, including the shadow observations, require capturing photons that have passed near the horizon radius, shaken off the strong gravitational field, and finally escaped to infinity. Therefore, how often photons can escape from the light source to infinity, that is, the escape probability, is an important issue.

The escape of photons was first revealed by Synge, who estimated photon escape cones in the Schwarzschild black hole Synge:1966okc . He found that 50% of photons emitted from the photon sphere could escape to infinity, while the remaining 50% were trapped by the black hole. Furthermore, the opening angle of the escape cone becomes smaller as the photon emission point approaches the horizon, and eventually, it becomes zero in the horizon limit. This implies that the observability of the vicinity of the horizon is extremely low, and it seems quite natural considering the nature of the black hole, from which nothing can escape.

However, it has recently been reported that photons emitted from the vicinity of a rapidly rotating black hole can have a large escape probability. In our previous work, we showed that 29.1% of photons could escape to infinity, even when a uniform emitter at rest in a locally nonrotating frame arbitrarily approaches the extremal Kerr horizon Ogasawara:2019mir . For the subextremal case, the escape probability becomes zero in the same limit, but for the near-extremal case, it is maintained at about 30% until just before the horizon. These results imply that the vicinity of a rapidly rotating black hole is more visible than that of a slowly rotating one. The escapes of photons in other black hole spacetimes were discussed in Refs. Semerak:1996 ; Stuchlik:2018qyz ; Zhang:2020pay , and the ratio of photons trapped by a black hole was discussed in Ref. Takahashi:2010ai .

More recently, the escape probability of photons emitted from an emitter in a stable circular orbit of a Kerr black hole was shown to be more than 50% for an arbitrary spin parameter and an arbitrary orbital radius Igata:2019hkz ; Gates:2020sdh ; Gates:2020els . Furthermore, the Doppler blueshift overcomes the gravitational redshift according to the direction of photon emission with respect to the direction of source motion, so that photons can reach a distant observer with an observable frequency band. These two effects are due to the relativistic boost or beaming caused by the proper motion of the emitter, and in recent years, such relativistic effects have been actively discussed GRAVITY:2018ofz ; Saida:2019mcz ; Iwata:2020pka ; Igata:2021njn . The analytic value of the escape probability and Doppler blueshift of various emitters were recently found by using the near-horizon geometry of the extremal Kerr black hole Gates:2020els ; Yan:2021yuo ; Yan:2021ygy .

The previous works of photon escape have considered the source confined to the equatorial plane. However, if a small perturbation is applied to the source orbiting around a Kerr black hole, it will no longer be confined to the equatorial plane and will fall into the black hole. A thorough analysis of such a nonequatorial plane emission of photons will be necessary for black hole observations which are expected to develop further in the future.

The purpose of this paper is to completely classify the necessary and sufficient parameter region for photons emitted from an arbitrary spacetime position of the extremal Kerr black hole to escape to infinity. This study generalizes the previous result Ogasawara:2020frt , which focused only on light sources near the horizon, to a classification that covers light sources in the entire region.

This paper is organized as follows. In Sec. II, we consider the equations of a photon, i.e., the null geodesic equations, in the Kerr black hole spacetime. In Sec. III, we clarify the necessary and sufficient conditions for photons to escape from an arbitrary spacetime position to infinity by using the allowed region of motion and the spherical photon orbits (SPOs). In addition, we develop a method to visualize a two-dimensional photon impact parameter space that allows photons to escape to infinity. In Sec. IV, we introduce critical polar angles and critical values of an impact parameter to specify the escapable region explicitly. Using the visualization method and critical values, we completely evaluate the escapable region in Sec. V. Section VI is devoted to discussion. In this paper, we use units in which c=1c=1 and G=1G=1.

II General Null Geodesic in the Kerr Black Hole Spacetime

We review the general null geodesic in the Kerr black hole spacetime. The Kerr metric in the Boyer-Lindquist coordinates is given by

gμνdxμdxν=\displaystyle g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu}= ΣΔAdt2+ΣΔdr2+Σdθ2\displaystyle-\frac{\Sigma\Delta}{A}\mathrm{d}t^{2}+\frac{\Sigma}{\Delta}\mathrm{d}r^{2}+\Sigma\mathrm{d}\theta^{2}
+AΣsin2θ(dφ2MarAdt)2,\displaystyle+\frac{A}{\Sigma}\sin^{2}\theta\left(\mathrm{d}\varphi-\frac{2Mar}{A}\mathrm{d}t\right)^{2}, (1)
Σ\displaystyle\Sigma =r2+a2cos2θ,Δ=r22Mr+a2,\displaystyle=r^{2}+a^{2}\cos^{2}\theta,~{}~{}\Delta=r^{2}-2Mr+a^{2},
A\displaystyle A =(r2+a2)2a2Δ2sin2θ,\displaystyle=\left(r^{2}+a^{2}\right)^{2}-a^{2}\Delta^{2}\sin^{2}\theta, (2)

where MM and aa denote the mass and spin parameters, respectively. The spacetime is stationary and axisymmetric with two corresponding Killing vectors ξaa=t\xi^{a}\partial_{a}=\partial_{t} and ψaa=φ\psi^{a}\partial_{a}=\partial_{\varphi}, respectively. Furthermore, the spacetime has the Killing tensor KabK_{ab} defined by Walker:1970un

Kab=\displaystyle K_{ab}= Σ2(dθ)a(dθ)b+sin2θ[(r2+a2)(dφ)aa(dt)a]\displaystyle\;\Sigma^{2}(\mathrm{d}\theta)_{a}(\mathrm{d}\theta)_{b}+\sin^{2}\theta\left[\left(r^{2}+a^{2}\right)(\mathrm{d}\varphi)_{a}-a(\mathrm{d}t)_{a}\right]
×[(r2+a2)(dφ)ba(dt)b]a2cos2θgab.\displaystyle\times\left[\left(r^{2}+a^{2}\right)(\mathrm{d}\varphi)_{b}-a(\mathrm{d}t)_{b}\right]-a^{2}\cos^{2}\theta g_{ab}. (3)

We adopt units in which M=1M=1 in what follows.

Let us consider null geodesics with 4-momentum kak^{a}. According to the existence of ξa\xi^{a}, ψa\psi^{a}, and KabK_{ab}, a photon has three constants of motion Carter:1963

E\displaystyle E =ξaka=kt,L=ψaka=kφ,\displaystyle=-\xi^{a}k_{a}=-k_{t},~{}~{}L=\psi^{a}k_{a}=k_{\varphi},
Q\displaystyle Q =Kabkakb(LaE)2,\displaystyle=K_{ab}k^{a}k^{b}-(L-aE)^{2}, (4)

where EE, LL, and QQ are the conserved energy, angular momentum, and Carter constant, respectively. Since we consider only a photon escaping to infinity, we assume that E>0E>0. Introducing impact parameters

b=LE,q=QE2,\displaystyle b=\frac{L}{E},~{}~{}q=\frac{Q}{E^{2}}, (5)

and rescaling kak^{a} as ka/Ekak^{a}/E\to k^{a}, we obtain the null geodesic equations parametrized by (b,q)(b,q):

Σt˙\displaystyle\Sigma\dot{t} =a(basin2θ)+r2+a2Δ(r2+a2ab),\displaystyle=a\left(b-a\sin^{2}\theta\right)+\frac{r^{2}+a^{2}}{\Delta}\left(r^{2}+a^{2}-ab\right), (6)
Σφ˙\displaystyle\Sigma\dot{\varphi} =basin2θsin2θ+aΔ(r2+a2ab),\displaystyle=\frac{b-a\sin^{2}\theta}{\sin^{2}\theta}+\frac{a}{\Delta}\left(r^{2}+a^{2}-ab\right), (7)
Σr˙\displaystyle\Sigma\dot{r} =σrR,\displaystyle=\sigma_{r}\sqrt{R}, (8)
Σθ˙\displaystyle\Sigma\dot{\theta} =σθΘ,\displaystyle=\sigma_{\theta}\sqrt{\Theta}, (9)

where the dots denote derivatives with respect to an affine parameter, σr=sgn(r˙)\sigma_{r}=\mathrm{sgn}(\dot{r}), σθ=sgn(θ˙)\sigma_{\theta}=\mathrm{sgn}(\dot{\theta}), and

R\displaystyle R =(r2+a2ab)2Δ[q+(ba)2],\displaystyle=\left(r^{2}+a^{2}-ab\right)^{2}-\Delta\left[q+(b-a)^{2}\right], (10)
Θ\displaystyle\Theta =qcot2θ(b2a2sin2θ).\displaystyle=q-\cot^{2}\theta\left(b^{2}-a^{2}\sin^{2}\theta\right). (11)

The allowed region for photon motion is R0R\geq 0 and Θ0\Theta\geq 0. From now on, we focus on the extremal Kerr black hole spacetime, i.e., a=1a=1. Thus, the event horizon is located at r=rH=1r=r_{\mathrm{H}}=1.

Let us clarify the allowed parameter region restricted by R0R\geq 0. The function is factored as

R=r(2r)(bb1)(bb2),\displaystyle R=r(2-r)(b-b_{1})(b-b_{2}), (12)

where

b1(r;q)\displaystyle b_{1}(r;q) =2r+(r1)r4r(r2)qr(r2),\displaystyle=\frac{-2r+(r-1)\sqrt{r^{4}-r(r-2)q}}{r(r-2)}, (13)
b2(r;q)\displaystyle b_{2}(r;q) =2r(r1)r4r(r2)qr(r2),\displaystyle=\frac{-2r-(r-1)\sqrt{r^{4}-r(r-2)q}}{r(r-2)}, (14)

which denote the values of bb at the radial turning point. The allowed range of bb derived from R0R\geq 0 is given by

bb1,bb2for1<r<2,b1<b<b2forr>2.\displaystyle\begin{array}[]{lll}b\leq b_{1},~{}b\geq b_{2}&\mathrm{for}&1<r<2,\\ b_{1}<b<b_{2}&\mathrm{for}&r>2.\end{array} (17)

Note that b2b_{2} is singular at r=2r=2, but RR is finite there. We will not consider bb2b\geq b_{2} for 1<r<21<r<2 because this range is for a negative energy photon, and such a photon cannot escape to infinity.

We also clarify the allowed parameter region restricted by Θ0\Theta\geq 0. It reads

qcot2θ(b2sin2θ),\displaystyle q\geq\cot^{2}\theta\left(b^{2}-\sin^{2}\theta\right), (18)

so that the allowed range of bb derived from Θ0\Theta\geq 0 is given by

BbB,\displaystyle-B\leq b\leq B, (19)

where

B(θ;q)=tanθq+cos2θ.\displaystyle B(\theta;q)=\tan\theta\sqrt{q+\cos^{2}\theta}. (20)

Thus, the allowed region for photon motion is given by the common region of Eqs. (17) and (19).

Next, we consider the extremum points of bib_{i} (i=1,2i=1,2), which characterize the photon escape conditions. The photon orbits staying at the extrema, i.e., the orbits with r˙=0\dot{r}=0 and r¨=0\ddot{r}=0, are known as the SPOs Teo:2003 . Solving the equivalent conditions, R=0R=0 and dR/dr=0\mathrm{d}R/\mathrm{d}r=0, we obtain bb and qq as functions of the SPO radius:

b\displaystyle b =bSPO(r)=r2+2r+1,\displaystyle=b_{\mathrm{SPO}}(r)=-r^{2}+2r+1, (21)
q\displaystyle q =qSPO(r)=r3(4r).\displaystyle=q_{\mathrm{SPO}}(r)=r^{3}(4-r). (22)

Outside the horizon, qSPO(r)q_{\mathrm{SPO}}(r) has a unique local maximum with the value 2727 at r=3r=3. Eliminating rr from Eqs. (21) and (22), we obtain the extremum values as

b=bis(q)=bSPO(ri(q)),\displaystyle b=b^{\mathrm{s}}_{i}(q)=b_{\mathrm{SPO}}\big{(}r_{i}(q)\big{)}, (23)

where r=ri(q)r=r_{i}(q) (r1r2r_{1}\leq r_{2}) are the radii of SPOs and are the real solutions of q=qSPO(r)q=q_{\mathrm{SPO}}(r). Note that r1r_{1} (r2r_{2}) increases (decreases) monotonically with qq in the range

r1(0)=0r1(q)3r2(q)4=r2c,\displaystyle r_{1}(0)=0\leq r_{1}(q)\leq 3\leq r_{2}(q)\leq 4=r^{\mathrm{c}}_{2}, (24)

where r2c=r2(0)=4r^{\mathrm{c}}_{2}=r_{2}(0)=4 is the radius of the unstable photon circular orbit. The number of real roots of q=qSPO(r)q=q_{\mathrm{SPO}}(r) outside the horizon depends on qq. There exists a single root r2r_{2} for 0q30\leq q\leq 3, while there exist two roots r1r_{1} and r2r_{2} for 3<q<273<q<27. For q=27q=27, rir_{i} coincide with each other at r1=r2=3r_{1}=r_{2}=3, so that bisb^{\mathrm{s}}_{i} coincide with b1s=b2s=2b^{\mathrm{s}}_{1}=b^{\mathrm{s}}_{2}=-2. Figure 1 shows a relation between qq and the radii rir_{i}.

Refer to caption
Figure 1: Relation between qq and the radii rir_{i}. The function qSPO(r)q_{\mathrm{SPO}}(r) is shown by a black curve, which is solid outside the horizon and dashed inside it. The intersections of the blue solid line qq and the black solid curve qSPO(r)q_{\mathrm{SPO}}(r) give the radii of SPOs, r1r_{1} and r2r_{2}.

III Photon Escape Condition

We consider the escape condition of a photon emitted from an arbitrary spacetime position (r,θ)=(r,θ)(r,\theta)=(r_{*},\theta_{*}). Since the Kerr black hole spacetime is reflection symmetric with respect to the equatorial plane θ=π/2\theta=\pi/2, we consider only the range 0<θ<π/20<\theta_{*}<\pi/2 in what follows. The cases of θ=0\theta_{*}=0 and θ=π/2\theta_{*}=\pi/2 will be considered in Appendix A.

The necessary and sufficient conditions for photons to escape are that they have appropriate parameters to reach infinity from r=rr=r_{*} (necessary condition) and are in the allowed region determined by the variable θ\theta_{*}. In the following subsections, we consider the photon escape conditions for q0q\geq 0 and q<0q<0 separately.

III.1 Necessary condition for photon escape, q0q\geq 0

Let us consider the behavior of bi(r;q)b_{i}(r;q) to determine the range of bb in which photons with q0q\geq 0 satisfy the necessary condition to escape from r=rr=r_{*} to infinity. We can see the typical shape of bib_{i} as gray curves in Figs. 2(a) and 2(b) for 0q<30\leq q<3, in Figs. 2(c)–2(e) for 3q<273\leq q<27, and in Fig. 2(f) for q27q\geq 27. Gray regions denote forbidden regions of photon motion. Orange and blue regions represent the parameter range of bb where photons satisfy a necessary condition for escape with σr=+\sigma_{r}=+ and σr=\sigma_{r}=-, respectively.

In the case r1<rH<rr2r_{1}<r_{\mathrm{H}}<r_{*}\leq r_{2}, photons initially emitted outward (i.e., σr=+\sigma_{r}=+) with b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} can escape [see orange region in Fig. 2(a)], and photons initially emitted inward (i.e., σr=\sigma_{r}=-) with 2<b<b12<b<b_{1}^{*} also can escape [see blue region in Fig. 2(a)], where

bibi(r;q),b1(rH;q)=2.\displaystyle b_{i}^{*}\equiv b_{i}(r_{*};q),~{}~{}b_{1}(r_{\mathrm{H}};q)=2. (25)

In the case r1<rH<r2<rr_{1}<r_{\mathrm{H}}<r_{2}<r_{*}, photons initially emitted outward (i.e., σr=+\sigma_{r}=+) with b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} can escape [see orange region in Fig. 2(b)], and photons initially emitted inward (i.e., σr=\sigma_{r}=-) with b2<b<b2sb_{2}^{*}<b<b^{\mathrm{s}}_{2} or 2<b<b12<b<b_{1}^{*} also can escape [see blue region in Fig. 2(b)].

In the case rH<rr1r_{\mathrm{H}}<r_{*}\leq r_{1}, only photons initially emitted outward (i.e., σr=+\sigma_{r}=+) with b2s<b<b1sb^{\mathrm{s}}_{2}<b<b^{\mathrm{s}}_{1} can escape [see orange region in Fig. 2(c)].

In the case rHr1<rr2r_{\mathrm{H}}\leq r_{1}<r_{*}\leq r_{2}, photons initially emitted outward (i.e., σr=+\sigma_{r}=+) with b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} can escape [see orange region in Fig. 2(d)], and photons initially emitted inward (i.e., σr=\sigma_{r}=-) with b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*} also can escape [see blue region in Fig. 2(d)].

In the case rHr1<r2<rr_{\mathrm{H}}\leq r_{1}<r_{2}<r_{*}, photons initially emitted outward (i.e., σr=+\sigma_{r}=+) with b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} can escape [see orange region in Fig. 2(e)], and photons initially emitted inward (i.e., σr=\sigma_{r}=-) with b2<b<b2sb_{2}^{*}<b<b^{\mathrm{s}}_{2} or b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*} also can escape [see blue region in Fig. 2(e)].

For q27q\geq 27, the allowed region is disconnected. Therefore, if rr_{*} is in the outer allowed region, photons must have b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} and always can escape [see orange and blue region in Fig. 2(f)].

Refer to caption
Figure 2: Range of bb in which a photon satisfies a necessary condition for escape. Gray solid curves denote bi(r;q)b_{i}(r;q) as a function of rr with a fixed qq, and black dashed vertical lines denote the emission point r=rr=r_{*}. Gray regions denote forbidden regions, while the other regions denote allowed regions. Orange and blue regions represent the parameter ranges of bb where photons satisfy a necessary condition for escape with σr=+\sigma_{r}=+ and σr=\sigma_{r}=-, respectively. (a) and (b) (0q<30\leq q<3): the function b2b_{2} has an extremum b2sb^{\mathrm{s}}_{2} at r=r2r=r_{2}, but b1b_{1} has no extremum. (c)–(e) (3q<273\leq q<27): the functions bib_{i} have extrema bisb^{\mathrm{s}}_{i} at r=rir=r_{i}, respectively. (f) (q27q\geq 27): the allowed region is disconnected and the functions bib_{i} no longer have extrema.
Table 1: Necessary conditions for photon escape from r=rr=r_{*} to infinity. Here “n/a” means not applicable.
Radial position of an emitter qq bb (σr=+\sigma_{r}=+) bb (σr=\sigma_{r}=-) Shape of bib_{i}
(i) rH<r<3r_{\mathrm{H}}<r_{*}<3 0q<30\leq q<3 b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} 2<b<b12<b<b_{1}^{*} Fig. 2(a)
3q<q3\leq q<q_{*} b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*} Fig. 2(d)
qq27q_{*}\leq q\leq 27 b2s<b<b1sb^{\mathrm{s}}_{2}<b<b^{\mathrm{s}}_{1} n/a Fig. 2(c)
(ii) 3r<r~3\leq r_{*}<\tilde{r} 0q<30\leq q<3 b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} 2<b<b12<b<b_{1}^{*} Fig. 2(a)
3q<q3\leq q<q_{*} b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*} Fig. 2(d)
qq<27q_{*}\leq q<27 b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b2sb_{2}^{*}<b<b^{\mathrm{s}}_{2}, b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*} Fig. 2(e)
27qqmax27\leq q\leq q_{\mathrm{max}} b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b1b_{2}^{*}<b<b_{1}^{*} Fig. 2(f)
(iii) r~r<4\tilde{r}\leq r_{*}<4 0q<q0\leq q<q_{*} b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} 2<b<b12<b<b_{1}^{*} Fig. 2(a)
qq<3q_{*}\leq q<3 b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b2sb_{2}^{*}<b<b^{\mathrm{s}}_{2}, 2<b<b12<b<b_{1}^{*} Fig. 2(b)
3q<273\leq q<27 b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b2sb_{2}^{*}<b<b^{\mathrm{s}}_{2}, b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*} Fig. 2(e)
27qqmax27\leq q\leq q_{\mathrm{max}} b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b1b_{2}^{*}<b<b_{1}^{*} Fig. 2(f)
(iv) r4r_{*}\geq 4 0q<30\leq q<3 b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b2sb_{2}^{*}<b<b^{\mathrm{s}}_{2}, 2<b<b12<b<b_{1}^{*} Fig. 2(b)
3q<273\leq q<27 b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b2sb_{2}^{*}<b<b^{\mathrm{s}}_{2}, b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*} Fig. 2(e)
27qqmax27\leq q\leq q_{\mathrm{max}} b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b1b_{2}^{*}<b<b_{1}^{*} Fig. 2(f)
Refer to caption
Figure 3: Typical parameter region in the bb-qq plane satisfying the necessary condition for photon escape from r=rr=r_{*} to infinity. The blue, red, purple, and brown curves denote b=b1(r;q)b=b_{1}^{*}(r_{*};q), b2(r;q)b_{2}^{*}(r_{*};q), b1s(q)b^{\mathrm{s}}_{1}(q), and b2s(q)b^{\mathrm{s}}_{2}(q), respectively. The black segment denotes b=b1(rH;q)=2b=b_{1}(r_{\mathrm{H}};q)=2 and q[0,3]q\in[0,3]. The orange regions represent the parameter regions where only photons initially emitted outward (i.e., σr=+\sigma_{r}=+) satisfy the necessary condition for escape. The cyan regions represent the parameter regions where photons initially emitted both outward and inward (i.e., σr=±\sigma_{r}=\pm) satisfy the necessary condition for escape. The labels (a)–(f) in the figure represent the part labels in Fig. 2.

Let us summarize the necessary condition for photon escape in the (b,qb,q) parameter region for a fixed rr_{*}. To perform it, we introduce four ranges of rr_{*}:

(i)\displaystyle(\mathrm{i}) rH<r<3,\displaystyle~{}r_{\mathrm{H}}<r_{*}<3, (26)
(ii)\displaystyle(\mathrm{ii}) 3r<r~,\displaystyle~{}3\leq r_{*}<\tilde{r}, (27)
(iii)\displaystyle(\mathrm{iii}) r~r<4,\displaystyle~{}\tilde{r}\leq r_{*}<4, (28)
(iv)\displaystyle(\mathrm{iv}) r4,\displaystyle~{}r_{*}\geq 4, (29)

where r~r2(3)=3.95137\tilde{r}\equiv r_{2}(3)=3.95137... is the largest solution of qSPO(r)=3q_{\mathrm{SPO}}(r)=3. In addition, we introduce two specific values of qq,

q(r)\displaystyle q_{*}(r_{*}) qSPO(r),\displaystyle\equiv q_{\mathrm{SPO}}(r_{*}), (30)
qmax(r)\displaystyle q_{\mathrm{max}}(r_{*}) r3r2.\displaystyle\equiv\frac{r_{*}^{3}}{r_{*}-2}. (31)

When q=qmaxq=q_{\mathrm{max}}, the functions bib_{i}^{*} coincide with each other, and their value is

bmbi(r;qmax)=22r.\displaystyle b_{\mathrm{m}}\equiv b_{i}(r_{*};q_{\mathrm{max}})=\frac{2}{2-r_{*}}. (32)

When q>qmaxq>q_{\mathrm{max}}, the position rr_{*} enters the forbidden region. Therefore, the maximum value of qq is limited by qmaxq_{\mathrm{max}}. The necessary conditions for photon escape are summarized in Table 1.111Note that in Refs. Ogasawara:2019mir ; Ogasawara:2020frt , the photon escape regions were considered only for the case (i), i.e., rH<r<3r_{\mathrm{H}}<r_{*}<3. Here, we identify them for the entire range of rr_{*}. It is useful to visualize the necessary condition for photon escape in the bb-qq plane; see Fig. 3. The blue, red, purple, and brown curves denote b=b1(r;q)b=b_{1}^{*}(r_{*};q), b2(r;q)b_{2}^{*}(r_{*};q), b1s(q)b^{\mathrm{s}}_{1}(q), and b2s(q)b^{\mathrm{s}}_{2}(q), respectively. The black segment denotes b=b1(rH;q)=2b=b_{1}(r_{\mathrm{H}};q)=2 and q[0,3]q\in[0,3]. The orange regions show the parameter regions where photons initially emitted outward (i.e., σr=+\sigma_{r}=+) satisfy the necessary condition for escape. The cyan regions show the parameter regions where photons initially emitted both outward and inward (i.e., σr=±\sigma_{r}=\pm) satisfy the necessary condition for escape. Figures 3(i)–3(iv) correspond to Tables 1(i)–1(iv), respectively.

III.2 Necessary and sufficient condition for photon escape, q0q\geq 0

Let us further restrict the above necessary condition for photon escape by the non-negativity of Θ\Theta, i.e., Eq. (19). The common region of these conditions provides the necessary and sufficient parameter region in which a photon can escape from (r,θ)=(r,θ)(r,\theta)=(r_{*},\theta_{*}) to infinity. We call it the escapable region. An example of the escapable region is seen in Fig. 4. The green curve denotes Θ=0\Theta=0, and the other curves and colored regions are the same as in Fig. 3. We can find that the escapable region corresponds to the regions in Fig. 3 further restricted by the condition (19).

III.3 Necessary and sufficient condition for photon escape, q<0q<0

We identify the escapable region for q<0q<0. The negative qq together with the non-negativity of Θ\Theta at θ=θ\theta=\theta_{*} leads to

cot2θ(b2sin2θ)q<0.\displaystyle\cot^{2}\theta_{*}\left(b^{2}-\sin^{2}\theta_{*}\right)\leq q<0. (33)

This implies that |b|<1|b|<1 for q<0q<0, and the minimum value of qq is given at b=0b=0 as

qmin=cos2θ.\displaystyle q_{\mathrm{min}}=-\cos^{2}\theta_{*}. (34)

For q<0q<0, the SPOs are not relevant to photon escape because they do not exist. Therefore, we only focus on R0R\geq 0, or equivalently,

qr(r1)2[r3+(1b2)r+2(1b)2].\displaystyle q\leq\frac{r}{(r-1)^{2}}\left[r^{3}+\left(1-b^{2}\right)r+2(1-b)^{2}\right]. (35)

The right-hand side is positive for all |b|<1|b|<1 and r>1r>1. Hence, the allowed region (35) contains the entire parameter region (33). This means that any radial turning point no longer appears for q<0q<0. Finally, we conclude that photons with q<0q<0 can escape to infinity if they are initially emitted outward (i.e., σr=+\sigma_{r}=+) and take the range (33). Figure 4 shows an example of the escapable region (see the orange region of q<0q<0).

Refer to caption
Figure 4: Typical shape of the escapable region. The green curve denotes Θ=0\Theta=0, or equivalently, b=±B(θ;q)b=\pm B(\theta_{*};q). The other curves and colored regions are the same as in Fig. 3.

IV Critical values for classifying photon escape

In order to classify the escapable region completely, we introduce the critical polar angles and the critical values of qq.

IV.1 Critical angles

We introduce four critical polar angles θ1\theta_{1}, θ2\theta_{2}, θ3\theta_{3}, and θm\theta_{\mathrm{m}}, at which the classification of the escapable region varies qualitatively. Solving Θ=0\Theta=0 for θ\theta, we obtain a solution

θ=θ~(b,q)=arcsin[|(b+1)2+q(b1)2+q|2];\displaystyle\theta=\tilde{\theta}(b,q)=\arcsin\left[\frac{\left|\sqrt{(b+1)^{2}+q}-\sqrt{(b-1)^{2}+q}\right|}{2}\right]; (36)

see Appendix B.

The first special point is (b,q)=(2,27)(b,q)=(-2,27), where b1sb^{\mathrm{s}}_{1} and b2sb^{\mathrm{s}}_{2} coincide with each other. We define θ1\theta_{1} as θ\theta_{*} at which B(θ;q)-B(\theta_{*};q) passes through (2,27)(-2,27), i.e., B(θ1;27)=2B(\theta_{1};27)=2 [see the black dot in Fig. 5(i)]. Then, θ1\theta_{1} is given by

θ1=θ~(2,27)=arcsin(37)20.7.\displaystyle\theta_{1}=\tilde{\theta}(-2,27)=\arcsin\left(3-\sqrt{7}\right)\simeq 20.7^{\circ}. (37)

When θ<θ1\theta_{*}<\theta_{1}, b2s<Bb^{\mathrm{s}}_{2}<-B holds in the range q27q\leq 27. This implies that the minimum value of bb in the escapable region for q[qmin,27]q\in[q_{\mathrm{min}},27] is always B-B.

The second special point is (b,q)=(2,3)(b,q)=(2,3), where r1=rH=1r_{1}=r_{\mathrm{H}}=1 and b1s=b1(rH;q)=2b^{\mathrm{s}}_{1}=b_{1}(r_{\mathrm{H}};q)=2. We define θ2\theta_{2} as θ\theta_{*} at which B(θ;q)B(\theta_{*};q) passes through (2,3)(2,3), i.e., B(θ2;3)=2B(\theta_{2};3)=2 [see the black dot in Fig. 5(ii)]. Then, θ2\theta_{2} is given by

θ2=θ~(2,3)=arcsin(31)47.1.\displaystyle\theta_{2}=\tilde{\theta}(2,3)=\arcsin\left(\sqrt{3}-1\right)\simeq 47.1^{\circ}. (38)

When θ<θ2\theta_{*}<\theta_{2}, B<2B<2 holds in the range q3q\leq 3. This implies that the maximum value of bb in the escapable region for q[qmin,3]q\in[q_{\mathrm{min}},3] is always BB.

The third special point is (b,q)=(b2s(3),3)(b,q)=(b^{\mathrm{s}}_{2}(3),3), where b2s(3)6.71b^{\mathrm{s}}_{2}(3)\simeq-6.71. We define θ3\theta_{3} as θ\theta_{*} at which B(θ;q)-B(\theta_{*};q) passes through (b2s(3),3)(b^{\mathrm{s}}_{2}(3),3), i.e., B(θ3;3)=b2s(3)-B(\theta_{3};3)=b^{\mathrm{s}}_{2}(3) [see the black dot in Fig. 5(iii)]. Then, θ3\theta_{3} is given by

θ3=θ~(b2s(3)),3)75.4.\displaystyle\theta_{3}=\tilde{\theta}(b^{\mathrm{s}}_{2}(3)),3)\simeq 75.4^{\circ}. (39)

When θ<θ3\theta_{*}<\theta_{3}, b2s<Bb^{\mathrm{s}}_{2}<-B holds in the range q3q\leq 3. This implies that the minimum value of bb in the escapable region for q[qmin,3]q\in[q_{\mathrm{min}},3] is always B-B.

The fourth special point is (b,q)=(bm,qmax)(b,q)=(b_{\mathrm{m}},q_{\mathrm{max}}), where b1b_{1}^{*} and b2b_{2}^{*} coincide with each other. We define θm\theta_{\mathrm{m}} as θ\theta_{*} at which B(θ;q)-B(\theta_{*};q) passes through (bm,qmax)(b_{\mathrm{m}},q_{\mathrm{max}}), i.e., B(θm;qmax)=bm(r)-B(\theta_{\mathrm{m}};q_{\mathrm{max}})=b_{\mathrm{m}}(r_{*}) [see the black dot in Fig. 5(iv)]. Then, θm\theta_{\mathrm{m}} is given by

θm(r)\displaystyle\theta_{\mathrm{m}}(r_{*}) =θ~(bm(r),qmax(r))\displaystyle=\tilde{\theta}(b_{\mathrm{m}}(r_{*}),q_{\mathrm{max}}(r_{*}))
=arcsin[r(r1)r2(r1)28(r2)2(r2)].\displaystyle=\arcsin\left[\frac{r_{*}(r_{*}-1)-\sqrt{r^{2}_{*}(r_{*}-1)^{2}-8(r_{*}-2)}}{2(r_{*}-2)}\right]. (40)

Note that we only need to consider θm\theta_{\mathrm{m}} for r3r_{*}\geq 3 because it does not contribute to specifying the escapable region when r<3r_{*}<3. The critical angle θm\theta_{\mathrm{m}} depends on rr_{*} and monotonically decreases with rr_{*} in the range

θm()=0<θm(r)θ1=θm(3).\displaystyle\theta_{\mathrm{m}}(\infty)=0<\theta_{\mathrm{m}}(r_{*})\leq\theta_{1}=\theta_{\mathrm{m}}(3). (41)

When θ<θm\theta_{*}<\theta_{\mathrm{m}}, b2<Bb_{2}^{*}<-B holds in the range qqmaxq\leq q_{\mathrm{max}}. This implies that the minimum value of bb in the escapable region for q[qmin,qmax]q\in[q_{\mathrm{min}},q_{\mathrm{max}}] is always B-B.

Refer to caption
Figure 5: Escapable region for θ\theta_{*} being the critical angles (i) θ=θ1\theta_{*}=\theta_{1}, (ii) θ=θ2\theta_{*}=\theta_{2}, (iii) θ=θ3\theta_{*}=\theta_{3}, and (iv) θ=θm(r)\theta_{*}=\theta_{\mathrm{m}}(r_{*}). Four black dots denote (b,q)=(2,27)(b,q)=(-2,27), (2,3)(2,3), (b2s(3),3)(b^{\mathrm{s}}_{2}(3),3), and (bm(r),qmax(r))(b_{\mathrm{m}}(r_{*}),q_{\mathrm{max}}(r_{*})). Each curve and colored region is the same as Fig. 4.

IV.2 Critical values of qq

Refer to caption
Figure 6: Five critical values of qq. Each curve and colored region is the same as Fig. 4.

We introduce five critical values q¯\bar{q}, q±tq^{\mathrm{t}}_{\pm}, and q±sq^{\mathrm{s}}_{\pm}, as the values of qq at the intersections of b=2b=2, bi(r;q)b_{i}^{*}(r_{*};q), bis(q)b^{\mathrm{s}}_{i}(q), and ±B(θ;q)\pm B(\theta_{*};q), at which the classification of the parameter ranges varies qualitatively.

We define q¯\bar{q} as the value of qq at the intersection of b=2b=2 and b=B(θ;q)b=B(\theta_{*};q) in the range 0q30\leq q\leq 3, and we denote the intersection as P(q¯)(\bar{q}) (see the black dot in Fig. 6). Then, q¯\bar{q} is given by222This q¯(θ)\bar{q}(\theta_{*}) is expressed as q1(θ)q_{1}(\theta_{*}) in Ref. Ogasawara:2020frt

q¯(θ)=3+cos2θtan2θ,\displaystyle\bar{q}(\theta_{*})=\frac{3+\cos^{2}\theta_{*}}{\tan^{2}\theta_{*}}, (42)

which only appears for θ[θ2,π/2)\theta_{*}\in[\theta_{2},\pi/2) and monotonically decreases with θ\theta_{*} in the range

q¯(π/2)=0<q¯(θ)3=q¯(θ2).\displaystyle\bar{q}(\pi/2)=0<\bar{q}(\theta_{*})\leq 3=\bar{q}(\theta_{2}). (43)

When q<q¯q<\bar{q}, B<b1B<b_{1}^{*} holds. This implies that the maximum value of bb in the escapable region for q<q¯q<\bar{q} is always BB.

We define q+tq^{\mathrm{t}}_{+} as the value of qq at the intersection of b=b1(r;q)b=b_{1}^{*}(r_{*};q) and b=B(θ;q)b=B(\theta_{*};q), and we denote the intersection as P(q+t)(q^{\mathrm{t}}_{+}) (see the blue dot in Fig. 6). On the other hand, we define qtq^{\mathrm{t}}_{-} as the value of qq at the intersection of b=b2(r;q)b=b_{2}^{*}(r_{*};q) and b=B(θ;q)b=-B(\theta_{*};q) for θθm\theta_{*}\geq\theta_{\mathrm{m}} and b=b1(r;q)b=b_{1}^{*}(r_{*};q) and b=B(θ;q)b=-B(\theta_{*};q) for θθm\theta_{*}\leq\theta_{\mathrm{m}}, and we denote the intersection as P(qt)(q^{\mathrm{t}}_{-}) (see the red dot in Fig. 6). Then, q±tq^{\mathrm{t}}_{\pm} are given by333These q+t(r,θ)q^{\mathrm{t}}_{+}(r_{*},\theta_{*}) and qt(r,θ)q^{\mathrm{t}}_{-}(r_{*},\theta_{*}) are expressed as q2(r,θ)q_{2}(r_{*},\theta_{*}) and q6(r,θ)q_{6}(r_{*},\theta_{*}), respectively, in Ref. Ogasawara:2020frt .

q±t(r,θ)\displaystyle q^{\mathrm{t}}_{\pm}(r_{*},\theta_{*})
=cos2θ[((r1)(r2+cos2θ)2rsinθ(r1)2sin2θ)21],\displaystyle=\cos^{2}\theta_{*}\left[\left(\frac{(r_{*}-1)\left(r_{*}^{2}+\cos^{2}\theta_{*}\right)\mp 2r_{*}\sin\theta_{*}}{(r_{*}-1)^{2}-\sin^{2}\theta_{*}}\right)^{2}-1\right], (44)

where qtq^{\mathrm{t}}_{-} only appears for r>2r_{*}>2. For θ=θm\theta_{*}=\theta_{\mathrm{m}}, b=bib=b_{i}^{*} and b=Bb=-B coincide with each other at q=qmaxq=q_{\mathrm{max}}. Note that q+t<qtq^{\mathrm{t}}_{+}<q^{\mathrm{t}}_{-} holds for all rr_{*} and θ\theta_{*}. Figures 7(i) and 7(ii) show the values of q+tq^{\mathrm{t}}_{+} and qtq^{\mathrm{t}}_{-} in the rr_{*}-θ\theta_{*} parameter space, respectively.

We define q+sq^{\mathrm{s}}_{+} as the value of qq at the intersection of b=b1s(q)b=b^{\mathrm{s}}_{1}(q) and b=B(θ;q)b=B(\theta_{*};q), and we denote the intersection as P(q+s)(q^{\mathrm{s}}_{+}) (see the purple dot in Fig. 6). On the other hand, we define qsq^{\mathrm{s}}_{-} as the value of qq at the intersection of b=b2s(q)b=b^{\mathrm{s}}_{2}(q) and b=B(θ;q)b=-B(\theta_{*};q) for θθ1\theta_{*}\geq\theta_{1} and b=b1s(q)b=b^{\mathrm{s}}_{1}(q) and b=B(θ;q)b=-B(\theta_{*};q) for θθ1\theta_{*}\leq\theta_{1}, and we denote the intersection as P(qs)(q^{\mathrm{s}}_{-}) (see the brown dot in Fig. 6). Then, q±sq^{\mathrm{s}}_{\pm} are given by444This q+s(θ)q^{\mathrm{s}}_{+}(\theta_{*}) is expressed as q3(θ)q_{3}(\theta_{*}), and qs(θ)q^{\mathrm{s}}_{-}(\theta_{*}) is expressed as q4(θ)q_{4}(\theta_{*}) for θθ1\theta_{*}\geq\theta_{1} and as q5(θ)q_{5}(\theta_{*}) for θ<θ1\theta_{*}<\theta_{1}, respectively, in Ref. Ogasawara:2020frt .

q±s(θ)\displaystyle q^{\mathrm{s}}_{\pm}(\theta_{*}) =qSPO(x±)=(x±)4+4x±,\displaystyle=q_{\mathrm{SPO}}(x_{\pm})=-(x_{\pm})^{4}+4x_{\pm}, (45)
x±\displaystyle x_{\pm} 1sinθ+2(1sinθ),\displaystyle\equiv 1\mp\sin\theta_{*}+\sqrt{2(1\mp\sin\theta_{*})}, (46)

where q+sq^{\mathrm{s}}_{+} only appears for θ(0,θ2)\theta_{*}\in(0,\theta_{2}) and monotonically decreases with θ\theta_{*} in the range

q+s(θ2)=3<q+s(θ)<11+82=q+s(0).\displaystyle q^{\mathrm{s}}_{+}(\theta_{2})=3<q^{\mathrm{s}}_{+}(\theta_{*})<11+8\sqrt{2}=q^{\mathrm{s}}_{+}(0). (47)

As θ\theta_{*} increases from 0 to π/2\pi/2, qsq^{\mathrm{s}}_{-} begins with qs(0)=11+82q^{\mathrm{s}}_{-}(0)=11+8\sqrt{2}, monotonically increases to the maximum value 2727 at θ=θ1\theta_{*}=\theta_{1}, and monotonically decreases to qs(π/2)=0q^{\mathrm{s}}_{-}(\pi/2)=0. For θ=θ1\theta_{*}=\theta_{1}, b=bisb=b^{\mathrm{s}}_{i} and b=Bb=-B coincide with each other at q=27q=27.

In addition, we define P(q)\mathrm{P}(q_{*}) as a point in the bb-qq plane that represents (b1(r;q),q)(b_{1}^{*}(r_{*};q_{*}),q_{*}) for r<3r_{*}<3 and (b2(r;q),q)(b_{2}^{*}(r_{*};q_{*}),q_{*}) for 3r43\leq r_{*}\leq 4 (see the gray dot in Fig. 6).

These are summarized in Table 2.

Table 2: Definition of special points P on the bb-qq plane and the values of qq and bb at these points.
P Intersection qq bb
P(q¯)\mathrm{P}(\bar{q}) b=2b=2 and b=Bb=B q¯(θ)\bar{q}(\theta_{*}) 2=B(θ;q¯)2=B(\theta_{*};\bar{q})
P(q+t)\mathrm{P}(q^{\mathrm{t}}_{+}) b=b1b=b_{1}^{*} and b=Bb=B q+t(r,θ)q^{\mathrm{t}}_{+}(r_{*},\theta_{*}) b1(r;q+t)=B(θ;q+t)b_{1}^{*}(r_{*};q^{\mathrm{t}}_{+})=B(\theta_{*};q^{\mathrm{t}}_{+})
P(qt)\mathrm{P}(q^{\mathrm{t}}_{-}) b=bib=b_{i}^{*} and b=Bb=-B qt(r,θ)q^{\mathrm{t}}_{-}(r_{*},\theta_{*}) bi(r;qt)=B(θ;qt)b_{i}^{*}(r_{*};q^{\mathrm{t}}_{-})=-B(\theta_{*};q^{\mathrm{t}}_{-})
P(q+s)\mathrm{P}(q^{\mathrm{s}}_{+}) b=b1sb=b^{\mathrm{s}}_{1} and b=Bb=B q+s(θ)q^{\mathrm{s}}_{+}(\theta_{*}) b1s(q+s)=B(θ;q+s)b^{\mathrm{s}}_{1}(q^{\mathrm{s}}_{+})=B(\theta_{*};q^{\mathrm{s}}_{+})
P(qs)\mathrm{P}(q^{\mathrm{s}}_{-}) b=bisb=b^{\mathrm{s}}_{i} and b=Bb=-B qs(θ)q^{\mathrm{s}}_{-}(\theta_{*}) bis(qs)=B(θ;qs)b^{\mathrm{s}}_{i}(q^{\mathrm{s}}_{-})=-B(\theta_{*};q^{\mathrm{s}}_{-})
P(q)\mathrm{P}(q_{*}) q(r)q_{*}(r_{*}) b1(r;q)b_{1}^{*}(r_{*};q_{*}) for r<3r_{*}<3
b2(r;q)b_{2}^{*}(r_{*};q_{*}) for 3r43\leq r_{*}\leq 4

IV.3 Conditions for critical values of qq involved in classification

Refer to caption
Figure 7: Values of q±t(r,θ)q^{\mathrm{t}}_{\pm}(r_{*},\theta_{*}) in the rr_{*}-θ\theta_{*} parameter space. Blue and red curves denote q+t=qq^{\mathrm{t}}_{+}=q_{*} and qt=qq^{\mathrm{t}}_{-}=q_{*}, respectively. Gray regions in (i) and (ii) represent the parameter regions where the points P(q+t)\mathrm{P}(q^{\mathrm{t}}_{+}) and P(qt)\mathrm{P}(q^{\mathrm{t}}_{-}) do not contribute to specifying the escapable region, respectively.
Refer to caption
Figure 8: Relationship of the characteristic qq’s in the rr_{*}-θ\theta_{*} parameter space. In the gray region, q±tq^{\mathrm{t}}_{\pm} and qq_{*} do not contribute to specifying the escapable region. In the blue region, q+tq^{\mathrm{t}}_{+} and qq_{*} contribute to specifying the escapable region, while qtq^{\mathrm{t}}_{-} does not. In the red region, q±tq^{\mathrm{t}}_{\pm} contribute to specifying the escapable region, while qq_{*} does not. Note that curves representing q+t=qq^{\mathrm{t}}_{+}=q_{*} for r3r_{*}\geq 3 and qt=qq^{\mathrm{t}}_{-}=q_{*} for r<3r_{*}<3 and θθ1\theta_{*}\geq\theta_{1}, and for r3r_{*}\geq 3 and θ<θ1\theta_{*}<\theta_{1} are not plotted. This is because these curves do not contribute to the classification of photon escape.

It is worth noting that q±tq^{\mathrm{t}}_{\pm} and qq_{*} are not always involved in classification; i.e., the intersections P(q+tq^{\mathrm{t}}_{+}), P(qtq^{\mathrm{t}}_{-}), and P(q)(q_{*}) are not always involved in classification.

When q+t>qq^{\mathrm{t}}_{+}>q_{*} for r<3r_{*}<3, the intersection P(q+tq^{\mathrm{t}}_{+}) does not contribute to specifying the escapable region [see the gray region in Fig. 7(i)]. On the other hand, when q+tqq^{\mathrm{t}}_{+}\leq q_{*} for r<3r_{*}<3, the intersection P(q+tq^{\mathrm{t}}_{+}) is a special point, which contributes to specifying the escapable region. For r3r_{*}\geq 3, the intersection P(q+tq^{\mathrm{t}}_{+}) always contributes to it. The colored region in Fig. 7(i) represents the parameter region where q+tq^{\mathrm{t}}_{+} contributes to specifying the escapable region.

For the same reason as for q+tq^{\mathrm{t}}_{+}, the relative values of qtq^{\mathrm{t}}_{-} and qq_{*} determine whether qtq^{\mathrm{t}}_{-} contributes to specifying the escapable region. In the case of r<3r_{*}<3, only when qtqq^{\mathrm{t}}_{-}\leq q_{*} for θ<θ1\theta_{*}<\theta_{1}, the intersection P(qtq^{\mathrm{t}}_{-}) is included in the escapable region. In the case of r3r_{*}\geq 3, when qtqq^{\mathrm{t}}_{-}\leq q_{*} for θ<θ1\theta_{*}<\theta_{1} and when qtqq^{\mathrm{t}}_{-}\geq q_{*}, the intersection P(qt)(q^{\mathrm{t}}_{-}) is included. The colored region in Fig. 7(ii) represents the parameter region where qtq^{\mathrm{t}}_{-} contributes to specifying the escapable region.

In the case of r<3r_{*}<3, when q+tqqtq^{\mathrm{t}}_{+}\leq q_{*}\leq q^{\mathrm{t}}_{-} and when qtqq^{\mathrm{t}}_{-}\leq q_{*} for θθ1\theta_{*}\geq\theta_{1}, the point P(qq_{*}) contributes to specifying the escapable region. In the case of r3r_{*}\geq 3, the point P(qq_{*}) contributes to it only when qtqq^{\mathrm{t}}_{-}\leq q_{*} for θθ1\theta_{*}\geq\theta_{1}. The blue region in Fig. 8 represents the parameter region where qq_{*} contributes to specifying the escapable region.

Other intersections P(q¯\bar{q}) and P(q+sq^{\mathrm{s}}_{+}) contribute to specifying the escapable region when θθ2\theta_{*}\geq\theta_{2} and θ<θ2\theta_{*}<\theta_{2}, respectively, and P(qsq^{\mathrm{s}}_{-}) always contributes to it.

In the following section, we will perform a complete classification of photon escape.

V Complete classification of photon escape in the extremal Kerr black hole

Table 3: Definition of each class and the characteristic values of qq that appear in the classification in each class.
Class Range of (r,θ)(r_{*},\theta_{*}) Characteristic qq’s
I r<3r_{*}<3 and θ(0,θ1)\theta_{*}\in(0,\theta_{1}) qq_{*}, q±tq^{\mathrm{t}}_{\pm}, and q±sq^{\mathrm{s}}_{\pm}
II r<3r_{*}<3 and θ[θ1,θ2)\theta_{*}\in[\theta_{1},\theta_{2}) qq_{*}, q+tq^{\mathrm{t}}_{+}, and q±sq^{\mathrm{s}}_{\pm}
III r<3r_{*}<3 and θ[θ2,θ3)\theta_{*}\in[\theta_{2},\theta_{3}) qq_{*}, q¯\bar{q}, q+tq^{\mathrm{t}}_{+}, qsq^{\mathrm{s}}_{-}, and 33
IV r<3r_{*}<3 and θ[θ3,π/2)\theta_{*}\in[\theta_{3},\pi/2) qq_{*}, q¯\bar{q}, q+tq^{\mathrm{t}}_{+}, qsq^{\mathrm{s}}_{-}, and 33
V r3r_{*}\geq 3 and θ(0,θ1)\theta_{*}\in(0,\theta_{1}) q±tq^{\mathrm{t}}_{\pm} and q±sq^{\mathrm{s}}_{\pm}
VI r3r_{*}\geq 3 and θ[θ1,θ2)\theta_{*}\in[\theta_{1},\theta_{2}) qq_{*}, q±tq^{\mathrm{t}}_{\pm}, q±sq^{\mathrm{s}}_{\pm}, and 2727
VII r3r_{*}\geq 3 and θ[θ2,θ3)\theta_{*}\in[\theta_{2},\theta_{3}) qq_{*}, q¯\bar{q}, q±tq^{\mathrm{t}}_{\pm}, qsq^{\mathrm{s}}_{-}, 33, and 2727
VIII r3r_{*}\geq 3 and θ[θ3,π/2)\theta_{*}\in[\theta_{3},\pi/2) qq_{*}, q¯\bar{q}, q±tq^{\mathrm{t}}_{\pm}, qsq^{\mathrm{s}}_{-}, 33, and 2727

In this section, we make a complete classification of photon escape. We define eight classes according to a spacetime position of an emitter (r,θ)(r_{*},\theta_{*}) (see Table 3):

ClassI\displaystyle\mathrm{Class~{}I} :r<3and0<θ<θ1,\displaystyle:r_{*}<3~{}\mathrm{and}~{}0<\theta_{*}<\theta_{1}, (48)
ClassII\displaystyle\mathrm{Class~{}II} :r<3andθ1θ<θ2,\displaystyle:r_{*}<3~{}\mathrm{and}~{}\theta_{1}\leq\theta_{*}<\theta_{2}, (49)
ClassIII\displaystyle\mathrm{Class~{}III} :r<3andθ2θ<θ3,\displaystyle:r_{*}<3~{}\mathrm{and}~{}\theta_{2}\leq\theta_{*}<\theta_{3}, (50)
ClassIV\displaystyle\mathrm{Class~{}IV} :r<3andθ3θ<π/2,\displaystyle:r_{*}<3~{}\mathrm{and}~{}\theta_{3}\leq\theta_{*}<\pi/2, (51)
ClassV\displaystyle\mathrm{Class~{}V} :r3and0<θ<θ1,\displaystyle:r_{*}\geq 3~{}\mathrm{and}~{}0<\theta_{*}<\theta_{1}, (52)
ClassVI\displaystyle\mathrm{Class~{}VI} :r3andθ1θ<θ2,\displaystyle:r_{*}\geq 3~{}\mathrm{and}~{}\theta_{1}\leq\theta_{*}<\theta_{2}, (53)
ClassVII\displaystyle\mathrm{Class~{}VII} :r3andθ2θ<θ3,\displaystyle:r_{*}\geq 3~{}\mathrm{and}~{}\theta_{2}\leq\theta_{*}<\theta_{3}, (54)
ClassVIII\displaystyle\mathrm{Class~{}VIII} :r3andθ3θ<π/2.\displaystyle:r_{*}\geq 3~{}\mathrm{and}~{}\theta_{3}\leq\theta_{*}<\pi/2. (55)

For r<3r_{*}<3 (i.e., classes I–IV), qq_{*} monotonically increases with rr_{*} in the range

qSPO(1)=3<q(r)<27=qSPO(3),\displaystyle q_{\mathrm{SPO}}(1)=3<q_{*}(r_{*})<27=q_{\mathrm{SPO}}(3), (56)

and we only need to consider the range of qminq27q_{\mathrm{min}}\leq q\leq 27 because there is no escapable region in q>27q>27. For r3r_{*}\geq 3 (i.e., classes V–VIII), as rr_{*} increases from 33 to \infty, qq_{*} begins at qSPO(3)=27q_{\mathrm{SPO}}(3)=27 and monotonically decreases to -\infty. We only need to consider the range of qminqqmaxq_{\mathrm{min}}\leq q\leq q_{\mathrm{max}} because there is no escapable region in q>qmaxq>q_{\mathrm{max}}.

Figure 8 shows the relationship of the characteristic qq’s in the rr_{*}-θ\theta_{*} parameter space. In the gray region, q±tq^{\mathrm{t}}_{\pm} and qq_{*} do not contribute to specifying the escapable region. In the blue region, q+tq^{\mathrm{t}}_{+} and qq_{*} contribute to specifying the escapable region, while qtq^{\mathrm{t}}_{-} does not. In the red region, q±tq^{\mathrm{t}}_{\pm} contribute to specifying the escapable region, while qq_{*} does not. For each class, the regions separated by these curves give different escapable parameter regions. For example, since the region r<3r_{*}<3 and 0<θ<θ10<\theta_{*}<\theta_{1} (i.e., class I) is divided into four by three curves, there are four different cases of the escapable regions. Note that the curve representing q+t=qq^{\mathrm{t}}_{+}=q_{*} for r3r_{*}\geq 3 is not plotted because it does not contribute to the classification of photon escape. Also, for the same reason, the curve representing qt=qq^{\mathrm{t}}_{-}=q_{*} for r<3r_{*}<3 and θθ1\theta_{*}\geq\theta_{1}, and for r3r_{*}\geq 3 and θ<θ1\theta_{*}<\theta_{1} is not plotted.

In the following subsections, we consider the escapable region separately for each class.

V.1 Class I: r<3r_{*}<3 and 0<θ<θ10<\theta_{*}<\theta_{1}

Refer to caption
Figure 9: (Class I) Relationship of the characteristic qq’s.

There exist four cases according to the relative values of qq_{*}, q±tq^{\mathrm{t}}_{\pm}, and qsq^{\mathrm{s}}_{-} (see Fig. 9):

(i)\displaystyle(\mathrm{i}) q+t>q,\displaystyle~{}q^{\mathrm{t}}_{+}>q_{*}, (57)
(ii)\displaystyle(\mathrm{ii}) q+tq<qt,\displaystyle~{}q^{\mathrm{t}}_{+}\leq q_{*}<q^{\mathrm{t}}_{-}, (58)
(iii)\displaystyle(\mathrm{iii}) qtqandqs>q+t,\displaystyle~{}q^{\mathrm{t}}_{-}\leq q_{*}~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}>q^{\mathrm{t}}_{+}, (59)
(iv)\displaystyle(\mathrm{iv}) qsq+t,\displaystyle~{}q^{\mathrm{s}}_{-}\leq q^{\mathrm{t}}_{+}, (60)

where case (iv) appears only when θ<2.543\theta_{*}<2.543^{\circ}. The equal signs of Eqs. (58) and (59) hold only when q+s=q+t=qq^{\mathrm{s}}_{+}=q^{\mathrm{t}}_{+}=q_{*} and qs=qt=qq^{\mathrm{s}}_{-}=q^{\mathrm{t}}_{-}=q_{*}, respectively. Note that qq_{*} contributes to specifying the escapable region only for case (ii), q+tq^{\mathrm{t}}_{+} contributes to that for cases (ii)–(iv), and qtq^{\mathrm{t}}_{-} contributes to that for cases (iii) and (iv). The escapable regions in the above cases are summarized in Table 4 and Fig. 10.

Table 4: (Class I) Escapable region (b,q)(b,q) for r<3r_{*}<3 and 0<θ<θ10<\theta_{*}<\theta_{1}.
Case qq bb (σr=+\sigma_{r}=+) bb (σr=\sigma_{r}=-)
(i)–(iv) qminq<q+sq_{\mathrm{min}}\leq q<q^{\mathrm{s}}_{+} BbB-B\leq b\leq B n/a
(ii) and (iii) q+sq<q+tq^{\mathrm{s}}_{+}\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B b1s<bBb^{\mathrm{s}}_{1}<b\leq B
(iv) q+sq<qsq^{\mathrm{s}}_{+}\leq q<q^{\mathrm{s}}_{-}
(ii) q+tq<qq^{\mathrm{t}}_{+}\leq q<q_{*} Bbb1-B\leq b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(iii) q+tq<qsq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{s}}_{-}
(i) q+sq<qsq^{\mathrm{s}}_{+}\leq q<q^{\mathrm{s}}_{-} Bb<b1s-B\leq b<b^{\mathrm{s}}_{1} n/a
(ii) qq<qsq_{*}\leq q<q^{\mathrm{s}}_{-}
(iv) qsq<q+tq^{\mathrm{s}}_{-}\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B BbB-B\leq b\leq B
(iii) qsq<qtq^{\mathrm{s}}_{-}\leq q<q^{\mathrm{t}}_{-} Bbb1-B\leq b\leq b_{1}^{*} Bb<b1-B\leq b<b_{1}^{*}
(iv) q+tq<qtq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{t}}_{-}
(i) and (ii) qsq27q^{\mathrm{s}}_{-}\leq q\leq 27 n/a n/a
(iii) and (iv) qtq27q^{\mathrm{t}}_{-}\leq q\leq 27 n/a n/a
Refer to caption
Figure 10: (Class I) Typical shape of the escapable region for r<3r_{*}<3 and 0<θ<θ10<\theta_{*}<\theta_{1}. The blue, purple, brown, and green curves denote b=b1(r;q)b=b_{1}^{*}(r_{*};q), b1s(q)b^{\mathrm{s}}_{1}(q), b2s(q)b^{\mathrm{s}}_{2}(q), and ±B(θ;q)\pm B(\theta_{*};q), respectively. The gray, blue, red, purple, and brown dashed lines denote q=q(r)q=q_{*}(r_{*}), q+t(r,θ)q^{\mathrm{t}}_{+}(r_{*},\theta_{*}), qt(r,θ)q^{\mathrm{t}}_{-}(r_{*},\theta_{*}), q+s(θ)q^{\mathrm{s}}_{+}(\theta_{*}), and qs(θ)q^{\mathrm{s}}_{-}(\theta_{*}), respectively.

V.2 Class II: r<3r_{*}<3 and θ1θ<θ2\theta_{1}\leq\theta_{*}<\theta_{2}

Refer to caption
Figure 11: (Class II) Relationship of the characteristic qq’s.

There exist three cases according to the relative values of qq_{*}, q+tq^{\mathrm{t}}_{+}, and qsq^{\mathrm{s}}_{-} (see Fig. 11):

(i)\displaystyle(\mathrm{i}) q+t>q,\displaystyle~{}q^{\mathrm{t}}_{+}>q_{*}, (61)
(ii)\displaystyle(\mathrm{ii}) q+tq<qs,\displaystyle~{}q^{\mathrm{t}}_{+}\leq q_{*}<q^{\mathrm{s}}_{-}, (62)
(iii)\displaystyle(\mathrm{iii}) qsq,\displaystyle~{}q^{\mathrm{s}}_{-}\leq q_{*}, (63)

where the equal sign of Eq. (62) holds only when q+s=q+t=qq^{\mathrm{s}}_{+}=q^{\mathrm{t}}_{+}=q_{*}. For case (i), qq_{*} and q+tq^{\mathrm{t}}_{+} do not contribute to specifying the escapable region. The escapable regions in the above cases are summarized in Table 5 and Fig. 12.

V.3 Class III: r<3r_{*}<3 and θ2θ<θ3\theta_{2}\leq\theta_{*}<\theta_{3}

There are four cases according to the relative values of q+tq^{\mathrm{t}}_{+} and 33, and qsq^{\mathrm{s}}_{-} and qq_{*} (see Fig. 13):

(i)\displaystyle(\mathrm{i}) q+t>3andqs>q,\displaystyle~{}q^{\mathrm{t}}_{+}>3~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}>q_{*}, (64)
(ii)\displaystyle(\mathrm{ii}) q+t>3andqsq,\displaystyle~{}q^{\mathrm{t}}_{+}>3~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}\leq q_{*}, (65)
(iii)\displaystyle(\mathrm{iii}) q+t3andqs>q,\displaystyle~{}q^{\mathrm{t}}_{+}\leq 3~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}>q_{*}, (66)
(iv)\displaystyle(\mathrm{iv}) q+t3andqsq.\displaystyle~{}q^{\mathrm{t}}_{+}\leq 3~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}\leq q_{*}. (67)

The escapable regions in the above cases are summarized in Table 6 and Fig. 14.

V.4 Class IV: r<3r_{*}<3 and θ3θ<π/2\theta_{3}\leq\theta_{*}<\pi/2

In this case, there is no case classification according to the relative values of qq. The escapable region in this class is summarized in Table 7 and Fig. 15.

V.5 Class V: r3r_{*}\geq 3 and 0<θ<θ10<\theta_{*}<\theta_{1}

There are four cases according to the relative values of q+tq^{\mathrm{t}}_{+} and qsq^{\mathrm{s}}_{-}, and θ\theta_{*} and θm\theta_{\mathrm{m}} (see Fig. 16):

Table 5: (Class II) Escapable region (b,q)(b,q) for r<3r_{*}<3 and θ1θ<θ2\theta_{1}\leq\theta_{*}<\theta_{2}.
Case qq bb (σr=+\sigma_{r}=+) bb (σr=\sigma_{r}=-)
(i)–(iii) qminq<q+sq_{\mathrm{min}}\leq q<q^{\mathrm{s}}_{+} BbB-B\leq b\leq B n/a
(ii) and (iii) q+sq<q+tq^{\mathrm{s}}_{+}\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B b1s<bBb^{\mathrm{s}}_{1}<b\leq B
(ii) q+tq<qq^{\mathrm{t}}_{+}\leq q<q_{*} Bbb1-B\leq b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(iii) q+tq<qsq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{s}}_{-}
(i) q+sq<qsq^{\mathrm{s}}_{+}\leq q<q^{\mathrm{s}}_{-} Bb<b1s-B\leq b<b^{\mathrm{s}}_{1} n/a
(ii) qq<qsq_{*}\leq q<q^{\mathrm{s}}_{-}
(iii) qsq<qq^{\mathrm{s}}_{-}\leq q<q_{*} b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(i) and (ii) qsq27q^{\mathrm{s}}_{-}\leq q\leq 27 b2s<b<b1sb^{\mathrm{s}}_{2}<b<b^{\mathrm{s}}_{1} n/a
(iii) qq27q_{*}\leq q\leq 27
Refer to caption
Figure 12: (Class II) Typical shape of the escapable region for r<3r_{*}<3 and θ1θ<θ2\theta_{1}\leq\theta_{*}<\theta_{2}. The blue, purple, brown, and green curves denote b=b1(r;q)b=b_{1}^{*}(r_{*};q), b1s(q)b^{\mathrm{s}}_{1}(q), b2s(q)b^{\mathrm{s}}_{2}(q), and ±B(θ;q)\pm B(\theta_{*};q), respectively. The gray, blue, purple, and brown dashed lines denote q=q(r)q=q_{*}(r_{*}), q+t(r,θ)q^{\mathrm{t}}_{+}(r_{*},\theta_{*}), q+s(θ)q^{\mathrm{s}}_{+}(\theta_{*}), and qs(θ)q^{\mathrm{s}}_{-}(\theta_{*}), respectively.
(i)\displaystyle(\mathrm{i}) qsq+tandθθm,\displaystyle~{}q^{\mathrm{s}}_{-}\leq q^{\mathrm{t}}_{+}~{}\mathrm{and}~{}\theta_{*}\leq\theta_{\mathrm{m}}, (68)
(ii)\displaystyle(\mathrm{ii}) qsq+tandθ>θm,\displaystyle~{}q^{\mathrm{s}}_{-}\leq q^{\mathrm{t}}_{+}~{}\mathrm{and}~{}\theta_{*}>\theta_{\mathrm{m}}, (69)
(iii)\displaystyle(\mathrm{iii}) qs>q+tandθθm,\displaystyle~{}q^{\mathrm{s}}_{-}>q^{\mathrm{t}}_{+}~{}\mathrm{and}~{}\theta_{*}\leq\theta_{\mathrm{m}}, (70)
(iv)\displaystyle(\mathrm{iv}) qs>q+tandθ>θm.\displaystyle~{}q^{\mathrm{s}}_{-}>q^{\mathrm{t}}_{+}~{}\mathrm{and}~{}\theta_{*}>\theta_{\mathrm{m}}. (71)

The escapable regions in the above cases are summarized in Table 8 and Fig. 17. Note that the shape of the escapable region of class V(i) is the same as that of class I(iv), and the shape of the escapable region of class V(iii) is the same as that of class I(iii).

Refer to caption
Figure 13: (Class III) Relationship of the characteristic qq’s.
Table 6: (Class III) Escapable region (b,q)(b,q) for r<3r_{*}<3 and θ2θ<θ3\theta_{2}\leq\theta_{*}<\theta_{3}.
Case qq bb (σr=+\sigma_{r}=+) bb (σr=\sigma_{r}=-)
(i)–(iv) qminq<q¯q_{\mathrm{min}}\leq q<\bar{q} BbB-B\leq b\leq B n/a
(i) and (ii) q¯q<3\bar{q}\leq q<3 BbB-B\leq b\leq B 2<bB2<b\leq B
3q<q+t3\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B b1s<bBb^{\mathrm{s}}_{1}<b\leq B
(iii) and (iv) q¯q<q+t\bar{q}\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B 2<bB2<b\leq B
q+tq<3q^{\mathrm{t}}_{+}\leq q<3 Bbb1-B\leq b\leq b_{1}^{*} 2<b<b12<b<b_{1}^{*}
(i) q+tq<qq^{\mathrm{t}}_{+}\leq q<q_{*} Bbb1-B\leq b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(ii) q+tq<qsq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{s}}_{-}
(iii) 3q<q3\leq q<q_{*}
(iv) 3q<qs3\leq q<q^{\mathrm{s}}_{-}
(i) and (iii) qq<qsq_{*}\leq q<q^{\mathrm{s}}_{-} Bb<b1s-B\leq b<b^{\mathrm{s}}_{1} n/a
qsq27q^{\mathrm{s}}_{-}\leq q\leq 27 b2s<b<b1sb^{\mathrm{s}}_{2}<b<b^{\mathrm{s}}_{1} n/a
(ii) and (iv) qsq<qq^{\mathrm{s}}_{-}\leq q<q_{*} b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
qq27q_{*}\leq q\leq 27 b2s<b<b1sb^{\mathrm{s}}_{2}<b<b^{\mathrm{s}}_{1} n/a
Refer to caption
Figure 14: (Class III) Typical shape of the escapable region for r<3r_{*}<3 and θ2θ<θ3\theta_{2}\leq\theta_{*}<\theta_{3}. The blue, purple, brown, and green curves denote b=b1(r;q)b=b_{1}^{*}(r_{*};q), b1s(q)b^{\mathrm{s}}_{1}(q), b2s(q)b^{\mathrm{s}}_{2}(q), and ±B(θ;q)\pm B(\theta_{*};q), respectively. The gray, black, blue, and brown dashed lines denote q=q(r)q=q_{*}(r_{*}), q¯(θ)\bar{q}(\theta_{*}), q+t(r,θ)q^{\mathrm{t}}_{+}(r_{*},\theta_{*}), and qs(θ)q^{\mathrm{s}}_{-}(\theta_{*}), respectively.
Table 7: (Class IV) Escapable region (b,q)(b,q) for r<3r_{*}<3 and θ3θ<π/2\theta_{3}\leq\theta_{*}<\pi/2.
qq bb (σr=+\sigma_{r}=+) bb (σr=\sigma_{r}=-)
qminq<q¯q_{\mathrm{min}}\leq q<\bar{q} BbB-B\leq b\leq B n/a
q¯q<q+t\bar{q}\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B 2<bB2<b\leq B
q+tq<qsq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{s}}_{-} Bbb1-B\leq b\leq b_{1}^{*} 2<b<b12<b<b_{1}^{*}
qsq<3q^{\mathrm{s}}_{-}\leq q<3 b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} 2<b<b12<b<b_{1}^{*}
3q<q3\leq q<q_{*} b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
qq27q_{*}\leq q\leq 27 b2s<b<b1sb^{\mathrm{s}}_{2}<b<b^{\mathrm{s}}_{1} n/a
Refer to caption
Figure 15: (Class IV) Typical shape of the escapable region for r<3r_{*}<3 and θ3θ<π/2\theta_{3}\leq\theta_{*}<\pi/2. The blue, purple, brown, and green curves denote b=b1(r;q)b=b_{1}^{*}(r_{*};q), b1s(q)b^{\mathrm{s}}_{1}(q), b2s(q)b^{\mathrm{s}}_{2}(q), and ±B(θ;q)\pm B(\theta_{*};q), respectively. The gray, black, blue, and brown dashed lines denote q=q(r)q=q_{*}(r_{*}), q¯(θ)\bar{q}(\theta_{*}), q+t(r,θ)q^{\mathrm{t}}_{+}(r_{*},\theta_{*}), and qs(θ)q^{\mathrm{s}}_{-}(\theta_{*}), respectively.
Refer to caption
Figure 16: (Class V) Relationship between the critical qq’s and θm(r)\theta_{\mathrm{m}}(r_{*}).

V.6 Class VI: r3r_{*}\geq 3 and θ1θ<θ2\theta_{1}\leq\theta_{*}<\theta_{2}

There are six cases according to the relative values of qq_{*}, q±tq^{\mathrm{t}}_{\pm}, qsq^{\mathrm{s}}_{-}, and 2727 (see Fig. 18):

(i)\displaystyle\mathrm{(i)} qtq,\displaystyle~{}q^{\mathrm{t}}_{-}\leq q_{*}, (72)
(ii)\displaystyle\mathrm{(ii)} q<qt27andqsq+t,\displaystyle~{}q_{*}<q^{\mathrm{t}}_{-}\leq 27~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}\geq q^{\mathrm{t}}_{+}, (73)
(iii)\displaystyle\mathrm{(iii)} qt27andqs<q+t,\displaystyle~{}q^{\mathrm{t}}_{-}\leq 27~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}<q^{\mathrm{t}}_{+}, (74)
(iv)\displaystyle\mathrm{(iv)} qt>27andqsq+t,\displaystyle~{}q^{\mathrm{t}}_{-}>27~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}\geq q^{\mathrm{t}}_{+}, (75)
(v)\displaystyle\mathrm{(v)} qt>27andqs<q+t27,\displaystyle~{}q^{\mathrm{t}}_{-}>27~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}<q^{\mathrm{t}}_{+}\leq 27, (76)
(vi)\displaystyle\mathrm{(vi)} q+t>27,\displaystyle~{}q^{\mathrm{t}}_{+}>27, (77)

where qq_{*} contributes to specifying the escapable region only for case (i), and qtq^{\mathrm{t}}_{-} contributes to that for cases (ii)–(vi). The escapable regions in the above cases are summarized in Table 9 and Fig. 19.

Table 8: (Class V) Escapable region (b,qb,q) for r3r_{*}\geq 3 and 0<θ<θ10<\theta_{*}<\theta_{1}.
Case qq bb (σr=+\sigma_{r}=+) bb (σr=\sigma_{r}=-)
(i)–(iv) qminq<q+sq_{\mathrm{min}}\leq q<q^{\mathrm{s}}_{+} BbB-B\leq b\leq B n/a
(i) and (ii) q+sq<qsq^{\mathrm{s}}_{+}\leq q<q^{\mathrm{s}}_{-} BbB-B\leq b\leq B b1s<bBb^{\mathrm{s}}_{1}<b\leq B
(iii) and (iv) q+sq<q+tq^{\mathrm{s}}_{+}\leq q<q^{\mathrm{t}}_{+}
(i) and (ii) qsq<q+tq^{\mathrm{s}}_{-}\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B BbB-B\leq b\leq B
(iii) and (iv) q+tq<qsq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{s}}_{-} Bbb1-B\leq b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(i) and (ii) q+tq<qtq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{t}}_{-} Bbb1-B\leq b\leq b_{1}^{*} Bb<b1-B\leq b<b_{1}^{*}
(iii) and (iv) qsq<qtq^{\mathrm{s}}_{-}\leq q<q^{\mathrm{t}}_{-}
(i) and (iii) qtqqmaxq^{\mathrm{t}}_{-}\leq q\leq q_{\mathrm{max}} n/a n/a
(ii) and (iv) qtqqmaxq^{\mathrm{t}}_{-}\leq q\leq q_{\mathrm{max}} b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b1b_{2}^{*}<b<b_{1}^{*}
Refer to caption
Figure 17: (Class V) Typical shape of the escapable region for r3r_{*}\geq 3 and 0<θ<θ10<\theta_{*}<\theta_{1}. The blue, purple, brown, and green curves denote b=b1(r;q)b=b_{1}^{*}(r_{*};q), b1s(q)b^{\mathrm{s}}_{1}(q), b2s(q)b^{\mathrm{s}}_{2}(q), and ±B(θ;q)\pm B(\theta_{*};q), respectively. The blue, red, purple, and brown dashed lines denote q=q+t(r,θ)q=q^{\mathrm{t}}_{+}(r_{*},\theta_{*}), qt(r,θ)q^{\mathrm{t}}_{-}(r_{*},\theta_{*}), q+s(θ)q^{\mathrm{s}}_{+}(\theta_{*}), and qs(θ)q^{\mathrm{s}}_{-}(\theta_{*}), respectively.
Refer to caption
Figure 18: (Class VI) Relationship between the critical qq’s and qq_{*}.
Table 9: (Class VI) Escapable region (b,qb,q) for r3r_{*}\geq 3 and θ1θ<θ2\theta_{1}\leq\theta_{*}<\theta_{2}.
Case qq bb (σr=+\sigma_{r}=+) bb (σr=\sigma_{r}=-)
(i)–(vi) qminq<q+sq_{\mathrm{min}}\leq q<q^{\mathrm{s}}_{+} BbB-B\leq b\leq B n/a
(i), (ii), (iv) q+sq<q+tq^{\mathrm{s}}_{+}\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B b1s<bBb^{\mathrm{s}}_{1}<b\leq B
q+tq<qsq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{s}}_{-} Bbb1-B\leq b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(iii), (v), (vi) q+sq<qsq^{\mathrm{s}}_{+}\leq q<q^{\mathrm{s}}_{-} BbB-B\leq b\leq B b1s<bBb^{\mathrm{s}}_{1}<b\leq B
(iii) and (v) qsq<q+tq^{\mathrm{s}}_{-}\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B Bb<b2s-B\leq b<b^{\mathrm{s}}_{2}
(vi) qsq<27q^{\mathrm{s}}_{-}\leq q<27 and b1s<bBb^{\mathrm{s}}_{1}<b\leq B
(i) qsq<qq^{\mathrm{s}}_{-}\leq q<q_{*} b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(ii) qsq<qtq^{\mathrm{s}}_{-}\leq q<q^{\mathrm{t}}_{-} Bbb1-B\leq b\leq b_{1}^{*} Bb<b2s-B\leq b<b^{\mathrm{s}}_{2}
(iii) q+tq<qtq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{t}}_{-} and b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(iv) qsq<27q^{\mathrm{s}}_{-}\leq q<27
(v) q+tq<27q^{\mathrm{t}}_{+}\leq q<27
(vi) 27q<q+t27\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B BbB-B\leq b\leq B
(i) qq<27q_{*}\leq q<27 b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b2sb_{2}^{*}<b<b^{\mathrm{s}}_{2}
(ii) and (iii) qtq<27q^{\mathrm{t}}_{-}\leq q<27 and b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(iv) and (v) 27q<qt27\leq q<q^{\mathrm{t}}_{-} Bbb1-B\leq b\leq b_{1}^{*} Bb<b1-B\leq b<b_{1}^{*}
(vi) q+tq<qtq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{t}}_{-}
(i)–(iii) 27qqmax27\leq q\leq q_{\mathrm{max}} b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b1b_{2}^{*}<b<b_{1}^{*}
(iv)–(vi) qtqqmaxq^{\mathrm{t}}_{-}\leq q\leq q_{\mathrm{max}}
Refer to caption
Figure 19: (Class VI) Typical shape of the escapable region for r3r_{*}\geq 3 and θ1θ<θ2\theta_{1}\leq\theta_{*}<\theta_{2}. The blue, purple, brown, and green curves denote b=b1(r;q)b=b_{1}^{*}(r_{*};q), b1s(q)b^{\mathrm{s}}_{1}(q), b2s(q)b^{\mathrm{s}}_{2}(q), and ±B(θ;q)\pm B(\theta_{*};q), respectively. The gray, blue, red, purple, and brown dashed lines denote q=q(r)q=q_{*}(r_{*}), q+t(r,θ)q^{\mathrm{t}}_{+}(r_{*},\theta_{*}), qt(r,θ)q^{\mathrm{t}}_{-}(r_{*},\theta_{*}), q+s(θ)q^{\mathrm{s}}_{+}(\theta_{*}), and qs(θ)q^{\mathrm{s}}_{-}(\theta_{*}), respectively.

V.7 Class VII: r3r_{*}\geq 3 and θ2θ<θ3\theta_{2}\leq\theta_{*}<\theta_{3}

There are seven cases according to the relative values of qq_{*}, q±tq^{\mathrm{t}}_{\pm}, qsq^{\mathrm{s}}_{-}, 33, and 2727 (see Fig. 20):

(i)\displaystyle\mathrm{(i)} qtqandq+t>3,\displaystyle~{}q^{\mathrm{t}}_{-}\leq q_{*}~{}\mathrm{and}~{}q^{\mathrm{t}}_{+}>3, (78)
(ii)\displaystyle\mathrm{(ii)} qtqandq+t3,\displaystyle~{}q^{\mathrm{t}}_{-}\leq q_{*}~{}\mathrm{and}~{}q^{\mathrm{t}}_{+}\leq 3, (79)
(iii)\displaystyle\mathrm{(iii)} qt>qand3<q+tqs,\displaystyle~{}q^{\mathrm{t}}_{-}>q_{*}~{}\mathrm{and}~{}3<q^{\mathrm{t}}_{+}\leq q^{\mathrm{s}}_{-}, (80)
(iv)\displaystyle\mathrm{(iv)} qt>qandq+t3,\displaystyle~{}q^{\mathrm{t}}_{-}>q_{*}~{}\mathrm{and}~{}q^{\mathrm{t}}_{+}\leq 3, (81)
(v)\displaystyle\mathrm{(v)} qt27andqs<q+t,\displaystyle~{}q^{\mathrm{t}}_{-}\leq 27~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}<q^{\mathrm{t}}_{+}, (82)
(vi)\displaystyle\mathrm{(vi)} q+t27<qt,\displaystyle~{}q^{\mathrm{t}}_{+}\leq 27<q^{\mathrm{t}}_{-}, (83)
(vii)\displaystyle\mathrm{(vii)} q+t>27,\displaystyle~{}q^{\mathrm{t}}_{+}>27, (84)

where qq_{*} contributes to specifying the escapable region for cases (i) and (ii), and qtq^{\mathrm{t}}_{-} contributes to that for cases (ii)–(vii). The escapable regions in the above cases are summarized in Table 10 and Fig. 21.

Note that solving qt(r,θ3)=27q^{\mathrm{t}}_{-}(r_{*},\theta_{3})=27 and q+t(r,θ3)=27q^{\mathrm{t}}_{+}(r_{*},\theta_{3})=27 for rr_{*}, we obtain r19.39r_{*}\simeq 19.39 and r19.61r_{*}\simeq 19.61, respectively.

Table 10: (Class VII) Escapable region (b,qb,q) for r3r_{*}\geq 3 and θ2θ<θ3\theta_{2}\leq\theta_{*}<\theta_{3}.
Case qq bb (σr=+\sigma_{r}=+) bb (σr=\sigma_{r}=-)
(i)–(vii) qminq<q¯q_{\mathrm{min}}\leq q<\bar{q} BbB-B\leq b\leq B n/a
(i), (iii), (v)–(vii) q¯q<3\bar{q}\leq q<3 BbB-B\leq b\leq B 2<bB2<b\leq B
(ii) and (iv) q¯q<q+t\bar{q}\leq q<q^{\mathrm{t}}_{+}
(i) and (iii) 3q<q+t3\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B b1s<bBb^{\mathrm{s}}_{1}<b\leq B
(v)–(vii) 3q<qs3\leq q<q^{\mathrm{s}}_{-}
(ii) and (iv) q+tq<3q^{\mathrm{t}}_{+}\leq q<3 Bbb1-B\leq b\leq b_{1}^{*} 2<b<b12<b<b_{1}^{*}
(i) and (iii) q+tq<qsq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{s}}_{-} Bbb1-B\leq b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(ii) and (iv) 3q<qs3\leq q<q^{\mathrm{s}}_{-}
(i) and (ii) qsq<qq^{\mathrm{s}}_{-}\leq q<q_{*} b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(v) and (vi) qsq<q+tq^{\mathrm{s}}_{-}\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B Bb<b2s-B\leq b<b^{\mathrm{s}}_{2}
(vii) qsq<27q^{\mathrm{s}}_{-}\leq q<27 and b1s<bBb^{\mathrm{s}}_{1}<b\leq B
(iii) and (iv) qsq<qtq^{\mathrm{s}}_{-}\leq q<q^{\mathrm{t}}_{-} Bbb1-B\leq b\leq b_{1}^{*} Bb<b2s-B\leq b<b^{\mathrm{s}}_{2}
(v) q+tq<qtq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{t}}_{-} and b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(vi) q+tq<27q^{\mathrm{t}}_{+}\leq q<27
(i) and (ii) qq<27q_{*}\leq q<27 b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b2sb_{2}^{*}<b<b^{\mathrm{s}}_{2}
(iii)–(v) qtq<27q^{\mathrm{t}}_{-}\leq q<27 and b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(vii) 27q<q+t27\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B BbB-B\leq b\leq B
(vi) 27q<qt27\leq q<q^{\mathrm{t}}_{-} Bbb1-B\leq b\leq b_{1}^{*} Bb<b1-B\leq b<b_{1}^{*}
(vii) q+tq<qtq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{t}}_{-}
(i)–(v) 27qqmax27\leq q\leq q_{\mathrm{max}} b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b1b_{2}^{*}<b<b_{1}^{*}
(vi) and (vii) qtqqmaxq^{\mathrm{t}}_{-}\leq q\leq q_{\mathrm{max}}
Refer to caption
Figure 20: (Class VII) Relationship between the critical qq’s and qq_{*}.
Refer to caption
Figure 21: (Class VII) Typical shape of the escapable region for r3r_{*}\geq 3 and θ2θ<θ3\theta_{2}\leq\theta_{*}<\theta_{3}. The blue, purple, brown, and green curves denote b=b1(r;q)b=b_{1}^{*}(r_{*};q), b1s(q)b^{\mathrm{s}}_{1}(q), b2s(q)b^{\mathrm{s}}_{2}(q), and ±B(θ;q)\pm B(\theta_{*};q), respectively. The gray, black, blue, red, and brown dashed lines denote q=q(r)q=q_{*}(r_{*}), q¯(θ)\bar{q}(\theta_{*}), q+t(r,θ)q^{\mathrm{t}}_{+}(r_{*},\theta_{*}), qt(r,θ)q^{\mathrm{t}}_{-}(r_{*},\theta_{*}), and qs(θ)q^{\mathrm{s}}_{-}(\theta_{*}), respectively.

V.8 Class VIII: r3r_{*}\geq 3 and θ3θ<π/2\theta_{3}\leq\theta_{*}<\pi/2

There are eight cases according to the relative values of qq_{*}, q±tq^{\mathrm{t}}_{\pm}, qsq^{\mathrm{s}}_{-}, 33, and 2727 (see Fig. 22):

(i)\displaystyle\mathrm{(i)} qtq,\displaystyle~{}q^{\mathrm{t}}_{-}\leq q_{*}, (85)
(ii)\displaystyle\mathrm{(ii)} q<qt3andqsq+t,\displaystyle~{}q_{*}<q^{\mathrm{t}}_{-}\leq 3~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}\geq q^{\mathrm{t}}_{+}, (86)
(iii)\displaystyle\mathrm{(iii)} qt>3andqsq+t,\displaystyle~{}q^{\mathrm{t}}_{-}>3~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}\geq q^{\mathrm{t}}_{+}, (87)
(iv)\displaystyle\mathrm{(iv)} qt3andqs<q+t,\displaystyle~{}q^{\mathrm{t}}_{-}\leq 3~{}\mathrm{and}~{}q^{\mathrm{s}}_{-}<q^{\mathrm{t}}_{+}, (88)
(v)\displaystyle\mathrm{(v)} qs<q+t3<qt,\displaystyle~{}q^{\mathrm{s}}_{-}<q^{\mathrm{t}}_{+}\leq 3<q^{\mathrm{t}}_{-}, (89)
(vi)\displaystyle\mathrm{(vi)} q+t>3andqt27,\displaystyle~{}q^{\mathrm{t}}_{+}>3~{}\mathrm{and}~{}q^{\mathrm{t}}_{-}\leq 27, (90)
(vii)\displaystyle\mathrm{(vii)} q+t27<qt,\displaystyle~{}q^{\mathrm{t}}_{+}\leq 27<q^{\mathrm{t}}_{-}, (91)
(viii)\displaystyle\mathrm{(viii)} q+t>27,\displaystyle~{}q^{\mathrm{t}}_{+}>27, (92)

where qq_{*} contributes to specifying the escapable region only for case (i), and qtq^{\mathrm{t}}_{-} contributes to that for cases (i)–(viii). The escapable regions in the above cases are summarized in Table 11 and Fig. 23.

Refer to caption
Figure 22: (Class VIII) Relationship between the critical qq’s and qq_{*}.
Table 11: (Class VIII) Escapable region (b,qb,q) for r3r_{*}\geq 3 and θ3θ<π/2\theta_{3}\leq\theta_{*}<\pi/2.
Case qq bb (σr=+\sigma_{r}=+) bb (σr=\sigma_{r}=-)
(i)–(viii) qminq<q¯q_{\mathrm{min}}\leq q<\bar{q} BbB-B\leq b\leq B n/a
(i)–(iii) q¯q<q+t\bar{q}\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B 2<bB2<b\leq B
(iv) and (v) q¯q<qs\bar{q}\leq q<q^{\mathrm{s}}_{-}
(vi)–(viii) q¯q<qs\bar{q}\leq q<q^{\mathrm{s}}_{-}
(i)–(iii) q+tq<qsq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{s}}_{-} Bbb1-B\leq b\leq b_{1}^{*} 2<b<b12<b<b_{1}^{*}
(iv) and (v) qsq<q+tq^{\mathrm{s}}_{-}\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B Bb<b2s-B\leq b<b^{\mathrm{s}}_{2}
(vi)–(viii) qsq<3q^{\mathrm{s}}_{-}\leq q<3 and 2<bB2<b\leq B
(i) qsq<3q^{\mathrm{s}}_{-}\leq q<3 b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} 2<b<b12<b<b_{1}^{*}
3q<q3\leq q<q_{*} b2s<bb1b^{\mathrm{s}}_{2}<b\leq b_{1}^{*} b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(ii) qsq<qtq^{\mathrm{s}}_{-}\leq q<q^{\mathrm{t}}_{-} Bbb1-B\leq b\leq b_{1}^{*} Bb<b2s-B\leq b<b^{\mathrm{s}}_{2}
(iii) qsq<3q^{\mathrm{s}}_{-}\leq q<3 and 2<b<b12<b<b_{1}^{*}
(iv) q+tq<qtq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{t}}_{-}
(v) q+tq<3q^{\mathrm{t}}_{+}\leq q<3
(ii) and (iv) qtq<3q^{\mathrm{t}}_{-}\leq q<3 b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b2sb_{2}^{*}<b<b^{\mathrm{s}}_{2}
and 2<b<b12<b<b_{1}^{*}
(vi) and (vii) 3q<q+t3\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B Bb<b2s-B\leq b<b^{\mathrm{s}}_{2}
(viii) 3q<273\leq q<27 and b1s<bBb^{\mathrm{s}}_{1}<b\leq B
(iii) and (v) 3q<qt3\leq q<q^{\mathrm{t}}_{-} Bbb1-B\leq b\leq b_{1}^{*} Bb<b2s-B\leq b<b^{\mathrm{s}}_{2}
(vi) q+tq<qtq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{t}}_{-} and b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(vii) q+tq<27q^{\mathrm{t}}_{+}\leq q<27
(i) qq<27q_{*}\leq q<27 b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b2sb_{2}^{*}<b<b^{\mathrm{s}}_{2}
(ii) and (iv) 3q<273\leq q<27 and b1s<b<b1b^{\mathrm{s}}_{1}<b<b_{1}^{*}
(iii), (v), (vi) qtq<27q^{\mathrm{t}}_{-}\leq q<27
(viii) 27q<q+t27\leq q<q^{\mathrm{t}}_{+} BbB-B\leq b\leq B BbB-B\leq b\leq B
(vii) 27q<qt27\leq q<q^{\mathrm{t}}_{-} Bbb1-B\leq b\leq b_{1}^{*} B<b<b1-B<b<b_{1}^{*}
(viii) q+tq<qtq^{\mathrm{t}}_{+}\leq q<q^{\mathrm{t}}_{-}
(i)–(vi) 27qqmax27\leq q\leq q_{\mathrm{max}} b2bb1b_{2}^{*}\leq b\leq b_{1}^{*} b2<b<b1b_{2}^{*}<b<b_{1}^{*}
(vii) and (viii) qtqqmaxq^{\mathrm{t}}_{-}\leq q\leq q_{\mathrm{max}}

VI DISCUSSION

We have completely classified the necessary and sufficient range of the impact parameters (b,q)(b,q) for photons emitted from an arbitrary spacetime position of the extremal Kerr black hole to escape to infinity, i.e., the escapable regions. The radial equation of motion determines the necessary conditions for photons emitted from r=rr=r_{*} to escape to infinity, and the polar angle equation of motion further restricts the allowed region of photon motion. In the process of classifying photon escape, we have defined four critical angles at which the classification of the escapable region varies qualitatively and five critical values of qq at which the classification of the impact parameter range varies qualitatively. We have divided the entire spacetime into eight regions by three critical angles and r=3r=3, class I–VIII. Furthermore, we have appropriately selected the critical values of qq contributing to specifying the escapable region and have completely classified the difference in the shape of the escapable region, that is, the difference in the escapable parameter range, according to the relative values of critical qq’s. Our main results are summarized in the tables of Sec. V.

This study has generalized our previous result Ogasawara:2020frt , which focused only on light sources near the horizon, to the classification that covers light sources in the entire region. We have considered the extremal Kerr black hole here, but our classification method can be directly applied to nonextremal Kerr black holes. Furthermore, since this method also can be applied to timelike particles, it will be possible to discuss the neutrino radiation Wang:2021elf , the escape of high-energy particles in high-energy astrophysics, e.g., the collisional Penrose process Piran:1975apj ; Schnittman:2018ccg , and high-energy particle collision Banados:2009pr ; Harada:2014vka .

As we have mentioned in the Introduction, evaluating a photon escape probability is essential to reveal the observability of phenomena around a black hole. In the calculation of the escape probability, it is necessary to specify not only an emitter’s position but also its proper motion. However, since our complete set of the escapable regions is independent of the proper motion, the set provides a basis for evaluating the escape probability. Based on the classification in the present paper, we will report the escape cone and probability for various states of an emitter in a forthcoming paper Ogasawara:tbp .

Acknowledgements.
The authors are grateful to Takahiro Tanaka, Kouji Nakamura, Kazunori Kohri, and Takahiro Matsubara for useful comments. This work was supported by JSPS KAKENHI Grants No. JP20J00416 and No. JP20K14467 (K.O.) and Grant No. JP19K14715 (T.I.).

Appendix A Photon escape for θ=0\theta_{*}=0 and θ=π/2\theta_{*}=\pi/2

A.1 θ=0\theta_{*}=0

We consider photon escape in the case θ=0\theta_{*}=0. When θ=0\theta_{*}=0, the regularity of the function Θ\Theta [Eq. (11)] requires b=0b=0. Substituting it into Θ0\Theta\geq 0, we have q1q\geq-1.

We focus on the negative range 1q<0-1\leq q<0. As shown in Sec. III.3, the non-negativity of the function RR gives the allowed parameter range of qq. Combining the inequality (35) with b=0b=0 and 1q<0-1\leq q<0, we have

1q<0<r(r3+r+2)(r1)2.\displaystyle-1\leq q<0<\frac{r(r^{3}+r+2)}{(r-1)^{2}}. (93)

Since this inequality always holds outside the horizon, all of the photons emitted outwardly with 1q<0-1\leq q<0 can escape to infinity.

Next, we focus on the non-negative range of qq. In this case, q±tq^{\mathrm{t}}_{\pm} coincide with each other and also q±sq^{\mathrm{s}}_{\pm} coincide with each other, and their values are given by

q±t(r,0)\displaystyle q^{\mathrm{t}}_{\pm}(r_{*},0) =q0tr(r3+r+2)(r1)2,\displaystyle=q^{\mathrm{t}}_{0}\equiv\frac{r_{*}(r_{*}^{3}+r_{*}+2)}{(r_{*}-1)^{2}}, (94)
q±s(0)\displaystyle q^{\mathrm{s}}_{\pm}(0) =q0s11+82.\displaystyle=q^{\mathrm{s}}_{0}\equiv 11+8\sqrt{2}. (95)

Note that q0tq0sq^{\mathrm{t}}_{0}\geq q^{\mathrm{s}}_{0} holds outside the horizon and the equal sign holds only when r=1+2r_{*}=1+\sqrt{2}. There are two cases depending on the radial position of the emitter:

(i)\displaystyle\mathrm{(i)} r1+2,\displaystyle~{}r_{*}\leq 1+\sqrt{2}, (96)
(ii)\displaystyle\mathrm{(ii)} r>1+2.\displaystyle~{}r_{*}>1+\sqrt{2}. (97)

The escapable regions in the above cases are summarized in Table 12.

Refer to caption
Figure 23: (Class VIII) Typical shape of the escapable region for r3r_{*}\geq 3 and θ3θ<π/2\theta_{3}\leq\theta_{*}<\pi/2. The blue, purple, brown, and green curves denote b=b1(r;q)b=b_{1}^{*}(r_{*};q), b1s(q)b^{\mathrm{s}}_{1}(q), b2s(q)b^{\mathrm{s}}_{2}(q), and ±B(θ;q)\pm B(\theta_{*};q), respectively. The gray, black, blue, red, and brown dashed lines denote q=q(r)q=q_{*}(r_{*}), q¯(θ)\bar{q}(\theta_{*}), q+t(r,θ)q^{\mathrm{t}}_{+}(r_{*},\theta_{*}), qt(r,θ)q^{\mathrm{t}}_{-}(r_{*},\theta_{*}), and qs(θ)q^{\mathrm{s}}_{-}(\theta_{*}), respectively.
Table 12: Escapable region (b,qb,q) for θ=0\theta_{*}=0.
Case qq bb (σr=+\sigma_{r}=+) bb (σr=\sigma_{r}=-)
(i) 1q<q0s-1\leq q<q^{\mathrm{s}}_{0} b=0b=0 n/a
qq0sq\geq q^{\mathrm{s}}_{0} n/a n/a
(ii) 1qq0s-1\leq q\leq q^{\mathrm{s}}_{0} b=0b=0 n/a
q0s<q<q0tq^{\mathrm{s}}_{0}<q<q^{\mathrm{t}}_{0} b=0b=0 b=0b=0
q=q0tq=q^{\mathrm{t}}_{0} b=0b=0 n/a
q>q0tq>q^{\mathrm{t}}_{0} n/a n/a

A.2 θ=π/2\theta_{*}=\pi/2

In the case of θ=π/2\theta_{*}=\pi/2, the non-negativity of Θ\Theta reads q0q\geq 0. Therefore, the necessary parameter regions for photon escape in Table 1 are identified with the escapable region. The corresponding figures, i.e., the escapable region for θ=π/2\theta_{*}=\pi/2, are found in Fig. 3.

Appendix B Equation for the polar angle of Kerr geodesics

We focus on the function Θ\Theta, which appears in the geodesic equation for the polar angle direction of the Kerr spacetime. We consider the following equation:

Θ=qb2cot2θ+a2cos2θ=0,\displaystyle\Theta=q-b^{2}\cot^{2}\theta+a^{2}\cos^{2}\theta=0, (98)

where a(>0)a(>0), bb, qq are constants, and 0θπ0\leq\theta\leq\pi. For θ=0,π\theta=0,\pi, the constant bb must vanish, and q=a2q=-a^{2} must hold. We assume 0<θ<π0<\theta<\pi in what follows. Equation (98) is rewritten as an equivalent equation in terms of sinθ\sin\theta,

a2sin4θ(a2+b2+q)sin2θ+b2=0.\displaystyle a^{2}\sin^{4}\theta-(a^{2}+b^{2}+q)\sin^{2}\theta+b^{2}=0. (99)

Solving Eq. (99) for sin2θ\sin^{2}\theta, we obtain

sin2θ\displaystyle\sin^{2}\theta =12a2[a2+b2+q±(a2+b2+q)24a2b2].\displaystyle=\frac{1}{2a^{2}}\left[\>\!a^{2}+b^{2}+q\pm\sqrt{(a^{2}+b^{2}+q)^{2}-4a^{2}b^{2}}\>\!\right]. (100)

In order for sin2θ\sin^{2}\theta to be real, the parameters must satisfy the inequality

q+(|b|a)20,\displaystyle q+\left(|\>\!b\>\!|-a\right)^{2}\geq 0, (101)

which also guarantees sin2θ\sin^{2}\theta positive. On the other hand, the condition sin2θ1\sin^{2}\theta\leq 1 is written as

a2b2q(a2b2q)2+4a2q0,\displaystyle a^{2}-b^{2}-q\mp\sqrt{(a^{2}-b^{2}-q)^{2}+4a^{2}q}\geq 0, (102)

where the double sign corresponds to that in Eq. (100). For the upper case, the parameters must satisfy q0q\leq 0 and |b|a|b|\leq a. For the lower case, if a2b2q0a^{2}-b^{2}-q\geq 0 together with Eq. (101), then the inequality (102) holds; if a2b2q<0a^{2}-b^{2}-q<0, then q0q\geq 0 must hold.

Now we introduce new combinations of the parameters

ζ±=(b±a)2+q,\displaystyle\zeta_{\pm}=\sqrt{(b\pm a)^{2}+q}, (103)

which satisfy the following relations:

ζ+ζ\displaystyle\zeta_{+}\zeta_{-} =(a2+b2+q)24a2b2,\displaystyle=\sqrt{(a^{2}+b^{2}+q)^{2}-4a^{2}b^{2}}, (104)
ζ+2+ζ2\displaystyle\zeta_{+}^{2}+\zeta_{-}^{2} =2(a2+b2+q),\displaystyle=2(a^{2}+b^{2}+q), (105)
ζ+2ζ2\displaystyle\zeta_{+}^{2}-\zeta_{-}^{2} =4ab.\displaystyle=4ab. (106)

Using these, we can rewrite Eq. (100) in terms of ζ±\zeta_{\pm} as

sin2θ=(ζ+±ζ)24a2.\displaystyle\sin^{2}\theta=\frac{(\zeta_{+}\pm\zeta_{-})^{2}}{4a^{2}}. (107)

Because of the range of θ\theta, we can take the positive branch

sinθ=|ζ+±ζ|2a.\displaystyle\sin\theta=\frac{|\>\!\zeta_{+}\pm\zeta_{-}\>\!|}{2a}. (108)

Finally we obtain

sinθ={ζ++ζ2afor|b|a,(|b|a)2q0,ζ+ζ2afor[0b<a,q(ba)2]or[ba,q0],ζζ+2afor[a<b<0,q(b+a)2]or[ba,q>0].\displaystyle\sin\theta=\left\{\begin{array}[]{lll}\dfrac{\zeta_{+}+\zeta_{-}}{2a}&\mathrm{for}&|b|\leq a,\ -(|\>\!b\>\!|-a)^{2}\leq q\leq 0,\\[8.53581pt] \dfrac{\zeta_{+}-\zeta_{-}}{2a}&\mathrm{for}&\left[\>\!0\leq b<a,\ q\geq-(b-a)^{2}\>\!\right]\ \mathrm{or}\ \left[\>\!b\geq a,\ q\geq 0\>\!\right],\\[8.53581pt] \dfrac{\zeta_{-}-\zeta_{+}}{2a}&\mathrm{for}&\left[\>\!-a<b<0,\ q\geq-(b+a)^{2}\>\!\right]\ \mathrm{or}\ \left[\>\!b\leq-a,\ q>0\>\!\right].\end{array}\right. (112)

References

  • (1) K. Akiyama et al. (Event Horizon Telescope Collaboration), First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole, Astrophys. J. 875, L1 (2019).
  • (2) V. Cardoso and P. Pani, Testing the nature of dark compact objects: A status report, Living Rev. Relativity 22, 4 (2019).
  • (3) J. L. Synge, The escape of photons from gravitationally intense stars, Mon. Not. R. Astron. Soc. 131, 463 (1966).
  • (4) K. Ogasawara, T. Igata, T. Harada, and U. Miyamoto, Escape probability of a photon emitted near the black hole horizon, Phys. Rev. D 101, 044023 (2020).
  • (5) O. Semerak, Photon escape cones in the Kerr field, Helv. Phys. Acta 69, 69 (1996).
  • (6) Z. Stuchlík, D. Charbulák, and J. Schee, Light escape cones in local reference frames of Kerr–de Sitter black hole spacetimes and related black hole shadows, Eur. Phys. J. C 78, 180 (2018).
  • (7) M. Zhang and J. Jiang, Emissions of photons near the horizons of Kerr-Sen black holes, Phys. Rev. D 102, 124012 (2020).
  • (8) R. Takahashi and M. Takahashi, Anisotropic radiation field and trapped photons around the Kerr black hole, Astron. Astrophys. 513, A77 (2010).
  • (9) T. Igata, K. Nakashi, and K. Ogasawara, Observability of the innermost stable circular orbit in a near-extremal Kerr black hole, Phys. Rev. D 101, 044044 (2020).
  • (10) D. E. A. Gates, S. Hadar, and A. Lupsasca, Maximum observable blueshift from circular equatorial Kerr orbiters, Phys. Rev. D 102, 104041 (2020).
  • (11) D. E. A. Gates, S. Hadar, and A. Lupsasca, Photon emission from circular equatorial Kerr orbiters, Phys. Rev. D 103, 044050 (2021).
  • (12) R. Abuter et al. (GRAVITY Collaboration 2020), Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole, Astron. Astrophys. 615, L15 (2018).
  • (13) H. Saida et al., A significant feature in the general relativistic time evolution of the redshift of photons coming from a star orbiting Sgr A*, Publ. Astron. Soc. Jpn. 71, 126 (2019).
  • (14) Y. Iwata, T. Oka, M. Tsuboi, M. Miyoshi, and S. Takekawa, Time variations in the flux density of Sgr A* at 230 GHz detected with ALMA, Astrophys. J. Lett. 892, L30 (2020).
  • (15) T. Igata, K. Kohri, and K. Ogasawara, Photon emission from inside the innermost stable circular orbit, Phys. Rev. D 103, 104028 (2021).
  • (16) H. Yan, M. Guo, and B. Chen, Observability of zero-angular-momentum sources near Kerr black holes, Eur. Phys. J. C 81, 847 (2021).
  • (17) H. Yan, Z. Hu, M. Guo, and B. Chen, Photon emissions from NHEK and near-NHEK equatorial emitters, Phys. Rev. D 104, 124005 (2021).
  • (18) K. Ogasawara and T. Igata, Complete classification of photon escape in the Kerr black hole spacetime, Phys. Rev. D 103, 044029 (2021).
  • (19) M. Walker and R. Penrose, On quadratic first integrals of the geodesic equations for type {22} spacetimes, Commun. Math. Phys. 18, 265 (1970).
  • (20) B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev. 174, 1559 (1968).
  • (21) E. Teo, Spherical photon orbits around a Kerr black hole, Gen. Relativ. Gravit. 35, 1909 (2003).
  • (22) J. S. Wang, J. Tseng, S. Gullin, and E. P. O’Connor, Non-radial neutrino emission upon black hole formation in core collapse supernovae, arXiv:2109.11430 [astro-ph]. Phys. Rev. D 104, 104030 (2021).
  • (23) T. Piran, J. Shaham, and J. Katz, High efficiency of the Penrose mechanism for particle collisions, Astrophys. J. 196, L107 (1975).
  • (24) J. D. Schnittman, The collisional Penrose process, Gen. Relativ. Gravit. 50, 77 (2018).
  • (25) M. Banados, J. Silk, and S. M. West, Kerr Black Holes as Particle Accelerators to Arbitrarily High Energy, Phys. Rev. Lett. 103, 111102 (2009).
  • (26) T. Harada and M. Kimura, Black holes as particle accelerators: A brief review, Classical Quantum Gravity 31, 243001 (2014).
  • (27) K. Ogasawara and T. Igata (to be published).