This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Poisson-bracket formulation of the dynamics of fluids of deformable particles

Arthur Hernandez arthurhernandez@umail.ucsb.edu Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA    M. Cristina Marchetti Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA cmarchetti@ucsb.edu
Abstract

Using the Poisson bracket method, we derive continuum equations for a fluid of deformable particles in two dimensions. Particle shape is quantified in terms of two continuum fields: an anisotropy density field that captures the deformations of individual particles from regular shapes and a shape tensor density field that quantifies both particle elongation and nematic alignment of elongated shapes. We explicitly consider the example of a dense biological tissue as described by the Vertex model energy, where cell shape has been proposed as a structural order parameter for a liquid-solid transition. The hydrodynamic model of biological tissue proposed here captures the coupling of cell shape to flow, and provides a starting point for modeling the rheology of dense tissue.

I Introduction

Many extended systems, such as biological tissue lecuit2007cell , foams durian1995foam ; cohen2013flow , emulsions mattsson2009soft ; vlassopoulos2014tunable , and colloidal suspensions mattsson2009soft can be described as collections of deformable particles. A variety of mesoscopic models have been developed to examine the role of particle shape on the structure and rheology of these soft materials.

Cellular Potts models graner1992simulation ; kabla2012collective and Vertex and Voronoi models honda2004three ; hufnagel2007mechanism ; farhadifar2007influence have been successfully used to describe dry foams and confluent layers of biological tissue, where cells completely cover the plane with no gaps, with extensions to three dimensions hannezo2014theory ; murisic2015discrete . These models describe cells in confluent tissues as tightly packed irregular polygons covering the plane and predict a jamming-unjamming transition tuned by a target cell shape that captures the interplay of cortex contractility and cell-cell adhesion, with the mean cell shape serving as a metric for tissue fluidity bi2014energy ; bi2015density ; bi2016motility . Vertex and Voronoi models do not, however, have a natural extension to situations where the cell packing fraction is below one, although gaps between cells have been incorporated in recent work teomy2018confluent ; kim2020embryonic . In contrast, both particle deformability and density variations can be incorporated in multi-phase field models and in models of deformable particles boromand2019role , which have been used to examine solid-liquid transitions as a functions of both particle shape and density.

Less well developed are continuum descriptions of the rheology of materials where the constituents can change their shape. An important example is the classic work by Doi and Ohta that describes the dynamics of the interface between two immiscible fluids under shear, incorporating formation, rupture and deformation of droplets doi1991dynamics . Continuum mechanics of confluent tissue have been constructed phenomenologically and employed to connect structure and mechanics in Drosophila development sagner2012establishment ; popovic2017 . Ishihara and collaborators formulated a continuum model that couples cell shape to mechanical deformations at the tissue scale ishihara2017cells . Their work, however, only captures simultaneous cell anisotropy and alignment of elongated cell shapes, without distinguishing between a tissue where cell shapes are on average isotropic and one where cells are on average anisotropic, but not aligned, as observed in simulations of Vertex/Voronoi models bi2016motility ; yang2017correlating . It is in fact the single-cell anisotropy that provides an order parameter for cell jamming in Vertex and Voronoi models bi2014energy ; bi2015density ; bi2016motility , where fluid states of elongated cells are obtained without nematic order of elongated cells. The importance of this distinction in a continuum theory of tissue mechanics was highlighted recently in work by one of us and collaborators czajkowski2018hydrodynamics .

In this paper we adopt the Poisson-bracket formulation forster1974microscopic to obtain continuum equations for a fluid of deformable particles in two dimensions. This method has the advantage of providing a systematic derivation of the reversible part of the hydrodynamic equations once the continuum fields have been identified. Our approach is inspired by work by Stark and Lubensky Stark2003 ; Stark_2005 who used the Poisson-bracket approach to derive the hydrodynamics of a nematic liquid crystal. As in liquid crystals, we identify both a continuum scalar field that quantifies fluctuations of individual cell shape and a cell shape tensor field that captures both cell elongation and alignment. An important difference is that, while in passive liquid crystals molecular shape fluctuations decay on fast (non-hydrodynamic) time scales, in a tissue cell shape is the order parameter for the rigidity transitions, hence cell-shape fluctuations are long-lived near the transition and must be incorporated in a hydrodynamic model. The equations derived here provide a continuum model for collections of interacting deformable “particles” and can be adapted to describe both confluent and non-confluent systems.

The paper is organized as follows. In Section II we provide the microscopic definition of the continuum fields used in the hydrodynamic model. In Section III we briefly summarize the Poisson Bracket (PB) method and the calculation of the various PBs (with details given in Appendix C), and discuss the reactive and dissipative contributions to the coarse-grained dynamics. The final continuum equations are displayed in Section IV. In Section V we discuss the form of the continuum equations for the specific case of a cellular tissue, and conclude with a brief discussion in Section VI. Details of the derivation of the PBs and of the mean-field free-energy of the Vertex model are given in Appendices.

II Continuum fields

We consider a fluid whose constituents are NN extended particles of arbitrary shape. The contour of each particle, referred to below as a ‘cell’, is described by a polygonal shape joining nn vertices located at 𝐫μα\mathbf{r}_{\mu}^{\alpha}, where μ=1,2,,n\mu=1,2,\cdots,n labels the vertices and α=1,2,,N\alpha=1,2,\cdots,N labels the cells, as shown in Fig. 1. Each cell has a total mass mcm_{c}, which we assume equally distributed among the nn vertices. The shape of each cell is described by a shape tensor defined as

Gijα=1nμ=1nΔxiαμΔxjαμ,{G}^{\alpha}_{ij}=\frac{1}{n}\sum_{\mu=1}^{n}\Delta x_{i}^{\alpha\mu}\Delta x_{j}^{\alpha\mu}\;, (1)

where Δ𝐫αμ=𝐫αμ𝐫α\Delta\mathbf{r}^{\alpha\mu}=\mathbf{r}^{\alpha\mu}-\mathbf{r}_{\alpha}, with 𝐫α=1nμ𝐫αμ\mathbf{r}_{\alpha}=\frac{1}{n}\sum_{\mu}\mathbf{r}^{\alpha\mu}, and Latin indices i,ji,j denote components.

Refer to caption
Figure 1: A deformable particle (referred to as a ‘cell’) is described as an nn-sided irregular polygon defined by the positions 𝐫αμ\mathbf{r}_{\alpha\mu} of its vertices, for μ=1,,n\mu=1,\cdots,n, relative to the location of the centroid 𝐫α\mathbf{r}_{\alpha} of the polygon.

We define microscopic mass, momentum and cell shape density fields as

ρ^(𝐫,t)=αμmδ(𝐫𝐫αμ(t)),\displaystyle\hat{\rho}(\mathbf{r},t)=\sum_{\alpha\mu}m\leavevmode\nobreak\ \delta(\mathbf{r}-\mathbf{r}^{\alpha\mu}(t))\;, (2)
𝐠^(𝐫,t)=αμm𝐫˙αμδ(𝐫𝐫αμ(t)),\displaystyle\hat{\mathbf{g}}(\mathbf{r},t)=\sum_{\alpha\mu}m\dot{\mathbf{r}}^{\alpha\mu}\leavevmode\nobreak\ \delta(\mathbf{r}-\mathbf{r}^{\alpha\mu}(t))\;, (3)
G^ij(𝐫,t)=αGijαδ(𝐫𝐫α(t)).\displaystyle\hat{G}_{ij}(\mathbf{r},t)=\sum_{\alpha}{G}^{\alpha}_{ij}\leavevmode\nobreak\ \delta(\mathbf{r}-\mathbf{r}_{\alpha}(t))\;. (4)

with m=mc/nm=m_{c}/n. Coarse grained quantities are then defined as ρ(𝐫,t)=[ρ^(𝐫,t)]c\rho(\mathbf{r},t)=\left[\hat{\rho}(\mathbf{r},t)\right]_{c}, 𝐠(𝐫,t)=[𝐠^(𝐫,t)]c\mathbf{g}(\mathbf{r},t)=\left[\hat{\mathbf{g}}(\mathbf{r},t)\right]_{c} and Gij(𝐫,t)=[G^ij(𝐫,t)]cG_{ij}(\mathbf{r},t)=\left[\hat{G}_{ij}(\mathbf{r},t)\right]_{c} and correspond to macroscopic continuum fields describing the system on length scales large compared to both the size of the particles and their mean separation. Note that since the microscopic cell-shape tensor 𝐆^α\hat{\mathbf{G}}^{\alpha} has dimensions of length squared, the density of cellular shape tensor GijG_{ij} is dimensionless. As we will see below, the trace of the shape tensor density provides a measure of the density of cell perimeter, while its traceless part, G~ij=Gij12δijTr[𝐆]\tilde{G}_{ij}=G_{ij}-\frac{1}{2}\delta_{ij}\text{Tr}[\mathbf{G}], captures both cell anisotropy and local alignment of elongated cells.

The cellular shape tensor can be written in terms of its eigenvalues as

Gijα=12(λ1α+λ2α)δij+(λ1αλ2α)(ν^iαν^jα12δij),{G}^{\alpha}_{ij}=\frac{1}{2}\left(\lambda_{1}^{\alpha}+\lambda_{2}^{\alpha}\right)\delta_{ij}+\left(\lambda_{1}^{\alpha}-\lambda_{2}^{\alpha}\right)\left(\hat{\nu}_{i}^{\alpha}\hat{\nu}_{j}^{\alpha}-\frac{1}{2}\delta_{ij}\right)\;, (5)

where λ1α>λ2α\lambda_{1}^{\alpha}>\lambda_{2}^{\alpha} and 𝝂^α\hat{\bm{\nu}}^{\alpha} is the eigenvector of the largest eigenvalue. For regular nn-sided polygons, the shape tensor is diagonal with λ1α=λ2α\lambda_{1}^{\alpha}=\lambda_{2}^{\alpha}. In this case the cell area Aα(n)A_{\alpha}^{(n)} and perimeter Pα(n)P_{\alpha}^{(n)} can be expressed in terms of the invariants of the tensor 𝐆α\mathbf{G}^{\alpha} as

Aα(n)=nsin(2πn)det[𝐆α],\displaystyle A_{\alpha}^{(n)}=n\sin\left(\frac{2\pi}{n}\right)\sqrt{\det[\mathbf{G}^{\alpha}]}\;, (6)
Pα(n)=2nsin(πn)Tr[𝐆α],\displaystyle P_{\alpha}^{(n)}=2n\sin\left(\frac{\pi}{n}\right)\sqrt{\text{Tr}[\mathbf{G}^{\alpha}]}\;, (7)

Single cell anisotropy is measured by Δα=λ1αλ2α\Delta_{\alpha}=\lambda_{1}^{\alpha}-\lambda_{2}^{\alpha} which vanishes for regular polygons. To quantify single-cell elongation independently of alignment of elongated cells, we follow czajkowski2018hydrodynamics , albeit with a slightly different definition of the shape tensor, and introduce an anisotropy density field defined as

M^(𝐫,t)=αΔαδ(𝐫𝐫α(t))\hat{M}(\mathbf{r},t)=\sum_{\alpha}\Delta_{\alpha}\delta(\mathbf{r}-\mathbf{r}_{\alpha}(t)) (8)

and the associated coarse grained field M(𝐫,t)=[M^(𝐫,t)]cM(\mathbf{r},t)=[\hat{M}(\mathbf{r},t)]_{c}. Work on Vertex/Voronoi models of confluent biological tissue, as well as multiphase fields models, has demonstrated the correlation between tissue fluidity and anisotropy of single cell shape, as quantified here by MM. In Vertex models, this anisotropy provides an order parameter for the solid-liquid transition bi2015density ; bi2016motility .

In the following, we construct hydrodynamic equations for a fluid of deformable particles that couple structural changes encoded in cell shape and alignment of elongated cells to flow. The dynamics of the fluid on scales large compared to the cell size and mean cell separation is described in terms of a few continuum fields: the mass density ρ\rho, the momentum density 𝐠\mathbf{g}, the single-cell anisotropy density MM and the cell-shape tensor density GijG_{ij}.

III Poisson-Bracket formulation of continuum dynamics

Here we briefly summarize the Poisson-Bracket (PB) formalism. Consider a system whose microscopic dynamics is determined by canonically conjugate positions 𝐫α\mathbf{r}^{\alpha} and momenta 𝐩α\mathbf{p}^{\alpha}. We describe the dynamics in terms of a few microscopic density fields Ψ^a(𝐫,t;{𝐫α},{𝐩α})\hat{\Psi}^{a}(\mathbf{r},t;\{\mathbf{r}^{\alpha}\},\{\mathbf{p}^{\alpha}\}), for a=1,2,a=1,2,\cdots. These fields are chosen to be be either hydrodynamic fields associated with conserved quantities, broken symmetry fields, or quasi-hydrodynamic fields that decay on times scales large compared to microscopic ones. In the specific case of interest here {Ψ^a}=(ρ^,𝐠^,G^ij,M^)\{\hat{\Psi}^{a}\}=(\hat{\rho},\mathbf{\hat{g}},\hat{G}_{ij},\hat{M}). The dynamics of the corresponding coarse-grained fields Ψa(𝐫,t)=[Ψ^a(𝐫,t;{𝐫α},{𝐩α})]c\Psi^{a}(\mathbf{r},t)=[\hat{\Psi}^{a}(\mathbf{r},t;\{\mathbf{r}^{\alpha}\},\{\mathbf{p}^{\alpha}\})]_{c} is governed by the equations

tΨa(𝐫,t)=Va(𝐫,t)+Da(𝐫,t),\partial_{t}\Psi^{a}(\mathbf{r},t)=V^{a}(\mathbf{r},t)+D^{a}(\mathbf{r},t)\;, (9)

where VaV^{a} and DaD^{a} represent the non-dissipative and dissipative parts of the dynamics, respectively. The reactive term VaV^{a} is given by

Va(𝐫)=𝐫{Ψa(𝐫),Ψb(𝐫)}δδΨb(𝐫),V^{a}(\mathbf{r})=-\int_{\mathbf{r}^{\prime}}\{\Psi^{a}(\mathbf{r}),\Psi^{b}(\mathbf{r}^{\prime})\}\frac{\delta\mathcal{F}}{\delta\Psi^{b}(\mathbf{r}^{\prime})}\;, (10)

where [{Ψa}]\mathcal{F}[\{\Psi^{a}\}] is a phenomenological free energy,

{Ψa(𝐫),Ψb(𝐫)}=[{Ψ^a(𝐫),Ψ^b(𝐫)}]c,\{\Psi^{a}(\mathbf{r}),\Psi^{b}(\mathbf{r}^{\prime})\}=\left[\{\hat{\Psi}^{a}(\mathbf{r}),\hat{\Psi}^{b}(\mathbf{r}^{\prime})\}\right]_{c}\;, (11)

and

{Ψ^a(𝐫),Ψ^b(𝐫)}=\displaystyle\{\hat{\Psi}^{a}(\mathbf{r}),\hat{\Psi}^{b}(\mathbf{r}^{\prime})\}= αi(Ψ^a(𝐫)piαΨ^b(𝐫)riα\displaystyle\sum_{\alpha i}\Big{(}\frac{\partial\hat{\Psi}^{a}(\mathbf{r})}{\partial p_{i}^{\alpha}}\frac{\partial\hat{\Psi}^{b}(\mathbf{r}^{\prime})}{\partial r_{i}^{\alpha}} (12)
Ψ^a(𝐫)riαΨ^b(𝐫)piα).\displaystyle-\frac{\partial\hat{\Psi}^{a}(\mathbf{r})}{\partial r_{i}^{\alpha}}\frac{\partial\hat{\Psi}^{b}(\mathbf{r}^{\prime})}{\partial p_{i}^{\alpha}}\Big{)}\;.

Finally, the dissipative term in the kinetic equation is controlled by all the neglected microscopic degrees of freedom and can be written as

Da(𝐫)=ΓabδδΨb(𝐫).D^{a}(\mathbf{r})=-\Gamma^{ab}\frac{\delta\mathcal{F}}{\delta\Psi^{b}(\mathbf{r})}\;. (13)

The dissipation tensor Γab\Gamma^{ab} is in general a functional of the {Ψa}\{\Psi^{a}\} and their gradients. It is a phenomenological quantity controlled by the requirement that tΨa\partial_{t}\Psi^{a} can only couple to driving forces δδΨb(𝐫)\frac{\delta\mathcal{F}}{\delta\Psi^{b}(\mathbf{r})} that have different sign under time reversal, to guarantee that such terms describe dissipation. In equilibrium it is a symmetric tensor and must obey Onsager’s principle de1951thermodynamics .

III.1 Poisson brackets

The calculation of the PB of mass and momentum density is straightforward and can be found in the literature Stark2003 , with the result

{ρ(𝐫),gi(𝐫)}=ρ(𝐫)iδ(𝐫𝐫),\displaystyle\{\rho(\mathbf{r}),g_{i}(\mathbf{r}^{\prime})\}=\rho(\mathbf{r}^{\prime})\partial_{i}\delta(\mathbf{r}-\mathbf{r}^{\prime})\;,
{gi(𝐫),gj(𝐫)}=i[δ(𝐫𝐫)gj(𝐫)]+jδ(𝐫𝐫)gi(𝐫),\displaystyle\{g_{i}(\mathbf{r}),g_{j}(\mathbf{r}^{\prime})\}=-\partial_{i}^{\prime}[\delta(\mathbf{r}-\mathbf{r}^{\prime})g_{j}(\mathbf{r}^{\prime})]+\partial_{j}\delta(\mathbf{r}-\mathbf{r}^{\prime})g_{i}(\mathbf{r}^{\prime})\;, (14)

The main PBs to be calculated here are those involving the fields describing cellular shape. The details of the derivation are shown in Appendix C, with the result

{Gij(𝐫),gk(𝐫)}\displaystyle\{G_{ij}(\mathbf{r}),g_{k}(\mathbf{r}^{\prime})\} =k[Gij(𝐫)δ(𝐫𝐫)]\displaystyle=\partial_{k}[G_{ij}(\mathbf{r}^{\prime})\delta(\mathbf{r}-\mathbf{r}^{\prime})] (15)
[Gil(𝐫)δjk+Gjl(𝐫)δik]lδ(𝐫𝐫),\displaystyle-\left[G_{il}(\mathbf{r})\delta_{jk}+G_{jl}(\mathbf{r})\delta_{ik}\right]\partial_{l}\delta(\mathbf{r}-\mathbf{r}^{\prime})\;,
{M(𝐫),gi(𝐫)}=[iM(𝐫)]δ(𝐫𝐫)2R(𝐫)M(𝐫)G~ij(𝐫)jδ(𝐫𝐫).\{M(\mathbf{r}),g_{i}(\mathbf{r}^{\prime})\}=[\partial_{i}M(\mathbf{r})]\delta(\mathbf{r}-\mathbf{r}^{\prime})-\frac{2R(\mathbf{r})}{M(\mathbf{r})}\tilde{G}_{ij}(\mathbf{r})\partial_{j}\delta(\mathbf{r}-\mathbf{r}^{\prime})\;. (16)

To calculate {M(𝐫),gi(𝐫)}\{M(\mathbf{r}),g_{i}(\mathbf{r}^{\prime})\} we have used the identity G~ikαG~kjα=Δα24δij\tilde{G}_{ik}^{\alpha}\tilde{G}_{kj}^{\alpha}=\frac{\Delta_{\alpha}^{2}}{4}\delta_{ij}, where the tilde denotes the traceless part of ny rank-2 tensor, G~ij=Gij12δijTr[𝐆]\tilde{G}_{ij}=G_{ij}-\frac{1}{2}\delta_{ij}\text{Tr}[\mathbf{G}].
This allows us to write

Δα{Δαδ(𝐫𝐫α),gi(𝐫)}=2G~klα{G~klαδ(𝐫𝐫α),gi(𝐫)}.\Delta_{\alpha}\{\Delta_{\alpha}\delta(\mathbf{r}-\mathbf{r}^{\alpha}),g_{i}(\mathbf{r}^{\prime})\}=2\tilde{G}_{kl}^{\alpha}\{\tilde{G}_{kl}^{\alpha}\delta(\mathbf{r}-\mathbf{r}^{\alpha}),g_{i}(\mathbf{r}^{\prime})\}\;. (17)

Finally, the other PBs can be obtained using the identity

{Ψn(𝐫),Ψm(𝐫)}={Ψm(𝐫),Ψn(𝐫)}.\{\Psi_{n}(\mathbf{r}),\Psi_{m}(\mathbf{r}^{\prime})\}=-\{\Psi_{m}(\mathbf{r}^{\prime}),\Psi_{n}(\mathbf{r})\}\;. (18)

III.2 Reactive terms

To evaluate the various contributions to the continuum dynamics, we need to specify the free energy of the system. In general, this has the form

\displaystyle\mathcal{F} =\displaystyle= K+V\displaystyle\mathcal{F}_{K}+\mathcal{F}_{V} (19)
=\displaystyle= 𝐫[𝐠22ρ+f(ρ,Gij,M)],\displaystyle\int_{\mathbf{r}}\left[\frac{\mathbf{g}^{2}}{2\rho}+f(\rho,G_{ij},M)\right]\;,

where the first term is the kinetic part and the free energy density ff depends on the fields and their gradients.

Using the expressions for the Poisson brackets we can then evaluate the reactive terms VaV^{a}, with the result

Vρ\displaystyle V^{\rho} =\displaystyle= (ρ𝐯),\displaystyle-\bm{\nabla}\cdot(\rho\mathbf{v})\;, (20)
Vig\displaystyle V^{g}_{i} =\displaystyle= j(ρvivj)ρiδVδρ+(iM)δVδM+(iGkl)δVδGkl\displaystyle-\partial_{j}(\rho v_{i}v_{j})-\rho\partial_{i}\frac{\delta\mathcal{F}_{V}}{\delta\rho}+(\partial_{i}M)\frac{\delta\mathcal{F}_{V}}{\delta M}+\left(\partial_{i}G_{kl}\right)\frac{\delta\mathcal{F}_{V}}{\delta G_{kl}} (21)
+j(2GjkδVδGikδijGklδVδGkl)\displaystyle+\partial_{j}\left(2G_{jk}\frac{\delta\mathcal{F}_{V}}{\delta G_{ik}}-\delta_{ij}G_{kl}\frac{\delta\mathcal{F}_{V}}{\delta G_{kl}}\right)
+2j(RMG~ijδVδM),\displaystyle+2\partial_{j}\left(\frac{R}{M}\tilde{G}_{ij}\frac{\delta\mathcal{F}_{V}}{\delta M}\right)\;,
VijG\displaystyle V^{G}_{ij} =\displaystyle= (Gij𝐯)+Gikkvj+Gjkkvi,\displaystyle-\bm{\nabla}\cdot(G_{ij}\mathbf{v})+G_{ik}\partial_{k}v_{j}+G_{jk}\partial_{k}v_{i}\ \;, (22)
VM\displaystyle V^{M} =\displaystyle= 𝐯M+2RMG~ijivj,\displaystyle-\mathbf{v}\cdot\bm{\nabla}M+\frac{2R}{M}\tilde{G}_{ij}\partial_{i}v_{j}\;, (23)

where we have defined

R(𝐫,t)=Tr[𝐆(𝐫,t)].R(\mathbf{r},t)=Tr[\mathbf{G}(\mathbf{r},t)]\;. (24)

The field RR is essentially a measure of cell perimeter density.

The elastic and density couplings in Eq. (21) can be rewritten in a more familiar form as gradients of pressure and of an elastic stress. The details can be found in Appendix B, where it is shown that we can write

ρiδVδρ+(iM)δVδM+(iGkl)δVδGkl=ip+jσijE-\rho\partial_{i}\frac{\delta\mathcal{F}_{V}}{\delta\rho}+(\partial_{i}M)\frac{\delta\mathcal{F}_{V}}{\delta M}+(\partial_{i}G_{kl})\frac{\delta\mathcal{F}_{V}}{\delta G_{kl}}=-\partial_{i}p+\partial_{j}\sigma_{ij}^{E} (25)

where the pressure pp and the elastic stress σijE\sigma_{ij}^{E}, that plays the role of the Erickssen stress of nematic liquid crystals, are given by

p\displaystyle p =\displaystyle= ρfρf,\displaystyle\rho\frac{\partial f}{\partial\rho}-f\;, (26)
σijE\displaystyle\sigma_{ij}^{E} =\displaystyle= fjMiMfjGkliGkl.\displaystyle-\frac{\partial f}{\partial\nabla_{j}M}\nabla_{i}M-\frac{\partial f}{\partial\nabla_{j}G_{kl}}\nabla_{i}G_{kl}\;. (27)

The last two terms in Eq.(21) correspond to gradients of a reactive elastic stress σijG\sigma^{G}_{ij}, given by

σijG=2RMG~ijδVδM+2GjkδVδGikδijGklδVδGkl.\displaystyle\sigma^{G}_{ij}=2\frac{R}{M}\tilde{G}_{ij}\frac{\delta\mathcal{F}_{V}}{\delta M}+2G_{jk}\frac{\delta\mathcal{F}_{V}}{\delta G_{ik}}-\delta_{ij}G_{kl}\frac{\delta\mathcal{F}_{V}}{\delta G_{kl}}\;. (28)

The reactive term for the momentum density equation can then be written as

Vig=j(ρvivj)ip+j(σijG+σijE).V^{g}_{i}=-\partial_{j}(\rho v_{i}v_{j})-\partial_{i}p+\partial_{j}\left(\sigma^{G}_{ij}+\sigma^{E}_{ij}\right)\;. (29)

III.3 Dissipative terms

There is no dissipative term for the mass density ρ\rho if it is conserved.

Dissipative terms in the momentum equation must be odd under time reversal and hence must couple to gradients of velocity. In general, shape anisotropy and alignment of elongated cells will entail anisotropic viscosity coefficients, as in liquid crystals. For simplicity, here we only introduce two viscosities to account for shear (η\eta) and bulk (ηb\eta_{b}) deformations and write

Dig=jσijD,D^{g}_{i}=\partial_{j}\sigma_{ij}^{D}\;, (30)

with

σijD=2ηDij+ηbδij𝐯,\sigma_{ij}^{D}=2\eta D_{ij}+\eta_{b}\delta_{ij}\bm{\nabla}\cdot\mathbf{v}\;, (31)

where DijD_{ij} is the symmetrized and traceless rate of strain tensor,

Dij=12(ivj+jviδij𝐯).D_{ij}=\frac{1}{2}(\partial_{i}v_{j}+\partial_{j}v_{i}-\delta_{ij}\bm{\nabla}\cdot\mathbf{v})\;. (32)

Dissipative couplings in the equations for the shape density tensor GijG_{ij} and the shape anisotropy field MM must be even under time reversal and hence can couple to MM, GijG_{ij} and their gradients. Dissipation will arise from topological rearrangements, as well as from birth/death events when density conservation is broken. In general we can write

DijG\displaystyle D^{G}_{ij} =\displaystyle= ΓijklGGδVδGklΓijGMδVδM,\displaystyle-\Gamma^{GG}_{ijkl}\frac{\delta\mathcal{F}_{V}}{\delta G_{kl}}-\Gamma^{GM}_{ij}\frac{\delta\mathcal{F}_{V}}{\delta M}\;, (33)
DM\displaystyle D^{M} =\displaystyle= ΓMMδVδMΓijMGδVδGij.\displaystyle-\Gamma^{MM}\frac{\delta\mathcal{F}_{V}}{\delta M}-\Gamma^{MG}_{ij}\frac{\delta\mathcal{F}_{V}}{\delta G_{ij}}\;. (34)

The kinetic coefficients Γab\Gamma^{ab} can generally depend on the shape tensor and anisotropy density field. To linear order in these fields, a general form is given by

ΓijklGG\displaystyle\Gamma^{GG}_{ijkl} =\displaystyle= M2γG(δikδjl+δjkδil)\displaystyle\frac{M}{2\gamma_{G}}\left(\delta_{ik}\delta_{jl}+\delta_{jk}\delta_{il}\right) (35)
+1γ1(δikGjl+δjkGil+δilGjk+δjlGik),\displaystyle+\frac{1}{\gamma_{1}}\left(\delta_{ik}G_{jl}+\delta_{jk}G_{il}+\delta_{il}G_{jk}+\delta_{jl}G_{ik}\right)\;,
ΓijGM\displaystyle\Gamma^{GM}_{ij} =\displaystyle= ΓijGM=Gijγ2,\displaystyle\Gamma^{GM}_{ij}=\frac{G_{ij}}{\gamma_{2}}\;, (36)
ΓMM\displaystyle\Gamma^{MM} =\displaystyle= 1γM+Mγ3,\displaystyle\frac{1}{\gamma_{M}}+\frac{M}{\gamma_{3}}\;, (37)

where the kinetic coefficients γi\gamma_{i}, for i=G,M,1,2,3i=G,M,1,2,3, encode the characteristic time scales of dissipative processes. For simplicity we have assumed ΓijGM=ΓijGM\Gamma^{GM}_{ij}=\Gamma^{GM}_{ij} although in general the parameters controlling the relaxation in these terms could differ. Note that the second term in Eq. (35) has the form introduced in Ref. milner1993dynamical for the kinetic coefficient describing the relaxation of the conformation tensor in a polymer suspension.

IV Final equations

Putting it all together, we now write the final form of the equations we have obtained. It is convenient to write

ivj=Dij+ωij+12δij𝐯\partial_{i}v_{j}=D_{ij}+\omega_{ij}+\frac{1}{2}\delta_{ij}\bm{\nabla}\cdot\mathbf{v} (38)

where DijD_{ij} is the rate of strain tensor given in Eq. (32) and ωij\omega_{ij} is the vorticity,

ωij=12(ivjjvi).\displaystyle\omega_{ij}=\frac{1}{2}(\partial_{i}v_{j}-\partial_{j}v_{i})\;. (39)

The set of continuum equations for our fluid of deformable cells is then given by

tρ=ρ𝐯,\displaystyle\partial_{t}\rho=-\bm{\nabla}\cdot\rho\mathbf{v}, (40)
ρ(t+𝐯)vi=ip+j(σijG+σijE+σijD),\displaystyle\rho\left(\partial_{t}+\mathbf{v}\cdot\bm{\nabla}\right)v_{i}=-\partial_{i}p+\partial_{j}\left(\sigma^{G}_{ij}+\sigma^{E}_{ij}+\sigma^{D}_{ij}\right), (41)
ddtM=2RMG~ijDijΓMMδVδMΓijMGδVδGij,\displaystyle\frac{d}{dt}M=\frac{2R}{M}\tilde{G}_{ij}D_{ij}-\Gamma^{MM}\frac{\delta\mathcal{F}_{V}}{\delta M}-\Gamma^{MG}_{ij}\frac{\delta\mathcal{F}_{V}}{\delta G_{ij}}, (42)
DDtGij=GikDkj+DikGkjΓijklGGδVδGklΓijGMδVδM,\displaystyle\frac{D}{Dt}G_{ij}=G_{ik}D_{kj}+D_{ik}G_{kj}-\Gamma^{GG}_{ijkl}\frac{\delta\mathcal{F}_{V}}{\delta G_{kl}}-\Gamma^{GM}_{ij}\frac{\delta\mathcal{F}_{V}}{\delta M}, (43)

where

ddt=t+𝐯,\displaystyle\frac{d}{dt}=\partial_{t}+\mathbf{v}\cdot\bm{\nabla}\;,
DDt=ddt+[𝝎,]\displaystyle\frac{D}{Dt}=\frac{d}{dt}+[\bm{\omega},\large\cdot] (44)

are the convective derivative, and the convective and corotational derivative.

The equation for the shape tensor GijG_{ij} contains couplings to flow vorticity and strain rate which control the tendency of extended and deformable particles to rotate with flow and align with streamlines. The shape tensor GijG_{ij} plays a role similar to that of the conformation tensor in a polymer suspension beris1994thermodynamics . In fact, if we ignore the additional anisotropy density field MM, the equations derived here for a fluid of deformable particles have the same structure as a one-fluid model of viscoelastic polymer solutions milner1993dynamical . Unlike in models of polymer suspensions, however, the coefficient of the coupling to strain rate, known in that context as the slip parameter beris1994thermodynamics , is found to be simply equal to 11 in our PB formulation.

It is also convenient to separate the dynamics of GijG_{ij} in that of its trace and deviatoric part. The corresponding equations are given by

ddtR\displaystyle\frac{d}{dt}R =\displaystyle= 2G~ijDjiΓiiklGGδVδGklΓiiGMδVδM,\displaystyle 2\tilde{G}_{ij}D_{ji}-\Gamma^{GG}_{iikl}\frac{\delta\mathcal{F}_{V}}{\delta G_{kl}}-\Gamma^{GM}_{ii}\frac{\delta\mathcal{F}_{V}}{\delta M}, (45)
DDtG~ij\displaystyle\frac{D}{Dt}\tilde{G}_{ij} =\displaystyle= RDij+G~ikDkj+DikG~kjδijG~klDkl\displaystyle RD_{ij}+\tilde{G}_{ik}D_{kj}+D_{ik}\tilde{G}_{kj}-\delta_{ij}\tilde{G}_{kl}D_{kl} (46)
[𝚪GG . . δVδ𝐆]ijST[𝚪GM]ijSTδVδM.\displaystyle-\left[\bm{\Gamma}^{GG}\mathbin{\vbox{\hbox{$\ldotp$}\hbox{$\ldotp$}}}\frac{\delta\mathcal{F}_{V}}{\delta\mathbf{G}}\right]_{ij}^{ST}-\left[\bm{\Gamma}^{GM}\right]_{ij}^{ST}\frac{\delta\mathcal{F}_{V}}{\delta M}\;.

where []ST[...]^{ST} denotes the symmetrized and traceless part of the tensor. These equations need to be completed by an expression for the free energy V\mathcal{F}_{V} in terms of the shape tensor and anisotropy density field. Such an expression of course depends on the system of interest. In the next section we consider the specific case of a model of dense biological tissues.

V Cellular tissue

Confluent biological tissue, where cells are tightly packed, with no intervening gaps, have been modeled extensively using Vertex or Voronoi models that describe cells as irregular polygons tesselating the plane honda2004three ; hufnagel2007mechanism ; farhadifar2007influence . The behavior of the tissue is controlled by an energy that describes the tendency of each cell to adjust its area AaA_{a} and perimeter PaP_{a} to target values A0A_{0} and P0P_{0}, given by

EV=α[κA2(AαA0)2+κP2(PαP0)2],E_{V}=\sum_{\alpha}\left[\frac{\kappa_{A}}{2}\left(A_{\alpha}-A_{0}\right)^{2}+\frac{\kappa_{P}}{2}\left(P_{\alpha}-P_{0}\right)^{2}\right]\;, (47)

with κA\kappa_{A} and κP\kappa_{P} stiffness parameters. The first term arises from tissue incompressibility in three dimensions and the second captures the interplay of cell-cell adhesion and cortical contractility. By scaling lengths with A0\sqrt{A_{0}} and energies with κAA02\kappa_{A}A_{0}^{2}, the scaled energy of each cell is given by

ϵa=12(aa1)2+r2(pap0)2,\epsilon_{a}=\frac{1}{2}\left(a_{a}-1\right)^{2}+\frac{r}{2}\left(p_{a}-p_{0}\right)^{2}\;, (48)

with p0=P0/A0p_{0}=P_{0}/\sqrt{A_{0}} the target shape parameter and r=κP/(κAA0)r=\kappa_{P}/(\kappa_{A}A_{0}).

Numerical studies of this energy have identified a rigidity transition at a critical value p0p_{0}^{*} of the target shape parameter between a rigid, solid-like state for p0<p0p_{0}<p_{0}^{*} to a fluid state for p0>p0p_{0}>p_{0}^{*}. Single-cell anisotropy as quantified by the mean cell-shape index q=Pα/Aαq=\langle P_{\alpha}/\sqrt{A_{\alpha}}\rangle, with the brackets denoting an average over all cells, provides an order parameter for the transition. Czajkowski et al. czajkowski2018hydrodynamics derived a mean-field model of this rigidity transition, albeit using a different definition of the cell shape tensor GijαG_{ij}^{\alpha} as compared to the one used here. The derivation carried out with our definition is outlined in Appendix  D. The result is a quartic Landau-type free energy density fMf_{M} where the the cell shape anisotropy density MM plays the role of an order parameter, given by

fM=α(p0)2M2+β4M4,f_{M}=\frac{\alpha(p_{0})}{2}M^{2}+\frac{\beta}{4}M^{4}\;, (49)

where α(p0)\alpha(p_{0}) vanishes at p0=p0p_{0}=p_{0}^{*} and β>0\beta>0. The definition of the shape tensor of individual cells only affects the precise values of these parameters that also depend on the reference polygonal shape, but does not change the form of the free energy density nor the value of p0p_{0}^{*}. The free energy given in Eq. (49) is obtained by assuming small deformations from regular polygons and constant cell perimeter. It predicts a mean-field transition at α=0\alpha=0 from a state where cells are isotropic (M=0M=0) α<0\alpha<0 or p0<p0p_{0}<p_{0}^{*} (the solid state) to a state where cells are anisotropic (M=α/βM=\sqrt{-\alpha/\beta}) for α<0\alpha<0 or p0>p0p_{0}>p_{0}^{*} (the liquid state).

This work suggests a phenomenological free energy for a confluent tissue that captures both fluctuations in the cell anisotropy density MM that quantifies the liquid-solid transition and the shape tensor density G~ij\tilde{G}_{ij} that quantifies alignment of elongated cell as

c=𝐫[\displaystyle\mathcal{F}_{c}=\int_{\mathbf{r}}\bigg{[} α(p0)2M2+β4M4+K2(M)2\displaystyle\frac{\alpha(p_{0})}{2}M^{2}+\frac{\beta}{4}M^{4}+\frac{K}{2}(\bm{\nabla}M)^{2} (50)
+χ2Tr[𝐆~2]+KG2(jG~ik)2].\displaystyle+\frac{\chi}{2}Tr[\tilde{\mathbf{G}}^{2}]+\frac{K_{G}}{2}(\partial_{j}\tilde{G}_{ik})^{2}\bigg{]}\;.

We do not include terms of order Tr[𝐆~2]2Tr[\tilde{\mathbf{G}}^{2}]^{2} as we do not expect any nematic order of cellular shapes in the absence of externally applied or actively generated internal stresses. Also, we have assumed constant cell perimeter, corresponding to R=Tr[𝐆]=R=Tr[\mathbf{G}]=constant. In general, the various parameters in c\mathcal{F}_{c} will depend on RR.

It is important to stress that G~ij\tilde{G}_{ij} and MM are not independent. The traceless tensor G~ij\tilde{G}_{ij} can be written as

G~ij=SG(ninj12δij),\tilde{G}_{ij}=S_{G}\left(n_{i}n_{j}-\frac{1}{2}\delta_{ij}\right)\;, (51)

which defines the director field 𝐧(𝐫,t)\mathbf{n}(\mathbf{r},t) associated with alignment of elongated cells and the magnitude SS of orientational order. Cell alignment can only occur if cells are elongated (M0M\not=0), hence SG(M)S_{G}(M) must vanish when M=0M=0. We assume SG=MSS_{G}=MS, where SS plays the role of a nematic order parameter for orientational order of elongated cells. Clearly, SS is defined only in states where MM is finite.

Cell sheets commonly interact with a frictional substrate that eliminates momentum conservation. Frictional drag with the substrate generally exceeds inertial forces, and the Navier-Stokes equation for the momentum is replaced by a Stokes equation quantifying force balance on each fluid element. Within this overdamped limit, and considering a minimal form for the various dissipative kinetic coefficients, the tissue dynamics is governed by the following equations

tρ=(ρ𝐯),\partial_{t}\rho=-\bm{\nabla}\cdot(\rho\mathbf{v}), (52)
ξvi=ip+j(σijG+σijE+σijD),\xi v_{i}=-\partial_{i}p+\partial_{j}\left(\sigma^{G}_{ij}+\sigma^{E}_{ij}+\sigma^{D}_{ij}\right), (53)
ddtM=2RMG~ijDij1γMδcδMG~ijγ2δcδG~ij,\frac{d}{dt}M=2\frac{R}{M}\tilde{G}_{ij}D_{ij}-\frac{1}{\gamma_{M}}\frac{\delta\mathcal{F}_{c}}{\delta M}-\frac{\tilde{G}_{ij}}{\gamma_{2}}\frac{\delta\mathcal{F}_{c}}{\delta\tilde{G}_{ij}}\;, (54)
DDtG~ij\displaystyle\frac{D}{Dt}\tilde{G}_{ij} =\displaystyle= RDij+G~ikDkj+DikG~kjδijG~klDkl\displaystyle RD_{ij}+\tilde{G}_{ik}D_{kj}+D_{ik}\tilde{G}_{kj}-\delta_{ij}\tilde{G}_{kl}D_{kl} (55)
\displaystyle- MγGδcδG~ijG~ijγ2δcδM,\displaystyle\frac{M}{\gamma_{G}}\frac{\delta\mathcal{F}_{c}}{\delta\tilde{G}_{ij}}-\frac{\tilde{G}_{ij}}{\gamma_{2}}\frac{\delta\mathcal{F}_{c}}{\delta M}\;,

where ξ\xi is the frictional drag and

δcδM\displaystyle\frac{\delta\mathcal{F}_{c}}{\delta M} =\displaystyle= [α+βM2]MK2M,\displaystyle\left[\alpha+\beta M^{2}\right]M-K\nabla^{2}M\;, (56)
δcδG~ij\displaystyle\frac{\delta\mathcal{F}_{c}}{\delta\tilde{G}_{ij}} =\displaystyle= χG~ijKG2G~ij\displaystyle\chi\tilde{G}_{ij}-K_{G}\nabla^{2}\tilde{G}_{ij} (57)

It is useful to consider a simplified form of the equations obtained by retaining only lowest order terms in fields and gradients. In this case the Stokes equation and the equations for the shape fields can be written in the explicit form

Γ𝐯=p+η2𝐯+ηb𝐯+𝝈G,\Gamma\mathbf{v}=-\bm{\nabla}p+\eta\nabla^{2}\mathbf{v}+\eta_{b}\bm{\nabla}\bm{\nabla}\cdot\mathbf{v}+\bm{\nabla}\cdot\bm{\sigma}^{G}\;, (58)
ddtM=2RMG~ijDij1γM[α+βM2]M+D2M,\frac{d}{dt}M=2\frac{R}{M}\tilde{G}_{ij}D_{ij}-\frac{1}{\gamma_{M}}\left[\alpha+\beta M^{2}\right]M+D\nabla^{2}M\;, (59)
DDtG~ij\displaystyle\frac{D}{Dt}\tilde{G}_{ij} =\displaystyle= RDij+G~ikDkj+DikG~kjδijG~klDkl\displaystyle RD_{ij}+\tilde{G}_{ik}D_{kj}+D_{ik}\tilde{G}_{kj}-\delta_{ij}\tilde{G}_{kl}D_{kl} (60)
\displaystyle- rMG~ij+DG2G~ij,\displaystyle rM\tilde{G}_{ij}+D_{G}\nabla^{2}\tilde{G}_{ij}\;,

where D=ΓMKD=\Gamma_{M}K, DG=ΓKGD_{G}=\Gamma K_{G}, r=χ/γG+α/γ2r=\chi/\gamma_{G}+\alpha/\gamma_{2} and

σijG=2R(α+βM2)G~ij+12δijχSG2.\sigma_{ij}^{G}=2R(\alpha+\beta M^{2})\tilde{G}_{ij}+\frac{1}{2}\delta_{ij}\chi S_{G}^{2}\;. (61)

The single-cell anisotropy field MM here plays the role of tissue fluidity. The first term on the RHS of Eq. (59) captures the fact that shear deformations, coupled to local cell alignment, can increase cell anisotropy, driving fluidification. The second term describes relaxation to the ground state controlled by the tissue free energy, with a cost for spatial variations in local fluidity controlled by the stiffness DD. The reactive terms in Eq. (60) describe flow alignment of elongated cell shape. The term proportional to rr describes changes of cell shape tensor due to dissipative processes, such as topological rearrangements, at a rate proportional to the tissue fluidity MM. The last term in Eq. (60) describes the stiffness against deformations of local cell alignment.

Finally, in a confluent tissue the cell number density n=ρ/mcn=\rho/m_{c} is slaved to the mean cell area Aα\langle A_{\alpha}\rangle with n=1/Aαn=1/\langle A_{\alpha}\rangle. For cells that are only slightly deformed from regular polygons, Aαdet[𝐆]Tr[𝐆]\langle A_{\alpha}\rangle\simeq\sqrt{\det[\mathbf{G}]}\approx\text{Tr}[\mathbf{G}], where we have used Eq. (66). The density equation, Eq (52), can therefore equivalently be written as an equation for the cell area or for |G|det[𝐆]|G|\equiv\det[\mathbf{G}], given by

(t+𝐯)|G|=|G|𝐯.\left(\partial_{t}+\mathbf{v}\cdot\bm{\nabla}\right)|G|=|G|\bm{\nabla}\cdot\mathbf{v}\;. (62)

VI Conclusion

Using the Poisson bracket formalism, we have derived hydrodynamic equations for a fluid of deformable particles in two dimensions. Shape fluctuations are described by two continuum fields: (i) a coarse-grained scalar field that captures single-particle anisotropy, and (ii) a shape tensor field that quantifies both particle elongation and nematic alignment of elongated particles.

We have specifically applied the model to sheets of dense biological tissue, where single-cell anisotropy was recently identified as the order parameter for a solid-liquid transition driven by the interplay of cortex contractility and cell-cell adhesion bi2015density ; bi2016motility . In other words, in confluent tissue single-cell anisotropy is effectively an experimentally accessible measure of the rheological properties of the tissue, with isotropic cell shapes identifying the solid or jammed state and anisotropic shapes corresponding to a liquid. Previous work has examined the dynamics of a coarse-grained cell shape tensor and its coupling to mechanical stresses ishihara2017cells . This work did not, however, distinguish between a tissue of elongated, but isotropically oriented cells and one were the cells and elongated and also aligned in a state with nematic liquid crystalline order. The new ingredient of our work is to distinguish the dynamics of tissue fluidity, as quantified by the single-cell anisotropy field, from that of cell alignment, and examine the interplay between flow, which can be either externally applied or induced by internal active processes, fluidity and nematic order of cell shapes. Our equations hence provide a starting point for quantifying the rheology of biological tissue. Future extension needed to develop a complete framework of tissue rheology include the coupling to the dynamics of polarized cell motility and the inclusion of structural rearrangements arising from cell division and death.

Finally, the equations developed here provide a general hydrodynamic model for any fluid of deformable particles, capable of accounting for both the dynamics of shape deformations and density changes.

Acknowledgements.
MCM thanks to Max Bi, James Cochran, Suzanne Fielding and Holger Stark for illuminating discussions. This work was supported by the National Science Foundation through award DMR-1938187.

Appendix A Useful identities

The eigenvalues of a 2×22\times 2 symmetric matrix GijG_{ij} are given by

λ1,2=12(Gxx+Gyy)±12(GxxGyy)2+4Gxy2,\lambda_{1,2}=\frac{1}{2}(G_{xx}+G_{yy})\pm\frac{1}{2}\sqrt{(G_{xx}-G_{yy})^{2}+4G_{xy}^{2}}\;, (63)

and

λ1λ2=(GxxGyy)2+4Gxy2,\displaystyle\lambda_{1}-\lambda_{2}=\sqrt{(G_{xx}-G_{yy})^{2}+4G_{xy}^{2}}\;, (64)
λ1λ2=GxxGyyGxy2.\displaystyle\lambda_{1}\lambda_{2}=G_{xx}G_{yy}-G_{xy}^{2}\;. (65)

We can then show that the following identities apply

(λ1λ2)2=[Tr𝐆]24det𝐆,\displaystyle(\lambda_{1}-\lambda_{2})^{2}=[\text{Tr}\mathbf{G}]^{2}-4\det\mathbf{G}\;, (66)
(λ1λ2)2=2Tr[𝐆2][Tr𝐆]2=2Tr[𝐆~2].\displaystyle(\lambda_{1}-\lambda_{2})^{2}=2\text{Tr}[\mathbf{G}^{2}]-[\text{Tr}\mathbf{G}]^{2}=2\text{Tr}[\mathbf{\tilde{G}}^{2}]\;. (67)

Finally, for a regular polygon, GijG_{ij} is always diagonal and λ1=λ2=λ\lambda_{1}=\lambda_{2}=\lambda. In this case Eq. (66) gives Tr𝐆=2det𝐆\text{Tr}\mathbf{G}=2\sqrt{\det\mathbf{G}}. For small deformations from a regular polygon Tr𝐆2det𝐆\text{Tr}\mathbf{G}\sim 2\sqrt{\det\mathbf{G}}, which implies that we can think of Tr𝐆\text{Tr}\mathbf{G} as either a measure of square of cell perimeter or a measure of cell area.

Appendix B Elastic Stress and Pressure

It is convenient to rewrite some of the term in the reactive part 𝐕g\mathbf{V}^{g} of the momentum density equation given in Eq.  (21) to express them as gradients of pressure and an elastic stress. The goal is to rewrite the following terms

δVigρiδVδρ+(iM)δVδM+(iGkl)δVδGkl.\displaystyle\delta V_{i}^{g}\equiv-\rho\partial_{i}\frac{\delta\mathcal{F}_{V}}{\delta\rho}+(\partial_{i}M)\frac{\delta\mathcal{F}_{V}}{\delta M}+\left(\partial_{i}G_{kl}\right)\frac{\delta\mathcal{F}_{V}}{\delta G_{kl}}\;. (68)

By relating functional derivatives of V\mathcal{F}_{V} t to derivatives of the free energy density ff, which is a function of the hydrodynamic fields and their gradients, we can write

ρiδVδρ=i(ρfρ)+fρiρ,\displaystyle-\rho\nabla_{i}\frac{\delta\mathcal{F}_{V}}{\delta\rho}=-\nabla_{i}\left(\rho\frac{\partial f}{\partial\rho}\right)+\frac{\partial f}{\partial\rho}\nabla_{i}\rho\;, (69)
(iM)δVδM=(iM)(fMjfjM)=fMiM\displaystyle(\nabla_{i}M)\frac{\delta\mathcal{F}_{V}}{\delta M}=(\nabla_{i}M)\left(\frac{\partial f}{\partial M}-\nabla_{j}\frac{\partial f}{\partial\nabla_{j}M}\right)=\frac{\partial f}{\partial M}\nabla_{i}M
j[(iM)fjM]+fjMi(jM),\displaystyle-\nabla_{j}\left[(\nabla_{i}M)\frac{\partial f}{\partial\nabla_{j}M}\right]+\frac{\partial f}{\partial\nabla_{j}M}\nabla_{i}(\nabla_{j}M)\;, (70)
(iGkl)δVδGkl=(iGkl)(fGkljfjGkl)\displaystyle\left(\nabla_{i}G_{kl}\right)\frac{\delta\mathcal{F}_{V}}{\delta G_{kl}}=\left(\nabla_{i}G_{kl}\right)\left(\frac{\partial f}{\partial G_{kl}}-\nabla_{j}\frac{\partial f}{\partial\nabla_{j}G_{kl}}\right)
=fGkliGklj[(iGkl)fjGkl]\displaystyle=\frac{\partial f}{\partial G_{kl}}\nabla_{i}G_{kl}-\nabla_{j}\left[(\nabla_{i}G_{kl})\frac{\partial f}{\partial\nabla_{j}G_{kl}}\right]
+fjGkli(jGkl).\displaystyle+\frac{\partial f}{\partial\nabla_{j}G_{kl}}\nabla_{i}(\nabla_{j}G_{kl})\;. (71)

Combining these three terms, and using

if=fρiρ+fMiM+fjMi(jM)\displaystyle\nabla_{i}f=\frac{\partial f}{\partial\rho}\nabla_{i}\rho+\frac{\partial f}{\partial M}\nabla_{i}M+\frac{\partial f}{\partial\nabla_{j}M}\nabla_{i}(\nabla_{j}M)
+fGkliGkl+fjGkli(jGkl)\displaystyle+\frac{\partial f}{\partial G_{kl}}\nabla_{i}G_{kl}+\frac{\partial f}{\partial\nabla_{j}G_{kl}}\nabla_{i}(\nabla_{j}G_{kl}) (72)

we can write

δVig=ip+jσijE\delta V_{i}^{g}=-\nabla_{i}p+\nabla_{j}\sigma_{ij}^{E} (73)

in terms of the pressure pp and an elastic stress σijE\sigma_{ij}^{E}, given by

p\displaystyle p =\displaystyle= ρfρf,\displaystyle\rho\frac{\partial f}{\partial\rho}-f\;, (74)
σijE\displaystyle\sigma_{ij}^{E} =\displaystyle= fjMiMfjGkliGkl.\displaystyle-\frac{\partial f}{\partial\nabla_{j}M}\nabla_{i}M-\frac{\partial f}{\partial\nabla_{j}G_{kl}}\nabla_{i}G_{kl}\;. (75)

The stress σijE\sigma_{ij}^{E} plays the role of the Erickssen stress of nematic liquid crystals.

Appendix C Evaluation of Poisson Brackets

First we show the details of the calculation of the fundamental PB {Gijαδ(𝐫𝐫α),gk(𝐫)}\{G_{ij}^{\alpha}\delta(\mathbf{r}-\mathbf{r}^{\alpha}),g_{k}(\mathbf{r}^{\prime})\}. To evaluate the PB we use the following

Δxiανxjβμ=δαβδij(δμν1n),\displaystyle\frac{\partial\Delta x_{i}^{\alpha\nu}}{\partial x_{j}^{\beta\mu}}=\delta^{\alpha\beta}\delta_{ij}\left(\delta^{\mu\nu}-\frac{1}{n}\right)\;, (76)
xjβμδ(𝐫𝐫α)=δαβnjδ(𝐫𝐫α),\displaystyle\frac{\partial}{\partial x_{j}^{\beta\mu}}\delta(\mathbf{r}-\mathbf{r}^{\alpha})=-\frac{\delta^{\alpha\beta}}{n}\partial_{j}\delta(\mathbf{r}-\mathbf{r}^{\alpha})\;, (77)
δ(𝐫𝐫α)=δ(𝐫𝐫αμΔ𝐫αμ)\displaystyle\delta(\mathbf{r}-\mathbf{r}^{\alpha})=\delta(\mathbf{r}-\mathbf{r}^{\alpha\mu}-\Delta\mathbf{r}^{\alpha\mu})
=δ(𝐫𝐫α)Δxiαμiδ(𝐫𝐫αμ)+𝒪(Δx22).\displaystyle\;\;\;\;\;\;\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ =\delta(\mathbf{r}-\mathbf{r}^{\alpha})-\Delta x_{i}^{\alpha\mu}\partial_{i}\delta(\mathbf{r}-\mathbf{r}^{\alpha\mu})+\mathcal{O}(\Delta x^{2}\nabla^{2})\;. (78)

We write

{Gijαδ(𝐫𝐫α),gk(𝐫)}=β,νGijαδ(𝐫𝐫α)xkβνδ(𝐫𝐫βν).\{G_{ij}^{\alpha}\delta(\mathbf{r}-\mathbf{r}^{\alpha}),g_{k}(\mathbf{r}^{\prime})\}=-\sum_{\beta,\nu}\frac{\partial G_{ij}^{\alpha}\delta(\mathbf{r}-\mathbf{r}^{\alpha})}{\partial x^{\beta\nu}_{k}}\delta(\mathbf{r}^{\prime}-\mathbf{r}^{\beta\nu})\;. (79)

Then

Gijαδ(𝐫𝐫α)xkβν\displaystyle\frac{\partial G_{ij}^{\alpha}\delta(\mathbf{r}-\mathbf{r}^{\alpha})}{\partial x^{\beta\nu}_{k}} =1nδαβGijαkδ(𝐫𝐫α)\displaystyle=-\frac{1}{n}\delta^{\alpha\beta}G_{ij}^{\alpha}\partial_{k}\delta(\mathbf{r}-\mathbf{r}^{\alpha}) (80)
+1nδαβδ(𝐫𝐫α)(δikΔxjαν+δjkΔxiαν).\displaystyle+\frac{1}{n}\delta^{\alpha\beta}\delta(\mathbf{r}-\mathbf{r}^{\alpha})\left(\delta_{ik}\Delta x^{\alpha\nu}_{j}+\delta_{jk}\Delta x^{\alpha\nu}_{i}\right)\;.

Inserting Eq.(C5) into Eq.(C4) and using that μΔ𝐫αμ=0\sum_{\mu}\Delta\mathbf{r}^{\alpha\mu}=0, we obtain

{Gijαδ(𝐫𝐫α),gk(𝐫)}=Gijα[kδ(𝐫𝐫α)]1nνδ(𝐫𝐫αν)\displaystyle\{G_{ij}^{\alpha}\delta(\mathbf{r}-\mathbf{r}^{\alpha}),g_{k}(\mathbf{r}^{\prime})\}=G_{ij}^{\alpha}\left[\partial_{k}\delta(\mathbf{r}-\mathbf{r}^{\alpha})\right]\frac{1}{n}\sum_{\nu}\delta(\mathbf{r}^{\prime}-\mathbf{r}^{\alpha\nu})
δ(𝐫𝐫α)1nν[δikΔjαν+δjkΔiαν]δ(𝐫𝐫αν).\displaystyle-\delta(\mathbf{r}-\mathbf{r}^{\alpha})\frac{1}{n}\sum_{\nu}\left[\delta_{ik}\Delta^{\alpha\nu}_{j}+\delta_{jk}\Delta^{\alpha\nu}_{i}\right]\delta(\mathbf{r}^{\prime}-\mathbf{r}^{\alpha\nu})\;. (81)

Finally, using

δ(𝐫𝐫αν)\displaystyle\delta(\mathbf{r}-\mathbf{r}^{\alpha\nu}) =δ(𝐫𝐫αΔ𝐫αν)\displaystyle=\delta(\mathbf{r}-\mathbf{r}^{\alpha}-\Delta\mathbf{r}^{\alpha\nu}) (82)
δ(𝐫𝐫α)Δxkανkδ(𝐫𝐫α),\displaystyle\approx\delta(\mathbf{r}-\mathbf{r}^{\alpha})-\Delta x^{\alpha\nu}_{k}\partial_{k}\delta(\mathbf{r}-\mathbf{r}^{\alpha})\;,

we obtain

{Gijαδ(𝐫𝐫α),gk(𝐫)}=Gijαδ(𝐫𝐫α)kδ(𝐫𝐫α)\displaystyle\{G_{ij}^{\alpha}\delta(\mathbf{r}-\mathbf{r}^{\alpha}),g_{k}(\mathbf{r}^{\prime})\}=G_{ij}^{\alpha}\delta(\mathbf{r}^{\prime}-\mathbf{r}^{\alpha})\partial_{k}\delta(\mathbf{r}-\mathbf{r}^{\alpha})
+δ(𝐫𝐫α)[δikGjlα+δjkGilα]lδ(𝐫𝐫α).\displaystyle+\delta(\mathbf{r}-\mathbf{r}^{\alpha})\left[\delta_{ik}G_{jl}^{\alpha}+\delta_{jk}G_{il}^{\alpha}\right]\partial^{\prime}_{l}\delta(\mathbf{r}^{\prime}-\mathbf{r}^{\alpha})\;. (83)

From this one can immediately obtain Eq. (15).

To evaluate the PB {M(𝐫),gk(𝐫)}\{M(\mathbf{r}),g_{k}(\mathbf{r}^{\prime})\} we let Gijα=Iα2δij+G~ijαG_{ij}^{\alpha}=\frac{I_{\alpha}}{2}\delta_{ij}+\tilde{G}^{\alpha}_{ij}, with G~ijα=Δα(νiανjα12δij)\tilde{G}^{\alpha}_{ij}=\Delta_{\alpha}\left(\nu^{\alpha}_{i}\nu^{\alpha}_{j}-\frac{1}{2}\delta_{ij}\right) and use the following identities

G~ikαG~kjα\displaystyle\tilde{G}_{ik}^{\alpha}\tilde{G}_{kj}^{\alpha} =\displaystyle= Δα24δij,\displaystyle\frac{\Delta_{\alpha}^{2}}{4}\delta_{ij}\;, (84)
G~ikαG~kiα\displaystyle\tilde{G}_{ik}^{\alpha}\tilde{G}_{ki}^{\alpha} =\displaystyle= Δα22.\displaystyle\frac{\Delta_{\alpha}^{2}}{2}\;. (85)

We can then write

Δα{Δαδ(𝐫𝐫α),gk(𝐫)}=2G~ijα{G~ijαδ(𝐫𝐫α),gk(𝐫)}.\Delta_{\alpha}\{\Delta_{\alpha}\delta(\mathbf{r}-\mathbf{r}^{\alpha}),g_{k}(\mathbf{r}^{\prime})\}=2\tilde{G}^{\alpha}_{ij}\{\tilde{G}^{\alpha}_{ij}\delta(\mathbf{r}-\mathbf{r}^{\alpha}),g_{k}(\mathbf{r}^{\prime})\}\;. (86)

Using Eq. (83), we find

{G~ijαδ(𝐫𝐫α),gk(𝐫)}=G~ijαδ(𝐫𝐫α)kδ(𝐫𝐫α)\displaystyle\{\tilde{G}_{ij}^{\alpha}\delta(\mathbf{r}-\mathbf{r}^{\alpha}),g_{k}(\mathbf{r}^{\prime})\}=\tilde{G}_{ij}^{\alpha}\delta(\mathbf{r}^{\prime}-\mathbf{r}^{\alpha})\partial_{k}\delta(\mathbf{r}-\mathbf{r}^{\alpha})
+δ(𝐫𝐫α)[δikG~jlα+δjkG~ilαδijG~klα]lδ(𝐫𝐫α)\displaystyle+\delta(\mathbf{r}-\mathbf{r}^{\alpha})\left[\delta_{ik}\tilde{G}_{jl}^{\alpha}+\delta_{jk}\tilde{G}_{il}^{\alpha}-\delta_{ij}\tilde{G}_{kl}^{\alpha}\right]\partial^{\prime}_{l}\delta(\mathbf{r}^{\prime}-\mathbf{r}^{\alpha})
+Iα2(δikδjl+δjkδilδijδkl)δ(𝐫𝐫α)lδ(𝐫𝐫α).\displaystyle+\frac{I_{\alpha}}{2}\left(\delta_{ik}\delta_{jl}+\delta_{jk}\delta_{il}-\delta_{ij}\delta_{kl}\right)\delta(\mathbf{r}-\mathbf{r}^{\alpha})\partial^{\prime}_{l}\delta(\mathbf{r}^{\prime}-\mathbf{r}^{\alpha}). (87)

and

{Δαδ(𝐫𝐫α)\displaystyle\{\Delta_{\alpha}\delta(\mathbf{r}-\mathbf{r}^{\alpha}) ,gk(𝐫)}=Δαδ(𝐫𝐫α)kδ(𝐫𝐫α)\displaystyle,g_{k}(\mathbf{r}^{\prime})\}=\Delta_{\alpha}\delta(\mathbf{r}^{\prime}-\mathbf{r}^{\alpha})\partial_{k}\delta(\mathbf{r}-\mathbf{r}^{\alpha}) (88)
+Δαδ(𝐫𝐫α)kδ(𝐫𝐫α)\displaystyle+\Delta_{\alpha}\delta(\mathbf{r}-\mathbf{r}^{\alpha})\partial^{\prime}_{k}\delta(\mathbf{r}^{\prime}-\mathbf{r}^{\alpha})
+2IαG~klαΔαδ(𝐫𝐫α)lδ(𝐫𝐫α).\displaystyle+\frac{2I_{\alpha}\tilde{G}_{kl}^{\alpha}}{\Delta_{\alpha}}\delta(\mathbf{r}-\mathbf{r}^{\alpha})\partial^{\prime}_{l}\delta(\mathbf{r}^{\prime}-\mathbf{r}^{\alpha})\;.

The PB {M(𝐫),gk(𝐫)}\{M(\mathbf{r}),g_{k}(\mathbf{r}^{\prime})\} is then given by

{M(𝐫),\displaystyle\{M(\mathbf{r}), gk(𝐫)}=δ(𝐫𝐫)kM(𝐫)\displaystyle g_{k}(\mathbf{r}^{\prime})\}=\delta(\mathbf{r}-\mathbf{r}^{\prime})\partial_{k}M(\mathbf{r}) (89)
2[αIαG~klαΔαδ(𝐫𝐫α)]lδ(𝐫𝐫)\displaystyle-2\left[\sum_{\alpha}\frac{I_{\alpha}\tilde{G}_{kl}^{\alpha}}{\Delta_{\alpha}}\delta(\mathbf{r}-\mathbf{r}^{\alpha})\right]\partial_{l}\delta(\mathbf{r}-\mathbf{r}^{\prime})

and involves a new field

αIαG~klαΔαδ(𝐫𝐫α)=αIα(νiανjα12δij)δ(𝐫𝐫α).\sum_{\alpha}\frac{I_{\alpha}\tilde{G}_{kl}^{\alpha}}{\Delta_{\alpha}}\delta(\mathbf{r}-\mathbf{r}^{\alpha})=\sum_{\alpha}I_{\alpha}\left(\nu^{\alpha}_{i}\nu^{\alpha}_{j}-\frac{1}{2}\delta_{ij}\right)\delta(\mathbf{r}-\mathbf{r}^{\alpha})\;. (90)

We will need to make approximations to close the equations. We will approximate as follows

αIαG~klαΔαδ(𝐫𝐫α)R(𝐫)G~ij(𝐫)M(𝐫).\sum_{\alpha}\frac{I_{\alpha}\tilde{G}_{kl}^{\alpha}}{\Delta_{\alpha}}\delta(\mathbf{r}-\mathbf{r}^{\alpha})\approx\frac{R(\mathbf{r})\tilde{G}_{ij}(\mathbf{r})}{M(\mathbf{r})}\;. (91)

Appendix D Mean Field theory of Vertex Model

Following czajkowski2018hydrodynamics , we construct a mean-field free energy by rewriting the single-cell Vertex model energy in terms of the cell anisotropy parameter MαM_{\alpha}. Let us define

Mα=λ1αλ2α,\displaystyle M_{\alpha}=\lambda_{1}^{\alpha}-\lambda_{2}^{\alpha}\;, (92)
Rα=λ1α+λ2α,\displaystyle R_{\alpha}=\lambda_{1}^{\alpha}+\lambda_{2}^{\alpha}\;, (93)

which gives λ1,2α=(Rα±Mα)/2\lambda_{1,2}^{\alpha}=(R_{\alpha}\pm M_{\alpha})/2. Equations (6) and (7) are exact for regular polygons, but also hold approximately true for slightly deformed polygons where the shape tensor remains diagonal and Mα/Rα1M_{\alpha}/R_{\alpha}\ll 1. We can then write

Pα\displaystyle P_{\alpha} \displaystyle\approx 2nsin(πn)(λ1α+λ2α)ν(n)Rα,\displaystyle 2n\sin\left(\frac{\pi}{n}\right)\left(\sqrt{\lambda_{1}^{\alpha}+\lambda_{2}^{\alpha}}\right)\equiv\nu(n)\sqrt{R_{\alpha}}\;, (94)
Aα\displaystyle A_{\alpha} =\displaystyle= nsin(2πn)λ1αλ2αμ(n)2Rα2Mα2.\displaystyle n\sin\left(\frac{2\pi}{n}\right)\sqrt{\lambda_{1}^{\alpha}\lambda_{2}^{\alpha}}\equiv\frac{\mu(n)}{2}\sqrt{R_{\alpha}^{2}-M_{\alpha}^{2}}\;. (95)

The single-cell energy can then be written in terms of RαR_{\alpha} and MαM_{\alpha} as

Eα=KA2(μ2Rα2Mα2A0)2+KP2(PαP0)2.\displaystyle E_{\alpha}=\frac{K_{A}}{2}\left(\frac{\mu}{2}\sqrt{R_{\alpha}^{2}-M_{\alpha}^{2}}-A_{0}\right)^{2}+\frac{K_{P}}{2}(P_{\alpha}-P_{0})^{2}\;. (96)

Expanding for Mα/Rα1M_{\alpha}/R_{\alpha}\ll 1, we can write

Eα=\displaystyle E_{\alpha}= KA2[(μA02Rαμ2)Mα2+μA08Rα3Mα4+(μRα2A0)2]\displaystyle\frac{K_{A}}{2}\left[\left(\frac{\mu A_{0}}{2R_{\alpha}}-\frac{\mu}{2}\right)M_{\alpha}^{2}+\frac{\mu A_{0}}{8R_{\alpha}^{3}}M_{\alpha}^{4}+\left(\frac{\mu R_{\alpha}}{2}-A_{0}\right)^{2}\right] (97)
+KP2(νRαP0)2.\displaystyle+\frac{K_{P}}{2}\left(\nu\sqrt{R_{\alpha}}-P_{0}\right)^{2}\;.

We now assume that the cell perimeter is constant, or Pα=P0P_{\alpha}=P_{0}, hence Rα=P02/ν2R_{\alpha}=P_{0}^{2}/\nu^{2}. Substituting into Eq. (97), we can rewrite the single-cell energy density eα=Eα/A0e_{\alpha}=E_{\alpha}/A_{0} as

eα=e0+12α(n,p0)(MαA0)2+14β(n,p0)(MαA0)4,\displaystyle e_{\alpha}=e_{0}+\frac{1}{2}\alpha(n,p_{0})\left(\frac{M_{\alpha}}{{A_{0}}}\right)^{2}+\frac{1}{4}\beta(n,p_{0})\left(\frac{M_{\alpha}}{{A_{0}}}\right)^{4}\;, (98)

where e0e_{0} is a constant and

α(n,p0)\displaystyle\alpha(n,p_{0}) =\displaystyle= κAA02μ24p02(p02p02),\displaystyle\frac{\kappa_{A}A_{0}^{2}\mu^{2}}{4p_{0}^{2}}\left({p_{0}^{*}}^{2}-p_{0}^{2}\right)\;, (99)
β(n,p0)\displaystyle\beta(n,p_{0}) =\displaystyle= κaA04μν64p06,\displaystyle\frac{\kappa_{a}A_{0}^{4}\mu\nu^{6}}{4p_{0}^{6}}\;, (100)

with p0=P0/A0p_{0}=P_{0}/\sqrt{A_{0}} the shape index, our tuning parameter. Also, α(n,p0)\alpha(n,p_{0}) has been written in terms of the critical shape index,

p0=ν2μ=4ntan(π/n).\displaystyle p_{0}^{*}=\nu\sqrt{\frac{2}{\mu}}=\sqrt{4n\tan(\pi/n)}\;. (101)

The value of critical target shape parameter p0p_{0}^{*} depends on the specific undeformed polygonal shape, with p0=4p_{0}^{*}=4 for squares and p0=2233.722p_{0}^{*}=2\sqrt{2\sqrt{3}}\approx 3.722 for hexagons. Eq. (99) shows explicitly that α\alpha changes sign at p0=p0p_{0}=p_{0}^{*}, while β>0\beta>0. For α>0\alpha>0 the stable ground state has M=0M=0 and corresponds to a solid-like state of isotropic cells. For α<0\alpha<0 the stable ground state is a fluid of anisotropic cells, with M/A0=±α/βM/A_{0}=\pm\sqrt{-\alpha/\beta}. At α=0\alpha=0 the system undergoes spontaneous symmetry breaking and fluidizes, choosing one of two equivalent axial direction along which to elongate. Here we have defined MM as positive by assuming λ1>λ2\lambda_{1}>\lambda_{2}, hence breaking from the outside the Ising symmetry of the model. Finally, it was shown in Ref. czajkowski2018hydrodynamics that the quartic form given in Eq. (98) is also obtained by assuming constant cell area, albeit with different expressions for the coefficients α\alpha and β\beta. In both cases the coefficient α\alpha changes sign at p0=p0p_{0}=p_{0}^{*} and the behavior near the transition is unaffected by the approximation used.

References

  • [1] Thomas Lecuit and Pierre-Francois Lenne. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature reviews Molecular cell biology, 8(8):633–644, 2007.
  • [2] D. J. Durian. Phys. Rev. Lett., 75:4780–4783, Dec 1995.
  • [3] Sylvie Cohen-Addad, Reinhard Höhler, and Olivier Pitois. Annual Review of Fluid Mechanics, 45, 2013.
  • [4] Johan Mattsson, Hans M Wyss, Alberto Fernandez-Nieves, Kunimasa Miyazaki, Zhibing Hu, David R Reichman, and David A Weitz. Nature, 462(7269):83–86, 2009.
  • [5] Dimitris Vlassopoulos and Michel Cloitre. Current opinion in colloid & interface science, 19(6):561–574, 2014.
  • [6] François Graner and James A Glazier. Physical review letters, 69(13):2013, 1992.
  • [7] Alexandre J Kabla. Journal of The Royal Society Interface, 9(77):3268–3278, 2012.
  • [8] Hisao Honda, Masaharu Tanemura, and Tatsuzo Nagai. Journal of theoretical biology, 226(4):439–453, 2004.
  • [9] Lars Hufnagel, Aurelio A Teleman, Hervé Rouault, Stephen M Cohen, and Boris I Shraiman. Proceedings of the National Academy of Sciences, 104(10):3835–3840, 2007.
  • [10] Reza Farhadifar, Jens-Christian Röper, Benoit Aigouy, Suzanne Eaton, and Frank Jülicher. Current Biology, 17(24):2095–2104, 2007.
  • [11] Edouard Hannezo, Jacques Prost, and Jean-Francois Joanny. Proceedings of the National Academy of Sciences, 111(1):27–32, 2014.
  • [12] Nebojsa Murisic, Vincent Hakim, Ioannis G Kevrekidis, Stanislav Y Shvartsman, and Basile Audoly. Biophysical journal, 109(1):154–163, 2015.
  • [13] Dapeng Bi, Jorge H Lopez, Jennifer M Schwarz, and M Lisa Manning. Soft matter, 10(12):1885–1890, 2014.
  • [14] Dapeng Bi, JH Lopez, Jennifer M Schwarz, and M Lisa Manning. Nature Physics, 11(12):1074–1079, 2015.
  • [15] Dapeng Bi, Xingbo Yang, M Cristina Marchetti, and M Lisa Manning. Physical Review X, 6(2):021011, 2016.
  • [16] Eial Teomy, David A Kessler, and Herbert Levine. Physical Review E, 98(4):042418, 2018.
  • [17] Sangwoo Kim, Marie Pochitaloff, Georgina Stooke-Vaughan, and Otger Campas. bioRxiv, 2020.
  • [18] Arman Boromand, Alexandra Signoriello, Janna Lowensohn, Carlos S Orellana, Eric R Weeks, Fangfu Ye, Mark D Shattuck, and Corey S O’Hern. Soft matter, 15(29):5854–5865, 2019.
  • [19] Masao Doi and Takao Ohta. The Journal of chemical physics, 95(2):1242–1248, 1991.
  • [20] Andreas Sagner, Matthias Merkel, Benoit Aigouy, Julia Gaebel, Marko Brankatschk, Frank Jülicher, and Suzanne Eaton. Current Biology, 22(14):1296–1301, 2012.
  • [21] Marko Popović, Amitabha Nandi, Matthias Merkel, Raphaël Etournay, Suzanne Eaton, Frank Jülicher, and Guillaume Salbreux. New Journal of Physics, 19(3):033006, 2017.
  • [22] Shuji Ishihara, Philippe Marcq, and Kaoru Sugimura. Physical Review E, 96(2):022418, 2017.
  • [23] Xingbo Yang, Dapeng Bi, Michael Czajkowski, Matthias Merkel, M Lisa Manning, and M Cristina Marchetti. Proceedings of the National Academy of Sciences, 114(48):12663–12668, 2017.
  • [24] Michael Czajkowski, Dapeng Bi, M Lisa Manning, and M Cristina Marchetti. Soft matter, 14(27):5628–5642, 2018.
  • [25] Dieter Forster. Physical Review Letters, 32(21):1161, 1974.
  • [26] H. Stark and T. C. Lubensky. Phys. Rev. E, 67:061709, Jun 2003.
  • [27] H. Stark and T. C. Lubensky. Physical Review E, 72(5), Nov 2005.
  • [28] Sybren Ruurds De Groot and Sybren Ruurds De Groot. Thermodynamics of irreversible processes, volume 336. North-Holland Amsterdam, 1951.
  • [29] Scott T. Milner. Phys. Rev. E, 48:3674–3691, 1993.
  • [30] Antony N Beris, Brian J Edwards, Brian J Edwards, et al. Thermodynamics of flowing systems: with internal microstructure. Number 36. Oxford University Press on Demand, 1994.