This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: These authors contributed equally to this work.thanks: These authors contributed equally to this work.thanks: These authors contributed equally to this work.

Polarized Charge Dynamics of a Novel Charge Density Wave in Kagome FeGe

Shaohui Yi    Zhiyu Liao Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Qi Wang School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China    Haiyang Ma    Jianpeng Liu School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China    Xiaokun Teng    Pengcheng Dai Department of Physics and Astronomy, Rice University, Houston, Texas, USA    Yaomin Dai National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China    Jianzhou Zhao jzzhao@swust.edu.cn Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology, Mianyang 621010 Sichuan, China    Yanpeng Qi qiyp@shanghaitech.edu.cn School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China    Bing Xu bingxu@iphy.ac.cn Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Xianggang Qiu xgqiu@iphy.ac.cn Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
(February 21, 2025)
Abstract

We report on the charge dynamics of kagome FeGe, an antiferromagnet with a charge density wave (CDW) transition at TCDW105T_{\mathrm{CDW}}\simeq 105 K, using polarized infrared spectroscopy and band structure calculations. We reveal a pronounced optical anisotropy, various excitations associated with flat bands and van Hove singularities (VHSs), and a moderate level of electronic correlations. Notably, there are two types of remarkable spectral weight (SW) redistributions for above and below TCDWT_{\mathrm{CDW}}. The former involves a transfer between incoherent and coherent excitations driven by the magnetic splitting-induced elevation of flat bands. The latter manifests itself as a sudden change of SW from low to high energies for both aa and cc directions, suggesting a first-order transition and the three-dimensional nature of CDW. These anomalies in SW significantly differ from those observed in other kagome metals like CsV3Sb5, where the nesting of VHSs results in a pronounced CDW gap feature. Instead, our findings can be accounted for by the jump of VHSs relative to the Fermi energy via a first-order structural transition involving large partial Ge1-dimerization. Our study thus unveils a complex interplay among structure, magnetism, electronic correlations, and charge order in FeGe, offering valuable insights for a comprehensive understanding of CDW order in kagome systems.

The kagome lattice, a hexagonal network of corner-sharing triangles, has been studied for over 70 years [1]. Its unique band structure features the coexistence of flat bands (FBs), Dirac crossings, and van Hove singularities (VHSs), making it an excellent platform for studying the variety of emergent quantum phases resulting from the complex interplay between geometry, topology, and electronic correlations. In the early days, research mainly focused on the geometric spin frustration, showing its great potential to realize quantum spin liquid states [2, 3, 4, 5]. Subsequently, a range of topological quantum states have been explored, such as Weyl fermions in Co3Sn2S2 [6, 7, 8], Dirac fermions and flat bands in CoSn [9], and Chern gapped Dirac fermions in TbMn6Sn6 [10]. More recently, charge density wave (CDW) and unconventional superconductivity [11, 12, 13, 14], as well as other exotic quantum phenomena, including electronic nematicity [15], roton pair density wave [16], and giant anomalous Hall effect [17], have been reported in the non-magnetic kagome metals AV3Sb5 (A=A= Cs, K, Rb).

Refer to caption
Figure 1: (color online) (a) Temperature dependence of resistivity along the aa-axis and cc-axis for kagome FeGe. The open symbols represent ρ1/σ1(ω0)\rho\equiv 1/\sigma_{1}(\omega\rightarrow 0) obtained by the Drude fits to the optical data. (b) Temperature dependence of the magnetization curves Ma(T)M_{a}(T) and Mc(T)M_{c}(T) measured at a 1 T magnetic field. (c) Temperature-dependent spectra of reflectivity R(ω)R(\omega) for Ea\textbf{E}\parallel a and Ec\textbf{E}\parallel c. Bottom inset: Spectra up to 25 000cm1\leavevmode\nobreak\ \textrm{cm}^{-1} at 300 K. Top inset: Temperature dependence of R(ω=3 000cm1)R(\omega=3\,000\leavevmode\nobreak\ \textrm{cm}^{-1}). (d) and (e) Temperature-dependent spectra of optical conductivity σ1(ω)\sigma_{1}(\omega) for Ea\textbf{E}\parallel a and Ec\textbf{E}\parallel c, respectively. Insets provide the enlarged view of σ1(ω)\sigma_{1}(\omega) in the far-infrared region. (f) and (g) The corresponding changes of the spectral weight, ΔS(T)=S(T)S(420K)\Delta S(T)=S(T)-S(420\mathrm{K}), for Ea\textbf{E}\parallel a and Ec\textbf{E}\parallel c, respectively.

Generally, the discovered kagome materials can only host either magnetism or charge orders, owing to the large energy separation between the FBs and the vHSs. However, lately, a CDW order (TCDWT_{\mathrm{CDW}}\simeq 100 K) has been found inside the antiferromagnetic (AFM) phase of kagome FeGe (TNT_{N}\simeq 410 K) [18]. This CDW transition is associated with an increase of ordered magnetic moments [19], which demonstrates an intertwined nature of magnetism and charge order (CO) in FeGe, thus offering a unique opportunity to explore a novel CDW with magnetism. Currently, the origin of CDW in FeGe is still full of controversy [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 26, 29, 30, 31, 32]. The nesting of VHSs at the M point and electron-phonon coupling were initially proposed to explain the formation of CDW [18, 19, 20], similar to AV3Sb5 [33, 34, 35, 36, 37, 38, 39, 40, 41]. However, Wu et al. found that the maximum nesting function of FeGe is at the K point instead of the M point, and suggested the key role of electronic correlations for CDW [21]. Additionally, electronic correlations induces a softening effect along the L-H direction in the calculated phonon spectrum of FeGe [29, 30, 31]. Furthermore, recent theoretical calculations and angle-resolved photoemission spectroscopy (ARPES) measurements in annealed samples support a new mechanism, in which the large dimerization partial Ge1-dimerization reduces the magnetic energy and leads to a stable 2×2×22\times 2\times 2 CDW ground state [22, 23], in sharp contrast to AV3Sb5. Therefore, to clarify the origin of CDW in FeGe, a systematic study of charge dynamics across various electronic states or phases is essential.

In this letter, we utilize polarized optical spectroscopy and density functional theory (DFT) calculations to systematically study the charge dynamics of FeGe spanning from paramagnetic (PM) to AFM and to CDW phases. Our study reveals significant optical anisotropy and a variety of intraband and interband excitations associated with VHSs and FBs. Particularly noteworthy is the magnetization-induced shift of FBs and the CDW transition, which result in two distinct types of spectral weight (SW) redistributions. Furthermore, we observe that the CDW response lacks a gap feature and exhibits characteristics of a first-order transition, contrasting with observations in AV3Sb5. Our results thus are consistent with the novel CDW mechanism based on a first-order structural transition involving large partial Ge1-dimerization.

Sample synthesis, experimental methods, and details of Drude-Lorentz analysis and DFT calculations are provided in the Supplemental Material.

Figure 1(a) displays the temperature (TT) dependence of the resistivity for kagome FeGe along the aa-axis and cc-axis. Both directions exhibit typical metallic behavior and manifest strong electronic anisotropy with lower resistivity along the cc-axis. In Fig. 1(b), the TT-dependent magnetizations, Ma(T)M_{a}(T) and Mc(T)M_{c}(T), show notable magnetic anisotropy. Upon cooling, Ma(T)M_{a}(T) gradually increases and shows an anomaly at the CDW transition (TCDW105T_{\mathrm{CDW}}\simeq 105 K). In contrast, Mc(T)M_{c}(T) decreases and then turns upward below TCant60T_{\mathrm{Cant}}\simeq 60 K, attributed to spin canting. These observations are consistent with previous studies [18].

Due to the electronic and magnetic anisotropies, we measured the polarized reflectivity R(ω)R(\omega) of FeGe. In Fig. 1(c), R(ω)R(\omega) is presented up to 6 000cm1\leavevmode\nobreak\ \textrm{cm}^{-1} from 420 to 10 K for Ea\textbf{E}\parallel a and Ec\textbf{E}\parallel c. The bottom inset compares Ra(ω)R_{a}(\omega) and Rc(ω)R_{c}(\omega) at T=300T=300 K up to 25 000cm1\leavevmode\nobreak\ \textrm{cm}^{-1}. In the infrared region, Rc(ω)R_{c}(\omega) is much higher than Ra(ω)R_{a}(\omega), indicating an optical anisotropy consistent with the lower resistivity along the cc-axis. In the low-frequency limit, both Ra(ω)R_{a}(\omega) and Rc(ω)R_{c}(\omega) approach unity and increase with decreasing TT, reflecting the metallic nature of FeGe. Furthermore, there is no clear anomalous change across the AFM transition (TN410T_{\mathrm{N}}\simeq 410 K) for both polarizations. However, below TCDWT_{\mathrm{CDW}}, R(ω)R(\omega) shows a sudden drop in the range of 2 000 – 5 000cm1\leavevmode\nobreak\ \textrm{cm}^{-1}. Such a sudden change, as highlighted by the TT-evolution of R(ω=3000cm1)R(\omega=3000\leavevmode\nobreak\ \textrm{cm}^{-1}) in the top inset, provides an initial spectroscopic indication of a first-order CDW transition in FeGe, which is consistent with the neutron [18], x-ray scattering [29], and Raman experiments [24].

The optical conductivity σ1(ω)\sigma_{1}(\omega) provides direct information about the charge dynamics. Fig. 1(d) and Fig. 1(e) display the TT-dependent σ1a(ω)\sigma_{1a}(\omega) and σ1c(ω)\sigma_{1c}(\omega) for Ea\textbf{E}\parallel a and Ec\textbf{E}\parallel c, respectively. In the far-infrared region, σ1(ω)\sigma_{1}(\omega) is dominated by a Drude-like peak, and σ1c(ω)\sigma_{1c}(\omega) is about twice higher than σ1a(ω)\sigma_{1a}(\omega), indicating a strong three-dimensional (3D) metallic response. With decreasing TT, the Drude peak narrows and exhibits coherent behavior at low temperatures, as emphasized in the insets. In the mid-infrared region (500 – 3 000cm1\leavevmode\nobreak\ \textrm{cm}^{-1}), σ1(ω)\sigma_{1}(\omega) decreases and transfers the SW to lower frequencies. Meanwhile, an absorption peak (labeled as β\beta) gradually appears around 4 000cm1\leavevmode\nobreak\ \textrm{cm}^{-1}. Across the CDW transition, σ1(ω)\sigma_{1}(\omega) below 3 000cm1\leavevmode\nobreak\ \textrm{cm}^{-1} is further suppressed, while its associated SW is transferred to the β\beta peak and other high-energy interband transitions. Both σ1a(ω)\sigma_{1a}(\omega) and σ1c(ω)\sigma_{1c}(\omega) exhibit similar features, particularly in their responses to the CDW transition, providing strong evidence for the formation of a 3D CDW state in FeGe, consistent with the 2×2×22\times 2\times 2 CDW order observed from other experiments [25, 26]. Additionally, with the narrowing of the Drude peak or the CDW transition, a low-energy peak (labeled as α\alpha) emerges around 1 200cm1\leavevmode\nobreak\ \textrm{cm}^{-1}.

The TT-dependent spectral changes have been further analyzed in terms of the partial SW, Sωaωb(T)=ωaωbσ1(ω,T)𝑑ωS_{\omega_{a}}^{\omega_{b}}(T)=\int_{\omega_{a}}^{\omega_{b}}\sigma_{1}(\omega,T)d\omega, restricted by the cutoff frequencies ωa\omega_{a} and ωb\omega_{b}. This approach allows us to specify the SW changes of different electronic excitations by choosing suitable ωa\omega_{a} and ωb\omega_{b}. Fig. 1(f) and Fig. 1(g) detail the SW changes, ΔS(T)=S(T)S(420K)\Delta S(T)=S(T)-S(420\leavevmode\nobreak\ \mathrm{K}), at various restricted frequency ranges for Ea\textbf{E}\parallel a and Ec\textbf{E}\parallel c, respectively. For ΔS0500\Delta S_{0}^{500} and ΔS5003000\Delta S_{500}^{3000}, that are governed by the coherent and incoherent excitations, respectively, the transfer of incoherent to coherent excitations leads to an increase in ΔS0500\Delta S_{0}^{500} and a corresponding decrease in ΔS5003000\Delta S_{500}^{3000} at T>TCDWT>T_{\mathrm{CDW}}. For ΔS300010000\Delta S_{3000}^{10000}, dominated by the β\beta peak and other high-energy excitations, it remains nearly TT-independent. As T<TCDWT<T_{\mathrm{CDW}}, ΔS0500\Delta S_{0}^{500} undergoes a slight suppression and ΔS5003000\Delta S_{500}^{3000} is suddenly reduced, while ΔS300010000\Delta S_{3000}^{10000} is enhanced, indicating an abrupt SW transfer from low to high frequencies due to the CDW transition. Additionally, ΔS5003000\Delta S_{500}^{3000} and ΔS300010000\Delta S_{3000}^{10000} exhibit more significant anomalies compared to ΔS0500\Delta S_{0}^{500}, implying a more pronounced impact of CDW on incoherent excitations than on coherent ones.

Refer to caption
Figure 2: (color online) (a)Decomposition of σ1(ω)\sigma_{1}(\omega) spectra at T=110T=110 K for Ea\textbf{E}\parallel a using a Drude-Lorentz model. (b) and (c) Temperature dependence of the Drude weights ωp2\omega^{2}_{p} and scattering rates 1/τ1/\tau, respectively. (d) Temperature-dependent spectral weight of various individual and combined components.

To perform a quantitative analysis of various intra- and interband excitations, we employed the Drude-Lorentz model to fit the measured σ1(ω)\sigma_{1}(\omega) spectra. Fig. 2(a) shows the decomposition of σ1a(ω)\sigma_{1a}(\omega) at T=T= 110 K. A similar decomposition of σ1c(ω)\sigma_{1c}(\omega) is available in the Supplemental Materials. The fitting curve consists of two Drude terms (labeled as D1 and D2), along with three Lorentz terms (labeled as α\alpha, β\beta, and γ\gamma) that account for interband transitions at higher energies. The two-Drude fit suggests two types of charge carriers with different scattering rates. Specifically, the scattering rate (1/τ1/\tau) of D1 is quite smaller compared to that of D2, e.g., 1/τD1=130cm11/\tau_{D1}=130\leavevmode\nobreak\ \textrm{cm}^{-1} and 1/τD2=1 000cm11/\tau_{D2}=1\,000\leavevmode\nobreak\ \textrm{cm}^{-1} at 110 K. The Drude fit also enables the extraction of the dc resistivity, ρ1/σ1(ω0)\rho\equiv 1/\sigma_{1}(\omega\rightarrow 0), as shown by open symbols in Fig. 1(a), which aligns well with the results from the dc transport measurement. With decreasing TT, D1 exhibits a Fermi-liquid behavior with 1/τT21/\tau\propto T^{2} and a substantial increase in weight (proportional to ωp2\omega^{2}_{p}), while D2 shows a slight decrease in 1/τ1/\tau and a corresponding loss in weight, as shown in Figs. 2(b–c). The compensated changes of weights for D1 and D2 imply a TT-induced shift of bands near the Fermi energy (EFE_{\mathrm{F}}). Notably, the CDW transition only has a strong impact on D2 (i.e., the incoherent excitations), where ωp2\omega^{2}_{p} and 1/τ1/\tau for D2 show an abrupt suppression at T<TCDWT<T_{\mathrm{CDW}}, whereas those for D1 show no anomalies. In Fig. 2(d), we revealed a sudden decrease (increase) in the SW of the α\alpha (β\beta) band at TCDWT_{\mathrm{CDW}}. Overall, the CDW results in a sudden SW redistribution between the low-energy (two Drude and α\alpha bands) and high-energy components (β\beta and other high-energy bands).

Refer to caption
Refer to caption
Figure 3: (color online) (a) and (b) Band structure of FeGe calculated in the PM and AFM phases, respectively. (c–f) Comparisons of the calculated and experimental σ1(ω)\sigma_{1}(\omega). (g) The ratio of kinetic energy Kexp/KbandK_{\rm exp}/K_{\rm band} for FeGe. The values for other materials are obtained from Refs. [42, 43] and the references cited therein. (h–j) A simplified schematic summary of magnetization-induced changes of band structure. (k) Comparison of σ1(ω)\sigma_{1}(\omega) between FeGe and CsV3Sb5. (l) and (m) show the jump of peak position of β\beta band at the CDW transition for Ea\textbf{E}\parallel a and Ec\textbf{E}\parallel c, respectively.

Next, to unravel the origin of each component in σ1(ω)\sigma_{1}(\omega), we calculated the band structure of FeGe in both the PM and AFM phases. In the PM phase, as shown in Fig. 3(a), the band structure features a pair of typical kagome bands along the Γ\Gamma-M-K-Γ\Gamma direction, where the FBs (marked by a grey bar) are situated around EFE_{\mathrm{F}}, VHSs (VHS1 and VHS2) are below EFE_{\mathrm{F}} at the M point and Dirac crossings are present at the K point. As shown in Fig. 3(b), the AFM order shifts the FBs upward above EFE_{\rm F} and brings the VHSs closer to EFE_{\rm F}, particularly for VSH1. Additionally, a highly dispersive band emerges around the Γ\Gamma point and intersects with EFE_{\rm F}. In Figs. 3(c–f), we compared the calculated and experimental σ1(ω)\sigma_{1}(\omega) spectra. In the PM phase, the calculated σ1xx(ω)\sigma^{xx}_{1}(\omega) displays three features: a Drude response of intraband transitions of FBs, an α\alpha peak of interband transitions between the bottom and top FBs at \sim 0.25 eV (magenta arrows), and a β\beta peak of interband transitions between VHSs and top FBs at \sim 0.75 eV (orange arrows). The σ1zz(ω)\sigma^{zz}_{1}(\omega) exhibits similar features, but with almost twice the strength of the response. In the experimental σ1(ω)\sigma_{1}(\omega) spectra above TNT_{N}, these features are smeared out due to the strong thermal broadening effect at T=420T=420 K. In the AFM phase, the calculated αT\alpha_{\rm T} peak loses SW, while the βT\beta_{\rm T} peak gains SW, due to all FBs are elevated above EFE_{\rm F}, resulting in the α\alpha peak being replaced by the interband transitions between VHSs and the bottom FBs. Compared to theoretical results, the experimental αE\alpha_{\rm E} and βE\beta_{\rm E} peaks shift significantly to lower energies, with ω0α=\omega^{\alpha}_{0}= 0.43 \rightarrow 0.17 eV and ω0β=\omega^{\beta}_{0}= 0.75 \rightarrow 0.45 eV for Ea\textbf{E}\parallel a, and ω0α=\omega^{\alpha}_{0}= 0.32 \rightarrow 0.17 eV and ω0β=\omega^{\beta}_{0}= 0.70 \rightarrow 0.46 eV for Ec\textbf{E}\parallel c.

The significant position shift of interband transitions between the experimental and theoretical results suggests a strong renormalization of band structure caused by electronic correlations. Since the β\beta peak is mainly dominated by the interband transitions within the kagome bands (i.e., between VHSs and FBs), the ratio ω0β,T/ω0β,E\omega^{\beta,\rm T}_{0}/\omega^{\beta,\rm E}_{0} can serve as a reliable estimation for the strength of electronic correlations. Here, ω0β,T/ω0β,E=\omega^{\beta,\rm T}_{0}/\omega^{\beta,\rm E}_{0}= 1.67 and 1.52 for Ea\textbf{E}\parallel a and Ec\textbf{E}\parallel c, respectively, which agrees well with the renormalization factor of 1.6 observed in ARPES measurements [19] and dynamical mean-field theory calculations [44, 29]. Furthermore, the ratio of the experimental kinetic energy KexpK_{\mathrm{exp}} to that from band theory KbandK_{\mathrm{band}} also provides crucial information about electronic correlations, where KexpK_{\mathrm{exp}} or KbandK_{\mathrm{band}} is proportional to the SW of the Drude component. Fig. 3(g) summarizes Kexp/KbandK_{\mathrm{exp}}/K_{\mathrm{band}} for FeGe and several other representative materials. Details about the determination of Kexp/KbandK_{\mathrm{exp}}/K_{\mathrm{band}} are included in the Supplemental Materials. In FeGe, Kexp/KbandK_{\mathrm{exp}}/K_{\mathrm{band}} is 0.52±0.050.52\pm 0.05 and 0.67±0.050.67\pm 0.05 for Ea\textbf{E}\parallel a and Ec\textbf{E}\parallel c, respectively, suggesting a moderate strength of electronic correlations, which falls between Co3Sn2S2 and CsV3Sb5.

Electronic correlations and, in particular, magnetism, have pronounced effects on the band structure in kagome materials. For instance, in Co3Sn2S2 the magnetic splitting of bands shifts the FBs and Weyl points toward EFE_{\rm F}, making electrons possess the properties of both correlation and topology. Similarly, as summarized in Figs. 3(h)–(j), the magnetic splitting in FeGe, which is proportional to the ordered magnetic moment [19], elevates the VHSs close to EFE_{\rm F}, improving the activity of electronic states and thus the possibility of CDW instability. However, unlike the nesting mechanism of VHSs in AV3Sb5, our experimental observations suggest a different origin of CDW in FeGe. As compared in Fig. 3(k), CsV3Sb5 and FeGe exhibit distinct charge responses to the CDW transition. The former shows a clear gap feature of CDW due to the nesting of VHSs around the M-point [38], whereas these features are absent in the latter. Recent theoretical calculations and ARPES measurements in FeGe provide a novel CDW mechanism, where the CDW is primarily driven by saving magnetic energies via a first-order structural transition involving large partial Ge1-dimerization [22, 23]. ARPES experiments on annealed samples did not detect the CDW gap but instead a sudden jump of bands originating from the enhanced spin-polarization in the CDW phase [23]. Our findings of charge dynamics are fully consistent with these above theoretical and experimental facts, thus supporting such a novel CDW mechanism.

Accordingly, the sudden SW changes at the CDW transition can be explained by the jump of VHS1 relative to EFE_{\rm F}. Specifically, as illustrated in Figs. 3(i–j), VHS1 lies slightly below EFE_{\rm F} at TTCDWT\sim T_{\mathrm{CDW}} and then abruptly shifts above EFE_{\rm F} at T<TCDWT<T_{\mathrm{CDW}} for our sample. This band jump is also evident in the shift of the β\beta peak. As demonstrated in the Figs. 3(l–m), the β\beta peak shows an increase of about 20 meV after the CDW transition, which is consistent with the results of the ARPES experiments [23]. Note that, in annealed or hole-doped samples, since VHS1 is already positioned above EFE_{\rm F} at TTCDWT\sim T_{\mathrm{CDW}} (marked by green dashed line) due to stronger magnetic moment [23, 45] or hole doping, the further upward shift of VHS1 at T<TCDWT<T_{\mathrm{CDW}} may not result in obvious changes in SW. This may clarify why another recent optical study on FeGe did not find strong SW redistributions under the CDW transition [46].

In summary, our optical conductivity measurements revealed rich information about the charge dynamics in FeGe, including a remarkable optical anisotropy, moderate electronic correlations, unconventional SW redistributions associated with magnetization-induced band shift and CDW transition, as well as a first-order transition and 3D character of CDW. These findings contrast with the conventional CDW mechanism observed in other kagome metals, and instead highlight a novel mechanism involving the intricate interplay among structure, magnetism, electronic correlations, and charge order in FeGe.

Acknowledgements.
We acknowledge discussions with Yilin Wang and Kai Wang. This work was supported by the National Natural Science Foundation of China (Grant No. 12274442 and No. 52272265) and the National Key R&D Program of China (Grant No. 2022YFA1403901 and No. 2023YFA1607400).

References

  • Syôzi [1951] I. Syôzi, Statistics of Kagomé Lattice, Progress of Theoretical Physics 6, 306 (1951).
  • Balents et al. [2002] L. Balents, M. P. A. Fisher, and S. M. Girvin, Fractionalization in an easy-axis Kagome antiferromagnet, Phys. Rev. B 65, 224412 (2002).
  • Anderson [1973] P. Anderson, Resonating valence bonds: A new kind of insulator?, Materials Research Bulletin 8, 153 (1973).
  • Balents [2010] L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010).
  • Yan et al. [2011] S. Yan, D. A. Huse, and S. R. White, Spin-Liquid Ground State of the S=1/2S=1/2 Kagome Heisenberg Antiferromagnet, Science 332, 1173 (2011).
  • Liu et al. [2018] E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S.-Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser, Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal, Nature Physics 14, 1125 (2018).
  • Liu et al. [2019] D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X. Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, and Y. L. Chen, Magnetic Weyl semimetal phase in a Kagomé crystal, Science 365, 1282 (2019).
  • Morali et al. [2019] N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, and H. Beidenkopf, Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2Science 365, 1286 (2019).
  • Liu et al. [2020] Z. Liu, M. Li, Q. Wang, G. Wang, C. Wen, K. Jiang, X. Lu, S. Yan, Y. Huang, D. Shen, J.-X. Yin, Z. Wang, Z. Yin, H. Lei, and S. Wang, Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn, Nature Communications 11, 4002 (2020).
  • Yin et al. [2020] J.-X. Yin, W. Ma, T. A. Cochran, X. Xu, S. S. Zhang, H.-J. Tien, N. Shumiya, G. Cheng, K. Jiang, B. Lian, Z. Song, G. Chang, I. Belopolski, D. Multer, M. Litskevich, Z.-J. Cheng, X. P. Yang, B. Swidler, H. Zhou, H. Lin, T. Neupert, Z. Wang, N. Yao, T.-R. Chang, S. Jia, and M. Zahid Hasan, Quantum-limit Chern topological magnetism in TbMn6Sn6Nature 583, 533 (2020).
  • Ortiz et al. [2020] B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte, E. C. Schueller, A. M. M. Abeykoon, M. J. Krogstad, S. Rosenkranz, R. Osborn, R. Seshadri, L. Balents, J. He, and S. D. Wilson, CsV3Sb5\mathrm{Cs}{\mathrm{V}}_{3}{\mathrm{Sb}}_{5}: A 2{\mathbb{Z}}_{2} Topological Kagome Metal with a Superconducting Ground State, Phys. Rev. Lett. 125, 247002 (2020).
  • Guguchia et al. [2023] Z. Guguchia, C. Mielke, D. Das, R. Gupta, J. X. Yin, H. Liu, Q. Yin, M. H. Christensen, Z. Tu, C. Gong, N. Shumiya, M. S. Hossain, T. Gamsakhurdashvili, M. Elender, P. Dai, A. Amato, Y. Shi, H. C. Lei, R. M. Fernandes, M. Z. Hasan, H. Luetkens, and R. Khasanov, Tunable unconventional kagome superconductivity in charge ordered RbV3Sb5 and KV3Sb5Nature communications 14, 153 (2023).
  • Zhao et al. [2021] H. Zhao, H. Li, B. R. Ortiz, S. M. Teicher, T. Park, M. Ye, Z. Wang, L. Balents, S. D. Wilson, and I. Zeljkovic, Cascade of correlated electron states in the kagome superconductor CsV3Sb5Nature 599, 216 (2021).
  • Mielke et al. [2022] C. Mielke, D. Das, J.-X. Yin, H. Liu, R. Gupta, Y.-X. Jiang, M. Medarde, X. Wu, H. C. Lei, J. Chang, P. Dai, Q. Si, H. Miao, R. Thomale, T. Neupert, Y. Shi, R. Khasanov, M. Z. Hasan, H. Luetkens, and Z. Guguchia, Time-reversal symmetry-breaking charge order in a kagome superconductor, Nature 602, 245 (2022).
  • Nie et al. [2022] L. Nie, K. Sun, W. Ma, D. Song, L. Zheng, Z. Liang, P. Wu, F. Yu, J. Li, M. Shan, D. Zhao, S. Li, B. Kang, Z. Wu, Y. Zhou, K. Liu, Z. Xiang, J. Ying, Z. Wang, T. Wu, and X. Chen, Charge-density-wave-driven electronic nematicity in a kagome superconductor, Nature 604, 59 (2022).
  • Chen et al. [2021] H. Chen, H. Yang, B. Hu, Z. Zhao, J. Yuan, Y. Xing, G. Qian, Z. Huang, G. Li, Y. Ye, S. Ma, S. Ni, H. Zhang, Q. Yin, C. Gong, Z. Tu, H. Lei, H. Tan, S. Zhou, C. Shen, X. Dong, B. Yan, Z. Wang, and H.-J. Gao, Roton pair density wave in a strong-coupling kagome superconductor, Nature 599, 222 (2021).
  • Yang et al. [2020] S.-Y. Yang, Y. Wang, B. R. Ortiz, D. Liu, J. Gayles, E. Derunova, R. Gonzalez-Hernandez, L. Šmejkal, Y. Chen, S. S. P. Parkin, S. D. Wilson, E. S. Toberer, T. McQueen, and M. N. Ali, Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5, Science Advances 610.1126/sciadv.abb6003 (2020).
  • Teng et al. [2022] X. Teng, L. Chen, F. Ye, E. Rosenberg, Z. Liu, J.-X. Yin, Y.-X. Jiang, J. S. Oh, M. Z. Hasan, K. J. Neubauer, B. Gao, Y. Xie, M. Hashimoto, D. Lu, C. Jozwiak, A. Bostwick, E. Rotenberg, R. J. Birgeneau, J.-H. Chu, M. Yi, and P. Dai, Discovery of charge density wave in a kagome lattice antiferromagnet, Nature 609, 490 (2022).
  • Teng et al. [2023] X. Teng, J. S. Oh, H. Tan, L. Chen, J. Huang, B. Gao, J.-X. Yin, J.-H. Chu, M. Hashimoto, D. Lu, C. Jozwiak, A. Bostwick, E. Rotenberg, G. E. Granroth, B. Yan, R. J. Birgeneau, P. Dai, and M. Yi, Magnetism and charge density wave order in kagome FeGe, Nature Physics 19, 814 (2023).
  • Shao et al. [2023] S. Shao, J.-X. Yin, I. Belopolski, J.-Y. You, T. Hou, H. Chen, Y. Jiang, M. S. Hossain, M. Yahyavi, C.-H. Hsu, Y. P. Feng, A. Bansil, M. Z. Hasan, and G. Chang, Intertwining of Magnetism and Charge Ordering in Kagome FeGe, ACS Nano 17, 10164 (2023).
  • Wu et al. [2023a] L. Wu, Y. Hu, D. Wang, and X. Wan, Novel three-dimensional Fermi surface and electron-correlation-induced charge density wave in FeGe, arXiv:2302.03622 (2023a).
  • Wang [2023] Y. Wang, Enhanced spin-polarization via partial Ge-dimerization as the driving force of the charge density wave in FeGe, Physical Review Materials 7, 104006 (2023).
  • Zhao et al. [2023] Z. Zhao, T. Li, P. Li, X. Wu, J. Yao, Z. Chen, S. Cui, Z. Sun, Y. Yang, Z. Jiang, Z. Liu, A. Louat, T. Kim, C. Cacho, A. Wang, Y. Wang, D. Shen, J. Jiang, and D. Feng, Photoemission Evidence of a Novel Charge Order in Kagome Metal FeGe, arXiv:2308.08336 (2023).
  • Wu et al. [2023b] S. Wu, M. Klemm, J. Shah, E. T. Ritz, C. Duan, X. Teng, B. Gao, F. Ye, M. Matsuda, F. Li, X. Xu, M. Yi, T. Birol, P. Dai, and G. Blumberg, Symmetry breaking and ascending in the magnetic kagome metal FeGe, arXiv:2309.14314 (2023b).
  • Chen et al. [2023a] Z. Chen, X. Wu, S. Zhou, J. Zhang, R. Yin, Y. Li, M. Li, J. Gong, M. He, Y. Chai, X. Zhou, Y. Wang, A. Wang, Y.-J. Yan, and D.-L. Feng, Long-ranged charge order conspired by magnetism and lattice in an antiferromagnetic Kagome metal, arXiv:2307.07990 (2023a).
  • Shi et al. [2023] C. Shi, Y. Liu, B. B. Maity, Q. Wang, S. R. Kotla, S. Ramakrishnan, C. Eisele, H. Agarwal, L. Noohinejad, Q. Tao, B. Kang, Z. Lou, X. Yang, Y. Qi, X. Lin, Z.-A. Xu, A. Thamizhavel, G.-H. Cao, S. van Smaalen, S. Cao, and J.-K. Bao, Disordered structure for long-range charge density wave order in annealed crystals of magnetic kagome FeGe, arXiv:2308.09034 (2023).
  • Zhang et al. [2023] B. Zhang, J. Ji, C. Xu, and H. Xiang, Triple-Well Charge Density Wave Transition Driven by Partially Occupied Ge Electronic States in Kagome FeGe, arXiv:2307.10565 (2023).
  • Yin et al. [2022] J.-X. Yin, Y.-X. Jiang, X. Teng, M. S. Hossain, S. Mardanya, T.-R. Chang, Z. Ye, G. Xu, M. M. Denner, T. Neupert, B. Lienhard, H.-B. Deng, C. Setty, Q. Si, G. Chang, Z. Guguchia, B. Gao, N. Shumiya, Q. Zhang, T. A. Cochran, D. Multer, M. Yi, P. Dai, and M. Z. Hasan, Discovery of charge order and corresponding edge state in kagome magnet fege, Phys. Rev. Lett. 129, 166401 (2022).
  • Miao et al. [2023] H. Miao, T. T. Zhang, H. X. Li, G. Fabbris, A. H. Said, R. Tartaglia, T. Yilmaz, E. Vescovo, J. X. Yin, S. Murakami, X. L. Feng, K. Jiang, X. L. Wu, A. F. Wang, S. Okamoto, Y. L. Wang, and H. N. Lee, Signature of spin-phonon coupling driven charge density wave in a kagome magnet, Nature Communications 14, 6183 (2023).
  • Chen et al. [2023b] Z. Chen, X. Wu, R. Yin, J. Zhang, S. Wang, Y. Li, M. Li, A. Wang, Y. Wang, Y.-j. Yan, and D.-l. Feng, Charge density wave with strong quantum phase fluctuations in Kagome magnet FeGe, arXiv:2302.04490 (2023b).
  • Ma et al. [2023] H.-Y. Ma, J.-X. Yin, M. Z. Hasan, and J. Liu, Theory for charge density wave and orbital-flux state in antiferromagnetic kagome metal FeGe, arXiv:2303.02824 (2023).
  • Zhou et al. [2023a] H. Zhou, S. Yan, D. Fan, D. Wang, and X. Wan, Magnetic interactions and possible structural distortion in kagome FeGe from first-principles calculations and symmetry analysis, Phys. Rev. B 108, 035138 (2023a).
  • Cho et al. [2021] S. Cho, H. Ma, W. Xia, Y. Yang, Z. Liu, Z. Huang, Z. Jiang, X. Lu, J. Liu, Z. Liu, J. Li, J. Wang, Y. Liu, J. Jia, Y. Guo, J. Liu, and D. Shen, Emergence of New van Hove Singularities in the Charge Density Wave State of a Topological Kagome Metal RbV3Sb5{\mathrm{RbV}}_{3}{\mathrm{Sb}}_{5}Phys. Rev. Lett. 127, 236401 (2021).
  • Tan et al. [2021] H. Tan, Y. Liu, Z. Wang, and B. Yan, Charge Density Waves and Electronic Properties of Superconducting Kagome Metals, Phys. Rev. Lett. 127, 046401 (2021).
  • Hu et al. [2022] Y. Hu, X. Wu, B. R. Ortiz, S. Ju, X. Han, J. Ma, N. C. Plumb, M. Radovic, R. Thomale, S. D. Wilson, A. P. Schnyder, and M. Shi, Rich nature of Van Hove singularities in Kagome superconductor CsV3Sb5Nature Communications 13, 2220 (2022).
  • Liu et al. [2021] Z. Liu, N. Zhao, Q. Yin, C. Gong, Z. Tu, M. Li, W. Song, Z. Liu, D. Shen, Y. Huang, K. Liu, H. Lei, and S. Wang, Charge-Density-Wave-Induced Bands Renormalization and Energy Gaps in a Kagome Superconductor RbV3Sb5{\mathrm{RbV}}_{3}{\mathrm{Sb}}_{5}Phys. Rev. X 11, 041010 (2021).
  • Kang et al. [2022] M. Kang, S. Fang, J.-K. Kim, B. R. Ortiz, S. H. Ryu, J. Kim, J. Yoo, G. Sangiovanni, D. Di Sante, B.-G. Park, C. Jozwiak, A. Bostwick, E. Rotenberg, E. Kaxiras, S. D. Wilson, J.-H. Park, and R. Comin, Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5Nature Physics 18, 301 (2022).
  • Zhou et al. [2021] X. Zhou, Y. Li, X. Fan, J. Hao, Y. Dai, Z. Wang, Y. Yao, and H.-H. Wen, Origin of charge density wave in the kagome metal CsV3Sb5{\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5} as revealed by optical spectroscopy, Phys. Rev. B 104, L041101 (2021).
  • Luo et al. [2022] H. Luo, Q. Gao, H. Liu, Y. Gu, D. Wu, C. Yi, J. Jia, S. Wu, X. Luo, Y. Xu, L. Zhao, Q. Wang, H. Mao, G. Liu, Z. Zhu, Y. Shi, K. Jiang, J. Hu, Z. Xu, and X. J. Zhou, Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KV3Sb5Nature Communications 13, 273 (2022).
  • Xie et al. [2022] Y. Xie, Y. Li, P. Bourges, A. Ivanov, Z. Ye, J.-X. Yin, M. Z. Hasan, A. Luo, Y. Yao, Z. Wang, G. Xu, and P. Dai, Electron-phonon coupling in the charge density wave state of CsV3Sb5{\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5}Phys. Rev. B 105, L140501 (2022).
  • Liu et al. [2022] G. Liu, X. Ma, K. He, Q. Li, H. Tan, Y. Liu, J. Xu, W. Tang, K. Watanabe, T. Taniguchi, L. Gao, Y. Dai, H.-H. Wen, B. Yan, and X. Xi, Observation of anomalous amplitude modes in the kagome metal CsV3Sb5Nature Communications 13, 3461 (2022).
  • Zhou et al. [2023b] X. Zhou, Y. Li, X. Fan, J. Hao, Y. Xiang, Z. Liu, Y. Dai, Z. Wang, Y. Yao, and H. H. Wen, Electronic correlations and evolution of the charge density wave in the kagome metals AV3Sb5 (A = K, Rb, Cs), Physical Review B 107, 165123 (2023b).
  • Qazilbash et al. [2009] M. M. Qazilbash, J. J. Hamlin, R. E. Baumbach, L. Zhang, D. J. Singh, M. B. Maple, and D. N. Basov, Electronic correlations in the iron pnictides, Nature Physics 5, 647 (2009).
  • Setty et al. [2022] C. Setty, C. A. Lane, L. Chen, H. Hu, J.-X. Zhu, and Q. Si, Electron correlations and charge density wave in the topological kagome metal FeGe, arXiv:2203.01930 (2022).
  • Wu et al. [2023c] X. Wu, X. Mi, L. Zhang, X. Zhou, M. He, Y. Chai, and A. Wang, Annealing tunable charge density wave order in a magnetic kagome material FeGe, arXiv:2308.01291 (2023c).
  • Wenzel et al. [2024] M. Wenzel, E. Uykur, A. A. Tsirlin, S. Pal, R. M. Roy, C. Yi, C. Shekhar, C. Felser, A. V. Pronin, and M. Dressel, Intriguing low-temperature phase in the antiferromagnetic kagome metal FeGe, arXiv:2401.13474 (2024).