This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Polycyclic Aromatic Hydrocarbon and CO (2-1) Emission at 5015050{-}150 pc Scales in 70 Nearby Galaxies

Ryan Chown Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA Adam K. Leroy Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA Center for Cosmology and Astroparticle Physics (CCAPP), 191 West Woodruff Avenue, Columbus, OH 43210, USA Karin Sandstrom Department of Astronomy & Astrophysics, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA Jérémy Chastenet Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent, Belgium Jessica Sutter Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA Department of Astronomy & Astrophysics, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA Eric W. Koch Center for Astrophysics \mid Harvard & Smithsonian, 60 Garden St., 02138 Cambridge, MA, USA Hannah B. Koziol Department of Astronomy & Astrophysics, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA Lukas Neumann Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany European Southern Observatory (ESO), Karl-Schwarzschild-Straße 2, 85748 Garching, Germany Jiayi Sun NASA Hubble Fellow Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA Thomas G. Williams Sub-department of Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK Dalya Baron The Observatories of the Carnegie Institution for Science. 813 Santa Barbara Street, Pasadena, CA 91101, USA Kavli Institute for Particle Astrophysics & Cosmology (KIPAC), Stanford University, CA 94305, USA Gagandeep S. Anand Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Ashley. T. Barnes European Southern Observatory (ESO), Karl-Schwarzschild-Straße 2, 85748 Garching, Germany Zein Bazzi Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany Francesco Belfiore INAF — Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Florence, Italy Frank Bigiel Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany Alberto Bolatto Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA Médéric Boquien Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 06000, Nice, France Yixian Cao Max-Planck-Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching, Germany Mélanie Chevance Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str 2, D-69120 Heidelberg, Germany, Cosmic Origins Of Life (COOL) Research DAO, coolresearch.io Dario Colombo Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany Daniel A. Dale Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA Jakob den Brok Center for Astrophysics \mid Harvard & Smithsonian, 60 Garden St., 02138 Cambridge, MA, USA Oleg V. Egorov Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg, Germany Cosima Eibensteiner Jansky Fellow of the National Radio Astronomy Observatory National Radio Astronomy Observatory, Charlottesville, VA, USA Eric Emsellem European Southern Observatory (ESO), Karl-Schwarzschild-Straße 2, 85748 Garching, Germany Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230 Saint-Genis-Laval, France Hamid Hassani Dept. of Physics, University of Alberta, 4-183 CCIS, Edmonton, Alberta, T6G 2E1, Canada Jonathan D. Henshaw Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg, Germany Hao He Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany Jaeyeon Kim Kavli Institute for Particle Astrophysics & Cosmology (KIPAC), Stanford University, CA 94305, USA Ralf S. Klessen Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str 2, D-69120 Heidelberg, Germany Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany Center for Astrophysics \mid Harvard & Smithsonian, 60 Garden St., 02138 Cambridge, MA, USA Elizabeth S. and Richard M. Cashin Fellow at the Radcliffe Institute for Advanced Studies at Harvard University, 10 Garden Street, Cambridge, MA 02138, U.S.A. Kathryn Kreckel Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg, Germany Kirsten L. Larson AURA for the European Space Agency (ESA), Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Janice C. Lee Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Sharon E. Meidt Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent, Belgium Eric J. Murphy National Radio Astronomy Observatory, Charlottesville, VA, USA Elias K. Oakes Department of Physics, University of Connecticut, 196A Auditorium Road, Storrs, CT 06269, USA Eve C. Ostriker Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA Hsi-An Pan Department of Physics, Tamkang University, No.151, Yingzhuan Road, Tamsui District, New Taipei City 251301, Taiwan Debosmita Pathak Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA Center for Cosmology and Astroparticle Physics (CCAPP), 191 West Woodruff Avenue, Columbus, OH 43210, USA Erik Rosolowsky Dept. of Physics, University of Alberta, 4-183 CCIS, Edmonton, Alberta, T6G 2E1, Canada Sumit K. Sarbadhicary Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA Center for Cosmology and Astroparticle Physics (CCAPP), 191 West Woodruff Avenue, Columbus, OH 43210, USA Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA Eva Schinnerer Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg, Germany Yu-Hsuan Teng Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA David A. Thilker Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA Tony D. Weinbeck Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA Elizabeth J. Watkins Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
Abstract

Combining Atacama Large Millimeter/sub-millimeter Array CO(2-1) mapping and JWST near- and mid-infrared imaging, we characterize the relationship between CO(2-1) and polycyclic aromatic hydrocarbon (PAH) emission at 100\approx 100 pc resolution in 70 nearby star-forming galaxies. Leveraging a new Cycle 2 JWST treasury program targeting nearby galaxies, we expand the sample size by more than an order of magnitude compared to previous 100\approx 100 pc resolution CO-PAH comparisons. Focusing on regions of galaxies where most of the gas is likely to be molecular, we find strong correlations between CO(2-1) and 3.3 μ\mum, 7.7μ7.7\mum, and 11.3μ11.3~\mum PAH emission, estimated from JWST’s F335M, F770W, and F1130W filters. We derive power law relations between CO(2-1) and PAH emission, which have indices in the range 0.81.30.8{-}1.3, implying relatively weak variations in the observed CO-to-PAH ratios across the regions that we study. We find that CO-to-PAH ratios and scaling relationships near H II regions are similar to those in diffuse sight lines. The main difference between the two types of regions is that sight lines near H II regions show higher intensities in all tracers. Galaxy centers, on the other hand, show higher overall intensities and enhanced CO-to-PAH ratios compared to galaxy disks. Individual galaxies show 0.190.19 dex scatter in the normalization of CO at fixed IPAHI_{\rm PAH}, and this normalization anti-correlates with specific star formation rate (SFR/M\mathrm{SFR}/M_{\star}) and correlates with stellar mass. We provide a prescription that accounts for these galaxy-to-galaxy variations and represents our best current empirical predictor to estimate CO(2-1) intensity from PAH emission, which allows one to take advantage of JWST’s excellent sensitivity and resolution to trace cold gas.

Interstellar medium (847), Dust continuum emission (412), CO line emission (462), Disk galaxies (391), Dust nebulae (413), Extragalactic astronomy (506)
facilities: JWST, ALMA, VLT/MUSEsoftware: astropy (Astropy Collaboration et al., 2013, 2018, 2022)

1 Introduction

Broad emission features at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 μ\mum, attributed to the stretching and bending modes of polycyclic aromatic hydrocarbons (PAHs; Puget & Leger, 1989; Leger & Puget, 1984; Allamandola et al., 1989; Tielens, 2008), dominate the near- and mid-infrared (NIR and MIR) luminosities of star-forming galaxies (e.g., Smith et al., 2007; Tielens, 2008; Galliano et al., 2018). Emission from PAHs has been used to trace the star formation rate (Peeters et al., 2004; Calzetti et al., 2007; Belfiore et al., 2023), interstellar radiation field, and PAH abundance (e.g., Draine et al., 2007; Kennicutt & Evans, 2012; Whitcomb et al., 2023a; Baron et al., 2024b; Sutter et al., 2024). At large scales (from a few kpc to integrated galaxies), PAH emission also shows a close correspondence with CO emission, exhibiting strong correlations and nearly linear scaling relations between PAH and CO intensity over three orders of magnitude (see Regan et al., 2004; Gao et al., 2019; Chown et al., 2021; Gao et al., 2022; Leroy et al., 2021, 2023a; Whitcomb et al., 2023a). This correlation resembles the one that has been observed for decades relating tracers of molecular gas and the overall dust content traced by extinction, mm-wave emission, and far-infrared emission (e.g., Hildebrand, 1983; Israel, 1997; Leroy et al., 2011; Bolatto et al., 2013; Galliano et al., 2018). CO emission traces the molecular gas in galaxies (e.g., Bolatto et al., 2013), and this has led to the suggestion that PAH emission may be used as a quantitative tracer of the interstellar medium (ISM), specifically molecular gas in star-forming galaxies. This prospect is particularly exciting because the widespread availability of maps tracing PAH emission from WISE, Spitzer, and now JWST, means that high-resolution, high-sensitivity maps of the atomic and molecular ISM could potentially be produced from every image of PAH emission obtained using these telescopes. In principle this could be done to higher redshifts than can be accessed with CO observations. Furthermore, the upcoming Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer satellite (SPHEREx, Doré et al., 2018), which will provide full-sky spectral maps of PAH emission, could also in principle be used to make maps of the atomic and molecular ISM across all nearby galaxies.

Initial JWST imaging of nearby galaxies supports the idea that PAH emission may act as a cold, dense ISM tracer. JWST images using PAH-dominated filters resemble sharper, more sensitive versions of Atacama Large Millimeter/sub-millimeter Array (ALMA) CO maps for the same galaxies (Leroy et al., 2023b; Sandstrom et al., 2023a). These analyses showed an excellent quantitative correspondence between CO (2-1) and emission in the F770W and F1130W filters111The F770W filter is centered at 7.7μ7.7\mum and is 1.95μ1.95\mum wide. The F1130W filter is centered at 11.3μ11.3\mum and is 0.73μ0.73\mum wide. at 100\approx 100 pc scales (Leroy et al., 2023a), even suggesting that the PAH emission traces lower-density ISM emission into the H I-dominated parts of the ISM (Sandstrom et al., 2023a). However, these first studies focused on only four galaxies, and so the general relationship between CO and PAH emission at these 50-150 pc scales (similar to the sizes of molecular clouds, or “cloud scales”) was not statistically robust. Fortunately, over its first two cycles of operations, JWST has nearly completed an extensive census of NIR and MIR PAH emission from 7474 local (D20D\lesssim 20 Mpc) galaxies as part of the Physics at High Angular Resolution in Nearby Galaxies Survey (PHANGS) Cycle 1 and Cycle 2 treasuries (see Appendix A). In addition to 0.030.03\arcsec to 0.80.8\arcsec (15\approx 15 to 120120 pc) resolution JWST images, all of these galaxies also have 1\approx 1\arcsec (50\approx 50 to 150150 pc) resolution CO (2-1) imaging from ALMA (Leroy et al., 2021).

In this paper, the first to take full advantage of the combined PHANGS-JWST Cycle 1 and 2 surveys, we use this large new set of ALMA and JWST data to make quantitative comparisons between CO(2-1) and PAH emission traced using JWST’s F770W, F335M222The F335M filter is centered at 3.362 μ\mum and is 0.347μ\mum wide., and F1130W filters. We consider the 70 nearby galaxies with current in-hand JWST and high-quality ALMA observations, and address the following questions:

  1. 1.

    What are the median and scatter in the CO(2-1)/PAH band ratios across a representative sample of nearby star-forming galaxies at molecular cloud scales (50 to 150 pc)? What are the correlation strengths and best-fit parameters for the CO(2-1) vs. PAH power law scaling relationships?

  2. 2.

    Are there significant differences between the correlations measured for galaxy centers and galaxy disks, or when contrasting emission near H II regions with diffuse emission? Such variations might be expected given the different distributions of MIR intensity from these regions (Pathak et al., 2024) and the observation of systematic suppression of PAH emission from inside H II regions (Pety et al., 2005; Lebouteiller et al., 2007; Compiègne et al., 2008; Chastenet et al., 2023a; Egorov et al., 2023; Sutter et al., 2024).

  3. 3.

    How does the observed CO(2-1)-PAH relationship vary from galaxy to galaxy? Does it change as a function of parameters that also correlate with dust and PAH abundances or the interstellar radiation field? Or do these factors affect CO emission in a similar way to PAH emission, suppressing the impacts of environmental variations on the correlation?

We describe our expectations for this work in §2, our approach in §3, present our results in §4, and discuss and summarize our conclusions in §5 and §6. Throughout, we focus on F770W emission because it has the widest availability out of all of the PAH bands that we consider, in terms of the total number of galaxies observed and total area mapped.

2 Expectations

Throughout the analysis, we will reference the expectation for emission from stochastically-heated PAHs subjected to a scaled version of the local interstellar radiation field and mixed with an ISM consisting of mostly molecular gas (e.g., Draine & Li, 2007; Draine, 2011; Compiègne et al., 2010). To first order we expect

IPAH\displaystyle I_{\rm PAH} \displaystyle\propto DGR×qPAH×NH2×U\displaystyle\mathrm{DGR}\times q_{\mathrm{PAH}}\times N_{\rm H_{2}}\times U
\displaystyle\propto (DGR×qPAH×XCO×U)ICO,\displaystyle\left(\mathrm{DGR}\times q_{\mathrm{PAH}}\times X_{\mathrm{CO}}\times U\right)I_{\rm CO},

where IPAHI_{\rm PAH} and ICOI_{\rm CO} are the observed intensities of PAH and CO emission respectively, DGR is the dust-to-gas mass ratio, qPAHq_{\mathrm{PAH}} is the PAH-to-dust mass fraction, UU is the strength of the interstellar radiation field relative to that in the Solar neighborhood (qPAHq_{\mathrm{PAH}} and UU are defined in Draine et al., 2007), and XCOX_{\rm CO} is the CO-to-H2\mathrm{H_{2}} conversion factor.

This equation indicates why we expect a scaling relation in the first place. It also indicates the factors that might lead to environmental variations in the ICO/IPAHI_{\rm CO}/I_{\rm PAH} ratio, and non-linearities in the observed scaling relations, e.g. when U103U\gtrsim 10^{3} (for more discussion see Draine & Li, 2007; Leroy et al., 2023a, b; Sandstrom et al., 2023a). For example, to first order, UU is proportional to the local unextinguished ΣFUVΣSFR\Sigma_{\mathrm{FUV}}\propto\Sigma_{\mathrm{SFR}} (e.g., see recent simulations by Linzer et al., 2024), and so we expect PAH emission to be brighter where local star formation activity is more intense (though bear in mind the destruction of PAHs in H II regions mentioned above). We return to this expected correlation between IPAH/ICOI_{\rm PAH}/I_{\rm CO} and star formation activity in §4.3. The hardness of the radiation field, variations in the dust-to-gas ratio, and PAH abundance variations may also be important, but in our selected molecular gas dominated regions of relatively massive galaxies, we mostly expect these to be second-order effects (see §4.3).

3 Data and Methods

We analyze 70 galaxies that have both high-resolution ALMA CO (2-1) imaging and JWST imaging tracing PAH emission. Our targets are all part of the PHANGS surveys, and as such are relatively massive (M109.5MM_{\star}\gtrsim 10^{9.5}~\mathrm{M_{\odot}}), star-forming (SFR/M1011yr1M_{\star}\gtrsim 10^{-11}~\mathrm{yr^{-1}}), and moderate inclination (i70i\lesssim 70^{\circ}) galaxies within D20D\lesssim 20 Mpc (Leroy et al., 2021). The subset of 19 targets presented in Lee et al. (2023) and Williams et al. (2024) have both F1130W imaging and “nebular masks,” which identify H II regions based on a morphological decomposition of the Hα\alpha emission observed by the Very Large Telescope’s Multi-Unit Spectroscopic Explorer (VLT/MUSE Groves et al., 2023). The remaining targets are part of a new Cycle 2 treasury program, which we describe below and in Appendix A. These new targets lack F1130W imaging and are not systematically covered with optical integral field spectroscopy. They therefore lacking nebular masks. Both the JWST Cycle 1 and Cycle 2 data include the F335M filter but the continuum subtraction needed to isolate the PAH emission has only reached a science-ready state for the Cycle 1 data (§3.1). Therefore analyses that require nebular masks (§ 4.1) and/or F335M and/or F1130W are limited to our 19 Cycle 1 targets.

3.1 JWST imaging of PAH emission

We use JWST MIRI and NIRCam imaging of 19 galaxies from the PHANGS-JWST Cycle 1 Treasury (GO 2107, PI: J. Lee; Lee et al., 2023). These data cover the F335M, F770W, and F1130W bands, each of which captures a strong PAH feature (e.g., Tielens, 2008). The F335M filter captures the prominent 3.3 μ\mum feature, attributed to C–H stretching modes of small PAHs, while the F770W filter captures the 7.7 μ\mum PAH feature, attributed to C–C stretching modes of larger PAHs, and the F1130W filter captures the 11.3 μ\mum feature, attributed to C–H out-of-plane bending modes of larger PAHs (Tielens, 2008).

We also analyze 51 galaxies from a new Cycle 2 Treasury (GO 3707, PI: A. Leroy), which we describe in Appendix A. These new observations include the F335M and F770W filters. From the 54 available Cycle 2 galaxies, we remove NGC 3344 due to the lack of CO (2-1) observations, NGC 5530 because the observations are still to be executed, and NGC 1068 because the background level in the JWST images remain too uncertain for the current analysis. In total we analyze 70 galaxies. The distribution of gas-phase metallicities of these galaxies has median 12+logO/H=8.4912+\log\mathrm{O/H}=8.49 dex and robust standard deviation of 0.09 dex.

Reduction for both data sets was done using the PHANGS-JWST pipeline (pjpipe333https://pjpipe.readthedocs.io/en/latest/), following Williams et al. (2024). pjpipe is a wrapper on jwst444https://jwst-pipeline.readthedocs.io/en/latest/index.html, tailored to produce mosaics of images with extended emission.

The Rayleigh-Jeans tail of the stellar continuum contributes to F335M and F770W (more so for F335M). This contribution must be subtracted from the total surface brightnesses to obtain emission from PAHs. We calculate stellar-continuum-subtracted F770W surface brightness IF770WPAHI_{\rm F770W}^{\rm PAH} by subtracting F200W (Cycle 1) or F300M (Cycle 2) times a scaling factor (one factor per band) following Sutter et al. (2024). In our sample, the F770W stellar continuum correction (F770W=0.22×{}_{\star}=0.22\timesF300M, or 0.13×0.13\timesF200W for Cycle 1) tends to be largest in the gas-poor, high stellar surface density inner regions of galaxies, including bars and bulges, which have high stellar-to-gas ratios. The coverage of F300M and F200W is smaller than that of F770W, and so for pixels without F300M or F200W data we subtract median(F770W/F770W)×\timesF770W, where the median (which is 2–10%, in agreement with Whitcomb et al., 2023b) is computed separately for each galaxy.

For F335M data, the stellar continuum subtraction is critical to any estimate of PAH emission (Sandstrom et al., 2023b). We use the continuum subtraction method defined by H. Koziol et al. (in preparation) based on Sandstrom et al. (2023b), where the F300M and F360M (for Cycle 1) are used to estimate continuum. We denote the continuum-subtracted F335M surface brightness as IF335MPAHI_{\rm F335M}^{\rm PAH}. A similar effort using the F300M is underway for Cycle 2 but not yet ready, and so our analysis of IF335MPAHI_{\rm F335M}^{\rm PAH} focused only on the Cycle 1 targets.

The F770W filter also captures emission from hot, very small dust grains, but this has a small effect (in the 19 PHANGS-JWST Cycle 1 galaxies, 7.7 μ\mum PAH emission is found to be about 5×5\times brighter than the underlying continuum; Baron et al., 2024a) and we do not subtract any underlying dust continuum. In both data sets, we also masked out a few bright stars and background galaxies with elliptical apertures that cover all of the emission from these sources on top of the F770W images. We do not use any data within these apertures.

3.2 ALMA CO(2-1)

We use PHANGS–ALMA CO (2-1) observations, which are described in Leroy et al. (2021). All maps include short- and zero-spacing data and are expected to achieve full flux recovery. The native resolution is 1.0\approx 1.0\arcsec, varying slightly from galaxy to galaxy. We use a noisy but uniform and high-completeness version of the CO (2-1) maps to ensure that >90%>90\,\% of the CO flux enters our analysis and that our mean trends will be unbiased by signal-to-noise based clipping of the CO data (see Leroy et al., 2023b). These “flat” maps are produced following Neumann et al. (2023) using a procedure analogous to spectral stacking (Schruba et al., 2011). For each line of sight, we integrate over a fixed-width velocity window around the local mean velocity defined via either low-resolution CO emission, Hα\alpha emission, H I emission, or a model of the circular rotation, according to whichever yielded the most complete coverage and coherent reference velocity field for each galaxy. The velocity window is adapted to the disk-average line width of each individual galaxy and can vary from 20 to 200 km/s. We additionally ensure that all significant CO emission is included by combining the fixed-width velocity mask with the “strict” mask from Leroy et al. (2021). These “flat” masks will capture all of the CO emission along each line of sight and have well-defined noise, making them ideal to calculate the mean CO (2-1) intensity, ICOI_{\rm CO}, as a function of IPAHI_{\rm PAH}.

3.3 Environment masks

We analyze how the CO-to-PAH correlations vary as functions of environment within galaxies, focusing on three specific environments: 1) galaxy centers; 2) regions outside galaxy centers with prominent nebular emission (“nebular regions”), which are 80%\gtrsim 80\% H II regions but also include a 10%\sim 10\% contribution from supernova remnants (Li et al., 2024); and 3) regions outside of centers and not covered by the nebular region mask (“diffuse regions”). Following Pathak et al. (2024) these three regions show distinct distributions of mid-IR intensity. These three regions likely show differences in radiation field strength and/or hardness, PAH abundance, H2\mathrm{H_{2}}/H I ratio, and dust-to-gas ratio. Additionally, PAH emission is found to be systematically suppressed inside H II regions (Chastenet et al., 2023a; Egorov et al., 2023; Sutter et al., 2024; Chown et al., 2024).

We define galaxy centers using the masks in Querejeta et al. (2021), which are based on near-IR stellar morphology, and nebular regions following Santoro et al. (2022); Groves et al. (2023), which are based on ionized gas emission observed by the VLT/MUSE as part of the PHANGS-MUSE survey (Emsellem et al., 2022). The galaxy center masks are available for all targets, though only 53 of our targets have well-defined central regions. The rest of the targets do not have any pixels classified as being in a “center”, and all of their pixels are included in the “disk” category. The nebular masks are available only for the 1919 Cycle 1 targets, which restricts a subset of our analysis to that subsample. See Pathak et al. (2024) for further details on a similar application of these environment masks.

3.4 Analysis approach

To quantify the observed relationship between CO and PAH emission, we compile all measurements of individual pixels for all 70 galaxies into a single table, with columns for each NIR and MIR band (§3.1), CO(2-1) intensity (§3.2), and the values of each mask (§3.3). To avoid introducing systematic uncertainties, we analyze CO(2-1) intensities and do not adopt a CO-to-H2 conversion factor. In Appendix C we describe how to use our results to estimate H2 surface densities.

The CO (2-1) data have the coarsest angular resolution in this work. The CO resolution varies slightly from galaxy to galaxy. Over the range of distances of the galaxies in the sample, the working resolution for PHANGS–ALMA corresponds to median 9898 pc with a 1684%16{-}84\% range of 6312963{-}129 pc (Table 15 in Leroy et al., 2021). Using webbpsf555https://webbpsf.readthedocs.io/en/latest/-generated JWST PSFs, we convolve all JWST PAH images to share the same resolution of the corresponding CO (2-1) data following Aniano et al. (2011) and Williams et al. (2024). Then we define an astrometric grid with pixels 1/3×1/3\times the CO PSF FWHM in size so that approximately 9 pixels represent an independent measurement. We reproject the CO (2-1) intensity (in K km s-1), JWST PAH intensity (in MJy sr-1), and mask information onto this grid, noting whether the majority of the area in each pixel corresponds to a galaxy center, a nebular region, or neither. We correct all intensities to face-on values by scaling by cosi\cos i, where ii is the galaxy inclination from Lang et al. (2020) and/or Leroy et al. (2021). The sample consists of nearly-face-on galaxies (median cosi=0.7\cos i=0.7), and so this correction does not have a large impact on our analysis.

PAH emission is also expected to emerge from dust mixed with atomic gas (e.g., see Sandstrom et al., 2023a). To avoid lines of sight where H I is expected to make up most of the ISM, we consider only regions that have inclination-corrected IF770WPAH0.5MJysr1I_{\mathrm{F770W}}^{\rm PAH}\geq 0.5~\mathrm{MJy~sr^{-1}} (see Leroy et al., 2023a, for arguments about this specific value for “bright” emission). In Table 1 we report the percentages of flux or area that are classified as “bright” according to this criterion. Focusing on F770W-bright pixels means that we analyze the significant majority of flux in all bands across the sample. However, we do exclude a majority (49%49\%) of the area in the maps outside galaxy centers and nebulae. Analysis of this faint, extended diffuse emission requires the inclusion of H I and will be the topic of future work.

The 3.3μ3.3~\mum PAH feature is >10×>10\times fainter than the 7.7 and 11.3 μ\mum ones (e.g., Chastenet et al., 2023a; Dale et al., 2025), and the maps tend to be more limited by noise and systematic uncertainties related to continuum subtraction. As a result, we impose an additional threshold for analyzing the 3.3μ3.3~\mum emission, considering only lines of sight with IF335MPAH>0.1I_{\rm F335M}^{\rm PAH}>0.1 MJy sr-1. This corresponds roughly to IF770WPAH2I_{\rm F770W}^{\rm PAH}\gtrsim 2 MJy sr-1 and was selected to catch the lines of sight where the 3.3μ3.3~\mum map yields robust detections at resolution matched to ALMA. Our analysis of F335M images is limited to lines of sight with surface brightness above this threshold.

Table 1: Fraction of flux and area entering analysis
Quantity All Outside centers Centers Nebular Diffuse
% % % % %
F335MPAHaaF335MPAH and F770WPAH refer to intensity in those filters after stellar continuum subtraction. After this correction, both filters are expected to be dominated by PAH emission (§3.4). 100 100 100 100 100
F770WPAHaaF335MPAH and F770WPAH refer to intensity in those filters after stellar continuum subtraction. After this correction, both filters are expected to be dominated by PAH emission (§3.4). 94 93 100 99 89
F770W 93 91 100 99 86
F1130W 93 92 100 99 88
CO(2-1) 96 95 100 99 94
Area 51 51 90 82 47

Note. — Percentages of the flux or area in the full map captured in the subset of F770W-bright pixels with IF770WPAH0.5I_{\mathrm{F770W_{PAH}}}\geq 0.5 MJy sr-1 (see §3), by band and environment. Our analysis captures the majority of the flux in all bands, but only includes about half the total observed area.

Using the matched-resolution measurements, we analyze the correlation between CO (2-1) emission and emission in PAH-dominated JWST filters. For each MIR band XX, we record the Spearman rank correlation coefficient (rr), as well as the median and scatter in the ratio ICO(21)/IXI_{\rm CO(2-1)}/I_{\rm X}. We then calculate a best-fit power law relating ICO(21)I_{\rm CO(2-1)} to IXI_{\rm X}. Because the PHANGS–ALMA CO maps are much less sensitive than the JWST F770W and F1130W maps at matched angular resolution (see Leroy et al., 2023b), we treat the mid-IR imaging as the independent (xx) axis for this calculation. We construct logarithmically-spaced bins in IνXI_{\nu}^{\mathrm{X}} and then compute the median and scatter, captured by the 16-84% range, of ICO(21)I_{\mathrm{CO(2-1)}} within each bin.

We perform linear regression on these binned measurements666Because of the large number of individual pixels, the mean CO (2-1) intensity is detected at high signal-to-noise in all bins. using linmix777https://linmix.readthedocs.io/en/latest/index.html a hierarchical Bayesian method described in Kelly (2007). It performs a linear regression of yy on xx while incorporating measurement errors in both variables. We model the CO-vs-PAH emission relationship as

log10ICO(21)=m(log10IνXx0)+b,\log_{10}I_{\mathrm{CO(2-1)}}=m(\log_{10}I_{\nu}^{\mathrm{X}}-x_{0})+b, (2)

where the pivot x0median(x)x_{0}\equiv\mathrm{median}(x). Re-centering the fit at x0x_{0} ensures minimal covariance between the best-fit mm and bb.

4 Results

Table 2: Ratios, correlation, and scaling relations between PAH and CO (2-1) emission. Each section of the table reports results for a different data selection.
XX NgalN_{\mathrm{gal}} NpixN_{\mathrm{pix}}aaPixels have size FWHM/3, so that there are nine pixels per independent measurement. log10CO/X\log_{10}\mathrm{CO}/X rr bb mm x0x_{0} σ\sigma
All pixels
F335MPAH 19 296834 1.27±0.381.27\pm 0.38 0.580.58 1.38±0.071.38\pm 0.07 1.01±0.101.01\pm 0.10 0.100.10 0.440.44
F770WPAH 70 2090731 0.03±0.350.03\pm 0.35 0.640.64 1.39±0.061.39\pm 0.06 0.90±0.070.90\pm 0.07 1.441.44 0.430.43
F770W 70 2120025 0.00±0.35-0.00\pm 0.35 0.640.64 1.41±0.071.41\pm 0.07 0.91±0.070.91\pm 0.07 1.471.47 0.430.43
F1130W 20 972892 0.12±0.37-0.12\pm 0.37 0.630.63 1.20±0.081.20\pm 0.08 1.02±0.091.02\pm 0.09 1.341.34 0.440.44
All pixels outside of centers
F335MPAH 19 279910 1.25±0.381.25\pm 0.38 0.560.56 1.17±0.071.17\pm 0.07 1.04±0.121.04\pm 0.12 0.05-0.05 0.440.44
F770WPAH 70 2041245 0.02±0.350.02\pm 0.35 0.620.62 1.12±0.071.12\pm 0.07 0.98±0.080.98\pm 0.08 1.161.16 0.420.42
F770W 70 2069574 0.01±0.35-0.01\pm 0.35 0.620.62 1.14±0.071.14\pm 0.07 0.99±0.080.99\pm 0.08 1.191.19 0.420.42
F1130W 20 946437 0.12±0.37-0.12\pm 0.37 0.620.62 0.93±0.080.93\pm 0.08 1.05±0.131.05\pm 0.13 1.111.11 0.440.44
All pixels in centers
F335MPAH 17 16915 1.63±0.341.63\pm 0.34 0.800.80 1.65±0.071.65\pm 0.07 0.78±0.090.78\pm 0.09 0.100.10 0.410.41
F770WPAH 58 49469 0.18±0.330.18\pm 0.33 0.880.88 1.52±0.071.52\pm 0.07 0.80±0.070.80\pm 0.07 1.441.44 0.420.42
F770W 58 50434 0.11±0.340.11\pm 0.34 0.870.87 1.51±0.071.51\pm 0.07 0.83±0.070.83\pm 0.07 1.471.47 0.440.44
F1130W 18 26443 0.02±0.30-0.02\pm 0.30 0.900.90 1.30±0.071.30\pm 0.07 0.97±0.080.97\pm 0.08 1.341.34 0.390.39
All pixels in nebular regions (Cycle 1 only)
F335MPAH 19 119051 1.19±0.331.19\pm 0.33 0.700.70 1.13±0.071.13\pm 0.07 1.09±0.121.09\pm 0.12 0.05-0.05 0.390.39
F770WPAH 19 186605 0.02±0.34-0.02\pm 0.34 0.750.75 1.02±0.091.02\pm 0.09 1.03±0.111.03\pm 0.11 1.091.09 0.400.40
F770W 19 187137 0.04±0.34-0.04\pm 0.34 0.750.75 1.03±0.081.03\pm 0.08 1.06±0.111.06\pm 0.11 1.121.12 0.400.40
F1130W 19 194681 0.17±0.33-0.17\pm 0.33 0.760.76 0.89±0.080.89\pm 0.08 1.06±0.121.06\pm 0.12 1.111.11 0.400.40
All pixels in diffuse regions (Cycle 1 only)
F335MPAH 19 160845 1.31±0.401.31\pm 0.40 0.440.44 0.95±0.120.95\pm 0.12 1.28±0.321.28\pm 0.32 0.40-0.40 0.460.46
F770WPAH 19 632119 0.08±0.380.08\pm 0.38 0.520.52 0.72±0.130.72\pm 0.13 1.20±0.271.20\pm 0.27 0.660.66 0.470.47
F770W 19 642906 0.05±0.380.05\pm 0.38 0.520.52 0.74±0.130.74\pm 0.13 1.21±0.281.21\pm 0.28 0.700.70 0.470.47
F1130W 19 727342 0.11±0.38-0.11\pm 0.38 0.540.54 0.68±0.120.68\pm 0.12 1.22±0.251.22\pm 0.25 0.810.81 0.470.47
bbfootnotetext: This scatter reflects the combined noise in the CO data, galaxy-to-galaxy scatter, and scatter about the fit within each galaxy. It is usually dominated by the noise in the CO data.

Note. — Columns: XX — JWST band compared to CO(2-1) where the subscript “PAH” indicates that stellar continuum has been subtracted using overlapping NIRCam observations (§3.1); NgalN_{\rm gal} — number of galaxies entering this analysis; NpixN_{\rm pix} — number of sightlines entering the correlation analysis; log10CO/X\log_{10}\mathrm{CO}/Xlog10\log_{10} of median ratio of CO(2-1) in K km s-1 to intensity in MJy sr-1 in band XX with error indicating the scatter in the ratio estimated from the median absolute deviation; rr — rank correlation between CO(2-1) and intensity in band XX for all sightlines; bb, mm, x0x_{0} — best fit power law scaling parameters following Equation 2 relating CO(2-1) to intensity in band XX; σ\sigma — rms scatter in dex of individual data about the best fit scaling relation, inferred via the median absolute deviation.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: CO(2–1) and starlight continuum-subtracted F770WPAH emission at 100\approx 100 pc resolution in 70 nearby star-forming galaxies. Top left: All sight lines in our analysis (gray points) with data density contours enclosing the densest 15, 25, 50, 75, and 95% of the data points. The bins show the median and 16-84% range of CO(2-1) emission in logarithmically-spaced bins of IPAHF770WI_{\rm PAH}^{\rm F770W}; treating the PAH emission as the independent variable allows us to average the noisier CO(2-1) data. The dashed line shows the best-fit power law describing these binned measurements (Table 2). Top right: As the top left panel but now separately plotting results for sight lines near H II regions (yellow, stars) and diffuse emission outside these regions (purple, squares). The two environments show similar CO-to-PAH ratios where they overlap, but the sight lines near H II regions show overall brighter intensities. Bottom left: As for the previous figures, but now separating galaxy centers (blue, circles) from disks (green, squares). Galaxy centers show brighter emission and higher CO-to-PAH ratios at the same IF770WPAHI_{\rm F770W}^{\rm PAH}. Bottom right: Traces show binned results for each individual galaxy. The galaxies show overall similar CO(2-1) vs. F770WPAH relations with moderate offsets from galaxy to galaxy. These offsets correlate with the integrated galaxy properties (see Figure 2, with the color bar indicating SFR/M/M_{\star}). See Table 2 for ratios and best fits for each panel.

The top left panel of Figure 1 shows the correlation between CO (2-1) and star-subtracted F770W, IF770WPAHI^{\mathrm{PAH}}_{\rm F770W}, for all F770W-bright pixels (§3.4) in all galaxies in our sample. Combining all 70 galaxies we find a strong correlation between CO (2-1) and starlight-subtracted F770W emission at 5015050{-}150 pc resolution, with r0.64r\approx 0.64. Table 2 reports the best-fit relation derived from fitting the binned CO (2-1) as a function of IF770WPAHI^{\mathrm{PAH}}_{\rm F770W}. Our measurements of the normalization ICO(21)/IF770WPAH1.1I_{\rm CO(2-1)}/I_{\rm F770W}^{\rm PAH}\approx 1.1 K km s-1 (MJy sr-1)-1 and the slope (Eq. 2) m=0.90±0.07m=0.90\pm 0.07, agree reasonably well with previous work on much smaller samples or at lower resolution (Chown et al., 2021; Leroy et al., 2023a, a).

Our selection of bright pixels aims to include regions dominated by molecular gas. However, in the lowest IF770WPAHI^{\mathrm{PAH}}_{\rm F770W} bins (1IF770WPAH301\lesssim I^{\mathrm{PAH}}_{\rm F770W}\lesssim 30 MJy sr-1), we do see evidence of a slightly steeper relation, indicating lower CO-to-PAH ratios. This likely indicates a contribution of PAH emission associated with atomic gas (or perhaps CO-dark H2) in these bins. At IF770WPAH0.1I^{\mathrm{PAH}}_{\rm F770W}\lesssim 0.1 MJy sr-1, we would expect this to become the dominant effect because H I-dominated regions feature little-to-no CO emission while PAHs may remain present and excited there (Boulanger & Perault, 1988). In the aforementioned low intensity regime of Figure 1, this would lead to a steeper, more scattered CO-vs-PAH relation, and likely a stronger correlation between H I column density and IF770WPAHI^{\mathrm{PAH}}_{\rm F770W}.

At higher IF770WPAHI^{\mathrm{PAH}}_{\rm F770W} the correspondence between CO and PAH emission appears stronger, with only modest ±0.2\approx\pm 0.2 dex scatter in the CO-to-PAH ratio in the high intensity (100\approx 100 MJy sr-1) bins. At lower IF770WPAHI^{\mathrm{PAH}}_{\rm F770W}, which corresponds to most of the area, the scatter in CO at fixed IF770WPAHI^{\mathrm{PAH}}_{\rm F770W} appears somewhat higher, ±0.5\pm 0.5 dex. Much of this reflects the statistical noise in the PHANGS–ALMA CO maps, which often approaches ±1\approx\pm 1 K km s-1 in the “flat” CO maps that we use. Our averaging approach recovers the median trend well, but this leads to a large scatter in the data in faint regions of each galaxy. We note that the noise is normally-distributed, which leads to asymmetric scatter when shown in log-space.

4.1 Nebular and diffuse regions

A number of studies have already demonstrated suppression of PAH emission, likely due to PAH destruction, within H II regions (e.g., Madden et al., 2006; Povich et al., 2007; Gordon et al., 2008; Montillaud et al., 2013; Chastenet et al., 2023a; Egorov et al., 2023; Pedrini et al., 2024; Sutter et al., 2024), while the intense radiation fields around H II regions also lead them to stand out as the brightest features in MIR maps of galaxy disks (Pathak et al., 2024). We note that at the physical resolution of PHANGS/JWST, PAH emission is reduced but still detected inside H II regions.

The top-right panel in Figure 1 separates sight lines in galaxy disks into those near H II regions and diffuse (i.e., all other) regions, and Table 2 presents our correlation analysis for these two regions separately. Perhaps surprisingly, we find median CO/F770WPAH ratios in H II and diffuse regions to be quite similar, with H II regions exhibiting a ratio only 0.10\approx 0.10 dex (1.25×1.25\times) lower than diffuse regions (i.e., PAHs are slightly brighter relatively to CO near H II regions). The correlation strength near H II regions appears stronger than in diffuse regions (r0.8r\approx 0.8 vs. r0.5r\approx 0.5), but this partially reflects that the sight lines near H II regions tend to be brighter, and so less affected by the high statistical noise in the CO maps. The slightly steeper relationship observed for the diffuse regions reflects that diffuse sight lines with IF770WPAHI^{\mathrm{PAH}}_{\rm F770W} 10\gtrsim 10 MJy sr-1 show slightly elevated CO/PAH ratios compared to nebular regions with similar intensities, which may be due to preferential destruction of CO compared to PAHs in nebular regions. This preferential destruction may be related to recent work demonstrating that PAH emission is slightly more long-lived than CO emission in gas-poor regions (Kim et al. in preparation). Sight lines with IF770WPAHI^{\mathrm{PAH}}_{\rm F770W} 10\lesssim 10 MJy sr-1 in Figure 1 show almost identical CO-to-PAH ratios for diffuse and nebular regions.

The similarity of the CO-vs-PAH relationship in diffuse and nebular regions likely results from the fact that the H II region masks that we use (from Groves et al., 2023) are based on data with coarse resolution (median 7070 pc) compared to the actual size of most H II regions (e.g., see Barnes et al., 2022). As a result, these regions often include CO and PAH emission from ISM material projected towards, but not actually inside H II regions. The CO and PAH emission may come from the well-shielded material surrounding the H II regions. Sutter et al. (2024) discuss a scenario in which the Groves et al. (2023) regions contain a mixture of diffuse material and true H II regions to explain observed F770W/F2100W ratios. Resolved comparisons of high (10\lesssim 10 pc) physical resolution Hα\alpha, Paα\alpha, CO, and MIR emission (e.g., Pedrini et al., 2024) should help test this hypothesis in the near future. Subtracting hot dust continuum emission from F770W, which we do not do, may also be important, since the filter still captures such emission in regions where PAHs have been destroyed to the point where their emission is not detectable.

4.2 Centers and disks of galaxies

Galaxy centers, especially bar-fed central molecular zones, differ from the disks of galaxies in ways that may also affect CO-to-PAH ratios. Galaxy centers exhibit some of the most intense star formation found in galaxies, with correspondingly high interstellar radiation fields, gas column and volume densities, and some host active galactic nuclei (e.g., Schinnerer et al., 2023, and see review in Schinnerer & Leroy 2024). As a result, CO in galaxy centers often exhibits broader line widths, lower opacity, and low XCOX_{\rm CO} (e.g., Bolatto et al., 2013; Teng et al., 2023).

The bottom-left panel of Figure 1 shows the CO-vs-PAH relationship separating sight lines towards galaxy centers compared to those in disks. Both CO and PAH emission appear systematically brighter in galaxy centers than in disks, likely due to the higher densities and stronger radiation fields in galaxy centers. This is expected from previous analyses of these galaxies (e.g., Sun et al., 2020; Pathak et al., 2024). Sight lines in galaxy centers also appear offset towards higher CO intensity compared to disks at matched IF770WPAHI^{\mathrm{PAH}}_{\rm F770W}. On average the CO-to-PAH ratio is 0.16\approx 0.16 dex (60%\approx 60\%) higher in galaxy centers compared to disks, and the median ICO(21)I_{\rm CO(2-1)} in centers appear higher than that found for disks at fixed IF770WPAHI^{\mathrm{PAH}}_{\rm F770W}.

We note one caveat here. The stellar continuum can also be bright in galaxy centers, and the starlight subtraction can become correspondingly more difficult (e.g., Sutter et al., 2024; Baron et al., 2024b). If our standard correction oversubtracts the starlight from F770W in galaxy centers, then we might artificially underestimate F770WPAH. However, considering a similar situation, Baron et al. (2024b) found that the range of plausible starlight SED variations cannot impact the F770W emission enough to explain observed variations in the F770W/F1130W ratio in the inner parts of galaxies. We also note that we find a similar contrast between disks and centers in the CO-to-F1130W ratio, where F1130W is less affected by starlight. Finally, we note that we do not subtract any hot dust continuum from F770W. Hot dust continuum is likely stronger in galaxy centers, implying that our reported CO-to-PAH ratio measurements are lower than the true ratios.

A higher CO-to-PAH ratio in bright galactic centers may imply a large impact of XCOX_{\rm CO} on the measured ratio. A number of studies have shown that XCOX_{\rm CO} in galaxy centers can be 5–15 times lower than the standard Milky Way XCO=2×1020X_{\rm CO}=2\times 10^{20} cm-2/(K km s-1), and 2×\approx 2\times lower than the galaxy mean on average (e.g., Sandstrom et al., 2013; Israel, 2020; Teng et al., 2023; Chiang et al., 2024). Following Equation 2, centrally suppressed XCOX_{\mathrm{CO}} will lead to centrally enhanced CO-to-PAH ratios. On the other hand, the intense radiation fields expected in galaxy centers should increase PAH emission and decrease the CO-to-PAH ratio, unless PAH destruction occurs. There is some evidence for slightly lower qPAHq_{\mathrm{PAH}} in galaxy centers (Chastenet et al., 2023b), but a general trend is not so clear. Metallicity and DGR tend to be highest in galaxy centers, which may also decrease the CO-to-PAH ratio (see Eq. 2). Considering that most of these effects would decrease CO-to-PAH, the enhancement seen in Figure 1 and Table 2 may indicate that XCOX_{\rm CO} represents the dominant effect, offsetting these other PAH-enhancing effects.

4.3 Galaxy to galaxy variations

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Galaxy-to-galaxy variations in the CO(2–1) vs. F770WPAH relationship. CO(2-1) at fixed PAH intensity for individual galaxies (see bottom left panel Fig. 1) as a function of (left) galaxy-integrated stellar mass, MM_{\star} and (right) specific star formation rate, SFR/MM_{\star}. Spearman’s rr, p-value, the best-fit slope, intercept and pivot (y=m(xx0)+by=m(x-x_{0})+b) to all galaxies, the scatter about the best-fit relation σline\sigma_{\mathrm{line}} (Eq. 4.3), and vertical scatter in the normalization σdata\sigma_{\mathrm{data}} are all indicated. Scaled versions of the best-fit normalizations of ICO(21)I_{\mathrm{CO(2-1)}} vs WISE 12 μ\mum against stellar mass and SFR/M/M_{\star} from Leroy et al. (2023a) are shown (dotted lines), showing similar trends. Galaxies further than 1.5σline1.5\sigma_{\mathrm{line}} from the best-fit lines are labeled. We observe a modest correlation between the CO-to-PAH ratio and MM_{\star} and a well-defined anti-correlation between the CO-to-PAH ratio and SFR/MM_{\star}. The correlation with MM_{\star} may reflect increased contribution of PAH emission associated with CO-dark gas or atomic gas in low mass galaxies. The anti-correlation with SFR/MM_{\star} likely reflects a mixture of increased radiation field strength, lower XCOX_{\rm CO}, and enhancement of R21R_{21} in high SFR/M galaxies, which appear to represent stronger effects than any qPAHq_{\rm PAH}. The bottom left panel shows the CO-vs-F770WPAH relationships for each galaxy normalized by CF770WPAHC^{\rm PAH}_{\rm F770W} predicted based on its log10\log_{10}SFR/MM_{\star}. This normalization reduces the vertical scatter. The bottom right panel shows the fit to all pixels and all galaxies with the normalizations applied. We provide fit parameters for F770WPAH in Eq. 5 and for the rest of the bands in Table 5.

So far, we have treated all galaxies together, separating sight lines into categories but not otherwise differentiating between targets. However, our sample spans a range of stellar mass (MM_{\star}), star formation rate (SFR), metallicity, morphology, and more. These factors will influence UU, DGR, qPAHq_{\mathrm{PAH}}, and XCOX_{\rm CO} and so we might expect differences among the CO-PAH relationships for different galaxies (as in Chown et al., 2021). To explore the impact of these variations, the bottom-right panel of Figure 1 shows the CO-to-F770W relationship varies from galaxy to galaxy. The fits for individual galaxies are provided in Appendix B.

The bottom right panel of Figure 1 shows that individual galaxies exhibit strong CO-PAH correlations, mostly parallel to our best-fit overall relation. Broadly, the agreement among the 70 individual galaxies appears good, supporting the potential use of PAHs to trace CO. Specifically, the normalization of the CO-PAH relation scatters by ±0.17\pm 0.17 dex from galaxy to galaxy. Simply applying our best fit overall relation to an individual galaxy with no additional information can be expected to yield a map biased by a factor drawn from this galaxy-to-galaxy scatter. This is similar to the pixel by pixel scatter observed within each galaxy, σpix\sigma_{\mathrm{pix}} in Table 4, implying that galaxy-to-galaxy variations and internal scatter contribute about equally to the total observed scatter.

In Figure 2, we test how these galaxy-to-galaxy offsets correlate with integrated galaxy properties. We compute the normalization of the best-fit CO(2-1) versus F770WPAH power law for each galaxy, CF770WPAHC_{\mathrm{F770W}}^{\mathrm{PAH}}, by performing a linear fit of log10ICO(21)\log_{10}I_{\mathrm{CO(2-1)}} versus log10IF770WPAH\log_{10}I^{\mathrm{PAH}}_{\rm F770W} for each galaxy. CF770WPAHC_{\mathrm{F770W}}^{\mathrm{PAH}} is then given by the value of the best-fit relation at IF770WPAH=1I^{\mathrm{PAH}}_{\rm F770W}=1 MJy sr-1. We plot CF770WPAHC_{\mathrm{F770W}}^{\mathrm{PAH}} against MM_{\star} and specific star formation rate (SFR/M\mathrm{SFR}/M_{\star}) (WISE+GALEX-based galaxy-integrated SFR and MM_{\star} are drawn from Leroy et al., 2021). Stellar mass correlates with the H2/H I ratio, gas-phase metallicity, DGR, XCOX_{\rm CO} and more (e.g., Saintonge & Catinella, 2022). Meanwhile, SFR/M\mathrm{SFR}/M_{\star} anti-correlates with qPAHq_{\mathrm{PAH}}, and correlates with the mean interstellar radiation field, U¯\bar{U} (Chastenet et al., 2024). Therefore following Equation 2 both parameters might be expected to impact the CO-to-PAH ratio. Correlations between the galaxy-integrated CO-to-12μ\mum ratio (with the 12μ12\mum data from WISE) with star formation activity, stellar mass, and SFR/M\mathrm{SFR}/M_{\star} have previously been observed (Chown et al., 2021; Leroy et al., 2023a).

Consistent with previous work we find a mild positive correlation between the CO/PAH ratio at fixed IF770WPAHI^{\mathrm{PAH}}_{\rm F770W} and MM_{\star} and an anti-correlation between the CO/PAH normalization and SFR/M\mathrm{SFR}/M_{\star}. As seen in the bottom right of Figure 1, the galaxy-to-galaxy offsets are thus not random but agree with physical expectations. The log10\log_{10}CF770WPAHC_{\mathrm{F770W}}^{\mathrm{PAH}} vs. log10\log_{10}SFR/M\mathrm{SFR}/M_{\star} trend may indicate the higher UU associated with high SFR/M\mathrm{SFR}/M_{\star} galaxies leads to stronger PAH emission, offsetting any suppression due to lower qPAHq_{\rm PAH} at high SFR/M\mathrm{SFR}/M_{\star}. As mentioned in §2, the anti-correlation between CF770WPAHC_{\mathrm{F770W}}^{\mathrm{PAH}} and SFR/M\mathrm{SFR}/M_{\star} is expected because the dust heating rate increases with SFR/M\mathrm{SFR}/M_{\star}. The log10\log_{10}CF770WPAHC_{\mathrm{F770W}}^{\mathrm{PAH}} vs log10M\log_{10}M_{\star} trend goes in the sense that galaxies with higher metallicity, DGR, and molecular-to-atomic gas ratios (e.g., Saintonge et al., 2017) show higher CO-to-PAH ratios. As a result, perhaps the low observed CO-to-PAH ratios seen in low MM_{\star} systems reflects that the PAH emission is coming from regions dominated by H I or CO-dark H2 despite our selection of only bright emission.

We also checked for correlations with distance and inclination to test how orientation and resolution might bias our results. We found that the normalization is uncorrelated with distance (r=0.04,p=0.78r=-0.04,p=0.78), and weakly correlated with cosi\cos i (r=0.24,p=0.06r=0.24,p=0.06). Variations in cosi\cos i from galaxy to galaxy simply slide the data points parallel to a 1:1 relation. Since the best-fit slopes of CO(2-1) vs. PAH emission for each galaxy and for the sample as a whole are within a few percent of 1.0, and furthermore that the sample covers a range of inclinations across the full MM_{\star} range, it is understandable that cosi\cos i does not have a significant effect.

We fit functional forms to the two trends and note the SFR/M\mathrm{SFR}/M_{\star} as the stronger, clearer trend. These predict the normalization of the CO vs. PAH relation as functions of galaxy-integrated MM_{\star} or SFR/M\mathrm{SFR}/M_{\star}

log10CF770WPAH=0.15±0.04(log10M10.34)\displaystyle\log_{10}C_{\mathrm{F770W}}^{\mathrm{PAH}}=0.15\pm 0.04~(\log_{10}M_{\star}-10.34)
+0.06±0.02,\displaystyle+0.06\pm 0.02, (3)
log10CF770WPAH=0.21±0.04(log10SFR/M+10.14)\displaystyle\log_{10}C_{\mathrm{F770W}}^{\mathrm{PAH}}=-0.21\pm 0.04~(\log_{10}\mathrm{SFR}/M_{\star}+10.14)
+0.03±0.02.\displaystyle+0.03\pm 0.02. (4)

We provide best-fit parameters for normalizations versus log10M\log_{10}M_{\star} and log10SFR/M\log_{10}\mathrm{SFR}/M_{\star} for the other PAH bands in Table 5.

In the bottom panels of Figure 2 we normalize the data from each galaxy by the values predicted by this fit, aiming to remove galaxy-to-galaxy scatter. Then we re-fit the relation to all data (lower right panel) and find

log10ICO(21)=(0.88±0.06)(x1.44)+(1.36±0.06),\log_{10}I_{\mathrm{CO(2-1)}}=(0.88\pm 0.06)(x-1.44)+(1.36\pm 0.06), (5)

with scatter σ=0.43\sigma=0.43 dex, where xlog10IF770WPAHlog10CF770WPAHx\equiv\log_{10}I^{\mathrm{PAH}}_{\rm F770W}-\log_{10}C_{\mathrm{F770W}}^{\mathrm{PAH}} shown in Table 6 along with prescriptions for the other two PAH bands. We describe how to use these prescriptions in Appendix C.

4.4 CO (2-1) and PAH emission for other bands

Refer to caption
Refer to caption
Figure 3: CO(2–1) intensity as functions of 3.3 μ\mum and 11.3μ11.3~\mum PAH intensity. As Figure 1, but now showing PAH intensity captured by (left) the F335M filter capturing the 3.3 μ\mum PAH feature (after continuum subtraction following H. Koziol et al. in preparation) and (right) the F1130W filter capturing the 11.3 μ\mum PAH feature. The relationship between CO(2-1) and these bands resembles that which we observe for F770WPAH in Figure 1, though the specifics of the fits differ (Table 2). Of note, the F335MPAH feature has a lower intensity than the others and extracting it from imaging depends critically on stellar continuum subtraction, but the shorter wavelength means that the band offers even higher resolution compared to the other features (see Sandstrom et al., 2023b).

So far we have focused only on the correlation between CO(2-1) and F770WPAH. Do the other PAH-tracing filters show similar correlations? In Figure 3 we show CO versus F335MPAH and versus F1130W for our 1919 Cycle 1 targets. The median CO/PAH ratios, fits and statistics for these bands are shown in Table 2. The correlation remains strong in both of these bands, and the best fit binned CO-PAH slopes are also very close to linear for the 3.3μ3.3~\mum and 11.3μ11.3~\mum features. Of the three PAH bands, F335MPAH is the faintest (Chastenet et al., 2023b; Sandstrom et al., 2023b), and therefore shows the largest CO-to-PAH ratios (101.2417.410^{1.24}\approx 17.4 times higher at F335MPAH than F770WPAH; while F1130W is a factor of 100.151.410^{0.15}\approx 1.4 times lower than F770WPAH); see top rows of Table 2.

These three PAH bands (3.3, 7.7, and 11.3 μ\mum) are dominated by different species of the PAH population – smaller, neutral PAHs for 3.3 μ\mum, ionized PAHs for a range of sizes for 7.7 μ\mum, and larger, mainly neutral PAHs for 11.3 μ\mum. Their intensity ratios also respond to changes in the interstellar radiation field spectrum (e.g., Maragkoudakis et al., 2020; Draine et al., 2021). All three bands yield reasonable first-order estimators of CO intensity, but we would not expect all three to show identical or even equally good correlations with CO. We anticipate that future work will explore optimal combinations of bands to trace CO (and H2) and examine the impact of conditions in the molecular gas on PAH band ratios.

From a practical perspective, each band has advantages. The F770W band traces the brightest PAH feature and is available now for >70>70 nearby galaxies. The F335M filter offers even sharper resolution but harbors the fainter 3.4 μ\mum PAH feature, the Pfund-δ\delta line (e.g. Peeters et al., 2024), and is more strongly affected by contamination by starlight. Meanwhile, the F1130W filter is largely unaffected by starlight and also captures a bright feature in a relatively narrow filter.

5 Discussion

Refer to caption
Figure 4: Predicting CO from PAH emission in one nearby galaxy. The left panel shows an inclination-corrected ALMA CO(2-1) image of NGC 2903 with contours at 1.25, 3.1, 31, and 100 K km s-1. The right panel shows a predicted CO(2-1) intensity map based on JWST F770WPAH and the prescription in Eq. 5. The F770WPAH image is masked to the NIRCam footprint as required for starlight subtraction (§3.1). The contours, which are the same in both panels, show a very close correspondence between CO and PAH emission. At the same time, CO(2-1) emission is underestimated in the bar ends, highlighting improvements to be explored in future work. This figure also shows the improved sensitivity of JWST compared to ALMA at recovering faint emission, with the 5σ5\sigma RMS noise indicated on the colorbar.

We show that PAH emission can be used to predict CO(2-1) emission with 0.5\approx 0.5 dex (i.e., a factor of 3\approx 3) scatter at 100100 pc resolution in the disks of star-forming galaxies, without requiring any other information. Doing so, one expects an ±0.2\approx\pm 0.2 dex bias in any given prediction due to galaxy-to-galaxy variations in the CO-to-PAH ratio, which correlates with both log10SFR/M\log_{10}\mathrm{SFR}/M_{\star} and log10M\log_{10}M_{\star}. We provide prescriptions to account for these galaxy-to-galaxy variations, which can sharpen the prediction even more. Fig. 4 shows an example of such a prediction for the nearby spiral NGC 2903.

Our results formally apply to regions where molecular gas is likely to constitute a significant fraction of the ISM, with Σmol4\Sigma_{\rm mol}\gtrsim 4 M pc-2. It is likely that in fainter regions the PAH emission reflects the distribution of atomic gas (see Sandstrom et al., 2023a), but the details of that correlation remain less well constrained, including the dependence of PAH abundance on H I phase and density (Hensley et al., 2022). We also emphasize that our results offer a way to predict CO emission, specifically CO(2-1) emission for regions with IF770WPAH>0.5I^{\mathrm{PAH}}_{\rm F770W}>0.5 MJy sr-1. The CO(2-1)-to-H2 conversion factor is known to vary as a function of environment across galaxies and this will need to be included to predict the gas column density, N(H2)N({\rm H}_{2}) (e.g., see reviews in Bolatto et al., 2013; Schinnerer & Leroy, 2024).

Despite these limitations, the CO-PAH correlation represents a powerful tool. In a matter of minutes on the source, JWST can produce maps with resolution and gas column sensitivity that would take ALMA many hours to match (of course ALMA carries kinematic information and CO represents a well-calibrated gas tracer, so the two remain complementary). As an example of the applications of such data, Pathak et al. (2024) analyzed 1919 of the same galaxies we study to infer column density probability distribution functions at high physical resolution, suitable for benchmarking simulations and inferring some aspects of interstellar turbulence and galactic dynamics (Meidt et al., 2023; Thilker et al., 2023).

While the practical applications of the observed correlation are exciting, the stability of the CO-to-PAH ratio across a wide range of systems may reflect that the terms in Eq. 2 have counter-balancing environmental dependencies. The interstellar radiation field varies within and among galaxies (e.g., Draine et al., 2007; Aniano et al., 2020; Chastenet et al., 2024), as does XCOX_{\rm CO}, and qPAHq_{\mathrm{PAH}} appears strongly suppressed within H II regions (Chastenet et al., 2023a; Egorov et al., 2023; Sutter et al., 2024). This might reflect that environmental effects are somewhat offset, e.g., because UU is higher where RPAHR_{\mathrm{PAH}} (Egorov et al., 2023), as well as qPAHq_{\rm PAH} and αCO\alpha_{\rm CO} tend to be low. Alternatively, they might reflect that the emitting PAHs tend to reside predominantly in neutral, moderately shielded gas, subjecting them to some of the same selection effects that apply to CO.

Beyond speculation, having established the basic observational correlations, the clear next step in this area is to follow up with a physically oriented analysis. The full PHANGS data sets make it possible to combine 21-cm data on atomic gas and best-estimate αCO\alpha_{\rm CO} with estimates of the local interstellar radiation field, UU, and PAH abundance, qPAHq_{\rm PAH}, to test the physical expectation that IPAH/N(H)UqPAH1I_{\rm PAH}/N\left(H\right)\propto Uq_{\rm PAH}^{-1}. This will both illuminate the reasons for the tightness of the PAH-CO correlation and sharpen the use of PAH emission as an ISM tracer, particularly in the atomic gas-dominated parts of galaxies.

6 Conclusions

We characterize the relationship between CO(2-1) and near- and mid-infrared (NIR and MIR) PAH emission at 100\approx 100 pc scales for 70 nearby (D20D\lesssim 20 Mpc) star-forming galaxies observed as part of PHANGS–ALMA and the PHANGS–JWST Cycle 1 and Cycle 2 treasuries. This is by far the largest comparison of molecular gas tracers and PAH emission at cloud scales to date, more than 10×10\times larger than initial JWST studies. We find:

  1. 1.

    CO(2-1) exhibits strong correlations with the PAH emission captured by JWST’s F770W, F335M, and F1130W filters. In regions of galaxies where molecular gas is likely to make up most of the ISM (IF770W>0.5I_{\rm F770W}>0.5 MJy sr-1; Σmol4\Sigma_{\rm mol}\gtrsim 4 M pc-2), this correlation appears approximately linear (0.8m1.20.8\lesssim m\lesssim 1.2) and covers more than two orders of magnitude in PAH and CO intensities. We provide power law scaling relations that can be used to predict CO(2-1) from PAH emission (Table 2, Figure 1). The typical sightline-to-sightline scatter about these relations considering the whole sample together is σ0.5\sigma\approx 0.5 dex, and is dominated by statistical noise in the CO measurements in our data set.

  2. 2.

    Subdividing the 1919 JWST Cycle 1 targets into sightlines near H II regions and diffuse sightlines, we find overall similar scaling relationships between CO(2-1) and IF770PAHI_{\rm F770}^{\rm PAH} between the two types of regions (Table 2, Figure 1). The main difference appears to be that the nebular regions harbor more high-intensity sightlines than the diffuse regions (see also Pathak et al., 2024). This is consistent with the idea that the nebular regions still contain some well-shielded, denser gas outside the actual H II regions that harbor both CO and PAH molecules (see also Sutter et al., 2024).

  3. 3.

    We also contrast galaxy centers with emission from the surrounding disks, finding that galaxy centers exhibit on average an 0.2\approx 0.2 dex (60%\approx 60\%) higher ratio of CO(2-1)-to-F770W emission compared to galaxy disks (in addition to being brighter in both tracers, as in Pathak et al., 2024). This might reflect that the enhanced CO emission (i.e., low αCO\alpha_{\rm CO}) in galaxy centers (e.g., Teng et al., 2023; Chiang et al., 2024) represents a stronger effect than any enhancement in PAH emission due to a more intense interstellar radiation field. Because of this contrast, when fitting emission from both disk and central regions, the slope of the CO vs. PAH relation tends to be somewhat steeper than what we observe for disks or centers alone.

  4. 4.

    Individual galaxies show similar relations between CO(2-1) and PAH intensity, but with ±0.2\approx\pm 0.2 dex scatter in the normalization. The ratio of CO at fixed PAH intensity for a galaxy correlates with its stellar mass, MM_{\star}, and anti-correlates with its specific star formation rate SFR/MM_{\star}, in good agreement with results for integrated galaxies using WISE. We provide prescriptions to predict resolved CO emission from PAH emission that also take into account galaxy-dependent normalizations and these represent our best overall predictor.

  5. 5.

    We also present scaling relations and observe strong correlations linking CO(2-1) and emission in the PAH-dominated F1130W filter as well as continuum-subtracted F335MPAH emission. The F1130W band has coarser resolution but is least affected by starlight contamination out of the three PAH-tracing bands we consider. The fainter F335MPAH emission offers the prospect of tracing CO at thie highest resolution but depends sensitively on stellar continuum subtraction (H. Koziol et al. in preparation; Sandstrom et al., 2023b; Bolatto et al., 2024).

7 Acknowledgments

This work has been carried out as part of the PHANGS collaboration. This work is based on observations made with the NASA/ESA/CSA JWST. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programs 2107 and 3707.

A.K.L., D.P., S.S., and R.C. gratefully acknowledge support from NSF AST AWD 2205628, JWST-GO-02107.009-A, and JWST-GO-03707.001-A. D.P. is supported by the NSF GRFP. A.K.L. also gratefully acknowledges support by a Humboldt Research Award.

K.S., H.K., and J.S. acknowledge funding support from grants JWST-GO-02107.006-A and JWST-GO-03707.005-A. JC acknowledges funding from the Belgian Science Policy Office (BELSPO) through the PRODEX project “JWST/MIRI Science exploitation” (C4000142239). OE acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project-ID 541068876.

J.K. is supported by a Kavli Fellowship at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC).

MB acknowledges support from FONDECYT regular grant 1211000 and by the ANID BASAL project FB210003. This work was supported by the French government through the France 2030 investment plan managed by the National Research Agency (ANR), as part of the Initiative of Excellence of Université Côte d’Azur under reference number ANR-15-IDEX-01.

DC and ZB acknowledge support by the Deutsche Forschungsgemeinschaft, DFG project number SFB1601-B3.

KK gratefully acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in the form of an Emmy Noether Research Group (grant number KR4598/2-1, PI Kreckel) and the European Research Council’s starting grant ERC StG-101077573 (“ISM-METALS”).

RSK acknowledges financial support from ERC via Synergy Grant “ECOGAL” (project ID 855130), from the German Excellence Strategy via the “STRUCTURES” Cluster of Excellence (EXC 2181 - 390900948), and from the German Ministry for Economic Affairs and Climate Action in project “MAINN” (funding ID 50OO2206). RSK also thanks the 2024/25 Class of Radcliffe Fellows for their company and for highly stimulating discussions.

ER and HH acknowledge support from the Canadian Space Agency, funding reference 23JWGO2A07.

This paper makes use of the following ALMA data, which have been processed as part of the PHANGS–ALMA survey:
ADS/JAO.ALMA#2012.1.00650.S, ADS/JAO.ALMA#2013.1.00803.S, ADS/JAO.ALMA#2013.1.01161.S, ADS/JAO.ALMA#2015.1.00121.S, ADS/JAO.ALMA#2015.1.00782.S, ADS/JAO.ALMA#2015.1.00925.S, ADS/JAO.ALMA#2015.1.00956.S, ADS/JAO.ALMA#2016.1.00386.S, ADS/JAO.ALMA#2017.1.00392.S, ADS/JAO.ALMA#2017.1.00766.S, ADS/JAO.ALMA#2017.1.00886.L, ADS/JAO.ALMA#2018.1.01321.S, ADS/JAO.ALMA#2018.1.01651.S, ADS/JAO.ALMA#2018.A.00062.S, ADS/JAO.ALMA#2019.1.01235.S, ADS/JAO.ALMA#2019.2.00129.S, ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Finally, we thank the anonymous referee for their helpful suggestions which improved the quality of this paper.

Appendix A Cycle 2 JWST Imaging of PHANGS Galaxies

During its Cycle 2 campaign, JWST observed 55 nearby galaxies as part of Treasury program GO 3707 “A JWST Census of the Local Galaxy Population: Anchoring the Physics of the Matter Cycle” (PI: Leroy, co-PIs: Kreckel, Lee, Rosolowsky, Sandstrom, Schinnerer). The targets were chosen to overlap the PHANGS–ALMA CO (2-1) survey (Leroy et al., 2021), accounting for some updated knowledge about the target selection. PHANGS–ALMA serves as the parent sample for surveys with HST, AstroSat, MeerKAT, VLT-MUSE, and more (Emsellem et al., 2022; Lee et al., 2022; Hassani et al., 2023; Eibensteiner et al., 2024). Therefore these observations immediately overlap a rich multiwavelength database that enables a wide variety of science related to PAHs, ISM structure, stellar feedback, star formation, and more.

\startlongtable
Table 3: PHANGS-JWST Galaxy Sample and Observations
Galaxy logM\log M_{*} logSFR/M\log\mathrm{SFR}/M_{*} Cycle

F150W

F187N

F200W

F300M

F335M

F360M

F770W

F1000W

F1130W

F2100W

[MM_{\odot}] [yr-1]
IC1954 9.679.67 10.11-10.11 22
IC5273 9.729.72 9.99-9.99 22
IC5332 9.679.67 10.05-10.05 11
NGC0628 10.3410.34 10.10-10.10 11
NGC0685 10.0610.06 10.44-10.44 22
NGC1068 10.9110.91 9.27-9.27 22
NGC1087 9.949.94 9.83-9.83 11
NGC1097 10.7610.76 10.08-10.08 22
NGC1300 10.6210.62 10.55-10.55 11
NGC1317 10.6210.62 10.94-10.94 22
NGC1365 11.0011.00 9.76-9.76 11
NGC1385 9.989.98 9.66-9.66 11
NGC1433 10.8710.87 10.82-10.82 11
NGC1511 9.919.91 9.55-9.55 22
NGC1512 10.7210.72 10.61-10.61 11
NGC1546 10.3510.35 10.43-10.43 22
NGC1559 10.3610.36 9.79-9.79 22
NGC1566 10.7910.79 10.13-10.13 11
NGC1637 9.959.95 10.14-10.14 22
NGC1672 10.7310.73 9.85-9.85 11
NGC1792 10.6110.61 10.04-10.04 22
NGC1808 10.2910.29 9.39-9.39 22
NGC1809 9.779.77 9.01-9.01 22
NGC2090 10.0410.04 10.43-10.43 22
NGC2283 9.899.89 10.17-10.17 22
NGC2566 10.7110.71 9.77-9.77 22
NGC2775 11.0711.07 11.13-11.13 22
NGC2835 10.0010.00 9.90-9.90 11
NGC2903 10.6310.63 10.15-10.15 22
NGC2997 10.7310.73 10.09-10.09 22
NGC3059 10.3810.38 10.00-10.00 22
NGC3137 9.889.88 10.19-10.19 22
NGC3239 9.179.17 9.58-9.58 22
NGC3344 10.0510.05 10.14-10.14 22
NGC3351 10.3710.37 10.25-10.25 11
NGC3368 10.7410.74 10.88-10.88 22
NGC3507 10.4010.40 10.40-10.40 22
NGC3511 10.0310.03 10.12-10.12 22
NGC3521 11.0211.02 10.45-10.45 22
NGC3596 9.669.66 10.18-10.18 22
NGC3621 10.0610.06 10.06-10.06 22
NGC3626 10.4610.46 11.13-11.13 22
NGC3627 10.8410.84 10.25-10.25 11
NGC4254 10.4210.42 9.93-9.93 11
NGC4298 10.0210.02 10.36-10.36 22
NGC4303 10.5110.51 9.78-9.78 11
NGC4321 10.7510.75 10.20-10.20 11
NGC4424 9.919.91 10.43-10.43 22
NGC4457 10.4210.42 10.93-10.93 22
NGC4496A 9.539.53 9.74-9.74 22
NGC4535 10.5410.54 10.20-10.20 11
NGC4536 10.4010.40 9.86-9.86 22
NGC4540 9.799.79 10.56-10.56 22
NGC4548 10.6910.69 10.97-10.97 22
NGC4569 10.8110.81 10.68-10.68 22
NGC4571 10.0910.09 10.63-10.63 22
NGC4579 11.1511.15 10.81-10.81 22
NGC4654 10.5710.57 9.99-9.99 22
NGC4689 10.2210.22 10.61-10.61 22
NGC4694 9.869.86 10.66-10.66 22
NGC4731 9.489.48 9.70-9.70 22
NGC4781 9.649.64 9.96-9.96 22
NGC4826 10.2410.24 10.93-10.93 22
NGC4941 10.1710.17 10.53-10.53 22
NGC4951 9.799.79 10.24-10.24 22
NGC5042 9.909.90 10.12-10.12 22
NGC5068 9.419.41 9.97-9.97 11
NGC5134 10.4110.41 10.75-10.75 22
NGC5248 10.4110.41 10.05-10.05 22
NGC5643 10.3410.34 9.92-9.92 22
NGC6300 10.4710.47 10.19-10.19 22
NGC7456 9.649.64 10.08-10.08 22
NGC7496 10.0010.00 9.65-9.65 11
Total 5454 4545 2828 7373 7373 1919 7373 1919 1919 7373

Note. — Columns: logM\log M_{*} — global stellar mass; logSFR/M\log\mathrm{SFR}/M_{*} — global specific star formation rate; Cycle — JWST observing cycle when the galaxy was observed (Cycle 1 corresponds to program # 2107; Cycle 2 corresponds to program # 3707); Remaining columns show which JWST bands have observations (✓) for each galaxy. The bottom row shows the total number of galaxies observed in each band.

Table 3 lists the targets of both the Cycle 1 and Cycle 2 PHANGS Treasury, along with the list of bands observed and the stellar mass and SFR for each target (mostly from Leroy et al., 2019, 2021). Figure 5 shows both samples in SFR-M parameter space. As of this writing, all but two of the Cycle 2 galaxies (NGC 5248 and NGC 5530) have been fully observed. Those two require partial repeated observations. The observations for NGC 5248 and NGC 5530 are expected to be completed by mid-July 2025 and late-June 2025, respectively.

The Cycle 2 survey complements the one described in Lee et al. (2023) and Williams et al. (2024). This new survey targets 55 galaxies, expanding on the 19 in the original sample. Compared to the original sample, these new observations expand to cover galaxies with lower mass and lower specific star formation rate. Taken together, the two surveys sample the main sequence of star-forming galaxies over the range logM/M9.7510.75\log M_{\star}/M_{\odot}\approx 9.75{-}10.75, i.e., within about 11 dex of the knee in the galaxy mass function and covering the main region of SFR-MM_{\star} parameter space (Figure 5) where stars form at z=0z=0 (see Leroy et al., 2021). In order to cover this large sample, the current survey focused on two PAH-sensitive filters (F335M and F770W) and did not use the F1130W filter employed by Lee et al. (2023). The Cycle 2 survey also did not observe the F360M filter that was included by Lee et al. (2023), and we shifted the short wavelength starlight-sensitive filter from F200W to F150W in order to avoid wavelength overlap with the F187N filter. We added the F187N filter (which was not observed by Lee et al. (2023)) wherever it captures the Paschen-α\alpha line. This yields Paschen-α\alpha imaging, which should open a powerful new scientific space (high resolution imaging of recent star formation).

The observations consisted of MIRI mosaics using the F770W and F2100W filters, with 88\approx 88s exposure time per point at F770W and 344\approx 344s at F2100W. The coverage of each mosaic was designed to match the extent of the galaxy in the 12μ\approx 12\mum emission captured by WISE band 3 (Wright et al., 2010). Roll angle constraints, row offsets, and other aspects of the observation were designed to meet this goal. As in Lee et al. (2023) and Williams et al. (2024), the MIRI observations were paired in a non-interruptible sequence with single-field off-galaxy observations designed to measure the local background.

In parallel with the background observations, we observed the center of the galaxy with NIRCam module B using the F150W (integration time 215s), F187N (covering the Paschen α\alpha line, 386s), F300M (215s), and F335M (covering the 3.3μ3.3\mum PAH feature, 386s) filters. In a few cases where the redshift of the galaxy was too large for the F187N filter to capture the Paschen α\alpha line, we observed using the F200W filter instead. The 2.2×2.22^{\prime}.2\times 2^{\prime}.2 NIRCam field covers a large portion of each galaxy (6×6\approx 6\times 6 kpc at 1010 Mpc and 12×12\approx 12\times 12 kpc at 2020 Mpc). The offset between NIRCam and MIRI was enough to allow the MIRI observations to reach a sky position off the galaxy.

As discussed in §3, we processed the data using pjpipe, the modified version of the STScI pipeline described in Williams et al. (2024) and Lee et al. (2023). Refinements to the procedures involved in Williams et al. (2024) are ongoing. As of this writing, key difference compared to that paper include: (1) for MIRI, we have masked out the Lyot coronagraph as we find this to improve the flux-level match between overlapping tiles, (2) improvements in the “anchoring” (Leroy et al., 2023b) of the background level to reference data (H. Koziol et al. in preparation, D. Pathak et al. in preparation), (3) improved cross-registration between filters (especially relevant to the 3.3μ3.3\mum and Paschen-α\alpha analyses; H. Koziol et al., in preparation, T. Weinbeck et al., in preparation), and (4) improved techniques to remove 1/f1/f-related artifacts from the F187N images (T. Weinbeck et al. in preparation).

Refer to caption
Refer to caption
Figure 5: PHANGS-JWST samples relative to the star-forming main sequence. The reference line in the left panel is derived from Eq. 19 of Leroy et al. (2019), with a slope of 0.680.68 and a y-intercept of 6.97Myr1-6.97~\mathrm{M_{\odot}~yr^{-1}}. The box plots show the median, 16th and 84th percentiles, while the whiskers show the 5th and 95th percentiles. The red box and whiskers show that Cycle 1 + Cycle 2 PHANGS-JWST galaxies cover about 1 dex in stellar mass and approximately ±0.5\pm 0.5 dex about the main sequence. The Cycle 1 targets have higher masses and star formation rates than the rest of the sample.

Appendix B Fits for individual galaxies

Table 4 shows the best-fit parameters of the CO(2-1) vs. F335MPAH, F770WPAH, and F1130W relationships for each galaxy. We also report the stellar mass and SFR/MM_{\star}, adopted from Leroy et al. (2019), the brightness of band XX in that galaxy at IνX=1I_{\rm\nu}^{X}=1 MJy sr-1, the number of sight lines analyzed, and Spearman’s rank correlation coefficient relating the PAH and CO emission for each sightline.

\startlongtable
Table 4: Fits to all pixels outside galaxy centers for each galaxy.
Name Cycle log10M\log_{10}M_{\star} log10SFR/M\log_{10}\mathrm{SFR}/M_{\star} mm bb x0x_{0} log10Cband\log_{10}C_{\mathrm{band}} NpixN_{\mathrm{pix}} σpix\sigma_{\mathrm{pix}} rr
ICO(21)I_{\mathrm{CO(2-1)}} vs F770WPAH
IC1954 2 9.679.67 10.11-10.11 1.050±0.0171.050\pm 0.017 0.199±0.0100.199\pm 0.010 0.3660.366 0.185-0.185 1610116101 0.090.09 0.760.76
IC5273 2 9.729.72 9.99-9.99 1.133±0.0461.133\pm 0.046 0.069±0.023-0.069\pm 0.023 0.2260.226 0.325-0.325 1311713117 0.130.13 0.660.66
IC5332 2 9.679.67 10.05-10.05 0.438±0.0100.438\pm 0.010 0.261±0.0050.261\pm 0.005 0.079-0.079 0.2960.296 1628116281 0.200.20 0.220.22
NGC0628 1 10.3410.34 10.10-10.10 0.689±0.0100.689\pm 0.010 0.377±0.0080.377\pm 0.008 0.1790.179 0.2540.254 122222122222 0.160.16 0.520.52
NGC0685 2 10.0610.06 10.44-10.44 0.986±0.0200.986\pm 0.020 0.083±0.012-0.083\pm 0.012 0.027-0.027 0.056-0.056 1388213882 0.160.16 0.530.53
NGC1087 1 9.949.94 9.83-9.83 1.046±0.0241.046\pm 0.024 0.290±0.0210.290\pm 0.021 0.4660.466 0.198-0.198 2683026830 0.150.15 0.730.73
NGC1097 2 10.7610.76 10.08-10.08 1.238±0.0331.238\pm 0.033 0.307±0.0160.307\pm 0.016 0.1550.155 0.1150.115 2436824368 0.220.22 0.570.57
NGC1300 1 10.6210.62 10.55-10.55 0.822±0.0250.822\pm 0.025 0.189±0.0170.189\pm 0.017 0.0420.042 0.1550.155 3635936359 0.200.20 0.470.47
NGC1317 2 10.6210.62 10.94-10.94 0.861±0.0440.861\pm 0.044 0.816±0.0230.816\pm 0.023 0.7380.738 0.1810.181 46594659 0.130.13 0.800.80
NGC1365 1 11.0011.00 9.76-9.76 0.983±0.0510.983\pm 0.051 0.690±0.0530.690\pm 0.053 0.2920.292 0.4030.403 4081040810 0.250.25 0.460.46
NGC1385 1 9.989.98 9.66-9.66 0.885±0.0190.885\pm 0.019 0.377±0.0150.377\pm 0.015 0.5600.560 0.118-0.118 3451534515 0.170.17 0.720.72
NGC1433 1 10.8710.87 10.82-10.82 1.176±0.0701.176\pm 0.070 0.119±0.0480.119\pm 0.048 0.069-0.069 0.2000.200 1980919809 0.240.24 0.500.50
NGC1511 2 9.919.91 9.55-9.55 0.904±0.0180.904\pm 0.018 0.623±0.0130.623\pm 0.013 0.8110.811 0.111-0.111 1288412884 0.110.11 0.780.78
NGC1512 1 10.7210.72 10.61-10.61 0.833±0.0270.833\pm 0.027 0.172±0.0140.172\pm 0.014 0.0090.009 0.1640.164 1412114121 0.160.16 0.410.41
NGC1546 2 10.3510.35 10.43-10.43 0.916±0.0230.916\pm 0.023 0.961±0.0130.961\pm 0.013 0.8480.848 0.1840.184 1172311723 0.050.05 0.910.91
NGC1559 2 10.3610.36 9.79-9.79 0.943±0.0250.943\pm 0.025 0.537±0.0170.537\pm 0.017 0.7630.763 0.182-0.182 4645646456 0.160.16 0.700.70
NGC1566 1 10.7910.79 10.13-10.13 0.905±0.0150.905\pm 0.015 0.366±0.0140.366\pm 0.014 0.3350.335 0.0630.063 8771287712 0.220.22 0.680.68
NGC1637 2 9.959.95 10.14-10.14 1.028±0.0291.028\pm 0.029 0.124±0.0180.124\pm 0.018 0.1210.121 0.001-0.001 3971539715 0.150.15 0.660.66
NGC1672 1 10.7310.73 9.85-9.85 1.066±0.0301.066\pm 0.030 0.364±0.0210.364\pm 0.021 0.3710.371 0.031-0.031 2368923689 0.200.20 0.660.66
NGC1792 2 10.6110.61 10.04-10.04 1.097±0.0251.097\pm 0.025 0.775±0.0150.775\pm 0.015 0.8960.896 0.209-0.209 2448824488 0.120.12 0.840.84
NGC1808 2 10.2910.29 9.39-9.39 1.103±0.0811.103\pm 0.081 0.983±0.0690.983\pm 0.069 0.8790.879 0.0140.014 1052110521 0.240.24 0.780.78
NGC1809 2 9.779.77 9.01-9.01 1.134±0.0381.134\pm 0.038 0.085±0.0160.085\pm 0.016 0.2230.223 0.169-0.169 70767076 0.170.17 0.530.53
NGC2090 2 10.0410.04 10.43-10.43 0.913±0.0620.913\pm 0.062 0.493±0.0240.493\pm 0.024 0.4040.404 0.1240.124 1564915649 0.110.11 0.630.63
NGC2283 2 9.899.89 10.17-10.17 0.927±0.0470.927\pm 0.047 0.080±0.0270.080\pm 0.027 0.2610.261 0.162-0.162 2650026500 0.190.19 0.520.52
NGC2566 2 10.7110.71 9.77-9.77 0.987±0.0180.987\pm 0.018 0.307±0.0110.307\pm 0.011 0.2300.230 0.0800.080 3587235872 0.240.24 0.570.57
NGC2775 2 11.0711.07 11.13-11.13 0.856±0.0230.856\pm 0.023 0.355±0.0090.355\pm 0.009 0.1380.138 0.2370.237 4418744187 0.130.13 0.470.47
NGC2835 1 10.0010.00 9.90-9.90 0.790±0.0210.790\pm 0.021 0.172±0.0150.172\pm 0.015 0.1490.149 0.0540.054 3663936639 0.200.20 0.420.42
NGC2903 2 10.6310.63 10.15-10.15 0.944±0.0260.944\pm 0.026 0.623±0.0190.623\pm 0.019 0.6740.674 0.013-0.013 6404764047 0.140.14 0.730.73
NGC2997 2 10.7310.73 10.09-10.09 1.050±0.0121.050\pm 0.012 0.349±0.0080.349\pm 0.008 0.2670.267 0.0690.069 4498544985 0.150.15 0.700.70
NGC3059 2 10.3810.38 10.00-10.00 0.939±0.0170.939\pm 0.017 0.293±0.0180.293\pm 0.018 0.3550.355 0.040-0.040 6110961109 0.180.18 0.640.64
NGC3137 2 9.889.88 10.19-10.19 0.956±0.0670.956\pm 0.067 0.354±0.0200.354\pm 0.020 0.3480.348 0.0210.021 49564956 0.080.08 0.530.53
NGC3239 2 9.179.17 9.58-9.58 0.573±0.0480.573\pm 0.048 0.073±0.0160.073\pm 0.016 0.2220.222 0.055-0.055 16401640 0.170.17 0.300.30
NGC3351 1 10.3710.37 10.25-10.25 0.650±0.0160.650\pm 0.016 0.320±0.0080.320\pm 0.008 0.0510.051 0.2870.287 2914829148 0.170.17 0.330.33
NGC3507 2 10.4010.40 10.40-10.40 0.907±0.0200.907\pm 0.020 0.127±0.0110.127\pm 0.011 0.0260.026 0.1030.103 3233932339 0.170.17 0.490.49
NGC3511 2 10.0310.03 10.12-10.12 1.185±0.0251.185\pm 0.025 0.514±0.0110.514\pm 0.011 0.6450.645 0.250-0.250 1167811678 0.080.08 0.760.76
NGC3521 2 11.0211.02 10.45-10.45 1.155±0.0311.155\pm 0.031 0.869±0.0170.869\pm 0.017 1.0011.001 0.287-0.287 6965869658 0.100.10 0.850.85
NGC3596 2 9.669.66 10.18-10.18 0.814±0.0190.814\pm 0.019 0.349±0.0120.349\pm 0.012 0.2360.236 0.1570.157 3606036060 0.170.17 0.570.57
NGC3621 2 10.0610.06 10.06-10.06 1.161±0.0211.161\pm 0.021 0.561±0.0120.561\pm 0.012 0.7610.761 0.322-0.322 3813338133 0.130.13 0.750.75
NGC3626 2 10.4610.46 11.13-11.13 0.814±0.0360.814\pm 0.036 0.572±0.0140.572\pm 0.014 0.5090.509 0.1580.158 40364036 0.140.14 0.620.62
NGC3627 1 10.8410.84 10.25-10.25 0.993±0.0130.993\pm 0.013 0.743±0.0120.743\pm 0.012 0.7360.736 0.0120.012 6719867198 0.180.18 0.720.72
NGC4254 1 10.4210.42 9.93-9.93 1.016±0.0191.016\pm 0.019 0.562±0.0130.562\pm 0.013 0.5700.570 0.017-0.017 6512365123 0.140.14 0.780.78
NGC4298 2 10.0210.02 10.36-10.36 0.967±0.0460.967\pm 0.046 0.518±0.0210.518\pm 0.021 0.3770.377 0.1530.153 2093720937 0.070.07 0.750.75
NGC4303 1 10.5110.51 9.78-9.78 0.844±0.0190.844\pm 0.019 0.644±0.0130.644\pm 0.013 0.6600.660 0.0860.086 2939729397 0.180.18 0.670.67
NGC4321 1 10.7510.75 10.20-10.20 0.935±0.0070.935\pm 0.007 0.479±0.0050.479\pm 0.005 0.2820.282 0.2150.215 3768137681 0.160.16 0.630.63
NGC4424 2 9.919.91 10.43-10.43 0.816±0.0640.816\pm 0.064 0.406±0.0480.406\pm 0.048 0.4800.480 0.0140.014 48004800 0.230.23 0.570.57
NGC4457 2 10.4210.42 10.93-10.93 0.646±0.0510.646\pm 0.051 0.537±0.0300.537\pm 0.030 0.1240.124 0.4570.457 1478514785 0.210.21 0.440.44
NGC4496A 2 9.539.53 9.74-9.74 0.759±0.0240.759\pm 0.024 0.170±0.0140.170\pm 0.014 0.1610.161 0.0480.048 1239212392 0.180.18 0.410.41
NGC4535 1 10.5410.54 10.20-10.20 0.971±0.0380.971\pm 0.038 0.338±0.0290.338\pm 0.029 0.1580.158 0.1840.184 3129431294 0.170.17 0.600.60
NGC4536 2 10.4010.40 9.86-9.86 1.110±0.0231.110\pm 0.023 0.339±0.0200.339\pm 0.020 0.3500.350 0.049-0.049 1704317043 0.150.15 0.740.74
NGC4540 2 9.799.79 10.56-10.56 0.788±0.0460.788\pm 0.046 0.392±0.0210.392\pm 0.021 0.2760.276 0.1740.174 1093910939 0.160.16 0.480.48
NGC4548 2 10.6910.69 10.97-10.97 1.002±0.0201.002\pm 0.020 0.210±0.0100.210\pm 0.010 0.0140.014 0.1960.196 82948294 0.160.16 0.540.54
NGC4569 2 10.8110.81 10.68-10.68 0.841±0.0180.841\pm 0.018 0.837±0.0110.837\pm 0.011 0.5980.598 0.3340.334 1498414984 0.110.11 0.630.63
NGC4571 2 10.0910.09 10.63-10.63 0.548±0.0190.548\pm 0.019 0.280±0.0090.280\pm 0.009 0.029-0.029 0.2960.296 2622626226 0.140.14 0.280.28
NGC4579 2 11.1511.15 10.81-10.81 0.833±0.0390.833\pm 0.039 0.356±0.0220.356\pm 0.022 0.1060.106 0.2680.268 2512025120 0.150.15 0.540.54
NGC4654 2 10.5710.57 9.99-9.99 1.051±0.0271.051\pm 0.027 0.474±0.0200.474\pm 0.020 0.5120.512 0.064-0.064 2737327373 0.130.13 0.780.78
NGC4689 2 10.2210.22 10.61-10.61 0.861±0.0210.861\pm 0.021 0.356±0.0130.356\pm 0.013 0.1330.133 0.2410.241 4563545635 0.140.14 0.590.59
NGC4694 2 9.869.86 10.66-10.66 0.821±0.0590.821\pm 0.059 0.294±0.0440.294\pm 0.044 0.3600.360 0.002-0.002 27202720 0.210.21 0.540.54
NGC4731 2 9.489.48 9.70-9.70 0.937±0.0280.937\pm 0.028 0.002±0.0140.002\pm 0.014 0.2790.279 0.259-0.259 48944894 0.180.18 0.510.51
NGC4781 2 9.649.64 9.96-9.96 1.064±0.0131.064\pm 0.013 0.265±0.0080.265\pm 0.008 0.4910.491 0.257-0.257 2971429714 0.120.12 0.750.75
NGC4826 2 10.2410.24 10.93-10.93 1.015±0.0441.015\pm 0.044 1.084±0.0271.084\pm 0.027 1.0131.013 0.0560.056 2287322873 0.110.11 0.830.83
NGC4941 2 10.1710.17 10.53-10.53 0.795±0.0240.795\pm 0.024 0.261±0.0060.261\pm 0.006 0.0340.034 0.2340.234 54475447 0.070.07 0.370.37
NGC4951 2 9.799.79 10.24-10.24 1.092±0.0391.092\pm 0.039 0.372±0.0140.372\pm 0.014 0.4800.480 0.153-0.153 67246724 0.160.16 0.550.55
NGC5042 2 9.909.90 10.12-10.12 0.891±0.0180.891\pm 0.018 0.094±0.0080.094\pm 0.008 0.1090.109 0.003-0.003 1568515685 0.190.19 0.400.40
NGC5068 1 9.419.41 9.97-9.97 0.690±0.0210.690\pm 0.021 0.282±0.0160.282\pm 0.016 0.1820.182 0.1560.156 6737267372 0.230.23 0.390.39
NGC5134 2 10.4110.41 10.75-10.75 0.737±0.0250.737\pm 0.025 0.196±0.0130.196\pm 0.013 0.1170.117 0.1100.110 1925019250 0.200.20 0.440.44
NGC5248 2 10.4110.41 10.05-10.05 0.962±0.0200.962\pm 0.020 0.503±0.0140.503\pm 0.014 0.4330.433 0.0870.087 5172451724 0.140.14 0.710.71
NGC5643 2 10.3410.34 9.92-9.92 0.853±0.0150.853\pm 0.015 0.385±0.0100.385\pm 0.010 0.3630.363 0.0760.076 7644676446 0.190.19 0.610.61
NGC6300 2 10.4710.47 10.19-10.19 0.905±0.0170.905\pm 0.017 0.481±0.0120.481\pm 0.012 0.3830.383 0.1340.134 8415284152 0.190.19 0.580.58
NGC7456 2 9.649.64 10.08-10.08 0.638±0.1140.638\pm 0.114 0.138±0.0160.138\pm 0.016 0.2000.200 0.0110.011 907907 0.060.06 0.260.26
NGC7496 1 10.0010.00 9.65-9.65 1.032±0.0131.032\pm 0.013 0.062±0.0090.062\pm 0.009 0.1370.137 0.080-0.080 1559315593 0.150.15 0.680.68
ICO(21)I_{\mathrm{CO(2-1)}} vs F335MPAH
IC5332 2 9.679.67 10.05-10.05 0.339±0.0460.339\pm 0.046 0.416±0.0130.416\pm 0.013 0.813-0.813 0.6910.691 22422242 0.180.18 0.140.14
NGC0628 1 10.3410.34 10.10-10.10 0.630±0.0170.630\pm 0.017 0.623±0.0120.623\pm 0.012 0.780-0.780 1.1151.115 2746327463 0.110.11 0.420.42
NGC1087 1 9.949.94 9.83-9.83 1.211±0.0181.211\pm 0.018 0.401±0.0130.401\pm 0.013 0.545-0.545 1.0621.062 1927919279 0.120.12 0.730.73
NGC1300 1 10.6210.62 10.55-10.55 0.862±0.0410.862\pm 0.041 0.589±0.0160.589\pm 0.016 0.703-0.703 1.1961.196 54525452 0.120.12 0.500.50
NGC1365 1 11.0011.00 9.76-9.76 1.295±0.1141.295\pm 0.114 0.842±0.0800.842\pm 0.080 0.526-0.526 1.5241.524 57815781 0.330.33 0.370.37
NGC1385 1 9.989.98 9.66-9.66 0.924±0.0150.924\pm 0.015 0.632±0.0100.632\pm 0.010 0.387-0.387 0.9890.989 1923819238 0.110.11 0.720.72
NGC1433 1 10.8710.87 10.82-10.82 1.604±0.2801.604\pm 0.280 0.776±0.0620.776\pm 0.062 0.746-0.746 1.9721.972 22242224 0.320.32 0.370.37
NGC1512 1 10.7210.72 10.61-10.61 0.714±0.0610.714\pm 0.061 0.538±0.0150.538\pm 0.015 0.734-0.734 1.0631.063 14681468 0.080.08 0.400.40
NGC1566 1 10.7910.79 10.13-10.13 0.793±0.0130.793\pm 0.013 0.770±0.0090.770\pm 0.009 0.569-0.569 1.2211.221 2898528985 0.210.21 0.520.52
NGC1672 1 10.7310.73 9.85-9.85 1.126±0.0551.126\pm 0.055 0.657±0.0280.657\pm 0.028 0.576-0.576 1.3051.305 85028502 0.200.20 0.520.52
NGC2835 1 10.0010.00 9.90-9.90 0.803±0.0410.803\pm 0.041 0.483±0.0180.483\pm 0.018 0.663-0.663 1.0151.015 60726072 0.150.15 0.420.42
NGC3351 1 10.3710.37 10.25-10.25 0.722±0.1090.722\pm 0.109 0.615±0.0250.615\pm 0.025 0.726-0.726 1.1391.139 963963 0.230.23 0.210.21
NGC3627 1 10.8410.84 10.25-10.25 1.087±0.0221.087\pm 0.022 0.785±0.0180.785\pm 0.018 0.428-0.428 1.2501.250 5445254452 0.190.19 0.640.64
NGC4254 1 10.4210.42 9.93-9.93 0.905±0.0110.905\pm 0.011 0.893±0.0060.893\pm 0.006 0.500-0.500 1.3451.345 3222232222 0.100.10 0.660.66
NGC4303 1 10.5110.51 9.78-9.78 0.592±0.0120.592\pm 0.012 0.999±0.0070.999\pm 0.007 0.466-0.466 1.2751.275 90119011 0.100.10 0.540.54
NGC4321 1 10.7510.75 10.20-10.20 0.887±0.0170.887\pm 0.017 0.818±0.0090.818\pm 0.009 0.667-0.667 1.4091.409 84408440 0.100.10 0.590.59
NGC4535 1 10.5410.54 10.20-10.20 0.841±0.0250.841\pm 0.025 0.847±0.0100.847\pm 0.010 0.611-0.611 1.3621.362 44114411 0.130.13 0.500.50
NGC5068 1 9.419.41 9.97-9.97 0.704±0.0300.704\pm 0.030 0.460±0.0170.460\pm 0.017 0.679-0.679 0.9380.938 2638626386 0.210.21 0.360.36
NGC7496 1 10.0010.00 9.65-9.65 0.930±0.0480.930\pm 0.048 0.490±0.0210.490\pm 0.021 0.695-0.695 1.1361.136 37553755 0.130.13 0.540.54
ICO(21)I_{\mathrm{CO(2-1)}} vs F1130W
IC5332 2 9.679.67 10.05-10.05 0.495±0.0220.495\pm 0.022 0.251±0.0120.251\pm 0.012 0.1070.107 0.1990.199 1626316263 0.200.20 0.230.23
NGC0628 1 10.3410.34 10.10-10.10 0.538±0.0540.538\pm 0.054 0.513±0.0440.513\pm 0.044 0.3900.390 0.3040.304 122196122196 0.200.20 0.530.53
NGC1087 1 9.949.94 9.83-9.83 1.034±0.0381.034\pm 0.038 0.312±0.0320.312\pm 0.032 0.6370.637 0.347-0.347 2679026790 0.160.16 0.730.73
NGC1300 1 10.6210.62 10.55-10.55 0.617±0.0780.617\pm 0.078 0.339±0.0580.339\pm 0.058 0.2280.228 0.1990.199 3631936319 0.230.23 0.510.51
NGC1365 1 11.0011.00 9.76-9.76 1.008±0.0601.008\pm 0.060 0.795±0.0510.795\pm 0.051 0.5510.551 0.2400.240 4079340793 0.240.24 0.500.50
NGC1385 1 9.989.98 9.66-9.66 0.705±0.0550.705\pm 0.055 0.512±0.0500.512\pm 0.050 0.7250.725 0.0000.000 3449434494 0.210.21 0.720.72
NGC1433 1 10.8710.87 10.82-10.82 1.060±0.0591.060\pm 0.059 0.256±0.0380.256\pm 0.038 0.2000.200 0.0430.043 1980219802 0.220.22 0.570.57
NGC1512 1 10.7210.72 10.61-10.61 0.874±0.0210.874\pm 0.021 0.198±0.0090.198\pm 0.009 0.2190.219 0.0060.006 1410714107 0.160.16 0.410.41
NGC1566 1 10.7910.79 10.13-10.13 0.939±0.0260.939\pm 0.026 0.402±0.0220.402\pm 0.022 0.5620.562 0.126-0.126 8769387693 0.220.22 0.690.69
NGC1672 1 10.7310.73 9.85-9.85 1.070±0.0401.070\pm 0.040 0.419±0.0270.419\pm 0.027 0.5860.586 0.209-0.209 2367823678 0.200.20 0.670.67
NGC2835 1 10.0010.00 9.90-9.90 0.601±0.0930.601\pm 0.093 0.333±0.0660.333\pm 0.066 0.3510.351 0.1210.121 3658936589 0.240.24 0.430.43
NGC3351 1 10.3710.37 10.25-10.25 0.553±0.0760.553\pm 0.076 0.325±0.0380.325\pm 0.038 0.2760.276 0.1720.172 2915129151 0.180.18 0.290.29
NGC3627 1 10.8410.84 10.25-10.25 1.064±0.0241.064\pm 0.024 0.780±0.0200.780\pm 0.020 0.9490.949 0.229-0.229 6719567195 0.190.19 0.710.71
NGC4254 1 10.4210.42 9.93-9.93 1.006±0.0391.006\pm 0.039 0.601±0.0260.601\pm 0.026 0.7410.741 0.144-0.144 6512365123 0.150.15 0.780.78
NGC4303 1 10.5110.51 9.78-9.78 0.952±0.0240.952\pm 0.024 0.666±0.0160.666\pm 0.016 0.8790.879 0.170-0.170 2940829408 0.170.17 0.690.69
NGC4321 1 10.7510.75 10.20-10.20 1.021±0.0241.021\pm 0.024 0.517±0.0150.517\pm 0.015 0.5180.518 0.012-0.012 3767737677 0.160.16 0.640.64
NGC4535 1 10.5410.54 10.20-10.20 1.129±0.0581.129\pm 0.058 0.350±0.0440.350\pm 0.044 0.3450.345 0.040-0.040 3129631296 0.170.17 0.610.61
NGC4826 2 10.2410.24 10.93-10.93 1.198±0.0691.198\pm 0.069 1.082±0.0381.082\pm 0.038 1.2541.254 0.421-0.421 2284722847 0.120.12 0.810.81
NGC5068 1 9.419.41 9.97-9.97 0.647±0.0200.647\pm 0.020 0.313±0.0150.313\pm 0.015 0.3820.382 0.0660.066 6734767347 0.240.24 0.400.40
NGC7496 1 10.0010.00 9.65-9.65 1.152±0.0101.152\pm 0.010 0.069±0.0060.069\pm 0.006 0.3470.347 0.331-0.331 1559315593 0.140.14 0.700.70

Note. — Columns: Cycle — Indicates whether the galaxy was observed as part of Cycle 1 (GO 2107) or Cycle 2 (GO 3707); log10M\log_{10}M_{\star} — global stellar mass [M]; log10SFR/M\log_{10}\mathrm{SFR}/M_{\star} global specific star formation rate [yr-1]; mm, bb, x0x_{0} — best fit power law scaling parameters following Equation 2 relating CO(2-1) to intensity in band XX; CbandC_{\mathrm{band}} — the normalization of the best-fit relation at IνX=1I_{\nu}^{X}=1 MJy sr-1 [K km s-1 (MJy sr-1)-1]; NpixN_{\rm pix} — number of sight lines entering the analysis, where approximately four sight lines correspond to one independent measurements; σpix\sigma_{\mathrm{pix}} — rms scatter in log10\log_{10}CO(2-1) intensity about the fit for all sight lines included in bins; rr — rank correlation between log10\log_{10}CO(2-1) and intensity in band XX for all sight lines.

Appendix C How to estimate CO (2-1) intensity from PAH emission maps

We suggest the following recipe, along with some key caveats, to estimate CO (2-1) intensity in units of K km s-1 from JWST observations of PAH-dominated filters in units of MJy sr-1.

  1. 1.

    In the case of F335M or F770W, estimate and subtract the associate stellar continuum to calculate IF335MPAHI_{\rm F335M}^{\rm PAH} or IF770WPAHI_{\rm F770W}^{\rm PAH}. Specifically, subtract 0.22×IF300M0.22\times I_{\rm F300M} or 0.13×IF200W0.13\times I_{\rm F200W} from IF770WI_{\rm F770W} (see §3.1 and Sutter et al., 2024). If this is not possible, we view F335M as not useful, while F770W can be used with our provided equations but will be biased high in regions of high stellar-to-dust ratios, including stellar bars and bulges. We do not consider stellar continuum correction necessary for F1130W.

  2. 2.

    For a disk galaxy with inclination ii, correct the surface brightness by multiplying by cosi\cos i.

  3. 3.

    If the specific star formation rate, SFR/MM_{\star}, is known (e.g. from Leroy et al., 2019) and the galaxy resembles a low redshift star-forming galaxy (so that our corrections could be expected to apply), evaluate Equation 4.3 to obtain CnormF770WC_{\rm norm}^{\rm F770W}. We prefer the SFR/MM_{\star} based correction. For F335MPAH and F1130W, we recommend multiplying CF770WPAHC_{\mathrm{F770W}}^{\mathrm{PAH}} (top right panel of Figure 2) by typical band ratios F335MPAH/F770WPAH0.04{}_{\mathrm{PAH}}\approx 0.04 or F1130W/F770WPAH0.69{}_{\mathrm{PAH}}\approx 0.69 (using x0x_{0} from Table 2) to yield CF335MPAHC_{\mathrm{F335M}}^{\mathrm{PAH}} and CF1130WC_{\mathrm{F1130W}} respectively. If this step is not possible, one can make a less accurate estimate by applying the general relation (i.e., simply use the appropriate equation from Table 2 and ignore the following step). In this case, one should expect 0.2\approx 0.2 dex bias in the predicted CO (2-1) map for any individual galaxy.

  4. 4.

    If log10Cnorm\log_{10}C_{\rm norm} has been estimated, subtract this from the observed log10IF770WPAH\log_{10}I^{\mathrm{PAH}}_{\rm F770W} for each sight line to remove the galaxy-to-galaxy normalization. Then for F770WPAH, plug this normalized intensity, xx, into Equation 5 to estimate ylog10ICO(21)y\equiv\log_{10}I_{\rm CO(2-1)}. For F335MPAH,

    y=(0.93±0.09)(x0.10)+(0.13±0.06),y=(0.93\pm 0.09)(x-0.10)+(0.13\pm 0.06), (C1)

    where xx and yy are defined as in Equation 5 and the full Cycle 1 data set shows 0.420.42 dex rms scatter in the residuals. Similarly for F1130W, we find

    y=(1.01±0.09)(x1.34)+(1.27±0.08).y=(1.01\pm 0.09)(x-1.34)+(1.27\pm 0.08). (C2)

The best-fit parameters to Eq. 5 for all PAH bands are shown in Table 6.

Table 5: Best-fit parameters for log10C\log_{10}C versus global galaxy properties. The top row of Figure 1 shows the fits for F770WPAH.
Band NgalN_{\mathrm{gal}} mm bb x0x_{0} rr σline\sigma_{\mathrm{line}} σdata\sigma_{\mathrm{data}}
Fits vs log10\log_{10} SFR/M [yr-1]
F335MPAH 19 0.32±0.18-0.32\pm 0.18 1.20±0.061.20\pm 0.06 10.05-10.05 0.38-0.38 0.220.22 0.200.20
F770WPAH 70 0.21±0.04-0.21\pm 0.04 0.03±0.020.03\pm 0.02 10.14-10.14 0.50-0.50 0.130.13 0.170.17
F770W 70 0.17±0.04-0.17\pm 0.04 0.00±0.02-0.00\pm 0.02 10.14-10.14 0.42-0.42 0.120.12 0.170.17
F1130W 20 0.01±0.13-0.01\pm 0.13 0.03±0.05-0.03\pm 0.05 10.08-10.08 0.01-0.01 0.250.25 0.250.25
Fits vs log10\log_{10} M [M]
F335MPAH 19 0.44±0.100.44\pm 0.10 1.26±0.041.26\pm 0.04 10.5110.51 0.740.74 0.140.14 0.200.20
F770WPAH 70 0.15±0.040.15\pm 0.04 0.06±0.020.06\pm 0.02 10.3410.34 0.380.38 0.160.16 0.170.17
F770W 70 0.12±0.040.12\pm 0.04 0.02±0.020.02\pm 0.02 10.3410.34 0.320.32 0.170.17 0.170.17
F1130W 20 0.01±0.110.01\pm 0.11 0.03±0.05-0.03\pm 0.05 10.4710.47 0.020.02 0.250.25 0.250.25

Note. — Fit results for CO(2-1) normalization vs galaxy properties. mm is the slope, bb is the intercept, x0x_{0} is the pivot point, rr is the Pearson correlation coefficient, σline\sigma_{\mathrm{line}} is the scatter about the fit, and σdata\sigma_{\mathrm{data}} is the scatter in the yy direction.

Table 6: Ratios, correlation, and scaling relations between PAH and CO (2-1) emission. Each section of the table reports results for a different data selection. Before fitting, the CO intensities for each galaxy were scaled by the predicted normalization based on the fit of normalization versus log10\log_{10}SFR/MM_{\star} (Fig. 2, Table 5).
XX NgalN_{\mathrm{gal}} NpixN_{\mathrm{pix}}aafootnotemark: log10CO/X\log_{10}\mathrm{CO}/X rr bb mm x0x_{0} σ\sigma
All pixels
F335MPAH 19 296834 0.08±0.360.08\pm 0.36 0.570.57 0.13±0.060.13\pm 0.06 0.93±0.090.93\pm 0.09 0.100.10 0.420.42
F770WPAH 70 2090731 0.02±0.32-0.02\pm 0.32 0.680.68 1.36±0.061.36\pm 0.06 0.88±0.060.88\pm 0.06 1.441.44 0.430.43
F770W 70 2120025 0.02±0.33-0.02\pm 0.33 0.680.68 1.41±0.071.41\pm 0.07 0.90±0.060.90\pm 0.06 1.471.47 0.430.43
F1130W 20 972892 0.12±0.38-0.12\pm 0.38 0.670.67 1.27±0.081.27\pm 0.08 1.01±0.091.01\pm 0.09 1.341.34 0.460.46
All pixels outside of centers
F335MPAH 19 279910 0.06±0.360.06\pm 0.36 0.550.55 0.04±0.07-0.04\pm 0.07 1.00±0.111.00\pm 0.11 0.05-0.05 0.420.42
F770WPAH 70 2041245 0.02±0.32-0.02\pm 0.32 0.670.67 1.12±0.071.12\pm 0.07 0.98±0.080.98\pm 0.08 1.161.16 0.410.41
F770W 70 2069574 0.02±0.33-0.02\pm 0.33 0.670.67 1.16±0.081.16\pm 0.08 1.02±0.091.02\pm 0.09 1.191.19 0.410.41
F1130W 20 946437 0.12±0.38-0.12\pm 0.38 0.660.66 1.03±0.091.03\pm 0.09 1.14±0.141.14\pm 0.14 1.111.11 0.450.45
All pixels in centers
F335MPAH 17 16915 0.32±0.390.32\pm 0.39 0.710.71 0.35±0.070.35\pm 0.07 0.71±0.090.71\pm 0.09 0.100.10 0.420.42
F770WPAH 58 49469 0.00±0.330.00\pm 0.33 0.880.88 1.38±0.071.38\pm 0.07 0.87±0.070.87\pm 0.07 1.441.44 0.410.41
F770W 58 50434 0.02±0.33-0.02\pm 0.33 0.880.88 1.40±0.071.40\pm 0.07 0.91±0.070.91\pm 0.07 1.471.47 0.430.43
F1130W 18 26443 0.21±0.37-0.21\pm 0.37 0.910.91 1.15±0.071.15\pm 0.07 1.15±0.091.15\pm 0.09 1.341.34 0.400.40
All pixels in nebular regions (Cycle 1 only)
F335MPAH 19 119051 0.02±0.320.02\pm 0.32 0.660.66 0.05±0.07-0.05\pm 0.07 1.03±0.121.03\pm 0.12 0.05-0.05 0.380.38
F770WPAH 19 186605 0.12±0.32-0.12\pm 0.32 0.790.79 0.95±0.090.95\pm 0.09 1.07±0.101.07\pm 0.10 1.091.09 0.390.39
F770W 19 187137 0.11±0.31-0.11\pm 0.31 0.790.79 1.00±0.081.00\pm 0.08 1.11±0.101.11\pm 0.10 1.121.12 0.390.39
F1130W 19 194681 0.18±0.35-0.18\pm 0.35 0.790.79 0.93±0.090.93\pm 0.09 1.20±0.141.20\pm 0.14 1.111.11 0.410.41
All pixels in diffuse regions (Cycle 1 only)
F335MPAH 19 160845 0.10±0.380.10\pm 0.38 0.440.44 0.26±0.10-0.26\pm 0.10 1.24±0.301.24\pm 0.30 0.40-0.40 0.440.44
F770WPAH 19 632119 0.02±0.35-0.02\pm 0.35 0.580.58 0.66±0.120.66\pm 0.12 1.30±0.281.30\pm 0.28 0.660.66 0.450.45
F770W 19 642906 0.02±0.35-0.02\pm 0.35 0.570.57 0.70±0.120.70\pm 0.12 1.35±0.261.35\pm 0.26 0.700.70 0.450.45
F1130W 19 727342 0.11±0.38-0.11\pm 0.38 0.580.58 0.75±0.120.75\pm 0.12 1.40±0.231.40\pm 0.23 0.810.81 0.460.46

Note. — Fit results for CO(2-1) normalization vs galaxy properties. mm is the slope, bb is the intercept, x0x_{0} is the pivot point, rr is the Pearson correlation coefficient, and σ\sigma is the scatter about the fit.

This procedure will predict the CO (2-1) intensity. In many cases the molecular gas mass will be the quantity of direct interest. In future work, we aim to explore how IF770WPAHI^{\mathrm{PAH}}_{\rm F770W} compares to N(H)N(H) directly. For now, to convert from CO intensity to molecular gas column or surface density, one should multiply the predicted CO maps by an appropriate CO (2-1)-to-H2 conversion factor. Bolatto et al. (2013) review the CO-to-H2 conversion factor and Schinnerer & Leroy (2024) provide current prescriptions that attempt to account for variations in opacity, CO excitation, and metallicity.

References

  • Allamandola et al. (1989) Allamandola, L. J., Tielens, A. G. G. M., & Barker, J. R. 1989, ApJS, 71, 733, doi: 10.1086/191396
  • Aniano et al. (2011) Aniano, G., Draine, B. T., Gordon, K. D., & Sandstrom, K. 2011, PASP, 123, 1218, doi: 10.1086/662219
  • Aniano et al. (2020) Aniano, G., Draine, B. T., Hunt, L. K., et al. 2020, ApJ, 889, 150, doi: 10.3847/1538-4357/ab5fdb
  • Astropy Collaboration et al. (2013) Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33, doi: 10.1051/0004-6361/201322068
  • Astropy Collaboration et al. (2018) Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
  • Astropy Collaboration et al. (2022) Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et al. 2022, ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74
  • Barnes et al. (2022) Barnes, A. T., Chandar, R., Kreckel, K., et al. 2022, A&A, 662, L6, doi: 10.1051/0004-6361/202243766
  • Baron et al. (2024a) Baron, D., Netzer, H., Lutz, D., Davies, R. I., & Prochaska, J. X. 2024a, ApJ, 968, 23, doi: 10.3847/1538-4357/ad39e9
  • Baron et al. (2024b) Baron, D., Sandstrom, K. M., Rosolowsky, E., et al. 2024b, ApJ, 968, 24, doi: 10.3847/1538-4357/ad39e5
  • Belfiore et al. (2023) Belfiore, F., Leroy, A. K., Williams, T. G., et al. 2023, arXiv e-prints, arXiv:2306.11811, doi: 10.48550/arXiv.2306.11811
  • Bolatto et al. (2013) Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARA&A, 51, 207, doi: 10.1146/annurev-astro-082812-140944
  • Bolatto et al. (2024) Bolatto, A. D., Levy, R. C., Tarantino, E., et al. 2024, ApJ, 967, 63, doi: 10.3847/1538-4357/ad33c8
  • Boulanger & Perault (1988) Boulanger, F., & Perault, M. 1988, ApJ, 330, 964, doi: 10.1086/166526
  • Calzetti et al. (2007) Calzetti, D., Kennicutt, R. C., Engelbracht, C. W., et al. 2007, ApJ, 666, 870, doi: 10.1086/520082
  • Chastenet et al. (2023a) Chastenet, J., Sutter, J., Sandstrom, K., et al. 2023a, ApJ, 944, L12, doi: 10.3847/2041-8213/acac94
  • Chastenet et al. (2023b) —. 2023b, ApJ, 944, L11, doi: 10.3847/2041-8213/acadd7
  • Chastenet et al. (2024) Chastenet, J., Sandstrom, K. M., Leroy, A. K., et al. 2024, arXiv e-prints, arXiv:2410.03835. https://arxiv.org/abs/2410.03835
  • Chiang et al. (2024) Chiang, I.-D., Sandstrom, K. M., Chastenet, J., et al. 2024, ApJ, 964, 18, doi: 10.3847/1538-4357/ad23ed
  • Chown et al. (2021) Chown, R., Li, C., Parker, L., et al. 2021, MNRAS, 500, 1261, doi: 10.1093/mnras/staa3288
  • Chown et al. (2024) Chown, R., Sidhu, A., Peeters, E., et al. 2024, A&A, 685, A75, doi: 10.1051/0004-6361/202346662
  • Compiègne et al. (2008) Compiègne, M., Abergel, A., Verstraete, L., & Habart, E. 2008, A&A, 491, 797, doi: 10.1051/0004-6361:200809850
  • Compiègne et al. (2010) Compiègne, M., Flagey, N., Noriega-Crespo, A., et al. 2010, ApJ, 724, L44, doi: 10.1088/2041-8205/724/1/L44
  • Dale et al. (2025) Dale, D. A., Graham, G. B., Barnes, A. T., et al. 2025, arXiv e-prints, arXiv:2501.10539. https://arxiv.org/abs/2501.10539
  • Doré et al. (2018) Doré, O., Werner, M. W., Ashby, M. L. N., et al. 2018, arXiv e-prints, arXiv:1805.05489, doi: 10.48550/arXiv.1805.05489
  • Draine (2011) Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium
  • Draine & Li (2007) Draine, B. T., & Li, A. 2007, ApJ, 657, 810, doi: 10.1086/511055
  • Draine et al. (2021) Draine, B. T., Li, A., Hensley, B. S., et al. 2021, ApJ, 917, 3, doi: 10.3847/1538-4357/abff51
  • Draine et al. (2007) Draine, B. T., Dale, D. A., Bendo, G., et al. 2007, ApJ, 663, 866, doi: 10.1086/518306
  • Egorov et al. (2023) Egorov, O. V., Kreckel, K., Sandstrom, K. M., et al. 2023, ApJ, 944, L16, doi: 10.3847/2041-8213/acac92
  • Eibensteiner et al. (2024) Eibensteiner, C., Sun, J., Bigiel, F., et al. 2024, A&A, 691, A163, doi: 10.1051/0004-6361/202449944
  • Emsellem et al. (2022) Emsellem, E., Schinnerer, E., Santoro, F., et al. 2022, A&A, 659, A191, doi: 10.1051/0004-6361/202141727
  • Galliano et al. (2018) Galliano, F., Galametz, M., & Jones, A. P. 2018, ARA&A, 56, 673, doi: 10.1146/annurev-astro-081817-051900
  • Gao et al. (2022) Gao, Y., Tan, Q.-H., Gao, Y., et al. 2022, arXiv e-prints, arXiv:2210.01982. https://arxiv.org/abs/2210.01982
  • Gao et al. (2019) Gao, Y., Xiao, T., Li, C., et al. 2019, ApJ, 887, 172, doi: 10.3847/1538-4357/ab557c
  • Gordon et al. (2008) Gordon, K. D., Engelbracht, C. W., Rieke, G. H., et al. 2008, ApJ, 682, 336, doi: 10.1086/589567
  • Groves et al. (2023) Groves, B., Kreckel, K., Santoro, F., et al. 2023, MNRAS, 520, 4902, doi: 10.1093/mnras/stad114
  • Hassani et al. (2023) Hassani, H., Rosolowsky, E., Leroy, A. K., et al. 2023, ApJ, 944, L21, doi: 10.3847/2041-8213/aca8ab
  • Hensley et al. (2022) Hensley, B. S., Murray, C. E., & Dodici, M. 2022, ApJ, 929, 23, doi: 10.3847/1538-4357/ac5cbd
  • Hildebrand (1983) Hildebrand, R. H. 1983, QJRAS, 24, 267
  • Israel (1997) Israel, F. P. 1997, A&A, 328, 471, doi: 10.48550/arXiv.astro-ph/9709194
  • Israel (2020) —. 2020, A&A, 635, A131, doi: 10.1051/0004-6361/201834198
  • Kelly (2007) Kelly, B. C. 2007, ApJ, 665, 1489, doi: 10.1086/519947
  • Kennicutt & Evans (2012) Kennicutt, R. C., & Evans, N. J. 2012, ARA&A, 50, 531, doi: 10.1146/annurev-astro-081811-125610
  • Lang et al. (2020) Lang, P., Meidt, S. E., Rosolowsky, E., et al. 2020, ApJ, 897, 122, doi: 10.3847/1538-4357/ab9953
  • Lebouteiller et al. (2007) Lebouteiller, V., Brandl, B., Bernard-Salas, J., Devost, D., & Houck, J. R. 2007, ApJ, 665, 390, doi: 10.1086/519014
  • Lee et al. (2022) Lee, J. C., Whitmore, B. C., Thilker, D. A., et al. 2022, ApJS, 258, 10, doi: 10.3847/1538-4365/ac1fe5
  • Lee et al. (2023) Lee, J. C., Sandstrom, K. M., Leroy, A. K., et al. 2023, ApJ, 944, L17, doi: 10.3847/2041-8213/acaaae
  • Leger & Puget (1984) Leger, A., & Puget, J. L. 1984, A&A, 137, L5
  • Leroy et al. (2011) Leroy, A. K., Bolatto, A., Gordon, K., et al. 2011, ApJ, 737, 12, doi: 10.1088/0004-637X/737/1/12
  • Leroy et al. (2019) Leroy, A. K., Sandstrom, K. M., Lang, D., et al. 2019, ApJS, 244, 24, doi: 10.3847/1538-4365/ab3925
  • Leroy et al. (2021) Leroy, A. K., Schinnerer, E., Hughes, A., et al. 2021, ApJS, 257, 43, doi: 10.3847/1538-4365/ac17f3
  • Leroy et al. (2023a) Leroy, A. K., Bolatto, A. D., Sandstrom, K., et al. 2023a, ApJ, 944, L10, doi: 10.3847/2041-8213/acab01
  • Leroy et al. (2023b) Leroy, A. K., Sandstrom, K., Rosolowsky, E., et al. 2023b, ApJ, 944, L9, doi: 10.3847/2041-8213/acaf85
  • Li et al. (2024) Li, J., Kreckel, K., Sarbadhicary, S., et al. 2024, arXiv e-prints, arXiv:2405.08974, doi: 10.48550/arXiv.2405.08974
  • Linzer et al. (2024) Linzer, N. B., Kim, J.-G., Kim, C.-G., & Ostriker, E. C. 2024, arXiv e-prints, arXiv:2409.05958, doi: 10.48550/arXiv.2409.05958
  • Madden et al. (2006) Madden, S. C., Galliano, F., Jones, A. P., & Sauvage, M. 2006, A&A, 446, 877, doi: 10.1051/0004-6361:20053890
  • Maragkoudakis et al. (2020) Maragkoudakis, A., Peeters, E., & Ricca, A. 2020, MNRAS, 494, 642, doi: 10.1093/mnras/staa681
  • Meidt et al. (2023) Meidt, S. E., Rosolowsky, E., Sun, J., et al. 2023, ApJ, 944, L18, doi: 10.3847/2041-8213/acaaa8
  • Montillaud et al. (2013) Montillaud, J., Joblin, C., & Toublanc, D. 2013, A&A, 552, A15, doi: 10.1051/0004-6361/201220757
  • Neumann et al. (2023) Neumann, L., den Brok, J. S., Bigiel, F., et al. 2023, A&A, 675, A104, doi: 10.1051/0004-6361/202346129
  • Pathak et al. (2024) Pathak, D., Leroy, A. K., Thompson, T. A., et al. 2024, AJ, 167, 39, doi: 10.3847/1538-3881/ad110d
  • Pedrini et al. (2024) Pedrini, A., Adamo, A., Calzetti, D., et al. 2024, arXiv e-prints, arXiv:2406.01666, doi: 10.48550/arXiv.2406.01666
  • Peeters et al. (2004) Peeters, E., Spoon, H. W. W., & Tielens, A. G. G. M. 2004, ApJ, 613, 986, doi: 10.1086/423237
  • Peeters et al. (2024) Peeters, E., Habart, E., Berné, O., et al. 2024, A&A, 685, A74, doi: 10.1051/0004-6361/202348244
  • Pety et al. (2005) Pety, J., Teyssier, D., Fossé, D., et al. 2005, A&A, 435, 885, doi: 10.1051/0004-6361:20041170
  • Povich et al. (2007) Povich, M. S., Stone, J. M., Churchwell, E., et al. 2007, ApJ, 660, 346, doi: 10.1086/513073
  • Puget & Leger (1989) Puget, J. L., & Leger, A. 1989, ARA&A, 27, 161, doi: 10.1146/annurev.aa.27.090189.001113
  • Querejeta et al. (2021) Querejeta, M., Schinnerer, E., Meidt, S., et al. 2021, A&A, 656, A133, doi: 10.1051/0004-6361/202140695
  • Regan et al. (2004) Regan, M. W., Thornley, M. D., Bendo, G. J., et al. 2004, ApJS, 154, 204, doi: 10.1086/423204
  • Saintonge & Catinella (2022) Saintonge, A., & Catinella, B. 2022, arXiv e-prints, arXiv:2202.00690. https://arxiv.org/abs/2202.00690
  • Saintonge et al. (2017) Saintonge, A., Catinella, B., Tacconi, L. J., et al. 2017, ApJS, 233, 22, doi: 10.3847/1538-4365/aa97e0
  • Sandstrom et al. (2013) Sandstrom, K. M., Leroy, A. K., Walter, F., et al. 2013, ApJ, 777, 5, doi: 10.1088/0004-637X/777/1/5
  • Sandstrom et al. (2023a) Sandstrom, K. M., Koch, E. W., Leroy, A. K., et al. 2023a, ApJ, 944, L8, doi: 10.3847/2041-8213/aca972
  • Sandstrom et al. (2023b) Sandstrom, K. M., Chastenet, J., Sutter, J., et al. 2023b, ApJ, 944, L7, doi: 10.3847/2041-8213/acb0cf
  • Santoro et al. (2022) Santoro, F., Kreckel, K., Belfiore, F., et al. 2022, A&A, 658, A188, doi: 10.1051/0004-6361/202141907
  • Schinnerer & Leroy (2024) Schinnerer, E., & Leroy, A. K. 2024, arXiv e-prints, arXiv:2403.19843, doi: 10.48550/arXiv.2403.19843
  • Schinnerer et al. (2023) Schinnerer, E., Emsellem, E., Henshaw, J. D., et al. 2023, ApJ, 944, L15, doi: 10.3847/2041-8213/acac9e
  • Schruba et al. (2011) Schruba, A., Leroy, A. K., Walter, F., et al. 2011, AJ, 142, 37, doi: 10.1088/0004-6256/142/2/37
  • Smith et al. (2007) Smith, J. D. T., Draine, B. T., Dale, D. A., et al. 2007, ApJ, 656, 770, doi: 10.1086/510549
  • Sun et al. (2020) Sun, J., Leroy, A. K., Ostriker, E. C., et al. 2020, ApJ, 892, 148, doi: 10.3847/1538-4357/ab781c
  • Sutter et al. (2024) Sutter, J., Sandstrom, K., Chastenet, J., et al. 2024, ApJ, 971, 178, doi: 10.3847/1538-4357/ad54bd
  • Teng et al. (2023) Teng, Y.-H., Sandstrom, K. M., Sun, J., et al. 2023, ApJ, 950, 119, doi: 10.3847/1538-4357/accb86
  • Thilker et al. (2023) Thilker, D. A., Lee, J. C., Deger, S., et al. 2023, ApJ, 944, L13, doi: 10.3847/2041-8213/acaeac
  • Tielens (2008) Tielens, A. G. G. M. 2008, ARA&A, 46, 289, doi: 10.1146/annurev.astro.46.060407.145211
  • Whitcomb et al. (2023a) Whitcomb, C. M., Sandstrom, K., Leroy, A., & Smith, J. D. T. 2023a, ApJ, 948, 88, doi: 10.3847/1538-4357/acc316
  • Whitcomb et al. (2023b) Whitcomb, C. M., Sandstrom, K., & Smith, J.-D. T. 2023b, Research Notes of the American Astronomical Society, 7, 38, doi: 10.3847/2515-5172/acc073
  • Williams et al. (2024) Williams, T. G., Lee, J. C., Larson, K. L., et al. 2024, ApJS, 273, 13, doi: 10.3847/1538-4365/ad4be5
  • Wright et al. (2010) Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868, doi: 10.1088/0004-6256/140/6/1868