This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Pointwise regularity for locally uniformly elliptic equations and applications

Yuanyuan Lian Departamento de Análisis Matemático, Instituto de Matemáticas IMAG, Universidad de Granada lianyuanyuan.hthk@gmail.com; yuanyuanlian@correo.ugr.es;
MR ID:
1378049; ORCID:0000-0002-2276-3063
 and  Kai Zhang Departamento de Geometría y Topología, Instituto de Matemáticas IMAG, Universidad de Granada zhangkaizfz@gmail.com; zhangkai@ugr.es;
MR ID:
1098004; ORCID:0000-0002-1896-3206
Dedicated to the book Fully Nonlinear Elliptic Equations (by Luis A. Caffarelli and Xavier Cabré).
Abstract.

In this paper, we study the regularity for viscosity solutions of locally uniformly elliptic equations and obtain a series of interior pointwise Ck,αC^{k,\alpha} (k1k\geq 1, 0<α<10<\alpha<1) regularity with smallness assumptions on the solution and the right-hand term. As applications, we obtain various interior pointwise regularity for several classical elliptic equations, i.e., the prescribed mean curvature equation, the Monge-Ampère equation, the kk-Hessian equations, the kk-Hessian quotient equations and the Lagrangian mean curvature equation. Moreover, the smallness assumptions are necessary in most cases (see Remark 2.6, Remark 3.5, Remark 4.7, Remark 5.4 and Remark 6.5).

Key words and phrases:
Fully nonlinear equation, regularity theory, viscosity solution, Schauder estimate, Monge-Ampère equation
2020 Mathematics Subject Classification:
Primary 35B65, 35D40, 35J60, 35J96, 35J93
This research has been financially supported by the Project PID2020-118137GB-I00 and PID2020-117868GB-I00 funded by MCIN/AEI /10.13039/501100011033.

1. Introduction

In this paper, we study the interior Schauder regularity for viscosity solutions of

(1.1) F(D2u,Du,u,x)=f inB1,F(D^{2}u,Du,u,x)=f~{}~{}\mbox{ in}~{}B_{1},

where B1nB_{1}\subset\mathbb{R}^{n} is the unit open ball and FF is a locally uniformly elliptic operator. Precisely, we use the following notion.

Definition 1.1.

Let ρ>0\rho>0. The F:𝒮n×n××B1F:\mathcal{S}^{n}\times\mathbb{R}^{n}\times\mathbb{R}\times B_{1}\to\mathbb{R} is called locally uniformly elliptic with ρ\rho (or ρ\rho-uniformly elliptic) if there exist constants 0<λΛ0<\lambda\leq\Lambda such that for any |M|,|N|,|p|,|s|ρ|M|,|N|,|p|,|s|\leq\rho and xB1x\in B_{1},

(1.2) (N,λ,Λ)F(M+N,p,s,x)F(M,p,s,x)+(N,λ,Λ),\mathcal{M}^{-}(N,\lambda,\Lambda)\leq F(M+N,p,s,x)-F(M,p,s,x)\leq\mathcal{M}^{+}(N,\lambda,\Lambda),

where 𝒮n\mathcal{S}^{n} denotes the set of n×nn\times n symmetric matrices (see 1.14). The ,+\mathcal{M}^{-},\mathcal{M}^{+} are the usual Pucci’s extremal operators:

+(M,λ,Λ)=Λλi>0λi+λλi<0λi,(M,λ,Λ)=λλi>0λi+Λλi<0λi,\mathcal{M}^{+}(M,\lambda,\Lambda)=\Lambda\sum_{\lambda_{i}>0}\lambda_{i}+\lambda\sum_{\lambda_{i}<0}\lambda_{i},\quad\mathcal{M}^{-}(M,\lambda,\Lambda)=\lambda\sum_{\lambda_{i}>0}\lambda_{i}+\Lambda\sum_{\lambda_{i}<0}\lambda_{i},

where λi\lambda_{i} are the eigenvalues of MM.

Remark 1.2.

If ρ=\rho=\infty, we arrive at the definition of uniformly elliptic operators (see [27, Definition 2.1]). If FF is a smooth operator and

λIDMF(M,p,s,x)ΛI,|M|2ρ,|p|,|s|ρ,xB1,\lambda I\leq D_{M}F(M,p,s,x)\leq\Lambda I,~{}\forall~{}|M|\leq 2\rho,|p|,|s|\leq\rho,x\in B_{1},

then 1.2 holds by the Lagrange mean value theorem.

If FF is ρ\rho-uniformly elliptic and uu is a solution of 1.1, then u~=Ku\tilde{u}=Ku is a solution of

F~(D2u~,Du~,u~,x):=KF(1KD2u,1KDu,1Ku,x)=f\tilde{F}(D^{2}\tilde{u},D\tilde{u},\tilde{u},x):=KF(\frac{1}{K}D^{2}u,\frac{1}{K}Du,\frac{1}{K}u,x)=f

and F~\tilde{F} is KρK\rho-uniformly elliptic. That is, the scaling operation changes the uniform ellipticity. Hence, the scaling operation is restricted in deducing the regularity. This is the main obstacle for developing the regularity theory.

The notion of viscosity solution is defined as follows. The main difference from the classical definition is that the solution must be small and the selection of a test function φ\varphi is more restricted.

Definition 1.3.

Let FF be ρ\rho-uniformly elliptic and fC(B1)f\in C(B_{1}). We say that uC(B1)u\in C(B_{1}) is a viscosity supersolution of 1.1 if uL(B1)ρ/2\|u\|_{L^{\infty}(B_{1})}\leq\rho/2 and for any x0B1x_{0}\in B_{1} and φC2(B1)\varphi\in C^{2}(B_{1}) with

(1.3) φC1,1(B¯1)ρ,φ(x0)=u(x0),φu inB1,\displaystyle\|\varphi\|_{C^{1,1}(\bar{B}_{1})}\leq\rho,\quad\varphi(x_{0})=u(x_{0}),\quad\varphi\leq u~{}~{}\mbox{ in}~{}B_{1},

we have

F(D2φ(x0),Dφ(x0),φ(x0),x0)f(x0).F(D^{2}\varphi(x_{0}),D\varphi(x_{0}),\varphi(x_{0}),x_{0})\leq f(x_{0}).

Similarly, we can define viscosity subsolution and viscosity solution as usual.

Since we consider the pointwise regularity in this paper, let us recall the definition of pointwise Ck,αC^{k,\alpha} (see [86, Definition 2.2] for the definition of Ck,ωC^{k,\omega} with a general modulus of continuity).

Definition 1.4.

Let k0,0<α1k\geq 0,0<\alpha\leq 1. We say that f:B1f:B_{1}\to\mathbb{R} is Ck,αC^{k,\alpha} at 0 or fCk,α(0)f\in C^{k,\alpha}(0) if there exist a polynomial P𝒫kP\in\mathcal{P}_{k} (see 1.14) and a constant KK such that

(1.4) |f(x)P(x)|K|x|k+α,xB1.|f(x)-P(x)|\leq K|x|^{k+\alpha},~{}\forall~{}x\in B_{1}.

We call PP the Taylor polynomial of ff at 0 and define

Dmf(0)=DmP(0),fCk(0)=P=m=0k|DmP(0)|,\displaystyle D^{m}f(0)=D^{m}P(0),\quad\|f\|_{C^{k}(0)}=\|P\|=\sum_{m=0}^{k}|D^{m}P(0)|,
[f]Ck,α(0)=min{K|1.5holds withK},fCk,α(0)=fCk(0)+[f]Ck,α(0).\displaystyle[f]_{C^{k,\alpha}(0)}=\min\left\{K\big{|}\lx@cref{creftype~refnum}{m-holder}~{}\mbox{holds with}~{}K\right\},~{}~{}\|f\|_{C^{k,\alpha}(0)}=\|f\|_{C^{k}(0)}+[f]_{C^{k,\alpha}(0)}.

In addition, we say that fCk(0)f\in C^{k}(0) if there exist a polynomial P𝒫kP\in\mathcal{P}_{k} such that

(1.5) |f(x)P(x)||x|kω(|x|),xB1,|f(x)-P(x)|\leq|x|^{k}\omega(|x|),~{}\forall~{}x\in B_{1},

where ω\omega is a modulus of continuity, i.e., ω:+\omega:\mathbb{R}_{+}\to\mathbb{R} and ω(r)0\omega(r)\to 0 as r0r\to 0.

The regularity theory for uniformly elliptic equations has been well developed. Taking the Ck,αC^{k,\alpha} regularity for example, we have interior CαC^{\alpha} regularity ([27, Chapter 4], [78, 79]), interior C1,αC^{1,\alpha} regularity ([27, Chapter 8]), interior C2,αC^{2,\alpha} regularity ([16, 50, 74, 75], [27, Chapter 8]), interior Ck,αC^{k,\alpha} (k3k\geq 3) regularity ([86]), boundary CαC^{\alpha} regularity ([88]), boundary C1,αC^{1,\alpha} and C2,αC^{2,\alpha} regularity ([75, 87, 107]), boundary Ck,αC^{k,\alpha} regularity ([86]).

For locally uniformly elliptic equations, the pointwise C2,αC^{2,\alpha} regularity for viscosity of 1.1 was first obtained by Savin [100], which was found to have many applications to other problems, e.g.,

  • Partial regularity for fully nonlinear equations [6].

  • Unique continuation for fully nonlinear equations [5, 7].

  • Regularity for singular nonlinear equations [146].

  • Regularity for the σk\sigma_{k}-Loewner–Nirenberg problem [85].

  • W2,pW^{2,p} estimate for the complex Monge-Ampère equation [39].

  • Problems from geometry [41, 83, 84, 108].

Later, it was extended to parabolic equations by Wang [135] and nonlocal elliptic equations by Yu [141]. They all considered homogenous equations (i.e., f0f\equiv 0). In this paper, we study the nonhomogeneous equations and derive a series of pointwise Ck,αC^{k,\alpha} (k1k\geq 1 and 0<α<10<\alpha<1) regularity.

The motivation of studying locally uniformly elliptic equations is its wide applications. Besides the applications mentioned above, we can obtain various new pointwise regularity for non-uniformly elliptic equations (see Sections 2-6 for details). Moreover, it indicates that maybe regarding (transforming) non-uniformly elliptic equations as (to) locally uniformly elliptic equations to study the regularity is essential. In another word, based on the regularity theory for locally uniformly elliptic equations, we can obtain regularity for non-uniformly elliptic equations with necessary assumptions (see Remark 2.6, Remark 3.5, Remark 4.7, Remark 5.4 and Remark 6.5). Note that these applications are just a few of examples. This technique/viewpoint has potential applications to other equations, boundary value problems, parabolic equations, complex equations and equations on Riemannian manifolds etc.

Next, we state our main results on the locally uniformly elliptic equations. For their applications, we state the theorems and give the proofs in Sections 2-6. First, we consider the pointwise C1,αC^{1,\alpha} regularity for the following equation in a special form:

(1.6) F(D2u,Du,u,x)=Aij(Du,u,x)uij+B(Du,u,x)=0inB1,F(D^{2}u,Du,u,x)=A^{ij}(Du,u,x)u_{ij}+B(Du,u,x)=0\quad\mbox{in}~{}B_{1},

where FF is ρ\rho-uniformly elliptic, i.e.,

λIA(p,s,x)ΛI,|p|,|s|<ρ,xB1.\lambda I\leq A(p,s,x)\leq\Lambda I,~{}\forall~{}|p|,|s|<\rho,~{}x\in B_{1}.

If AA is continuous, we define the modulus of continuity

ωA(r)=\displaystyle\omega_{A}(r)= sup{|A(p,s,0)A(q,t,0)|:\displaystyle\sup\{|A(p,s,0)-A(q,t,0)|:
|p|,|q|,|s|,|t|ρ,|pq|,|st|r},r>0.\displaystyle|p|,|q|,|s|,|t|\leq\rho,~{}~{}|p-q|,|s-t|\leq r\},~{}\forall~{}r>0.
Theorem 1.5.

Let 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of 1.6 where FF is ρ\rho-uniformly elliptic and AA is continuous with modulus ωA\omega_{A}. Suppose that for some KB,b00K_{B},b_{0}\geq 0,

(1.7) |B(p,s,x)|KB,|p|,|s|<ρ,xB1,|B(p,s,x)|\leq K_{B},~{}\forall~{}|p|,|s|<\rho,~{}x\in B_{1},
(1.8) b0|pq|B(p,s,x)B(q,s,x)b0|pq|,|p|,|q|,|s|ρ,xB1-b_{0}|p-q|\leq B(p,s,x)-B(q,s,x)\leq b_{0}|p-q|,~{}\forall~{}|p|,|q|,|s|\leq\rho,~{}x\in B_{1}

and

uL(B1)δ,\|u\|_{L^{\infty}(B_{1})}\leq\delta,

where δ>0\delta>0 depends only on n,λ,Λ,ρ,b0,α,ωAn,\lambda,\Lambda,\rho,b_{0},\alpha,\omega_{A} and KBK_{B}.

Then uC1,α(0)u\in C^{1,\alpha}(0), i.e., there exists P𝒫1P\in\mathcal{P}_{1} such that

|u(x)P(x)|C|x|1+α,xB1|u(x)-P(x)|\leq C|x|^{1+\alpha},~{}\forall~{}x\in B_{1}

and

PC¯δ,\|P\|\leq\bar{C}\delta,

where C¯\bar{C} depends only on n,λ,Λ,ρ,b0,αn,\lambda,\Lambda,\rho,b_{0},\alpha, and CC depends also on ωA\omega_{A}.

Remark 1.6.

We will apply Theorem 1.5 to the prescribed mean curvature equation in Section 2. In fact, we can prove interior C1,αC^{1,\alpha} regularity under the following more general condition:

F(tM,p,s,x)=tF(M,p,s,x),|M|,|p|,|s|ρ,xB1,t>0.F(tM,p,s,x)=tF(M,p,s,x),~{}\forall~{}|M|,|p|,|s|\leq\rho,~{}x\in B_{1},~{}t>0.

Since we do not expect any application, we only consider the simpler equation 1.6 in this paper.

Next, we consider the C2,αC^{2,\alpha} regularity. If FF is ρ\rho-uniformly elliptic and DMFD_{M}F is continuous, we define the modulus of continuity

ωF(r)=\displaystyle\omega_{F}(r)= sup{|DMF(M,p,s,0)DMF(N,q,t,0)|:\displaystyle\sup\{|D_{M}F(M,p,s,0)-D_{M}F(N,q,t,0)|:
|M|,|N|,|p|,|q|,|s|,|t|ρ,|MN|,|pq|,|st|r},r>0.\displaystyle|M|,|N|,|p|,|q|,|s|,|t|\leq\rho,~{}~{}|M-N|,|p-q|,|s-t|\leq r\},~{}\forall~{}r>0.

We also need the following structure condition. For any |M|,|p|,|q|,|s|,|t|ρ|M|,|p|,|q|,|s|,|t|\leq\rho and xB1x\in B_{1},

(1.9) b0|pq|c0|st|F(M,p,s,x)F(M,q,t,x)b0|pq|+c0|st|,-b_{0}|p-q|-c_{0}|s-t|\leq F(M,p,s,x)-F(M,q,t,x)\leq b_{0}|p-q|+c_{0}|s-t|,

where b0,c0b_{0},c_{0} are two nonnegative constants.

The following is the interior pointwise C2,αC^{2,\alpha} regularity.

Theorem 1.7.

Let 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of 1.1 where FF is ρ\rho-uniformly elliptic, F(0,0,0,x)0F(0,0,0,x)\equiv 0 and DMFD_{M}F is continuous with modulus ωF\omega_{F}. Suppose that 1.9 holds,

(1.10) |F(M,p,s,x)F(M,p,s,0)|δ|x|α,|M|,|p|,|s|ρ,xB1|F(M,p,s,x)-F(M,p,s,0)|\leq\delta|x|^{\alpha},~{}\forall~{}|M|,|p|,|s|\leq\rho,~{}x\in B_{1}

and

(1.11) uL(B1)δ,fCα(0)δ,\|u\|_{L^{\infty}(B_{1})}\leq\delta,\quad\|f\|_{C^{\alpha}(0)}\leq\delta,

where δ>0\delta>0 depends only on n,λ,Λ,ρ,b0,c0,αn,\lambda,\Lambda,\rho,b_{0},c_{0},\alpha and ωF\omega_{F}.

Then uC2,α(0)u\in C^{2,\alpha}(0), i.e., there exists P𝒫2P\in\mathcal{P}_{2} such that

|u(x)P(x)|C|x|2+α,xB1|u(x)-P(x)|\leq C|x|^{2+\alpha},~{}\forall~{}x\in B_{1}

and

PC¯δ,F(D2P,DP(0),P(0),0)=f(0),\|P\|\leq\bar{C}\delta,\quad F(D^{2}P,DP(0),P(0),0)=f(0),

where C¯\bar{C} depends only on n,λ,Λ,ρ,b0,c0,αn,\lambda,\Lambda,\rho,b_{0},c_{0},\alpha, and CC depends also on ωF\omega_{F}.

Remark 1.8.

Theorem 1.7 was first proved by Savin [100] with f0f\equiv 0.

For higher Ck,αC^{k,\alpha} (k3k\geq 3) regularity, we have

Theorem 1.9.

Let k3,0<α<1k\geq 3,0<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of 1.1 where FF is ρ\rho-uniformly elliptic. Let F0Ck1F_{0}\in C^{k-1} be ρ\rho-uniformly elliptic, F0(0,0,0,x)0F_{0}(0,0,0,x)\equiv 0 and denote

KF=F0Ck1(B¯ρ×B¯1),Bρ={(M,p,s):|M|,|p|,|s|<ρ}.K_{F}=\|F_{0}\|_{C^{k-1}(\bar{\textbf{B}}_{\rho}\times\bar{B}_{1})},\quad\textbf{B}_{\rho}=\left\{(M,p,s):|M|,|p|,|s|<\rho\right\}.

Suppose that 1.9 holds,

(1.12) |F(M,p,s,x)F0(M,p,s,x)|δ|x|k2+α,|M|,|p|,|s|ρ,xB1|F(M,p,s,x)-F_{0}(M,p,s,x)|\leq\delta|x|^{k-2+\alpha},~{}\forall~{}|M|,|p|,|s|\leq\rho,~{}x\in B_{1}

and

uL(B1)δ,fCk2+α(0)δ,\|u\|_{L^{\infty}(B_{1})}\leq\delta,\quad\|f\|_{C^{k-2+\alpha}(0)}\leq\delta,

where δ>0\delta>0 depends only on n,λ,Λ,ρ,b0,c0,k,αn,\lambda,\Lambda,\rho,b_{0},c_{0},k,\alpha and KFK_{F}.

Then uCk,α(0)u\in C^{k,\alpha}(0), i.e., there exists P𝒫kP\in\mathcal{P}_{k} such that

|u(x)P(x)|C|x|k+α,xB1|u(x)-P(x)|\leq C|x|^{k+\alpha},~{}\forall~{}x\in B_{1}

and

PCδ,|F0(D2P(x),DP(x),P(x),x)Pf(x)|C|x|k1,xB1,\|P\|\leq C\delta,\quad|F_{0}(D^{2}P(x),DP(x),P(x),x)-P_{f}(x)|\leq C|x|^{k-1},~{}\forall~{}x\in B_{1},

where CC depends only on n,λ,Λ,ρ,b0,c0,k,αn,\lambda,\Lambda,\rho,b_{0},c_{0},k,\alpha and KFK_{F}.

Remark 1.10.

This higher pointwise regularity is new. Even for the uniformly elliptic equations, it was proved in [86] recently. In fact, the proof of Theorem 1.9 is inspired by [86]. In addition, by similar arguments in [86], we can obtain the pointwise Ck(0)C^{k}(0) and CklnL(0)C^{k\mathrm{ln}L}(0) (k2k\geq 2) regularity as well.

In fact, in above theorem, we only need that f||Cα(0)\|f||_{C^{\alpha}(0)} is small.

Corollary 1.11.

Let k3,0<α<1k\geq 3,0<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of 1.1 where FF is ρ\rho-uniformly elliptic. Let F0Ck1F_{0}\in C^{k-1} be ρ\rho-uniformly elliptic and F0(0,0,0,x)0F_{0}(0,0,0,x)\equiv 0. Suppose that 1.9 holds,

|F(M,p,s,x)F0(M,p,s,x)|δ|x|k2+α,|M|,|p|,|s|ρ,xB1|F(M,p,s,x)-F_{0}(M,p,s,x)|\leq\delta|x|^{k-2+\alpha},~{}\forall~{}|M|,|p|,|s|\leq\rho,~{}x\in B_{1}

and

uL(B1)δ,fCk2+α(0),fCα(0)δ,\|u\|_{L^{\infty}(B_{1})}\leq\delta,\quad f\in C^{k-2+\alpha}(0),\quad\|f\|_{C^{\alpha}(0)}\leq\delta,

where δ>0\delta>0 depends only on n,λ,Λ,ρ,b0,c0,αn,\lambda,\Lambda,\rho,b_{0},c_{0},\alpha and KFK_{F}.

Then uCk,α(0)u\in C^{k,\alpha}(0). That is, there exists P𝒫kP\in\mathcal{P}_{k} such that

|u(x)P(x)|C|x|k+α,xB1|u(x)-P(x)|\leq C|x|^{k+\alpha},~{}\forall~{}x\in B_{1}

and

PCδ,|F0(D2P(x),DP(x),P(x),x)Pf(x)|C|x|k1,xB1,\|P\|\leq C\delta,\quad|F_{0}(D^{2}P(x),DP(x),P(x),x)-P_{f}(x)|\leq C|x|^{k-1},~{}\forall~{}x\in B_{1},

where CC depends only on n,λ,Λ,ρ,b0,c0,k,α,KFn,\lambda,\Lambda,\rho,b_{0},c_{0},k,\alpha,K_{F} and fCk2+α(0)\|f\|_{C^{k-2+\alpha}(0)}.

As a special case, we have

Corollary 1.12.

Let k3,0<α<1k\geq 3,0<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of 1.1 where FCk1(B¯ρ×B¯1)F\in C^{k-1}(\bar{\textbf{B}}_{\rho}\times\bar{B}_{1}) is ρ\rho-uniformly elliptic and F(0,0,0,x)0F(0,0,0,x)\equiv 0. Suppose that

uL(B1)δ,fCk2+α(0),fCα(0)δ,\|u\|_{L^{\infty}(B_{1})}\leq\delta,\quad f\in C^{k-2+\alpha}(0),\quad\|f\|_{C^{\alpha}(0)}\leq\delta,

where δ>0\delta>0 depends only on n,λ,Λ,ρ,b0,c0,αn,\lambda,\Lambda,\rho,b_{0},c_{0},\alpha and KFK_{F}. Then uCk,α(0)u\in C^{k,\alpha}(0).

Remark 1.13.

In this paper, a constant is called universal if it depends only on n,λ,Λ,ρ,b0n,\lambda,\Lambda,\rho,b_{0} and c0c_{0}.

We use the perturbation technique as in [100] to prove above theorems. The idea is the following. Take C2,αC^{2,\alpha} regularity for example. If uu and ff are small and FF is smooth, the equation is close the Laplace equation (by the compactness method, see 9.4). Hence, there exists P1𝒫2P_{1}\in\mathcal{P}_{2} such that

uP1L(Bη)η2+α,\|u-P_{1}\|_{L^{\infty}(B_{\eta})}\leq\eta^{2+\alpha},

where 0<η<10<\eta<1. By scaling, we have

uPmL(Bηm)ηm(2+α),m1,\|u-P_{m}\|_{L^{\infty}(B_{\eta^{m}})}\leq\eta^{m(2+\alpha)},~{}~{}m\geq 1,

which means the C2,αC^{2,\alpha} regularity. During the scaling, Pm\|P_{m}\| are kept small such that the scaled operators are always ρ/2\rho/2-uniformly elliptic.

The main obstacle is to show the compactness of solutions. Savin [100] proved a Harnack inequality by the technique of sliding paraboloids and then the Hölder regularity follows. In this paper, we follows the idea in [27] to prove a weak Harnack inequality, which leads to the Hölder regularity as well. In fact, we just repeat the argument in [27].

The idea “smallness implies regularity” has been found and used many years ago (e.g. [17, Proposition 2], [46], [55, (2.20)], [128, Theorem 1.3]). Since the equation is regarded as a perturbation of the Laplace equation, we can obtain Ck,αC^{k,\alpha} (k1k\geq 1) regularity for any 0<α<10<\alpha<1. On the contrast, we can only obtain Ck,αC^{k,\alpha} regularity for some 0<α<α¯0<\alpha<\bar{\alpha} for a general fully nonlinear elliptic equation, where 0<α¯<10<\bar{\alpha}<1 is a universal constant (see [27, Chapter 8]). In addition, the proofs of above theorems are relatively simpler than that for uniformly elliptic equations without the smallness assumptions (compare with [86]).

Note that even for uniformly elliptic equations, one usually start the proof by assuming that ff is small (see [27, P. 75, Proof of Theorem 8.1]). Then a scaling argument can transform a general ff to a small ff. However, for locally uniformly elliptic equations, as pointed out in Remark 1.2, the scaling argument is restricted. Hence, we have to make the assumption in the theorem that ff is small.

The paper is organized as follows. We first give the applications of above theorems in Sections 2-6. Precisely, we shall prove a series of interior pointwise Ck,αC^{k,\alpha} regularity for the prescribed mean curvature equation in Section 2, the Monge-Ampère equation in Section 3, the kk-Hessian equation in Section 4, the kk-Hessian quotient equation in Section 5 and the Lagrangian mean curvature equation in Section 6 respectively.

The proofs of above theorems are postponed to Sections 7-10. In Section 7, we prepare some preliminaries, such as the Alexandrov-Bakel’man-Pucci maximum principle etc. We prove C1,αC^{1,\alpha} regularity in Section 8 and Section 9 is devoted the C2,αC^{2,\alpha} regularity. Finally, we give the proof of Ck,αC^{k,\alpha} (k3k\geq 3) regularity in Section 10.

Notation 1.14.
  1. (1)

    n\mathbb{R}^{n}: the nn-dimensional Euclidean space; 𝒮n\mathcal{S}^{n}: the set of n×nn\times n symmetric matrices with the standard order.

  2. (2)

    {ei}i=1n\{e_{i}\}^{n}_{i=1}: the standard basis of n\mathbb{R}^{n}, i.e., ei=(0,0,1ith,0,0)e_{i}=(0,...0,\underset{i^{th}}{1},0,...0).

  3. (3)

    x=(x1,,xn)=(x,xn)nx=(x_{1},...,x_{n})=(x^{\prime},x_{n})\in\mathbb{R}^{n}.

  4. (4)

    |x|=(i=1nxi2)1/2|x|=\left(\sum_{i=1}^{n}x_{i}^{2}\right)^{1/2} for xnx\in\mathbb{R}^{n}; |M|=|M|= the spectrum radius of M𝒮nM\in\mathcal{S}^{n}.

  5. (5)

    II: the unit matrix in 𝒮n\mathcal{S}^{n}.

  6. (6)

    a+=max(a,0)a^{+}=\max(a,0), a=max(a,0)a^{-}=\max(-a,0).

  7. (7)

    Br(x0)=B(x0,r)={xn:|xx0|<r}B_{r}(x_{0})=B(x_{0},r)=\{x\in\mathbb{R}^{n}:|x-x_{0}|<r\}, Br=Br(0)B_{r}=B_{r}(0),

  8. (8)

    Ωc\Omega^{c}: the complement of Ω\Omega; Ω¯\bar{\Omega}: the closure of Ω\Omega, where Ωn\Omega\subset\mathbb{R}^{n}.

  9. (9)

    diam(Ω)\mathrm{diam}(\Omega): the diameter of Ω\Omega.

  10. (10)

    Given φ:n\varphi:\mathbb{R}^{n}\to\mathbb{R}, define φi=φ/xi\varphi_{i}=\partial\varphi/\partial x_{i}, φij=2φ/xixj\varphi_{ij}=\partial^{2}\varphi/\partial x_{i}\partial x_{j} and we also use similar notations for higher order derivatives.

  11. (11)

    D0φ=φD^{0}\varphi=\varphi, Dφ=(φ1,,φn)D\varphi=(\varphi_{1},...,\varphi_{n}) and D2φ=(φij)n×nD^{2}\varphi=\left(\varphi_{ij}\right)_{n\times n} etc.

  12. (12)

    We also use the standard multi-index notation. Let σ=(σ1,,σn)n\sigma=(\sigma_{1},...,\sigma_{n})\in\mathbb{N}^{n}, i.e., each component σi\sigma_{i} is a nonnegative integer. Define

    |σ|=i=1nσi,σ!=i=1n(σi!),xσ=i=1nxiσi,Dσφ=|σ|φx1σ1xnσn.|\sigma|=\sum_{i=1}^{n}\sigma_{i},\quad\sigma!=\prod_{i=1}^{n}(\sigma_{i}!),\quad x^{\sigma}=\prod_{i=1}^{n}x_{i}^{\sigma_{i}},\quad D^{\sigma}\varphi=\frac{\partial^{|\sigma|}\varphi}{\partial x_{1}^{\sigma_{1}}\cdots\partial x_{n}^{\sigma_{n}}}.
  13. (13)

    |Dkφ|=(|σ|=k|Dσφ|2)1/2|D^{k}\varphi|=\left(\sum_{|\sigma|=k}|D^{\sigma}\varphi|^{2}\right)^{1/2} for k0k\geq 0.

  14. (14)

    Given F:𝒮n×n××ΩF\colon\mathcal{S}^{n}\times\mathbb{R}^{n}\times\mathbb{R}\times\Omega\to\mathbb{R}, define

    FMij=FMij,Fpi=Fpi,Fs=Fs,Fxi=Fxi,F_{M_{ij}}=\frac{\partial F}{\partial M_{ij}},\quad F_{p_{i}}=\frac{\partial F}{\partial p_{i}},\quad F_{s}=\frac{\partial F}{\partial s},\quad F_{x_{i}}=\frac{\partial F}{\partial x_{i}},

    where 1i,jn1\leq i,j\leq n. Moreover, let ξn×n\xi\in\mathbb{N}^{n\times n} denote the matrix-valued multi-index. Then define

    DMξF=|ξ|FMijξij,DMkF={kFMξ:|ξ|=k},|DMkF|=(|ξ|=k|kFMξ|2)1/2.D^{\xi}_{M}F=\frac{\partial^{|\xi|}F}{\partial M_{ij}^{\xi_{ij}}},\quad D^{k}_{M}F=\left\{\frac{\partial^{k}F}{\partial M^{\xi}}\colon|\xi|=k\right\},\quad|D^{k}_{M}F|=\left(\sum_{|\xi|=k}\left|\frac{\partial^{k}F}{\partial M^{\xi}}\right|^{2}\right)^{1/2}.

    Similarly, we can define DpkFD^{k}_{p}F, DskFD^{k}_{s}F, DxkFD^{k}_{x}F and their norms etc.

  15. (15)

    𝒫k(k0):\mathcal{P}_{k}(k\geq 0): the set of polynomials of degree less than or equal to kk. That is, any P𝒫kP\in\mathcal{P}_{k} can be written as

    P(x)=|σ|kaσσ!xσP(x)=\sum_{|\sigma|\leq k}\frac{a_{\sigma}}{\sigma!}x^{\sigma}

    where aσa_{\sigma} are constants. Define for r>0r>0

    Pr=|σ|kr|σ||aσ|,P=P1=|σ|k|aσ|\|P\|_{r}=\sum_{|\sigma|\leq k}r^{|\sigma|}|a_{\sigma}|,\quad\|P\|=\|P\|_{1}=\sum_{|\sigma|\leq k}|a_{\sigma}|
  16. (16)

    𝒫k(k0):\mathcal{HP}_{k}(k\geq 0): the set of homogeneous polynomials of degree kk. That is, any P𝒫kP\in\mathcal{HP}_{k} can be written as

    P(x)=|σ|=kaσσ!xσ.P(x)=\sum_{|\sigma|=k}\frac{a_{\sigma}}{\sigma!}x^{\sigma}.

2. Prescribed mean curvature equation

In the following sections, we give the applications of the regularity of locally uniformly elliptic equations to several classical non-uniformly elliptic equations.

Since non-uniformly elliptic equations are much more difficult than uniformly elliptic ones, it is natural to study them by assuming the data are good enough and then obtain a priori estimates, existence of smooth solutions and Liouville type theorems etc. This classical strategy has been used widely. For example,

In addition, there exist Pogorelov’s type interior C1,1C^{1,1} estimates for some equations. The smoothness requirements of the boundary can be relaxed. As a compensation, the boundary value must be an affine function or an admissible function in some sense. For example,

  • For the Monge-Ampère equation, see [96],[97, P. 73, Chapter 5.3].

  • For the kk-Hessian equations, see [42].

  • For the kk-Hessian quotient equations, see [33, 37].

For the prescribed mean curvature equation and the Lagrangian mean curvature equation, we have stronger pure interior C0,1C^{0,1} and C1,1C^{1,1} estimates (i.e., estimates independent of the boundary information).

In another direction, it is also natural to consider the regularity of solutions. One may introduce weak solutions in some sense and then prove the existence and regularity. In this respect, there are following examples:

As for the Schauder’s type regularity, say C2,αC^{2,\alpha} regularity under the assumption fCαf\in C^{\alpha}, there are few results in this respect (see [140] for the 22-Hessian equation in dimension 33 and [12] for the Lagrangian mean curvature equation) besides the Monge-Ampère equation (see [22, 70, 98, 102, 123, 130] for the interior regularity; see [99] and [119] for the boundary regularity).

In the following sections, based on the regularity theory for locally uniformly elliptic equations, we will develop pointwise Ck,αC^{k,\alpha} (k1k\geq 1, 0<α<10<\alpha<1) regularity for the prescribed mean curvature equation (Section 2), the Monge-Ampère equation (Section 3), the kk-Hessian equation (Section 4), the kk-Hessian quotient equation (Section 5) and the Lagrangian mean curvature equation (Section 6).

We use the notion of viscosity solution for these equations as well. For the prescribed mean curvature equation and the Lagrangian mean curvature equation, the definition of viscosity solution is exactly the same as the usual (see [27, Chapter 2]). For the Monge-Ampère equation, the test function φ\varphi should be a convex function (see [61, Definition 1.3.1]). The φ\varphi should be kk-admissible if we define a viscosity solution for a kk-Hessian equation or kk-Hessian quotient equation (see [124, Section 2], [82, Definition 1.1]).

Note that above definitions of viscosity solution are different from Definition 1.3. In fact, in the following sections, we will regard (transform) an equation as (to) a locally uniformly elliptic equation. Then the (transformed) solution will be a viscosity solution in the sense of Definition 1.3.

We first give a general result:

Theorem 2.1.

Let k2k\geq 2, 0<α<10<\alpha<1 and uu be a viscosity solution of

F(D2u,Du,u,x)=f inB1,F(D^{2}u,Du,u,x)=f~{}~{}\mbox{ in}~{}B_{1},

where FF is smooth. Suppose that uC2(0),fCk2,α(0)u\in C^{2}(0),f\in C^{k-2,\alpha}(0) and

(2.1) A:=DMF(D2u(0),Du(0),u(0),0)>0.A:=D_{M}F(D^{2}u(0),Du(0),u(0),0)>0.

Then uCk,α(0)u\in C^{k,\alpha}(0).

Proof.

By uC2(0)u\in C^{2}(0), there exist P𝒫2P\in\mathcal{P}_{2} and a modulus of continuity ω\omega such that

|u(x)P(x)|ω(|x|)|x|2,xB1.|u(x)-P(x)|\leq\omega(|x|)|x|^{2},~{}\forall~{}x\in B_{1}.

Since uu is a viscosity solution,

F(D2u(0),Du(0),u(0),0)=F(D2P(0),DP(0),P(0),0)=f(0).F(D^{2}u(0),Du(0),u(0),0)=F(D^{2}P(0),DP(0),P(0),0)=f(0).

For r>0r>0, let

y=xr,u~(y)=u(x)P(x)r2,f~(y)=f(x)F(D2P,DP(x),P(x),x).y=\frac{x}{r},\quad\tilde{u}(y)=\frac{u(x)-P(x)}{r^{2}},\quad\tilde{f}(y)=f(x)-F(D^{2}P,DP(x),P(x),x).

Then u~\tilde{u} is a solution of

(2.2) F~(D2u~,Du~,u~,y)=f~inB1,\tilde{F}(D^{2}\tilde{u},D\tilde{u},\tilde{u},y)=\tilde{f}\quad\mbox{in}~{}B_{1},

where

F~(M,p,s,y):=F(M+D2P,rp+DP(x),r2s+P(x),x)F(D2P,DP(x),P(x),x).\tilde{F}(M,p,s,y):=F(M+D^{2}P,rp+DP(x),r^{2}s+P(x),x)-F(D^{2}P,DP(x),P(x),x).

Then F~(0,0,0,y)0\tilde{F}(0,0,0,y)\equiv 0 and by 2.1,

DMF~(0,0,0,0)=A>0.D_{M}\tilde{F}(0,0,0,0)=A>0.

Since F~\tilde{F} is smooth, F~\tilde{F} is ρ\rho-uniformly elliptic with some 0<λΛ0<\lambda\leq\Lambda and these three constants depends only on n,A,Pn,A,\|P\| and FC1,1\|F\|_{C^{1,1}}.

In addition, by the definition of u~\tilde{u} and f~\tilde{f},

u~L(B1)ω(r),f~(0)=0,[f]Cα(0)Crα.\|\tilde{u}\|_{L^{\infty}(B_{1})}\leq\omega(r),\quad\tilde{f}(0)=0,\quad[f]_{C^{\alpha}(0)}\leq Cr^{\alpha}.

Thus, we can choose rr small enough such that

u~L(B1)δ,f~Cα(0)δ,\|\tilde{u}\|_{L^{\infty}(B_{1})}\leq\delta,\quad\|\tilde{f}\|_{C^{\alpha}(0)}\leq\delta,

where δ\delta is small enough such that u~\tilde{u} is a viscosity solution of 2.2 in the sense of Definition 1.3 and we can apply Corollary 1.12 to 2.2. Therefore, u~Ck,α(0)\tilde{u}\in C^{k,\alpha}(0) and hence uCk,α(0)u\in C^{k,\alpha}(0). ∎ 

Remark 2.2.

If uu is an appropriate viscosity solution, 2.1 holds automatically. At least, it holds for all equations treated in the following sections. Hence, in general, if uC2(0)u\in C^{2}(0) and fCk2,α(0)f\in C^{k-2,\alpha}(0), then uCk,α(0)u\in C^{k,\alpha}(0). In conclusion, we have one rough but interesting assertion: For any elliptic equation with a smooth operator, the pointwise C2,αC^{2,\alpha} regularity holds almost everywhere if uu is a convex viscosity solution and fCαf\in C^{\alpha} (0<α<10<\alpha<1).

Now, we consider the prescribed mean curvature equation.

Theorem 2.3.

Let 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of

(2.3) div(Du1+|Du|2)=11+|Du|2(δijuiuj1+|Du|2)uij=f inB1,\mathrm{div}\left(\frac{Du}{\sqrt{1+|Du|^{2}}}\right)=\frac{1}{\sqrt{1+|Du|^{2}}}\left(\delta^{ij}-\frac{u_{i}u_{j}}{1+|Du|^{2}}\right)u_{ij}=f~{}\mbox{ in}~{}B_{1},

where fL(B1)f\in L^{\infty}(B_{1}). Then uC1,α(0)u\in C^{1,\alpha}(0) provided one of the following conditions holds:
(i) there exists P𝒫1P\in\mathcal{P}_{1} such that

uPL(B1)δ,\|u-P\|_{L^{\infty}(B_{1})}\leq\delta,

where 0<δ<10<\delta<1 depends only on n,α,|DP|n,\alpha,|DP| and fL(B1)\|f\|_{L^{\infty}(B_{1})}.
(ii) there exists a constant |K|<n1|K|<n-1 such that

fKL(B1)δ,\|f-K\|_{L^{\infty}(B_{1})}\leq\delta,

where 0<δ<10<\delta<1 depends only on n,α,Kn,\alpha,K and uL(B1)\|u\|_{L^{\infty}(B_{1})}.
(iii) uC0,1(0)u\in C^{0,1}(0).
(iv) there exists P𝒫1P\in\mathcal{P}_{1} such that

u=PonBδ,u=P\quad\mbox{on}~{}~{}\partial B_{\delta},

where δ>0\delta>0 depends only on n,α,|DP|n,\alpha,|DP| and fL(B1)\|f\|_{L^{\infty}(B_{1})}.

For higher regularity, we have

Theorem 2.4.

Let k2,0<α<1k\geq 2,0<\alpha<1, uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of 2.3 and fCk2,α(0)f\in C^{k-2,\alpha}(0). Then uCk,α(0)u\in C^{k,\alpha}(0) provided one of the four conditions in Theorem 2.3 holds.

Remark 2.5.

The mean curvature operator is given by

F(M,p)=11+|p|2(δijpipj1+|p|2)Mij.F(M,p)=\frac{1}{\sqrt{1+|p|^{2}}}\left(\delta^{ij}-\frac{p_{i}p_{j}}{1+|p|^{2}}\right)M_{ij}.

Hence, FF is smooth and it is easy to verify (cf. Remark 1.2) that FF is 11-uniformly elliptic with λ=2/4\lambda=\sqrt{2}/4 and Λ=2/2\Lambda=\sqrt{2}/2. Moreover, for any P𝒫1P\in\mathcal{P}_{1}, define

G(M,p)=F(M,p+DP).G(M,p)=F(M,p+DP).

Then GG is smooth and 11-uniformly elliptic with λ~\tilde{\lambda} and Λ~\tilde{\Lambda}, which depend only on |DP||DP|. Hence, the regularity theory for locally uniformly elliptic equations are applicable to 2.3.

Remark 2.6.

To investigate the regularity of solutions of 2.3, one usually assumes fC0,1f\in C^{0,1} at least (e.g. [15, Theorem 4.2],[53],[56, Chapter 16],[57]). In fact, if fC0,1f\in C^{0,1}, one can prove the interior gradient bound, which was first obtained for the minimal surface equation by Bombieri, De Giorgi and Miranda [14] (see also [9, 52, 73, 80, 111, 133]). Then the equation becomes uniformly elliptic and the regularity follows.

On the other hand, if fC0,1f\notin C^{0,1}, we cannot obtain the C1,αC^{1,\alpha} regularity in general. Consider the following counterexample borrowed from [45, Section 8]:

u(x)={(1|x|)θ, if0r1;(|x|1)θ, if1<r<2,u(x)=\left\{\begin{aligned} &-(1-|x|)^{\theta},&&~{}\mbox{ if}~{}0\leq r\leq 1;\\ &(|x|-1)^{\theta},&&~{}\mbox{ if}~{}1<r<2,\\ \end{aligned}\right.

where 0<θ<1/20<\theta<1/2. It can be checked directly that uu is a viscosity solution of 2.3 in B2B_{2} with

fC12θ(B¯2),[f]C12θ(x0)Cθ2,x0B1.f\in C^{1-2\theta}(\bar{B}_{2}),\quad[f]_{C^{1-2\theta}(x_{0})}\leq C\theta^{-2},~{}\forall~{}x_{0}\in\partial B_{1}.

However, we have only uCθu\in C^{\theta} at B1\partial B_{1}. Hence, the “smallness” assumptions in Theorem 2.3 cannot be removed.

Moreover, if θ\theta is smaller, ff is smoother but [f]C12θ[f]_{C^{1-2\theta}} is bigger. Correspondingly, uu has lower regularity. This phenomenon indicates that the smallness is more important than the smoothness for the regularity in this case (i.e., non-uniformly elliptic equations with lower regularity on ff).

Above observation may imply that regarding the prescribed mean curvature equation as a locally uniformly elliptic equation to study the regularity is essential (see also Remark 3.5, Remark 5.4 and Remark 6.5).

Remark 2.7.

Roughly speaking, Theorem 2.3 states that the interior C1,αC^{1,\alpha} regularity holds for the prescribed mean curvature equation under some “smallness” assumption (except (iii)).

As pointed out in Remark 2.6, to obtain C1,αC^{1,\alpha} regularity, one usually prove the interior gradient bound first and then the equation becomes uniformly elliptic. The assumption (iii) can be understood in some sense that the equation is pointwise uniformly elliptic at 0. Then we obtain the pointwise C1,α(0)C^{1,\alpha}(0) regularity.

Remark 2.8.

The C1,αC^{1,\alpha} regularity for the minimal surface equation under the assumption that uu is small, i.e.,

uL(B1)δ,f0uC1,α(B¯1/2)\|u\|_{L^{\infty}(B_{1})}\leq\delta,~{}f\equiv 0\Longrightarrow u\in C^{1,\alpha}(\bar{B}_{1/2})

has been proved by De Giorgi [46] as a special case (see also [58, Chapters 6-8], [100, P. 676] and [101, P. 42]). Theorem 2.3 extends this result to

uL(B1)δ,fL(B1)uC1,α(B¯1/2).\|u\|_{L^{\infty}(B_{1})}\leq\delta,~{}f\in L^{\infty}(B_{1})\Longrightarrow u\in C^{1,\alpha}(\bar{B}_{1/2}).

We first prove a lemma.

Lemma 2.9.

Let uu be a viscosity solution of 2.3. Then for any δ1>0\delta_{1}>0, there exists δ>0\delta>0 depending only on nn, KK and uL(B1)\|u\|_{L^{\infty}(B_{1})} such that if

fKL(B1)δ,|K|<n1,\|f-K\|_{L^{\infty}(B_{1})}\leq\delta,\quad|K|<n-1,

we have for some P𝒫1P\in\mathcal{P}_{1}

uPL(Br)δ1r\|u-P\|_{L^{\infty}(B_{r})}\leq\delta_{1}r

and

|DP|C,|DP|\leq C,

where 0<r<1/20<r<1/2 and CC depend only on n,Kn,K and uL(B1)\|u\|_{L^{\infty}(B_{1})}.

Proof.

Since |K|<n1|K|<n-1, there exist two solutions v±C(B1)C(B¯1)W1,1(B1)v^{\pm}\in C^{\infty}(B_{1})\cap C(\bar{B}_{1})\cap W^{1,1}(B_{1}) of the following prescribed mean curvature equations (see [56, Theorem 16.11] and [53, Theorem 1])

{divA(Dv±)=K±2δinB1;v±=uonB1,\left\{\begin{aligned} \mathrm{div}A(Dv^{\pm})=&K\pm 2\delta&&\quad\mbox{in}~{}~{}B_{1};\\ v^{\pm}=&u&&\quad\mbox{on}~{}~{}\partial B_{1},\end{aligned}\right.

where δ\delta is taken small such that |K±2δ|n1|K\pm 2\delta|\leq n-1 and

(2.4) A(p):=p1+|p|2,pn.A(p):=\frac{p}{\sqrt{1+|p|^{2}}},~{}\forall~{}p\in\mathbb{R}^{n}.

Since v±v^{\pm} are smooth, by the definition of viscosity solution,

(2.5) v+uvinB1.v^{+}\leq u\leq v^{-}\quad\mbox{in}~{}~{}B_{1}.

We claim that for any δ2>0\delta_{2}>0, if δ\delta small enough (depending only on δ2,n,K,uL(B1)\delta_{2},n,K,\|u\|_{L^{\infty}(B_{1})}),

(2.6) v±vL(B1/2)δ2,\|v^{\pm}-v\|_{L^{\infty}(B_{1/2})}\leq\delta_{2},

where vv is the solution of

{divA(Dv)=KinB1;v=uonB1.\left\{\begin{aligned} \mathrm{div}A(Dv)=&K\quad\mbox{in}~{}~{}B_{1};\\ v=&u\quad\mbox{on}~{}~{}\partial B_{1}.\end{aligned}\right.

We prove the claim by contradiction and the proof is inspired by [110]. Suppose not. Then there exist δ2\delta_{2} and sequences of um,vm+,vmu_{m},v^{+}_{m},v_{m} satisfying umL(B1)K\|u_{m}\|_{L^{\infty}(B_{1})}\leq K,

(2.7) {divA(Dvm+)=K+1minB1;vm+=umonB1,{divA(Dvm)=KinB1;vm=umonB1\left\{\begin{aligned} \mathrm{div}A(Dv_{m}^{+})=&K+\frac{1}{m}&&~{}~{}\mbox{in}~{}~{}B_{1};\\ v_{m}^{+}=&u_{m}&&~{}~{}\mbox{on}~{}~{}\partial B_{1},\end{aligned}\right.~{}~{}\left\{\begin{aligned} \mathrm{div}A(Dv_{m})=&K&&~{}~{}\mbox{in}~{}~{}B_{1};\\ v_{m}=&u_{m}&&~{}~{}\mbox{on}~{}~{}\partial B_{1}\end{aligned}\right.

and

(2.8) vm+vmL(B1/2)>δ2.\|v_{m}^{+}-v_{m}\|_{L^{\infty}(B_{1/2})}>\delta_{2}.

By the interior derivatives estimates (see [56, Corollary 16.7]),

vm+C1,1(Ω¯),vmC1,1(Ω¯)C,ΩB1,\|v_{m}^{+}\|_{C^{1,1}(\bar{\Omega}^{\prime})},\quad\|v_{m}\|_{C^{1,1}(\bar{\Omega}^{\prime})}\leq C,~{}\forall~{}\Omega^{\prime}\subset\subset B_{1},

where CC depends only on n,Ω,vm+L(B1)n,\Omega^{\prime},\|v_{m}^{+}\|_{L^{\infty}(B_{1})} and vmL(B1)\|v_{m}\|_{L^{\infty}(B_{1})}. From the Alexandrov-Bakel’man-Pucci maximum principle (see [4, Theorem 6]),

(2.9) vm+L(B1),vmL(B1)C,\|v_{m}^{+}\|_{L^{\infty}(B_{1})},~{}\|v_{m}\|_{L^{\infty}(B_{1})}\leq C,

where CC depends only on nn and KK. Hence, there exist v¯+\bar{v}^{+} and v¯\bar{v} such that (up to a subsequence)

(2.10) vm+v¯+,vmv¯inC1(Ω¯),ΩB1.v_{m}^{+}\to\bar{v}^{+},~{}v_{m}\to\bar{v}\quad\mbox{in}~{}~{}C^{1}(\bar{\Omega}^{\prime}),~{}\forall~{}\Omega^{\prime}\subset\subset B_{1}.

In addition, since vm+W1,1(B1),vmW1,1(B1)\|v_{m}^{+}\|_{W^{1,1}(B_{1})},\|v_{m}\|_{W^{1,1}(B_{1})} are uniformly bounded (see [110, (16), P. 319]),

(2.11) vm+v¯+,vmv¯weakly inW1,1(B1).v_{m}^{+}\to\bar{v}^{+},~{}v_{m}\to\bar{v}\quad\mbox{weakly in}~{}~{}W^{1,1}(B_{1}).

Note that vm+vmW01,1(B1)v_{m}^{+}-v_{m}\in W^{1,1}_{0}(B_{1}). By using it as the test function in 2.7, we have

B1(A(Dvm+)A(Dvm))(Dvm+Dvm)=1mB1(vm+vm).\int_{B_{1}}\left(A(Dv_{m}^{+})-A(Dv_{m})\right)\left(Dv_{m}^{+}-Dv_{m}\right)=\frac{1}{m}\int_{B_{1}}\left(v_{m}^{+}-v_{m}\right).

By 2.9 and

(A(p)A(q))(pq)|pq|2(1+|p|2+|q|2)3/2,p,qn,(A(p)-A(q))\cdot(p-q)\geq\frac{|p-q|^{2}}{(1+|p|^{2}+|q|^{2})^{3/2}},~{}\forall~{}p,q\in\mathbb{R}^{n},

we have

B1|Dvm+Dvm|2(1+|Dvm+|2+|Dvm|2)3/2Cm.\int_{B_{1}}\frac{|Dv_{m}^{+}-Dv_{m}|^{2}}{(1+|Dv_{m}^{+}|^{2}+|Dv_{m}|^{2})^{3/2}}\leq\frac{C}{m}.

Let mm\to\infty and by the Fatou’s lemma,

B1|Dv¯+Dv¯|2(1+|Dv¯+|2+|Dv¯|2)3/2=0.\int_{B_{1}}\frac{|D\bar{v}^{+}-D\bar{v}|^{2}}{(1+|D\bar{v}^{+}|^{2}+|D\bar{v}|^{2})^{3/2}}=0.

By 2.11, v¯+v¯W01,1(B1)\bar{v}^{+}-\bar{v}\in W^{1,1}_{0}(B_{1}). Hence, v¯+v¯\bar{v}^{+}\equiv\bar{v} in B1B_{1}, which contradicts with 2.8. Therefore, 2.6 holds.

By combining 2.5 with 2.6,

(2.12) uvL(B1)δ2.\|u-v\|_{L^{\infty}(B_{1})}\leq\delta_{2}.

Since vv is smooth, there exists P𝒫1P\in\mathcal{P}_{1} such that

|v(x)P(x)|C|x|2,xB1/2,|v(x)-P(x)|\leq C|x|^{2},~{}\forall~{}x\in B_{1/2},

and

|DP|C,|DP|\leq C,

where CC depends only on nn and uL(B1)\|u\|_{L^{\infty}(B_{1})}.

Take 0<r<1/20<r<1/2 small enough such that Cr<δ1/2Cr<\delta_{1}/2. Then

(2.13) vPL(Br)δ12r.\|v-P\|_{L^{\infty}(B_{r})}\leq\frac{\delta_{1}}{2}r.

In addition, take δ2\delta_{2} small enough such that δ2δ1r/2\delta_{2}\leq\delta_{1}r/2. Therefore, by 2.12 and 2.13,

uPL(Br)δ1r.\|u-P\|_{L^{\infty}(B_{r})}\leq\delta_{1}r.

∎ 

Now, we give the 
Proof of Theorem 2.3. For (i), let u~=uP\tilde{u}=u-P and u~\tilde{u} is a solution of

G(D2v,Dv)=F(D2v,Dv+DP)=finB1,G(D^{2}v,Dv)=F(D^{2}v,Dv+DP)=f\quad\mbox{in}~{}B_{1},

where F,GF,G are defined as in Remark 2.5. Hence, GG is smooth and is 11-uniformly elliptic with ellipticity constants depending only on |DP||DP|. Then by Theorem 1.5, the conclusion follows.

Next, we prove (ii). Let δ1>0\delta_{1}>0 to be specified later. By Lemma 2.9, there exist 0<r<1/20<r<1/2 and P𝒫1P\in\mathcal{P}_{1} such that

uPL(Br)δ1r.\|u-P\|_{L^{\infty}(B_{r})}\leq\delta_{1}r.

Let

y=xr,u~(y)=u(x)P(x)r,f~(y)=rf(x).y=\frac{x}{r},\quad\tilde{u}(y)=\frac{u(x)-P(x)}{r},\quad\tilde{f}(y)=rf(x).

Then u~\tilde{u} is a solution of

F(D2u~,Du~+DP)=f~inB1F(D^{2}\tilde{u},D\tilde{u}+DP)=\tilde{f}\quad\mbox{in}~{}B_{1}

and

u~L(B1)δ1,f~L(B1)fL(B1)n1.\|\tilde{u}\|_{L^{\infty}(B_{1})}\leq\delta_{1},\quad\|\tilde{f}\|_{L^{\infty}(B_{1})}\leq\|f\|_{L^{\infty}(B_{1})}\leq n-1.

Then u~C1,α(0)\tilde{u}\in C^{1,\alpha}(0) by Theorem 1.5 provided δ1\delta_{1} is small enough, which is guaranteed by taking δ\delta small enough.

Next, we prove (iii). For r>0r>0, let

(2.14) y=xr,u~(y)=u(x)u(0)r,f~(y)=rf(x).y=\frac{x}{r},\quad\tilde{u}(y)=\frac{u(x)-u(0)}{r},\quad\tilde{f}(y)=rf(x).

Then u~\tilde{u} is a solution of

F(D2u~,Du~)=f~inB1.F(D^{2}\tilde{u},D\tilde{u})=\tilde{f}\quad\mbox{in}~{}B_{1}.

By the assumption, u~\tilde{u} is bounded. We choose rr small enough (depending on fL(B1)\|f\|_{L^{\infty}(B_{1})}) such that f~L\|\tilde{f}\|_{L^{\infty}} is small. Then the conclusion follows from (ii).

Finally, we prove (iv). Let

y=xδ,u~(y)=u(x)P(x)δ,f~(y)=δf(x).y=\frac{x}{\delta},\quad\tilde{u}(y)=\frac{u(x)-P(x)}{\delta},\quad\tilde{f}(y)=\delta f(x).

Then u~\tilde{u} is a solution of

F(D2u~,Du~+DP)=f~inB1.F(D^{2}\tilde{u},D\tilde{u}+DP)=\tilde{f}\quad\mbox{in}~{}B_{1}.

Take δ\delta small enough such that f~L(B1)\|\tilde{f}\|_{L^{\infty}(B_{1})} is small. In addition, since u~=0\tilde{u}=0 on B1\partial B_{1}, by the Alexandrov-Bakel’man-Pucci maximum principle (see [4, Theorem 6]), u~L(B1)\|\tilde{u}\|_{L^{\infty}(B_{1})} is small. Then the conclusion follows from Theorem 1.5. ∎ 

The next is the 
Proof of Theorem 2.4. By Theorem 2.3, uC1,α(0)u\in C^{1,\alpha}(0). For r>0r>0, let

y=xr,u~(y)=u(x)Pu(x)r,f~(y)=rf(x).y=\frac{x}{r},\quad\tilde{u}(y)=\frac{u(x)-P_{u}(x)}{r},\quad\tilde{f}(y)=rf(x).

Then u~\tilde{u} is a solution of

F(D2u~,Du~+DPu)=f~inB1.F(D^{2}\tilde{u},D\tilde{u}+DP_{u})=\tilde{f}\quad\mbox{in}~{}B_{1}.

Since uC1,α(0)u\in C^{1,\alpha}(0),

u~L(B1)=r1uPuL(Br)Crα,\displaystyle\|\tilde{u}\|_{L^{\infty}(B_{1})}=r^{-1}\|u-P_{u}\|_{L^{\infty}(B_{r})}\leq Cr^{\alpha},
f~Ck2,α(0)i=0k2ri+1|Dif(0)|+rk1+α[f]Ck2,α(0).\displaystyle\|\tilde{f}\|_{C^{k-2,\alpha}(0)}\leq\sum_{i=0}^{k-2}r^{i+1}|D^{i}f(0)|+r^{k-1+\alpha}[f]_{C^{k-2,\alpha}(0)}.

Hence, we can choose rr small enough such that u~L\|\tilde{u}\|_{L^{\infty}} and f~Ck2,α(0)\|\tilde{f}\|_{C^{k-2,\alpha}(0)} are small. Then the conclusion follows from Theorem 1.7 and Theorem 1.9. ∎ 

At the end of this section, we give two remarks.

Remark 2.10.

Since the prescribed mean curvature equation has the divergence structure, one may consider a weak solution uW1,1(B1)u\in W^{1,1}(B_{1}) of 2.3 rather than a viscosity solution. We have the conclusion for weak solutions as well. For example, let us assume

uL(B1)δ,fL(B1)δ,\|u\|_{L^{\infty}(B_{1})}\leq\delta,\quad\|f\|_{L^{\infty}(B_{1})}\leq\delta,

where 0<δ<10<\delta<1 depends only on nn and α\alpha.

Then we can approach the regularity by an approximation argument similar to [110, Proof of Theorem 1]. Take sequences of smooth functions um,fmu_{m},f_{m} such that

umuinW1,1(B1),fmfinL2(B1)u_{m}\to u\quad\mbox{in}~{}~{}W^{1,1}(B_{1}),\quad f_{m}\to f\quad\mbox{in}~{}~{}L^{2}(B_{1})

and

umL(B1)δ,fmL(B1)δ,m1.\|u_{m}\|_{L^{\infty}(B_{1})}\leq\delta,\quad\|f_{m}\|_{L^{\infty}(B_{1})}\leq\delta,~{}\forall~{}m\geq 1.

Let vmC(B¯1)v_{m}\in C^{\infty}(\bar{B}_{1}) be solutions of (see [56, Theorem 16.10])

{divA(Dvm)=fminB1;vm=umonB1.\left\{\begin{aligned} \mathrm{div}A(Dv_{m})=&f_{m}\quad\mbox{in}~{}~{}B_{1};\\ v_{m}=&u_{m}\quad\mbox{on}~{}~{}\partial B_{1}.\end{aligned}\right.

By the Alexandrov-Bakel’man-Pucci maximum principle,

vmL(B1)Cδ,\|v_{m}\|_{L^{\infty}(B_{1})}\leq C\delta,

where CC depends only on nn. Then from (i) of Theorem 2.3,

vmC1,α(B¯1/2)C,\|v_{m}\|_{C^{1,\alpha}(\bar{B}_{1/2})}\leq C,

where CC depends only on nn and α\alpha. Hence, there exists v¯C1,α(B¯1/2)\bar{v}\in C^{1,\alpha}(\bar{B}_{1/2}) such that (up to a subsequence)

vmv¯inC1(B¯1/2).v_{m}\to\bar{v}\quad\mbox{in}~{}~{}C^{1}(\bar{B}_{1/2}).

As in the proof of Lemma 2.9,

B1(A(Dvm)A(Du))(DvmDum)=B1(fmf)(vmum).\int_{B_{1}}\left(A(Dv_{m})-A(Du)\right)\left(Dv_{m}-Du_{m}\right)=\int_{B_{1}}(f_{m}-f)\left(v_{m}-u_{m}\right).

Hence,

B1\displaystyle\int_{B_{1}} |DvmDu|2(1+|Dvm|2+|Du|2)3/2B1(A(Dvm)A(Du))(DvmDu)\displaystyle\frac{|Dv_{m}-Du|^{2}}{(1+|Dv_{m}|^{2}+|Du|^{2})^{3/2}}\leq\int_{B_{1}}\left(A(Dv_{m})-A(Du)\right)\left(Dv_{m}-Du\right)
=\displaystyle= B1(fmf)(vmum)+B1(A(Dvm)A(Du))(DumDu)\displaystyle\int_{B_{1}}(f_{m}-f)\left(v_{m}-u_{m}\right)+\int_{B_{1}}\left(A(Dv_{m})-A(Du)\right)\left(Du_{m}-Du\right)
\displaystyle\leq CfmfL2(B1)+2DumDuL1(B1).\displaystyle C\|f_{m}-f\|_{L^{2}(B_{1})}+2\|Du_{m}-Du\|_{L^{1}(B_{1})}.

Let mm\to\infty and we have

B1/2|Dv¯Du|2(1+|Dv¯|2+|Du|2)3/2=0.\int_{B_{1/2}}\frac{|D\bar{v}-Du|^{2}}{(1+|D\bar{v}|^{2}+|Du|^{2})^{3/2}}=0.

Thus, for some constant c0c_{0},

uv¯+c0inB1/2.u\equiv\bar{v}+c_{0}\quad\mbox{in}~{}~{}B_{1/2}.

Therefore, uC1,α(B¯1/2)u\in C^{1,\alpha}(\bar{B}_{1/2}).

Remark 2.11.

The theory for locally uniformly elliptic equations is not applicable to the pp-Laplace equations. Indeed, the pp-Laplace equations are more like uniformly elliptic equations (in particular when Du0Du\neq 0). Hence, one may use the uniformly elliptic equations techniques to study the pp-Laplace equations (e.g. [27, 129]). In addition, the pp-Laplace operator is not smooth.

3. Monge-Ampère equation

In this section, we consider the Monge-Ampère equation:

detD2u=finB1.\det D^{2}u=f\quad\mbox{in}~{}~{}B_{1}.

We have the following observation. For any convex polynomial P𝒫2P\in\mathcal{P}_{2} with det(D2P)=1\det(D^{2}P)=1, define

F(M)=det(M+D2P)1,M𝒮n.F(M)=\det(M+D^{2}P)-1,~{}\forall~{}M\in\mathcal{S}^{n}.

Then FC,F(0)=0F\in C^{\infty},F(0)=0. Moreover, FF is ρ\rho-uniformly elliptic with λ~,Λ~\tilde{\lambda},\tilde{\Lambda} and these three constants depend only on nn and |D2P||D^{2}P|. Therefore, the regularity theory for locally uniformly elliptic equations is applicable.

We have the following interior pointwise Ck,αC^{k,\alpha} regularity.

Theorem 3.1.

Let k2,0<α<1k\geq 2,0<\alpha<1 and uu be a strictly convex viscosity solution of

detD2u=finB1.\det D^{2}u=f\quad\mbox{in}~{}B_{1}.

Suppose that 0<λfΛ0<\lambda\leq f\leq\Lambda and fCk2,α(0)f\in C^{k-2,\alpha}(0). Then uCk,α(0)u\in C^{k,\alpha}(0).

If the dimension n=2n=2, the solution is always strictly convex (see [2], [63] [51, Theorem 2.19], [120, Remark 3.2]). Hence, we have

Corollary 3.2.

Let k2,0<α<1k\geq 2,0<\alpha<1 and uu be a convex viscosity solution of

detD2u=finB12.\det D^{2}u=f\quad\mbox{in}~{}B_{1}\subset\mathbb{R}^{2}.

Suppose that 0<λfΛ0<\lambda\leq f\leq\Lambda and fCk2,α(0)f\in C^{k-2,\alpha}(0). Then uCk,α(0)u\in C^{k,\alpha}(0).

By applying above result to the prescribed Gaussian curvature equation, we have

Corollary 3.3.

Let k2,0<α<1k\geq 2,0<\alpha<1 and uu be a strictly convex viscosity solution of

detD2u=K(x)(1+|Du|2)n+22inB1.\det D^{2}u=K(x)\left(1+|Du|^{2}\right)^{\frac{n+2}{2}}\quad\mbox{in}~{}B_{1}.

Suppose that 0<λKΛ0<\lambda\leq K\leq\Lambda and KCk2,α(0)K\in C^{k-2,\alpha}(0). Then uCk,α(0)u\in C^{k,\alpha}(0).

Proof.

Since uu is convex,

DuL(B1/2)CuL(B1).\|Du\|_{L^{\infty}(B_{1/2})}\leq C\|u\|_{L^{\infty}(B_{1})}.

Hence, the right-hand term is bounded between two positive constants. Then from the strict convexity of uu, we have uC1,β(B¯1/2)u\in C^{1,\beta}(\bar{B}_{1/2}) for some 0<β<10<\beta<1 (see [23, Theorem 2], [51, Corollary 4.21] and [120, Lemma 3.5]). Therefore, the conclusion follows from Theorem 3.1. ∎ 

Remark 3.4.

The C2,αC^{2,\alpha} regularity for the Monge-Ampère equation is well-known. Sabitov [98] and Schulz [102] proved the C2,αC^{2,\alpha} regularity for n=2n=2. If fC0,1f\in C^{0,1}, the C2,αC^{2,\alpha} regularity for general dimensions was derived by Urbas [123]. The C2,αC^{2,\alpha} regularity for general dimensions was due to Caffarelli [22] (see also [70]). Trudinger and Wang obtained boundary C2,αC^{2,\alpha} regularity [119] and the pointwise version was proved by Savin [99]. Of course, Savin’s proof is also applicable to derive interior pointwise C2,αC^{2,\alpha} regularity.

As pointed out in Remark 1.10, we can obtain pointwise CkC^{k} and Ck,LnLC^{k,\mathrm{Ln}L} (k2k\geq 2) regularity as well. In this respect, the C2C^{2} regularity was proved by Wang [130] and C2,LnLC^{2,\mathrm{Ln}L} regularity was proved by Jian and Wang [70].

Remark 3.5.

If the dimension n3n\geq 3, by the well-known Pogorelov’s counterexample (see [97, P. 81-83] and a good explanation on this counterexample in [51, Chapter 3.2]), the condition “uu is strictly convex” can not be dropped. In addition, “fλ>0f\geq\lambda>0” cannot be replaced by “f0f\geq 0”. Indeed, the best regularity for the latter is C1,1C^{1,1} in general (see [115, Theorem 2] and [60] for C1,1C^{1,1} regularity; see [20, Example 2], [60, (1.3), P. 88] and [132, Example 3 and Remark 1] for counterexamples).

In conclusion, by transforming the Monge-Ampère equation to a locally uniformly elliptic equation, we can obtain the best expected regularity, which may imply that this viewpoint is essential. That the Monge-Ampère equation can be transformed to a locally uniformly elliptic equation has been noted before (e.g. [135, P. 673, L. 1]). We learned this from a note written by Prof. Chuanqiang Chen.

Remark 3.6.

There are several criterions to ensure that uu is strictly convex in a general domain Ω\Omega, such as

  • uu is an affine function on Ω\partial\Omega (see [21, Corollary 2], [51, Theorem 4.10] and [120, Lemma 3.4]).

  • uC1,α(Ω)u\in C^{1,\alpha}(\partial\Omega) (α>12/n\alpha>1-2/n) (see [21, Corollary 4], [51, Corollary 4.11] and [120, Remark 3.1]).

  • uW2,p(Ω)u\in W^{2,p}(\Omega) (p>n(n1)/2p>n(n-1)/2) (see [112] and [123]).

Remark 3.7.

Another important notion of weak solution is the Alexandrov’s generalized solution (see [1] and [51, Definition 2.5]). The right-hand term ff is not necessarily continuous if we use this notion. These two definitions are equivalent if ff is continuous (see [61, Proposition 1.3.4, Proposition 1.7.1]).

Theorem 3.1 holds for Alexandrov’s generalized solutions as well. In the following, we make an explanation. Since uu is strictly convex, without loss of generality, we can assume that uu is an Alexandrov’s generalized solution of

{detD2u=finΩ;u=0onΩ,\left\{\begin{aligned} \det D^{2}u&=f&&~{}\mbox{in}~{}\Omega;\\ u&=0&&~{}\mbox{on}~{}\partial\Omega,\end{aligned}\right.

where Ω\Omega is a convex domain and B1/nΩB1B_{1/n}\subset\Omega\subset B_{1}. Choose a smooth function φ\varphi with compact support in B1B_{1} to mollify ff by convolution: (see [150, Lemma 3.5.6])

fε:=fφε,φε(x):=εnφ(x/ε),ε>0f_{\varepsilon}:=f*\varphi_{\varepsilon},\quad\varphi_{\varepsilon}(x):=\varepsilon^{-n}\varphi(x/\varepsilon),\quad\varepsilon>0

such that

P=Pφε,P𝒫k2,ε>0.P=P*\varphi_{\varepsilon},~{}\forall~{}P\in\mathcal{P}_{k-2},~{}\varepsilon>0.

Then fεCk2,α(0)f_{\varepsilon}\in C^{k-2,\alpha}(0) with PfεPfP_{f_{\varepsilon}}\equiv P_{f}.

Let uεu_{\varepsilon} be Alexandrov’s solutions (be viscosity solutions as well) of (see [51, Theorem 2.13])

{detD2uε=fεinΩ;uε=0onΩ.\left\{\begin{aligned} \det D^{2}u_{\varepsilon}&=f_{\varepsilon}&&~{}\mbox{in}~{}\Omega;\\ u_{\varepsilon}&=0&&~{}\mbox{on}~{}\partial\Omega.\end{aligned}\right.

Since fεff_{\varepsilon}\to f in L1(Ω)L^{1}(\Omega), we have (see [51, Proposition 2.16])

uεuinL(Ω).u_{\varepsilon}\to u\quad\mbox{in}~{}~{}L^{\infty}(\Omega).

By Theorem 3.1, uεCk,α(0)u_{\varepsilon}\in C^{k,\alpha}(0). That is, there exist Pε𝒫kP_{\varepsilon}\in\mathcal{P}_{k} such that

(3.1) |uε(x)Pε(x)|C|x|k+α,xΩ|u_{\varepsilon}(x)-P_{\varepsilon}(x)|\leq C|x|^{k+\alpha},~{}\forall~{}x\in\Omega

and

PεC,\|P_{\varepsilon}\|\leq C,

where CC is independent of ε\varepsilon. Hence, up to a subsequence, there exists P𝒫kP\in\mathcal{P}_{k} such that PεPP_{\varepsilon}\to P. Let ε0\varepsilon\to 0 in 3.1 and then

|u(x)P(x)|C|x|k+α,xΩ.|u(x)-P(x)|\leq C|x|^{k+\alpha},~{}\forall~{}x\in\Omega.

That is, uCk,α(0)u\in C^{k,\alpha}(0).

We first prove a lemma.

Lemma 3.8.

Let B1/nΩB1B_{1/n}\subset\Omega\subset B_{1} and uu be a viscosity solution of

{detD2u=finΩ;u=0onΩ.\left\{\begin{aligned} \det D^{2}u&=f&&~{}\mbox{in}~{}\Omega;\\ u&=0&&~{}\mbox{on}~{}\partial\Omega.\end{aligned}\right.

Assume that 0 is the minimum point of uu.

Then for any δ1>0\delta_{1}>0, there exist δ,r>0\delta,r>0 (depending only on nn and δ1\delta_{1}) such that for some P𝒫2P\in\mathcal{P}_{2} with D2P0D^{2}P\geq 0,

uPL(Br)δ1r2\|u-P\|_{L^{\infty}(B_{r})}\leq\delta_{1}r^{2}

and

(3.2) detD2P=1,PC,\det D^{2}P=1,\quad\|P\|\leq C,

provided

f1L(Ω)δ,\|f-1\|_{L^{\infty}(\Omega)}\leq\delta,

where CC depends only on nn.

Proof.

Suppose not. Then there exist δ1>0\delta_{1}>0, sequences of um,Ωmu_{m},\Omega_{m} and fmf_{m} such that B1/nΩmB1B_{1/n}\subset\Omega_{m}\subset B_{1},

{detD2um=fminΩm;um=0onΩm,\left\{\begin{aligned} \det D^{2}u_{m}&=f_{m}&&~{}\mbox{in}~{}\Omega_{m};\\ u_{m}&=0&&~{}\mbox{on}~{}\partial\Omega_{m},\end{aligned}\right.

and

fm1L(Ωm)1/m.\|f_{m}-1\|_{L^{\infty}(\Omega_{m})}\leq 1/m.

Moreover, for any convex polynomial P𝒫2P\in\mathcal{P}_{2} satisfying 3.2, we have

(3.3) umPL(Br)δ1r2,\|u_{m}-P\|_{L^{\infty}(B_{r})}\geq\delta_{1}r^{2},

where rr is to be specified later.

By the stability of solutions (see [51, Corollary 2.12]), up to a subsequence, there exist u¯,Ω~\bar{u},\tilde{\Omega} such that

umu¯,ΩmΩ~,B1/nΩ~B1.u_{m}\to\bar{u},\quad\Omega_{m}\to\tilde{\Omega},\quad B_{1/n}\subset\tilde{\Omega}\subset B_{1}.

Moreover, u¯\bar{u} is the solution of

{detD2u¯=1inΩ~;u¯=0onΩ~.\left\{\begin{aligned} \det D^{2}\bar{u}&=1&&~{}\mbox{in}~{}\tilde{\Omega};\\ \bar{u}&=0&&~{}\mbox{on}~{}\partial\tilde{\Omega}.\end{aligned}\right.

Since 0 is the minimum point of umu_{m}, we have (see [51, Proposition 4.4])

d(0,Ωm)c0>0,d(0,\partial\Omega_{m})\geq c_{0}>0,

where c0>0c_{0}>0 depends only on nn. Hence,

d(0,Ω~)c0.d(0,\partial\tilde{\Omega})\geq c_{0}.

By the interior regularity (see [51, Theorem 3.10]), there exists a convex polynomial P𝒫2P\in\mathcal{P}_{2} such that 3.2 holds and

|u¯(x)P(x)|C|x|3,xBc0/2.|\bar{u}(x)-P(x)|\leq C|x|^{3},~{}\forall~{}x\in B_{c_{0}/2}.

Take rr small such that

Cr=δ12.Cr=\frac{\delta_{1}}{2}.

Then

(3.4) u¯PL(Br)12δ1r2.\|\bar{u}-P\|_{L^{\infty}(B_{r})}\leq\frac{1}{2}\delta_{1}r^{2}.

By taking the limit in 3.3, we have

u¯PL(Br0)δ1r2,\|\bar{u}-P\|_{L^{\infty}(B_{r_{0}})}\geq\delta_{1}r^{2},

which contradicts with 3.4. ∎ 

Now, we give the 
Proof of Theorem 3.1. By subtracting an affine function, we may assume that u0u\geq 0 and u(0)=0u(0)=0. Since uu is strictly convex, for h>0h>0 small (to be specified later), Sh(0)B1S_{h}(0)\subset\subset B_{1}, where Sh(0)S_{h}(0) the section of uu at 0, i.e.

Sh(0):={xB1:u(x)<h}.S_{h}(0):=\left\{x\in B_{1}:~{}~{}u(x)<h\right\}.

With the aid of John’s lemma (see [71] and [51, A.3.2]), we normalize the section Sh(0)S_{h}(0) as follows:

(3.5) y=Thx,Ω~=Th(Sh(0)),B1/n(y~)Ω~B1(y~),u~(y)=u(x)h,y=T_{h}x,\quad\tilde{\Omega}=T_{h}(S_{h}(0)),\quad B_{1/n}(\tilde{y})\subset\tilde{\Omega}\subset B_{1}(\tilde{y}),\quad\tilde{u}(y)=\frac{u(x)}{h},

where Th𝒮nT_{h}\in\mathcal{S}^{n} and y~B1\tilde{y}\in B_{1}. Then u~\tilde{u} is a solution of

{detD2u~=f~inΩ~;u~=1onΩ~,\left\{\begin{aligned} \det D^{2}\tilde{u}&=\tilde{f}&&~{}\mbox{in}~{}\tilde{\Omega};\\ \tilde{u}&=1&&~{}\mbox{on}~{}\partial\tilde{\Omega},\end{aligned}\right.

where

f~(y)=f(x)(detTh)2hn.\tilde{f}(y)=\frac{f(x)}{(\det T_{h})^{2}h^{n}}.

By the uniform estimate (see [120, Lemma 3.2]),

(3.6) C1(detTh)2hnC2,C_{1}\leq(\det T_{h})^{2}h^{n}\leq C_{2},

where C1,C2C_{1},C_{2} depends only on n,λ,Λn,\lambda,\Lambda. Without loss of generality, we assume f~(0)=1\tilde{f}(0)=1. Since fCk2,α(0)f\in C^{k-2,\alpha}(0),

|f~(y)1|C|f(x)f(0)|C|x|αC|Th1||y|α.|\tilde{f}(y)-1|\leq C|f(x)-f(0)|\leq C|x|^{\alpha}\leq C|T_{h}^{-1}|\cdot|y|^{\alpha}.

Since uu is strictly convex,

(3.7) |Th1|0ash0.|T_{h}^{-1}|\to 0\quad\mbox{as}~{}~{}h\to 0.

Let 0<δ1<10<\delta_{1}<1 to be determined later. By 3.7, we can take hh small enough such that

(3.8) CTh1δ1,f~1L(Ω~)δ,C\|T_{h}^{-1}\|\leq\delta_{1},\quad\|\tilde{f}-1\|_{L^{\infty}(\tilde{\Omega})}\leq\delta,

where δδ1\delta\leq\delta_{1} is chosen small enough such that Lemma 3.8 holds. Then by Lemma 3.8, there exist r>0r>0 and a convex polynomial P𝒫2P\in\mathcal{P}_{2} such that

(3.9) u~PL(Br)δ1r2,\|\tilde{u}-P\|_{L^{\infty}(B_{r})}\leq\delta_{1}r^{2},

and

detD2P=1,PC.\det D^{2}P=1,\quad\|P\|\leq C.

Let

z=yr,u^(z)=u~(y)P(y)r2.z=\frac{y}{r},\quad\hat{u}(z)=\frac{\tilde{u}(y)-P(y)}{r^{2}}.

Then u^\hat{u} is a solution of

(3.10) F(D2u^)=f^ inB1,F(D^{2}\hat{u})=\hat{f}~{}~{}\mbox{ in}~{}B_{1},

where

F(M)=det(M+D2P)1,M𝒮n,f^(z)=f~(y)1.F(M)=\det(M+D^{2}P)-1,~{}\forall~{}M\in\mathcal{S}^{n},\quad\hat{f}(z)=\tilde{f}(y)-1.

Note that FC,F(0)=0F\in C^{\infty},F(0)=0 and FF is ρ\rho-uniformly elliptic with ellipticity constants λ~,Λ~\tilde{\lambda},\tilde{\Lambda} and they depend only on n,λ,Λn,\lambda,\Lambda.

By 3.8, 3.9 and the definition of f^\hat{f},

u^L(B1)δ1,f^Cα(0)δδ1.\|\hat{u}\|_{L^{\infty}(B_{1})}\leq\delta_{1},\quad\|\hat{f}\|_{C^{\alpha}(0)}\leq\delta\leq\delta_{1}.

From Theorem 1.7 and Corollary 1.12 (choosing δ1\delta_{1} small enough), u^Ck,α(0)\hat{u}\in C^{k,\alpha}(0) and hence uCk,α(0)u\in C^{k,\alpha}(0).  ∎ 

Remark 3.9.

Two cornerstone results for Theorem 3.1 are a priori estimates/existence of classical solutions and Pogorelov’s type estimate. They are implicitly used in Lemma 3.8. We refer to [51, Theorem 3.10] for details.

Remark 3.10.

For the Monge-Ampère equation, we obtain almost the same Ck,αC^{k,\alpha} regularity as the Poisson’s equation. However, for the prescribed mean curvature equation (and other types of equations below), we must assume that uu (or ff) is small or uu is uniformly elliptic at 0 (i.e. uC0,1u\in C^{0,1}). The reason is that for the Monge-Ampère equation, we can make an anisotropic scaling such that the equation is unchanged. This is the unique feature of the Monge-Ampère equation.

For the prescribed mean curvature equation, to make ff small and the equation unchanged, we have to make the following scaling (see 2.14):

(3.11) y=xr,u~(y)=u(x)u(0)r.y=\frac{x}{r},\quad\tilde{u}(y)=\frac{u(x)-u(0)}{r}.

Thus, to guarantee that u~\tilde{u} is bounded, we must assume that uC0,1(0)u\in C^{0,1}(0).

On the contrast, for the Monge-Ampère equation, to make ff small and the equation unchanged, we can make an anisotropic scaling (see 3.5):

(3.12) y=Thx,Ω~=Th(Sh(0)),u~(y)=u(x)h,y=T_{h}x,\quad\tilde{\Omega}=T_{h}(S_{h}(0)),\quad\tilde{u}(y)=\frac{u(x)}{h},

where ThT_{h} is anisotropic, i.e., its eigenvalues may be not comparable. Note that hr2h\simeq r^{2} in the sense of anisotropy (see 3.6). Hence, the scaling transformation 3.12 is essentially the same to 3.11 except that 3.12 is anisotropic. Maybe this is the reason that there are few pointwise Schauder regularity for non-uniformly equations except the Monge-Ampère equation.

4. kk-Hessian equations

Next, we consider the kk-Hessian equations. For uC2u\in C^{2}, denote its eigenvalues by

λ(D2u)=(λ1,,λn)n.\lambda(D^{2}u)=(\lambda_{1},\cdots,\lambda_{n})\in{\mathbb{R}}^{n}.

Define for 1kn1\leq k\leq n

σk(D2u)=σk(λ(D2u))=1i1<<iknλi1λik.\sigma_{k}(D^{2}u)=\sigma_{k}(\lambda(D^{2}u))=\sum_{1\leq i_{1}<\cdots<i_{k}\leq n}\lambda_{i_{1}}\cdots\lambda_{i_{k}}.

We say uu is kk-admissible if λ(D2u)Γk,\lambda(D^{2}u)\in\Gamma_{k}, where Γk\Gamma_{k} is the Gårding convex cone in n{\mathbb{R}}^{n} defined by

Γk{λn|σi(λ)>0,1ik}.\Gamma_{k}\equiv\big{\{}\lambda\in{\mathbb{R}}^{n}\big{|}\ \sigma_{i}(\lambda)>0,\quad\forall~{}1\leq i\leq k\big{\}}.

For more basic knowledge of the kk-Hessian equations, we refer to [134]. We consider the kk-Hessian equation:

σk(D2u)=f inB1.\sigma_{k}(D^{2}u)=f~{}~{}\mbox{ in}~{}B_{1}.

Similar to the Monge-Ampère equation, for any kk-admissible polynomial P𝒫2P\in\mathcal{P}_{2} with σk(D2P)=1\sigma_{k}(D^{2}P)=1, define

F(M)=σk(M+D2P)1,M𝒮n.F(M)=\sigma_{k}(M+D^{2}P)-1,~{}\forall~{}M\in\mathcal{S}^{n}.

Then FC,F(0)=0F\in C^{\infty},F(0)=0 and FF is ρ\rho-uniformly elliptic with λ~,Λ~\tilde{\lambda},\tilde{\Lambda} which depend only on n,kn,k and |D2P||D^{2}P|.

Now, we state the main results in this section. Since the kk-Hessian equation reduces to the Monge-Ampère equation if the dimension n=2n=2, we only consider n3n\geq 3 in this section.

Theorem 4.1.

Let 2kn12\leq k\leq n-1, 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of

(4.1) σk(D2u)=f inB1,\sigma_{k}(D^{2}u)=f~{}~{}\mbox{ in}~{}B_{1},

where 0<λfΛ0<\lambda\leq f\leq\Lambda. Then uCl,α(0)u\in C^{l,\alpha}(0) (l2l\geq 2) provided one of the following conditions holds :
(i) there exists a kk-admissible P𝒫2P\in\mathcal{P}_{2} such that

uPL(B1)δ,σk(D2P)=f(0),fCl2,α(0),[f]Cα(0)δ,\|u-P\|_{L^{\infty}(B_{1})}\leq\delta,\quad\sigma_{k}(D^{2}P)=f(0),\quad f\in C^{l-2,\alpha}(0),\quad[f]_{C^{\alpha}(0)}\leq\delta,

where 0<δ<10<\delta<1 depends only on n,k,λ,Λ,αn,k,\lambda,\Lambda,\alpha and |D2P||D^{2}P|.
(ii) there exists a kk-admissible P𝒫2P\in\mathcal{P}_{2} such that

uPL(B1)δ,σk(D2P)=f(0),fCl2,α(0),\|u-P\|_{L^{\infty}(B_{1})}\leq\delta,\quad\sigma_{k}(D^{2}P)=f(0),\quad f\in C^{l-2,\alpha}(0),

where 0<δ<10<\delta<1 depends only on n,k,λ,Λ,α,|D2P|n,k,\lambda,\Lambda,\alpha,|D^{2}P| and [f]Cα(0)[f]_{C^{\alpha}(0)}.
(iii) uC2(0)u\in C^{2}(0) and fCl2,α(0)f\in C^{l-2,\alpha}(0).
(iv) there exists p>k(n1)/2p>k(n-1)/2 such that

uW2,p(B1),fCl2,α(0),[f]Cα(0)δ,u\in W^{2,p}(B_{1}),\quad f\in C^{l-2,\alpha}(0),\quad[f]_{C^{\alpha}(0)}\leq\delta,

where δ\delta depends only on n,k,λ,Λ,αn,k,\lambda,\Lambda,\alpha and uW2,p(B1)\|u\|_{W^{2,p}(B_{1})}
(v) there exists a kk-admissible P𝒫2P\in\mathcal{P}_{2} such that

u=P onBδ,σk(D2P)=f(0),fCl2,α(0),u=P~{}~{}\mbox{ on}~{}\partial B_{\delta},\quad\sigma_{k}(D^{2}P)=f(0),\quad f\in C^{l-2,\alpha}(0),

where δ\delta depends only on n,k,λ,Λ,αn,k,\lambda,\Lambda,\alpha and |D2P||D^{2}P|

Chaudhuri and Trudinger [31] proved that if k>n/2k>n/2, uC2(x0)u\in C^{2}(x_{0}) for a.e. x0x_{0}. Hence, we have the following corollary of (iii).

Corollary 4.2.

Let k>n/2k>n/2, l2,0<α<1l\geq 2,0<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of

(4.2) σk(D2u)=f inB1,\sigma_{k}(D^{2}u)=f~{}~{}\mbox{ in}~{}B_{1},

where 0<λfΛ0<\lambda\leq f\leq\Lambda and fCl2,α(B¯1)f\in C^{l-2,\alpha}(\bar{B}_{1}). Then uCl,α(x0)u\in C^{l,\alpha}(x_{0}) for a.e. x0B1x_{0}\in B_{1}.

Remark 4.3.

We point out that σk(D2P)=f(0)\sigma_{k}(D^{2}P)=f(0) is not needed. In fact, with the aid of the definition of viscosity solution, we can modify PP such that this equality holds if δ\delta is small enough.

We do not know whether the C2,αC^{2,\alpha} regularity holds if we only assume uC1,1(0)u\in C^{1,1}(0) instead of uC2(0)u\in C^{2}(0) in (iii). On the other hand, uC2(0)u\in C^{2}(0) can be relaxed to (by a similar proof to that of Theorem 4.4)

K1|x|2uPK1|x|2inB1,K_{1}|x|^{2}\leq u-P\leq K_{1}|x|^{2}\quad\mbox{in}~{}~{}B_{1},

where K1,K2>0K_{1},K_{2}>0 and P𝒫1P\in\mathcal{P}_{1}. A similar condition has been used by Wang and Bao [125, Theorem 1.1] to prove the rigidity in n\mathbb{R}^{n} for the kk-Hessian equation.

Urbas [122] (see also [112, 121] for similar estimates) proved the interior C1,1C^{1,1} estimate if p>k(n1)/2p>k(n-1)/2 and fC1,1f\in C^{1,1}. This is the cornerstone of the regularity under the assumption (iv).

The condition (v) concerns the regularity in a small domain. In this direction, Urbas [124, Theorem 3] proved global C1C^{1} estimate. Tian, Wang and Wang [109] studied the local solvability of the kk-Hessian equation in Br0B_{r_{0}} for r0r_{0} small. Maybe Theorem 4.1 can be applied to study the local solvability.

Since the kk-Hessian equations do not possess pure interior C1,1C^{1,1} estimate, we do not have a similar regularity by assuming only ff(0)f-f(0) small as in (ii) Theorem 2.3. Instead, we have the following regularity based on a priori estimates and the Pogorelov’s type estimate.

Theorem 4.4.

Let 2kn12\leq k\leq n-1, 0<α<10<\alpha<1 and uC(Ω¯)u\in C(\bar{\Omega}) be a viscosity solution of

{σk(D2u)=finΩ;u=gonΩ,\left\{\begin{aligned} \sigma_{k}(D^{2}u)&=f&&~{}\mbox{in}~{}\Omega;\\ u&=g&&~{}\mbox{on}~{}\partial\Omega,\end{aligned}\right.

where 0<λfΛ0<\lambda\leq f\leq\Lambda. Then uCl,α(0)u\in C^{l,\alpha}(0) (l2l\geq 2) provided one of the following conditions holds :
(i) ΩC3,1\partial\Omega\in C^{3,1}, Ω\Omega is (k1)(k-1)-convex and

gg0L(Ω)δ,g0C3,1(Ω),fCl2,α(0),[f]Cα(0)δ,\|g-g_{0}\|_{L^{\infty}(\partial\Omega)}\leq\delta,~{}g_{0}\in C^{3,1}(\partial\Omega),~{}f\in C^{l-2,\alpha}(0),~{}[f]_{C^{\alpha}(0)}\leq\delta,

where 0<δ<10<\delta<1 depends only on n,k,λ,Λ,α,Ωn,k,\lambda,\Lambda,\alpha,\Omega and g0C3,1(Ω)\|g_{0}\|_{C^{3,1}(\partial\Omega)}.
(ii) Ω\Omega is a (k1)(k-1)-convex domain and

gPL(Ω)δ,P𝒫1,fCl2,α(0),[f]Cα(0)δ,\|g-P\|_{L^{\infty}(\partial\Omega)}\leq\delta,~{}P\in\mathcal{P}_{1},~{}f\in C^{l-2,\alpha}(0),~{}[f]_{C^{\alpha}(0)}\leq\delta,

where 0<δ<10<\delta<1 depends only on n,k,λ,Λ,αn,k,\lambda,\Lambda,\alpha and Ω\Omega.
(iii)

Ω=Bδ,gPL(Bδ)δ1δ2,P𝒫1,fCl2,α(0),\Omega=B_{\delta},~{}~{}\|g-P\|_{L^{\infty}(\partial B_{\delta})}\leq\delta_{1}\delta^{2},~{}~{}P\in\mathcal{P}_{1},~{}~{}f\in C^{l-2,\alpha}(0),

where δ1\delta_{1} depends only on n,k,λ,Λ,αn,k,\lambda,\Lambda,\alpha and δ\delta depends also on [f]Cα(0)[f]_{C^{\alpha}(0)}

Remark 4.5.

The regularity under assumption (i) is based on a priori estimates for sufficient smooth data, which was first proved by Caffarelli, Nirenberg and Spruck [19] (see also [113] and [134, Theorem 3.4]). The regularity under assumption (ii) is based on the Pogorelov’s type estimate, established by Chou and Wang [42, Theorem 1.5] (see also [134, Theorem 4.3]). In (ii), Ω\partial\Omega is not necessary to be smooth. The (k1)(k-1)-convexity can be defined in some weak sense (e.g. by an approximation, see [116, P. 226, L. 4]; in the viscosity sense, see [117, P. 580]).

Remark 4.6.

There are other types of weak solutions, e.g., the weak solution defined by an approximation (see [114], [121], [122]) and the weak solution based on the Borel measure (see [116, 117, 118]). As before, Theorem 4.1 and Theorem 4.4 hold with these weak solutions by an approximation argument.

Remark 4.7.

We do not know any counterexample for the kk-Hessian equation to demonstrate the necessity of the “smallness” as in the prescribed mean curvature equation (see Remark 2.6), the kk-Hessian quotient equations (see Remark 5.4) and the Lagrangian mean curvature equation (see Remark 6.5). Hence, it is interesting to construct a counterexample, e.g., a strictly convex viscosity solution uu of 4.1 with fCαf\in C^{\alpha} but uC2,αu\notin C^{2,\alpha}. Or, can we prove Theorem 4.1 and Theorem 4.4 without the smallness assumptions? Note that the counterexample constructed by Pogorelov and its extensions (see [26, 29, 91], [121, P. 6], [124] etc.) are not strictly convex.

We first prove a lemma.

Lemma 4.8.

Let uu be a viscosity solution of

σk(D2u)\displaystyle\sigma_{k}(D^{2}u) =f\displaystyle=f inB1.\displaystyle~{}\mbox{in}~{}B_{1}.

Assume that uW2,p(B1)u\in W^{2,p}(B_{1}) (p>k(n1)/2)(p>k(n-1)/2).

Then for any δ1>0\delta_{1}>0 and K>0K>0, there exist δ,r>0\delta,r>0 (depending only on n,δ1n,\delta_{1} and KK) such that for some kk-admissible P𝒫2P\in\mathcal{P}_{2},

uPL(Br)δ1r2\|u-P\|_{L^{\infty}(B_{r})}\leq\delta_{1}r^{2}

and

(4.3) σk(D2P)=1,PC,\sigma_{k}(D^{2}P)=1,\quad\|P\|\leq C,

provided

uW2,p(B1)K,f1L(B1)δ,\|u\|_{W^{2,p}(B_{1})}\leq K,\quad\|f-1\|_{L^{\infty}(B_{1})}\leq\delta,

where CC depends only on n,k,pn,k,p and KK.

Proof.

Suppose not. Then there exist δ1,K>0\delta_{1},K>0, sequences of um,fmu_{m},f_{m} such that

σk(D2um)=fminB1\sigma_{k}(D^{2}u_{m})=f_{m}~{}~{}\mbox{in}~{}B_{1}

and

umW2,p(B1)K,fm1L(B1)1m.\|u_{m}\|_{W^{2,p}(B_{1})}\leq K,\quad\|f_{m}-1\|_{L^{\infty}(B_{1})}\leq\frac{1}{m}.

Moreover, for any kk-admissible P𝒫2P\in\mathcal{P}_{2} satisfying 4.3, we have

(4.4) umPL(Br)δ1r2,\|u_{m}-P\|_{L^{\infty}(B_{r})}\geq\delta_{1}r^{2},

where rr is to be specified later.

Since n3n\geq 3 and k2k\geq 2, we have p>k(n1)/2>n/2p>k(n-1)/2>n/2 and thus for some β>0\beta>0,

umCβ(B¯1)CumW2,p(B1)CK.\|u_{m}\|_{C^{\beta}(\bar{B}_{1})}\leq C\|u_{m}\|_{W^{2,p}(B_{1})}\leq CK.

Then up to a subsequence, there exist u¯\bar{u} such that

umu¯inL(B1),u¯W2,p(B1)K.u_{m}\to\bar{u}\quad\mbox{in}~{}~{}L^{\infty}(B_{1}),\quad\|\bar{u}\|_{W^{2,p}(B_{1})}\leq K.

Moreover, u¯\bar{u} is a viscosity solution of

σk(D2u¯)=1inB1.\sigma_{k}(D^{2}\bar{u})=1~{}~{}\mbox{in}~{}B_{1}.

Hence, u¯\bar{u} is smooth (see [122, Theorem 1.1] and there exists kk-admissible P𝒫2P\in\mathcal{P}_{2} such that 4.3 holds and

|u¯(x)P(x)|C|x|3,xB1/2.|\bar{u}(x)-P(x)|\leq C|x|^{3},~{}\forall~{}x\in B_{1/2}.

Take rr small such that Cr=δ1/2Cr=\delta_{1}/2. Then

u¯PL(Br)12δ1r2.\|\bar{u}-P\|_{L^{\infty}(B_{r})}\leq\frac{1}{2}\delta_{1}r^{2}.

By taking the limit in 4.4, we have

u¯PL(Br)δ1r2,\|\bar{u}-P\|_{L^{\infty}(B_{r})}\geq\delta_{1}r^{2},

which is contradiction. ∎ 

Now, we give the 
Proof of Theorem 4.1. The proof is similar to that of the prescribed mean curvature equation. We assume f(0)=1f(0)=1 without loss of generality. For (i), let u~=uP\tilde{u}=u-P and then u~\tilde{u} is a solution of

F(D2u~)=f~inB1,F(D^{2}\tilde{u})=\tilde{f}\quad\mbox{in}~{}B_{1},

where

(4.5) F(M):=σk(M+D2P)1,M𝒮n,f~:=f1.F(M):=\sigma_{k}(M+D^{2}P)-1,~{}\forall~{}M\in\mathcal{S}^{n},\quad\tilde{f}:=f-1.

Thus, FCF\in C^{\infty}, F(0)=0F(0)=0 and FF is ρ\rho-uniformly elliptic with ellipticity constants λ~,Λ~\tilde{\lambda},\tilde{\Lambda} and they depend only on n,k,λ,Λn,k,\lambda,\Lambda and |D2P||D^{2}P|. In addition, by assumption (i),

u~L(B1)δ,f~Cα(0)δ.\|\tilde{u}\|_{L^{\infty}(B_{1})}\leq\delta,\quad\|\tilde{f}\|_{C^{\alpha}(0)}\leq\delta.

Therefore, by Corollary 1.12, u~Cl,α(0)\tilde{u}\in C^{l,\alpha}(0) and hence uCl,α(0)u\in C^{l,\alpha}(0).

Next, we prove (ii). For r>0r>0, let

(4.6) y=xr,u~(y)=u(x)P(x)r2,f~(y)=f(x)1.y=\frac{x}{r},\quad\tilde{u}(y)=\frac{u(x)-P(x)}{r^{2}},\quad\tilde{f}(y)=f(x)-1.

Then u~\tilde{u} is a solution of

F(D2u~)=f~inB1.F(D^{2}\tilde{u})=\tilde{f}\quad\mbox{in}~{}B_{1}.

We first choose rr small enough such that f~Cα\|\tilde{f}\|_{C^{\alpha}} is small. Next, take δ\delta small such that u~L\|\tilde{u}\|_{L^{\infty}} is small. Then the conclusion follows from Corollary 1.12.

Note that (iii) is a direct consequence of Theorem 2.1.

As regards (iv), by Lemma 4.8, for any δ1>0\delta_{1}>0, there exist kk-admissible P𝒫2P\in\mathcal{P}_{2} and r>0r>0 such that,

uPL(Br)δ1r2.\|u-P\|_{L^{\infty}(B_{r})}\leq\delta_{1}r^{2}.

Then the conclusion follows as above through a transformation like 4.6.

Finally, we prove (v). By the comparison estimate for kk-Hessian estimate (see [114, Lemma 2.1]),

uPL(Bδ)Cδ2f1/k1L(Bδ)Cδ2+α,\|u-P\|_{L^{\infty}(B_{\delta})}\leq C\delta^{2}\|f^{1/k}-1\|_{L^{\infty}(B_{\delta})}\leq C\delta^{2+\alpha},

where CC depends only on n,kn,k. Then the conclusion follows as above.  ∎ 

Next, we give the 
Proof of Theorem 4.4. We assume f(0)=1f(0)=1 as before. For (i), since Ω\partial\Omega and g0g_{0} are smooth, there exists a solution vC3(Ω¯)v\in C^{3}(\bar{\Omega}) of (see [113, Theorem 1.1], [134, Theorem 3.4])

{σk(D2v)=1inΩ;v=g0onΩ.\left\{\begin{aligned} \sigma_{k}(D^{2}v)&=1&&~{}\mbox{in}~{}\Omega;\\ v&=g_{0}&&~{}\mbox{on}~{}\partial\Omega.\end{aligned}\right.

By the comparison estimate for kk-Hessian estimate (see [114, Lemma 2.1]),

(4.7) uvL(Ω)gg0L(Ω)+Cdiam(Ω)2f1/k1L(Ω)Cδα,\|u-v\|_{L^{\infty}(\Omega)}\leq\|g-g_{0}\|_{L^{\infty}(\partial\Omega)}+C\mathrm{diam}(\Omega)^{2}\|f^{1/k}-1\|_{L^{\infty}(\Omega)}\leq C\delta^{\alpha},

where CC depends only on n,kn,k and Ω\Omega.

In addition, by the interior C3C^{3} estimate for vv, there exists a kk-admissible P𝒫2P\in\mathcal{P}_{2} such that

(4.8) |v(x)P(x)|C|x|3,xBr0|v(x)-P(x)|\leq C|x|^{3},~{}\forall~{}x\in B_{r_{0}}

and

(4.9) σk(D2P)=1,PC\sigma_{k}(D^{2}P)=1,\quad\|P\|\leq C

where r0r_{0} depends only on Ω\Omega and CC depends only on n,k,Ω,g0C3,1(Ω)n,k,\Omega,\|g_{0}\|_{C^{3,1}(\partial\Omega)}.

Let 0<δ1<10<\delta_{1}<1 to be specified later. Take δ\delta and rr small enough such that

Crδ12,Cδαδ12r2.Cr\leq\frac{\delta_{1}}{2},\quad C\delta^{\alpha}\leq\frac{\delta_{1}}{2}r^{2}.

Then by 4.7 and 4.8,

(4.10) uPL(Br)δ1r2.\|u-P\|_{L^{\infty}(B_{r})}\leq\delta_{1}r^{2}.

Therefore, the conclusion follows as before (cf. the proof of Theorem 4.1).

The proof for (ii) is similar to the above. By subtracting PP, we may assume that |u|δ|u|\leq\delta on Ω\partial\Omega. Let vC3(Ω)C(Ω¯)v\in C^{3}(\Omega)\cap C(\bar{\Omega}) be the solution of (see [134, Theorem 4.4])

{σk(D2v)=1inΩ;v=0onΩ.\left\{\begin{aligned} \sigma_{k}(D^{2}v)&=1&&~{}\mbox{in}~{}\Omega;\\ v&=0&&~{}\mbox{on}~{}\partial\Omega.\end{aligned}\right.

By the comparison estimate,

(4.11) uvL(Ω)uL(Ω)+Cf1/k1L(Ω)Cδα.\|u-v\|_{L^{\infty}(\Omega)}\leq\|u\|_{L^{\infty}(\partial\Omega)}+C\|f^{1/k}-1\|_{L^{\infty}(\partial\Omega)}\leq C\delta^{\alpha}.

By the interior C3C^{3} estimate for vv, there exist r0>0r_{0}>0 and a kk-admissible P𝒫2P\in\mathcal{P}_{2} such that

|v(x)P(x)|C|x|3,xBr0|v(x)-P(x)|\leq C|x|^{3},~{}\forall~{}x\in B_{r_{0}}

and

σk(D2P)=1,PC.\sigma_{k}(D^{2}P)=1,\quad\|P\|\leq C.

Then the conclusion follows as above.

For (iii), with the aid of the transformation

y=xδ,u~(y)=u(x)P(x)δ2,y=\frac{x}{\delta},\quad\tilde{u}(y)=\frac{u(x)-P(x)}{\delta^{2}},

the conclusion follows from (ii). ∎ 

Since the 22-Hessian equation has pure interior C1,1C^{1,1} estimate in some circumstances, we have the following additional regularity for this equation.

Theorem 4.9.

Let 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of

(4.12) σ2(D2u)=f inB1n,\sigma_{2}(D^{2}u)=f~{}~{}\mbox{ in}~{}B_{1}\subset\mathbb{R}^{n},

where 0<λfΛ0<\lambda\leq f\leq\Lambda. Then uCl,α(0)u\in C^{l,\alpha}(0) (l2l\geq 2) provided one of the following conditions holds :
(i)

n=3,4,fCl2,α(0),[f]Cα(0)δ,n=3,4,\quad f\in C^{l-2,\alpha}(0),\quad[f]_{C^{\alpha}(0)}\leq\delta,

where 0<δ<10<\delta<1 depends only on n,λ,Λ,αn,\lambda,\Lambda,\alpha and uL(B1)\|u\|_{L^{\infty}(B_{1})}.
(ii)

n=3,4,uC1,1(0),fCl2,α(0).n=3,4,\quad u\in C^{1,1}(0),\quad f\in C^{l-2,\alpha}(0).

(iii) there exists ε>0\varepsilon>0 such that u+((n(n1)/2)1/2ε)|x|2u+\left((n(n-1)/2)^{-1/2}-\varepsilon\right)|x|^{2} is convex and

fCl2,α(0),[f]Cα(0)δ,f\in C^{l-2,\alpha}(0),\quad[f]_{C^{\alpha}(0)}\leq\delta,

where 0<δ<10<\delta<1 depends only on n,λ,Λ,α,εn,\lambda,\Lambda,\alpha,\varepsilon and uL(B1)\|u\|_{L^{\infty}(B_{1})}.
(iv) there exists ε>0\varepsilon>0 such that u+((n(n1)/2)1/2ε)|x|2u+\left((n(n-1)/2)^{-1/2}-\varepsilon\right)|x|^{2} is convex and

uC1,1(0),fCl2,α(0).u\in C^{1,1}(0),\quad f\in C^{l-2,\alpha}(0).
Remark 4.10.

The regularity under assumptions (i) and (ii) is based on the pure interior C1,1C^{1,1} estimate for the 22-Hessian equation when f1f\equiv 1. For n=3n=3, it was derived by Warren and Yuan [138]. For n=4n=4, it was derived by Shankar and Yuan [106].

The regularity under assumptions (iii) and (iv) is based on the pure interior C1,1C^{1,1} estimates for almost convex viscosity solutions. Mooney [93] proved the convex case; Shankar and Yuan [105] proved the almost convex case. We also note that the interior C1,1C^{1,1} estimate holds as well for smooth semi-convex solutions (see [59], [104]). However, we can not obtain a regularity result by an approximation argument based on these estimates. This has been pointed out in [93, P. 2474, L. 2] and [105, P. 2].

Remark 4.11.

The regularity under assumptions (i), (iii) (resp. (ii), (iv)) is analogous to (ii) (resp. (iii)) in Theorem 2.3 since we have pure interior C1,1C^{1,1} estimates for constant ff. A regularity result similar to (i) was proved by Xu [140] in dimension 33. The interior C2,αC^{2,\alpha} regularity in dimension 33 with fC0,1f\in C^{0,1} was obtained by Zhou [148, Theorem 1.4].

We first give a lemma.

Lemma 4.12.

Let uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of

σ2(D2u)=f inB1.\sigma_{2}(D^{2}u)=f~{}~{}\mbox{ in}~{}B_{1}.

and uL(B1)K\|u\|_{L^{\infty}(B_{1})}\leq K. Suppose that one of the following two conditions holds: 
(i) n=3n=3 or 44;
(ii) there exists ε>0\varepsilon>0 such that u+((n(n1)/2)1/2ε)|x|2u+\left((n(n-1)/2)^{-1/2}-\varepsilon\right)|x|^{2} is convex.

Then for any δ1>0\delta_{1}>0, there exist δ,r>0\delta,r>0 depending only on n,K,εn,K,\varepsilon and δ1\delta_{1} such that if f1L(B1)δ\|f-1\|_{L^{\infty}(B_{1})}\leq\delta, we have

uPL(Br)δ1r2\|u-P\|_{L^{\infty}(B_{r})}\leq\delta_{1}r^{2}

and

(4.13) σ2(D2P)=1,PC,\sigma_{2}(D^{2}P)=1,\quad\|P\|\leq C,

where P𝒫2P\in\mathcal{P}_{2} is 22-admissible and CC depends only on n,K,εn,K,\varepsilon.

Proof.

We only give the proof under the condition (ii). Suppose not. Then there exist K,δ1>0K,\delta_{1}>0 and sequences of um,fmu_{m},f_{m} such that

σ2(D2um)=fm inB1,\sigma_{2}(D^{2}u_{m})=f_{m}~{}~{}\mbox{ in}~{}B_{1},
umL(B1)K,fm1L(B1)1/m\|u_{m}\|_{L^{\infty}(B_{1})}\leq K,\quad\|f_{m}-1\|_{L^{\infty}(B_{1})}\leq 1/m

and um+((n(n1)/2)1/2ε)|x|2u_{m}+\left((n(n-1)/2)^{-1/2}-\varepsilon\right)|x|^{2} is convex. However, for any 22-admissible P𝒫2P\in\mathcal{P}_{2} satisfying 4.13, we have

(4.14) umPL(Br)>δ1r2,\|u_{m}-P\|_{L^{\infty}(B_{r})}>\delta_{1}r^{2},

where rr is to be specified later.

By the interior Hölder regularity (see [114, Theorem 4.1], [134, corollary 9.1]), umu_{m} are uniformly bounded and equicontinuous in any compact subset of B1B_{1}. Then up a subsequence, there exists u¯\bar{u} such that

umu¯inLloc(B1).u_{m}\to\bar{u}\quad\mbox{in}~{}~{}L^{\infty}_{loc}(B_{1}).

Then u¯+((n(n1)/2)1/2ε)|x|2\bar{u}+\left((n(n-1)/2)^{-1/2}-\varepsilon\right)|x|^{2} is convex and u¯\bar{u} is a viscosity solution of

σ2(D2u¯)=1 inB1.\sigma_{2}(D^{2}\bar{u})=1~{}~{}\mbox{ in}~{}B_{1}.

Thus, u¯\bar{u} is smooth (see [105, Theorem 1.1]) and there exists a 22-admissible P𝒫2P\in\mathcal{P}_{2} such that 4.13 holds and

|u¯(x)P(x)|C|x|3,xB1/2,|\bar{u}(x)-P(x)|\leq C|x|^{3},~{}\forall~{}x\in B_{1/2},

where CC depends only on nn and KK. Take rr small such that Cr=δ1/2Cr=\delta_{1}/2. Then

u¯PL(Br)12δ1r2.\|\bar{u}-P\|_{L^{\infty}(B_{r})}\leq\frac{1}{2}\delta_{1}r^{2}.

By taking the limit in 4.14, we have

u¯PL(Br)δ1r2,\|\bar{u}-P\|_{L^{\infty}(B_{r})}\geq\delta_{1}r^{2},

which is a contradiction. ∎ 

Proof of Theorem 4.9. With the aid of Lemma 4.12, the theorem can be proved in a similar way as before and we omit it. ∎ 

5. kk-Hessian quotient equation

In this section, we consider the kk-Hessian quotient equations:

Sk,l(D2u):=σk(D2u)σl(D2u)=f inB1,S_{k,l}(D^{2}u):=\frac{\sigma_{k}(D^{2}u)}{\sigma_{l}(D^{2}u)}=f~{}~{}\mbox{ in}~{}B_{1},

where 1l<kn1\leq l<k\leq n. Similar to the kk-Hessian equation, for any kk-admissible polynomial P𝒫2P\in\mathcal{P}_{2} with Sk,l(D2P)=1S_{k,l}(D^{2}P)=1, define

F(M)=Sk,l(M+D2P)1,M𝒮n.F(M)=S_{k,l}(M+D^{2}P)-1,~{}\forall~{}M\in\mathcal{S}^{n}.

Then FC,F(0)=0F\in C^{\infty},F(0)=0 and FF is ρ\rho-uniformly elliptic with λ~,Λ~\tilde{\lambda},\tilde{\Lambda} which depend only on n,k,ln,k,l and |D2P||D^{2}P|.

The main results are the following.

Theorem 5.1.

Let 1l<kn1\leq l<k\leq n, 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of

(5.1) Sk,l(D2u)=f inB1,S_{k,l}(D^{2}u)=f~{}~{}\mbox{ in}~{}B_{1},

where 0<λfΛ0<\lambda\leq f\leq\Lambda. Then uCm,α(0)u\in C^{m,\alpha}(0) (m2m\geq 2) provided one of the following conditions holds :
(i) there exists a kk-admissible P𝒫2P\in\mathcal{P}_{2} such that

uPL(B1)δ,Sk,l(D2P)=f(0),fCm2,α(0),[f]Cα(0)δ,\|u-P\|_{L^{\infty}(B_{1})}\leq\delta,\quad S_{k,l}(D^{2}P)=f(0),\quad f\in C^{m-2,\alpha}(0),\quad[f]_{C^{\alpha}(0)}\leq\delta,

where 0<δ<10<\delta<1 depends only on n,k,l,λ,Λ,αn,k,l,\lambda,\Lambda,\alpha and |D2P||D^{2}P|.
(ii) there exists a kk-admissible P𝒫2P\in\mathcal{P}_{2} such that

uPL(B1)δ,Sk,l(D2P)=f(0),fCm2,α(0),\|u-P\|_{L^{\infty}(B_{1})}\leq\delta,\quad S_{k,l}(D^{2}P)=f(0),\quad f\in C^{m-2,\alpha}(0),

where 0<δ<10<\delta<1 depends only on n,k,l,λ,Λ,α,|D2P|n,k,l,\lambda,\Lambda,\alpha,|D^{2}P| and [f]Cα(0)[f]_{C^{\alpha}(0)}.
(iii) uC2(0)u\in C^{2}(0) and fCm2,α(0)f\in C^{m-2,\alpha}(0).
(iv) there exists a kk-admissible P𝒫2P\in\mathcal{P}_{2} such that

u=P onBδ,σk(D2P)=f(0),fCm2,α(0),u=P~{}~{}\mbox{ on}~{}\partial B_{\delta},\quad\sigma_{k}(D^{2}P)=f(0),\quad f\in C^{m-2,\alpha}(0),

where δ\delta depends only on n,k,l,λ,Λ,αn,k,l,\lambda,\Lambda,\alpha and |D2P||D^{2}P|

Remark 5.2.

Since the proof is quite similar to the that for the kk-Hessian equation, we omit it. We point out that we need to apply a comparison estimate when proving (iv) (see the proof of (v) in Theorem 4.1). There is no existing literature to cite. Indeed, the comparison estimate for kk-Hessian equation (see [114, Lemma 2.2]) can be extended to the kk-Hessian quotient equation with the LpL^{p} norm in the estimate replaced by the LL^{\infty} norm. The key is that the operator (Sk,l)1/(kl)(S_{k,l})^{1/(k-l)} is 11-homogenous and concave. Then an inequality similar to [114, (2.4)] holds and the comparison estimate can be proved similarly.

For the kk-Hessian quotient equations, there are few pure interior C1,1C^{1,1} estimates and Pogorelov’s type estimates for smooth convex solutions (see [44, 89, 91]) until now. Unfortunately, as before, we can not use these to build regularity. Instead, we have the following regularity based on a priori estimates established by Trudinger [113, Theorem 1.1]. Since the proof is similar to that for the kk-Hessian equation and we omit it.

Theorem 5.3.

Let 1l<kn1\leq l<k\leq n, 0<α<10<\alpha<1 and uC(Ω¯)u\in C(\bar{\Omega}) be a viscosity solution of

{Sk,l(D2u)=finΩ;u=gonΩ,\left\{\begin{aligned} S_{k,l}(D^{2}u)&=f&&~{}\mbox{in}~{}\Omega;\\ u&=g&&~{}\mbox{on}~{}\partial\Omega,\end{aligned}\right.

where 0<λfΛ0<\lambda\leq f\leq\Lambda. Then uCm,α(0)u\in C^{m,\alpha}(0) (m2m\geq 2) provided one of the following conditions holds :
(i) ΩC3,1\partial\Omega\in C^{3,1}, Ω\Omega is (k1)(k-1)-convex and

gg0L(Ω)δ,g0C3,1(Ω),fCm2,α(0),[f]Cα(0)δ,\|g-g_{0}\|_{L^{\infty}(\partial\Omega)}\leq\delta,~{}g_{0}\in C^{3,1}(\partial\Omega),~{}f\in C^{m-2,\alpha}(0),~{}[f]_{C^{\alpha}(0)}\leq\delta,

where 0<δ<10<\delta<1 depends only on n,k,lλ,Λ,α,Ωn,k,l\lambda,\Lambda,\alpha,\Omega and g0C3,1(Ω)\|g_{0}\|_{C^{3,1}(\partial\Omega)}.
(ii)

Ω=Bδ,gPL(Bδ)δ1δ2,P𝒫1,fCm2,α(0),\Omega=B_{\delta},~{}~{}\|g-P\|_{L^{\infty}(\partial B_{\delta})}\leq\delta_{1}\delta^{2},~{}~{}P\in\mathcal{P}_{1},~{}~{}f\in C^{m-2,\alpha}(0),

where δ1\delta_{1} depends only on n,k,l,λ,Λ,αn,k,l,\lambda,\Lambda,\alpha and δ\delta depends also on [f]Cα(0)[f]_{C^{\alpha}(0)}

Remark 5.4.

Similar to the prescribed mean curvature equation, the C2,αC^{2,\alpha} regularity for kk-Hessian quotient equation can not hold unconditionally. Consider the following counterexample borrowed from [148, P. 2]. For any 1l<kn1\leq l<k\leq n and 0<θ<10<\theta<1, define

u(x)=12|x|2+11+θ|xn|1+θ.u(x)=\frac{1}{2}|x^{\prime}|^{2}+\frac{1}{1+\theta}|x_{n}|^{1+\theta}.

Then uu is a viscosity solution of 5.1 with fC1θf\in C^{1-\theta}. Similar to the prescribed mean curvature equation, [f]C1θ(0)θ1[f]_{C^{1-\theta}(0)}\simeq\theta^{-1}. Hence, if θ\theta is smaller, ff is smoother but [f]C1θ(0)[f]_{C^{1-\theta}(0)} is bigger. Correspondingly, uu has lower regularity.

6. Lagrangian mean curvature equation

In this section, we consider the Lagrangian mean curvature equation (called special Lagrangian equation for constant ff):

(6.1) F(D2u)=i=1narctanλi=finB1,F(D^{2}u)=\sum_{i=1}^{n}\arctan\lambda_{i}=f\quad\mbox{in}~{}~{}B_{1},

where λi\lambda_{i} are the eigenvalues of D2uD^{2}u. The ff is called phase function. Obviously, there must hold

nπ2<f<nπ2.-n\frac{\pi}{2}<f<n\frac{\pi}{2}.

We define

(6.2) εf=infxB1min(nπ2f(x),f(x)+nπ2).\varepsilon_{f}=\inf_{x\in B_{1}}\min(n\frac{\pi}{2}-f(x),f(x)+n\frac{\pi}{2}).

Similar to the prescribed mean curvature equation, FCF\in C^{\infty} is 11-uniformly elliptic with λ=1/5,Λ=1\lambda=1/5,\Lambda=1. Moreover, for any P𝒫2P\in\mathcal{P}_{2}, define

G(M)=F(M+D2P)F(D2P).G(M)=F(M+D^{2}P)-F(D^{2}P).

Then G(0)=0G(0)=0 is ρ\rho-uniformly elliptic with λ~,Λ~\tilde{\lambda},\tilde{\Lambda} and they depend only on nn and |D2P||D^{2}P|.

The phase ff is divided into three categories by Yuan [144]: critical (|f|=(n2)π/2|f|=(n-2)\pi/2), subcritical (|f|<(n2)π/2|f|<(n-2)\pi/2) and supercritical (|f|>(n2)π/2|f|>(n-2)\pi/2). For critical/supercritical phases, the level set {(λ1,..,λn):i=1narctanλi=c}\left\{(\lambda_{1},..,\lambda_{n}):\sum_{i=1}^{n}\arctan\lambda_{i}=c\right\} is convex and then an extended Evans-Krylov theorem [28] can be applied if we assume uC1,1u\in C^{1,1} a priori. For more knowledge and historic literature with respect to the special Lagrangian equation, we refer to [136] and [145].

Now, we state the main results in this section. The following theorem is similar to the previous ones and we omit its proof.

Theorem 6.1.

Let 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of 6.1. Then uCk,α(0)u\in C^{k,\alpha}(0) (k2k\geq 2) provided one of the following conditions holds :
(i) there exists P𝒫2P\in\mathcal{P}_{2} such that

uPL(B1)δ,F(D2P)=f(0),fCk2,α(0),[f]Cα(0)δ,\|u-P\|_{L^{\infty}(B_{1})}\leq\delta,\quad F(D^{2}P)=f(0),\quad f\in C^{k-2,\alpha}(0),\quad[f]_{C^{\alpha}(0)}\leq\delta,

where 0<δ<10<\delta<1 depends only on n,αn,\alpha and |D2P||D^{2}P|.
(ii) there exists P𝒫2P\in\mathcal{P}_{2} such that

uPL(B1)δ,F(D2P)=f(0),fCk2,α(0),\|u-P\|_{L^{\infty}(B_{1})}\leq\delta,\quad F(D^{2}P)=f(0),\quad f\in C^{k-2,\alpha}(0),

where 0<δ<10<\delta<1 depends only on n,α,|D2P|n,\alpha,|D^{2}P| and [f]Cα(0)[f]_{C^{\alpha}(0)}.
(iii) uC2(0)u\in C^{2}(0) and fCk2,α(0)f\in C^{k-2,\alpha}(0).
(iv) there exists P𝒫2P\in\mathcal{P}_{2} such that

u=P onBδ,F(D2P)=f(0),fCk2,α(0),u=P~{}~{}\mbox{ on}~{}\partial B_{\delta},\quad F(D^{2}P)=f(0),\quad f\in C^{k-2,\alpha}(0),

where δ\delta depends only on n,αn,\alpha and |D2P||D^{2}P|

Remark 6.2.

We can not obtain C2,αC^{2,\alpha} regularity for the special Lagrangian equation without additional assumptions besides fCαf\in C^{\alpha}. If ff is subcritical, even a constant ff, C2,αC^{2,\alpha} regularity can not be expected. Nadirashvili and Vlăduţ[95] constructed counterexamples for n3n\geq 3 with solutions only belonging to C1,1/3C^{1,1/3} for any constant subcritical phase. In fact, for any δ>0\delta>0, there exists a viscosity solution uC1,δu\notin C^{1,\delta}, which was given by Wang and Yuan [126]. In [94], Mooney and Savin provided a counterexample such that the solution uC0,1u\in C^{0,1} but uC1u\notin C^{1}.

If uu is a convex viscosity solution, we have the following regularity.

Theorem 6.3.

Let 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a convex viscosity solution of 6.1. Suppose that fCk2,α(0)f\in C^{k-2,\alpha}(0) (k2k\geq 2). Then uCk,α(0)u\in C^{k,\alpha}(0) provided uC1,1(0)u\in C^{1,1}(0) or [f]Cα(0)δ[f]_{C^{\alpha}(0)}\leq\delta, where 0<δ<10<\delta<1 depends only on n,α,εfn,\alpha,\varepsilon_{f} and uL(B1)\|u\|_{L^{\infty}(B_{1})}.

Remark 6.4.

If ff is a constant, Theorem 6.3 has been proved by Chen, Warren and Yuan [36] (for smooth solutions) and Chen, Shankar and Yuan [35] (for viscosity solutions). For nonconstant ff and viscosity solutions, Bhattacharya and Shankar proved the following regularity results:

  • fC2,αuC4,αf\in C^{2,\alpha}\Longrightarrow u\in C^{4,\alpha} (see [13]).

  • fC2uC3,αf\in C^{2}\Longrightarrow u\in C^{3,\alpha} (see [12]).

  • uC1,β,fCαuC2,αu\in C^{1,\beta},f\in C^{\alpha}\Longrightarrow u\in C^{2,\alpha}, where β>(1+α)1\beta>(1+\alpha)^{-1} (see [12]).

Remark 6.5.

Similar to the prescribed mean curvature equation, the smallness condition in Theorem 6.3 can not be removed. Consider the following counterexample borrowed from [10, Remark 1.3] (see also [12, Remark 1.2]). Take n=2n=2 and 0<θ<10<\theta<1. Define

u(x1,x2)=11+θ|x1|1+θ+12x22,f(x)=3π4arctan(θ1|x1|1θ).u(x_{1},x_{2})=\frac{1}{1+\theta}|x_{1}|^{1+\theta}+\frac{1}{2}x_{2}^{2},\quad f(x)=\frac{3\pi}{4}-\arctan(\theta^{-1}|x_{1}|^{1-\theta}).

Then uu is a strictly convex viscosity solution and fC1θf\in C^{1-\theta} is supercritical. However, uC1,θ(0)u\in C^{1,\theta}(0) only.

On the other hand, note that [f]C1θ(0)θ1[f]_{C^{1-\theta}(0)}\simeq\theta^{-1}. Thus, if θ\theta is smaller, ff has more smoothness but [f]C1θ(0)[f]_{C^{1-\theta}(0)} is bigger. Correspondingly, uu has less regularity. This demonstrate the assertion “smallness is more important than smoothness” again.

If the phase ff is critical and supercritical, we can also deduce regularity. We first consider the supercritical case.

Theorem 6.6.

Let 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of 6.1. Suppose that for some ε>0\varepsilon>0,

|f|(n2)π2+ε,fCk2,α(0)(k2).|f|\geq(n-2)\frac{\pi}{2}+\varepsilon,\quad f\in C^{k-2,\alpha}(0)~{}(k\geq 2).

Then uCk,α(0)u\in C^{k,\alpha}(0) provided uC1,1(0)u\in C^{1,1}(0) or [f]Cα(0)δ[f]_{C^{\alpha}(0)}\leq\delta, where 0<δ<10<\delta<1 depends only on n,α,ε,εfn,\alpha,\varepsilon,\varepsilon_{f} and uL(B1)\|u\|_{L^{\infty}(B_{1})}.

For the critical case, we have

Theorem 6.7.

Let 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of 6.1. Suppose that

|f|=(n2)π2,fCk2,α(0)(k2).|f|=(n-2)\frac{\pi}{2},\quad f\in C^{k-2,\alpha}(0)~{}(k\geq 2).

Then uCk,α(0)u\in C^{k,\alpha}(0) provided [f]Cα(0)δ[f]_{C^{\alpha}(0)}\leq\delta, where 0<δ<10<\delta<1 depends only on n,α,εf,uL(B1)n,\alpha,\varepsilon_{f},\|u\|_{L^{\infty}(B_{1})} and the modulus of continuity of uu.

Remark 6.8.

If ff is a constant, Theorem 6.6 and Theorem 6.7 have been proved by Warren and Yuan [137] (n=2n=2), [139] (n=3n=3) and Wang and Yuan [127] (n3n\geq 3).

For nonconstant fC1,1f\in C^{1,1}, Bhattacharya [10] proved the supercritical case and Lu [90] proved the critical and supercritical cases. Recently, Zhou [147] extended above results to fC0,1f\in C^{0,1}.

Note that the ff is supercritical in the counterexample in Remark 6.5. Hence, the smallness condition can not be removed in Theorem 6.6.

Without the convexity assumption on uu or the critical/supercritical assumption on ff, Yuan [142] proved C2,αC^{2,\alpha} regularity for C1,1C^{1,1} viscosity solutions and constant phase in dimension 33. Based on this result, we have the following regularity for a general phase ff.

Theorem 6.9.

Let 0<α<10<\alpha<1 and uC1,1(B¯1)u\in C^{1,1}(\bar{B}_{1}) be a viscosity solution of 6.1. Suppose that fCk2,α(0)(k2)f\in C^{k-2,\alpha}(0)~{}(k\geq 2). Then uCk,α(0)u\in C^{k,\alpha}(0).

We first give the 
Proof of Theorem 6.3. We only give the proof for the case [f]Cα(0)δ[f]_{C^{\alpha}(0)}\leq\delta since the case uC1,1(0)u\in C^{1,1}(0) can be transformed to the former case.

Claim: For any δ1>0\delta_{1}>0, if δ\delta small enough, there exist r>0r>0 and P𝒫2P\in\mathcal{P}_{2} such that

(6.3) F(D2P)=f(0)F(D^{2}P)=f(0)

and

(6.4) uPL(Br)δ1r2.\|u-P\|_{L^{\infty}(B_{r})}\leq\delta_{1}r^{2}.

The proof is similar to the previous (e.g. Lemma 4.12). Suppose not. Then there exist ε0,K>0\varepsilon_{0},K>0 and sequences of um,fmu_{m},f_{m} such that um,fmu_{m},f_{m} satisfy 6.1 and

umL(B1)K,[fm]Cα(0)1/m,εfmε0.\|u_{m}\|_{L^{\infty}(B_{1})}\leq K,\quad[f_{m}]_{C^{\alpha}(0)}\leq 1/m,\quad\varepsilon_{f_{m}}\geq\varepsilon_{0}.

In addition, for any P𝒫2P\in\mathcal{P}_{2} with 6.3 holding for fmf_{m}, we have

(6.5) umPL(Br)>δ1r2,\|u_{m}-P\|_{L^{\infty}(B_{r})}>\delta_{1}r^{2},

where 0<r<10<r<1 is to be specified later.

Since umu_{m} are convex,

umC0,1(B¯1/2)CumL(B1)K.\|u_{m}\|_{C^{0,1}(\bar{B}_{1/2})}\leq C\|u_{m}\|_{L^{\infty}(B_{1})}\leq K.

Hence, umu_{m} are uniformly bounded and equicontinuous. Up to a subsequence (similarly in the following argument), there exists u¯\bar{u} such that

umu¯inL(B1/2).u_{m}\to\bar{u}\quad\mbox{in}~{}~{}L^{\infty}(B_{1/2}).

In addition, since εfmε0\varepsilon_{f_{m}}\geq\varepsilon_{0},

fm(0)f0[nπ/2+ε0,nπ/2ε0].f_{m}(0)\to f_{0}\in\left[-n\pi/2+\varepsilon_{0},n\pi/2-\varepsilon_{0}\right].

By combining with [fm]Cα(0)0[f_{m}]_{C^{\alpha}(0)}\to 0, we conclude that u¯\bar{u} is a viscosity solution of

F(D2u¯)=f0inB1/2.F(D^{2}\bar{u})=f_{0}\quad\mbox{in}~{}~{}B_{1/2}.

From the regularity for constant phases (see [35]), there exists P¯𝒫2\bar{P}\in\mathcal{P}_{2} such that F(D2P¯)=f0F(D^{2}\bar{P})=f_{0} and

|u¯(x)P¯(x)|C|x|3,xB1/2,|\bar{u}(x)-\bar{P}(x)|\leq C|x|^{3},~{}\forall~{}x\in B_{1/2},

where CC depends only on nn and KK. Take rr small such that Cr=δ1/2Cr=\delta_{1}/2. Then

u¯P¯L(Br)12δ1r2.\|\bar{u}-\bar{P}\|_{L^{\infty}(B_{r})}\leq\frac{1}{2}\delta_{1}r^{2}.

In addition, since fm(0)f0f_{m}(0)\to f_{0}, we can choose

Pm(x)=P¯(x)+i=1nci,mxi2P_{m}(x)=\bar{P}(x)+\sum_{i=1}^{n}c_{i,m}x_{i}^{2}

such that ci,m0c_{i,m}\to 0 and 6.3 holds for PmP_{m} and fm(0)f_{m}(0). Thus, 6.5 holds for PmP_{m}. By taking the limit in 6.5, we have

u¯P¯L(Br)δ1r2,\|\bar{u}-\bar{P}\|_{L^{\infty}(B_{r})}\geq\delta_{1}r^{2},

which is a contradiction. Therefore, the claim holds.

Once the claim is proved, the regularity for uu follows as before. ∎ 

Next, we give the 
Proof of Theorem 6.6. We only consider the case

f>(n2)π2+ε,[f]Cα(0)δ.f>(n-2)\frac{\pi}{2}+\varepsilon,\quad[f]_{C^{\alpha}(0)}\leq\delta.

We need the following claim as before: 
Claim: For any δ1>0\delta_{1}>0, if δ\delta small enough, there exist r>0r>0 and P𝒫2P\in\mathcal{P}_{2} such that

F(D2P)=f(0)F(D^{2}P)=f(0)

and

uPL(Br)δ1r2.\|u-P\|_{L^{\infty}(B_{r})}\leq\delta_{1}r^{2}.

The proof is similar to the proof of Theorem 6.6. We only need to take care of the compactness of solutions. Indeed, since f>(n2)π2+εf>(n-2)\frac{\pi}{2}+\varepsilon, the u+K|x|2u+K|x|^{2} is convex where K=tan(π/2ε)K=\tan(\pi/2-\varepsilon). This assertion can be proved directly by the definition of viscosity solution. Then

uC0,1(B¯1/2)C1uL(B1)+C2,\|u\|_{C^{0,1}(\bar{B}_{1/2})}\leq C_{1}\|u\|_{L^{\infty}(B_{1})}+C_{2},

where C1C_{1} depends only on nn and C2C_{2} depends also on ε\varepsilon.

Once the compactness of solutions is built, with the aid of regularity for constant supercritical phase (see [127]), the rest proof is quite similar to that of Theorem 6.6 and we omit it.  ∎ 

Next, we give the 
Proof of Theorem 6.7. The difficulty lies in that we can not derive the compactness of solutions and we have to rely on the modulus of continuity of uu directly. Hence, the constant δ\delta depends on the modulus of continuity of uu.

Then the following claim can be proved as above and we omit it. 
Claim: For any δ1>0\delta_{1}>0, if δ\delta small enough, there exist r>0r>0 and P𝒫2P\in\mathcal{P}_{2} such that

F(D2P)=f(0)F(D^{2}P)=f(0)

and

uPL(Br)δ1r2.\|u-P\|_{L^{\infty}(B_{r})}\leq\delta_{1}r^{2}.

Then with the aid of regularity for constant critical phase (see [127]), the regularity of uu follows as before.  ∎ 

Next, we give the 
Proof of Theorem 6.9. Since uC1,1(B¯1)u\in C^{1,1}(\bar{B}_{1}), we have the compactness of solutions a priori. Then with the aid of regularity for constant critical phase (see [142]), the regularity of uu follows as before.  ∎ 

Remark 6.10.

Note we have assumed uC1,1u\in C^{1,1}. Thus, the equation is in fact uniformly elliptic. In addition, the regularity for constant critical phase has been proved in [142]. Therefore, the C2,αC^{2,\alpha} regularity can be proved directly by the theory for uniformly elliptic equations (cf. [27, Chapter 8]). However, for higher order pointwise Ck,αC^{k,\alpha} regularity, we must apply the regularity theory presented in the introduction.

7. ABP maximum principle, weak Harnack inequality, Hölder regularity

In this section, we develop the basic theory for fully nonlinear locally uniformly elliptic equations. We follows almost exactly the strategy of [16, Chapters 3, 4]. The main difficulty is that we can not make the scaling argument arbitrarily.

First, we introduce some notions.

We also introduce the Pucci’s class as follows.

Definition 7.1.

We say that uS¯ρ(λ,Λ,b0,f)u\in\bar{S}_{\rho}(\lambda,\Lambda,b_{0},f) if for any φC2(Ω)\varphi\in C^{2}(\Omega) with 1.3,

(D2φ(x0),λ,Λ)b0|Dφ(x0)|f(x0).\mathcal{M}^{-}(D^{2}\varphi(x_{0}),\lambda,\Lambda)-b_{0}|D\varphi(x_{0})|\leq f(x_{0}).

Similarly, we denote uS¯ρ(λ,Λ,b0,f)u\in\underline{S}_{\rho}(\lambda,\Lambda,b_{0},f) if for any φC2(Ω)\varphi\in C^{2}(\Omega) with

φC1,1(Ω¯)ρ,φ(x0)=u(x0),φu inΩ,\displaystyle\|\varphi\|_{C^{1,1}(\bar{\Omega})}\leq\rho,\quad\varphi(x_{0})=u(x_{0}),\quad\varphi\geq u~{}~{}\mbox{ in}~{}\Omega,

we have

+(D2φ(x0),λ,Λ)+b0|Dφ(x0)|f(x0).\mathcal{M}^{+}(D^{2}\varphi(x_{0}),\lambda,\Lambda)+b_{0}|D\varphi(x_{0})|\geq f(x_{0}).

We also define

Sρ(λ,Λ,b0,f)=S¯ρ(λ,Λ,b0,|f|)S¯ρ(λ,Λ,b0,|f|).S^{*}_{\rho}(\lambda,\Lambda,b_{0},f)=\underline{S}_{\rho}(\lambda,\Lambda,b_{0},-|f|)\cap\bar{S}_{\rho}(\lambda,\Lambda,b_{0},|f|).

We will denote S¯ρ(λ,Λ,b0,f)\underline{S}_{\rho}(\lambda,\Lambda,b_{0},f) (S¯ρ(λ,Λ,b0,f)\bar{S}_{\rho}(\lambda,\Lambda,b_{0},f), Sρ(λ,Λ,f)S^{*}_{\rho}(\lambda,\Lambda,f)) by S¯ρ(f)\underline{S}_{\rho}(f) (S¯ρ(f)\bar{S}_{\rho}(f), Sρ(f)S^{*}_{\rho}(f)) for short if λ,Λ,b0\lambda,\Lambda,b_{0} are understood well.

Remark 7.2.

Note that if ρ1ρ\rho_{1}\geq\rho,

S¯ρ1(λ,Λ,b0,f)S¯ρ(λ,Λ,b0,f).\bar{S}_{\rho_{1}}(\lambda,\Lambda,b_{0},f)\subset\bar{S}_{\rho}(\lambda,\Lambda,b_{0},f).

Hence, for any ρ>0\rho>0,

S¯(λ,Λ,b0,f)S¯ρ(λ,Λ,b0,f),\bar{S}(\lambda,\Lambda,b_{0},f)\subset\bar{S}_{\rho}(\lambda,\Lambda,b_{0},f),

where S¯\bar{S} denotes the usual Pucci’s class.

Remark 7.3.

If uS¯ρ(λ,Λ,b0,f)u\in\underline{S}_{\rho}(\lambda,\Lambda,b_{0},f), then uS¯ρ(λ,Λ,b0,f)-u\in\bar{S}_{\rho}(\lambda,\Lambda,b_{0},f). Hence, we only consider the supersolution in the following argument.

As usual, any viscosity solution belongs to the Pucci’s class.

Proposition 7.4.

Let uu be a viscosity supersolution of

F(D2u,Du,u,x)=f inΩ,F(D^{2}u,Du,u,x)=f~{}~{}\mbox{ in}~{}\Omega,

where FF is 5ρ5\rho-uniformly elliptic and uL(Ω)ρ\|u\|_{L^{\infty}(\Omega)}\leq\rho. Let ϕC2(Ω)\phi\in C^{2}(\Omega) with 1.3. Then
(i) if 1.9 holds,

uϕS¯4ρ(λ,Λ,b0,f(x)+c0|u(x)ϕ(x)|F(D2ϕ(x),Dϕ(x),ϕ(x),x));u-\phi\in\bar{S}_{4\rho}(\lambda,\Lambda,b_{0},f(x)+c_{0}|u(x)-\phi(x)|-F(D^{2}\phi(x),D\phi(x),\phi(x),x));

(ii) if for any |M|,|p|,|q|,|s|<ρ|M|,|p|,|q|,|s|<\rho and xB1x\in B_{1},

(7.1) b0|pq|F(M,p,s,x)F(M,q,s,x)b0|pq|,-b_{0}|p-q|\leq F(M,p,s,x)-F(M,q,s,x)\leq b_{0}|p-q|,~{}

then

uϕS¯4ρ(λ,Λ,b0,f(x)F(D2ϕ(x),Dϕ(x),u(x),x));u-\phi\in\bar{S}_{4\rho}(\lambda,\Lambda,b_{0},f(x)-F(D^{2}\phi(x),D\phi(x),u(x),x));

(iii) if F(0,p,s,x)0F(0,p,s,x)\equiv 0,

uS¯4ρ(λ,Λ,0,f(D2ϕ)).u\in\bar{S}_{4\rho}(\lambda,\Lambda,0,f-\mathcal{M}^{-}(D^{2}\phi)).
Proof.

Clearly, uϕL(Ω)2ρ\|u-\phi\|_{L^{\infty}(\Omega)}\leq 2\rho. Given x0Ωx_{0}\in\Omega, for any φC2(Ω)\varphi\in C^{2}(\Omega) with 1.3 (replacing uu by uϕu-\phi and ρ\rho by 4ρ4\rho there), φ+ϕ\varphi+\phi satisfies 1.3 (replacing ρ\rho by 5ρ5\rho). By the definition of viscosity solution

f(x0)\displaystyle f(x_{0})\geq F(D2φ(x0)+D2ϕ(x0),Dφ(x0)+Dϕ(x0),φ(x0)+ϕ(x0),x0).\displaystyle F(D^{2}\varphi(x_{0})+D^{2}\phi(x_{0}),D\varphi(x_{0})+D\phi(x_{0}),\varphi(x_{0})+\phi(x_{0}),x_{0}).

If 1.9 holds,

f(x0)\displaystyle f(x_{0})\geq (D2φ(x0))b0|Dφ(x0)|c0|φ(x0)|+F(D2ϕ(x0),Dϕ(x0),ϕ(x0),x0),\displaystyle\mathcal{M}^{-}(D^{2}\varphi(x_{0}))-b_{0}|D\varphi(x_{0})|-c_{0}|\varphi(x_{0})|+F(D^{2}\phi(x_{0}),D\phi(x_{0}),\phi(x_{0}),x_{0}),

which means

uϕS¯4ρ(λ,Λ,b0,f(x)+c0|u(x)ϕ(x)|F(D2ϕ(x),Dϕ(x),ϕ(x),x)).u-\phi\in\overline{S}_{4\rho}(\lambda,\Lambda,b_{0},f(x)+c_{0}|u(x)-\phi(x)|-F(D^{2}\phi(x),D\phi(x),\phi(x),x)).

If 7.1 holds,

f(x0)\displaystyle f(x_{0})\geq (D2φ(x0))b0|Dφ(x0)|+F(D2ϕ(x0),Dϕ(x0),φ(x0)+ϕ(x0),x0).\displaystyle\mathcal{M}^{-}(D^{2}\varphi(x_{0}))-b_{0}|D\varphi(x_{0})|+F(D^{2}\phi(x_{0}),D\phi(x_{0}),\varphi(x_{0})+\phi(x_{0}),x_{0}).

By combining with u(x0)=φ(x0)+ϕ(x0)u(x_{0})=\varphi(x_{0})+\phi(x_{0}),

uϕS¯4ρ(λ,Λ,b0,f(x)F(D2ϕ(x),Dϕ(x),u(x),x)).u-\phi\in\overline{S}_{4\rho}(\lambda,\Lambda,b_{0},f(x)-F(D^{2}\phi(x),D\phi(x),u(x),x)).

If F(0,p,s,x)0F(0,p,s,x)\equiv 0,

f(x0)\displaystyle f(x_{0})\geq (D2φ(x0))+F(D2ϕ(x0),Dφ(x0)+Dϕ(x0),φ(x0)+ϕ(x0),x0)\displaystyle\mathcal{M}^{-}(D^{2}\varphi(x_{0}))+F(D^{2}\phi(x_{0}),D\varphi(x_{0})+D\phi(x_{0}),\varphi(x_{0})+\phi(x_{0}),x_{0})
\displaystyle\geq (D2φ(x0))+(D2ϕ(x0)).\displaystyle\mathcal{M}^{-}(D^{2}\varphi(x_{0}))+\mathcal{M}^{-}(D^{2}\phi(x_{0})).

Hence,

uS¯4ρ(λ,Λ,0,f(D2ϕ)).u\in\bar{S}_{4\rho}(\lambda,\Lambda,0,f-\mathcal{M}^{-}(D^{2}\phi)).

∎ 

As usual, we have the following maximum principle.

Lemma 7.5.

If uC(Ω¯)u\in C(\bar{\Omega}) satisfies

uS¯ρ(λ,Λ,b0,0) inΩu\in\bar{S}_{\rho}(\lambda,\Lambda,b_{0},0)~{}~{}\mbox{ in}~{}\Omega

and u0u\geq 0 on Ω\partial\Omega, then

u0 inΩ.u\geq 0~{}~{}\mbox{ in}~{}\Omega.
Proof.

Suppose not. Then by choosing α\alpha large enough and ε\varepsilon small enough, φ:=εeαx1+c\varphi:=\varepsilon e^{-\alpha x_{1}}+c will touch uu by below at some x0Ωx_{0}\in\Omega and

(D2φ(x0))b0|Dφ(x0)|>0,\mathcal{M}^{-}(D^{2}\varphi(x_{0}))-b_{0}|D\varphi(x_{0})|>0,

which is a contradiction. ∎ 

We also have

Lemma 7.6.

Suppose that ρρ0\rho\geq\rho_{0},

uS¯ρ(λ,Λ,b0,f) inB1u\in\bar{S}_{\rho}(\lambda,\Lambda,b_{0},f)~{}~{}\mbox{ in}~{}B_{1}

and

u0 onB1,fL(B1)1,u\geq 0~{}~{}\mbox{ on}~{}\partial B_{1},\quad\|f\|_{L^{\infty}(B_{1})}\leq 1,

where ρ0>1\rho_{0}>1 is universal. Then

supB1uCfL(B1),\sup_{B_{1}}u^{-}\leq C\|f\|_{L^{\infty}(B_{1})},

where CC is universal.

Proof.

Take α>0\alpha>0 (universal) large enough such that v:=fL(B1)eαx1v:=\|f\|_{L^{\infty}(B_{1})}e^{\alpha x_{1}} is a classical solution of

(7.2) (D2v)b0|Dv|2fL(B1).\mathcal{M}^{-}(D^{2}v)-b_{0}|Dv|\geq 2\|f\|_{L^{\infty}(B_{1})}.

If

supB1u2fL(B1)eα,\sup_{B_{1}}u^{-}\geq 2\|f\|_{L^{\infty}(B_{1})}e^{\alpha},

vuv-u has a local maximum at some x0B1x_{0}\in B_{1}. Then by the definition of viscosity solution,

(D2v(x0))b0|Dv(x0)|f(x0)fL(B1),\mathcal{M}^{-}(D^{2}v(x_{0}))-b_{0}|Dv(x_{0})|\leq f(x_{0})\leq\|f\|_{L^{\infty}(B_{1})},

which contradicts to 7.2. ∎ 

Next, we prove the fundamental Alexandrov-Bakel’man-Pucci maximum principle by the same way as in [27, Chapter 3]. First, we prove a lemma analogous to [27, Lemma 3.3]:

Lemma 7.7.

Let 0<δ<10<\delta<1, ρρ1\rho\geq\rho_{1} and

uS¯ρ(λ,Λ,b0,f) inBδ,u\in\overline{S}_{\rho}(\lambda,\Lambda,b_{0},f)~{}~{}\mbox{ in}~{}B_{\delta},

where ρ1>1\rho_{1}>1 is universal. Suppose that

fL(Bδ)1.\|f\|_{L^{\infty}(B_{\delta})}\leq 1.

Assume that φ\varphi is a convex function in BδB_{\delta} such that 0φu0\leq\varphi\leq u in BδB_{\delta} and 0=φ(0)=u(0)0=\varphi(0)=u(0). Then

φ(x)C(supBδf+)|x|2,xBνδ,\varphi(x)\leq C(\sup_{B_{\delta}}f^{+})|x|^{2},~{}\forall~{}x\in B_{\nu\delta},

where 0<ν<10<\nu<1 and CC are universal.

Proof.

We prove the lemma in the same way as that of Lemma 3.3 in [27, Chapter 3]. The constant ρ1\rho_{1} is to be specified later. As in the proof Lemma 3.3 of [27], for 0<r<δ/40<r<\delta/4, define

C¯=1r2supBrφ.\bar{C}=\frac{1}{r^{2}}\sup_{B_{r}}\varphi.

We aim to prove

C¯17λsupBδf+.\bar{C}\leq\frac{17}{\lambda}\sup_{B_{\delta}}f^{+}.

Suppose not. Let

(7.3) C~=17λsupBδf+17λ.\tilde{C}=\frac{17}{\lambda}\sup_{B_{\delta}}f^{+}\leq\frac{17}{\lambda}.

Recall (3.3) in [27], i.e.,

φC¯r2 inHBδ,\varphi\geq\bar{C}r^{2}~{}~{}\mbox{ in}~{}H\cap B_{\delta},

where HH is a hyperplane tangent to BrB_{r} at some x0Brx_{0}\in\partial B_{r}. Since C~<C¯\tilde{C}<\bar{C},

φC~r2 inHBδ.\varphi\geq\tilde{C}r^{2}~{}~{}\mbox{ in}~{}H\cap B_{\delta}.

Construct the polynomial PP as in the proof of [27, Lemma 3.3], i.e.,

P(x):=C~8(xn+r)24C~r2δ2|x|2.P(x):=\frac{\tilde{C}}{8}(x_{n}+r)^{2}-4\tilde{C}\frac{r^{2}}{\delta^{2}}|x^{\prime}|^{2}.

Then P+cP+c for an appropriate constant cc will touch uu by below at some point x0x_{0}. Note that

D2PLC~,DPLC~,P+cLC~+ρ/2.\|D^{2}P\|_{L^{\infty}}\leq\tilde{C},\quad\|DP\|_{L^{\infty}}\leq\tilde{C},\quad\|P+c\|_{L^{\infty}}\leq\tilde{C}+\rho/2.

Choose ρ12C~\rho_{1}\geq 2\tilde{C}. Then by the definition of viscosity solution,

(D2P)b0|DP(x0)|f(x0)supBδf+.\mathcal{M}^{-}(D^{2}P)-b_{0}|DP(x_{0})|\leq f(x_{0})\leq\sup_{B_{\delta}}f^{+}.

By choosing

ν=min(18λ(n1)Λ,λ12b0),\nu=\min\left(\frac{1}{8}\sqrt{\frac{\lambda}{(n-1)\Lambda}},\frac{\lambda}{12b_{0}}\right),

we have

λC~16(D2P)b0|DP(x0)|supBδf+.\frac{\lambda\tilde{C}}{16}\leq\mathcal{M}^{-}(D^{2}P)-b_{0}|DP(x_{0})|\leq\sup_{B_{\delta}}f^{+}.

Hence,

C~16λsupBδf+,\tilde{C}\leq\frac{16}{\lambda}\sup_{B_{\delta}}f^{+},

which contradicts to 7.3. ∎ 

We have another lemma.

Lemma 7.8.

Let ρρ2\rho\geq\rho_{2},

uS¯ρ(λ,Λ,b0,f) inB1u\in\bar{S}_{\rho}(\lambda,\Lambda,b_{0},f)~{}~{}\mbox{ in}~{}B_{1}

and

u0 onB1,uL(B1)ρ4,fL(B1)1,u\geq 0~{}~{}\mbox{ on}~{}\partial B_{1},\quad\|u\|_{L^{\infty}(B_{1})}\leq\frac{\rho}{4},\quad\|f\|_{L^{\infty}(B_{1})}\leq 1,

where ρ2>max(ρ0,ρ1)\rho_{2}>\max(\rho_{0},\rho_{1}) is universal. Then ΓuC1,1(B¯1)\Gamma_{u}\in C^{1,1}(\bar{B}_{1}) and

(D2Γu)b0|DΓu|fa.e. in{u=Γu},\mathcal{M}^{-}(D^{2}\Gamma_{u})-b_{0}|D\Gamma_{u}|\leq f~{}~{}a.e.\mbox{ in}~{}\left\{u=\Gamma_{u}\right\},

where we have extended uu by zero outside B1B_{1} and Γu\Gamma_{u} is the convex envelop of u-u^{-} in B2B_{2}.

Proof.

For any x0{u=Γu}B1x_{0}\in\left\{u=\Gamma_{u}\right\}\subset B_{1}, let Lx0L_{x_{0}} be the supporting affine function of Γu\Gamma_{u} at x0x_{0}. Then by Lemma 7.6 and noting x0B1x_{0}\in B_{1},

ΓuL(B1)=supB1uC0,|DLx0|C0,Lx0L(B1)C0,\|\Gamma_{u}\|_{L^{\infty}(B_{1})}=\sup_{B_{1}}u^{-}\leq C_{0},\quad|DL_{x_{0}}|\leq C_{0},\quad\|L_{x_{0}}\|_{L^{\infty}(B_{1})}\leq C_{0},

where C0C_{0} is universal. Set v=uLx0v=u-L_{x_{0}}. Then v(x0)=(ΓuLx0)(x0)=0v(x_{0})=(\Gamma_{u}-L_{x_{0}})(x_{0})=0 and by choosing ρ2\rho_{2} large enough,

vS¯3ρ/4(λ,Λ,b0,f+b0C0).v\in\bar{S}_{3\rho/4}(\lambda,\Lambda,b_{0},f+b_{0}C_{0}).

Let w=v/(1+b0C0)w=v/(1+b_{0}C_{0}). Then

vS¯3ρ/(4+4b0C0)(λ,Λ,b0,1).v\in\bar{S}_{3\rho/(4+4b_{0}C_{0})}(\lambda,\Lambda,b_{0},1).

By taking ρ2\rho_{2} large enough, we can apply Lemma 7.7 for any 0<δ<10<\delta<1. Then

Lx0ΓuLx0+C|xx0|2,L_{x_{0}}\leq\Gamma_{u}\leq L_{x_{0}}+C|x-x_{0}|^{2},

where CC is universal. Therefore, by the same argument in [27] (see the proof of Lemma 3.5), ΓuC1,1(B¯1)\Gamma_{u}\in C^{1,1}(\bar{B}_{1}). Hence, Γu\Gamma_{u} is second order differentiable almost everywhere.

Next, take x0{u=Γu}x_{0}\in\left\{u=\Gamma_{u}\right\} such that Γu\Gamma_{u} is second order differentiable at x0x_{0}. Let PP denote the second order polynomial corresponding to Γu\Gamma_{u} at x0x_{0}. Then for any ε>0\varepsilon>0, Pε|xx0|2P-\varepsilon|x-x_{0}|^{2} will touch locally Γu\Gamma_{u} and hence uu by below at x0x_{0}. Note that PC\|P\|\leq C for some universal CC. Then by choosing ρ2\rho_{2} large enough, Pε|xx0|2P-\varepsilon|x-x_{0}|^{2} is an admissible test function. Hence,

(D2P2εI)b0|DP(x0)2ε(xx0)|f(x0).\mathcal{M}^{-}(D^{2}P-2\varepsilon I)-b_{0}|DP(x_{0})-2\varepsilon(x-x_{0})|\leq f(x_{0}).

By letting ε0\varepsilon\to 0, we arrive at the conclusion. ∎ 

Based on above lemma, we have the following Alexandrov-Bakel’man-Pucci maximum principle analogous to [27, Theorem 3.2]:

Theorem 7.9 (ABP).

Let ρρ2\rho\geq\rho_{2},

uS¯ρ(λ,Λ,b0,f) inB1u\in\bar{S}_{\rho}(\lambda,\Lambda,b_{0},f)~{}~{}\mbox{ in}~{}B_{1}

and

u0 onB1,uL(B1)ρ4,fL(B1)1,u\geq 0~{}~{}\mbox{ on}~{}\partial B_{1},\quad\|u\|_{L^{\infty}(B_{1})}\leq\frac{\rho}{4},\quad\|f\|_{L^{\infty}(B_{1})}\leq 1,

where ρ2\rho_{2} is as in Lemma 7.8. Then

supB1uCf+Ln(B1{u=Γu}),\sup_{B_{1}}u^{-}\leq C\|f^{+}\|_{L^{n}(B_{1}\cap\{u=\Gamma_{u}\})},

where CC is universal.

Proof.

The proof is standard and we omit it (see [56, Chapt. 9.1]).  ∎ 

By scaling, we have

Corollary 7.10.

Let ρρ2\rho\geq\rho_{2}, K>0K>0,

uS¯Kρ(λ,Λ,b0,f) inB1u\in\bar{S}_{K\rho}(\lambda,\Lambda,b_{0},f)~{}~{}\mbox{ in}~{}B_{1}

and

u0 onB1,uL(B1)Kρ4,fL(B1)K,u\geq 0~{}~{}\mbox{ on}~{}\partial B_{1},\quad\|u\|_{L^{\infty}(B_{1})}\leq\frac{K\rho}{4},\quad\|f\|_{L^{\infty}(B_{1})}\leq K,

where ρ2\rho_{2} is as in Lemma 7.8. Then

supB1uCf+Ln(B1{u=Γu}),\sup_{B_{1}}u^{-}\leq C\|f^{+}\|_{L^{n}(B_{1}\cap\{u=\Gamma_{u}\})},

where CC is universal.

Proof.

Let

u~=uK,f~=fK.\tilde{u}=\frac{u}{K},\quad\tilde{f}=\frac{f}{K}.

Then

u~S¯ρ(λ,Λ,b0,f~) inB1,u~L(B1)ρ4,f~L(B1)1.\tilde{u}\in\bar{S}_{\rho}(\lambda,\Lambda,b_{0},\tilde{f})~{}~{}\mbox{ in}~{}B_{1},\quad\|\tilde{u}\|_{L^{\infty}(B_{1})}\leq\frac{\rho}{4},\quad\|\tilde{f}\|_{L^{\infty}(B_{1})}\leq 1.

By Theorem 7.9,

supB1u~Cf~+Ln(B1{u~=Γu~}).\sup_{B_{1}}\tilde{u}^{-}\leq C\|\tilde{f}^{+}\|_{L^{n}(B_{1}\cap\{\tilde{u}=\Gamma_{\tilde{u}}\})}.

By transforming to uu, we obtain the conclusion. ∎ 

With the aid of the ABP maximum principle, we can prove the following lemma analogous to [27, Lemma 4.5]:

Lemma 7.11.

Let ρρ3\rho\geq\rho_{3},

uS¯ρ(λ,Λ,b0,|f|) inQ4nu\in\bar{S}_{\rho}(\lambda,\Lambda,b_{0},|f|)~{}~{}\mbox{ in}~{}Q_{4\sqrt{n}}

and

u0 inQ4n,infQ3u1,uL(Q4n)ρ8,fL(Q4n)ε0,u\geq 0~{}~{}\mbox{ in}~{}Q_{4\sqrt{n}},\quad\inf_{Q_{3}}u\leq 1,\quad\|u\|_{L^{\infty}(Q_{4\sqrt{n}})}\leq\frac{\rho}{8},\quad\|f\|_{L^{\infty}(Q_{4\sqrt{n}})}\leq\varepsilon_{0},

where ρ3ρ2\rho_{3}\geq\rho_{2} is universal. Then

(7.4) |{u<M}Q1|>μ,|\{u<M\}\cap Q_{1}|>\mu,

where 0<ε0,μ<10<\varepsilon_{0},\mu<1 and M>1M>1 are universal.

Proof.

The proof is the same as that of [27, Lemma 4.5]. Construct the auxiliary function φ\varphi as in [27, Lemma 4.1] such that the conclusion of [27, Lemma 4.1] holds with

+(D2φ,λ,Λ)Cξ\mathcal{M}^{+}(D^{2}\varphi,\lambda,\Lambda)\leq C\xi

replaced by

+(D2φ,λ,Λ)+b0|Dφ|Cξ.\mathcal{M}^{+}(D^{2}\varphi,\lambda,\Lambda)+b_{0}|D\varphi|\leq C\xi.

Since

D2φLC0,DφLC0,D2φLC0,\|D^{2}\varphi\|_{L^{\infty}}\leq C_{0},\quad\|D\varphi\|_{L^{\infty}}\leq C_{0},\quad\|D^{2}\varphi\|_{L^{\infty}}\leq C_{0},

where C0C_{0} is universal. By taking ρ3\rho_{3} large enough,

w:=u+φS¯3ρ/4(λ,Λ,b0,|f|+Cξ),wL3ρ16,w:=u+\varphi\in\bar{S}_{3\rho/4}(\lambda,\Lambda,b_{0},|f|+C\xi),\quad\|w\|_{L^{\infty}}\leq\frac{3\rho}{16},\quad

Now, we can apply the ABP maximum principle Corollary 7.10 to obtain 7.4 as in [27].  ∎ 

By iteration, we have the following lemma analogous to [27, Lemma 4.6]:

Lemma 7.12.

Let ρρ3\rho\geq\rho_{3},

uS¯ρ(λ,Λ,b0,f) inQ4nu\in\bar{S}_{\rho}(\lambda,\Lambda,b_{0},f)~{}~{}\mbox{ in}~{}Q_{4\sqrt{n}}

and

u0 inQ4n,infQ3u1,uL(Q4n)ρ8,fL(Q4n)ε0.u\geq 0~{}~{}\mbox{ in}~{}Q_{4\sqrt{n}},\quad\inf_{Q_{3}}u\leq 1,\quad\|u\|_{L^{\infty}(Q_{4\sqrt{n}})}\leq\frac{\rho}{8},\quad\|f\|_{L^{\infty}(Q_{4\sqrt{n}})}\leq\varepsilon_{0}.

Then

(7.5) |{ut}Q1|Ctε,t<ρρ3,|\{u\geq t\}\cap Q_{1}|\leq Ct^{-\varepsilon},~{}\forall~{}t<\frac{\rho}{\rho_{3}},

where CC and 0<ε<10<\varepsilon<1 are universal.

Proof.

The proof is the same as in [27, Lemma 4.6]. We only need to prove

(7.6) |{u>Mk}Q1|(1μ)k,1k1lnMlnρρ3|\{u>M^{k}\}\cap Q_{1}|\leq(1-\mu)^{k},~{}\forall~{}1\leq k\leq\frac{1}{\ln M}\ln\frac{\rho}{\rho_{3}}

since 7.5 follows from 7.6 by choosing ε>0\varepsilon>0 with

1μ=Mε.1-\mu=M^{-\varepsilon}.

For k=1k=1, we have just proved in Lemma 7.11. Suppose that 7.6 holds for k1k-1. We use the same scaling argument as in [27]:

u~(y):=u(x)Mk1.\tilde{u}(y):=\frac{u(x)}{M^{k-1}}.

Since uS¯ρ(λ,Λ,b0,f)u\in\bar{S}_{\rho}(\lambda,\Lambda,b_{0},f),

u~S¯ρ/Mk1(λ,Λ,b0,f~),f~(y)=f(x)22iMk1.\tilde{u}\in\bar{S}_{\rho/M^{k-1}}(\lambda,\Lambda,b_{0},\tilde{f}),\quad\tilde{f}(y)=\frac{f(x)}{2^{2i}M^{k-1}}.

Note that

k1lnMlnρρ3k\leq\frac{1}{\ln M}\ln\frac{\rho}{\rho_{3}}

implies

ρMk1ρ3.\frac{\rho}{M^{k-1}}\geq\rho_{3}.

Therefore, by Lemma 7.11,

|{u~>M}Q1|1μ.|\{\tilde{u}>M\}\cap Q_{1}|\leq 1-\mu.

By transforming to uu, we obtain 7.6.  ∎ 

Next, we prove the “weak Harnack inequality” analogous to [27, Theorem 4.8]:

Theorem 7.13.

Let ρρ3\rho\geq\rho_{3},

uS¯ρ(λ,Λ,b0,f) inB1u\in\bar{S}_{\rho}(\lambda,\Lambda,b_{0},f)~{}~{}\mbox{ in}~{}B_{1}

and

0u1 inB1,uL(B1)ρ8,fL(B1)ε0.0\leq u\leq 1~{}~{}\mbox{ in}~{}B_{1},\quad\|u\|_{L^{\infty}(B_{1})}\leq\frac{\rho}{8},\quad\|f\|_{L^{\infty}(B_{1})}\leq\varepsilon_{0}.

Then

uρLp0(B1/2)C(infB1/2u+fL(B1)),\|u_{\rho}\|_{L^{p_{0}}(B_{1/2})}\leq C\left(\inf_{B_{1/2}}u+\|f\|_{L^{\infty}(B_{1})}\right),

where CC and 0<p0<10<p_{0}<1 are universal, and

uρ(x)={u(x), ifu(x)ρρ3;0, ifu(x)>ρρ3.u_{\rho}(x)=\left\{\begin{aligned} &u(x),&&~{}~{}\mbox{ if}~{}u(x)\leq\frac{\rho}{\rho_{3}};\\ &0,&&~{}~{}\mbox{ if}~{}u(x)>\frac{\rho}{\rho_{3}}.\end{aligned}\right.
Proof.

If

infB1/2u+ε01fL(B1)1,\inf_{B_{1/2}}u+\varepsilon_{0}^{-1}\|f\|_{L^{\infty}(B_{1})}\geq 1,

by Lemma 7.12 and taking p0=ε/2p_{0}=\varepsilon/2,

uρLp0(B1/2)=\displaystyle\|u_{\rho}\|_{L^{p_{0}}(B_{1/2})}= p00+tp01|{xB1/2:uρ(x)>t}|𝑑t\displaystyle p_{0}\int_{0}^{+\infty}t^{p_{0}-1}|\{x\in B_{1/2}:u_{\rho}(x)>t\}|dt
\displaystyle\leq |B1/2|+p01ρ/ρ3tp01|{xB1/2:u(x)>t}|𝑑t\displaystyle|B_{1/2}|+p_{0}\int_{1}^{\rho/\rho_{3}}t^{p_{0}-1}|\{x\in B_{1/2}:u(x)>t\}|dt
\displaystyle\leq C+C1ρ/ρ3tp01tε𝑑t\displaystyle C+C\int_{1}^{\rho/\rho_{3}}t^{p_{0}-1}t^{-\varepsilon}dt
\displaystyle\leq C\displaystyle C
\displaystyle\leq C(infB1/2u+fL(B1)).\displaystyle C\left(\inf_{B_{1/2}}u+\|f\|_{L^{\infty}(B_{1})}\right).

If

K1:=infB1/2u+ε01fL(B1)<1,K^{-1}:=\inf_{B_{1/2}}u+\varepsilon_{0}^{-1}\|f\|_{L^{\infty}(B_{1})}<1,

consider

u~=Ku.\tilde{u}=Ku.

Then

u~S¯Kρ(λ,Λ,b0,f~)\tilde{u}\in\bar{S}_{K\rho}(\lambda,\Lambda,b_{0},\tilde{f})

and

infB1/2u~1,u~L(B1)ρ8,f~L(B1)ε0.\inf_{B_{1/2}}\tilde{u}\leq 1,\quad\|\tilde{u}\|_{L^{\infty}(B_{1})}\leq\frac{\rho}{8},\quad\|\tilde{f}\|_{L^{\infty}(B_{1})}\leq\varepsilon_{0}.

Then by Lemma 7.12,

u~KρLp0(B1/2)C.\|\tilde{u}_{K\rho}\|_{L^{p_{0}}(B_{1/2})}\leq C.

By transferring to uu, we obtain the conclusion. ∎ 

Next, we prove the Hölder regularity.

Theorem 7.14.

Let ρ2ρ3\rho\geq 2\rho_{3},

uSρ(λ,Λ,b0,f) inB1u\in S^{*}_{\rho}(\lambda,\Lambda,b_{0},f)~{}~{}\mbox{ in}~{}B_{1}

and

uL(B1)1,fL(B1)ε1,\|u\|_{L^{\infty}(B_{1})}\leq 1,\quad\|f\|_{L^{\infty}(B_{1})}\leq\varepsilon_{1},

where 0<ε1<10<\varepsilon_{1}<1 is universal. Then

oscBruCrα,2ρ3ρr1,\underset{B_{r}}{\mathrm{osc}}~{}u\leq Cr^{\alpha},~{}\forall~{}\sqrt{\frac{2\rho_{3}}{\rho}}\leq r\leq 1,

where 0<α<10<\alpha<1 and CC are universal.

Proof.

We only need to prove

(7.7) oscB1/2ku2(1μ)k,0k12log2ρ2ρ3,\underset{B_{1/2^{k}}}{\mathrm{osc}}~{}u\leq 2(1-\mu)^{k},~{}\forall~{}0\leq k\leq\frac{1}{2}\log_{2}\frac{\rho}{2\rho_{3}},

where 0<μ<10<\mu<1 is universal. We prove it by induction. For k=0k=0, 7.7 holds clearly. Suppose that it holds for kk. For r>0r>0, denote

Mr=supBru,mr=infBru.M_{r}=\sup_{B_{r}}u,\quad m_{r}=\inf_{B_{r}}u.

Set r0=1/2kr_{0}=1/2^{k}. Note that

|{xBr0:u(x)Mr0+mr02}||Br0|2 or |{xBr0:u(x)Mr0+mr02}||Br0|2.|\{x\in B_{r_{0}}:u(x)\geq\frac{M_{r_{0}}+m_{r_{0}}}{2}\}|\geq\frac{|B_{r_{0}}|}{2}~{}~{}\mbox{ or }~{}|\{x\in B_{r_{0}}:u(x)\leq\frac{M_{r_{0}}+m_{r_{0}}}{2}\}|\geq\frac{|B_{r_{0}}|}{2}.

Without loss of generality, we assume that the former holds. Let

y=xr0,u~(y)=u(x)mr0Mr0mr0,f~(y)=r02f(x)Mr0mr0.y=\frac{x}{r_{0}},\quad\tilde{u}(y)=\frac{u(x)-m_{r_{0}}}{M_{r_{0}}-m_{r_{0}}},\quad\tilde{f}(y)=\frac{r_{0}^{2}f(x)}{M_{r_{0}}-m_{r_{0}}}.

Without loss of generality, we assume that

oscBr0u=Mr0mr0r02.\underset{B_{r_{0}}}{\mathrm{osc}}~{}u=M_{r_{0}}-m_{r_{0}}\geq r_{0}^{2}.

Note that Mr0mr02M_{r_{0}}-m_{r_{0}}\leq 2. Then

u~Sr02ρ/2(λ,Λ,b0,f~) inB1\tilde{u}\in S^{*}_{r_{0}^{2}\rho/2}(\lambda,\Lambda,b_{0},\tilde{f})~{}~{}\mbox{ in}~{}B_{1}

and

0u~1 inB1,f~L(B1)ε1.0\leq\tilde{u}\leq 1~{}~{}\mbox{ in}~{}B_{1},\quad\|\tilde{f}\|_{L^{\infty}(B_{1})}\leq\varepsilon_{1}.

Moreover,

|{yB1:u~(y)12}||B1|2.|\{y\in B_{1}:\tilde{u}(y)\geq\frac{1}{2}\}|\geq\frac{|B_{1}|}{2}.

Hence, by combining with Theorem 7.13 and noting

r02ρ28,r02ρ2ρ31,\frac{r_{0}^{2}\rho}{2}\geq 8,\quad\frac{r_{0}^{2}\rho}{2\rho_{3}}\geq 1,

we have

c0u~Lp0(B1/2)=u~r02ρ/2Lp0(B1/2)C(infB1/2u~+f~L(B1))CinfB1/2u~+Cε1,c_{0}\leq\|\tilde{u}\|_{L^{p_{0}}(B_{1/2})}=\|\tilde{u}_{r_{0}^{2}\rho/2}\|_{L^{p_{0}}(B_{1/2})}\leq C\left(\inf_{B_{1/2}}\tilde{u}+\|\tilde{f}\|_{L^{\infty}(B_{1})}\right)\leq C\inf_{B_{1/2}}\tilde{u}+C\varepsilon_{1},

where c0>0,Cc_{0}>0,C are universal constants.

Choose ε1\varepsilon_{1} small enough such that

Cε1c02.C\varepsilon_{1}\leq\frac{c_{0}}{2}.

Then for some universal constant μ>0\mu>0,

infB1/2u~μ.\inf_{B_{1/2}}\tilde{u}\geq\mu.

By transforming back to uu,

mr0/2mr0μ(Mr0mr0).m_{r_{0}/2}-m_{r_{0}}\geq\mu\left(M_{r_{0}}-m_{r_{0}}\right).

Hence,

oscB1/2k+1u=Mr0/2mr0/2Mr0mr0μ(Mr0mr0)=(1μ)(Mr0mr0)2(1μ)k+1.\underset{B_{1/2^{k+1}}}{\mathrm{osc}}~{}u=M_{r_{0}/2}-m_{r_{0}/2}\leq M_{r_{0}}-m_{r_{0}}-\mu\left(M_{r_{0}}-m_{r_{0}}\right)=(1-\mu)\left(M_{r_{0}}-m_{r_{0}}\right)\leq 2(1-\mu)^{k+1}.

By induction, the proof is completed. ∎ 

Remark 7.15.

Since ρ\rho is finite, we can make the scaling argument only finite times. Hence, we can’t obtain the real Hölder regularity. However, it can provide necessary compactness when we use the compactness method to prove higher regularity (see Lemma 8.1 and Lemma 9.1).

By applying above theorem to each x0B1/2x_{0}\in B_{1/2} in B(x0,1/2)B(x_{0},1/2), we have

Corollary 7.16.

Let ρ2ρ3\rho\geq 2\rho_{3},

uSρ(λ,Λ,b0,f) inB1u\in S^{*}_{\rho}(\lambda,\Lambda,b_{0},f)~{}~{}\mbox{ in}~{}B_{1}

and

uL(B1)1,fL(B1)ε1,\|u\|_{L^{\infty}(B_{1})}\leq 1,\quad\|f\|_{L^{\infty}(B_{1})}\leq\varepsilon_{1},

where 0<ε1<10<\varepsilon_{1}<1 is universal. Then

oscBr(x0)uC~rα0,x0B1/2,2ρ3ρr12,\underset{B_{r}(x_{0})}{\mathrm{osc}}~{}u\leq\tilde{C}r^{\alpha_{0}},~{}\forall~{}x_{0}\in B_{1/2},~{}\forall~{}\sqrt{\frac{2\rho_{3}}{\rho}}\leq r\leq\frac{1}{2},

where 0<α0<10<\alpha_{0}<1 and C~\tilde{C} are universal.

Therefore,

|u(x1)u(x2)|C~|x1x2|α0,x1,x2B1/2,2ρ3ρ|x1x2|12.|u(x_{1})-u(x_{2})|\leq\tilde{C}|x_{1}-x_{2}|^{\alpha_{0}},~{}\forall~{}x_{1},x_{2}\in B_{1/2},~{}\sqrt{\frac{2\rho_{3}}{\rho}}\leq|x_{1}-x_{2}|\leq\frac{1}{2}.

8. Interior C1,αC^{1,\alpha} regularity

In this section, we prove the interior pointwise C1,αC^{1,\alpha} regularity by the classical technique of perturbation. First, we prove the key step by the compactness method.

Lemma 8.1.

Let 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of

F(D2u,Du,u,x)=Aij(Du,u,x)uij+B(Du,u,x)=0 inB1,F(D^{2}u,Du,u,x)=A^{ij}(Du,u,x)u_{ij}+B(Du,u,x)=0~{}~{}\mbox{ in}~{}B_{1},

where FF is ρ\rho-uniformly elliptic and AA is continuous with modulus ωA\omega_{A}. Suppose that 1.7 and 1.8 hold. Let rr0r\leq r_{0} and assume that for some P0𝒫1P_{0}\in\mathcal{P}_{1},

uP0L(Br)r1+α,P0C¯r01+α,\|u-P_{0}\|_{L^{\infty}(B_{r})}\leq r^{1+\alpha},\quad\|P_{0}\|\leq\bar{C}r_{0}^{1+\alpha},

where C¯\bar{C} depends only on n,λ,Λ,ρ,b0n,\lambda,\Lambda,\rho,b_{0} and α\alpha and 0<r0,δ0<10<r_{0},\delta_{0}<1 (small) depends also on ωA\omega_{A}.

Then there exists P𝒫1P\in\mathcal{P}_{1} such that

uPL(Bηr)(ηr)1+α,PP0rC¯(ηr)1+α,\|u-P\|_{L^{\infty}(B_{\eta r})}\leq(\eta r)^{1+\alpha},\quad\|P-P_{0}\|_{r}\leq\bar{C}(\eta r)^{1+\alpha},

where 0<η<1/20<\eta<1/2 depends only on n,λ,Λ,ρ,b0,c0n,\lambda,\Lambda,\rho,b_{0},c_{0} and α\alpha.

Proof.

We prove the lemma by contradiction. Suppose that the conclusion is false. Then there exist sequences of Am,Bm,um,Pm,rmA_{m},B_{m},u_{m},P_{m},r_{m} such that rm1/mr_{m}\leq 1/m,

Fm(D2um,Dum,um,x)=Amij(Dum,um,x)um,ij+Bm(Dum,um,x)=0 inBrmF_{m}(D^{2}u_{m},Du_{m},u_{m},x)=A^{ij}_{m}(Du_{m},u_{m},x)u_{m,ij}+B_{m}(Du_{m},u_{m},x)=0~{}~{}\mbox{ in}~{}B_{r_{m}}

and

umPmL(Brm)rm1+α,PmC¯m,\|u_{m}-P_{m}\|_{L^{\infty}(B_{r_{m}})}\leq r_{m}^{1+\alpha},\quad\|P_{m}\|\leq\frac{\bar{C}}{m},

where FmF_{m} are ρ\rho-uniformly elliptic and AmA_{m} are continuous (with the same modulus ωA\omega_{A}). In addition, 1.7 and 1.8 hold for BmB_{m} (with KBK_{B} and b0b_{0}). Moreover, for any P𝒫1P\in\mathcal{P}_{1} with

PPmC¯(ηrm)1+α,\|P-P_{m}\|\leq\bar{C}(\eta r_{m})^{1+\alpha},

we have

(8.1) umPL(Bηrm)>(ηrm)1+α,\|u_{m}-P\|_{L^{\infty}(B_{\eta r_{m}})}>(\eta r_{m})^{1+\alpha},

where C¯\bar{C} and 0<η<1/20<\eta<1/2 are to be specified later.

Let

x~=xrm,u~m(x~)=um(x)Pm(x)rm1+α.\tilde{x}=\frac{x}{r_{m}},\quad\tilde{u}_{m}(\tilde{x})=\frac{u_{m}(x)-P_{m}(x)}{r_{m}^{1+\alpha}}.

Then u~m\tilde{u}_{m} are viscosity solutions of

(8.2) F~m(D2u~m,Du~m,u~m,x~)=0 inB1,\tilde{F}_{m}(D^{2}\tilde{u}_{m},D\tilde{u}_{m},\tilde{u}_{m},\tilde{x})=0~{}~{}\mbox{ in}~{}B_{1},

where

F~m(M,p,s,x~)=\displaystyle\tilde{F}_{m}(M,p,s,\tilde{x})= rm1αFm(rmα1M,rmαp+DPm(x),rm1+αs+Pm(x),x),\displaystyle r_{m}^{1-\alpha}F_{m}(r_{m}^{\alpha-1}M,r_{m}^{\alpha}p+DP_{m}(x),r_{m}^{1+\alpha}s+P_{m}(x),x),~{}
=\displaystyle= Amij(rmαp+DPm(x),rm1+αs+Pm(x),x)Mij\displaystyle A^{ij}_{m}(r_{m}^{\alpha}p+DP_{m}(x),r_{m}^{1+\alpha}s+P_{m}(x),x)M_{ij}
+rm1αBm(rmαp+DPm(x),rm1+αs+Pm(x),x).\displaystyle+r_{m}^{1-\alpha}B_{m}(r_{m}^{\alpha}p+DP_{m}(x),r_{m}^{1+\alpha}s+P_{m}(x),x).

Indeed, since FmF_{m} are ρ\rho-uniformly elliptic and Pm0\|P_{m}\|\to 0, F~m\tilde{F}_{m} are 12rmαρ\frac{1}{2}r_{m}^{-\alpha}\rho-uniformly elliptic for mm large enough. Note that

u~mL(B1)114rmαρ.\|\tilde{u}_{m}\|_{L^{\infty}(B_{1})}\leq 1\leq\frac{1}{4}r_{m}^{-\alpha}\rho.

Then it can be verified directly that u~m\tilde{u}_{m} are viscosity solutions of 8.2.

Next, by Proposition 7.4, for mm large enough,

u~mS12rmαρ(λ,Λ,rmb0,f¯m),\tilde{u}_{m}\in S^{*}_{\frac{1}{2}r_{m}^{-\alpha}\rho}(\lambda,\Lambda,r_{m}b_{0},\bar{f}_{m}),

where

f¯m(x~)=rm1αBm(DPm(x),rm1+αu~(x~)+Pm(x),x).\bar{f}_{m}(\tilde{x})=r_{m}^{1-\alpha}B_{m}(DP_{m}(x),r_{m}^{1+\alpha}\tilde{u}(\tilde{x})+P_{m}(x),x).

Hence, for any ε>0\varepsilon>0, we can take m0m_{0} large enough such that for any mm0m\geq m_{0},

f¯mL(B1)ε1,C~(4ρ3rmαρ)α0/2ε2,\|\bar{f}_{m}\|_{L^{\infty}(B_{1})}\leq\varepsilon_{1},\quad\tilde{C}\left(\frac{4\rho_{3}}{r_{m}^{-\alpha}\rho}\right)^{\alpha_{0}/2}\leq\frac{\varepsilon}{2},

where α0,C~,ρ3\alpha_{0},\tilde{C},\rho_{3} and ε1\varepsilon_{1} are as in Corollary 7.16. Set

δ=(4ρ3rmαρ)1/2.\delta=\left(\frac{4\rho_{3}}{r_{m}^{-\alpha}\rho}\right)^{1/2}.

By Corollary 7.16, for any x1,x2B1/2x_{1},x_{2}\in B_{1/2} with |x1x2|δ|x_{1}-x_{2}|\leq\delta, by choosing x3B1/2x_{3}\in B_{1/2} with |x1x3|=|x2x3|=δ|x_{1}-x_{3}|=|x_{2}-x_{3}|=\delta, we have for any mm0m\geq m_{0},

|u~m(x1)u~m(x2)||u~m(x1)u~m(x3)|+|u~m(x2)u~m(x3)|2C~δα0ε.|\tilde{u}_{m}(x_{1})-\tilde{u}_{m}(x_{2})|\leq|\tilde{u}_{m}(x_{1})-\tilde{u}_{m}(x_{3})|+|\tilde{u}_{m}(x_{2})-\tilde{u}_{m}(x_{3})|\leq 2\tilde{C}\delta^{\alpha_{0}}\leq\varepsilon.

Thus, u~m\tilde{u}_{m} are equicontinuous. By Arzelà-Ascoli theorem, there exists u~C(B¯1/2)\tilde{u}\in C(\bar{B}_{1/2}) such that u~mu~\tilde{u}_{m}\to\tilde{u} in L(B1/2)L^{\infty}(B_{1/2}) (up to a subsequence and similarly hereinafter).

Since

λIAm(0,0,0)ΛI,m1,\lambda I\leq A_{m}(0,0,0)\leq\Lambda I,~{}\forall~{}m\geq 1,

there exists a constant symmetric matrix A=(Aij)n×nA=(A^{ij})_{n\times n} such that

Am(0,0,0)A.A_{m}(0,0,0)\to A.

Now, we show that u~\tilde{u} is a viscosity solution of

(8.3) Aiju~ij=0 inB1/2.A^{ij}\tilde{u}_{ij}=0~{}~{}\mbox{ in}~{}B_{1/2}.

Given x~0B1/2\tilde{x}_{0}\in B_{1/2} and φC2\varphi\in C^{2} touching u~\tilde{u} strictly by above at x~0\tilde{x}_{0}. Then there exist a sequence of x~mx~0\tilde{x}_{m}\to\tilde{x}_{0} such that φ+cm\varphi+c_{m} touch u~m\tilde{u}_{m} by above at x~m\tilde{x}_{m} and cm0c_{m}\to 0. By the definition of viscosity solution, for mm large enough (e.g. rmαρ>2φC2(B¯1/2)r_{m}^{-\alpha}\rho>2\|\varphi\|_{C^{2}(\bar{B}_{1/2})}),

F~m(D2φ(x~m),Dφ(x~m),φ(x~m)+cm,x~m)0.\tilde{F}_{m}(D^{2}\varphi(\tilde{x}_{m}),D\varphi(\tilde{x}_{m}),\varphi(\tilde{x}_{m})+c_{m},\tilde{x}_{m})\geq 0.

Since

F~m\displaystyle\tilde{F}_{m} (D2φ(x~m),Dφ(x~m),φ(x~m)+cm,x~m)\displaystyle(D^{2}\varphi(\tilde{x}_{m}),D\varphi(\tilde{x}_{m}),\varphi(\tilde{x}_{m})+c_{m},\tilde{x}_{m})
=\displaystyle= Amij(rmαDφ(x~m)+DPm(x),rm1+αφ(x~m)+Pm(x),x)Mij\displaystyle A^{ij}_{m}(r_{m}^{\alpha}D\varphi(\tilde{x}_{m})+DP_{m}(x),r_{m}^{1+\alpha}\varphi(\tilde{x}_{m})+P_{m}(x),x)M_{ij}
+rm1αBm(rmαDφ(x~m)+DPm(x),rm1+αφ(x~m)+Pm(x),x),\displaystyle+r_{m}^{1-\alpha}B_{m}(r_{m}^{\alpha}D\varphi(\tilde{x}_{m})+DP_{m}(x),r_{m}^{1+\alpha}\varphi(\tilde{x}_{m})+P_{m}(x),x),
\displaystyle\leq Amij(0,0,0)Mij+ωA(Cm)\displaystyle A^{ij}_{m}(0,0,0)M_{ij}+\omega_{A}(\frac{C}{m})
+rm1αBm(rmαDφ(x~m)+DPm(x),rm1+αφ(x~m)+Pm(x),x),\displaystyle+r_{m}^{1-\alpha}B_{m}(r_{m}^{\alpha}D\varphi(\tilde{x}_{m})+DP_{m}(x),r_{m}^{1+\alpha}\varphi(\tilde{x}_{m})+P_{m}(x),x),

by letting mm\to\infty, we have

Aijφij(x~0)0.A^{ij}\varphi_{ij}(\tilde{x}_{0})\geq 0.

Hence, u~\tilde{u} is a subsolution of 8.3. Similarly, we can prove that it is a viscosity supersolution as well. That is, u~\tilde{u} is a viscosity solution.

Since 8.3 is a linear equation with constant coefficients, u~C(B1/2)\tilde{u}\in C^{\infty}(B_{1/2}). Then there exists P~𝒫1\tilde{P}\in\mathcal{P}_{1} such that for any 0<η<1/40<\eta<1/4,

u~P~L(Bη)C1η2u~L(B1/2)C1η2,\|\tilde{u}-\tilde{P}\|_{L^{\infty}(B_{\eta})}\leq C_{1}\eta^{2}\|\tilde{u}\|_{L^{\infty}(B_{1/2})}\leq C_{1}\eta^{2},

and

P~C2u~L(B1/2)C2,\|\tilde{P}\|\leq C_{2}\|\tilde{u}\|_{L^{\infty}(B_{1/2})}\leq C_{2},

where C1C_{1} and C2C_{2} are universal. By taking η\eta small and C¯\bar{C} large such that

Cη1α12,C2C¯η1+α.C\eta^{1-\alpha}\leq\frac{1}{2},\quad C_{2}\leq\bar{C}\eta^{1+\alpha}.

Then

(8.4) u~P~L(Bη)12η1+α,P~C¯η1+α.\|\tilde{u}-\tilde{P}\|_{L^{\infty}(B_{\eta})}\leq\frac{1}{2}\eta^{1+\alpha},\quad\|\tilde{P}\|\leq\bar{C}\eta^{1+\alpha}.

Let

Qm(x)=Pm(x)+rm1+αP~(x~).Q_{m}(x)=P_{m}(x)+r_{m}^{1+\alpha}\tilde{P}(\tilde{x}).

Then

QmPmC¯(ηrm)1+α.\|Q_{m}-P_{m}\|\leq\bar{C}(\eta r_{m})^{1+\alpha}.

Hence, 8.1 holds for QmQ_{m}. That is,

umQmL(Bηrm)>(ηrm)1+α.\|u_{m}-Q_{m}\|_{L^{\infty}(B_{\eta}r_{m})}>(\eta r_{m})^{1+\alpha}.

Equivalently,

u~mP~L(Bη)>η1+α.\|\tilde{u}_{m}-\tilde{P}\|_{L^{\infty}(B_{\eta})}>\eta^{1+\alpha}.

Let mm\to\infty, we have

u~P~L(Bη)η1+α,\|\tilde{u}-\tilde{P}\|_{L^{\infty}(B_{\eta})}\geq\eta^{1+\alpha},

which contradicts with 8.4. ∎ 

Now, we give the 
Proof of Theorem 1.5. To prove Theorem 1.5, we only to prove the following. There exist a sequence of Pm𝒫1P_{m}\in\mathcal{P}_{1} (m1m\geq-1) such that for all m0m\geq 0,

(8.5) uPmL(Bηmr0)(ηmr0)1+α,\|u-P_{m}\|_{L^{\infty}(B_{\eta^{m}r_{0}})}\leq(\eta^{m}r_{0})^{1+\alpha},

and

(8.6) PmPm1ηmr0C¯(ηmr0)1+α,\|P_{m}-P_{m-1}\|_{\eta^{m}r_{0}}\leq\bar{C}(\eta^{m}r_{0})^{1+\alpha},

where η,r0\eta,r_{0} and C¯\bar{C} are as in Lemma 8.1.

We prove above by induction. For m=0m=0, by setting P0P10P_{0}\equiv P_{-1}\equiv 0, 8.5 and 8.6 hold clearly. Suppose that the conclusion holds for mm0m\leq m_{0}. By 8.6,

Pm0i=1m0PiPi1C¯r01+αη1+α1η1+αC¯r01+α.\|P_{m_{0}}\|\leq\sum_{i=1}^{m_{0}}\|P_{i}-P_{i-1}\|\leq\bar{C}r_{0}^{1+\alpha}\frac{\eta^{1+\alpha}}{1-\eta^{1+\alpha}}\leq\bar{C}r_{0}^{1+\alpha}.

By Lemma 8.1, the conclusion holds for m=m0+1m=m_{0}+1. By induction, the proof of Theorem 1.5 is completed.  ∎ 

9. Interior C2,αC^{2,\alpha} regularity

In this section, we prove the interior pointwise C2,αC^{2,\alpha} regularity. As before, we first prove the key step by the compactness method.

Lemma 9.1.

Let 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of

F(D2u,Du,u,x)=f inB1,F(D^{2}u,Du,u,x)=f~{}~{}\mbox{ in}~{}B_{1},

where FF is ρ\rho-uniformly elliptic, F(0,0,0,x)0F(0,0,0,x)\equiv 0 and DMFD_{M}F is continuous with modulus ωF\omega_{F}. Suppose that 1.9 holds. Let rr0r\leq r_{0} and assume that for some P0𝒫2P_{0}\in\mathcal{P}_{2},

F(M,p,s,x)F(M,p,s,0)L(Br)δ0rα,|M|,|p|,|s|ρ,\|F(M,p,s,x)-F(M,p,s,0)\|_{L^{\infty}(B_{r})}\leq\delta_{0}r^{\alpha},~{}\forall~{}|M|,|p|,|s|\leq\rho,
uP0L(Br)r2+α,ff(0)L(Br)δ0rα\|u-P_{0}\|_{L^{\infty}(B_{r})}\leq r^{2+\alpha},\quad\|f-f(0)\|_{L^{\infty}(B_{r})}\leq\delta_{0}r^{\alpha}

and

P0C¯r02+α,F(D2P0,DP0(0),P0(0),0)=f(0),\|P_{0}\|\leq\bar{C}r_{0}^{2+\alpha},\quad F(D^{2}P_{0},DP_{0}(0),P_{0}(0),0)=f(0),\quad

where C¯\bar{C} depends only on n,λ,Λ,ρ,b0,c0n,\lambda,\Lambda,\rho,b_{0},c_{0} and α\alpha and 0<r0,δ0<10<r_{0},\delta_{0}<1 (small) depends also on ωF\omega_{F}.

Then there exists P𝒫2P\in\mathcal{P}_{2} such that

uPL(Bηr)(ηr)2+α\|u-P\|_{L^{\infty}(B_{\eta r})}\leq(\eta r)^{2+\alpha}

and

PP0rC¯(ηr)2+α,F(D2P,DP(0),P(0),0)=f(0),\|P-P_{0}\|_{r}\leq\bar{C}(\eta r)^{2+\alpha},\quad F(D^{2}P,DP(0),P(0),0)=f(0),\quad

where 0<η<1/20<\eta<1/2 depends only on n,λ,Λ,ρ,b0,c0n,\lambda,\Lambda,\rho,b_{0},c_{0} and α\alpha.

Proof.

We prove the lemma by contradiction. Suppose that the conclusion is false. Then there exist sequences of Fm,um,fm,Pm,rmF_{m},u_{m},f_{m},P_{m},r_{m} such that rm1/mr_{m}\leq 1/m,

Fm(D2um,Dum,um,x)=fm inBrm,F_{m}(D^{2}u_{m},Du_{m},u_{m},x)=f_{m}~{}~{}\mbox{ in}~{}B_{r_{m}},
Fm(M,p,s,x)Fm(M,p,s,0)L(Brm)rmαm,|M|,|p|,|s|ρ,\|F_{m}(M,p,s,x)-F_{m}(M,p,s,0)\|_{L^{\infty}(B_{r_{m}})}\leq\frac{r_{m}^{\alpha}}{m},~{}\forall~{}|M|,|p|,|s|\leq\rho,
umPmL(Brm)rm2+α,fmfm(0)L(Brm)rmαm\|u_{m}-P_{m}\|_{L^{\infty}(B_{r_{m}})}\leq r_{m}^{2+\alpha},\quad\|f_{m}-f_{m}(0)\|_{L^{\infty}(B_{r_{m}})}\leq\frac{r_{m}^{\alpha}}{m}

and

Fm(D2Pm,DPm(0),Pm(0),0)=fm(0),PmC¯m,F_{m}(D^{2}P_{m},DP_{m}(0),P_{m}(0),0)=f_{m}(0),\quad\|P_{m}\|\leq\frac{\bar{C}}{m},\quad

where FmF_{m} are ρ\rho-uniformly elliptic, Fm(0,0,0,x)0F_{m}(0,0,0,x)\equiv 0 and DMFmD_{M}F_{m} are continuous (with the same modulus ωF\omega_{F}). In addition, 1.9 holds for FmF_{m} with b0b_{0} and c0c_{0}. Moreover, for any P𝒫2P\in\mathcal{P}_{2} with

PPmC¯(ηrm)2+α,Fm(D2P,DP(0),P(0),0)=fm(0),\|P-P_{m}\|\leq\bar{C}(\eta r_{m})^{2+\alpha},\quad F_{m}(D^{2}P,DP(0),P(0),0)=f_{m}(0),\quad

we have

(9.1) umPL(Bηrm)>(ηrm)2+α,\|u_{m}-P\|_{L^{\infty}(B_{\eta r_{m}})}>(\eta r_{m})^{2+\alpha},

where C¯\bar{C} and 0<η<1/20<\eta<1/2 are to be specified later.

Let

(9.2) x~=xrm,u~m(x~)=um(x)Pm(x)rm2+α.\tilde{x}=\frac{x}{r_{m}},\quad\tilde{u}_{m}(\tilde{x})=\frac{u_{m}(x)-P_{m}(x)}{r_{m}^{2+\alpha}}.

Then u~m\tilde{u}_{m} are viscosity solutions of

(9.3) F~m(D2u~m,Du~m,u~m,x~)=f~m inB1,\tilde{F}_{m}(D^{2}\tilde{u}_{m},D\tilde{u}_{m},\tilde{u}_{m},\tilde{x})=\tilde{f}_{m}~{}~{}\mbox{ in}~{}B_{1},

where

F~m(M,p,s,x~)=rmαFm(rmαM+D2Pm,rm1+αp+DPm(x),rm2+αs+Pm(x),x),\displaystyle\tilde{F}_{m}(M,p,s,\tilde{x})=r_{m}^{-\alpha}F_{m}(r_{m}^{\alpha}M+D^{2}P_{m},r_{m}^{1+\alpha}p+DP_{m}(x),r_{m}^{2+\alpha}s+P_{m}(x),x),~{}
f~m(x~)=rmαfm(x).\displaystyle\tilde{f}_{m}(\tilde{x})=r_{m}^{-\alpha}f_{m}(x).

Indeed, since FmF_{m} are ρ\rho-uniformly elliptic and Pm0\|P_{m}\|\to 0, F~m\tilde{F}_{m} are 12rmαρ\frac{1}{2}r_{m}^{-\alpha}\rho-uniformly elliptic for mm large enough. Note that

u~mL(B1)114rmαρ.\|\tilde{u}_{m}\|_{L^{\infty}(B_{1})}\leq 1\leq\frac{1}{4}r_{m}^{-\alpha}\rho.

Then it can be verified directly that u~m\tilde{u}_{m} are viscosity solutions of 9.3.

Next, by Proposition 7.4, for mm large enough,

u~mS12rmαρ(λ,Λ,rmb0,f¯m),\tilde{u}_{m}\in S^{*}_{\frac{1}{2}r_{m}^{-\alpha}\rho}(\lambda,\Lambda,r_{m}b_{0},\bar{f}_{m}),

where

f¯m(x~)=|rmα(fm(x)Fm(D2Pm,DPm(x),Pm(x),x))|+rm2c0|um(x)|.\bar{f}_{m}(\tilde{x})=|r_{m}^{-\alpha}\left(f_{m}(x)-F_{m}(D^{2}P_{m},DP_{m}(x),P_{m}(x),x)\right)|+r_{m}^{2}c_{0}|u_{m}(x)|.

With the aid of Fm(D2Pm,DPm(0),Pm(0),0)=fm(0)F_{m}(D^{2}P_{m},DP_{m}(0),P_{m}(0),0)=f_{m}(0),

|fm\displaystyle|f_{m} Fm(D2Pm,DPm,Pm,x)|\displaystyle-F_{m}(D^{2}P_{m},DP_{m},P_{m},x)|
=\displaystyle= |fmfm(0)(Fm(D2Pm,DPm,Pm,x)Fm(D2Pm,DPm,Pm,0))\displaystyle\left|f_{m}-f_{m}(0)-\left(F_{m}(D^{2}P_{m},DP_{m},P_{m},x)-F_{m}(D^{2}P_{m},DP_{m},P_{m},0)\right)\right.
(Fm(D2Pm,DPm,Pm,0)Fm(D2Pm,DPm(0),Pm(0),0))|\displaystyle\left.-\left(F_{m}(D^{2}P_{m},DP_{m},P_{m},0)-F_{m}(D^{2}P_{m},DP_{m}(0),P_{m}(0),0)\right)\right|
\displaystyle\leq rmαm+rmαm+b0Crm+c0Crm.\displaystyle\frac{r_{m}^{\alpha}}{m}+\frac{r_{m}^{\alpha}}{m}+b_{0}Cr_{m}+c_{0}Cr_{m}.

Hence, for any ε>0\varepsilon>0, we can take m0m_{0} large enough such that for any mm0m\geq m_{0},

f¯mL(B1)ε1,C~(4ρ3rmαρ)α0/2ε2,\|\bar{f}_{m}\|_{L^{\infty}(B_{1})}\leq\varepsilon_{1},\quad\tilde{C}\left(\frac{4\rho_{3}}{r_{m}^{-\alpha}\rho}\right)^{\alpha_{0}/2}\leq\frac{\varepsilon}{2},

where α0,C~,ρ3\alpha_{0},\tilde{C},\rho_{3} and ε1\varepsilon_{1} are as in Corollary 7.16. Set

δ=(4ρ3rmαρ)1/2.\delta=\left(\frac{4\rho_{3}}{r_{m}^{-\alpha}\rho}\right)^{1/2}.

By Corollary 7.16, for any x1,x2B1/2x_{1},x_{2}\in B_{1/2} with |x1x2|δ|x_{1}-x_{2}|\leq\delta, by choosing x3B1/2x_{3}\in B_{1/2} with |x1x3|=|x2x3|=δ|x_{1}-x_{3}|=|x_{2}-x_{3}|=\delta, we have for any mm0m\geq m_{0},

|u~m(x1)u~m(x2)||u~m(x1)u~m(x3)|+|u~m(x2)u~m(x3)|2C~δα0ε.|\tilde{u}_{m}(x_{1})-\tilde{u}_{m}(x_{2})|\leq|\tilde{u}_{m}(x_{1})-\tilde{u}_{m}(x_{3})|+|\tilde{u}_{m}(x_{2})-\tilde{u}_{m}(x_{3})|\leq 2\tilde{C}\delta^{\alpha_{0}}\leq\varepsilon.

Thus, u~m\tilde{u}_{m} are equicontinuous. By Arzelà-Ascoli theorem, there exists u~C(B¯1/2)\tilde{u}\in C(\bar{B}_{1/2}) such that u~mu~\tilde{u}_{m}\to\tilde{u} in L(B1/2)L^{\infty}(B_{1/2}) (up to a subsequence and similarly hereinafter).

Since FmF_{m} are ρ\rho-uniformly elliptic,

λIDMFm(0,0,0,0)ΛI,m1.\lambda I\leq D_{M}F_{m}(0,0,0,0)\leq\Lambda I,~{}\forall~{}m\geq 1.

Hence, there exists a constant symmetric matrix A=(Aij)n×nA=(A^{ij})_{n\times n} such that

DMFm(0,0,0,0)A.D_{M}F_{m}(0,0,0,0)\to A.

Now, we show that u~\tilde{u} is a viscosity solution of

(9.4) Aiju~ij=0 inB1/2.A^{ij}\tilde{u}_{ij}=0~{}~{}\mbox{ in}~{}B_{1/2}.

Given x~0B1/2\tilde{x}_{0}\in B_{1/2} and φC2\varphi\in C^{2} touching u~\tilde{u} strictly by above at x~0\tilde{x}_{0}. Then there exist a sequence of x~mx~0\tilde{x}_{m}\to\tilde{x}_{0} such that φ+cm\varphi+c_{m} touch u~m\tilde{u}_{m} by above at x~m\tilde{x}_{m} and cm0c_{m}\to 0. By the definition of viscosity solution, for mm large enough (e.g. rmαρ>2φC2(B¯1/2)r_{m}^{-\alpha}\rho>2\|\varphi\|_{C^{2}(\bar{B}_{1/2})}),

F~m(D2φ(x~m),Dφ(x~m),φ(x~m)+cm,x~m)f~m(x~m).\tilde{F}_{m}(D^{2}\varphi(\tilde{x}_{m}),D\varphi(\tilde{x}_{m}),\varphi(\tilde{x}_{m})+c_{m},\tilde{x}_{m})\geq\tilde{f}_{m}(\tilde{x}_{m}).

We compute

F~m\displaystyle\tilde{F}_{m} (D2φ(x~m),Dφ(x~m),φ(x~m)+cm,x~m)\displaystyle(D^{2}\varphi(\tilde{x}_{m}),D\varphi(\tilde{x}_{m}),\varphi(\tilde{x}_{m})+c_{m},\tilde{x}_{m})
=\displaystyle= 1rmαFm(rmαD2φ+D2Pm,rm1+αDφ+DPm,rm2+α(φ+cm)+Pm,rmx~m)\displaystyle\frac{1}{r_{m}^{\alpha}}F_{m}(r_{m}^{\alpha}D^{2}\varphi+D^{2}P_{m},r_{m}^{1+\alpha}D\varphi+DP_{m},r_{m}^{2+\alpha}(\varphi+c_{m})+P_{m},r_{m}\tilde{x}_{m})
1rmαFm(rmαD2φ+D2Pm,rm1+αDφ+DPm,rm2+α(φ+cm)+Pm,0)\displaystyle-\frac{1}{r_{m}^{\alpha}}F_{m}(r_{m}^{\alpha}D^{2}\varphi+D^{2}P_{m},r_{m}^{1+\alpha}D\varphi+DP_{m},r_{m}^{2+\alpha}(\varphi+c_{m})+P_{m},0)
+1rmαFm(rmαD2φ+D2Pm,rm1+αDφ+DPm,rm2+α(φ+cm)+Pm,0)\displaystyle+\frac{1}{r_{m}^{\alpha}}F_{m}(r_{m}^{\alpha}D^{2}\varphi+D^{2}P_{m},r_{m}^{1+\alpha}D\varphi+DP_{m},r_{m}^{2+\alpha}(\varphi+c_{m})+P_{m},0)
1rmαFm(rmαD2φ+D2Pm,DPm(0),Pm(0),0)\displaystyle-\frac{1}{r_{m}^{\alpha}}F_{m}(r_{m}^{\alpha}D^{2}\varphi+D^{2}P_{m},DP_{m}(0),P_{m}(0),0)
+1rmαFm(rmαD2φ+D2Pm,DPm(0),Pm(0),0)\displaystyle+\frac{1}{r_{m}^{\alpha}}F_{m}(r_{m}^{\alpha}D^{2}\varphi+D^{2}P_{m},DP_{m}(0),P_{m}(0),0)
1rmαFm(D2Pm,DPm(0),Pm(0),0)+1rmαfm(0)\displaystyle-\frac{1}{r_{m}^{\alpha}}F_{m}(D^{2}P_{m},DP_{m}(0),P_{m}(0),0)+\frac{1}{r_{m}^{\alpha}}f_{m}(0)
\displaystyle\leq 1m+Cb0rm1α+Cc0rm1α\displaystyle\frac{1}{m}+Cb_{0}r_{m}^{1-\alpha}+Cc_{0}r_{m}^{1-\alpha}
+Fm,Mij(θrmαD2φ(x~m)+D2Pm,DPm(0),Pm(0),0)φij(x~m)+1rmαfm(0),\displaystyle+F_{m,M_{ij}}(\theta r_{m}^{\alpha}D^{2}\varphi(\tilde{x}_{m})+D^{2}P_{m},DP_{m}(0),P_{m}(0),0)\varphi_{ij}(\tilde{x}_{m})+\frac{1}{r_{m}^{\alpha}}f_{m}(0),

where 0<θ<10<\theta<1. Note that in above inequality, the variable of φ\varphi is x~m\tilde{x}_{m} and the variable of PmP_{m} is xm:=rmx~mx_{m}:=r_{m}\tilde{x}_{m}. Hence,

0\displaystyle 0\leq F~m(D2φ(x~m),Dφ(x~m),φ(x~m)+cm,x~m)f~m(x~m)\displaystyle\tilde{F}_{m}(D^{2}\varphi(\tilde{x}_{m}),D\varphi(\tilde{x}_{m}),\varphi(\tilde{x}_{m})+c_{m},\tilde{x}_{m})-\tilde{f}_{m}(\tilde{x}_{m})
\displaystyle\leq 1m+Cb0rm1α+Cc0rm1α\displaystyle\frac{1}{m}+Cb_{0}r_{m}^{1-\alpha}+Cc_{0}r_{m}^{1-\alpha}
+Fm,Mij(0,0,0,0)φij(x~m)+1rmα|fm(rmx~m)fm(0)|+ωF(Cm).\displaystyle+F_{m,M_{ij}}(0,0,0,0)\varphi_{ij}(\tilde{x}_{m})+\frac{1}{r_{m}^{\alpha}}|f_{m}(r_{m}\tilde{x}_{m})-f_{m}(0)|+\omega_{F}(\frac{C}{m}).

Let mm\to\infty, we have

(9.5) Aijφij(x~0)0.A^{ij}\varphi_{ij}(\tilde{x}_{0})\geq 0.

Hence, u~\tilde{u} is a subsolution of 9.4. Similarly, we can prove that it is a viscosity supersolution as well. That is, u~\tilde{u} is a viscosity solution. bounded and equicontinuous in any compact set of 𝒮n\mathcal{S}^{n}. Then there exists a linear operator F~\tilde{F} with ellipticity constants λ\lambda and Λ\Lambda such that F~mF~\tilde{F}_{m}\to\tilde{F} and DF~mDF~D\tilde{F}_{m}\to D\tilde{F} uniformly in any compact set of 𝒮n\mathcal{S}^{n} .

Since 9.4 is a linear equation with constant coefficients, u~C(B1/2)\tilde{u}\in C^{\infty}(B_{1/2}). Then there exists P~𝒫2\tilde{P}\in\mathcal{P}_{2} such that for any 0<η<1/40<\eta<1/4,

u~P~L(Bη)C1η3u~L(B1/2)C1η3,\|\tilde{u}-\tilde{P}\|_{L^{\infty}(B_{\eta})}\leq C_{1}\eta^{3}\|\tilde{u}\|_{L^{\infty}(B_{1/2})}\leq C_{1}\eta^{3},
AijP~ij=0A^{ij}\tilde{P}_{ij}=0

and

P~C2u~L(B1/2)C2,\|\tilde{P}\|\leq C_{2}\|\tilde{u}\|_{L^{\infty}(B_{1/2})}\leq C_{2},

where C1C_{1} and C2C_{2} are universal. By taking η\eta small and C¯\bar{C} large such that

Cη1α12,C2(C¯1)η2+α.C\eta^{1-\alpha}\leq\frac{1}{2},\quad C_{2}\leq(\bar{C}-1)\eta^{2+\alpha}.

Then

(9.6) u~P~L(Bη)12η2+α,P~(C¯1)η2+α.\|\tilde{u}-\tilde{P}\|_{L^{\infty}(B_{\eta})}\leq\frac{1}{2}\eta^{2+\alpha},\quad\|\tilde{P}\|\leq(\bar{C}-1)\eta^{2+\alpha}.

By a similar argument to prove 9.5,

F~m(D2P~,DP~(0),P~(0),0)AijP~ij=0.\tilde{F}_{m}(D^{2}\tilde{P},D\tilde{P}(0),\tilde{P}(0),0)\to A^{ij}\tilde{P}_{ij}=0.

Note that f~m(0)0\tilde{f}_{m}(0)\to 0 as well. Hence, there exist a sequence of constants tm0t_{m}\to 0 such that

F~m(D2P~+tmI,DP~(0),P~(0),0)=f~m(0).\tilde{F}_{m}(D^{2}\tilde{P}+t_{m}I,D\tilde{P}(0),\tilde{P}(0),0)=\tilde{f}_{m}(0).

Let

Qm(x)=Pm(x)+rm2+α(P~(x~)+tm2|x~|2).Q_{m}(x)=P_{m}(x)+r_{m}^{2+\alpha}\left(\tilde{P}(\tilde{x})+\frac{t_{m}}{2}|\tilde{x}|^{2}\right).

Then with the aid of 9.6,

Fm(D2Qm,DQm(0),Qm(0),0)=fm(0),QmPmC¯(ηrm)2+α.F_{m}(D^{2}Q_{m},DQ_{m}(0),Q_{m}(0),0)=f_{m}(0),\quad\|Q_{m}-P_{m}\|\leq\bar{C}(\eta r_{m})^{2+\alpha}.

Hence, 9.1 holds for QmQ_{m}. That is,

umQmL(Bηrm)>(ηrm)2+α.\|u_{m}-Q_{m}\|_{L^{\infty}(B_{\eta}r_{m})}>(\eta r_{m})^{2+\alpha}.

Equivalently,

u~mP~tm2|x~|2L(Bη)>η2+α.\|\tilde{u}_{m}-\tilde{P}-\frac{t_{m}}{2}|\tilde{x}|^{2}\|_{L^{\infty}(B_{\eta})}>\eta^{2+\alpha}.

Let mm\to\infty, we have

u~P~L(Bη)η2+α,\|\tilde{u}-\tilde{P}\|_{L^{\infty}(B_{\eta})}\geq\eta^{2+\alpha},

which contradicts with 9.6. ∎ 

Now, we give the 
Proof of Theorem 1.7. To prove Theorem 1.7, we only to prove the following. There exist a sequence of Pm𝒫2P_{m}\in\mathcal{P}_{2} (m1m\geq-1) such that for all m0m\geq 0,

(9.7) uPmL(Bηmr0)(ηmr0)2+α,\|u-P_{m}\|_{L^{\infty}(B_{\eta^{m}r_{0}})}\leq(\eta^{m}r_{0})^{2+\alpha},

and

(9.8) F(D2Pm,DPm(0),Pm(0),0)=f(0),PmPm1ηmr0C¯(ηmr0)2+α,F(D^{2}P_{m},DP_{m}(0),P_{m}(0),0)=f(0),\quad\|P_{m}-P_{m-1}\|_{\eta^{m}r_{0}}\leq\bar{C}(\eta^{m}r_{0})^{2+\alpha},

where η,r0\eta,r_{0} and C¯\bar{C} are as in Lemma 9.1.

We prove above by induction. Set P10P_{-1}\equiv 0. For m=0m=0, since F(0,0,0,0)=0F(0,0,0,0)=0, there exists tt\in\mathbb{R} such that

F(tI,0,0,0)=f(0),|t||f(0)|nλδnλ.F(tI,0,0,0)=f(0),\quad|t|\leq\frac{|f(0)|}{n\lambda}\leq\frac{\delta}{n\lambda}.

Then by choosing P0=t|x|2/2P_{0}=t|x|^{2}/2 and δ=(1+1/nλ)r02+α\delta=(1+1/n\lambda)r_{0}^{2+\alpha},

uP0L(Br0)uL(Br0)+P0L(Br0)δ+δ2nλr02+α.\|u-P_{0}\|_{L^{\infty}(B_{r_{0}})}\leq\|u\|_{L^{\infty}(B_{r_{0}})}+\|P_{0}\|_{L^{\infty}(B_{r_{0}})}\leq\delta+\frac{\delta}{2n\lambda}\leq r_{0}^{2+\alpha}.

Hence, 9.7 and 9.8 hold for m=0m=0. Suppose that the conclusion holds for mm0m\leq m_{0}. By 9.8,

Pm0i=1m0PiPi1+P0C¯r02+αη2+α1η2+α+r02+αC¯r02+α.\|P_{m_{0}}\|\leq\sum_{i=1}^{m_{0}}\|P_{i}-P_{i-1}\|+\|P_{0}\|\leq\bar{C}r_{0}^{2+\alpha}\frac{\eta^{2+\alpha}}{1-\eta^{2+\alpha}}+r_{0}^{2+\alpha}\leq\bar{C}r_{0}^{2+\alpha}.

By Lemma 9.1, the conclusion holds for m=m0+1m=m_{0}+1. By induction, the proof of Theorem 1.7 is completed.  ∎ 

Remark 9.2.

Note that we can not prove the pointwise C1,αC^{1,\alpha} regularity for a general operator FF. The reason is the following. For the C1,αC^{1,\alpha} regularity, we will consider for some Pm𝒫1P_{m}\in\mathcal{P}_{1}

x~=xrm,u~m(x~)=um(x)Pn(x)rm1+α\tilde{x}=\frac{x}{r_{m}},\quad\tilde{u}_{m}(\tilde{x})=\frac{u_{m}(x)-P_{n}(x)}{r_{m}^{1+\alpha}}

instead of 9.2 in the proof of Lemma 9.1. Then u~m\tilde{u}_{m} are solutions of

F~m(D2u~m,Du~m,u~m,x~):=rm1αFm(rmα1D2um,rmαDum,rmα+1um,x)=r1αfm.\displaystyle\tilde{F}_{m}(D^{2}\tilde{u}_{m},D\tilde{u}_{m},\tilde{u}_{m},\tilde{x}):=r_{m}^{1-\alpha}F_{m}(r_{m}^{\alpha-1}D^{2}u_{m},r_{m}^{\alpha}Du_{m},r_{m}^{\alpha+1}u_{m},x)=r^{1-\alpha}f_{m}.

Note that F~m\tilde{F}_{m} are only rm1αρr_{m}^{1-\alpha}\rho-uniformly elliptic and rm1αρ0r_{m}^{1-\alpha}\rho\to 0. Hence, we can not proceed the scaling argument.

10. Interior Ck,αC^{k,\alpha} regularity

In this section, we prove the interior pointwise Ck,αC^{k,\alpha} regularity Theorem 1.9. Since k2k\geq 2, the assumption of Theorem 1.9 is stronger than that of Theorem 1.7. Hence, uC2,α(0)u\in C^{2,\alpha}(0). Then we only need to prove:

Claim I: If uCk1,α(0)u\in C^{k-1,\alpha}(0) under the assumptions of Theorem 1.9, then uCk,α(0)u\in C^{k,\alpha}(0).

Indeed, we can prove Theorem 1.9 by induction if Claim I has been proved. For k=3k=3, by Theorem 1.7, uC2,α(0)u\in C^{2,\alpha}(0). Then Claim I implies uC3,α(0)u\in C^{3,\alpha}(0). Hence, Theorem 1.9 holds for k=3k=3. We assume that Theorem 1.9 holds for k=k0k=k_{0} and we only need to prove it for k0+1k_{0}+1. Since Theorem 1.9 holds for k0k_{0} and the assumptions of Theorem 1.9 with k0+1k_{0}+1 is stronger than that with k0k_{0}, uCk0,α(0)u\in C^{k_{0},\alpha}(0). Then Claim I implies uCk0+1,α(0)u\in C^{k_{0}+1,\alpha}(0). Therefore, Theorem 1.9 holds for k=k0+1k=k_{0}+1. By induction, the proof of Theorem 1.9 is completed. Thus, in this section, we only need to prove Claim I and assume that uCk1,α(0)u\in C^{k-1,\alpha}(0) throughout this section.

We first prove a special result.

Lemma 10.1.

Let 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of

F(D2u,Du,u,x)=f inB1,F(D^{2}u,Du,u,x)=f~{}~{}\mbox{ in}~{}B_{1},

where FF is ρ\rho-uniformly elliptic. Suppose that 1.9 and 1.12 hold (with δ0\delta_{0}) and

u(0)==|Dk1u(0)|=0,uL(B1)δ0,|f(x)|δ0|x|k2+α,xB1,u(0)=\cdots=|D^{k-1}u(0)|=0,\quad\|u\|_{L^{\infty}(B_{1})}\leq\delta_{0},\quad|f(x)|\leq\delta_{0}|x|^{k-2+\alpha},~{}\forall~{}x\in B_{1},

where δ0>0\delta_{0}>0 depends only on n,λ,Λ,ρ,b0,c0,α,kn,\lambda,\Lambda,\rho,b_{0},c_{0},\alpha,k and KFK_{F}. Assume for some P¯𝒫k\bar{P}\in\mathcal{HP}_{k},

(10.1) P¯δ0,|F0(D2P¯(x),DP¯(x),P¯(x),x)|C¯|x|k1,xB1,\|\bar{P}\|\leq\delta_{0},\quad|F_{0}(D^{2}\bar{P}(x),D\bar{P}(x),\bar{P}(x),x)|\leq\bar{C}|x|^{k-1},~{}\forall~{}x\in B_{1},

where C¯\bar{C} depending only on n,λ,Λ,ρ,b0,c0,α,kn,\lambda,\Lambda,\rho,b_{0},c_{0},\alpha,k and KFK_{F}, is to specified in Lemma 10.3.

Then uCk,α(0)u\in C^{k,\alpha}(0). That is, there exists P𝒫kP\in\mathcal{HP}_{k} such that

|u(x)P(x)|C|x|k+α,xB1|u(x)-P(x)|\leq C|x|^{k+\alpha},~{}\forall~{}x\in B_{1}

and

PCδ0,|F0(D2P(x),DP(x),P(x),x)|C¯|x|k1,xB1,\|P\|\leq C\delta_{0},\quad|F_{0}(D^{2}P(x),DP(x),P(x),x)|\leq\bar{C}|x|^{k-1},~{}\forall~{}x\in B_{1},

where CC depends only on n,λ,Λ,ρ,b0,c0,α,kn,\lambda,\Lambda,\rho,b_{0},c_{0},\alpha,k and KFK_{F}.

Remark 10.2.

Since we have assumed uCk1,α(0)u\in C^{k-1,\alpha}(0), Diu(0)D^{i}u(0) (1ik11\leq i\leq k-1) are well defined.

To prove Lemma 10.1, we prove the following key step by the compactness method as before.

Lemma 10.3.

Let 0<α<10<\alpha<1 and uC(B¯1)u\in C(\bar{B}_{1}) be a viscosity solution of

F(D2u,Du,u,x)=f inB1,F(D^{2}u,Du,u,x)=f~{}~{}\mbox{ in}~{}B_{1},

where FF is ρ\rho-uniformly elliptic. Suppose that 1.9 holds. Let rr0r\leq r_{0} and assume that for some P0𝒫kP_{0}\in\mathcal{HP}_{k}, 1.12 holds (with δ1\delta_{1}),

u(0)==|Dk1u(0)|=0,uP0L(Br)rk+α,u(0)=\cdots=|D^{k-1}u(0)|=0,\quad\|u-P_{0}\|_{L^{\infty}(B_{r})}\leq r^{k+\alpha},\quad
|f(x)|δ1|x|k2+α,xB1|f(x)|\leq\delta_{1}|x|^{k-2+\alpha},~{}\forall~{}x\in B_{1}

and

P0C¯r0k+α,|F0(D2P0(x),DP0(x),P0(x),x)|C¯|x|k1,xB1,\|P_{0}\|\leq\bar{C}r_{0}^{k+\alpha},\quad|F_{0}(D^{2}P_{0}(x),DP_{0}(x),P_{0}(x),x)|\leq\bar{C}|x|^{k-1},~{}\forall~{}x\in B_{1},~{}

where C¯\bar{C} depends only on n,λ,Λ,ρ,b0,c0,αn,\lambda,\Lambda,\rho,b_{0},c_{0},\alpha and kk, and 0<r0,δ1<10<r_{0},\delta_{1}<1 (small) depend also on KFK_{F}.

Then there exists P𝒫kP\in\mathcal{HP}_{k} such that

uPL(Bηr)(ηr)k+α\|u-P\|_{L^{\infty}(B_{\eta r})}\leq(\eta r)^{k+\alpha}

and

PP0rC¯(ηr)2+α,|F0(D2P(x),DP(x),P(x),x)|C¯|x|k1,\|P-P_{0}\|_{r}\leq\bar{C}(\eta r)^{2+\alpha},\quad|F_{0}(D^{2}P(x),DP(x),P(x),x)|\leq\bar{C}|x|^{k-1},\quad

where 0<η<1/20<\eta<1/2 depends only on n,λ,Λ,ρ,b0,c0,αn,\lambda,\Lambda,\rho,b_{0},c_{0},\alpha and kk.

Proof.

We prove the lemma by contradiction. Suppose that the conclusion is false. Then there exist sequences of Fm,F0m,um,fm,Pm,rmF_{m},F_{0m},u_{m},f_{m},P_{m},r_{m} such that rm1/mr_{m}\leq 1/m,

Fm(D2um,Dum,um,x)=fm inBrm,F_{m}(D^{2}u_{m},Du_{m},u_{m},x)=f_{m}~{}~{}\mbox{ in}~{}B_{r_{m}},
um(0)==|Dk1um(0)|=0,umPmL(Brm)rmk+α,u_{m}(0)=\cdots=|D^{k-1}u_{m}(0)|=0,\quad\|u_{m}-P_{m}\|_{L^{\infty}(B_{r_{m}})}\leq r_{m}^{k+\alpha},
|fm(x)|1m|x|k2+α,xB1|f_{m}(x)|\leq\frac{1}{m}|x|^{k-2+\alpha},~{}\forall~{}x\in B_{1}

and

(10.2) PmC¯m,|F0m(D2Pm(x),DPm(x),Pm(x),x)|1m|x|k1,xB1,\|P_{m}\|\leq\frac{\bar{C}}{m},\quad|F_{0m}(D^{2}P_{m}(x),DP_{m}(x),P_{m}(x),x)|\leq\frac{1}{m}|x|^{k-1},~{}\forall~{}x\in B_{1},~{}

where Fm,F0mF_{m},F_{0m} are ρ\rho-uniformly elliptic and 1.12 (with δ\delta replaced by 1/m1/m) holds for FmF_{m} and F0mF_{0m}. Furthermore, F0mCk1F_{0m}\in C^{k-1} (with the same bound KFK_{F}). Moreover, for any P𝒫kP\in\mathcal{HP}_{k} with

(10.3) |F0m(D2P(x),DP(x),P(x),x)|C¯|x|k1,PPmC¯(ηrm)k+α,|F_{0m}(D^{2}P(x),DP(x),P(x),x)|\leq\bar{C}|x|^{k-1},\quad\|P-P_{m}\|\leq\bar{C}(\eta r_{m})^{k+\alpha},

we have

(10.4) umPL(Bηrm)>(ηrm)k+α,\|u_{m}-P\|_{L^{\infty}(B_{\eta r_{m}})}>(\eta r_{m})^{k+\alpha},

where C¯\bar{C} and 0<η<1/20<\eta<1/2 are to be specified later.

Let

x~=xrm,u~m(x~)=um(x)Pm(x)rmk+α.\tilde{x}=\frac{x}{r_{m}},\quad\tilde{u}_{m}(\tilde{x})=\frac{u_{m}(x)-P_{m}(x)}{r_{m}^{k+\alpha}}.

As before, u~m\tilde{u}_{m} are viscosity solutions of

(10.5) F~m(D2u~m,Du~m,u~m,x~)=f~m inB1,\tilde{F}_{m}(D^{2}\tilde{u}_{m},D\tilde{u}_{m},\tilde{u}_{m},\tilde{x})=\tilde{f}_{m}~{}~{}\mbox{ in}~{}B_{1},

where

F~m\displaystyle\tilde{F}_{m} (M,p,s,x~)\displaystyle(M,p,s,\tilde{x})
=\displaystyle= rm(k2+α)Fm(rmk2+αM+D2Pm(x),rmk1+αp+DPm(x),rmk+αs+Pm(x),x)\displaystyle r_{m}^{-(k-2+\alpha)}F_{m}(r_{m}^{k-2+\alpha}M+D^{2}P_{m}(x),r_{m}^{k-1+\alpha}p+DP_{m}(x),r_{m}^{k+\alpha}s+P_{m}(x),x)
rm(k2+α)Fm(D2Pm(x),DPm(x),Pm(x),x),\displaystyle-r_{m}^{-(k-2+\alpha)}F_{m}(D^{2}P_{m}(x),DP_{m}(x),P_{m}(x),x),~{}
f~m\displaystyle\tilde{f}_{m} (x~)=rm(k2+α)fm(x)rm(k2+α)Fm(D2Pm(x),DPm(x),Pm(x),x).\displaystyle(\tilde{x})=r_{m}^{-(k-2+\alpha)}f_{m}(x)-r_{m}^{-(k-2+\alpha)}F_{m}(D^{2}P_{m}(x),DP_{m}(x),P_{m}(x),x).

Next, by Proposition 7.4, for mm large enough,

u~mS12rm(k2+α)ρ(λ,Λ,rmb0,f¯m),\tilde{u}_{m}\in S^{*}_{\frac{1}{2}r_{m}^{-(k-2+\alpha)}\rho}(\lambda,\Lambda,r_{m}b_{0},\bar{f}_{m}),

where

f¯m(x~)=|rm(k2+α)(fm(x)Fm(D2Pm,DPm(x),Pm(x),x))|+rm2c0|um(x)|.\bar{f}_{m}(\tilde{x})=|r_{m}^{-(k-2+\alpha)}\left(f_{m}(x)-F_{m}(D^{2}P_{m},DP_{m}(x),P_{m}(x),x)\right)|+r_{m}^{2}c_{0}|u_{m}(x)|.

By the assumptions,

f¯mL(B1)\displaystyle\|\bar{f}_{m}\|_{L^{\infty}(B_{1})}\leq 1m+rm1α+c0rmk+2+α.\displaystyle\frac{1}{m}+r_{m}^{1-\alpha}+c_{0}r_{m}^{k+2+\alpha}.

Hence, for any ε>0\varepsilon>0, we can take m0m_{0} large enough such that for any mm0m\geq m_{0},

f¯mL(B1)ε1,C~(4ρ3rm(k2+α)ρ)α0/2ε2,\|\bar{f}_{m}\|_{L^{\infty}(B_{1})}\leq\varepsilon_{1},\quad\tilde{C}\left(\frac{4\rho_{3}}{r_{m}^{-(k-2+\alpha)}\rho}\right)^{\alpha_{0}/2}\leq\frac{\varepsilon}{2},

where α0,C~,ρ3\alpha_{0},\tilde{C},\rho_{3} and ε1\varepsilon_{1} are as in Corollary 7.16. Set

δ=(4ρ3rm(k2+α)ρ)1/2.\delta=\left(\frac{4\rho_{3}}{r_{m}^{-(k-2+\alpha)}\rho}\right)^{1/2}.

By Corollary 7.16, for any x1,x2B1/2x_{1},x_{2}\in B_{1/2} with |x1x2|δ|x_{1}-x_{2}|\leq\delta, by choosing x3B1/2x_{3}\in B_{1/2} with |x1x3|=|x2x3|=δ|x_{1}-x_{3}|=|x_{2}-x_{3}|=\delta, we have for any mm0m\geq m_{0},

|u~m(x1)u~m(x2)||u~m(x1)u~m(x3)|+|u~m(x2)u~m(x3)|2C~δα0ε.|\tilde{u}_{m}(x_{1})-\tilde{u}_{m}(x_{2})|\leq|\tilde{u}_{m}(x_{1})-\tilde{u}_{m}(x_{3})|+|\tilde{u}_{m}(x_{2})-\tilde{u}_{m}(x_{3})|\leq 2\tilde{C}\delta^{\alpha_{0}}\leq\varepsilon.

Thus, u~m\tilde{u}_{m} are equicontinuous. Then there exists u~C(B¯1/2)\tilde{u}\in C(\bar{B}_{1/2}) such that u~mu~\tilde{u}_{m}\to\tilde{u} in L(B1/2)L^{\infty}(B_{1/2}).

As before, there exists a constant symmetric matrix AA such that

DMF0m(0,0,0,0)A.D_{M}F_{0m}(0,0,0,0)\to A.

Now, we show that u~\tilde{u} is a viscosity solution of

(10.6) Aiju~ij=0 inB1/2.A^{ij}\tilde{u}_{ij}=0~{}~{}\mbox{ in}~{}B_{1/2}.

Given x~0B1/2\tilde{x}_{0}\in B_{1/2} and φC2\varphi\in C^{2} touching u~\tilde{u} strictly by above at x~0\tilde{x}_{0}. Then there exist a sequence of x~mx~0\tilde{x}_{m}\to\tilde{x}_{0} such that φ+cm\varphi+c_{m} touch u~m\tilde{u}_{m} by above at x~m\tilde{x}_{m} and cm0c_{m}\to 0. By the definition of viscosity solution, for mm large enough,

F~m(D2φ(x~m),Dφ(x~m),φ(x~m)+cm,x~m)f~m(x~m).\tilde{F}_{m}(D^{2}\varphi(\tilde{x}_{m}),D\varphi(\tilde{x}_{m}),\varphi(\tilde{x}_{m})+c_{m},\tilde{x}_{m})\geq\tilde{f}_{m}(\tilde{x}_{m}).

Note that

f~m\displaystyle\tilde{f}_{m} (x~m)F~m(D2φ(x~m),Dφ(x~m),φ(x~m)+cm,x~m)\displaystyle(\tilde{x}_{m})\leq\tilde{F}_{m}(D^{2}\varphi(\tilde{x}_{m}),D\varphi(\tilde{x}_{m}),\varphi(\tilde{x}_{m})+c_{m},\tilde{x}_{m})
=\displaystyle= 1rmk2+αFm(rmk2+αD2φ+D2Pm,rmk1+αDφ+DPm,rmk+α(φ+cm)+Pm,rmx~m)\displaystyle\frac{1}{r_{m}^{k-2+\alpha}}F_{m}(r_{m}^{k-2+\alpha}D^{2}\varphi+D^{2}P_{m},r_{m}^{k-1+\alpha}D\varphi+DP_{m},r_{m}^{k+\alpha}(\varphi+c_{m})+P_{m},r_{m}\tilde{x}_{m})
1rmk2+αF0m(rmk2+αD2φ+D2Pm,rmk1+αDφ+DPm,rmk+α(φ+cm)+Pm,rmx~)\displaystyle-\frac{1}{r_{m}^{k-2+\alpha}}F_{0m}(r_{m}^{k-2+\alpha}D^{2}\varphi+D^{2}P_{m},r_{m}^{k-1+\alpha}D\varphi+DP_{m},r_{m}^{k+\alpha}(\varphi+c_{m})+P_{m},r_{m}\tilde{x})
+1rmk2+αF0m(rmk2+αD2φ+D2Pm,rmk1+αDφ+DPm,rmk+α(φ+cm)+Pm,rmx~)\displaystyle+\frac{1}{r_{m}^{k-2+\alpha}}F_{0m}(r_{m}^{k-2+\alpha}D^{2}\varphi+D^{2}P_{m},r_{m}^{k-1+\alpha}D\varphi+DP_{m},r_{m}^{k+\alpha}(\varphi+c_{m})+P_{m},r_{m}\tilde{x})
1rmk2+αF0m(D2Pm,DPm,Pm,rmx~m)\displaystyle-\frac{1}{r_{m}^{k-2+\alpha}}F_{0m}(D^{2}P_{m},DP_{m},P_{m},r_{m}\tilde{x}_{m})
\displaystyle\leq 1m+F0m,Mij(ξ)φij(x~m)+rmF0m,pi(ξ)φi(x~m)+rm2F0m,s(ξ)φ(x~m),\displaystyle\frac{1}{m}+F_{0m,M_{ij}}(\xi)\varphi_{ij}(\tilde{x}_{m})+r_{m}F_{0m,p_{i}}(\xi)\varphi_{i}(\tilde{x}_{m})+r_{m}^{2}F_{0m,s}(\xi)\varphi(\tilde{x}_{m}),

where

ξ=(θrmk2+αD2φ+D2Pm,θrmk1+αDφ+DPm,θrmk+α(φ+cm)+Pm,rmx~m)\xi=(\theta r_{m}^{k-2+\alpha}D^{2}\varphi+D^{2}P_{m},\theta r_{m}^{k-1+\alpha}D\varphi+DP_{m},\theta r_{m}^{k+\alpha}(\varphi+c_{m})+P_{m},r_{m}\tilde{x}_{m})

for some 0<θ<10<\theta<1. Let mm\to\infty, we have

Aijφij(x~0)0.A^{ij}\varphi_{ij}(\tilde{x}_{0})\geq 0.

Hence, u~\tilde{u} is a subsolution of 10.6. Similarly, we can prove that it is a viscosity supersolution as well. That is, u~\tilde{u} is a viscosity solution.

Next, we show u~mCk1,α(0)\tilde{u}_{m}\in C^{k-1,\alpha}(0) and their norms have a uniform bound for mm large enough. Take δ\delta small (to be specified later) and set u^m=δu~m\hat{u}_{m}=\delta\tilde{u}_{m}. Then u^m\hat{u}_{m} are viscosity solutions of

(10.7) F^m(D2u^m,Du^m,u^m,x~)=f^m inB1,\hat{F}_{m}(D^{2}\hat{u}_{m},D\hat{u}_{m},\hat{u}_{m},\tilde{x})=\hat{f}_{m}~{}~{}\mbox{ in}~{}B_{1},

where

F^m(M,p,s,x~)=δF~m(δ1M,δ1p,δ1s,x~),f^m(x~)=δf~m(x~)\displaystyle\hat{F}_{m}(M,p,s,\tilde{x})=\delta\tilde{F}_{m}(\delta^{-1}M,\delta^{-1}p,\delta^{-1}s,\tilde{x}),\quad\hat{f}_{m}(\tilde{x})=\delta\tilde{f}_{m}(\tilde{x})

and we define F^0m\hat{F}_{0m} similarly.

Since rm0r_{m}\to 0 and Pm0\|P_{m}\|\to 0, for mm large enough (similarly in the following argument), F^m\hat{F}_{m} are ρ\rho-uniformly elliptic (although δ\delta is very small) and

u^mL(B1)δ,f^mCk2+α(0)δ\|\hat{u}_{m}\|_{L^{\infty}(B_{1})}\leq\delta,\quad\|\hat{f}_{m}\|_{C^{k-2+\alpha}(0)}\leq\delta

In addition, F^m(0,0,0,x~)0\hat{F}_{m}(0,0,0,\tilde{x})\equiv 0 obviously and it can be verified easily that F^m\hat{F}_{m} satisfies 1.9 with b0b_{0} and c0c_{0}. Next, for any |M|,|p|,|s|ρ|M|,|p|,|s|\leq\rho and x~B1\tilde{x}\in B_{1},

|F^m\displaystyle|\hat{F}_{m} (M,p,s,x~)F^0m(M,p,s,x~)|\displaystyle(M,p,s,\tilde{x})-\hat{F}_{0m}(M,p,s,\tilde{x})| 2m|x~|k2+αδ|x~|k2+α.\displaystyle\leq\frac{2}{m}|\tilde{x}|^{k-2+\alpha}\leq\delta|\tilde{x}|^{k-2+\alpha}.

Finally, we show

(10.8) F^0mCk1(B¯ρ×B¯1)K^F,\|\hat{F}_{0m}\|_{C^{k-1}(\bar{\textbf{B}}_{\rho}\times\bar{B}_{1})}\leq\hat{K}_{F},

where K^F\hat{K}_{F} depends only on n,ρn,\rho and KFK_{F}. In fact, note that

F^0m(M,p,s,x~)\displaystyle\hat{F}_{0m}(M,p,s,\tilde{x}) =F^0m(M,p,s,x~)F^0m(0,0,0,x~)\displaystyle=\hat{F}_{0m}(M,p,s,\tilde{x})-\hat{F}_{0m}(0,0,0,\tilde{x})
=01F0m,Mij(ξ)Mij+rmF0m,pi(ξ)pi+rm2F0m,s(ξ)sdt,\displaystyle=\int_{0}^{1}F_{0m,M_{ij}}(\xi)M_{ij}+r_{m}F_{0m,p_{i}}(\xi)p_{i}+r_{m}^{2}F_{0m,s}(\xi)sdt,

where

ξ=t(δ1rmk2+αM,δ1rmk1+αp,δ1rmk+αs,x)+(D2Pm(x),DPm(x),Pm(x),x).\xi=t\left(\delta^{-1}r_{m}^{k-2+\alpha}M,\delta^{-1}r_{m}^{k-1+\alpha}p,\delta^{-1}r_{m}^{k+\alpha}s,x\right)+\left(D^{2}P_{m}(x),DP_{m}(x),P_{m}(x),x\right).

Hence,

F^0mCk2(B¯ρ×B¯1)K^F.\|\hat{F}_{0m}\|_{C^{k-2}(\bar{\textbf{B}}_{\rho}\times\bar{B}_{1})}\leq\hat{K}_{F}.

Next, from the definition of F^0m\hat{F}_{0m}, if any (k1)(k-1)-th derivative of F^0m\hat{F}_{0m} involves one derivative with respect to M,pM,p or ss, it is bounded; if we take (k1)(k-1)-th derivative with respect to x~\tilde{x},

Dx~k1\displaystyle D^{k-1}_{\tilde{x}} F^0m(M,p,s,x~)\displaystyle\hat{F}_{0m}(M,p,s,\tilde{x})
=\displaystyle= rm1αDxk1(F0m(δ1rmk2+αM+D2Pm,δ1rmk1+αp+DPm,δ1rmk+αs+Pm,x))\displaystyle r_{m}^{1-\alpha}D^{k-1}_{x}\Big{(}F_{0m}(\delta^{-1}r_{m}^{k-2+\alpha}M+D^{2}P_{m},\delta^{-1}r_{m}^{k-1+\alpha}p+DP_{m},\delta^{-1}r_{m}^{k+\alpha}s+P_{m},x)\Big{)}
\displaystyle\leq K^F,(M,p,s,x)B¯ρ×B¯1.\displaystyle\hat{K}_{F},~{}\forall~{}(M,p,s,x)\in\bar{\textbf{B}}_{\rho}\times\bar{B}_{1}.

Therefore, 10.8 holds.

Choose δ\delta small enough such that Theorem 1.9 holds for δ\delta and K^F\hat{K}_{F}. By induction, u^mCk1,α(0)\hat{u}_{m}\in C^{k-1,\alpha}(0) and hence u~mCk1,α(0)\tilde{u}_{m}\in C^{k-1,\alpha}(0) and their norms have a uniform bound for mm large enough.

Since um(0)==Dk1um(0)=0u_{m}(0)=\cdots=D^{k-1}u_{m}(0)=0 and Pm𝒫k1P_{m}\in\mathcal{HP}_{k-1},

|u~m(x~)|C|x~|k1+α,x~B1,|\tilde{u}_{m}(\tilde{x})|\leq C|\tilde{x}|^{k-1+\alpha},~{}\forall~{}\tilde{x}\in B_{1},

where CC is a constant independent of mm. By taking mm\to\infty,

(10.9) |u~(x~)|C|x~|k1+α,x~B1.|\tilde{u}(\tilde{x})|\leq C|\tilde{x}|^{k-1+\alpha},~{}\forall~{}\tilde{x}\in B_{1}.

Since 10.6 is a linear equation with constant coefficients, u~C(B1/2)\tilde{u}\in C^{\infty}(B_{1/2}). By noting 10.9, there exists P~𝒫k\tilde{P}\in\mathcal{HP}_{k} such that for any 0<η<1/40<\eta<1/4,

u~P~L(Bη)C1ηk+1u~L(B1/2)C1ηk+1,\|\tilde{u}-\tilde{P}\|_{L^{\infty}(B_{\eta})}\leq C_{1}\eta^{k+1}\|\tilde{u}\|_{L^{\infty}(B_{1/2})}\leq C_{1}\eta^{k+1},
AijP~ij0A^{ij}\tilde{P}_{ij}\equiv 0

and

P~C2,u~L(B1/2)C2,\|\tilde{P}\|\leq C_{2},\quad\|\tilde{u}\|_{L^{\infty}(B_{1/2})}\leq C_{2},

where C1C_{1} and C2C_{2} depend only on n,λ,Λn,\lambda,\Lambda and kk. By taking η\eta small and C¯\bar{C} large such that

Cη1α12,C2(C¯1)ηk+α.C\eta^{1-\alpha}\leq\frac{1}{2},\quad C_{2}\leq(\bar{C}-1)\eta^{k+\alpha}.

Then

(10.10) u~P~L(Bη)12ηk+α,P~(C¯1)ηk+α.\|\tilde{u}-\tilde{P}\|_{L^{\infty}(B_{\eta})}\leq\frac{1}{2}\eta^{k+\alpha},\quad\|\tilde{P}\|\leq(\bar{C}-1)\eta^{k+\alpha}.

Now, we try to construct a sequence of P~m𝒫k\tilde{P}_{m}\in\mathcal{HP}_{k} such that P~mP~\tilde{P}_{m}\rightarrow\tilde{P} as mm\rightarrow\infty and

(10.11) DiGm(0)=0,1ik2,D^{i}G_{m}(0)=0,~{}\forall~{}1\leq i\leq k-2,

where

Gm(x~)=F~0m(D2P~m(x~),DP~m(x~),P~m(x~),x~).G_{m}(\tilde{x})=\tilde{F}_{0m}(D^{2}\tilde{P}_{m}(\tilde{x}),D\tilde{P}_{m}(\tilde{x}),\tilde{P}_{m}(\tilde{x}),\tilde{x}).

The 10.11 implies

Di(F0m(D2Q(x),DQ(x),Q(x),x))|x=0=0,1ik2,D^{i}\left(F_{0m}(D^{2}Q(x),DQ(x),Q(x),x)\right)\Big{|}_{x=0}=0,~{}\forall~{}1\leq i\leq k-2,

where

Qm(x)=Pm(x)+rmk+αP~m(x~).Q_{m}(x)=P_{m}(x)+r_{m}^{k+\alpha}\tilde{P}_{m}(\tilde{x}).

Then 10.3 holds since F0mCk1F_{0m}\in C^{k-1}.

To prove 10.11, let P^m𝒫k\hat{P}_{m}\in\mathcal{HP}_{k} (m1m\geq 1) with P^m1\|\hat{P}_{m}\|\leq 1 to be specified later and

P~m(x~)=P^m(x~)+P~(x~).\tilde{P}_{m}(\tilde{x})=\hat{P}_{m}(\tilde{x})+\tilde{P}(\tilde{x}).

Since P~m𝒫k\tilde{P}_{m}\in\mathcal{HP}_{k} and F~0m(0,0,0,x~)0\tilde{F}_{0m}(0,0,0,\tilde{x})\equiv 0,

|Gm(x~)|=\displaystyle|G_{m}(\tilde{x})|= |F~0m(D2P~m(x~),DP~m(x~),P~m(x~),x~)F~m(0,0,0,x~)|\displaystyle|\tilde{F}_{0m}(D^{2}\tilde{P}_{m}(\tilde{x}),D\tilde{P}_{m}(\tilde{x}),\tilde{P}_{m}(\tilde{x}),\tilde{x})-\tilde{F}_{m}(0,0,0,\tilde{x})|
=\displaystyle= |01F~0m,Mij(ξ)P~m,ij+F~0m,pi(ξ)P~m,i+F~0m,s(ξ)P~mdt|\displaystyle|\int_{0}^{1}\tilde{F}_{0m,M_{ij}}(\xi)\tilde{P}_{m,ij}+\tilde{F}_{0m,p_{i}}(\xi)\tilde{P}_{m,i}+\tilde{F}_{0m,s}(\xi)\tilde{P}_{m}dt|
\displaystyle\leq C|x~|k2,\displaystyle C|\tilde{x}|^{k-2},

where

ξ=(tD2P~m(x),tDP~m(x~),tP~m(x~),x~).\xi=(tD^{2}\tilde{P}_{m}(x),tD\tilde{P}_{m}(\tilde{x}),t\tilde{P}_{m}(\tilde{x}),\tilde{x}).

Hence, to verify 10.11 for P~m\tilde{P}_{m}, we only need to prove Dk2Gm(0)=0D^{k-2}G_{m}(0)=0. Indeed, since P~m𝒫k\tilde{P}_{m}\in\mathcal{HP}_{k},

Dk2Gm(0)\displaystyle D^{k-2}G_{m}(0) =F~0m,Mij(0,0,0,0)Dk2P~m,ij\displaystyle=\tilde{F}_{0m,M_{ij}}(0,0,0,0)D^{k-2}\tilde{P}_{m,ij}
=F~0m,Mij(0,0,0,0)Dk2P~ij+F~0m,Mij(0,0,0,0)Dk2P^m,ij,\displaystyle=\tilde{F}_{0m,M_{ij}}(0,0,0,0)D^{k-2}\tilde{P}_{ij}+\tilde{F}_{0m,M_{ij}}(0,0,0,0)D^{k-2}\hat{P}_{m,ij},

Since

F~0m,Mij(0,0,0,0)Dk2P~ijA~ijDk2P~ij=0\displaystyle\tilde{F}_{0m,M_{ij}}(0,0,0,0)D^{k-2}\tilde{P}_{ij}\rightarrow\tilde{A}^{ij}D^{k-2}\tilde{P}_{ij}=0

and λF~0m,Mij(0)Λ\lambda\leq\tilde{F}_{0m,M_{ij}}(0)\leq\Lambda, we can choose proper P^m\hat{P}_{m} such that

Dk2Gm(0)=0,m1 andP^m0.D^{k-2}G_{m}(0)=0,~{}\forall~{}m\geq 1~{}~{}\mbox{ and}~{}\|\hat{P}_{m}\|\rightarrow 0.

Hence, 10.3 holds for QmQ_{m}. Then,

umQmL(Bηrm)>(ηrm)k+α.\|u_{m}-Q_{m}\|_{L^{\infty}(B_{\eta}r_{m})}>(\eta r_{m})^{k+\alpha}.

Equivalently,

u~mP~P^mL(Bη)>ηk+α.\|\tilde{u}_{m}-\tilde{P}-\hat{P}_{m}\|_{L^{\infty}(B_{\eta})}>\eta^{k+\alpha}.

Let mm\to\infty, we have

u~P~L(Bη)ηk+α,\|\tilde{u}-\tilde{P}\|_{L^{\infty}(B_{\eta})}\geq\eta^{k+\alpha},

which contradicts with 10.4. ∎ 

Now, we give the 
Proof of Lemma 10.1. To prove Lemma 10.1, we only to prove the following. There exist a sequence of Pm𝒫kP_{m}\in\mathcal{HP}_{k} (m1m\geq-1) such that for all m0m\geq 0,

(10.12) uPmL(Bηmr0)(ηmr0)k+α,\|u-P_{m}\|_{L^{\infty}(B_{\eta^{m}r_{0}})}\leq(\eta^{m}r_{0})^{k+\alpha},
(10.13) |F0(D2Pm(x),DPm(x),Pm(x),x)|C^|x|k1,xB1,|F_{0}(D^{2}P_{m}(x),DP_{m}(x),P_{m}(x),x)|\leq\hat{C}|x|^{k-1},~{}\forall~{}x\in B_{1},

and

(10.14) PmPm1ηmr0C¯(ηmr0)k+α,\|P_{m}-P_{m-1}\|_{\eta^{m}r_{0}}\leq\bar{C}(\eta^{m}r_{0})^{k+\alpha},

where η,r0\eta,r_{0} and C¯\bar{C} are as in Lemma 10.3.

We prove above by induction. Set P0=P¯P_{0}=\bar{P} and P10P_{-1}\equiv 0. Choose δ0\delta_{0} such that

δ0=12r0k+α.\delta_{0}=\frac{1}{2}r_{0}^{k+\alpha}.

Then by 10.1 and noting

uP0L(Br0)uL(Br0)+P0L(Br0)2δ0r0k+α,\|u-P_{0}\|_{L^{\infty}(B_{r_{0}})}\leq\|u\|_{L^{\infty}(B_{r_{0}})}+\|P_{0}\|_{L^{\infty}(B_{r_{0}})}\leq 2\delta_{0}\leq r_{0}^{k+\alpha},

10.12-10.14 hold for m=0m=0. Suppose that the conclusion holds for mm0m\leq m_{0}. By 10.14,

Pm0i=1m0PiPi1+P0C¯r0k+αηk+α1ηk+α+12r0k+αC¯r0k+α.\|P_{m_{0}}\|\leq\sum_{i=1}^{m_{0}}\|P_{i}-P_{i-1}\|+\|P_{0}\|\leq\bar{C}r_{0}^{k+\alpha}\frac{\eta^{k+\alpha}}{1-\eta^{k+\alpha}}+\frac{1}{2}r_{0}^{k+\alpha}\leq\bar{C}r_{0}^{k+\alpha}.

By Lemma 10.3, the conclusion holds for m=m0+1m=m_{0}+1. By induction, the proof of Lemma 10.1 is completed.  ∎ 

Now, we give the 
Proof of Theorem 1.9. As explained at the beginning of this section, we only need to prove Claim I. That is, we assume uCk1,α(0)u\in C^{k-1,\alpha}(0) and need to prove uCk,α(0)u\in C^{k,\alpha}(0).

Let F1(M,p,s,x)=F(M,p,s,x)Pf(x)F_{1}(M,p,s,x)=F(M,p,s,x)-P_{f}(x) for (M,p,s,x)𝒮n×n××B¯1(M,p,s,x)\in\mathcal{S}^{n}\times\mathbb{R}^{n}\times\mathbb{R}\times\bar{B}_{1}. Then uu satisfies

F1(D2u,Du,u,x)=f1inB1,F_{1}(D^{2}u,Du,u,x)=f_{1}~{}~{}\mbox{in}~{}~{}B_{1},

where f1(x)=f(x)Pf(x)f_{1}(x)=f(x)-P_{f}(x). Thus,

|f1(x)|[f]Ck2,α(0)|x|k2+αδ|x|k2+α,xB1.|f_{1}(x)|\leq[f]_{C^{k-2,\alpha}(0)}|x|^{k-2+\alpha}\leq\delta|x|^{k-2+\alpha},~{}~{}\forall~{}x\in B_{1}.

Define

Pu(x)=|σ|k11σ!Dσu(0)xσ.P_{u}(x)=\sum_{|\sigma|\leq k-1}\frac{1}{\sigma!}D^{\sigma}u(0)x^{\sigma}.

Set u1=uPuu_{1}=u-P_{u} and F2(M,p,s,x)=F2(M+D2Pu(x),p+DPu(x),s+Pu(x),x)F_{2}(M,p,s,x)=F_{2}(M+D^{2}P_{u}(x),p+DP_{u}(x),s+P_{u}(x),x). Then u1u_{1} satisfies

(10.15) F2(D2u1,Du1,u1,x)=f1inB1F_{2}(D^{2}u_{1},Du_{1},u_{1},x)=f_{1}~{}~{}\mbox{in}~{}~{}B_{1}

and

u1(0)=|Du1(0)|==|Dk1u1(0)|=0.u_{1}(0)=|Du_{1}(0)|=\cdots=|D^{k-1}u_{1}(0)|=0.

We define F01,F02F_{01},F_{02} in a similar way.

Next, we try to construct P¯𝒫k\bar{P}\in\mathcal{HP}_{k} such that 10.1 holds. Since we have known the Ck1,α(0)C^{k-1,\alpha}(0) regularity,

|F02(0,0,0,x)|=|F0(D2Pu(x),DPu(x),Pu(x),x)Pf(x)|C¯|x|k2,xB1,|F_{02}(0,0,0,x)|=|F_{0}(D^{2}P_{u}(x),DP_{u}(x),P_{u}(x),x)-P_{f}(x)|\leq\bar{C}|x|^{k-2},~{}\forall~{}x\in B_{1},

which implies

Di(F02(0,0,0,x))|x=0=0,0ik3.D^{i}\left(F_{02}(0,0,0,x)\right)\Big{|}_{x=0}=0,~{}\forall~{}0\leq i\leq k-3.

Since P¯𝒫k\bar{P}\in\mathcal{HP}_{k},

Di(F2(D2P¯,DP¯,P¯,x))|x=0=Di(F2(0,0,0,x))|x=0=0,0ik3.D^{i}\left(F_{2}(D^{2}\bar{P},D\bar{P},\bar{P},x)\right)\Big{|}_{x=0}=D^{i}\left(F_{2}(0,0,0,x)\right)\Big{|}_{x=0}=0,~{}\forall~{}0\leq i\leq k-3.

Next, we compute the k2k-2 order derivatives. Since F0(0,0,0,x)0F_{0}(0,0,0,x)\equiv 0,

|Dxk2F0(D2Pu(0),DPu(0),Pu(0),0)|\displaystyle\left|D^{k-2}_{x}F_{0}(D^{2}P_{u}(0),DP_{u}(0),P_{u}(0),0)\right|
=|Dxk2F0(D2Pu(0),DPu(0),Pu(0),0)Dxk2F0(0,0,0,0)|\displaystyle=\left|D^{k-2}_{x}F_{0}(D^{2}P_{u}(0),DP_{u}(0),P_{u}(0),0)-D^{k-2}_{x}F_{0}(0,0,0,0)\right|
KFPuCδ,\displaystyle\leq K_{F}\|P_{u}\|\leq C\delta,

which implies

|Dk2(F2(0,0,0,x))|x=0|Cδ.\left|D^{k-2}\left(F_{2}(0,0,0,x)\right)\Big{|}_{x=0}\right|\leq C\delta.

Note

Dk2\displaystyle D^{k-2} (F2(D2P¯,DP¯,P¯,x))|x=0=F2,Mij(0,0,0,0)Dk2P¯ij+Dk2(F2(0,0,0,x))|x=0\displaystyle\left(F_{2}(D^{2}\bar{P},D\bar{P},\bar{P},x)\right)\Big{|}_{x=0}=F_{2,M_{ij}}(0,0,0,0)D^{k-2}\bar{P}_{ij}+D^{k-2}\left(F_{2}(0,0,0,x)\right)\Big{|}_{x=0}

and λIDMF2ΛI\lambda I\leq D_{M}F_{2}\leq\Lambda I. Then we can choose proper P¯\bar{P} such that

Dk2(F2(D2P¯,DP¯,P¯,x))|x=0,P¯Cδ,D^{k-2}\left(F_{2}(D^{2}\bar{P},D\bar{P},\bar{P},x)\right)\Big{|}_{x=0},\quad\|\bar{P}\|\leq C\delta,

where CC depends only on n,λ,Λ,ρ,kn,\lambda,\Lambda,\rho,k and KFK_{F}. Therefore, 10.1 holds by taking δ\delta small enough. By Lemma 10.1, u1u_{1} and hence uu is Ck,αC^{k,\alpha} at 0. ∎ 

Finally, we give the 
Proof of Corollary 1.11. By Theorem 1.7, uC2,α(0)u\in C^{2,\alpha}(0) and there exists P𝒫2P\in\mathcal{P}_{2} such that

|u(x)P(x)|C|x|2+α,xB1|u(x)-P(x)|\leq C|x|^{2+\alpha},~{}\forall~{}x\in B_{1}

and

(10.16) PC¯δ,F(D2P,DP(0),P(0),0)=f(0).\|P\|\leq\bar{C}\delta,\quad F(D^{2}P,DP(0),P(0),0)=f(0).

For r>0r>0 to be specified later, let

y=xr,u~(y)=u(x)P(x)r2,f~(y)=f(x)F(D2P,DP(x),P(x),x).y=\frac{x}{r},\quad\tilde{u}(y)=\frac{u(x)-P(x)}{r^{2}},\quad\tilde{f}(y)=f(x)-F(D^{2}P,DP(x),P(x),x).

Then u~\tilde{u} is a solution of

(10.17) F~(D2u~,Du~,u~,x)=f~inB1,\tilde{F}(D^{2}\tilde{u},D\tilde{u},\tilde{u},x)=\tilde{f}\quad\mbox{in}~{}B_{1},

where

F~(M,p,s,y)=F(M+D2P,rp+DP(x),r2s+P(x),x)F(D2P,DP(x),P(x),x).\tilde{F}(M,p,s,y)=F(M+D^{2}P,rp+DP(x),r^{2}s+P(x),x)-F(D^{2}P,DP(x),P(x),x).

In addition, define

F~0(M,p,s,y)=F0(M+D2P,rp+DP(x),r2s+P(x),x)F0(D2P,DP(x),P(x),x).\tilde{F}_{0}(M,p,s,y)=F_{0}(M+D^{2}P,rp+DP(x),r^{2}s+P(x),x)-F_{0}(D^{2}P,DP(x),P(x),x).

Next, we show that 10.17 satisfies the assumptions of Theorem 1.9. First, F~0(0,0,0,y)0\tilde{F}_{0}(0,0,0,y)\equiv 0 clearly. In addition, by 10.16 and taking δ\delta small enough, F~\tilde{F} and F~0\tilde{F}_{0} are ρ/2\rho/2-uniformly elliptic and

KF~=F~0Ck1(B¯ρ/2×B¯1)CKF.K_{\tilde{F}}=\|\tilde{F}_{0}\|_{C^{k-1}(\bar{\textbf{B}}_{\rho/2}\times\bar{B}_{1})}\leq CK_{F}.

Moreover, it can be verified easily that for any |M|,|p|,|s|ρ/2,yB1|M|,|p|,|s|\leq\rho/2,~{}y\in B_{1},

|F~(M,p,s,y)F~0(M,p,s,y)|Cδ|x|k2+αCδrk2+α|y|k2+α.|\tilde{F}(M,p,s,y)-\tilde{F}_{0}(M,p,s,y)|\leq C\delta|x|^{k-2+\alpha}\leq C\delta r^{k-2+\alpha}|y|^{k-2+\alpha}.

Finally, by noting f~(0)=0\tilde{f}(0)=0,

u~L(B1)Crα,f~Ck2+α(0)Cr.\|\tilde{u}\|_{L^{\infty}(B_{1})}\leq Cr^{\alpha},\quad\|\tilde{f}\|_{C^{k-2+\alpha}(0)}\leq Cr.

Therefore, we can choose rr small enough such that the assumptions of Theorem 1.9 are satisfies. Then u~Ck,α(0)\tilde{u}\in C^{k,\alpha}(0) and hence uCk,α(0)u\in C^{k,\alpha}(0). ∎ 

Statements and Declarations

Competing Interests: All authors declare that they have no conflicts of interest.

References

  • [1] A. D. Aleksandrov “Dirichlet’s problem for the equation Detzij=φ(z1,,zn,z,x1,,xn){\rm Det}\,||z_{ij}||=\varphi(z_{1},\cdots,z_{n},z,x_{1},\cdots,x_{n}). I” In Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. 13.1, 1958, pp. 5–24
  • [2] A. Alexandroff “Smoothness of the convex surface of bounded Gaussian curvature” In C. R. (Doklady) Acad. Sci. URSS (N.S.) 36, 1942, pp. 195–199
  • [3] Anna Lisa Amadori, Barbara Brandolini and Cristina Trombetti “Viscosity solutions of the Monge-Ampère equation with the right hand side in LpL^{p} In Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 18.3, 2007, pp. 221–233 DOI: 10.4171/rlm/491
  • [4] Roberto Argiolas, Fernando Charro and Ireneo Peral “On the Aleksandrov-Bakel’man-Pucci estimate for some elliptic and parabolic nonlinear operators” In Arch. Ration. Mech. Anal. 202.3, 2011, pp. 875–917 DOI: 10.1007/s00205-011-0434-y
  • [5] Scott N. Armstrong and Luis Silvestre “Unique continuation for fully nonlinear elliptic equations” In Math. Res. Lett. 18.5, 2011, pp. 921–926 DOI: 10.4310/MRL.2011.v18.n5.a9
  • [6] Scott N. Armstrong, Luis E. Silvestre and Charles K. Smart “Partial regularity of solutions of fully nonlinear, uniformly elliptic equations” In Comm. Pure Appl. Math. 65.8, 2012, pp. 1169–1184 DOI: 10.1002/cpa.21394
  • [7] Agnid Banerjee “A note on the unique continuation property for fully nonlinear elliptic equations” In Commun. Pure Appl. Anal. 14.2, 2015, pp. 623–626 DOI: 10.3934/cpaa.2015.14.623
  • [8] Jiguang Bao, Jingyi Chen, Bo Guan and Min Ji “Liouville property and regularity of a Hessian quotient equation” In Amer. J. Math. 125.2, 2003, pp. 301–316 URL: http://muse.jhu.edu/journals/american_journal_of_mathematics/v125/125.2bao.pdf
  • [9] G. Barles “Interior gradient bounds for the mean curvature equation by viscosity solutions methods” In Differential Integral Equations 4.2, 1991, pp. 263–275
  • [10] Arunima Bhattacharya “Hessian estimates for Lagrangian mean curvature equation” In Calc. Var. Partial Differential Equations 60.6, 2021, pp. Paper No. 224, 23 DOI: 10.1007/s00526-021-02097-0
  • [11] Arunima Bhattacharya, Connor Mooney and Ravi Shankar “Gradient estimates for the Lagrangian mean curvature equation with critical and supercritical phase”, 2022 arXiv:2205.13096 [math.AP]
  • [12] Arunima Bhattacharya and Ravi Shankar “Optimal regularity for Lagrangian mean curvature type equations”, 2020 arXiv:2009.04613 [math.AP]
  • [13] Arunima Bhattacharya and Ravi Shankar “Regularity for convex viscosity solutions of Lagrangian mean curvature equation” In J. Reine Angew. Math. 803, 2023, pp. 219–232 DOI: 10.1515/crelle-2023-0056
  • [14] E. Bombieri, E. De Giorgi and M. Miranda “Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche” In Arch. Rational Mech. Anal. 32, 1969, pp. 255–267 DOI: 10.1007/BF00281503
  • [15] Theodora Bourni C1,αC^{1,\alpha} theory for the prescribed mean curvature equation with Dirichlet data” In J. Geom. Anal. 21.4, 2011, pp. 982–1035 DOI: 10.1007/s12220-010-9176-6
  • [16] Xavier Cabré and Luis A. Caffarelli “Regularity for viscosity solutions of fully nonlinear equations F(D2u)=0F(D^{2}u)=0 In Topol. Methods Nonlinear Anal. 6.1, 1995, pp. 31–48 DOI: 10.12775/TMNA.1995.030
  • [17] L. Caffarelli, R. Kohn and L. Nirenberg “Partial regularity of suitable weak solutions of the Navier-Stokes equations” In Comm. Pure Appl. Math. 35.6, 1982, pp. 771–831 DOI: 10.1002/cpa.3160350604
  • [18] L. Caffarelli, L. Nirenberg and J. Spruck “The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation” In Comm. Pure Appl. Math. 37.3, 1984, pp. 369–402 DOI: 10.1002/cpa.3160370306
  • [19] L. Caffarelli, L. Nirenberg and J. Spruck “The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian” In Acta Math. 155.3-4, 1985, pp. 261–301 DOI: 10.1007/BF02392544
  • [20] L. Caffarelli, L. Nirenberg and J. Spruck “The Dirichlet problem for the degenerate Monge-Ampère equation” In Rev. Mat. Iberoamericana 2.1-2, 1986, pp. 19–27 DOI: 10.4171/RMI/23
  • [21] L. A. Caffarelli “A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity” In Ann. of Math. (2) 131.1, 1990, pp. 129–134 DOI: 10.2307/1971509
  • [22] Luis A. Caffarelli “Interior W2,pW^{2,p} estimates for solutions of the Monge-Ampère equation” In Ann. of Math. (2) 131.1, 1990, pp. 135–150 DOI: 10.2307/1971510
  • [23] Luis A. Caffarelli “Some regularity properties of solutions of Monge Ampère equation” In Comm. Pure Appl. Math. 44.8-9, 1991, pp. 965–969 DOI: 10.1002/cpa.3160440809
  • [24] Luis A. Caffarelli “The regularity of mappings with a convex potential” In J. Amer. Math. Soc. 5.1, 1992, pp. 99–104 DOI: 10.2307/2152752
  • [25] Luis A. Caffarelli “Boundary regularity of maps with convex potentials. II” In Ann. of Math. (2) 144.3, 1996, pp. 453–496 DOI: 10.2307/2118564
  • [26] Luis A. Caffarelli “Monge Ampère equation div-curl theorems in Lagrangian coordinates compression and rotation, NSF-CBMS Lecture” Florida Atlantic University, 1997
  • [27] Luis A. Caffarelli and Xavier Cabré “Fully nonlinear elliptic equations” 43, American Mathematical Society Colloquium Publications American Mathematical Society, Providence, RI, 1995, pp. vi+104 DOI: 10.1090/coll/043
  • [28] Luis A. Caffarelli and Yu Yuan “A priori estimates for solutions of fully nonlinear equations with convex level set” In Indiana Univ. Math. J. 49.2, 2000, pp. 681–695 DOI: 10.1512/iumj.2000.49.1901
  • [29] Luis A. Caffarelli and Yu Yuan “Singular solutions to Monge-Ampère equation” In Anal. Theory Appl. 38.2, 2022, pp. 121–127
  • [30] Eugenio Calabi “Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens” In Michigan Math. J. 5, 1958, pp. 105–126 URL: http://projecteuclid.org/euclid.mmj/1028998055
  • [31] Nirmalendu Chaudhuri and Neil S. Trudinger “An Alexsandrov type theorem for kk-convex functions” In Bull. Austral. Math. Soc. 71.2, 2005, pp. 305–314 DOI: 10.1017/S0004972700038260
  • [32] Chuanqiang Chen “The interior gradient estimate of Hessian quotient equations” In J. Differential Equations 259.3, 2015, pp. 1014–1023 DOI: 10.1016/j.jde.2015.02.035
  • [33] Chuanqiang Chen, Weisong Dong and Fei Han “Interior Hessian estimates for a class of Hessian type equations” In Calc. Var. Partial Differential Equations 62.2, 2023, pp. Paper No. 52, 15 DOI: 10.1007/s00526-022-02385-3
  • [34] Chuanqiang Chen, Lu Xu and Dekai Zhang “The interior gradient estimate of prescribed Hessian quotient curvature equations” In Manuscripta Math. 153.1-2, 2017, pp. 159–171 DOI: 10.1007/s00229-016-0877-4
  • [35] Jingyi Chen, Ravi Shankar and Yu Yuan “Regularity for convex viscosity solutions of special Lagrangian equation” In Comm. Pure Appl. Math. 76.12, 2023, pp. 4075–4086 DOI: 10.1002/cpa.22130
  • [36] Jingyi Chen, Micah Warren and Yu Yuan “A priori estimate for convex solutions to special Lagrangian equations and its application” In Comm. Pure Appl. Math. 62.4, 2009, pp. 583–595 DOI: 10.1002/cpa.20261
  • [37] Li Chen, Qiang Tu and Ni Xiang “Pogorelov type estimates for a class of Hessian quotient equations” In J. Differential Equations 282, 2021, pp. 272–284 DOI: 10.1016/j.jde.2021.02.030
  • [38] Shibing Chen, Jiakun Liu and Xu-Jia Wang “Global regularity for the Monge-Ampère equation with natural boundary condition” In Ann. of Math. (2) 194.3, 2021, pp. 745–793 DOI: 10.4007/annals.2021.194.3.4
  • [39] Jingrui Cheng and Yulun Xu “Interior W2,pW^{2,p} estimate for small perturbations to the complex Monge-Ampère equation” In Calc. Var. Partial Differential Equations 62.8, 2023, pp. Paper No. 231, 46 DOI: 10.1007/s00526-023-02571-x
  • [40] Shiu Yuen Cheng and Shing Tung Yau “On the regularity of the Monge-Ampère equation det(2u/xisxj)=F(x,u){\rm det}(\partial^{2}u/\partial x_{i}\partial sx_{j})=F(x,u) In Comm. Pure Appl. Math. 30.1, 1977, pp. 41–68 DOI: 10.1002/cpa.3160300104
  • [41] Shih-Kai Chiu and Gábor Székelyhidi “Higher regularity for singular Kähler-Einstein metrics” In Duke Math. J. 172.18, 2023, pp. 3521–3558 DOI: 10.1215/00127094-2022-0107
  • [42] Kai-Seng Chou and Xu-Jia Wang “A variational theory of the Hessian equation” In Comm. Pure Appl. Math. 54.9, 2001, pp. 1029–1064 DOI: 10.1002/cpa.1016
  • [43] Jianchun Chu and Sławomir Dinew “Liouville theorem for a class of Hessian equations”, 2023 arXiv:2306.13825 [math.AP]
  • [44] Limei Dai, Jiguang Bao and Bo Wang “Interior derivative estimates and Bernstein theorem for Hessian quotient equations”, 2023 arXiv:2305.17831 [math.AP]
  • [45] Qiuyi Dai, Neil S. Trudinger and Xu-Jia Wang “The mean curvature measure” In J. Eur. Math. Soc. (JEMS) 14.3, 2012, pp. 779–800 DOI: 10.4171/JEMS/318
  • [46] Ennio De Giorgi “Frontiere orientate di misura minima”, Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61 Editrice Tecnico Scientifica, Pisa, 1961, pp. 57
  • [47] G. De Philippis, A. Figalli and O. Savin “A note on interior W2,1+εW^{2,1+\varepsilon} estimates for the Monge-Ampère equation” In Math. Ann. 357.1, 2013, pp. 11–22 DOI: 10.1007/s00208-012-0895-9
  • [48] Guido De Philippis and Alessio Figalli W2,1W^{2,1} regularity for solutions of the Monge-Ampère equation” In Invent. Math. 192.1, 2013, pp. 55–69 DOI: 10.1007/s00222-012-0405-4
  • [49] Shi-Zhong Du “Necessary and sufficient conditions to Bernstein theorem of a Hessian equation” In Trans. Amer. Math. Soc. 375.7, 2022, pp. 4873–4892 DOI: 10.1090/tran/8686
  • [50] Lawrence C. Evans “Classical solutions of fully nonlinear, convex, second-order elliptic equations” In Comm. Pure Appl. Math. 35.3, 1982, pp. 333–363 DOI: 10.1002/cpa.3160350303
  • [51] Alessio Figalli “The Monge-Ampère equation and its applications”, Zurich Lectures in Advanced Mathematics European Mathematical Society (EMS), Zürich, 2017, pp. x+200 DOI: 10.4171/170
  • [52] Robert Finn “On equations of minimal surface type” In Ann. of Math. (2) 60, 1954, pp. 397–416 DOI: 10.2307/1969841
  • [53] Claus Gerhardt “Existence, regularity, and boundary behavior of generalized surfaces of prescribed mean curvature” In Math. Z. 139, 1974, pp. 173–198 DOI: 10.1007/BF01418314
  • [54] Mariano Giaquinta “On the Dirichlet problem for surfaces of prescribed mean curvature” In Manuscripta Math. 12, 1974, pp. 73–86 DOI: 10.1007/BF01166235
  • [55] Mariano Giaquinta and Enrico Giusti “Nonlinear elliptic systems with quadratic growth” In Manuscripta Math. 24.3, 1978, pp. 323–349 DOI: 10.1007/BF01167835
  • [56] David Gilbarg and Neil S. Trudinger “Elliptic partial differential equations of second order” Reprint of the 1998 edition, Classics in Mathematics Springer-Verlag, Berlin, 2001, pp. xiv+517
  • [57] Enrico Giusti “On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions” In Invent. Math. 46.2, 1978, pp. 111–137 DOI: 10.1007/BF01393250
  • [58] Enrico Giusti “Minimal surfaces and functions of bounded variation” 80, Monographs in Mathematics Birkhäuser Verlag, Basel, 1984, pp. xii+240 DOI: 10.1007/978-1-4684-9486-0
  • [59] Pengfei Guan and Guohuan Qiu “Interior C2C^{2} regularity of convex solutions to prescribing scalar curvature equations” In Duke Math. J. 168.9, 2019, pp. 1641–1663 DOI: 10.1215/00127094-2019-0001
  • [60] Pengfei Guan, Neil S. Trudinger and Xu-Jia Wang “On the Dirichlet problem for degenerate Monge-Ampère equations” In Acta Math. 182.1, 1999, pp. 87–104 DOI: 10.1007/BF02392824
  • [61] Cristian E. Gutiérrez “The Monge-Ampère equation” 44, Progress in Nonlinear Differential Equations and their Applications Birkhäuser Boston, Inc., Boston, MA, 2001, pp. xii+127 DOI: 10.1007/978-1-4612-0195-3
  • [62] Erhard Heinz “On elliptic Monge-Ampère equations and Weyl’s embedding problem” In J. Analyse Math. 7, 1959, pp. 1–52 DOI: 10.1007/BF02787679
  • [63] Erhard Heinz “Über die Differentialungleichung 0<αrts2β<0<\alpha\leq rt-s^{2}\leq\beta<\infty In Math. Z. 72, 1959/60, pp. 107–126 DOI: 10.1007/BF01162942
  • [64] N. M. Ivochkina “Classical solvability of the Dirichlet problem for the Monge-Ampère equation” Questions in quantum field theory and statistical physics, 4 In Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 131, 1983, pp. 72–79
  • [65] N. M. Ivochkina “Solution of the Dirichlet problem for certain equations of Monge-Ampère type” In Mat. Sb. (N.S.) 128(170).3, 1985, pp. 403–415, 447
  • [66] Nina Ivochkina, Neil Trudinger and Xu-Jia Wang “The Dirichlet problem for degenerate Hessian equations” In Comm. Partial Differential Equations 29.1-2, 2004, pp. 219–235 DOI: 10.1081/PDE-120028851
  • [67] N. M. Ivočkina “A priori estimate of |u|C2(Ω¯)|u|_{C_{2}(\overline{\Omega})} of convex solutions of the Dirichlet problem for the Monge-Ampère equation” In Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96, 1980, pp. 69–79, 306
  • [68] N. M. Ivočkina “The integral method of barrier functions and the Dirichlet problem for equations with operators of the Monge-Ampère type” In Mat. Sb. (N.S.) 112(154).2(6), 1980, pp. 193–206
  • [69] Howard Jenkins and James Serrin “The Dirichlet problem for the minimal surface equation in higher dimensions” In J. Reine Angew. Math. 229, 1968, pp. 170–187 DOI: 10.1515/crll.1968.229.170
  • [70] Huai-Yu Jian and Xu-Jia Wang “Continuity estimates for the Monge-Ampère equation” In SIAM J. Math. Anal. 39.2, 2007, pp. 608–626 DOI: 10.1137/060669036
  • [71] Fritz John “Extremum problems with inequalities as subsidiary conditions” In Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948 Interscience Publishers, New York, 1948, pp. 187–204
  • [72] Konrad Jörgens “Über die Lösungen der Differentialgleichung rts2=1rt-s^{2}=1 In Math. Ann. 127, 1954, pp. 130–134 DOI: 10.1007/BF01361114
  • [73] N. Korevaar “An easy proof of the interior gradient bound for solutions to the prescribed mean curvature equation” In Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) 45, Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1986, pp. 81–89 DOI: 10.1090/pspum/045.2/843597
  • [74] N. V. Krylov “Boundedly inhomogeneous elliptic and parabolic equations” In Izv. Akad. Nauk SSSR Ser. Mat. 46.3, 1982, pp. 487–523, 670
  • [75] N. V. Krylov “Boundedly inhomogeneous elliptic and parabolic equations in a domain” In Izv. Akad. Nauk SSSR Ser. Mat. 47.1, 1983, pp. 75–108
  • [76] N. V. Krylov “Degenerate nonlinear elliptic equations” In Mat. Sb. (N.S.) 120(162).3, 1983, pp. 311–330, 448
  • [77] N. V. Krylov “Smoothness of the payoff function for a controllable diffusion process in a domain” In Izv. Akad. Nauk SSSR Ser. Mat. 53.1, 1989, pp. 66–96 DOI: 10.1070/IM1990v034n01ABEH000603
  • [78] N. V. Krylov and M. V. Safonov “An estimate for the probability of a diffusion process hitting a set of positive measure” In Dokl. Akad. Nauk SSSR 245.1, 1979, pp. 18–20
  • [79] N. V. Krylov and M. V. Safonov “A property of the solutions of parabolic equations with measurable coefficients” In Izv. Akad. Nauk SSSR Ser. Mat. 44.1, 1980, pp. 161–175, 239
  • [80] O. A. Ladyzhenskaya and N. N. Ural tseva “Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations” In Comm. Pure Appl. Math. 23, 1970, pp. 677–703 DOI: 10.1002/cpa.3160230409
  • [81] Gian Paolo Leonardi and Giovanni Eugenio Comi “The prescribed mean curvature measure equation in non-parametric form”, 2023 arXiv:2302.10592 [math.AP]
  • [82] Haigang Li, Xiaoliang Li and Shuyang Zhao “Hessian quotient equations on exterior domains”, 2020 arXiv:2004.06908 [math.AP]
  • [83] Yang Li “Strominger-Yau-Zaslow conjecture for Calabi-Yau hypersurfaces in the Fermat family” In Acta Math. 229.1, 2022, pp. 1–53
  • [84] Yang Li “Metric SYZ conjecture and non-Archimedean geometry” In Duke Math. J. 172.17, 2023, pp. 3227–3255 DOI: 10.1215/00127094-2022-0099
  • [85] YanYan Li, Luc Nguyen and Jingang Xiong “Regularity of viscosity solutions of the σk\sigma_{k}-Loewner-Nirenberg problem” In Proc. Lond. Math. Soc. (3) 127.1, 2023, pp. 1–34 DOI: 10.1112/plms.12536
  • [86] Yuanyuan Lian, Lihe Wang and Kai Zhang “Pointwise Regularity for Fully Nonlinear Elliptic Equations in General Forms”, 2020 arXiv:2012.00324 [math.AP]
  • [87] Yuanyuan Lian and Kai Zhang “Boundary pointwise C1,αC^{1,\alpha} and C2,αC^{2,\alpha} regularity for fully nonlinear elliptic equations” In J. Differential Equations 269.2, 2020, pp. 1172–1191 DOI: 10.1016/j.jde.2020.01.006
  • [88] Yuanyuan Lian, Kai Zhang, Dongsheng Li and Guanghao Hong “Boundary Hölder regularity for elliptic equations” In J. Math. Pures Appl. (9) 143, 2020, pp. 311–333 DOI: 10.1016/j.matpur.2020.09.012
  • [89] Siyuan Lu “Interior C2C^{2} estimate for Hessian quotient equation in dimension three”, 2023 arXiv:2311.05835 [math.AP]
  • [90] Siyuan Lu “On the Dirichlet problem for Lagrangian phase equation with critical and supercritical phase” In Discrete Contin. Dyn. Syst. 43.7, 2023, pp. 2561–2575 DOI: 10.3934/dcds.2023020
  • [91] Siyuan Lu “Interior C2C^{2} estimate for Hessian quotient equation in general dimension”, 2024 arXiv:2401.12229 [math.AP]
  • [92] Mario Miranda “Dirichlet problem with L1L^{1} data for the non-homogeneous minimal surface equation” In Indiana Univ. Math. J. 24, 1974/75, pp. 227–241 DOI: 10.1512/iumj.1974.24.24020
  • [93] Connor Mooney “Strict 2-convexity of convex solutions to the quadratic Hessian equation” In Proc. Amer. Math. Soc. 149.6, 2021, pp. 2473–2477 DOI: 10.1090/proc/15454
  • [94] Connor Mooney and Ovidiu Savin “Non C1C^{1} solutions to the special Lagrangian equation”, 2023 arXiv:2303.14282 [math.AP]
  • [95] Nikolai Nadirashvili and Serge Vlăduţ “Singular solution to special Lagrangian equations” In Ann. Inst. H. Poincaré C Anal. Non Linéaire 27.5, 2010, pp. 1179–1188 DOI: 10.1016/j.anihpc.2010.05.001
  • [96] A. V. Pogorelov “The regularity of the generalized solutions of the equation det(2u/xixj)={\rm det}(\partial^{2}u/\partial x^{i}\partial x^{j})= φ(x1,x2,,xn)>0\varphi(x^{1},\,x^{2},\dots,x^{n})>0 In Dokl. Akad. Nauk SSSR 200, 1971, pp. 534–537
  • [97] Aleksey Vasil yevich Pogorelov “The Minkowski multidimensional problem” Translated from the Russian by Vladimir Oliker, Introduction by Louis Nirenberg, Scripta Series in Mathematics V. H. Winston & Sons, Washington, DC; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978, pp. 106
  • [98] I. H. Sabitov “Regularity of convex domains with a metric that is regular on Hölder classes” In Sibirsk. Mat. Ž. 17.4, 1976, pp. 907–915
  • [99] O. Savin “Pointwise C2,αC^{2,\alpha} estimates at the boundary for the Monge-Ampère equation” In J. Amer. Math. Soc. 26.1, 2013, pp. 63–99 DOI: 10.1090/S0894-0347-2012-00747-4
  • [100] Ovidiu Savin “Small perturbation solutions for elliptic equations” In Comm. Partial Differential Equations 32.4-6, 2007, pp. 557–578 DOI: 10.1080/03605300500394405
  • [101] Ovidiu Savin “Regularity of flat level sets in phase transitions” In Ann. of Math. (2) 169.1, 2009, pp. 41–78 DOI: 10.4007/annals.2009.169.41
  • [102] Friedmar Schulz “Über die Differentialgleichung rts2=frt-s^{2}=f und das Weylsche Einbettungsproblem” In Math. Z. 179.1, 1982, pp. 1–10 DOI: 10.1007/BF01173911
  • [103] J. Serrin “The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables” In Philos. Trans. Roy. Soc. London Ser. A 264, 1969, pp. 413–496 DOI: 10.1098/rsta.1969.0033
  • [104] Ravi Shankar and Yu Yuan “Hessian estimate for semiconvex solutions to the sigma-2 equation” In Calc. Var. Partial Differential Equations 59.1, 2020, pp. Paper No. 30, 12 DOI: 10.1007/s00526-019-1690-1
  • [105] Ravi Shankar and Yu Yuan “Regularity for almost convex viscosity solutions of the sigma-2 equation” In J. Math. Study 54.2, 2021, pp. 164–170 DOI: 10.4208/jms.v54n2.21.03
  • [106] Ravi Shankar and Yu Yuan “Hessian estimates for the sigma-2 equation in dimension four”, 2023 arXiv:2305.12587 [math.AP]
  • [107] Luis Silvestre and Boyan Sirakov “Boundary regularity for viscosity solutions of fully nonlinear elliptic equations” In Comm. Partial Differential Equations 39.9, 2014, pp. 1694–1717 DOI: 10.1080/03605302.2013.842249
  • [108] Gábor Székelyhidi “Uniqueness of some Calabi-Yau metrics on 𝐂n{\bf C}^{n} In Geom. Funct. Anal. 30.4, 2020, pp. 1152–1182 DOI: 10.1007/s00039-020-00543-3
  • [109] GuJi Tian, Qi Wang and Chao-Jiang Xu “Local solvability of the kk-Hessian equations” In Sci. China Math. 59.9, 2016, pp. 1753–1768 DOI: 10.1007/s11425-016-5135-4
  • [110] Neil S. Trudinger “On the analyticity of generalized minimal surfaces” In Bull. Austral. Math. Soc. 5, 1971, pp. 315–320 DOI: 10.1017/S0004972700047262
  • [111] Neil S. Trudinger “A new proof of the interior gradient bound for the minimal surface equation in nn dimensions” In Proc. Nat. Acad. Sci. U.S.A. 69, 1972, pp. 821–823
  • [112] Neil S. Trudinger “Regularity of solutions of fully nonlinear elliptic equations” In Boll. Un. Mat. Ital. A (6) 3.3, 1984, pp. 421–430
  • [113] Neil S. Trudinger “On the Dirichlet problem for Hessian equations” In Acta Math. 175.2, 1995, pp. 151–164 DOI: 10.1007/BF02393303
  • [114] Neil S. Trudinger “Weak solutions of Hessian equations” In Comm. Partial Differential Equations 22.7-8, 1997, pp. 1251–1261 DOI: 10.1080/03605309708821299
  • [115] Neil S. Trudinger and John I. E. Urbas “On second derivative estimates for equations of Monge-Ampère type” In Bull. Austral. Math. Soc. 30.3, 1984, pp. 321–334 DOI: 10.1017/S0004972700002069
  • [116] Neil S. Trudinger and Xu-Jia Wang “Hessian measures. I” Dedicated to Olga Ladyzhenskaya In Topol. Methods Nonlinear Anal. 10.2, 1997, pp. 225–239 DOI: 10.12775/TMNA.1997.030
  • [117] Neil S. Trudinger and Xu-Jia Wang “Hessian measures. II” In Ann. of Math. (2) 150.2, 1999, pp. 579–604 DOI: 10.2307/121089
  • [118] Neil S. Trudinger and Xu-Jia Wang “Hessian measures. III” In J. Funct. Anal. 193.1, 2002, pp. 1–23 DOI: 10.1006/jfan.2001.3925
  • [119] Neil S. Trudinger and Xu-Jia Wang “Boundary regularity for the Monge-Ampère and affine maximal surface equations” In Ann. of Math. (2) 167.3, 2008, pp. 993–1028 DOI: 10.4007/annals.2008.167.993
  • [120] Neil S. Trudinger and Xu-Jia Wang “The Monge-Ampère equation and its geometric applications” In Handbook of geometric analysis. No. 1 7, Adv. Lect. Math. (ALM) Int. Press, Somerville, MA, 2008, pp. 467–524
  • [121] John Urbas “Some interior regularity results for solutions of Hessian equations” In Calc. Var. Partial Differential Equations 11.1, 2000, pp. 1–31 DOI: 10.1007/s005260050001
  • [122] John Urbas “An interior second derivative bound for solutions of Hessian equations” In Calc. Var. Partial Differential Equations 12.4, 2001, pp. 417–431 DOI: 10.1007/PL00009920
  • [123] John I. E. Urbas “Regularity of generalized solutions of Monge-Ampère equations” In Math. Z. 197.3, 1988, pp. 365–393 DOI: 10.1007/BF01418336
  • [124] John I. E. Urbas “On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations” In Indiana Univ. Math. J. 39.2, 1990, pp. 355–382 DOI: 10.1512/iumj.1990.39.39020
  • [125] Cong Wang and Jiguang Bao “Liouville property and existence of entire solutions of Hessian equations” In Nonlinear Anal. 223, 2022, pp. Paper No. 113020, 18 DOI: 10.1016/j.na.2022.113020
  • [126] Dake Wang and Yu Yuan “Singular solutions to special Lagrangian equations with subcritical phases and minimal surface systems” In Amer. J. Math. 135.5, 2013, pp. 1157–1177 DOI: 10.1353/ajm.2013.0043
  • [127] Dake Wang and Yu Yuan “Hessian estimates for special Lagrangian equations with critical and supercritical phases in general dimensions” In Amer. J. Math. 136.2, 2014, pp. 481–499 DOI: 10.1353/ajm.2014.0009
  • [128] Lihe Wang “On the regularity theory of fully nonlinear parabolic equations. II” In Comm. Pure Appl. Math. 45.2, 1992, pp. 141–178 DOI: 10.1002/cpa.3160450202
  • [129] Lihe Wang “Compactness methods for certain degenerate elliptic equations” In J. Differential Equations 107.2, 1994, pp. 341–350 DOI: 10.1006/jdeq.1994.1016
  • [130] Xu-Jia Wang “Remarks on the regularity of Monge-Ampère equations” In Proceedings of the International Conference on Nonlinear PDE Beijing: Scientific Press, 1992
  • [131] Xu Jia Wang “A class of fully nonlinear elliptic equations and related functionals” In Indiana Univ. Math. J. 43.1, 1994, pp. 25–54 DOI: 10.1512/iumj.1994.43.43002
  • [132] Xu-Jia Wang “Some counterexamples to the regularity of Monge-Ampère equations” In Proc. Amer. Math. Soc. 123.3, 1995, pp. 841–845 DOI: 10.2307/2160809
  • [133] Xu-Jia Wang “Interior gradient estimates for mean curvature equations” In Math. Z. 228.1, 1998, pp. 73–81 DOI: 10.1007/PL00004604
  • [134] Xu-Jia Wang “The kk-Hessian equation” In Geometric analysis and PDEs 1977, Lecture Notes in Math. Springer, Dordrecht, 2009, pp. 177–252 DOI: 10.1007/978-3-642-01674-5˙5
  • [135] Yu Wang “Small perturbation solutions for parabolic equations” In Indiana Univ. Math. J. 62.2, 2013, pp. 671–697 DOI: 10.1512/iumj.2013.62.4961
  • [136] Micah Warren “Special Lagrangian equations” Thesis (Ph.D.)–University of Washington ProQuest LLC, Ann Arbor, MI, 2008, pp. 103 URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3318468
  • [137] Micah Warren and Yu Yuan “Explicit gradient estimates for minimal Lagrangian surfaces of dimension two” In Math. Z. 262.4, 2009, pp. 867–879 DOI: 10.1007/s00209-008-0403-9
  • [138] Micah Warren and Yu Yuan “Hessian estimates for the sigma-2 equation in dimension 3” In Comm. Pure Appl. Math. 62.3, 2009, pp. 305–321 DOI: 10.1002/cpa.20251
  • [139] Micah Warren and Yu Yuan “Hessian and gradient estimates for three dimensional special Lagrangian equations with large phase” In Amer. J. Math. 132.3, 2010, pp. 751–770 DOI: 10.1353/ajm.0.0115
  • [140] Yingfeng Xu “Interior estimates for solutions of the quadratic Hessian equations in dimension three” In J. Math. Anal. Appl. 489.2, 2020, pp. 124179, 10 DOI: 10.1016/j.jmaa.2020.124179
  • [141] Hui Yu “Small perturbation solutions for nonlocal elliptic equations” In Comm. Partial Differential Equations 42.1, 2017, pp. 142–158 DOI: 10.1080/03605302.2016.1252395
  • [142] Yu Yuan “A priori estimates for solutions of fully nonlinear special Lagrangian equations” In Ann. Inst. H. Poincaré C Anal. Non Linéaire 18.2, 2001, pp. 261–270 DOI: 10.1016/S0294-1449(00)00065-2
  • [143] Yu Yuan “A Bernstein problem for special Lagrangian equations” In Invent. Math. 150.1, 2002, pp. 117–125 DOI: 10.1007/s00222-002-0232-0
  • [144] Yu Yuan “Global solutions to special Lagrangian equations” In Proc. Amer. Math. Soc. 134.5, 2006, pp. 1355–1358 DOI: 10.1090/S0002-9939-05-08081-0
  • [145] Yu Yuan “Special Lagrangian equations” In Geometric analysis—in honor of Gang Tian’s 60th birthday 333, Progr. Math. Birkhäuser/Springer, Cham, [2020] ©2020, pp. 521–536
  • [146] Qian Zhang “Boundary regularity for viscosity solutions of nonlinear singular elliptic equations” In Calc. Var. Partial Differential Equations 62.3, 2023, pp. Paper No. 87, 21 DOI: 10.1007/s00526-022-02427-w
  • [147] Xingchen Zhou “Hessian estimates for Lagrangian mean curvature equation with sharp Lipschitz phase”, 2023 arXiv:2311.13867 [math.AP]
  • [148] Xingchen Zhou “Notes on generalized special Lagrangian equation”, 2023 arXiv:2311.14260 [math.AP]
  • [149] William K. Ziemer “The nonhomogeneous minimal surface equation involving a measure” In Pacific J. Math. 167.1, 1995, pp. 183–200 URL: http://projecteuclid.org/euclid.pjm/1102620980
  • [150] William P. Ziemer “Weakly differentiable functions” Sobolev spaces and functions of bounded variation 120, Graduate Texts in Mathematics Springer-Verlag, New York, 1989, pp. xvi+308 DOI: 10.1007/978-1-4612-1015-3