This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Polynomial growth and functional calculus in algebras of integrable cross-sections

Felipe I. Flores    Felipe I. Flores 111 2020 Mathematics Subject Classification: Primary 43A20, Secondary 47L65, 47L30.
Key Words: Fell bundle, polynomial growth, Banach -algebra, twisted action, regularity, symmetry, Wiener property, spectral invariance.
Acknowledgements: The author has been partially supported by the NSF grant DMS-2000105.
Abstract

Let 𝖦{\sf G} be a locally compact group with polynomial growth of order dd, a polynomial weight ν\nu on 𝖦{\sf G} and a Fell bundle 𝒞𝑞𝖦\mathscr{C}\overset{q}{\to}{\sf G}. We study the Banach -algebras L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) and L1,ν(𝖦|𝒞)L^{1,\nu}({\sf G}\,|\,\mathscr{C}), consisting of integrable cross-sections with respect to dx{\rm d}x and ν(x)dx\nu(x){\rm d}x, respectively. By exploring new relations between the LpL^{p}-norms and the norm of the Hilbert CC^{*}-module L𝖾2(𝖦|𝒞)L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}), we are able to develop a smooth functional calculus for the self-adjoint, compactly-supported, continuous cross-sections and estimate the growth of the semigroups they generate by

eitΦ=O(|t|2d+2), as |t|.\lVert e^{it\Phi}\rVert=O(|t|^{2d+2}),\quad\textup{ as }|t|\to\infty.

We also give some sufficient conditions for these algebras to be symmetric. As consequences, we show that this algebras are locally regular, -regular and have the Wiener property (when symmetric), among other results.

Our results are already new for convolution algebras Lα1(𝖦,𝔄)L_{\alpha}^{1}({\sf G},\mathfrak{A}) associated with a CC^{*}-dynamical system (𝖦,𝔄,α)({\sf G},\mathfrak{A},\alpha). As an application, we show that Hahn algebras of transformation groupoids where the acting group has polynomial growth are -regular. In an appendix, we also use our techniques to compute the spectral radius of some cross-sections associated with groups of subexponential growth and show that compact groups are hypersymmetric.

1 Introduction

A great deal of effort within the subject of abstract harmonic analysis has been put into understanding the L1L^{1}-algebras and weighted L1L^{1}-algebras of locally compact groups. Most of this research has focused into extending properties of L1()L^{1}(\mathbb{R}) or 1()\ell^{1}(\mathbb{Z}) to more general algebras. In general, one could say that the case of abelian groups is fairly well understood [43] and teaches us what to expect for more general algebras, like L1(𝖦)L^{1}({\sf G}), for a noncommutative group 𝖦{\sf G}.

In particular, we are going to be interested in spectral properties like symmetry [29, 34], norm-controlled inversion [21, 22] and ideal-theoretic properties like -regularity [8, 10, 33] or the Wiener property [23, 28, 34]. This properties will be defined at the right time. For now, let us vaguely state that symmetry means that the spectral theory of our algebra is that of a CC^{*}-algebra, with -regularity being an analogous statement about the primitive space. The property of norm-controlled inversion holds if the norms of inverses can be estimated using CC^{*}-norms and the Wiener property is a generalization of Wiener’s tauberian theorem [47]. Our reference for the theory of Banach -algebras is [39].

The case of groups with polynomial growth is already interesting enough, as some of the properties previously mentioned no longer hold in full generality (like symmetry). In this setting, the ideal theory of group algebras has been studied on [5, 35] (mostly under the assumption of symmetry) and the case of weighted group algebras on [15, 19, 36]. Norm-controlled inversion was studied for group algebras in [38, 44]. Let us also mention that a -regular algebra has a unique CC^{*}-norm and the question of uniqueness of CC^{*}-norms on group algebras (or even group rings) has been studied in [12, 1].

It seems natural to us that a continuation of these studies would consider group algebras twisted by a cocycle Lω1(𝖦)L_{\omega}^{1}({\sf G}), convolution algebras Lα1(𝖦,𝔄)L_{\alpha}^{1}({\sf G},\mathfrak{A}) associated with a CC^{*}-dynamical system (𝖦,𝔄,α)({\sf G},\mathfrak{A},\alpha), or more generally the algebra of cross-sections L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) associated with a Fell bundle 𝒞𝑞𝖦\mathscr{C}\overset{q}{\to}{\sf G}. However, the current literature is remarkably lacking in this respect. A lot of progress has been made in the study of symmetry [20, 26, 27, 29], but results about the Wiener property or -regularity of these algebras are few and apart [30, 31] (we remark that most of these results are based on the construction of a functional calculus beyond the one based on holomorphic functions -naturally existing in any Banach -algebra-). In particular, anything stated generally enough and beyond the algebras of finite dimensional CC^{*}-dynamical systems seems to be new. Let us now exemplify some of the difficulty that this problem posed.

Example 1.1.

Dixmier’s approach [14, Lemme 6] to constructing a functional calculus in L1(𝖦)L^{1}({\sf G}) is based on the inequality

ΦL1(𝖦)1Supp(Φ)L2(𝖦)ΦL2(𝖦)=μ(Supp(Φ))1/2ΦL2(𝖦),\lVert\Phi\rVert_{L^{1}({\sf G})}\leq\lVert 1_{{\rm Supp}(\Phi)}\rVert_{L^{2}({\sf G})}\lVert\Phi\rVert_{L^{2}({\sf G})}=\mu({\rm Supp}(\Phi))^{1/2}\lVert\Phi\rVert_{L^{2}({\sf G})}, (1.1)

that holds for ΦL1(𝖦)\Phi\in L^{1}({\sf G}) of compact support. Dixmier then heavily uses the fact that L2(𝖦){L^{2}({\sf G})} is the space where Cred(𝖦)C_{\rm red}^{*}({\sf G}) is represented to estimate ΦL2(𝖦)\lVert\Phi\rVert_{L^{2}({\sf G})}.

Example 1.2.

When dealing with the algebra L1(𝖦)L^{1}({\sf G}) of a group, the left regular representation occurs on L2(𝖦)L^{2}({\sf G}). Therefore, obtaining inequalities like the following is possible (and rather simple),

ΦnL2(𝖦)ΦL1(𝖦)Φn1L2(𝖦)ΦL1(𝖦)Φn2Cred(𝖦)ΦL2(𝖦).\lVert\Phi^{n}\rVert_{L^{2}({\sf G})}\leq\lVert\Phi\rVert_{L^{1}({\sf G})}\lVert\Phi^{n-1}\rVert_{L^{2}({\sf G})}\leq\lVert\Phi\rVert_{L^{1}({\sf G})}\lVert\Phi^{n-2}\rVert_{C_{\rm red}^{*}({\sf G})}\lVert\Phi\rVert_{L^{2}({\sf G})}. (1.2)

If one also assumes that, say, 𝖦{\sf G} is compact, then

ΦnL1(𝖦)ΦnL2(𝖦),\lVert\Phi^{n}\rVert_{L^{1}({\sf G})}\leq\lVert\Phi^{n}\rVert_{L^{2}({\sf G})}, (1.3)

so by taking nn-th roots and the limit nn\to\infty in (1.2), one has already shown that the spectral radius of Φ\Phi is the same when taken with respect to L1(𝖦)L^{1}({\sf G}) or C(𝖦)C^{*}({\sf G}), allowing to relate the spectral properties of both algebras.

Now, in any more general case involving algebras with coefficients other than complex numbers, the naive approach to recreating these arguments completely breaks down. If followed without any changes, one would obtain estimates involving the norm in L2(𝖦|𝒞)L^{2}({\sf G}\,|\,\mathscr{C}), which is not a Hilbert CC^{*}-module, so there is no hope of using CC^{*}-algebra theory. On the other hand, if we replace L2(𝖦|𝒞)L^{2}({\sf G}\,|\,\mathscr{C}) by the usually chosen Hilbert CC^{*}-module -here denoted as L𝖾2(𝖦|𝒞)L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})-, no progress can be made after the first inequalities. This exemplifies some lack of interplay between the LpL^{p} norms and the norm of Le2(𝖦|𝒞)L^{2}_{e}({\sf G}\,|\,\mathscr{C}) and poses a major problem when trying to pass from group algebras to algebras of a crossed-product-type. In simpler terms, to progress, one would like to majorize an LpL^{p}-norm with a quantity involving the Le2L^{2}_{e}-norm. The Le2L^{2}_{e}-norm, however, is smaller than the L2L^{2}-norm.

This motivated the authors in [32] to define new norms with a more harmonious interplay between them (their 22-norm being the same norm of L𝖾2(𝖦|𝒞)L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})) and essentially abandon the study of the classical L1L^{1}-algebras. We take their norms and note they could be used to prove an strengthened version of Young’s inequality, at least in the case r=,p=q=2r=\infty,p=q=2. This fact, together with others (Lemma 3.4) is then used to bypass the technical difficulties and relate the Hilbert CC^{*}-module norm to the LpL^{p}-norms just enough to get results. This lack of access to inequalities together with the natural difficulties associated to our level of generality (which include the fact that the functions of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) do not take values in a single Banach space) make our proofs rather indirect and different from the classical ones.

In any case, we are able to produce far-reaching generalizations that we compile in the following theorem.

Theorem 1.3.

Let 𝖦{\sf G} be a locally compact group with growth of order dd, ν\nu a polynomial weight on 𝖦{\sf G} such that ν1\nu^{-1} belongs to Lp(𝖦)L^{p}({\sf G}), for some 0<p<0<p<\infty and let 𝔇\mathfrak{D} denote either L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) or L1,ν(𝖦|𝒞)L^{1,\nu}({\sf G}\,|\,\mathscr{C}), with 𝔇~\widetilde{\mathfrak{D}} being the corresponding minimal unitization. Then the following are true

  • (i)

    For Φ=ΦCc(𝖦|𝒞)\Phi=\Phi^{*}\in C_{\rm c}({\sf G}\,|\,\mathscr{C}), one has the growth

    eitΦ𝔇~=O(|t|2d+2), as |t|.\lVert e^{it\Phi}\rVert_{\widetilde{\mathfrak{D}}}=O(|t|^{2d+2}),\quad\textup{ as }|t|\to\infty.

    In particular, for any complex function f:f:\mathbb{R}\to\mathbb{C} that admits 2d+42d+4 continuous and integrable derivatives, with Fourier transform f^\widehat{f}, we have

    1. (a)

      f(Φ)=12πf^(t)eitΦdtf(\Phi)=\frac{1}{2\pi}\int_{\mathbb{R}}\widehat{f}(t)e^{it\Phi}{\rm d}t exists in 𝔇~\widetilde{\mathfrak{D}}, or in 𝔇{\mathfrak{D}} if f(0)=0f(0)=0.

    2. (b)

      For any non-degenerate -representation Π:𝔇𝔹()\Pi:{\mathfrak{D}}\to\mathbb{B}(\mathcal{H}), we have

      Π~(f(Φ))=f(Π(Φ)).\widetilde{\Pi}(f\big{(}\Phi\big{)})=f\big{(}\Pi(\Phi)\big{)}.

      Furthermore, if Π\Pi is injective, we also have

      Spec𝔇~(f(Φ))=Spec𝔹()(Π~(f(Φ))).{\rm Spec}_{\widetilde{\mathfrak{D}}}\big{(}f(\Phi)\big{)}={\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}\widetilde{\Pi}\big{(}f(\Phi)\big{)}\big{)}.
  • (ii)

    𝔇\mathfrak{D} is locally regular and -regular.

  • (iii)

    Moreover, if 𝔇\mathfrak{D} is also assumed symmetric, then it has the Wiener property and for every unital Banach algebra 𝔅\mathfrak{B} and each continuous unital homomorphism φ:𝔇~𝔅\varphi:\widetilde{\mathfrak{D}}\to\mathfrak{B}, we have

    1. (a)

      If Φ𝔇~\Phi\in\widetilde{\mathfrak{D}} is normal,

      Spec𝔇~/I(Φ)=Spec𝔅(φ(Φ)).{\rm Spec}_{\widetilde{\mathfrak{D}}/I}(\Phi)={\rm Spec}_{\mathfrak{B}}\big{(}\varphi(\Phi)\big{)}.
    2. (b)

      For a general Φ𝔇~\Phi\in\widetilde{\mathfrak{D}},

      Spec𝔇~/I(Φ)=Spec𝔅(φ(Φ))Spec𝔅(φ(Φ))¯.{\rm Spec}_{\widetilde{\mathfrak{D}}/I}(\Phi)={\rm Spec}_{\mathfrak{B}}\big{(}\varphi(\Phi)\big{)}\cup\overline{{\rm Spec}_{\mathfrak{B}}\big{(}\varphi(\Phi^{*})\big{)}}.

    Where I=kerφI={\rm ker}\,\varphi.

We remark that Theorem 1.3 is already new when 𝔇=Lα1(𝖦,𝔄)\mathfrak{D}=L_{\alpha}^{1}({\sf G},\mathfrak{A}) and (𝖦,𝔄,α)({\sf G},\mathfrak{A},\alpha) is a CC^{*}-dynamical system and thus our results greatly extend the previous literature. Let us also mention that L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) is symmetric when 𝖦{\sf G} is nilpotent [20] or compact (Theorem 7.5), while L1,ν(𝖦|𝒞)L^{1,\nu}({\sf G}\,|\,\mathscr{C}) is always symmetric (Theorem 4.14). However, we only guarantee the existence of such a weight in the case that 𝖦{\sf G} is compactly generated (Proposition 4.6) or when 𝖦{\sf G} can be saturated by an increasing sequence of compact subgroups (Example 4.7).

Based on the inequalities we proved, we can also produce the following result about norm-controlled inversion. It seems to be the first result known for convolution algebras where the algebra of coefficients is not \mathbb{C}.

Theorem 1.4.

Let ν\nu a polynomial weight on 𝖦{\sf G} such that ν1\nu^{-1} belongs to Lp(𝖦)L^{p}({\sf G}), for some 0<p<0<p<\infty and let 𝔈=L1,ν(𝖦|𝒞)L(𝖦|𝒞)\mathfrak{E}=L^{1,\nu}({\sf G}\,|\,\mathscr{C})\cap L^{\infty}({\sf G}\,|\,\mathscr{C}). Then the following are true.

  1. (i)

    𝔈\mathfrak{E} is a symmetric Banach -subalgebra of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}).

  2. (ii)

    If 𝖦{\sf G} is discrete and 𝔈=1,ν(𝖦|𝒞)\mathfrak{E}=\ell^{1,\nu}({\sf G}\,|\,\mathscr{C}) has a unit, then it admits norm-controlled inversion.

We now briefly describe the content of the article. Section 2 contains preliminaries. We mostly fix notation and prove the Dixmier-Baillet theorem, which we use to construct our functional calculus. Section 3 deals with proving Lemma 3.4 (our main computational lemma) and deriving the growth estimate of the semigroups eitΦe^{it\Phi} in the case of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}). In Section 4 we show the same but for L1,ν(𝖦|𝒞)L^{1,\nu}({\sf G}\,|\,\mathscr{C}), after showing that this algebra is both symmetric and inverse-closed in L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}). In Section 5 we derive the rest of Theorem 1.3, based on the results we obtained and some well-established methods. Each part of theorem is treated in a different subsection. In these subsections we also derive some other (smaller) properties of these algebras, not mentioned here. Subsection 5.4 is somewhat different to the rest, as it does not rely on the functional calculus we developed, but on the norm estimates. It is devoted to introduce the algebra 𝔈\mathfrak{E} and prove Theorem 1.4. Section 6 is dedicated to show that twisted Hahn algebras of transformation groupoids where the acting group has polynomial growth are -regular, upgrading the existing results (of CC^{*}-uniqueness) in this case. Finally, Section 7 is an appendix, where we use Lemma 3.4 to show that Cc(𝖦|𝒞)C_{\rm c}({\sf G}\,|\,\mathscr{C}) is quasi-symmetric in the subexponential growth case and that compact groups are hypersymmetric. This last fact both extends the applicability of our main theorem and helps us provide the first known examples of hypersymmetric groups with non-symmetric discretizations.

2 Preliminaries

Let 𝔅\mathfrak{B} be a Banach algebra. 𝔅(b1,,bn)\mathfrak{B}(b_{1},\ldots,b_{n}) denotes the closed subalgebra of 𝔅\mathfrak{B} generated by the elements b1,,bn𝔅b_{1},\ldots,b_{n}\in\mathfrak{B}. The set of invertible elements in 𝔅\mathfrak{B} is denoted by Inv(𝔅){\rm Inv}(\mathfrak{B}). If 𝔅\mathfrak{B} has an involution, 𝔅sa\mathfrak{B}_{\rm sa} denotes the set of self-adjoint elements in 𝔅\mathfrak{B}. The Banach algebra of bounded operators over the Banach space 𝒳\mathcal{X} is denoted by 𝔹(𝒳)\mathbb{B}(\mathcal{X}). If 𝔅\mathfrak{B} is a commutative Banach algebra with spectrum Δ\Delta, then b^C0(Δ)\hat{b}\in C_{0}(\Delta) denotes the Gelfand transform of b𝔅b\in\mathfrak{B}. In particular, the Fourier transform of a complex function f:f:\mathbb{R}\to\mathbb{C} is

f^(t)=f(x)eitxdx.\widehat{f}(t)=\int_{\mathbb{R}}f(x)e^{itx}{\rm d}x.
Definition 2.1.

Let 𝔅\mathfrak{B} be a Banach -algebra. If 𝔅\mathfrak{B} is unital, we set 𝔅~=𝔅\widetilde{\mathfrak{B}}=\mathfrak{B}. Otherwise, 𝔅~=𝔅\widetilde{\mathfrak{B}}=\mathfrak{B}\oplus\mathbb{C} is the smallest unitization of 𝔅\mathfrak{B}, endowed with the norm b+r1𝔅~=b𝔅+|r|\lVert b+r1\rVert_{\widetilde{\mathfrak{B}}}=\lVert b\rVert_{{\mathfrak{B}}}+|r|.

Remark 2.2.

If Π:𝔅𝔹()\Pi:\mathfrak{B}\to\mathbb{B}(\mathcal{H}) is a non-denegerate -representation, then it extends naturally to a non-denegerate -representation Π~:𝔅~𝔹()\widetilde{\Pi}:\widetilde{\mathfrak{B}}\to\mathbb{B}(\mathcal{H}), defined by Π~(b+r1)=Π(b)+rid\widetilde{\Pi}(b+r1)=\Pi(b)+r{\rm id}_{\mathcal{H}}.

As usual, Spec𝔅(b)={λbλ1 is not invertible in 𝔅~}{\rm Spec}_{\mathfrak{B}}(b)=\{\lambda\in\mathbb{C}\mid b-\lambda 1\textup{ is not invertible in }\widetilde{\mathfrak{B}}\} will denote the spectrum of an element b𝔅b\in\mathfrak{B}, while

ρ𝔅(b)=sup{|λ|λSpec𝔅(b)}\rho_{\mathfrak{B}}(b)=\sup\{|\lambda|\mid\lambda\in{\rm Spec}_{\mathfrak{B}}(b)\}

denotes its spectral radius. Gelfand’s formula for the spectral radius says that ρ𝔅(b)=limnbn𝔅1/n\rho_{\mathfrak{B}}(b)=\lim_{n\to\infty}\lVert b^{n}\rVert_{\mathfrak{B}}^{1/n}.

Definition 2.3.

Let 𝔅\mathfrak{B} be a Banach -algebra. An element b𝔅b\in\mathfrak{B} is said to have polynomial growth of order dd if

eitb𝔅~=O(|t|d), as |t|.\lVert e^{itb}\rVert_{\widetilde{\mathfrak{B}}}=O(|t|^{d}),\quad\textup{ as }|t|\to\infty.
Remark 2.4.

Barnes [6] defines and studies this property in the context of the algebra 𝔹(𝒳)\mathbb{B}(\mathcal{X}) of operators on the Banach space 𝒳\mathcal{X}. In particular, he provides many examples of operators with this property. Barnes’ approach is equivalent to us, as we can consider general Banach -algebras 𝔅\mathfrak{B}, acting as represented as operators on 𝔅~\widetilde{\mathfrak{B}} via left multiplication.

The key idea for us is that the self-adjoint elements of polynomial growth admit a smooth functional calculus. The concrete fact is the following theorem, attributed to Dixmier [14, Lemme 7] and Baillet [4, Théorème 1]. See also [32, Theorem 1.3]. Let us also mention that functional calculi involving smooth functions has also appeared in other (different, but related) contexts, such as [25, 37].

Theorem 2.5.

Let 𝔅\mathfrak{B} be a Banach -algebra, b𝔅b\in\mathfrak{B} be a self-adjoint element with polynomial growth of order dd. Let f:f:\mathbb{R}\to\mathbb{C} be a complex function that admits d+2d+2 continuous and integrable derivatives. Let f^\widehat{f} be the Fourier transform of ff. Then the following is true.

  1. (i)

    The following Bochner integral exists in 𝔅~(b,1)\widetilde{\mathfrak{B}}(b,1):

    f(b)=12πf^(t)eitbdt.f(b)=\frac{1}{2\pi}\int_{\mathbb{R}}\widehat{f}(t)e^{itb}{\rm d}t.

    Moreover, if f(0)=0f(0)=0, then f(b)𝔅(b)f(b)\in\mathfrak{B}(b).

  2. (ii)

    For any non-degenerate -representation Π:𝔅~(b,1)𝔹()\Pi:\widetilde{\mathfrak{B}}(b,1)\to\mathbb{B}(\mathcal{H}), we have Π~(f(b))=f(Π(b))\widetilde{\Pi}\big{(}f(b)\big{)}=f\big{(}\Pi(b)\big{)}.

  3. (iii)

    Spec𝔅~(b,1)(f(b))=f(Spec𝔅~(b,1)(b)){\rm Spec}_{\widetilde{\mathfrak{B}}(b,1)}\big{(}f(b)\big{)}=f\big{(}{\rm Spec}_{\widetilde{\mathfrak{B}}(b,1)}(b)\big{)}.

  4. (iv)

    If 𝔅(b,1)\mathfrak{B}(b,1) is semisimple, then there is a -homomorphism φb:Ccd+2()𝔅~(b,1)\varphi_{b}:C_{\rm c}^{d+2}(\mathbb{R})\to\widetilde{\mathfrak{B}}(b,1) defined by φb(f)=f(b)\varphi_{b}(f)=f(b), such that φb(g)=1\varphi_{b}(g)=1 if g1g\equiv 1 on a neighborhood of Spec𝔅~(b,1)(b){\rm Spec}_{\widetilde{\mathfrak{B}}(b,1)}(b) and φb(g)=b\varphi_{b}(g)=b if g(x)=xg(x)=x on a neighborhood of Spec𝔅~(b,1)(b){\rm Spec}_{\widetilde{\mathfrak{B}}(b,1)}(b).

  5. (v)

    For any R>0R>0, there exists M>0M>0 such that φb(f)𝔅~Mk=0nf(k)C0()\lVert\varphi_{b}(f)\rVert_{\widetilde{\mathfrak{B}}}\leq M\sum_{k=0}^{n}\lVert f^{(k)}\rVert_{C_{0}(\mathbb{R})}, for all ff with support contained in [R,R][-R,R].

Proof.

(i) As bb has polynomial growth of order dd, there is a constant C>0C>0 such that

eitb𝔅~C(1+|t|)d, for all t,\lVert e^{itb}\rVert_{\widetilde{\mathfrak{B}}}\leq C(1+|t|)^{d},\quad\textup{ for all }t\in\mathbb{R},

while hypothesis on ff imply that

|f^(t)|1(1+|t|)d+2.|\widehat{f}(t)|\leq\frac{1}{(1+|t|)^{d+2}}.

Then

f^(t)eitb𝔅~dtC(1+|t|)d(1+|t|)d+2dt=C1(1+|t|)2dt=2C,\int_{\mathbb{R}}\lVert\widehat{f}(t)e^{itb}\rVert_{\widetilde{\mathfrak{B}}}{\rm d}t\leq C\int_{\mathbb{R}}\frac{(1+|t|)^{d}}{(1+|t|)^{d+2}}{\rm d}t=C\int_{\mathbb{R}}\frac{1}{(1+|t|)^{2}}{\rm d}t=2C,

so f(b)𝔅~f(b)\in\widetilde{\mathfrak{B}}. If f(0)=0f(0)=0, then 0=f^(t)dt0=\int_{\mathbb{R}}\widehat{f}(t){\rm d}t so

f(b)=12πf^(t)(eitb1)dt𝔅,f(b)=\frac{1}{2\pi}\int_{\mathbb{R}}\widehat{f}(t)(e^{itb}-1){\rm d}t\in\mathfrak{B},

since eitb1𝔅.e^{itb}-1\in\mathfrak{B}.

(ii) Given such a representation Π\Pi, we have

Π(f(b))=Π(12πf^(t)eitbdt)=12πf^(t)eitΠ(b)dt,\Pi\big{(}f(b)\big{)}=\Pi\Big{(}\frac{1}{2\pi}\int_{\mathbb{R}}\widehat{f}(t)e^{itb}{\rm d}t\Big{)}=\frac{1}{2\pi}\int_{\mathbb{R}}\widehat{f}(t)e^{it\Pi(b)}{\rm d}t,

and the RHS corresponds to f(Π(b))f\big{(}\Pi(b)\big{)}. Let 𝔄=C(1,Π(b))\mathfrak{A}=C^{*}(1,\Pi(b)) be the (commutative) CC^{*}-algebra generated by 11 and Π(b)\Pi(b). Now if χ\chi is a character of 𝔄\mathfrak{A}, we see

χ(Π(f(b)))=f(χ(Π(b)))=χ(f(Π(b))),\chi(\Pi\big{(}f(b)\big{)})=f(\chi\big{(}\Pi(b)\big{)})=\chi(f\big{(}\Pi(b)\big{)}),

so Π(f(b))=f(Π(b))\Pi\big{(}f(b)\big{)}=f\big{(}\Pi(b)\big{)}.

(iii) Let Δ\Delta be the spectrum of 𝔅(b,1)\mathfrak{B}(b,1). By (ii), we have

Spec𝔅(b,1)(f(b))={h(f(b))hΔ}={f(h(b))hΔ}=f(Spec𝔅(b,1)(b)).{\rm Spec}_{\mathfrak{B}(b,1)}\big{(}f(b)\big{)}=\{h\big{(}f(b)\big{)}\mid h\in\Delta\}=\{f\big{(}h(b)\big{)}\mid h\in\Delta\}=f\big{(}{\rm Spec}_{\mathfrak{B}(b,1)}(b)\big{)}.

(iv) Let Π:𝔅(b,1)𝔹()\Pi:\mathfrak{B}(b,1)\to\mathbb{B}(\mathcal{H}) be a faithful non-degenerate -representation. For any f,gCcd+2()f,g\in C_{\rm c}^{d+2}(\mathbb{R}), we have

Π((fg)(b))=(fg)(Π(b))=f(Π(b))g(Π(b))=Π(f(b))Π(g(b))=Π(f(b)g(b))\Pi\big{(}(f\cdot g)(b)\big{)}=(f\cdot g)\big{(}\Pi(b)\big{)}=f\big{(}\Pi(b)\big{)}g\big{(}\Pi(b)\big{)}=\Pi\big{(}f(b)\big{)}\Pi\big{(}g(b)\big{)}=\Pi\big{(}f(b)g(b)\big{)}

and

Π(f¯(b))=f¯(Π(b))=f(Π(b))=Π(f(b)).\Pi\big{(}\overline{f}(b)\big{)}=\overline{f}\big{(}\Pi(b)\big{)}=f\big{(}\Pi(b)\big{)}^{*}=\Pi\big{(}f(b)^{*}\big{)}.

So φb\varphi_{b} is a -homomorphism.

(v) It follows from the fact that

(1+|t|)d+2|f^(t)|2R(n+2)!k=0d+2f(k)C0(),(1+|t|)^{d+2}|\widehat{f}(t)|\leq 2R(n+2)!\sum_{k=0}^{d+2}\lVert f^{(k)}\rVert_{C_{0}(\mathbb{R})},

for all tt\in\mathbb{R}. ∎

Remark 2.6.

Suppose 𝔅\mathfrak{B} is a unital Banach -algebra and φ:Ccd+2()𝔅(b,1)\varphi:C_{\rm c}^{d+2}(\mathbb{R})\to\mathfrak{B}(b,1) is a -homomorphism such that φ(f)=1\varphi(f)=1 for some fCcd+2()f\in C_{\rm c}^{d+2}(\mathbb{R}). If K=Supp(f)K={\rm Supp}(f), then φ\varphi induces an -homomorphism φ0:Cd+2(K)𝔅\varphi_{0}:C^{d+2}(K)\to\mathfrak{B}.

3 Integrable cross-sections of polynomial growth

From now on 𝖦{\sf G} will be a (Hausdorff) unimodular, locally compact group with unit 𝖾{\sf e} and Haar measure dμ(x)dxd\mu(x)\equiv dx. If 𝖦{\sf G} is compact, we assume that μ\mu is normalized so that μ(𝖦)=1\mu({\sf G})=1. During most of the article, 𝖦{\sf G} will be assumed of polynomial growth of order dd, meaning that

μ(Kn)=O(nd), as n,\mu(K^{n})=O(n^{d}),\quad\textup{ as }n\to\infty,

for all relatively compact subsets K𝖦K\subset{\sf G}. We will also fix a Fell bundle 𝒞=x𝖦x\mathscr{C}\!=\bigsqcup_{x\in{\sf G}}\mathfrak{C}_{x} over 𝖦{\sf G}. The algebra of integrable cross-sections L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) is a Banach -algebra and a completion of the space Cc(𝖦|𝒞)C_{\rm c}({\sf G}\,|\,\mathscr{C}) of continuous sections with compact support. Its (universal) CC^{*}-algebra its denoted by C(𝖦|𝒞){\rm C^{*}}({\sf G}\,|\,\mathscr{C}). For the general theory of Fell bundles we followed [18, Chapter VIII], to which we refer for details. We will only recall the product on L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}), given by

(ΦΨ)(x)=𝖦Φ(y)Ψ(y1x)dy\big{(}\Phi*\Psi\big{)}(x)=\int_{\sf G}\Phi(y)\bullet\Psi(y^{-1}x)\,{\rm d}y (3.1)

and its involution

Φ(x)=Φ(x1),\Phi^{*}(x)=\Phi(x^{-1})^{\bullet}\,, (3.2)

in terms of the operations (,)\big{(}\bullet,^{\bullet}\big{)} on the Fell bundle. We will also consider the LpL^{p}-spaces Lp(𝖦|𝒞)L^{p}({\sf G}\,|\,\mathscr{C}), endowed with the norms

ΦLp(𝖦|𝒞)={(𝖦Φ(x)xpdx)1/pif p[1,),essupx𝖦Φ(x)xif p=.\lVert\Phi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}=\left\{\begin{array}[]{ll}\,\big{(}\int_{\sf G}\lVert\Phi(x)\rVert_{\mathfrak{C}_{x}}^{p}{\rm d}x\big{)}^{1/p}&\textup{if\ }p\in[1,\infty),\\ \,{\rm essup}_{x\in{\sf G}}\lVert\Phi(x)\rVert_{\mathfrak{C}_{x}}&\textup{if\ }p=\infty.\\ \end{array}\right. (3.3)

If 𝖦{\sf G} is compact, Lp(𝖦|𝒞)L^{p}({\sf G}\,|\,\mathscr{C}) is a dense Banach -subalgebra of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}). In particular C(𝖦|𝒞)C({\sf G}\,|\,\mathscr{C}) is also a Banach -algebra when endowed with the LL^{\infty}-norm. Is immediate that pqp\geq q implies Lq(𝖦|𝒞)Lp(𝖦|𝒞)L^{q}({\sf G}\,|\,\mathscr{C})\subset L^{p}({\sf G}\,|\,\mathscr{C}). On the other hand, if 𝖦{\sf G} is discrete, we will write p(𝖦|𝒞)\ell^{p}({\sf G}\,|\,\mathscr{C}) instead of Lp(𝖦|𝒞)L^{p}({\sf G}\,|\,\mathscr{C}).

Example 3.1.

Let 𝔄\mathfrak{A} be a CC^{*}-algebra. A (continuous) twisted action of 𝖦{\sf G} on 𝔄\mathfrak{A} is a pair (α,ω)(\alpha,\omega) of continuous maps α:𝖦Aut(𝔄)\alpha:{\sf G}\to{\rm Aut}({\mathfrak{A}}), ω:𝖦×𝖦𝒰(𝔄)\omega:{\sf G}\times{\sf G}\to\mathcal{UM}({\mathfrak{A}}), such that

  • (i)

    αx(ω(y,z))ω(x,yz)=ω(x,y)ω(xy,z)\alpha_{x}(\omega(y,z))\omega(x,yz)=\omega(x,y)\omega(xy,z),

  • (ii)

    αx(αy(a))ω(x,y)=ω(x,y)αxy(a)\alpha_{x}\big{(}\alpha_{y}(a)\big{)}\omega(x,y)=\omega(x,y)\alpha_{xy}(a),

  • (iii)

    ω(x,𝖾)=ω(𝖾,y)=1,α𝖾=id𝔄\omega(x,{\sf e})=\omega({\sf e},y)=1,\alpha_{\sf e}={\rm id}_{{\mathfrak{A}}},

for all x,y,z𝖦x,y,z\in{\sf G} and a𝔄a\in\mathfrak{A}.

The quadruple (𝖦,𝔄,α,ω)({\sf G},\mathfrak{A},\alpha,\omega) is called a twisted CC^{*}-dynamical system. Given such a twisted action, one usually forms the so called twisted convolution algebra Lα,ω1(𝖦,𝔄)L^{1}_{\alpha,\omega}({\sf G},\mathfrak{A}), consisting of all Bochner integrable functions Φ:𝖦𝔄\Phi:{\sf G}\to\mathfrak{A}, endowed with the product

ΦΨ(x)=𝖦Φ(y)αy[Ψ(y1x)]ω(y,y1x)dy\Phi*\Psi(x)=\int_{\sf G}\Phi(y)\alpha_{y}[\Psi(y^{-1}x)]\omega(y,y^{-1}x){\rm d}y (3.4)

and the involution

Φ(x)=ω(x,x1)αx[Φ(x1)].\Phi^{*}(x)=\omega(x,x^{-1})^{*}\alpha_{x}[\Phi(x^{-1})^{*}]. (3.5)

Making Lα,ω1(𝖦,𝔄)L^{1}_{\alpha,\omega}({\sf G},\mathfrak{A}) a Banach -algebra under the norm ΦLα,ω1(𝖦,𝔄)=𝖦Φ(x)𝔄dx\lVert\Phi\rVert_{L^{1}_{\alpha,\omega}({\sf G},\mathfrak{A})}=\int_{\sf G}\lVert\Phi(x)\rVert_{\mathfrak{A}}{\rm d}x. When the twist is trivial (ω1\omega\equiv 1), we omit any mention to it and call the resulting algebra Lα1(𝖦,𝔄)L^{1}_{\alpha}({\sf G},\mathfrak{A}) as (simply) the convolution algebra associated with the action α\alpha. In this case, the triple (𝖦,𝔄,α)({\sf G},\mathfrak{A},\alpha) is called a (untwisted) CC^{*}-dynamical system.

It is well-known that these algebras correspond to our algebras L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}), for very particular Fell bundles. In fact this bundles may be easily described as 𝒞=𝔄×𝖦\mathscr{C}=\mathfrak{A}\times{\sf G}, with quotient map q(a,x)=xq(a,x)=x, constant norms x=𝔄\lVert\cdot\rVert_{\mathfrak{C}_{x}}=\lVert\cdot\rVert_{\mathfrak{A}}, and operations

(a,x)(b,y)=(aαx(b)ω(x,y),xy)and(a,x)=(αx1(a)ω(x1,x),x1).(a,x)\bullet(b,y)=(a\alpha_{x}(b)\omega(x,y),xy)\quad\textup{and}\quad(a,x)^{\bullet}=(\alpha_{x^{-1}}(a^{*})\omega(x^{-1},x),x^{-1}).

Due to the main theorem in [16], our results will also apply in the case of measurable twisted actions, provided that 𝖦{\sf G} is second countable.

We now turn our attention to the representations and CC^{*}-algebras. In order to define a reduced CC^{*}-completion, we would like to use the representation of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) as bounded operators on L2(𝖦|𝒞)L^{2}({\sf G}\,|\,\mathscr{C}) and this would allow us to use the usual interplay between the LpL^{p}-norms (Hölder’s, Young’s inequality, etc) to deduce facts about L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}). However, L2(𝖦|𝒞)L^{2}({\sf G}\,|\,\mathscr{C}) is not a Hilbert CC^{*}-module, so it seems unlikely that we can get a CC^{*}-algebra. This forces us to consider the space L𝖾2(𝖦|𝒞)L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}), the completion of L2(𝖦|𝒞)L^{2}({\sf G}\,|\,\mathscr{C}) under the norm

ΦL𝖾2(𝖦|𝒞)=𝖦Φ(x)Φ(x)dx𝖾1/2.\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}=\lVert\int_{\sf G}\Phi(x)^{\bullet}\bullet\Phi(x)\,{\rm d}x\rVert_{\mathfrak{C}_{\sf e}}^{1/2}.

This is a Hilbert CC^{*}-module over 𝖾\mathfrak{C}_{\sf e}, so the set of adjointable operators is a CC^{*}-algebra under the operator norm. We denote this algebra by 𝔹a(L𝖾2(𝖦|𝒞))\mathbb{B}_{a}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})). The left regular representation λ\lambda is then the -monomorphism given by

λ:L1(𝖦|𝒞)𝔹a(L𝖾2(𝖦|𝒞)), defined by λ(Φ)Ψ=ΦΨ, for all ΨL2(𝖦|𝒞).\lambda:L^{1}({\sf G}\,|\,\mathscr{C})\to\mathbb{B}_{a}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})),\textup{ defined by }\lambda(\Phi)\Psi=\Phi*\Psi,\textup{ for all }\Psi\in L^{2}({\sf G}\,|\,\mathscr{C}).

It follows from the results in [17] that, for amenable groups, the universal CC^{*}-completion (the so-called CC^{*}-envelope) of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}), denoted C(𝖦|𝒞){\rm C^{*}}({\sf G}\,|\,\mathscr{C}), coincides with λ(L1(𝖦|𝒞))¯𝔹a(L𝖾2(𝖦|𝒞))\overline{\lambda(L^{1}({\sf G}\,|\,\mathscr{C}))}^{\lVert\cdot\rVert_{\mathbb{B}_{a}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}))}}. Now we would like to do some spectral analysis, but in order to do so, we feel the need to define LpL^{p} versions of the norm L𝖾2(𝖦|𝒞)\lVert\cdot\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}. Our inspiration then comes from [32, Definition 2.1].

Definition 3.2.

Let π:𝒞𝔹()\pi:\mathscr{C}\to\mathbb{B}(\mathcal{H}) be a continuous non-degenerate -representation of 𝒞\mathscr{C} on the Hilbert space \mathcal{H}. One can use this representation to define the norms

Φπ,p=supξ 1(𝖦π(Φ(x))ξpdx)1/p,\lVert\Phi\rVert_{\pi,p}=\sup_{\lVert\xi\rVert_{\mathcal{H}}\leq\,1}\Big{(}\int_{\sf G}\lVert\pi\big{(}\Phi(x)\big{)}\xi\rVert_{\mathcal{H}}^{p}\,{\rm d}x\Big{)}^{1/p}, (3.6)

for p[1,)p\in[1,\infty) and ΦCc(𝖦|𝒞)\Phi\in C_{\rm c}({\sf G}\,|\,\mathscr{C}). As Φπ,pΦLp(𝖦|𝒞)\lVert\Phi\rVert_{\pi,p}\leq\lVert\Phi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}, it is immediate that these norms are finite.

Remark 3.3.

For π:𝒞𝔹()\pi:\mathscr{C}\to\mathbb{B}(\mathcal{H}) a -representation of Fell bundles, preserving the norms of the fibers is the same as π|𝖾\pi|_{\mathfrak{C}_{\sf e}} being a faithful -representation of 𝖾\mathfrak{C}_{\sf e}. Indeed, for all axa\in\mathfrak{C}_{x},

π(a)𝔹()2=π(aa)𝔹()=aa𝖾=ax2.\lVert\pi(a)\rVert_{\mathbb{B}(\mathcal{H})}^{2}=\lVert\pi(a^{\bullet}\bullet a)\rVert_{\mathbb{B}(\mathcal{H})}=\lVert a^{\bullet}\bullet a\rVert_{\mathfrak{C}_{\sf e}}=\lVert a\rVert_{\mathfrak{C}_{x}}^{2}.

For this reason, we will say that these representations are isometric.

The next lemma compiles some facts about the norms π,p\lVert\cdot\rVert_{\pi,p} and their relations with the other norms previously introduced. It can be regarded as both our new approach to the problem and our main computation tool.

Lemma 3.4.

Let π:𝒞𝔹()\pi:\mathscr{C}\to\mathbb{B}(\mathcal{H}) be a continuous, isometric, non-degenerate -representation and let Φ,ΨCc(𝖦|𝒞)\Phi,\Psi\in C_{\rm c}({\sf G}\,|\,\mathscr{C}). The following are true.

  1. (i)

    ΦLp(𝖦|𝒞)=(𝖦π(Φ(x))𝔹()pdx)1/p\lVert\Phi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}=\Big{(}\int_{\sf G}\lVert\pi\big{(}\Phi(x)\big{)}\rVert_{\mathbb{B}(\mathcal{H})}^{p}\,{\rm d}x\Big{)}^{1/p}, for all p[1,)p\in[1,\infty).

  2. (ii)

    Φπ,2=ΦL𝖾2(𝖦|𝒞)\lVert\Phi\rVert_{\pi,2}=\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}.

  3. (iii)

    limpΦπ,p=ΦL(𝖦|𝒞)\lim_{p\to\infty}\lVert\Phi\rVert_{\pi,p}=\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}.

  4. (iv)

    ΨΦπ,rΨLp(𝖦|𝒞)Φπ,q\lVert\Psi*\Phi\rVert_{\pi,r}\leq\lVert\Psi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}\lVert\Phi\rVert_{\pi,q}, for all p,q,r[1,)p,q,r\in[1,\infty) satisfying 1/p+1/q=1+1/r1/p+1/q=1+1/r.

  5. (v)

    If p,q[1,)p,q\in[1,\infty) satisfy 1/p+1/q=11/p+1/q=1, then ΨΦL(𝖦|𝒞)ΨLp(𝖦|𝒞)Φπ,q\lVert\Psi*\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Psi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}\lVert\Phi\rVert_{\pi,q}.

  6. (vi)

    If 𝖦{\sf G} is discrete and 1pq<1\leq p\leq q<\infty, then Φ(𝖦|𝒞)Φπ,qΦπ,p\lVert\Phi\rVert_{\ell^{\infty}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Phi\rVert_{\pi,q}\leq\lVert\Phi\rVert_{\pi,p} and Φ𝖾2(𝖦|𝒞)ΦC(𝖦|𝒞)\lVert\Phi\rVert_{\ell^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Phi\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}.

Proof.

(i) Due to the previous remark, it follows easily that

(𝖦π(Φ(x))𝔹()pdx)1/p=(𝖦Φ(x)xpdx)1/p=ΦLp(𝖦|𝒞).\Big{(}\int_{\sf G}\lVert\pi\big{(}\Phi(x)\big{)}\rVert_{\mathbb{B}(\mathcal{H})}^{p}\,{\rm d}x\Big{)}^{1/p}=\Big{(}\int_{\sf G}\lVert\Phi(x)\rVert_{\mathfrak{C}_{x}}^{p}\,{\rm d}x\Big{)}^{1/p}=\lVert\Phi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}.

(ii) We have

𝖦π(Φ(x))ξ2dx=𝖦π(Φ(x)Φ(x))ξdx,ξ=π(𝖦Φ(x)Φ(x)dx)ξ,ξ,\int_{\sf G}\,\lVert\pi(\Phi(x))\xi\rVert_{\mathcal{H}}^{2}\,{\rm d}x=\Big{\langle}\int_{\sf G}\pi\big{(}\Phi(x)^{\bullet}\bullet\Phi(x)\big{)}\xi\,{\rm d}x,\xi\Big{\rangle}=\Big{\langle}\pi\big{(}\int_{\sf G}\Phi(x)^{\bullet}\bullet\Phi(x)\,{\rm d}x\big{)}\xi,\xi\Big{\rangle},

implying that

Φπ,22=π(𝖦Φ(x)Φ(x)dx)𝔹()=𝖦Φ(x)Φ(x)dx𝖾2=ΦL𝖾2(𝖦|𝒞)2.\lVert\Phi\rVert_{\pi,2}^{2}=\lVert\pi\big{(}\int_{\sf G}\Phi(x)^{\bullet}\bullet\Phi(x)\,{\rm d}x\big{)}\rVert_{\mathbb{B}(\mathcal{H})}=\lVert\int_{\sf G}\Phi(x)^{\bullet}\bullet\Phi(x)\,{\rm d}x\rVert_{\mathfrak{C}_{\sf e}}^{2}=\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}^{2}.

Where the second equality follows from the fact that π\pi is isometric.

(iii) We have

Φπ,psupξ 1(𝖦Φ(x)xpqπ(Φ(x))ξqdx)1/pΦL(𝖦|𝒞)pqpΦπ,pqp\displaystyle\lVert\Phi\rVert_{\pi,p}\leq\sup_{\lVert\xi\rVert_{\mathcal{H}}\leq\,1}\Big{(}\int_{\sf G}\lVert\Phi(x)\rVert_{\mathfrak{C}_{x}}^{p-q}\lVert\pi\big{(}\Phi(x)\big{)}\xi\rVert_{\mathcal{H}}^{q}\,{\rm d}x\Big{)}^{1/p}\leq\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}^{\frac{p-q}{p}}\lVert\Phi\rVert_{\pi,p}^{\frac{q}{p}}

and hence lim suppΦπ,pΦL(𝖦|𝒞)\limsup_{p\to\infty}\lVert\Phi\rVert_{\pi,p}\leq\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}. On the other hand, for ξ\xi\in\mathcal{H}, with ξ 1\lVert\xi\rVert_{\mathcal{H}}\leq\,1, and 0<δ<ΦL(𝖦|𝒞)0<\delta<\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}, we consider the set

Dδ={x𝖦π(Φ(x))ξπ(Φ())ξL(𝖦)δ}.D_{\delta}=\{x\in{\sf G}\mid\lVert\pi\big{(}\Phi(x)\big{)}\xi\rVert_{\mathcal{H}}\geq\lVert\lVert\pi\big{(}\Phi(\cdot)\big{)}\xi\rVert_{\mathcal{H}}\rVert_{L^{\infty}({\sf G})}-\delta\}.

We then have

Φπ,p\displaystyle\lVert\Phi\rVert_{\pi,p} supξ 1(Dδ(π(Φ())ξL(𝖦)δ)pdx)1/p\displaystyle\geq\sup_{\lVert\xi\rVert_{\mathcal{H}}\leq\,1}\Big{(}\int_{D_{\delta}}(\lVert\lVert\pi\big{(}\Phi(\cdot)\big{)}\xi\rVert_{\mathcal{H}}\rVert_{L^{\infty}({\sf G})}-\delta)^{p}\,{\rm d}x\Big{)}^{1/p}
=supξ 1(π(Φ())ξL(𝖦)δ)μ(Dδ)1/p\displaystyle=\sup_{\lVert\xi\rVert_{\mathcal{H}}\leq\,1}(\lVert\lVert\pi\big{(}\Phi(\cdot)\big{)}\xi\rVert_{\mathcal{H}}\rVert_{L^{\infty}({\sf G})}-\delta)\mu(D_{\delta})^{1/p}
=(ΦL(𝖦|𝒞)δ)μ(Dδ)1/p\displaystyle=(\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}-\delta)\mu(D_{\delta})^{1/p}

so lim infpΦπ,pΦL(𝖦|𝒞)\liminf_{p\to\infty}\lVert\Phi\rVert_{\pi,p}\geq\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}.

(iv) Let 1p1=1p1r\frac{1}{p_{1}}=\frac{1}{p}-\frac{1}{r} and 1q1=1q1r\frac{1}{q_{1}}=\frac{1}{q}-\frac{1}{r}, then 1p1+1q1+1r=1\frac{1}{p_{1}}+\frac{1}{q_{1}}+\frac{1}{r}=1. This will allow us to use Hölder’s inequality with the exponents p1,q1,rp_{1},q_{1},r. For x𝖦x\in{\sf G} we have

π(ΨΦ(x))ξ\displaystyle\lVert\pi\big{(}\Psi*\Phi(x)\big{)}\xi\rVert_{\mathcal{H}} =𝖦π(Ψ(y))π(Φ(y1x))ξdy\displaystyle=\lVert\int_{\sf G}\pi\big{(}\Psi(y)\big{)}\pi\big{(}\Phi(y^{-1}x)\big{)}\xi\,{\rm d}y\rVert_{\mathcal{H}}
𝖦Ψ(y)yπ(Φ(y1x))ξdy\displaystyle\leq\int_{\sf G}\lVert\Psi(y)\rVert_{\mathfrak{C}_{y}}\lVert\pi\big{(}\Phi(y^{-1}x)\big{)}\xi\rVert_{\mathcal{H}}\,{\rm d}y
ΨLp(𝖦|𝒞)p/p1Φπ,qq/q1(𝖦Ψ(y)ypπ(Φ(y1x))ξqdy)1/r.\displaystyle\leq\lVert\Psi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}^{p/p_{1}}\lVert\Phi\rVert_{\pi,q}^{q/q_{1}}\Big{(}\int_{\sf G}\lVert\Psi(y)\rVert_{\mathfrak{C}_{y}}^{p}\lVert\pi\big{(}\Phi(y^{-1}x)\big{)}\xi\rVert_{\mathcal{H}}^{q}\,{\rm d}y\Big{)}^{1/r}.

And so integrating on xx yields

𝖦π(ΨΦ(x))ξrdx\displaystyle\int_{\sf G}\lVert\pi\big{(}\Psi*\Phi(x)\big{)}\xi\rVert_{\mathcal{H}}^{r}\,{\rm d}x ΨLp(𝖦|𝒞)rp/p1Φπ,qrq/q1𝖦𝖦Ψ(y)ypπ(Φ(y1x))ξqdydx\displaystyle\leq\lVert\Psi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}^{rp/p_{1}}\lVert\Phi\rVert_{\pi,q}^{rq/q_{1}}\int_{\sf G}\int_{\sf G}\lVert\Psi(y)\rVert_{\mathfrak{C}_{y}}^{p}\lVert\pi\big{(}\Phi(y^{-1}x)\big{)}\xi\rVert_{\mathcal{H}}^{q}\,{\rm d}y{\rm d}x
=ΨLp(𝖦|𝒞)p+rp/p1Φπ,qq+rq/q1,\displaystyle=\lVert\Psi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}^{p+rp/p_{1}}\lVert\Phi\rVert_{\pi,q}^{q+rq/q_{1}},

which proves the claim.

(v) We proceed as in the beginning of (iv), but using p1=pp_{1}=p and q1=qq_{1}=q, to get the inequality

π(ΨΦ(x))ξΨLp(𝖦|𝒞)Φπ,q.\lVert\pi\big{(}\Psi*\Phi(x)\big{)}\xi\rVert_{\mathcal{H}}\leq\lVert\Psi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}\lVert\Phi\rVert_{\pi,q}.

Then,

ΨΦ(x)x=supξ 1π(ΨΦ(x))ξΨLp(𝖦|𝒞)Φπ,q\lVert\Psi*\Phi(x)\rVert_{\mathfrak{C}_{x}}=\sup_{\lVert\xi\rVert_{\mathcal{H}}\leq\,1}\lVert\pi\big{(}\Psi*\Phi(x)\big{)}\xi\rVert_{\mathcal{H}}\leq\lVert\Psi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}\lVert\Phi\rVert_{\pi,q}

and therefore ΨΦL(𝖦|𝒞)ΨLp(𝖦|𝒞)Φπ,q\lVert\Psi*\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Psi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}\lVert\Phi\rVert_{\pi,q}.

(vi) For x𝖦x\in{\sf G} and ξ\xi\in\mathcal{H} of norm 11, we have

Φ(x)x=supξ 1π(Φ(x))ξsupξ 1(x𝖦π(Φ(x))ξp)1/p=Φπ,p\displaystyle\lVert\Phi(x)\rVert_{\mathfrak{C}_{x}}=\sup_{\lVert\xi\rVert_{\mathcal{H}}\leq\,1}\lVert\pi\big{(}\Phi(x)\big{)}\xi\rVert_{\mathcal{H}}\leq\sup_{\lVert\xi\rVert_{\mathcal{H}}\leq\,1}\Big{(}\sum_{x\in{\sf G}}\lVert\pi\big{(}\Phi(x)\big{)}\xi\rVert_{\mathcal{H}}^{p}\Big{)}^{1/p}=\lVert\Phi\rVert_{\pi,p}

hence

Ψ(𝖦|𝒞)Φπ,p.\lVert\Psi\rVert_{\ell^{\infty}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Phi\rVert_{\pi,p}.

On the other hand, if {aα}𝖾\{a_{\alpha}\}\subset\mathfrak{C}_{\sf e} is an approximate unit, then

Φ𝖾2(𝖦|𝒞)=limαΦaλ𝖾2(𝖦|𝒞)=limαΦaλδ𝖾𝖾2(𝖦|𝒞)ΦC(𝖦|𝒞),\lVert\Phi\rVert_{\ell^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}=\lim_{\alpha}\lVert\Phi\bullet a_{\lambda}\rVert_{\ell^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}=\lim_{\alpha}\lVert\Phi*a_{\lambda}\delta_{\sf e}\rVert_{\ell^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Phi\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})},

finishing the proof.∎

Lemma 3.4 is fundamental because of the following reasons: the L𝖾2L^{2}_{\sf e}-norm is recovered by π,2\lVert\cdot\rVert_{\pi,2}, so we can link the norms π,q\lVert\cdot\rVert_{\pi,q} to the LpL^{p}-norms via the strengthened Young-type inequality in 3.4(v). However, this connection is still rather weak (at least compared to the usual relations the LpL^{p}-norms satisfy) and it will force us to find indirect ways to do our proofs. This is illustrated by the proofs of Proposition 3.6, Lemma 4.13, Theorem 4.14, Proposition 7.3, among others.

We now focus our efforts in constructing the functional calculus. In order to do so, let us consider the following entire functions u,v:u,v:\mathbb{C}\to\mathbb{C}, given by

u(z)=eiz1=k=1ikzkk!,v(z)=eiz1izz=k=0ikzk+1(k+2)!.u(z)=e^{iz}-1=\sum_{k=1}^{\infty}\frac{i^{k}z^{k}}{k!},\quad v(z)=\frac{e^{iz}-1-iz}{z}=\sum_{k=0}^{\infty}\frac{-i^{k}z^{k+1}}{(k+2)!}. (3.7)

It is clear that u(z)=v(z)z+izu(z)=v(z)z+iz. It is also clear that an element b𝔅b\in\mathfrak{B} has polynomial growth of order dd if and only if u(tb)𝔅=O(|t|d)\lVert u(tb)\rVert_{\mathfrak{B}}=O(|t|^{d}), as |t||t|\to\infty.

Lemma 3.5.

Let Φ=ΦL1(𝖦|𝒞)L2(𝖦|𝒞)\Phi=\Phi^{*}\in L^{1}({\sf G}\,|\,\mathscr{C})\cap L^{2}({\sf G}\,|\,\mathscr{C}). Then v(Φ)L2(𝖦|𝒞)v(\Phi)\in L^{2}({\sf G}\,|\,\mathscr{C}) and

v(Φ)L𝖾2(𝖦|𝒞)12ΦL𝖾2(𝖦|𝒞).\lVert v(\Phi)\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}\leq\tfrac{1}{2}\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}. (3.8)
Proof.

v(Φ)v(\Phi) belongs to both L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) and L2(𝖦|𝒞)L𝖾2(𝖦|𝒞)L^{2}({\sf G}\,|\,\mathscr{C})\subset L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}), as

v(Φ)L2(𝖦|𝒞)k=01(k+2)!Φk+1L2(𝖦|𝒞)ΦL2(𝖦|𝒞)k=01(k+2)!ΦL1(𝖦|𝒞)k<.\lVert v(\Phi)\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}\leq\sum_{k=0}^{\infty}\frac{1}{(k+2)!}\lVert\Phi^{k+1}\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Phi\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}\sum_{k=0}^{\infty}\frac{1}{(k+2)!}\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{k}<\infty. (3.9)

Now consider the entire (complex) function

w(z)=v(z)z=k=0ikzk(k+2)!.w(z)=\frac{v(z)}{z}=\sum_{k=0}^{\infty}\frac{-i^{k}z^{k}}{(k+2)!}.

It satisfies w(z)z=v(z)w(z)z=v(z) and therefore w(λ(Φ))Φ=v(Φ)w\big{(}\lambda(\Phi)\big{)}\Phi=v(\Phi). So, if Spec(a){\rm Spec}(a) denotes the spectrum of an element aa in 𝔹a(L𝖾2(𝖦|𝒞))\mathbb{B}_{a}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})), we have

v(Φ)L𝖾2(𝖦|𝒞)\displaystyle\lVert v(\Phi)\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})} w(λ(Φ))𝔹(L𝖾2(𝖦|𝒞))ΦL𝖾2(𝖦|𝒞)\displaystyle\leq\lVert w\big{(}\lambda(\Phi)\big{)}\rVert_{\mathbb{B}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}))}\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}
=supαSpec(λ(Φ))|w(α)|ΦL𝖾2(𝖦|𝒞)\displaystyle=\sup_{\alpha\in{\rm Spec}(\lambda(\Phi))}|w(\alpha)|\,\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}
supα|w(α)|ΦL𝖾2(𝖦|𝒞)\displaystyle\leq\sup_{\alpha\in\mathbb{R}}|w(\alpha)|\,\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}
12ΦL𝖾2(𝖦|𝒞),\displaystyle\leq\tfrac{1}{2}\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})},

finishing the proof. ∎

Proposition 3.6.

Let 𝖦{\sf G} be a group of polynomial growth of order dd and let Φ=ΦCc(𝖦|𝒞)\Phi=\Phi^{*}\in C_{\rm c}({\sf G}\,|\,\mathscr{C}). Then

u(tΦ)L1(𝖦|𝒞)=O(|t|2d+2), as |t|.\lVert u(t\Phi)\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}=O(|t|^{2d+2}),\quad\textup{ as }|t|\to\infty. (3.10)
Proof.

Let KK be a compact subset of 𝖦{\sf G}, containing both Supp(Φ){\rm Supp}(\Phi) and 𝖾{\sf e}, this implies that KK2KnK\subset K^{2}\subset\ldots\subset K^{n}. Let nn be a positive integer. Then we observe that

u(nΦ)L1(𝖦|𝒞)=Kn21u(nΦ)(x)xdx+𝖦Kn21u(nΦ)(x)xdx.\lVert u(n\Phi)\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}=\int_{K^{n^{2}-1}}\lVert u(n\Phi)(x)\rVert_{\mathfrak{C}_{x}}{\rm d}x+\int_{{\sf G}\setminus K^{n^{2}-1}}\lVert u(n\Phi)(x)\rVert_{\mathfrak{C}_{x}}{\rm d}x. (3.11)

The second integral is easier to bound. Indeed, note that Φ,Φ2,,Φn21\Phi,\Phi^{2},\ldots,\Phi^{n^{2}-1} all all vanish in 𝖦Kn21{\sf G}\setminus K^{n^{2}-1}. This means that

𝖦Kn21u(nΦ)(x)xdx\displaystyle\int_{{\sf G}\setminus K^{n^{2}-1}}\lVert u(n\Phi)(x)\rVert_{\mathfrak{C}_{x}}{\rm d}x 𝖦Kn21k=n2nkk!Φk(x)xdx\displaystyle\leq\int_{{\sf G}\setminus K^{n^{2}-1}}\sum_{k=n^{2}}^{\infty}\frac{n^{k}}{k!}\lVert\Phi^{k}(x)\rVert_{\mathfrak{C}_{x}}{\rm d}x
k=n2nkk!ΦL1(𝖦|𝒞)k\displaystyle\leq\sum_{k=n^{2}}^{\infty}\frac{n^{k}}{k!}\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{k}
nn2(n2)!enΦL1(𝖦|𝒞)ΦL1(𝖦|𝒞)n2.\displaystyle\leq\frac{n^{n^{2}}}{(n^{2})!}e^{n\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}}\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{n^{2}}.

The RHS being a bounded sequence. On the other hand, the first integral in (3.11) requires more detailed analysis. We now note that

u(nΦ)=k=1iknkΦkn!=inΦ+nΦ(k=2iknk1Φk1n!)=inΦ+nΦv(nΦ).u(n\Phi)=\sum_{k=1}^{\infty}\frac{i^{k}n^{k}\Phi^{k}}{n!}=in\Phi+n\Phi*\big{(}\sum_{k=2}^{\infty}\frac{i^{k}n^{k-1}\Phi^{k-1}}{n!}\big{)}=in\Phi+n\Phi*v(n\Phi).

Now we use Lemma 3.4 to get

u(nΦ)L(𝖦|𝒞)nΦL(𝖦|𝒞)+nΦL2(𝖦|𝒞)v(nΦ)L𝖾2(𝖦|𝒞).\lVert u(n\Phi)\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}\leq n\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}+n\lVert\Phi\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}\lVert v(n\Phi)\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}.

Now, we proceed by Hölder’s inequality

Kn21u(nΦ)(x)xdx\displaystyle\int_{K^{n^{2}-1}}\lVert u(n\Phi)(x)\rVert_{\mathfrak{C}_{x}}{\rm d}x u(nΦ)L(𝖦|𝒞)μ(Kn21)\displaystyle\leq\lVert u(n\Phi)\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}\mu(K^{n^{2}-1})
nμ(Kn21)(ΦL(𝖦|𝒞)+ΦL2(𝖦|𝒞)v(nΦ)L𝖾2(𝖦|𝒞))\displaystyle\leq n\mu(K^{n^{2}-1})\Big{(}\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}+\lVert\Phi\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}\lVert v(n\Phi)\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}\Big{)}
(3.8)nμ(Kn21)(ΦL(𝖦|𝒞)+n2ΦL2(𝖦|𝒞)2)\displaystyle\overset{\eqref{dixlem}}{\leq}n\mu(K^{n^{2}-1})\Big{(}\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}+\tfrac{n}{2}\lVert\Phi\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}^{2}\Big{)}

thus we have shown that u(nΦ)L1(𝖦|𝒞)=O(n2d+2)\lVert u(n\Phi)\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}=O(n^{2d+2}), as nn\to\infty. Now, for tt\in\mathbb{R}, we take its integer part n=tn=\lfloor t\rfloor and see that

eitΦL1(𝖦|𝒞)~\displaystyle\lVert e^{it\Phi}\rVert_{\widetilde{L^{1}({\sf G}\,|\,\mathscr{C})}} einΦL1(𝖦|𝒞)~ei(tn)ΦL1(𝖦|𝒞)~\displaystyle\leq\lVert e^{in\Phi}\rVert_{\widetilde{L^{1}({\sf G}\,|\,\mathscr{C})}}\lVert e^{i(t-n)\Phi}\rVert_{\widetilde{L^{1}({\sf G}\,|\,\mathscr{C})}}
(1+u(tΦ)L1(𝖦|𝒞))eΦL1(𝖦|𝒞)\displaystyle\leq(1+\lVert u(\lfloor t\rfloor\Phi)\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})})e^{\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}}
=O(|t|2d+2),\displaystyle=O(|t|^{2d+2}),

which proves the result. ∎

Remark 3.7.

If we compare Proposition 3.6 to Dixmier’s result [14, Lemme 6], it is obvious that, when restricted to his setting, Dixmier’s result is better, as it provides an slower growth and therefore a bigger functional calculus. This happens, of course, due to the simpler setting, but it makes us wonder if an slower growth is possible in general.

Now and thanks to the Dixmier-Baillet Theorem, we have the following functional calculus for Cc(𝖦|𝒞)saC_{\rm c}({\sf G}\,|\,\mathscr{C})_{\rm sa}.

Theorem 3.8.

Let 𝖦{\sf G} be a group of polynomial growth of order dd and Φ=ΦCc(𝖦|𝒞)\Phi=\Phi^{*}\in C_{\rm c}({\sf G}\,|\,\mathscr{C}). Let f:f:\mathbb{R}\to\mathbb{C} be a complex function that admits 2d+42d+4 continuous and integrable derivatives, with Fourier transform f^\widehat{f}. Then

  1. (i)

    f(Φ)=12πf^(t)eitΦdtf(\Phi)=\frac{1}{2\pi}\int_{\mathbb{R}}\widehat{f}(t)e^{it\Phi}{\rm d}t exists in L1(𝖦|𝒞)~\widetilde{L^{1}({\sf G}\,|\,\mathscr{C})}, or in L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) if f(0)=0f(0)=0.

  2. (ii)

    For any non-degenerate -representation Π:L1(𝖦|𝒞)𝔹()\Pi:L^{1}({\sf G}\,|\,\mathscr{C})\to\mathbb{B}(\mathcal{H}), we have

    Π~(f(Φ))=f(Π(Φ)).\widetilde{\Pi}(f\big{(}\Phi\big{)})=f\big{(}\Pi(\Phi)\big{)}.

    Furthermore, if Π\Pi is injective, we also have

    SpecL1(𝖦|𝒞)~(f(Φ))=Spec𝔹()(Π~(f(Φ))).{\rm Spec}_{\widetilde{L^{1}({\sf G}\,|\,\mathscr{C})}}\big{(}f(\Phi)\big{)}={\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}\widetilde{\Pi}\big{(}f(\Phi)\big{)}\big{)}.
Proof.

Combine Proposition 3.6 and Theorem 2.5. ∎

4 A dense symmetric subalgebra

Besides the functional calculus we defined and in order to get better spectral properties, we would like for our algebras to be symmetric. The relevant definitions are

Definition 4.1.

A Banach -algebra 𝔅\mathfrak{B} is called symmetric if the spectrum of bbb^{*}b is positive for every b𝔅b\in\mathfrak{B} (this happens if and only if the spectrum of any self-adjoint element is real).

Remark 4.2.

The symmetry of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) itself seems to be a very complicated business, despite the fact that many of its self-adjoint elements have real spectrum (this is a consequence of Proposition 3.6, but also proven directly in Proposition 7.3). In general, L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) is known to be symmetric when 𝖦{\sf G} is nilpotent [20] or compact (Theorem 7.5). Some particular examples include Llt1(𝖦,C0(𝖦))L^{1}_{\rm lt}({\sf G},C_{0}({\sf G})) [29, Theorem 4], or the ones in [26, Theorem 16], among others.

However, we will construct a dense -subalgebra of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) that will be symmetric under very mild conditions (compact generation of 𝖦{\sf G}). This algebra is constructed using weights.

Definition 4.3.

A weight on the locally compact group 𝖦{\sf G} is a measurable, locally bounded function ν:𝖦[1,)\nu:{\sf G}\to[1,\infty) satisfying

ν(xy)ν(x)ν(y),ν(x1)=ν(x),x,y𝖦.\nu(xy)\leq\nu(x)\nu(y)\,,\quad\nu(x^{-1})=\nu(x)\,,\quad\forall\,x,y\in{\sf G}\,.

This gives rise to the Banach -algebra L1,ν(𝖦)L^{1,\nu}({\sf G}) defined by the norm

ψL1,ν(𝖦):=𝖦ν(x)|ψ(x)|𝑑x.\parallel\!\psi\!\parallel_{L^{1,\nu}({\sf G})}\,:=\int_{\sf G}\nu(x)|\psi(x)|dx\,.

This algebra has been studied in [15, 19, 41, 44], to which we refer for examples of weights. The Fell bundle analog is immediate. Let 𝒞\mathscr{C} be a Fell bundle over 𝖦{\sf G}. On Cc(𝖦|𝒞)\,C_{\rm c}({\sf G}\,|\,\mathscr{C}) we introduce the norms

ΦLp,ν(𝖦|𝒞)={(𝖦ν(x)pΦ(x)xpdx)1/pif p[1,),essupx𝖦ν(x)Φ(x)xif p=.\lVert\Phi\rVert_{L^{p,\nu}({\sf G}\,|\,\mathscr{C})}=\left\{\begin{array}[]{ll}\,\big{(}\int_{\sf G}\nu(x)^{p}\lVert\Phi(x)\rVert_{\mathfrak{C}_{x}}^{p}{\rm d}x\big{)}^{1/p}&\textup{if\ }p\in[1,\infty),\\ \,{\rm essup}_{x\in{\sf G}}\nu(x)\lVert\Phi(x)\rVert_{\mathfrak{C}_{x}}&\textup{if\ }p=\infty.\\ \end{array}\right. (4.1)

The completion in this norm is denoted by Lp,ν(𝖦|𝒞)L^{p,\nu}({\sf G}\,|\,\mathscr{C}) and in the case p=1p=1, it becomes a Banach -algebra with the algebraic structure inherited from L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}).

Definition 4.4.

A weight ν\nu is called polynomial if there is a constant C>0C>0 such that

ν(xy)C(ν(x)+ν(y)),\nu(xy)\leq C\big{(}\nu(x)+\nu(y)\big{)}, (4.2)

for all x,y𝖦x,y\in{\sf G}.

If 𝖦{\sf G} is compactly generated, we can always construct such a weight. In fact, such groups are characterized by possessing weights with a certain decay.

Example 4.5.

Suppose that 𝖦{\sf G} is compactly generated and let KK be a relatively compact set satisfying 𝖦=nKn{\sf G}=\bigcup_{n\in\mathbb{N}}K^{n} and K=K1K=K^{-1}. Define σK(x)=inf{nxKn}\sigma_{K}(x)=\inf\{n\in\mathbb{N}\mid x\in K^{n}\}. Then σK(xy)σK(x)+σK(y)\sigma_{K}(xy)\leq\sigma_{K}(x)+\sigma_{K}(y) and therefore

νK(x)=1+σK(x)\nu_{K}(x)=1+\sigma_{K}(x)

defines a polynomial weight.

Proposition 4.6.

Let 𝖦{\sf G} be a locally compact, compactly generated group and let K𝖦K\subset{\sf G} be as in Example 4.5. The following are true

  1. (i)

    Let ν\nu be a polynomial weight, then there exists positive constants M,δM,\delta such that

    ν(x)MνK(x)δ,\nu(x)\leq M\nu_{K}(x)^{\delta},

    for all x𝖦x\in{\sf G}.

  2. (ii)

    There exists a polynomial weight ν\nu such that x1ν(x)x\mapsto\frac{1}{\nu(x)} belongs to L1(𝖦)L^{1}({\sf G}) (or any Lp(𝖦)L^{p}({\sf G}), with 1p<1\leq p<\infty) if and only if 𝖦{\sf G} has polynomial growth. In such a case and if the growth is of order dd, then νKd2L1(𝖦)\nu_{K}^{-d-2}\in L^{1}({\sf G}).

Proof.

See [41, Proposition 1, Proposition 2]. ∎

In the group of study is not compactly generated, it seems hard to construct polynomial weights so that their inverse is pp-integrable. The only other case that we can handle with full generality is made precise in the next example. It can be found in [41, Example 1].

Example 4.7.

Suppose there is an increasing sequence {𝖦n}n\{{\sf G}_{n}\}_{n\in\mathbb{N}} of closed subgroups of 𝖦{\sf G} such that 𝖦=n𝖦n{\sf G}=\bigcup_{n\in\mathbb{N}}{\sf G}_{n}. Then for any increasing non-negative sequence {mn}n\{m_{n}\}_{n\in\mathbb{N}}, we can form the function ν:𝖦[1,)\nu:{\sf G}\to[1,\infty) given by

ν=nmnχ𝖦n+1𝖦n,\nu=\sum_{n\in\mathbb{N}}m_{n}\chi_{{\sf G}_{n+1}\setminus{\sf G}_{n}},

where χA\chi_{A} is the indicator function associated to the set AA. It even satisfies

ν(xy)max{ν(x),ν(y)},\nu(xy)\leq\max\{\nu(x),\nu(y)\},

for all x,y𝖦x,y\in{\sf G}. Thus ν\nu is a weight if and only if is locally finite and therefore is a weight in the following cases:

  1. (i)

    𝖦n{\sf G}_{n} is compact for all nn\in\mathbb{N}.

  2. (ii)

    An example of the previous case is when 𝖦{\sf G} is countable and locally finite, numerated as 𝖦={gn}n{\sf G}=\{g_{n}\}_{n\in\mathbb{N}} and 𝖦n=g1,,gn{\sf G}_{n}=\langle g_{1},\ldots,g_{n}\rangle.

  3. (iii)

    If any compact subset K𝖦K\subset{\sf G} is fully contained in some 𝖦n{\sf G}_{n}.

By adjusting the sequence {mn}n\{m_{n}\}_{n\in\mathbb{N}}, we can easily force ν1Lp(𝖦)\nu^{-1}\in L^{p}({\sf G}), for any 0<p<0<p<\infty.

Before proving things, let us introduce some concepts useful to the theory of symmetric Banach -algebras.

Definition 4.8.

Let 𝔄𝔅\mathfrak{A}\subset\mathfrak{B} be a continuous inclusion of Banach -algebras. We say that:

  • (i)

    𝔄\mathfrak{A} is inverse-closed or spectrally invariant in 𝔅\mathfrak{B} if Spec𝔄(a)=Spec𝔅(a){\rm Spec}_{\mathfrak{A}}(a)={\rm Spec}_{\mathfrak{B}}(a), for all a𝔄a\in\mathfrak{A}.

  • (ii)

    𝔄\mathfrak{A} is spectral radius preserving in 𝔅\mathfrak{B} if ρ𝔄(a)=ρ𝔅(a)\rho_{\mathfrak{A}}(a)=\rho_{\mathfrak{B}}(a), for all a𝔄a\in\mathfrak{A}.

The following lemma is due to Barnes [7, Proposition 2].

Lemma 4.9.

Let 𝔄𝔅\mathfrak{A}\subset\mathfrak{B} be an spectral radius preserving, continuous, dense inclusion of Banach -algebras. Then 𝔄\mathfrak{A} is inverse-closed in 𝔅\mathfrak{B}.

Proposition 4.10.

Let ν\nu be a polynomial weight on 𝖦{\sf G}. Then L1,ν(𝖦|𝒞)L^{1,\nu}({\sf G}\,|\,\mathscr{C}) is inverse-closed in L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}).

Proof.

We note that for Φ,ΨL1,ν(𝖦|𝒞)\Phi,\Psi\in L^{1,\nu}({\sf G}\,|\,\mathscr{C}),

ΨΦL1,ν(𝖦|𝒞)C(ΨL1,ν(𝖦|𝒞)ΦL1(𝖦|𝒞)+ΨL1(𝖦|𝒞)ΦL1,ν(𝖦|𝒞)).\lVert\Psi*\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}\leq C(\lVert\Psi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}+\lVert\Psi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}). (4.3)

Indeed,

ΨΦL1,ν(𝖦|𝒞)\displaystyle\lVert\Psi*\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})} 𝖦𝖦Ψ(y)Φ(y1x)xν(x)dxdy\displaystyle\leq\int_{\sf G}\int_{\sf G}\lVert\Psi(y)\bullet\Phi(y^{-1}x)\rVert_{\mathfrak{C}_{x}}\nu(x){\rm d}x{\rm d}y
C𝖦𝖦(ν(y)Ψ(y)yΦ(y1x)y1x+ν(y1x)Ψ(y)yΦ(y1x)y1x)dxdy\displaystyle\leq C\int_{\sf G}\int_{\sf G}\big{(}\nu(y)\lVert\Psi(y)\rVert_{\mathfrak{C}_{y}}\lVert\Phi(y^{-1}x)\rVert_{\mathfrak{C}_{y^{-1}x}}+\nu(y^{-1}x)\lVert\Psi(y)\rVert_{\mathfrak{C}_{y}}\lVert\Phi(y^{-1}x)\rVert_{\mathfrak{C}_{y^{-1}x}}\big{)}{\rm d}x{\rm d}y
=C(ΨL1,ν(𝖦|𝒞)ΦL1(𝖦|𝒞)+ΨL1(𝖦|𝒞)ΦL1,ν(𝖦|𝒞)).\displaystyle=C(\lVert\Psi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}+\lVert\Psi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}).

It then follows that

Ψ2nL1,ν(𝖦|𝒞)2CΨnL1,ν(𝖦|𝒞)ΨnL1(𝖦|𝒞)\lVert\Psi^{2n}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}\leq 2C\lVert\Psi^{n}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}\lVert\Psi^{n}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})} (4.4)

so

ρL1,ν(𝖦|𝒞)(Ψ)2\displaystyle\rho_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}(\Psi)^{2} =limnΨ2nL1,ν(𝖦|𝒞)1/n\displaystyle=\lim_{n\to\infty}\lVert\Psi^{2n}\rVert^{1/n}_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}
limn(2C)1/nΨL1,ν(𝖦|𝒞)1/nΨL1(𝖦|𝒞)1/n\displaystyle\leq\lim_{n\to\infty}(2C)^{1/n}\lVert\Psi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{1/n}\lVert\Psi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{1/n}
=ρL1,ν(𝖦|𝒞)(Ψ)ρL1(𝖦|𝒞)(Ψ).\displaystyle=\rho_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}(\Psi)\rho_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Psi).

Implying that L1,ν(𝖦|𝒞)L^{1,\nu}({\sf G}\,|\,\mathscr{C}) is spectral radius preserving in L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}). The result follows from Barnes’ lemma. ∎

In particular, we have the following corollary.

Corollary 4.11.

Let ν\nu be a polynomial weight on 𝖦{\sf G}. Let φ:L1,ν(𝖦|𝒞)𝔅\varphi:L^{1,\nu}({\sf G}\,|\,\mathscr{C})\to\mathfrak{B} be a -homomorphism, with 𝔅\mathfrak{B} a CC^{*}-algebra. Then φ\varphi extends to L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}).

Proof.

Let ΦL1,ν(𝖦|𝒞)\Phi\in L^{1,\nu}({\sf G}\,|\,\mathscr{C}). We have

φ(Φ)𝔅2\displaystyle\lVert\varphi(\Phi)\rVert_{\mathfrak{B}}^{2} =φ(ΦΦ)\displaystyle=\lVert\varphi(\Phi^{*}*\Phi)\rVert
=ρ𝔅(φ(ΦΦ))\displaystyle=\rho_{\mathfrak{B}}\big{(}\varphi(\Phi^{*}*\Phi)\big{)}
ρL1,ν(𝖦|𝒞)(ΦΦ)\displaystyle\leq\rho_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}(\Phi^{*}*\Phi)
=ρL1(𝖦|𝒞)(ΦΦ)\displaystyle=\rho_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi^{*}*\Phi)
ΦΦL1(𝖦|𝒞)ΦL1(𝖦|𝒞)2,\displaystyle\leq\lVert\Phi^{*}*\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{2},

so φ\varphi extends to L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}). ∎

We finally turn our attention to the question of symmetry.

Lemma 4.12.

Let ν\nu be a polynomial weight on 𝖦{\sf G} such that such that ν1\nu^{-1} belongs to Lp(𝖦)L^{p}({\sf G}), for 0<p<0<p<\infty. Then there is a constant A>0A>0, such that

ΦL1(𝖦|𝒞)AΦL(𝖦|𝒞)1/(p+1)ΦL1,ν(𝖦|𝒞)p/(p+1),\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\leq A\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{p/(p+1)}, (4.5)

for all ΦL1,ν(𝖦|𝒞)L(𝖦|𝒞)\Phi\in L^{1,\nu}({\sf G}\,|\,\mathscr{C})\cap L^{\infty}({\sf G}\,|\,\mathscr{C}).

Proof.

Let a>0a>0 to be determined later and

Ua={x𝖦ν(x)a}.U_{a}=\{x\in{\sf G}\mid\nu(x)\leq a\}.

Then for xUax\in U_{a}, one has 1apν(x)p1\leq a^{p}\nu(x)^{-p}, so, denoting B=ν1Lp(𝖦)pB=\lVert\nu^{-1}\rVert_{L^{p}({\sf G})}^{p},

μ(Ua)=Ua1dxUaapν(x)pdxapB.\mu(U_{a})=\int_{U_{a}}1{\rm d}x\leq\int_{U_{a}}\tfrac{a^{p}}{\nu(x)^{p}}{\rm d}x\leq a^{p}B.

Thus,

ΦL1(𝖦|𝒞)\displaystyle\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})} =UaΦ(x)xdx+𝖦UaΦ(x)xdx\displaystyle=\int_{U_{a}}\lVert\Phi(x)\rVert_{\mathfrak{C}_{x}}{\rm d}x+\int_{{\sf G}\setminus U_{a}}\lVert\Phi(x)\rVert_{\mathfrak{C}_{x}}{\rm d}x
ΦL(𝖦|𝒞)μ(Ua)+ΦL1,ν(𝖦|𝒞)sup𝖦Ua1ν(x)\displaystyle\leq\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}\mu(U_{a})+\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}\sup_{{\sf G}\setminus U_{a}}\tfrac{1}{\nu(x)}
apBΦL(𝖦|𝒞)+1aΦL1,ν(𝖦|𝒞)\displaystyle\leq a^{p}B\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}+\tfrac{1}{a}\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}

If we take

a=(ΦL1,ν(𝖦|𝒞)BΦL(𝖦|𝒞))1p+1,a=\Big{(}\frac{\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}}{B\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}}\Big{)}^{\tfrac{1}{p+1}},

then the result follows, with A=2B1p+1A=2B^{\tfrac{1}{p+1}}. ∎

The following lemma is inspired by [40, Lemma 4].

Lemma 4.13.

Let ΦL1(𝖦|𝒞)sa\Phi\in L^{1}({\sf G}\,|\,\mathscr{C})_{\rm sa}. There exists a continuous cross-section ΨCc(𝖦|𝒞)\Psi\in C_{\rm c}({\sf G}\,|\,\mathscr{C}) such that

ρL1(𝖦|𝒞)(Φ)lim supnΨ2ΦnL1(𝖦|𝒞)1/n.\rho_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi)\leq\limsup_{n\to\infty}\lVert\Psi^{2}*\Phi^{n}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{1/n}. (4.6)
Proof.

This is obviously true for Φ=0\Phi=0. Otherwise, we consider the sequence

an:=Φn+2L1(𝖦|𝒞)ΦnL1(𝖦|𝒞).a_{n}:=\frac{\lVert\Phi^{n+2}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}}{\lVert\Phi^{n}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}}.

It is easy to see that lim supnan>0\limsup_{n\to\infty}a_{n}>0. Indeed, otherwise would mean that limnan=0\lim_{n\to\infty}a_{n}=0 and, by definition, for ϵ>0\epsilon>0, there is an NN\in\mathbb{N} such that for all mm\in\mathbb{N},

ΦN+2mL1(𝖦|𝒞)ΦNL1(𝖦|𝒞)ϵm,\frac{\lVert\Phi^{N+2m}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}}{\lVert\Phi^{N}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}}\leq\epsilon^{m},

and limmΦN+2mL1(𝖦|𝒞)1/(N+2m)ϵ\lim_{m\to\infty}\lVert\Phi^{N+2m}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{1/(N+2m)}\leq\sqrt{\epsilon}, implying that

0=limmΦN+2mL1(𝖦|𝒞)1/(N+2m)=ρL1(𝖦|𝒞)(Φ),0=\lim_{m\to\infty}\lVert\Phi^{N+2m}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{1/(N+2m)}=\rho_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi),

so

ρC(𝖦|𝒞)(Φ)ρL1(𝖦|𝒞)(Φ)=0\rho_{C^{*}({\sf G}\,|\,\mathscr{C})}(\Phi)\leq\rho_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi)=0

which is, of course, impossible. Now let 0<a<lim supnan0<a<\limsup_{n\to\infty}a_{n} and ΨCc(𝖦|𝒞)\Psi\in C_{\rm c}({\sf G}\,|\,\mathscr{C}) such that ΦΨL1(𝖦|𝒞)<ϵ\lVert\Phi-\Psi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}<\epsilon, subject to (2ΦL1(𝖦|𝒞)+ϵ)ϵ<a2(2\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}+\epsilon)\epsilon<\tfrac{a}{2} then

Φ2Ψ2L1(𝖦|𝒞)ΦΨL1(𝖦|𝒞)(ΦL1(𝖦|𝒞)+ΨL1(𝖦|𝒞))(2ΦL1(𝖦|𝒞)+ϵ)ϵ<a2\lVert\Phi^{2}-\Psi^{2}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Phi-\Psi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\big{(}\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}+\lVert\Psi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\big{)}\leq(2\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}+\epsilon)\epsilon<\tfrac{a}{2}

and

Ψ2ΦnL1(𝖦|𝒞)Φn+2L1(𝖦|𝒞)a2ΦnL1(𝖦|𝒞)=ΦnL1(𝖦|𝒞)(ana2).\lVert\Psi^{2}*\Phi^{n}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\geq\lVert\Phi^{n+2}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}-\tfrac{a}{2}\lVert\Phi^{n}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}=\lVert\Phi^{n}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}(a_{n}-\tfrac{a}{2}).

Since ana2a2a_{n}-\tfrac{a}{2}\geq\tfrac{a}{2} for infinitely many nn, then

lim supnΨ2ΦnL1(𝖦|𝒞)1/nlimnΦnL1(𝖦|𝒞)1/n=ρL1(𝖦|𝒞)(Φ),\limsup_{n\to\infty}\lVert\Psi^{2}*\Phi^{n}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{1/n}\geq\lim_{n\to\infty}\lVert\Phi^{n}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{1/n}=\rho_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi),

finishing the proof. ∎

Theorem 4.14.

Let ν\nu be a polynomial weight on 𝖦{\sf G} such that ν1\nu^{-1} belongs to Lp(𝖦)L^{p}({\sf G}), for some 0<p<0<p<\infty. For Φ=ΦL1,ν(𝖦|𝒞)\Phi=\Phi^{*}\in L^{1,\nu}({\sf G}\,|\,\mathscr{C}), one has

SpecL1(𝖦|𝒞)(Φ)=SpecL1,ν(𝖦|𝒞)(Φ)=SpecC(𝖦|𝒞)(λ(Φ)),{\rm Spec}_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi)={\rm Spec}_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}(\Phi)={\rm Spec}_{C^{*}({\sf G}\,|\,\mathscr{C})}\big{(}\lambda(\Phi)\big{)}, (4.7)

in particular, L1,ν(𝖦|𝒞)L^{1,\nu}({\sf G}\,|\,\mathscr{C}) is symmetric.

Proof.

The first equality is the content of Proposition 4.10. For the second one, we compute the spectral radius. We will apply Lemmas 4.12 and 3.4. Note that, if ΨCc(𝖦|𝒞)\Psi\in C_{\rm c}({\sf G}\,|\,\mathscr{C}) is the cross-section given by Lemma 4.13, then Ψ2Φn,ΨΦnL(𝖦|𝒞)\Psi^{2}*\Phi^{n},\Psi*\Phi^{n}\in L^{\infty}({\sf G}\,|\,\mathscr{C}) and

Ψ2ΦnL1(𝖦|𝒞)\displaystyle\lVert\Psi^{2}*\Phi^{n}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})} AΨ2ΦnL(𝖦|𝒞)1/(p+1)Ψ2ΦnL1,ν(𝖦|𝒞)p/(p+1)\displaystyle\leq A\lVert\Psi^{2}*\Phi^{n}\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Psi^{2}*\Phi^{n}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{p/(p+1)}
AΨL2(𝖦|𝒞)1/(p+1)ΨΦnL𝖾2(𝖦|𝒞)1/(p+1)ΦnL1,ν(𝖦|𝒞)p/(p+1)Ψ2L1,ν(𝖦|𝒞)p/(p+1)\displaystyle\leq A\lVert\Psi\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Psi*\Phi^{n}\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi^{n}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{p/(p+1)}\lVert\Psi^{2}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{p/(p+1)}
AΨL2(𝖦|𝒞)1/(p+1)λ(Φ)n𝔹(L2(𝖦|𝒞))1/(p+1)ΨL𝖾2(𝖦|𝒞)1/(p+1)ΦnL1,ν(𝖦|𝒞)p/(p+1)Ψ2L1,ν(𝖦|𝒞)p/(p+1)\displaystyle\leq A\lVert\Psi\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\lambda(\Phi)^{n}\rVert_{\mathbb{B}(L^{2}({\sf G}\,|\,\mathscr{C}))}^{1/(p+1)}\lVert\Psi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi^{n}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{p/(p+1)}\lVert\Psi^{2}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{p/(p+1)}

So taking nn-th roots and lim sup\limsup on nn yields

lim supnΨ2ΦnL1(𝖦|𝒞)1/nρ𝔹(L2(𝖦|𝒞))(λ(Φ))1/(p+1)ρL1,ν(𝖦|𝒞)(Φ)p/(p+1)\displaystyle\limsup_{n\to\infty}\lVert\Psi^{2}*\Phi^{n}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{1/n}\leq\rho_{\mathbb{B}(L^{2}({\sf G}\,|\,\mathscr{C}))}\big{(}\lambda(\Phi)\big{)}^{1/(p+1)}\rho_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}(\Phi)^{p/(p+1)}

But ρL1(𝖦|𝒞)(Φ)lim supnΨ2ΦnL1(𝖦|𝒞)1/n\rho_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi)\leq\limsup_{n\to\infty}\lVert\Psi^{2}*\Phi^{n}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{1/n}, by Lemma 4.13 and

ρL1(𝖦|𝒞)(Φ)=ρL1,ν(𝖦|𝒞)(Φ),\rho_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi)=\rho_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}(\Phi),

by Proposition 4.10. Finally,

ρ𝔹(L2(𝖦|𝒞))(λ(Φ))=ρ𝔹a(L2(𝖦|𝒞))(λ(Φ)),\rho_{\mathbb{B}(L^{2}({\sf G}\,|\,\mathscr{C}))}\big{(}\lambda(\Phi)\big{)}=\rho_{\mathbb{B}_{a}(L^{2}({\sf G}\,|\,\mathscr{C}))}\big{(}\lambda(\Phi)\big{)},

by [13, Corollary 1]. Therefore we have shown that L1,ν(𝖦|𝒞)L^{1,\nu}({\sf G}\,|\,\mathscr{C}) is inverse closed in C(𝖦|𝒞)C^{*}({\sf G}\,|\,\mathscr{C}) and hence symmetric. ∎

Remark 4.15.

When interpreted as a statement about the spectra of elements in L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}), the above theorem implies that, for a locally compact, compactly generated group of polynomial growth, then SpecL1(𝖦|𝒞)(Φ){\rm Spec}_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi)\subset\mathbb{R}, for all Φ=ΦL1,ν(𝖦|𝒞)\Phi=\Phi^{*}\in L^{1,\nu}({\sf G}\,|\,\mathscr{C}). It is a very interesting open question whether L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) is symmetric in such a case.

We finish this section by noting that the smooth functional calculus defined for L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) restricts to L1,ν(𝖦|𝒞)L^{1,\nu}({\sf G}\,|\,\mathscr{C}).

Proposition 4.16.

Let 𝖦{\sf G} be a group of polynomial growth of order dd, ν\nu a polynomial weight on 𝖦{\sf G} and let Φ=ΦCc(𝖦|𝒞)\Phi=\Phi^{*}\in C_{\rm c}({\sf G}\,|\,\mathscr{C}). Then

u(tΦ)L1,ν(𝖦|𝒞)=O(|t|2d+2), as |t|.\lVert u(t\Phi)\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}=O(|t|^{2d+2}),\quad\textup{ as }|t|\to\infty. (4.8)
Proof.

We proceed exactly as in the proof of Proposition 3.6, so will skip the simpler details. Let KK be a compact subset of 𝖦{\sf G}, containing both Supp(Φ){\rm Supp}(\Phi) and 𝖾{\sf e}, and let nn be a positive integer. Then

u(nΦ)L1,ν(𝖦|𝒞)=Kn21u(nΦ)(x)xν(x)dx+𝖦Kn21u(nΦ)(x)xν(x)dx.\lVert u(n\Phi)\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}=\int_{K^{n^{2}-1}}\lVert u(n\Phi)(x)\rVert_{\mathfrak{C}_{x}}\nu(x){\rm d}x+\int_{{\sf G}\setminus K^{n^{2}-1}}\lVert u(n\Phi)(x)\rVert_{\mathfrak{C}_{x}}\nu(x){\rm d}x. (4.9)

The second integral is again bounded easily and we see

𝖦Kn21u(nΦ)(x)xν(x)dxnn2(n2)!enΦL1,ν(𝖦|𝒞)ΦL1,ν(𝖦|𝒞)n2=O(1), as n.\displaystyle\int_{{\sf G}\setminus K^{n^{2}-1}}\lVert u(n\Phi)(x)\rVert_{\mathfrak{C}_{x}}\nu(x){\rm d}x\leq\frac{n^{n^{2}}}{(n^{2})!}e^{n\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}}\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{n^{2}}=O(1),\quad\textup{ as }n\to\infty.

Now we turn our attention to the first integral in (4.9). Exactly as before, we have u(nΦ)=inΦ+nΦv(nΦ)u(n\Phi)=in\Phi+n\Phi*v(n\Phi) and, using that ΨLp,ν(𝖦|𝒞)=ΨνLp(𝖦|𝒞)\lVert\Psi\rVert_{L^{p,\nu}({\sf G}\,|\,\mathscr{C})}=\lVert\Psi\nu\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})},

u(nΦ)L,ν(𝖦|𝒞)nΦL,ν(𝖦|𝒞)+nΦL2,ν(𝖦|𝒞)v(nΦ)νL𝖾2(𝖦|𝒞).\lVert u(n\Phi)\rVert_{L^{\infty,\nu}({\sf G}\,|\,\mathscr{C})}\leq n\lVert\Phi\rVert_{L^{\infty,\nu}({\sf G}\,|\,\mathscr{C})}+n\lVert\Phi\rVert_{L^{2,\nu}({\sf G}\,|\,\mathscr{C})}\lVert v(n\Phi)\nu\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}.

Then, by Hölder’s inequality

Kn21u(nΦ)(x)xν(x)dx\displaystyle\int_{K^{n^{2}-1}}\lVert u(n\Phi)(x)\rVert_{\mathfrak{C}_{x}}\nu(x){\rm d}x u(nΦ)L,ν(𝖦|𝒞)μ(Kn21)\displaystyle\leq\lVert u(n\Phi)\rVert_{L^{\infty,\nu}({\sf G}\,|\,\mathscr{C})}\mu(K^{n^{2}-1})
nμ(Kn21)(nΦL,ν(𝖦|𝒞)+nΦL2,ν(𝖦|𝒞)v(nΦ)νL𝖾2(𝖦|𝒞))\displaystyle\leq n\mu(K^{n^{2}-1})\Big{(}n\lVert\Phi\rVert_{L^{\infty,\nu}({\sf G}\,|\,\mathscr{C})}+n\lVert\Phi\rVert_{L^{2,\nu}({\sf G}\,|\,\mathscr{C})}\lVert v(n\Phi)\nu\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}\Big{)}
(3.8)nμ(Kn21)(ΦL,ν(𝖦|𝒞)+n2ΦL2,ν(𝖦|𝒞)2)\displaystyle\overset{\eqref{dixlem}}{\leq}n\mu(K^{n^{2}-1})\Big{(}\lVert\Phi\rVert_{L^{\infty,\nu}({\sf G}\,|\,\mathscr{C})}+\tfrac{n}{2}\lVert\Phi\rVert_{L^{2,\nu}({\sf G}\,|\,\mathscr{C})}^{2}\Big{)}

thus we have shown that u(nΦ)L1,ν(𝖦|𝒞)=O(n2d+2)\lVert u(n\Phi)\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}=O(n^{2d+2}), as nn\to\infty. ∎

As before, we obtain the existence of a smooth functional calculus for elements Φ=ΦCc(𝖦|𝒞)\Phi=\Phi^{*}\in C_{\rm c}({\sf G}\,|\,\mathscr{C}).

Theorem 4.17.

Let 𝖦{\sf G} be a group of polynomial growth of order dd, ν\nu a polynomial weight on 𝖦{\sf G} and Φ=ΦCc(𝖦|𝒞)\Phi=\Phi^{*}\in C_{\rm c}({\sf G}\,|\,\mathscr{C}). Let f:f:\mathbb{R}\to\mathbb{C} be a complex function that admits 2d+42d+4 continuous and integrable derivatives, with Fourier transform f^\widehat{f}. Then

  1. (i)

    f(Φ)=12πf^(t)eitΦdtf(\Phi)=\frac{1}{2\pi}\int_{\mathbb{R}}\widehat{f}(t)e^{it\Phi}{\rm d}t exists in L1,ν(𝖦|𝒞)~\widetilde{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}, or in L1,ν(𝖦|𝒞)L^{1,\nu}({\sf G}\,|\,\mathscr{C}) if f(0)=0f(0)=0.

  2. (ii)

    For any non-degenerate -representation Π:L1,ν(𝖦|𝒞)𝔹()\Pi:L^{1,\nu}({\sf G}\,|\,\mathscr{C})\to\mathbb{B}(\mathcal{H}), we have

    Π~(f(Φ))=f(Π(Φ)).\widetilde{\Pi}(f\big{(}\Phi\big{)})=f\big{(}\Pi(\Phi)\big{)}.

    Furthermore, if Π\Pi is injective, we also have

    SpecL1,ν(𝖦|𝒞)~(f(Φ))=Spec𝔹()(Π~(f(Φ))).{\rm Spec}_{\widetilde{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}}\big{(}f(\Phi)\big{)}={\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}\widetilde{\Pi}\big{(}f(\Phi)\big{)}\big{)}.

5 Some consequences

From now on, 𝔇\mathfrak{D} will denote either L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) or L1,ν(𝖦|𝒞)L^{1,\nu}({\sf G}\,|\,\mathscr{C}), where ν\nu is a polynomial weight such that ν1Lp(𝖦)\nu^{-1}\in L^{p}({\sf G}). 𝖦{\sf G} is assumed to have polynomial growth of order dd. We remark that compact generation of 𝖦{\sf G} is not necessarily assumed. If needed, we recall that sufficient conditions for the symmetry of 𝔇\mathfrak{D} were given in Remark 4.2 and Theorem 4.14.

Definition 5.1.

Let 𝔅\mathfrak{B} be a semisimple commutative Banach algebra with spectrum Δ\Delta. 𝔅\mathfrak{B} is called regular if for every closed set XΔX\subset\Delta and every point ωΔX\omega\in\Delta\setminus X, there exists an element b𝔅b\in\mathfrak{B} such that b^(φ)=0\hat{b}(\varphi)=0 for all φX\varphi\in X and b^(ω)0\hat{b}(\omega)\not=0.

Lemma 5.2.

Let 𝔅\mathfrak{B} be a Banach -algebra and b𝔅b\in\mathfrak{B} be self-adjoint, with polynomial growth of order dd. Suppose Π:𝔅𝔹()\Pi:\mathfrak{B}\to\mathbb{B}(\mathcal{H}) be any non-degenerate -representation such that Π~|𝔅(b,1)\widetilde{\Pi}|_{\mathfrak{B}(b,1)} is injective. If φb:Ccd+2()𝔅(b,1)\varphi_{b}:C_{\rm c}^{d+2}(\mathbb{R})\to\mathfrak{B}(b,1) is the -homomorphism in 2.5 and aImφba\in{\rm Im}\varphi_{b}, then

Spec𝔅(b,1)(a)=Spec𝔅(a)=Spec𝔹()(Π~(a)).{\rm Spec}_{\mathfrak{B}(b,1)}(a)={\rm Spec}_{\mathfrak{B}}(a)={\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}\widetilde{\Pi}(a)\big{)}.

In particular, 𝔅(b,1)\mathfrak{B}(b,1) is regular.

Proof.

It is immediate that Spec𝔹()(Π~(a))Spec𝔅(a)=Spec𝔅~(a)Spec𝔅(b,1)(a){\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}\widetilde{\Pi}(a)\big{)}\subset{\rm Spec}_{\mathfrak{B}}(a)={\rm Spec}_{\widetilde{\mathfrak{B}}}(a)\subset{\rm Spec}_{\mathfrak{B}(b,1)}(a). To show the reversed containments, it is enough to show that, if Π~(a)\widetilde{\Pi}(a) is invertible in 𝔹()\mathbb{B}(\mathcal{H}), then aa is invertible in 𝔅(b,1)\mathfrak{B}(b,1). Indeed, let q:Ccd+2()C(Spec𝔹()(Π~(a)))q:C_{\rm c}^{d+2}(\mathbb{R})\to C({\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}\widetilde{\Pi}(a)\big{)}) be the restriction map. Theorem 2.5 implies that the diagram

Ccd+2(){C_{\rm c}^{d+2}(\mathbb{R})}𝔅(b,1){\mathfrak{B}(b,1)}C(Spec𝔹()(Π(b))){C({\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}\Pi(b)\big{)})}C(Π(b),1){C^{*}(\Pi(b),1)}φb\scriptstyle{\varphi_{b}}q\scriptstyle{q}Π~\scriptstyle{\widetilde{\Pi}}\scriptstyle{\cong}

commutes. In particular, if a=φb(f)a=\varphi_{b}(f) and using the spectral mapping theorem,

f(Spec𝔹()(Π(b)))=Spec𝔹()(f(Π(b)))=2.5(ii)Spec𝔹()(Π~(f(b)))=Spec𝔹()(Π~(a)).f\big{(}{\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}\Pi(b)\big{)}\big{)}={\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}f\big{(}\Pi(b)\big{)}\big{)}\overset{\ref{DixBai}(ii)}{=}{\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}\widetilde{\Pi}\big{(}f(b)\big{)}\big{)}={\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}\widetilde{\Pi}(a)\big{)}.

If Π~(a)\widetilde{\Pi}(a) is invertible, then 0f(Spec𝔹()(Π(b)))0\not\in f\big{(}{\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}\Pi(b)\big{)}\big{)}. So there exists a function gCcd+2()g\in C_{\rm c}^{d+2}(\mathbb{R}) such that f(x)g(x)=1f(x)g(x)=1, for xSpec𝔹()(Π(b))x\in{\rm Spec}_{\mathbb{B}(\mathcal{H})}\big{(}\Pi(b)\big{)}. Therefore, φb(fg)=1\varphi_{b}(f\cdot g)=1 and aa is invertible in 𝔅(b,1)\mathfrak{B}(b,1), with inverse a1=g(b)a^{-1}=g(b). The statement about regularity then follows from the fact that any compact set in \mathbb{C} is completely regular, but the separating functions can be chosen to be smooth. ∎

The following definition is due to Barnes [5] and gives a useful criterion for -regularity, among other properties.

Definition 5.3.

A reduced Banach -algebra 𝔅\mathfrak{B} is called locally regular if there is a subset R𝔅saR\subset\mathfrak{B}_{\rm sa}, dense in 𝔅sa\mathfrak{B}_{\rm sa} and such that 𝔅(b)\mathfrak{B}(b) is regular, for all BRB\in R.

Corollary 5.4.

𝔇\mathfrak{D} is locally regular.

5.1 Preservation of spectra and -regularity

Let Π:𝔇𝔹(𝒳)\Pi:\mathfrak{D}\to\mathbb{B}(\mathcal{X}) be a representation of 𝔇\mathfrak{D} on the Banach space 𝒳\mathcal{X}. The idea of this subsection is to understand the spectrum of Π(Φ)\Pi(\Phi), at least for self-adjoint Φ\Phi. This is particularly important (and also easier) in the case of -representations as it allows us to understand the CC^{*}-norms in 𝔇\mathfrak{D}. We also provide applications to the ideal theory of 𝔇\mathfrak{D}.

If 𝔅\mathfrak{B} is a reduced Banach -algebra, then its canonical embedding is denoted by ι𝔅:𝔅C(𝔅)\iota_{\mathfrak{B}}:\mathfrak{B}\to C^{*}(\mathfrak{B}). The spaces PrimC(𝔅){\rm Prim}\,C^{*}(\mathfrak{B}), Prim𝔅{\rm Prim}\mathfrak{B} and Prim𝔅{\rm Prim}_{*}\mathfrak{B} denote, respectively, the space of primitive ideals of C(𝔅)C^{*}(\mathfrak{B}), the space of primitive ideals of 𝔅\mathfrak{B} and the space of kernels of topologically irreducible -representations of 𝔅\mathfrak{B}, all of them equipped with the Jacobson topology. It is known that ι𝔅\iota_{\mathfrak{B}} induces a continuous surjection PrimC(𝔅)Prim𝔅{\rm Prim}\,C^{*}(\mathfrak{B})\to{\rm Prim}_{*}\mathfrak{B} [39, Corollary 10.5.7]. We recall that for a subset S𝔅S\subset\mathfrak{B}, its hull corresponds to

h(S)={IPrim𝔅SI},h(S)=\{I\in{\rm Prim}_{*}\mathfrak{B}\mid S\subset I\},

while the kernel of a subset CPrim𝔅C\subset{\rm Prim}_{*}\mathfrak{B} is

k(C)={IIC}.k(C)=\bigcap\{I\mid I\in C\}.
Definition 5.5.

Let 𝔅\mathfrak{B} be a reduced Banach -algebra.

  1. (i)

    𝔅\mathfrak{B} is called CC^{*}-unique if there is a unique CC^{*}-norm on 𝔅\mathfrak{B}.

  2. (ii)

    𝔅\mathfrak{B} is called -regular if the surjection PrimC(𝔅)Prim𝔅{\rm Prim}\,C^{*}(\mathfrak{B})\to{\rm Prim}_{*}\mathfrak{B} is a homeomorphism.

It is well-known that -regularity implies CC^{*}-uniqueness. In fact, the latter may be rephrased as the following: 𝔅\mathfrak{B} is CC^{*}-unique if and only if, for every closed ideal IC(𝔅)I\subset C^{*}(\mathfrak{B}), one has I𝔅0I\cap\mathfrak{B}\not=0. It might also be referred to as the ’ideal intersection property’. The next theorem shows that -regularity is much stronger.

Theorem 5.6.

𝔇\mathfrak{D} is -regular. In particular, the following are true.

  1. (i)

    For any pair of  -representations Π1,Π2\Pi_{1},\Pi_{2} the inclusion kerΠ1kerΠ2{\rm ker}\,\Pi_{1}\subset{\rm ker}\,\Pi_{2} implies Π2(Φ)Π1(Φ)\lVert\Pi_{2}(\Phi)\rVert\leq\lVert\Pi_{1}(\Phi)\rVert, for all Φ𝔇\Phi\in\mathfrak{D}.

  2. (ii)

    Let II be a closed ideal of C(𝖦|𝒞)C^{*}({\sf G}\,|\,\mathscr{C}), then 𝔇I¯C(𝖦|𝒞)=I\overline{\mathfrak{D}\cap I}^{\lVert\cdot\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}}=I.

  3. (iii)

    If IPrim𝔇I\in{\rm Prim}_{*}\,\mathfrak{D}, then I¯C(𝖦|𝒞)PrimC(𝖦|𝒞)\overline{I}^{\lVert\cdot\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}}\in{\rm Prim}\,C^{*}({\sf G}\,|\,\mathscr{C}). If 𝔇\mathfrak{D} is symmetric, then for any IPrim𝔇I\in{\rm Prim}\,\mathfrak{D}, we have I¯C(𝖦|𝒞)PrimC(𝖦|𝒞)\overline{I}^{\lVert\cdot\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}}\in{\rm Prim}\,C^{*}({\sf G}\,|\,\mathscr{C}).

Proof.

Any CC^{*}-norm must coincide with the universal CC^{*}-norm on the elements of polynomial growth, due to Lemma 5.2. But for 𝔇\mathfrak{D} these elements are dense in 𝔇sa\mathfrak{D}_{\rm sa}, therefore such a norm must coincide with the universal CC^{*}-norm on all of 𝔇\mathfrak{D}. The same is true for any quotient of 𝔇\mathfrak{D}, since the homomorphic image of an element of polynomial growth also has polynomial growth. Then -regularity follows from [39, Theorem 10.5.18]. The rest of assertions are consequences of -regularity. However, we will prove (ii) and (iii). (i) follows from [11, Satz 2].

(ii) Let J=𝔇I¯C(𝖦|𝒞)J=\overline{\mathfrak{D}\cap I}^{\lVert\cdot\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}} and note that C(𝖦|𝒞)/IC^{*}({\sf G}\,|\,\mathscr{C})/I and C(𝖦|𝒞)/JC^{*}({\sf G}\,|\,\mathscr{C})/J are CC^{*}-algebras. Define -homomorphisms φ1:𝔇/(𝔇I)C(𝖦|𝒞)/I\varphi_{1}:\mathfrak{D}/(\mathfrak{D}\cap I)\to C^{*}({\sf G}\,|\,\mathscr{C})/I and φ2:𝔇/(𝔇I)C(𝖦|𝒞)/J\varphi_{2}:\mathfrak{D}/(\mathfrak{D}\cap I)\to C^{*}({\sf G}\,|\,\mathscr{C})/J by

φ1(Φ+𝔇I)=ι𝔇(Φ)+Iandφ2(Φ+𝔇I)=ι𝔇(Φ)+J.\varphi_{1}(\Phi+\mathfrak{D}\cap I)=\iota_{\mathfrak{D}}(\Phi)+I\quad\textup{and}\quad\varphi_{2}(\Phi+\mathfrak{D}\cap I)=\iota_{\mathfrak{D}}(\Phi)+J.

Both are injective and so

β1(Φ+𝔇I):=ι𝔇(Φ)+IC(𝖦|𝒞)/Iandβ2(Φ+𝔇I):=ι𝔇(Φ)+JC(𝖦|𝒞)/J\beta_{1}(\Phi+\mathfrak{D}\cap I):=\lVert\iota_{\mathfrak{D}}(\Phi)+I\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})/I}\quad\textup{and}\quad\beta_{2}(\Phi+\mathfrak{D}\cap I):=\lVert\iota_{\mathfrak{D}}(\Phi)+J\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})/J}

define CC^{*}-norms on 𝔇/(𝔇I)\mathfrak{D}/(\mathfrak{D}\cap I). However, 𝔇/(𝔇I)\mathfrak{D}/(\mathfrak{D}\cap I) is CC^{*}-unique by [39, Theorem 10.5.18] and hence β1(Φ+𝔇I)=β2(Φ+𝔇I)\beta_{1}(\Phi+\mathfrak{D}\cap I)=\beta_{2}(\Phi+\mathfrak{D}\cap I). Now let ΨI\Psi\in I and Ψn𝔇\Psi_{n}\in\mathfrak{D} such that ΨnΨ\Psi_{n}\to\Psi in C(𝖦|𝒞)C^{*}({\sf G}\,|\,\mathscr{C}). Then

ι𝔇(Ψn)+JC(𝖦|𝒞)/J=β2(Ψn+𝔇I)=β1(Ψn+𝔇I)ι𝔇(ΨnΨ)C(𝖦|𝒞)0,\lVert\iota_{\mathfrak{D}}(\Psi_{n})+J\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})/J}=\beta_{2}(\Psi_{n}+\mathfrak{D}\cap I)=\beta_{1}(\Psi_{n}+\mathfrak{D}\cap I)\leq\lVert\iota_{\mathfrak{D}}(\Psi_{n}-\Psi)\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}\to 0,

so there exists a sequence ΦnJ\Phi_{n}\in J such that ΨnΦn0\Psi_{n}-\Phi_{n}\to 0 in C(𝖦|𝒞)C^{*}({\sf G}\,|\,\mathscr{C}). In particular,

ΨΦnC(𝖦|𝒞)ΨΨnC(𝖦|𝒞)+ΨnΦnC(𝖦|𝒞)0\lVert\Psi-\Phi_{n}\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Psi-\Psi_{n}\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}+\lVert\Psi_{n}-\Phi_{n}\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}\to 0

and thus ΨJ\Psi\in J.

(iii) If IPrim𝔇I\in{\rm Prim}\,\mathfrak{D}, then there exist an irreducible -representation Π:𝔇𝔹()\Pi:\mathfrak{D}\to\mathbb{B}(\mathcal{H}) with I=kerΠI={\rm ker}\,\Pi. Let Π~\widetilde{\Pi} the unique extension of Π\Pi to C(𝖦|𝒞)C^{*}({\sf G}\,|\,\mathscr{C}). Then I=𝔇kerΠ~I=\mathfrak{D}\cap{\rm ker}\,\widetilde{\Pi}, so by the previous point, kerΠ~=I¯C(𝖦|𝒞)PrimC(𝖦|𝒞){\rm ker}\,\widetilde{\Pi}=\overline{I}^{\lVert\cdot\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}}\in{\rm Prim}\,C^{*}({\sf G}\,|\,\mathscr{C}). Now, if 𝔇\mathfrak{D} is symmetric, then Prim𝔇Prim𝔇{\rm Prim}\,\mathfrak{D}\subset{\rm Prim}_{*}\,\mathfrak{D} (see [27]). ∎

We finish the subsection with a result involving general spectral invariance under homomorphisms to Banach algebras. The price we pay for this generality is assuming symmetry.

Theorem 5.7.

Suppose 𝔇\mathfrak{D} is symmetric. Let 𝔅\mathfrak{B} be a unital Banach algebra and φ:𝔇~𝔅\varphi:\widetilde{\mathfrak{D}}\to\mathfrak{B} a continuous unital homomorphism. Set I=kerφI={\rm ker}\,\varphi.

  1. (i)

    If Φ𝔇~\Phi\in\widetilde{\mathfrak{D}} is normal,

    Spec𝔇~/I(Φ)=Spec𝔅(φ(Φ)).{\rm Spec}_{\widetilde{\mathfrak{D}}/I}(\Phi)={\rm Spec}_{\mathfrak{B}}\big{(}\varphi(\Phi)\big{)}.
  2. (ii)

    For a general Φ𝔇~\Phi\in\widetilde{\mathfrak{D}},

    Spec𝔇~/I(Φ)=Spec𝔅(φ(Φ))Spec𝔅(φ(Φ))¯.{\rm Spec}_{\widetilde{\mathfrak{D}}/I}(\Phi)={\rm Spec}_{\mathfrak{B}}\big{(}\varphi(\Phi)\big{)}\cup\overline{{\rm Spec}_{\mathfrak{B}}\big{(}\varphi(\Phi^{*})\big{)}}.
Proof.

This is an application of [9, Theorem 2.2]. While symmetry is assumed, 𝔇\mathfrak{D} is -quotient inverse closed because of local regularity (see [9, Theorem 2.1]). ∎

An immediate (but remarkable) application of the latter Theorem gives the following result.

Corollary 5.8.

For p[1,]p\in[1,\infty], let λp:𝔇~𝔹(Lp(𝖦|𝒞))\lambda_{p}:\widetilde{\mathfrak{D}}\to\mathbb{B}(L^{p}({\sf G}\,|\,\mathscr{C})) be the representation given by λp(Φ)Ψ=ΦΨ\lambda_{p}(\Phi)\Psi=\Phi*\Psi. Suppose that 𝔇\mathfrak{D} is symmetric. Then

  1. (i)

    If Φ𝔇~\Phi\in\widetilde{\mathfrak{D}} is normal,

    Spec𝔇~(Φ)=Spec𝔹(Lp(𝖦|𝒞))(λp(Φ)).{\rm Spec}_{\widetilde{\mathfrak{D}}}(\Phi)={\rm Spec}_{\mathbb{B}(L^{p}({\sf G}\,|\,\mathscr{C}))}\big{(}\lambda_{p}(\Phi)\big{)}.
  2. (ii)

    For a general Φ𝔇~\Phi\in\widetilde{\mathfrak{D}},

    Spec𝔇~(Φ)=Spec𝔹(Lp(𝖦|𝒞))(λp(Φ))Spec𝔹(Lp(𝖦|𝒞))(λp(Φ))¯.{\rm Spec}_{\widetilde{\mathfrak{D}}}(\Phi)={\rm Spec}_{\mathbb{B}(L^{p}({\sf G}\,|\,\mathscr{C}))}\big{(}\lambda_{p}(\Phi)\big{)}\cup\overline{{\rm Spec}_{\mathbb{B}(L^{p}({\sf G}\,|\,\mathscr{C}))}\big{(}\lambda_{p}(\Phi^{*})\big{)}}.

We remark that, in the case p=1p=1, one always has Spec𝔇~(Φ)=Spec𝔹(L1(𝖦|𝒞))(λ1(Φ)),{\rm Spec}_{\widetilde{\mathfrak{D}}}(\Phi)={\rm Spec}_{\mathbb{B}(L^{1}({\sf G}\,|\,\mathscr{C}))}\big{(}\lambda_{1}(\Phi)\big{)}, with no assumptions of symmetry whatsoever. This is trivial for 𝔇=L1(𝖦|𝒞)\mathfrak{D}=L^{1}({\sf G}\,|\,\mathscr{C}) and follows from Proposition 4.10 for 𝔇=L1,ν(𝖦|𝒞)\mathfrak{D}=L^{1,\nu}({\sf G}\,|\,\mathscr{C}).

5.2 Minimal ideals

Now we turn our attention the following problem: Study the existence of minimal ideals of 𝔇\mathfrak{D} with a given hull in Prim𝔇{\rm Prim}_{*}\mathfrak{D}. We are able to positively answer this problem for 𝔇\mathfrak{D} under the assumption of symmetry. Our references here are [15] and, specially, [35]. For a given closed subset CPrim𝔇C\subset{\rm Prim}_{*}\mathfrak{D}, we will use the following notations: for Φ𝔇\Phi\in\mathfrak{D}, we set

ΦC=supkerΠCΠ(Φ),\lVert\Phi\rVert_{C}=\sup_{{\rm ker}\,\Pi\in C}\lVert\Pi(\Phi)\rVert,

with Φ=0\lVert\Phi\rVert_{\emptyset}=0 and

m(C)=\displaystyle m(C)= {f(Φ)ΦCc(𝖦|𝒞)sa,ΦL1(𝖦|𝒞)1,\displaystyle\{f(\Phi)\mid\Phi\in C_{\rm c}({\sf G}\,|\,\mathscr{C})_{\rm sa},\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\leq 1,
fCc2d+4(),f0 on a neighbourhood of [ΦC,ΦC]}.\displaystyle\hskip 100.0ptf\in C_{\rm c}^{2d+4}(\mathbb{R}),f\equiv 0\textup{ on a neighbourhood of }[-\lVert\Phi\rVert_{C},\lVert\Phi\rVert_{C}]\}.

We let j(C)j(C) be the closed two-sided ideal of 𝔇\mathfrak{D} generated by m(C)m(C). Note that for C=C=\emptyset, we have

m()={f(Φ)ΦCc(𝖦|𝒞)sa,ΦL1(𝖦|𝒞)1,fCc2d+4(),f0 on a neighbourhood of 0}\displaystyle m(\emptyset)=\{f(\Phi)\mid\Phi\in C_{\rm c}({\sf G}\,|\,\mathscr{C})_{\rm sa},\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\leq 1,f\in C_{\rm c}^{2d+4}(\mathbb{R}),f\equiv 0\textup{ on a neighbourhood of }0\}
Lemma 5.9.

The hull of j(C)j(C) is CC.

Proof.

We first prove that Ch(j(C))C\subset h(j(C)). Indeed, let Π\Pi be a -representation with kerΠC{\rm ker}\,\Pi\in C and f(Φ)m(C)f(\Phi)\in m(C). Then Π(f(Φ))=f(Π(Φ))=0\Pi\big{(}f(\Phi)\big{)}=f\big{(}\Pi(\Phi)\big{)}=0, since f0f\equiv 0 on the spectrum of Π(Φ)\Pi(\Phi). Hence m(C)kerΠm(C)\subset{\rm ker}\,\Pi and therefore kerΠh(j(C)){\rm ker}\,\Pi\in h(j(C)) and Ch(j(C))C\subset h(j(C)).

On the other hand, let Π\Pi be a -representation with kerΠPrim𝔇C{\rm ker}\,\Pi\in{\rm Prim}_{*}\mathfrak{D}\setminus C, then, because of Theorem 5.6 there exists ΦCc(𝖦|𝒞)\Phi\in C_{\rm c}({\sf G}\,|\,\mathscr{C}) such that ΦC<Π(Φ)\lVert\Phi\rVert_{C}<\lVert\Pi(\Phi)\rVert. In fact, Φ\Phi can be chosen to be self adjoint and have ΦL1(𝖦|𝒞)1\lVert\Phi\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\leq 1. In particular, we can find a function fCc()f\in C_{\rm c}^{\infty}(\mathbb{R}) such that f0f\equiv 0 on a neighbourhood of [ΦC,ΦC][-\lVert\Phi\rVert_{C},\lVert\Phi\rVert_{C}] and f(Π(Φ))0f(\lVert\Pi(\Phi)\rVert)\not=0. Since Φ\Phi is self-adjoint, Π(Φ)\lVert\Pi(\Phi)\rVert lies in the spectrum of Π(Φ)\Pi(\Phi) and

Π(f(Φ))=f(Π(Φ))0.\Pi\big{(}f(\Phi)\big{)}=f\big{(}\Pi(\Phi)\big{)}\not=0.

From which it follows that kerΠh(j(C)){\rm ker}\,\Pi\not\in h(j(C)). ∎

Theorem 5.10.

Suppose 𝔇\mathfrak{D} is symmetric and let CC be a closed subset of Prim𝔇{\rm Prim}_{*}\mathfrak{D}. There exists a closed two-sided ideal j(C)j(C) of 𝔇\mathfrak{D}, with h(j(C))=Ch(j(C))=C, which is contained in every two-sided closed ideal I with h(I)Ch(I)\subset C.

Proof.

Take f(Φ)m(C)f(\Phi)\in m(C) arbitrary and let gCc()g\in C_{\rm c}^{\infty}(\mathbb{R}) such that g1g\equiv 1 in Supp(f){\rm Supp}(f). Thus

f(Φ)=(fg)(Φ)=f(Φ)g(Φ)f(\Phi)=(f\cdot g)(\Phi)=f(\Phi)*g(\Phi)

and g(Φ)m(C)g(\Phi)\in m(C). This implies that 𝔇\mathfrak{D} satisfies the conditions of [35, Lemma 2] and the conclusion follows. ∎

5.3 The Wiener property

We now consider the following property, which is intended as an abstract generalization of Wiener’s tauberian theorem.

Definition 5.11.

Let 𝔅\mathfrak{B} be a Banach -algebra. We say that 𝔅\mathfrak{B} has the Wiener property (W)(W) if for every proper closed two-sided ideal I𝔅I\subset\mathfrak{B}, there exists a topologically irreducible -representation Π:𝔅𝔹()\Pi:\mathfrak{B}\to\mathbb{B}(\mathcal{H}), such that IkerΠI\subset{\rm ker}\,\Pi.

Let (Ψα)α(\Psi_{\alpha})_{\alpha} be a bounded approximate identity in L1,ν(𝖦|𝒞)L^{1,\nu}({\sf G}\,|\,\mathscr{C}) such that, for all α\alpha, Ψα\Psi_{\alpha} is continuous,

Ψα=Ψα,ΨαL1,ν(𝖦|𝒞)C,ΨαL1(𝖦|𝒞)1,Supp(Ψα)VαK,\Psi_{\alpha}=\Psi_{\alpha}^{*},\quad\lVert\Psi_{\alpha}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}\leq C,\quad\lVert\Psi_{\alpha}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\leq 1,\quad{\rm Supp}(\Psi_{\alpha})\subset V_{\alpha}\subset K, (5.1)

where CC is a positive constant, VαV_{\alpha} a compact symmetric neighborhood of 𝖾{\sf e} in 𝖦{\sf G} and KK a fixed compact set. Our objective in this subsection will be to prove the following lemma and derive the Wiener property of 𝔇\mathfrak{D} as a consequence. First we comment on the existence of the bounded approximate identity we just fixed.

Remark 5.12.

The existence of bounded approximate identity satisfying (5.1) is clear in the case of L1,ν(𝖦)L^{1,\nu}({\sf G}). For the general case, one may construct one by adapting the proof of [18, Theorem 5.11] using the the bounded approximate identity of L1,ν(𝖦)L^{1,\nu}({\sf G}) satisfying (5.1) as the strong approximate identity of 𝖦{\sf G}.

Lemma 5.13.

Let fCc()f\in C_{\rm c}^{\infty}(\mathbb{R}) with f(1)=1f(1)=1 and f(0)=0f(0)=0, then

limαf(Ψα)ΦΦ𝔇=0,\lim_{\alpha}\lVert f(\Psi_{\alpha})*\Phi-\Phi\rVert_{\mathfrak{D}}=0,

for all ΦCc(𝖦|𝒞)\Phi\in C_{\rm c}({\sf G}\,|\,\mathscr{C}).

Proof.

As 1=f(1)=f^(t)eitdt1=f(1)=\int_{\mathbb{R}}\widehat{f}(t)e^{it}{\rm d}t, we see that

f(Ψα)ΦΦ𝔇=f^(t)(u(tΨα)eit)Φdt𝔇=f^(t)(eitΨαeit)Φdt𝔇.\displaystyle\lVert f(\Psi_{\alpha})*\Phi-\Phi\rVert_{\mathfrak{D}}=\lVert\int_{\mathbb{R}}\widehat{f}(t)\big{(}u(t\Psi_{\alpha})-e^{it}\big{)}*\Phi\,{\rm d}t\rVert_{\mathfrak{D}}=\lVert\int_{\mathbb{R}}\widehat{f}(t)\big{(}e^{it\Psi_{\alpha}}-e^{it}\big{)}*\Phi\,{\rm d}t\rVert_{\mathfrak{D}}.

Let us estimate the last quantity. For R>0R>0, we have

|t|>Rf^(t)(eitΨαeit)Φdt𝔇|t|>R|f^(t)|eitΨαΦ𝔇dt+Φ𝔇||t|>Rf^(t)eitdt|.\displaystyle\lVert\int_{|t|>R}\widehat{f}(t)\big{(}e^{it\Psi_{\alpha}}-e^{it}\big{)}*\Phi\,{\rm d}t\rVert_{\mathfrak{D}}\leq\int_{|t|>R}|\widehat{f}(t)|\lVert e^{it\Psi_{\alpha}}*\Phi\rVert_{\mathfrak{D}}{\rm d}t+\lVert\Phi\rVert_{\mathfrak{D}}|\int_{|t|>R}\widehat{f}(t)e^{it}\,{\rm d}t|.

Now, if fCc()f\in C_{\rm c}^{\infty}(\mathbb{R}), then |f^(t)|C1(1+|t|)2d+5|\widehat{f}(t)|\leq\frac{C_{1}}{(1+|t|)^{2d+5}} and thus an application of Proposition 4.16 yields

|f^(t)|eitΨαΦ𝔇C1(1+|t|)3.|\widehat{f}(t)|\lVert e^{it\Psi_{\alpha}}*\Phi\rVert_{\mathfrak{D}}\leq\frac{C_{1}}{(1+|t|)^{3}}.

By the dominated convergence theorem

|t|>R|f^(t)|eitΨαΦ𝔇dt<ϵ3\int_{|t|>R}|\widehat{f}(t)|\lVert e^{it\Psi_{\alpha}}*\Phi\rVert_{\mathfrak{D}}{\rm d}t<\frac{\epsilon}{3}

and

||t|>Rf^(t)eitdt|<ϵ3Φ𝔇,|\int_{|t|>R}\widehat{f}(t)e^{it}\,{\rm d}t|<\frac{\epsilon}{3\lVert\Phi\rVert_{\mathfrak{D}}},

for RR large enough and independently of α\alpha. Lastly,

|t|Rf^(t)(eitΨαeit)Φdt𝔇\displaystyle\lVert\int_{|t|\leq R}\widehat{f}(t)\big{(}e^{it\Psi_{\alpha}}-e^{it}\big{)}*\Phi\,{\rm d}t\rVert_{\mathfrak{D}} 2Rsup|t|R|f^(t)|(eitΨαeit)Φ𝔇\displaystyle\leq 2R\sup_{|t|\leq R}|\widehat{f}(t)|\lVert\big{(}e^{it\Psi_{\alpha}}-e^{it}\big{)}*\Phi\rVert_{\mathfrak{D}}
2Rsup|t|R|f^(t)|k|t|kk!ΨαkΦΦ𝔇\displaystyle\leq 2R\sup_{|t|\leq R}|\widehat{f}(t)|\sum_{k\in\mathbb{N}}\frac{|t|^{k}}{k!}\lVert\Psi_{\alpha}^{k}*\Phi-\Phi\rVert_{\mathfrak{D}}
2C1RkRkk!j=0k1Ψαj+1ΦΨαjΦ𝔇\displaystyle\leq 2C_{1}R\sum_{k\in\mathbb{N}}\frac{R^{k}}{k!}\sum_{j=0}^{k-1}\lVert\Psi_{\alpha}^{j+1}*\Phi-\Psi_{\alpha}^{j}*\Phi\rVert_{\mathfrak{D}}
2C1R2eRΨαΦΦ𝔇,\displaystyle\leq 2C_{1}R^{2}e^{R}\lVert\Psi_{\alpha}*\Phi-\Phi\rVert_{\mathfrak{D}},

which clearly goes to 0 with α\alpha. ∎

Now we are finally able to derive the Wiener property for 𝔇\mathfrak{D}.

Theorem 5.14.

Suppose 𝔇\mathfrak{D} is symmetric, then it has the Wiener property.

Proof.

By Lemma 5.13, j()j(\emptyset) contains all of Cc(𝖦|𝒞)C_{\rm c}({\sf G}\,|\,\mathscr{C}) and hence j()=𝔇j(\emptyset)=\mathfrak{D}. Now, if II is a closed two-sided ideal of 𝔇\mathfrak{D} such that h(I)=h(I)=\emptyset, then 𝔇=j()I\mathfrak{D}=j(\emptyset)\subset I by Theorem 5.10. ∎

5.4 Norm-controlled inversion

The purpose of this section is to produce a dense Banach -subalgebra of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}), which is not only symmetric, but it also admits a norm-controlled inversion (at least in the discrete/unital case) in C(𝖦|𝒞)C^{*}({\sf G}\,|\,\mathscr{C}). In fact, because of the results in [38], it seems unreasonable to expect norm-controlled inversion in all of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}). For that reason, and motivated by the results in [44], we will consider the space 𝔈=L1,ν(𝖦|𝒞)L(𝖦|𝒞)\mathfrak{E}=L^{1,\nu}({\sf G}\,|\,\mathscr{C})\cap L^{\infty}({\sf G}\,|\,\mathscr{C}), endowed with the norm

Φ𝔈=max{ΦL1,ν(𝖦|𝒞),ΦL(𝖦|𝒞)}.\lVert\Phi\rVert_{\mathfrak{E}}=\max\{\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})},\lVert\Phi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}\}.

If 𝖦{\sf G} is discrete, 𝔈\mathfrak{E} coincides with 1,ν(𝖦|𝒞)\ell^{1,\nu}({\sf G}\,|\,\mathscr{C}), whereas for compact 𝖦{\sf G}, we have 𝔈=L(𝖦|𝒞)\mathfrak{E}=L^{\infty}({\sf G}\,|\,\mathscr{C}).

Proposition 5.15.

𝔈\mathfrak{E} is a symmetric Banach -subalgebra of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}). Moreover, there exists a constant D1D\geq 1 such that

Φ4𝔈DΦL𝖾2(𝖦|𝒞)1/(p+1)Φ𝔈(4p+3)/(p+1)\lVert\Phi^{4}\rVert_{\mathfrak{E}}\leq D\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi\rVert_{\mathfrak{E}}^{(4p+3)/(p+1)} (5.2)

holds for all Φ𝔈\Phi\in\mathfrak{E}.

Proof.

Because of Young’s inequality, ΦΨ𝔈\Phi*\Psi\in\mathfrak{E} and Φ𝔈\Phi^{*}\in\mathfrak{E} as soon as Φ,Ψ𝔈\Phi,\Psi\in\mathfrak{E}. It is also clear that 𝔈\mathfrak{E} is a Banach space. Moreover,

ΦΨ𝔈\displaystyle\lVert\Phi*\Psi\rVert_{\mathfrak{E}} =max{ΦΨL1,ν(𝖦|𝒞),ΦΨL(𝖦|𝒞)}\displaystyle=\max\{\lVert\Phi*\Psi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})},\lVert\Phi*\Psi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}\}
ΦL1,ν(𝖦|𝒞)max{ΨL1,ν(𝖦|𝒞),ΨL(𝖦|𝒞)}\displaystyle\leq\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}\max\{\lVert\Psi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})},\lVert\Psi\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}\}
Φ𝔈Ψ𝔈\displaystyle\leq\lVert\Phi\rVert_{\mathfrak{E}}\lVert\Psi\rVert_{\mathfrak{E}}

so 𝔈\mathfrak{E} is a Banach -subalgebra of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}). It is worth noting that ΦL2(𝖦|𝒞)Φ𝔈\lVert\Phi\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Phi\rVert_{\mathfrak{E}}. For showing symmetry, we will -obviously- compute the spectral radius. In particular we note that, for Φ𝔈\Phi\in\mathfrak{E},

Φ4L1,ν(𝖦|𝒞)\displaystyle\lVert\Phi^{4}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})} (4.4)2CΦ2L1(𝖦|𝒞)Φ2L1,ν(𝖦|𝒞)\displaystyle\overset{\eqref{diffeq}}{\leq}2C\lVert\Phi^{2}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}\lVert\Phi^{2}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}
(4.5)2CAΦ2L(𝖦|𝒞)1/(p+1)Φ2L1,ν(𝖦|𝒞)(2p+1)/(p+1)\displaystyle\overset{\eqref{idk}}{\leq}2CA\lVert\Phi^{2}\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi^{2}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{(2p+1)/(p+1)}
2CAΦL𝖾2(𝖦|𝒞)1/(p+1)ΦL2(𝖦|𝒞)1/(p+1)Φ2L1,ν(𝖦|𝒞)(2p+1)/(p+1)\displaystyle\leq 2CA\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi^{2}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{(2p+1)/(p+1)}
2CAΦL𝖾2(𝖦|𝒞)1/(p+1)Φ𝔈1/(p+1)ΦL1,ν(𝖦|𝒞)(4p+2)/(p+1)\displaystyle\leq 2CA\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi\rVert_{\mathfrak{E}}^{1/(p+1)}\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{(4p+2)/(p+1)}

and therefore, taking D=max{2CA,1}D=\max\{2CA,1\},

Φ4𝔈\displaystyle\lVert\Phi^{4}\rVert_{\mathfrak{E}} =max{Φ4L1,ν(𝖦|𝒞),Φ4L(𝖦|𝒞)}\displaystyle=\max\{\lVert\Phi^{4}\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})},\lVert\Phi^{4}\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}\}
Dmax{ΦL𝖾2(𝖦|𝒞)1/(p+1)Φ𝔈1/(p+1)ΦL1,ν(𝖦|𝒞)(4p+2)/(p+1),ΦL𝖾2(𝖦|𝒞)Φ3L2(𝖦|𝒞)}\displaystyle\leq D\max\{\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi\rVert_{\mathfrak{E}}^{1/(p+1)}\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{(4p+2)/(p+1)},\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}\lVert\Phi^{3}\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}\}
DΦL𝖾2(𝖦|𝒞)1/(p+1)max{Φ𝔈1/(p+1)ΦL1,ν(𝖦|𝒞)(4p+2)/(p+1),ΦL2(𝖦|𝒞)p/(p+1)Φ3𝔈}\displaystyle\leq D\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\max\{\lVert\Phi\rVert_{\mathfrak{E}}^{1/(p+1)}\lVert\Phi\rVert_{L^{1,\nu}({\sf G}\,|\,\mathscr{C})}^{(4p+2)/(p+1)},\lVert\Phi\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}^{p/(p+1)}\lVert\Phi^{3}\rVert_{\mathfrak{E}}\}
DΦL𝖾2(𝖦|𝒞)1/(p+1)Φ𝔈(4p+3)/(p+1).\displaystyle\leq D\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi\rVert_{\mathfrak{E}}^{(4p+3)/(p+1)}.

And now symmetry follows easily:

ρ𝔈(Φ)4\displaystyle\rho_{\mathfrak{E}}(\Phi)^{4} =limnΦ4n𝔈1/n\displaystyle=\lim_{n\to\infty}\lVert\Phi^{4n}\rVert^{1/n}_{\mathfrak{E}}
limn(DΦnL𝖾2(𝖦|𝒞)1/(p+1)Φn𝔈(4p+3)/(p+1))1/n\displaystyle\leq\lim_{n\to\infty}\big{(}D\lVert\Phi^{n}\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi^{n}\rVert_{\mathfrak{E}}^{(4p+3)/(p+1)}\big{)}^{1/n}
limn(Dλ(Φ)n1𝔹(L𝖾2(𝖦|𝒞))1/(p+1)ΦL𝖾2(𝖦|𝒞)1/(p+1)Φn𝔈(4p+3)/(p+1))1/n\displaystyle\leq\lim_{n\to\infty}\big{(}D\lVert\lambda(\Phi)^{n-1}\rVert_{\mathbb{B}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}))}^{1/(p+1)}\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi^{n}\rVert_{\mathfrak{E}}^{(4p+3)/(p+1)}\big{)}^{1/n}
=ρ𝔹(L𝖾2(𝖦|𝒞))(λ(Φ))1/(p+1)ρ𝔈(Φ)(4p+3)/(p+1)\displaystyle=\rho_{\mathbb{B}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}))}(\lambda(\Phi))^{1/(p+1)}\rho_{\mathfrak{E}}(\Phi)^{(4p+3)/(p+1)}

and thus ρ𝔈(Φ)=ρ𝔹(L𝖾2(𝖦|𝒞))(λ(Φ))\rho_{\mathfrak{E}}(\Phi)=\rho_{\mathbb{B}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}))}(\lambda(\Phi)). To conclude, we note that λ(Φ)𝔹a(L𝖾2(𝖦|𝒞))\lambda(\Phi)\in\mathbb{B}_{a}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})) and that the inclusion 𝔹a(L𝖾2(𝖦|𝒞))𝔹(L𝖾2(𝖦|𝒞))\mathbb{B}_{a}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}))\subset\mathbb{B}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})) is spectral invariant (in particular spectral radius preserving), due to [13, Corollary 1]. ∎

Now we turn our attention to the property of norm-controlled inversion. As mentioned before, the idea is to estimate the 𝔈\mathfrak{E}-norm of the inverse of an element using both the norms in 𝔈\mathfrak{E} and in C(𝖦|𝒞)C^{*}({\sf G}\,|\,\mathscr{C}). We remark that the property of symmetry implies that the operation of taking inverses coincides in both algebras but it does not require or provide any norm estimate for such elements.

Definition 5.16.

Let 𝔄𝔅\mathfrak{A}\subset\mathfrak{B} be a continuous inclusion of Banach algebras with the same unit. We say that 𝔄\mathfrak{A} admits norm-controlled inversion in 𝔅\mathfrak{B} if 𝔄\mathfrak{A} is inverse-closed in 𝔅\mathfrak{B} and there is a function f:+×++f:\mathbb{R}^{+}\times\mathbb{R}^{+}\to\mathbb{R}^{+} such that

a1𝔄f(a𝔄,a1𝔅).\lVert a^{-1}\rVert_{\mathfrak{A}}\leq f(\lVert a\rVert_{\mathfrak{A}},\lVert a^{-1}\rVert_{\mathfrak{B}}).

We say that a reduced, symmetric Banach -algebra 𝔄\mathfrak{A} admits norm-controlled inversion if it admits norm-controlled inversion in 𝔅=C(𝔄)\mathfrak{B}=C^{*}(\mathfrak{A}).

Now we should prove that 𝔈\mathfrak{E} admits norm-controlled inversion. We will do so for a very specific case: when 𝖦{\sf G} is discrete and 𝔈\mathfrak{E} is unital. We believe that a more general result is possible to obtain, however this is beyond the scope of our subsection, which is dedicated to consequences of our previous results. This result is handled similarly to [21, Theorem 1.1] and its generalization [44, Proposition 2.2].

Proposition 5.17.

Let θ=4p+3p+1\theta=\frac{4p+3}{p+1} and D>0D>0 as in Proposition 5.15. If 𝖦{\sf G} is discrete and 𝔈=1,ν(𝖦|𝒞)\mathfrak{E}=\ell^{1,\nu}({\sf G}\,|\,\mathscr{C}) is unital, then for every invertible Φ𝔈\Phi\in\mathfrak{E}, we have

Φ1𝔈Φ𝔈ΦC(𝖦|𝒞)2kj=03(Dθk1θ1(11Φ1C(𝖦|𝒞)2ΦC(𝖦|𝒞)2)4kθk(2Φ𝔈2ΦC(𝖦|𝒞)2)θk)j,\lVert\Phi^{-1}\rVert_{\mathfrak{E}}\leq\tfrac{\lVert\Phi\rVert_{\mathfrak{E}}}{\lVert\Phi\rVert^{2}_{C^{*}({\sf G}\,|\,\mathscr{C})}}\prod_{k\in\mathbb{N}}\sum_{j=0}^{3}\Big{(}D^{\tfrac{\theta^{k}-1}{\theta-1}}\big{(}1-\tfrac{1}{\lVert\Phi^{-1}\rVert^{2}_{C^{*}({\sf G}\,|\,\mathscr{C})}\lVert\Phi\rVert^{2}_{C^{*}({\sf G}\,|\,\mathscr{C})}}\big{)}^{4^{k}-\theta^{k}}\big{(}\tfrac{2\lVert\Phi\rVert^{2}_{\mathfrak{E}}}{\lVert\Phi\rVert^{2}_{C^{*}({\sf G}\,|\,\mathscr{C})}}\big{)}^{\theta^{k}}\Big{)}^{j}, (5.3)

with the RHS being finite. Therefore 𝔈=1,ν(𝖦|𝒞)\mathfrak{E}=\ell^{1,\nu}({\sf G}\,|\,\mathscr{C}) admits norm-controlled inversion.

Proof.

Because of Lemma 3.4(vi) and Proposition 5.15, we have

Φ4k𝔈DΦ4k1C(𝖦|𝒞)1/(p+1)Φ4k1𝔈(4p+3)/(p+1)D(ΦC(𝖦|𝒞)4k1)1/(p+1)Φ4k1𝔈(4p+3)/(p+1)\lVert\Phi^{4^{k}}\rVert_{\mathfrak{E}}\leq D\lVert\Phi^{4^{k-1}}\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}^{1/(p+1)}\lVert\Phi^{4^{k-1}}\rVert_{\mathfrak{E}}^{(4p+3)/(p+1)}\leq D\big{(}\lVert\Phi\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}^{4^{k-1}}\big{)}^{1/(p+1)}\lVert\Phi^{4^{k-1}}\rVert_{\mathfrak{E}}^{(4p+3)/(p+1)}

for kk\in\mathbb{N}. And by letting βn=Φn𝔈/ΦC(𝖦|𝒞)n\beta_{n}=\lVert\Phi^{n}\rVert_{\mathfrak{E}}/\lVert\Phi\rVert^{n}_{C^{*}({\sf G}\,|\,\mathscr{C})}, we obtain the relations

β4kDβ4k1θ and β4kDθk1θ1β1θk,\beta_{4^{k}}\leq D\beta_{4^{k-1}}^{\theta}\quad\text{ and }\quad\beta_{4^{k}}\leq D^{{\tfrac{\theta^{k}-1}{\theta-1}}}\beta_{1}^{\theta^{k}},

so

Φ4k𝔈Dθk1θ1ΦC(𝖦|𝒞)4k(Φ𝔈ΦC(𝖦|𝒞))θk=:αk.\lVert\Phi^{4^{k}}\rVert_{\mathfrak{E}}\leq D^{\tfrac{\theta^{k}-1}{\theta-1}}\lVert\Phi\rVert^{4^{k}}_{C^{*}({\sf G}\,|\,\mathscr{C})}\big{(}\tfrac{\lVert\Phi\rVert_{\mathfrak{E}}}{\lVert\Phi\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}}\big{)}^{\theta^{k}}=:\alpha_{k}.

We now consider the 44-adic expansions of natural numbers nn\in\mathbb{N}, written as n=kϵk4kn=\sum_{k\in\mathbb{N}}\epsilon_{k}4^{k}, where ϵk{0,1,2,3}\epsilon_{k}\in\{0,1,2,3\} and only finitely many ϵk\epsilon_{k}’s are nonzero. Let us denote by \mathcal{F} the set of all finitely supported sequences ϵ={ϵk}k{0,1,2,3}\epsilon=\{\epsilon_{k}\}_{k\in\mathbb{N}}\in\{0,1,2,3\}^{\mathbb{N}}. Then the 44-adic expansion is a bijection between \mathcal{F} and \mathbb{N}. We now use the previous bound

Φn𝔈=kΦϵk4k𝔈kαkϵk,\lVert\Phi^{n}\rVert_{\mathfrak{E}}=\lVert\prod_{k\in\mathbb{N}}\Phi^{\epsilon_{k}4^{k}}\rVert_{\mathfrak{E}}\leq\prod_{k\in\mathbb{N}}\alpha_{k}^{\epsilon_{k}},

and summing,

nΦn𝔈ϵkαkϵk=k(1+αk+αk2+αk3).\sum_{n\in\mathbb{N}}\lVert\Phi^{n}\rVert_{\mathfrak{E}}\leq\sum_{\epsilon\in\mathcal{F}}\prod_{k\in\mathbb{N}}\alpha_{k}^{\epsilon_{k}}=\prod_{k\in\mathbb{N}}(1+\alpha_{k}+\alpha_{k}^{2}+\alpha_{k}^{3}). (5.4)

In fact, one has

k=1N(1+αk+αk2+αk3)=1k1<<kmNϵ1,,ϵm{0,1,2,3}ak1ϵ1akmϵm\prod_{k=1}^{N}(1+\alpha_{k}+\alpha_{k}^{2}+\alpha_{k}^{3})=\sum_{\begin{subarray}{c}1\leq k_{1}<\ldots<k_{m}\leq N\\ \epsilon_{1},\ldots,\epsilon_{m}\in\{0,1,2,3\}\end{subarray}}a_{k_{1}}^{\epsilon_{1}}\cdots a_{k_{m}}^{\epsilon_{m}}

and taking the limit NN\to\infty yields (5.4). Also note that the RHS in (5.4) converges if and only if kαk<\sum_{k\in\mathbb{N}}\alpha_{k}<\infty and this is because

kαkk(αk+αk2+αk3)kαk+(kαk)2+(kαk)3<.\sum_{k\in\mathbb{N}}\alpha_{k}\leq\sum_{k\in\mathbb{N}}(\alpha_{k}+\alpha_{k}^{2}+\alpha_{k}^{3})\leq\sum_{k\in\mathbb{N}}\alpha_{k}+\big{(}\sum_{k\in\mathbb{N}}\alpha_{k}\big{)}^{2}+\big{(}\sum_{k\in\mathbb{N}}\alpha_{k}\big{)}^{3}<\infty.

However, the convergence of kαk\sum_{k\in\mathbb{N}}\alpha_{k} is easily guaranteed if ΦC(𝖦|𝒞)<1\lVert\Phi\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}<1 since θ<4\theta<4. Now, for a general Φ𝔈\Phi\in\mathfrak{E}, invertible in C(𝖦|𝒞)C^{*}({\sf G}\,|\,\mathscr{C}), we proceed as in the proof of [21, Theorem 3.3], to get

Φ1𝔈Φ𝔈ΦC(𝖦|𝒞)2kj=03(Dθk1θ1ΨC(𝖦|𝒞)4k(Ψ𝔈ΨC(𝖦|𝒞))θk)j,\lVert\Phi^{-1}\rVert_{\mathfrak{E}}\leq\tfrac{\lVert\Phi\rVert_{\mathfrak{E}}}{\lVert\Phi\rVert^{2}_{C^{*}({\sf G}\,|\,\mathscr{C})}}\prod_{k\in\mathbb{N}}\sum_{j=0}^{3}\Big{(}D^{\tfrac{\theta^{k}-1}{\theta-1}}\lVert\Psi\rVert^{4^{k}}_{C^{*}({\sf G}\,|\,\mathscr{C})}\big{(}\tfrac{\lVert\Psi\rVert_{\mathfrak{E}}}{\lVert\Psi\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}}\big{)}^{\theta^{k}}\Big{)}^{j},

where Ψ=11ΦC(𝖦|𝒞)2ΦΦ\Psi=1-\tfrac{1}{\lVert\Phi\rVert^{2}_{C^{*}({\sf G}\,|\,\mathscr{C})}}\Phi^{*}*\Phi. This element satisfies

ΨC(𝖦|𝒞)=11Φ1C(𝖦|𝒞)2ΦC(𝖦|𝒞)2 and Ψ𝔈2Φ𝔈2ΦC(𝖦|𝒞)2\lVert\Psi\rVert_{C^{*}({\sf G}\,|\,\mathscr{C})}=1-\tfrac{1}{\lVert\Phi^{-1}\rVert^{2}_{C^{*}({\sf G}\,|\,\mathscr{C})}\lVert\Phi\rVert^{2}_{C^{*}({\sf G}\,|\,\mathscr{C})}}\quad\text{ and }\quad\lVert\Psi\rVert_{\mathfrak{E}}\leq 2\tfrac{\lVert\Phi\rVert^{2}_{\mathfrak{E}}}{\lVert\Phi\rVert^{2}_{C^{*}({\sf G}\,|\,\mathscr{C})}}

from which the claim follows. The same arguments given show convergence of the RHS in (5.3).∎

6 An application to twisted Hahn algebras

In this small section we will provide an application of our results to some groupoid Banach -algebras. Lately, the CC^{*}-uniqueness of these algebras has raised some attention cf. [2, 3]. Among other things, our techniques will allow us to prove -regularity for the algebras associated with transformation groupoids, hence improving the existing results in this particular case. Our reference for groupoids and groupoid algebras are [42, 48].

Let Ξ\Xi be a locally compact (Hausdorff) groupoid, with unit space Ξ(0)\Xi^{(0)}, source map d{\rm d} and range map r{\rm r} . The d{\rm d}- and r{\rm r}-fibers are Ξu={ξΞd(ξ)=u}\Xi_{u}=\{\xi\in\Xi\mid{\rm d}(\xi)=u\} and Ξu={ξΞr(ξ)=u}\Xi^{u}=\{\xi\in\Xi\mid{\rm r}(\xi)=u\}. The set of composable pairs is

Ξ(2):={(x,y)r(y)=d(x)}.\Xi^{(2)}\!:=\{(x,y)\!\mid\!{\rm r}(y)={\rm d}(x)\}.

Let λ={λu}uΞ(0)\lambda=\{\lambda^{u}\}_{u\in\Xi^{(0)}} be a left Haar system for 𝖦{\sf G}, meaning that λu\lambda^{u} are positive regular measures with support Ξu\Xi^{u} and such that

  1. (i)

    for every ΦCc(Ξ)\Phi\in C_{\rm c}(\Xi), the function uλu(Φ)=ΞuΦ(γ)dλu(γ)u\mapsto\lambda^{u}(\Phi)=\int_{\Xi^{u}}\Phi(\gamma){\rm d}\lambda^{u}(\gamma) is continuous,

  2. (ii)

    for every ηΞ\eta\in\Xi and ΦCc(Ξ)\Phi\in C_{\rm c}(\Xi) we have that

    Ξd(η)Φ(ηγ)dλd(η)(γ)=Ξr(η)Φ(γ)dλr(η)(γ).\int_{\Xi^{{\rm d}(\eta)}}\Phi(\eta\gamma){\rm d}\lambda^{{\rm d}(\eta)}(\gamma)=\int_{\Xi^{{\rm r}(\eta)}}\Phi(\gamma){\rm d}\lambda^{{\rm r}(\eta)}(\gamma).

Neither the existence nor the uniqueness of such an object is guaranteed in general. But when Haar systems do exist, it is known that d,r{\rm d},{\rm r} are open maps [48]. The associated right Haar system {λuuΞ(0)}\{\lambda_{u}\!\mid\!u\in\Xi^{(0)}\} is the one obtained from λ\lambda by composing with the inversion map ξξ1\xi\to\xi^{-1}.

We will also consider groupoid twists where the twist is implemented by a normalized continuous 22-cocycle. A normalized continuous 22-cocycle is a continuous map ω:Ξ(2)𝕋\omega:\Xi^{(2)}\to\mathbb{T} satisfying

ω(r(γ),γ)=1=ω(γ,d(γ))\omega({\rm r}(\gamma),\gamma)=1=\omega(\gamma,{\rm d}(\gamma))

for all γΞ\gamma\in\Xi, and

ω(α,β)ω(αβ,γ)=ω(β,γ)ω(α,βγ)\omega(\alpha,\beta)\omega(\alpha\beta,\gamma)=\omega(\beta,\gamma)\omega(\alpha,\beta\gamma)

whenever (α,β),(β,γ)Ξ(2)(\alpha,\beta),(\beta,\gamma)\in\Xi^{(2)}. The set of normalized continuous 22-cocycles on Ξ\Xi will be denoted Z2(Ξ,𝕋)Z^{2}(\Xi,\mathbb{T}).

Finally, a weight on Ξ\Xi is a measurable, locally bounded function ν:Ξ[1,)\nu:\Xi\to[1,\infty) satisfying

ν(ηγ)ν(η)ν(γ),ν(ξ1)=ν(ξ)\nu(\eta\gamma)\leq\nu(\eta)\nu(\gamma),\quad\nu(\xi^{-1})=\nu(\xi)

for all ξΞ\xi\in\Xi and (η,γ)Ξ(2)(\eta,\gamma)\in\Xi^{(2)}.

Let us now define the Hahn algebra associated with the data (Ξ,λ,ω,ν)(\Xi,\lambda,\omega,\nu). The weighted, twisted Hahn algebra Lω,1,ν(Ξ)L^{\infty,1,\nu}_{\omega}(\Xi) is formed by the functions Φ:Ξ\Phi:\Xi\to\mathfrak{C} that can be obtained as a limit of compactly-supported continuous functions in the Hahn-type norm

Φ,1,ν:=max{supuΞ(0)Ξuν(γ)|Φ(γ)|dλu(γ),supuΞ(0)Ξuν(γ)|Φ(γ1)|dλu(γ)}.\lVert\Phi\rVert_{\infty,1,\nu}\,:=\max\Big{\{}\sup_{u\in\Xi^{(0)}}\int_{\Xi_{u}}\nu(\gamma)|\Phi(\gamma)|{\rm d}\lambda_{u}(\gamma),\,\sup_{u\in\Xi^{(0)}}\int_{\Xi_{u}}\nu(\gamma)|\Phi(\gamma^{-1})|{\rm d}\lambda_{u}(\gamma)\,\Big{\}}. (6.1)

It is a Banach -algebra under the ω\omega-twisted convolution product

(ΦωΨ)(γ)=ΞΦ(η)Ψ(η1γ)ω(η,η1γ)dλr(γ)(η)(\Phi*_{\omega}\Psi)(\gamma)=\int_{\Xi}\Phi(\eta)\Psi(\eta^{-1}\gamma)\,\omega(\eta,\eta^{-1}\gamma)\,{\rm d}\lambda^{{\rm r}(\gamma)}(\eta) (6.2)

and the ω\omega-twisted involution

Φω(γ)=ω(γ,γ1)¯Φ(γ1)¯.\Phi^{*_{\omega}}(\gamma)=\overline{\omega(\gamma,\gamma^{-1})}\,\overline{\Phi(\gamma^{-1})}. (6.3)

In the case ν1\nu\equiv 1, we will erase ν\nu from our notations, as customary. We will now proceed to describe how transformation groupoids fit the setting we detailed.

Example 6.1.

Let 𝖦{\sf G} be a locally compact group with left Haar measure μ\mu and let us consider an action α\alpha of 𝖦{\sf G} by homeomorphisms on a locally compact Hausdorff space XX. The associated transformation groupoid Ξ=𝖦αX\Xi={\sf G}\ltimes_{\alpha}X is the set 𝖦×X{\sf G}\times X with the product topology and the operations

d(g,x)=(𝖾,αg1(x)),r(g,x)=(𝖾,x),(g,x)1=(g1,αg1(x)){\rm d}(g,x)=({\sf e},\alpha_{g^{-1}}(x)),\quad{\rm r}(g,x)=({\sf e},x),\quad(g,x)^{-1}=(g^{-1},\alpha_{g^{-1}}(x))

and

(g,x)(h,αg1(x))=(gh,x).(g,x)(h,\alpha_{g^{-1}}(x))=(gh,x).

Then 𝖦αX{\sf G}\ltimes_{\alpha}X is a locally compact groupoid. The natural choice for a Haar system becomes {λx=μ×δx}xX\{\lambda^{x}=\mu\times\delta_{x}\}_{x\in X} where δx\delta_{x} is the Dirac measure. Meaning that, for Φ:Ξ\Phi:\Xi\to\mathfrak{C},

λx(Φ)=𝖦Φ(g,x)dμ(g).\lambda^{x}(\Phi)=\int_{\sf G}\Phi(g,x){\rm d}\mu(g).

Now, if ωZ2(𝖦,𝕋)\omega\in Z^{2}({\sf G},\mathbb{T}), we naturally get a 22-cocycle on 𝖦αX{\sf G}\ltimes_{\alpha}X, also denoted by ω\omega, via the formula

ω((g,x),(h,y)):=ω(g,h),\omega((g,x),(h,y)):=\omega(g,h),

for all ((g,x),(h,y))(𝖦αX)(2)((g,x),(h,y))\in({\sf G}\ltimes_{\alpha}X)^{(2)}. Moreover, if ν\nu is a weight on 𝖦{\sf G}, we naturally get a weight ν\nu on Ξ\Xi by

ν(g,x)=ν(g),\nu(g,x)=\nu(g),

for all (g,x)𝖦αX(g,x)\in{\sf G}\ltimes_{\alpha}X. In this case, the ω\omega-twisted convolution formula is

ΦωΨ(g,x)=𝖦Φ(h,x)Ψ(h1g,αh1(x))ω(h,h1g)dμ(h)\Phi*_{\omega}\Psi(g,x)=\int_{\sf G}\Phi(h,x)\Psi\big{(}h^{-1}g,\alpha_{h}^{-1}(x)\big{)}\omega(h,h^{-1}g){\rm d}\mu(h) (6.4)

and the formula for the ω\omega-twisted involution is

Φω(g,x)=ω(g,g1)¯Φ(g1,αg1(x))¯.\Phi^{*_{\omega}}(g,x)=\overline{\omega(g,g^{-1})}\,\overline{\Phi\big{(}g^{-1},\alpha_{g^{-1}}(x)\big{)}}. (6.5)

The idea now is to pass the results we obtained in the previous sections to the twisted Hahn algebra Lω,1,ν(𝖦αX)L^{\infty,1,\nu}_{\omega}({\sf G}\ltimes_{\alpha}X), where 𝖦{\sf G} has polynomial growth of degree dd and ω\omega and ν\nu are induced from 𝖦{\sf G}. If α\alpha denotes a continuous action of 𝖦{\sf G} on XX, we will keep the same notation for the induced action α:𝖦AutC0(X)\alpha:{\sf G}\to{\rm Aut}\,C_{0}(X).

Lemma 6.2.

Let 𝖦{\sf G} be a locally compact unimodular group continuously acting on the locally compact space XX. Let also ωZ2(𝖦,𝕋)\omega\in Z^{2}({\sf G},\mathbb{T}) and ν\nu a weight on 𝖦{\sf G}. Then there exists a contractive -epimorphism

φ:Lα,ω1,ν(𝖦,C0(X))Lω,1,ν(𝖦αX).\varphi:L^{1,\nu}_{\alpha,\omega}({\sf G},C_{0}(X))\to L^{\infty,1,\nu}_{\omega}({\sf G}\ltimes_{\alpha}X).
Proof.

Let us verify that φ:Cc(𝖦,Cc(X))Cc(𝖦αX)\varphi:C_{\rm c}({\sf G},C_{\rm c}(X))\to C_{\rm c}({\sf G}\ltimes_{\alpha}X) given by φ(Φ)(g,x)=Φ(g)(x)\varphi(\Phi)(g,x)=\Phi(g)(x) defines a -isomorphism. Indeed, given Φ,ΨCc(𝖦,Cc(X))\Phi,\Psi\in C_{\rm c}({\sf G},C_{\rm c}(X)), g𝖦g\in{\sf G} and xXx\in X, we have

φ(ΦΨ)(g,x)\displaystyle\varphi(\Phi*\Psi)(g,x) =(𝖦Φ(h)αh[Ψ(h1g)]ω(h,h1g)dμ(h))(x)\displaystyle=\Big{(}\int_{\sf G}\Phi(h)\alpha_{h}[\Psi(h^{-1}g)]\omega(h,h^{-1}g){\rm d}\mu(h)\Big{)}(x)
=𝖦Φ(h)(x)Ψ(h1g)(αh1(x))ω(h,h1g)dμ(h)\displaystyle=\int_{\sf G}\Phi(h)(x)\Psi(h^{-1}g)\big{(}\alpha_{h}^{-1}(x)\big{)}\omega(h,h^{-1}g){\rm d}\mu(h)
=𝖦φ(Φ)(h,x)φ(Ψ)(h1g,αh1(x))ω(h,h1g)dμ(h)\displaystyle=\int_{\sf G}\varphi(\Phi)(h,x)\varphi(\Psi)\big{(}h^{-1}g,\alpha_{h}^{-1}(x)\big{)}\omega(h,h^{-1}g){\rm d}\mu(h)
=(φ(Φ)ωφ(Ψ))(g,x)\displaystyle=(\varphi(\Phi)*_{\omega}\varphi(\Psi))(g,x)

and

φ(Φ)(g,x)=ω(g,g1)¯αg[Φ(g1)](x)¯=ω(g,g1)¯φ(Φ)(g1,αg1(x))¯=φ(Φ)ω(g,x).\displaystyle\varphi(\Phi^{*})(g,x)=\overline{\omega(g,g^{-1})}\,\overline{\alpha_{g}[\Phi(g^{-1})](x)}=\overline{\omega(g,g^{-1})}\,\overline{\varphi(\Phi)\big{(}g^{-1},\alpha_{g^{-1}}(x)\big{)}}=\varphi(\Phi)^{*_{\omega}}(g,x).

Finally, we also note that

φ(Φ),1,ν\displaystyle\lVert\varphi(\Phi)\rVert_{\infty,1,\nu} supxX𝖦ν(g)|Φ(g,x)|dμ(g)\displaystyle\leq\sup_{x\in X}\int_{{\sf G}}\nu(g)|\Phi(g,x)|{\rm d}\mu(g)
𝖦ν(g)Φ(g)C0(X)dμ(g)=ΦLα,ω1,ν(𝖦,C0(X)).\displaystyle\leq\int_{\sf G}\nu(g)\lVert\Phi(g)\rVert_{C_{0}(X)}{\rm d}\mu(g)=\lVert\Phi\rVert_{L^{1,\nu}_{\alpha,\omega}({\sf G},C_{0}(X))}.

So φ\varphi extends to a continuous -epimorphism, proving the claim. ∎

Corollary 6.3.

Let 𝖦{\sf G} be a locally compact group with growth of order dd, ωZ2(𝖦,𝕋)\omega\in Z^{2}({\sf G},\mathbb{T}) and ν\nu a polynomial weight on 𝖦{\sf G} such that ν1\nu^{-1} belongs to Lp(𝖦)L^{p}({\sf G}), for some 0<p<0<p<\infty. Let 𝔇\mathfrak{D}^{\prime} be either Lω,1(𝖦αX)L^{\infty,1}_{\omega}({\sf G}\ltimes_{\alpha}X) or Lω,1,ν(𝖦αX)L^{\infty,1,\nu}_{\omega}({\sf G}\ltimes_{\alpha}X). Then for all ΦCc(𝖦αX)sa\Phi\in C_{\rm c}({\sf G}\ltimes_{\alpha}X)_{\rm sa},

u(tΦ)𝔇=O(|t|2d+2), as |t|.\lVert u(t\Phi)\rVert_{\mathfrak{D}^{\prime}}=O(|t|^{2d+2}),\quad\textup{ as }|t|\to\infty. (6.6)

In particular, Φ\Phi admits a smooth functional calculus of order 2d+42d+4 as in Proposition 3.8 and 𝔇\mathfrak{D}^{\prime} is -regular.

Proof.

By the previous lemma and its proof, there is a self-adjoint, continuous, compactly-supported ΦLα,ω1,ν(𝖦,C0(X))\Phi^{\prime}\in L^{1,\nu}_{\alpha,\omega}({\sf G},C_{0}(X)) so that φ(Φ)=Φ\varphi(\Phi^{\prime})=\Phi. Now, because of Propositions 3.6 and 4.16, one has

u(tΦ)𝔇=φ(u(tΦ))𝔇u(tΦ)Lα,ω1,ν(𝖦,C0(X))=O(|t|2d+2), as |t|.\lVert u(t\Phi)\rVert_{\mathfrak{D}^{\prime}}=\lVert\varphi(u(t\Phi^{\prime}))\rVert_{\mathfrak{D}^{\prime}}\leq\lVert u(t\Phi^{\prime})\rVert_{L^{1,\nu}_{\alpha,\omega}({\sf G},C_{0}(X))}=O(|t|^{2d+2}),\quad\textup{ as }|t|\to\infty.

The rest follows as in the proof of Theorem 5.6. ∎

7 Appendix: Some computations of spectral radii

Altought it escapes the main purpose of the paper, the author realized that Lemma 3.4 is useful for computing the spectral radius in many cases of interest. We compile those results here.

The first result deals with groups of subexponential growth. We recall the definition.

Definition 7.1.

A locally compact group 𝖦{\sf G} is called of subexponential growth if limnμ(Kn)1/n=1\lim_{n\to\infty}\mu(K^{n})^{1/n}=1, for all relatively compact subsets K𝖦K\subset{\sf G}.

Remark 7.2.

It is well-known that groups of subexponential growth are unimodular [39, Proposition 12.5.8] and amenable. Their amenability also follows from Proposition 7.3.

This proposition vastly generalizes the previous best result -valid only for the trivial line bundle- and implies, in the terminology of [45], that Cc(𝖦|𝒞)C_{\rm c}({\sf G}\,|\,\mathscr{C}) is ’quasi-symmetric’ in L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}).

Proposition 7.3.

Let 𝖦{\sf G} be a group of subexponential growth. Then for all ΦL(𝖦|𝒞)\Phi\in L^{\infty}({\sf G}\,|\,\mathscr{C}) and of compact support,

SpecL1(𝖦|𝒞)(Φ)=SpecC(𝖦|𝒞)(λ(Φ)).{\rm Spec}_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi)={\rm Spec}_{{\rm C^{*}}({\sf G}\,|\,\mathscr{C})}(\lambda(\Phi)).
Proof.

Due to [45, Theorem 2.3], it is enough to show equality for the corresponding spectral radii. Is clear that ρC(𝖦|𝒞)(λ(Φ))ρL1(𝖦|𝒞)(Φ)\rho_{{\rm C^{*}}({\sf G}\,|\,\mathscr{C})}(\lambda(\Phi))\leq\rho_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi). In order to show the other inequality, we let Φ\Phi as in the hypothesis of the proposition and see that

ΦnL(𝖦|𝒞)ΦL2(𝖦|𝒞)Φn1L𝖾2(𝖦|𝒞)ΦL2(𝖦|𝒞)λ(Φ)n2𝔹(L𝖾2(𝖦|𝒞))ΦL𝖾2(𝖦|𝒞).\lVert\Phi^{n}\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Phi\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}\,\lVert\Phi^{n-1}\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Phi\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}\,\lVert\lambda(\Phi)^{n-2}\rVert_{\mathbb{B}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}))}\,\lVert\Phi\rVert_{L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})}.

Now, Hölder’s inequality allows us to link the LL^{\infty}-norm with the spectral radius as follows:

ρL1(𝖦|𝒞)(Φ)\displaystyle\rho_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi) =limnΦnL1(𝖦|𝒞)1/n\displaystyle=\lim_{n\to\infty}\lVert\Phi^{n}\rVert_{L^{1}({\sf G}\,|\,\mathscr{C})}^{1/n}
limnΦnL(𝖦|𝒞)1/nμ(Supp(Φn))1/n\displaystyle\leq\lim_{n\to\infty}\lVert\Phi^{n}\rVert_{L^{\infty}({\sf G}\,|\,\mathscr{C})}^{1/n}\mu\big{(}{\rm Supp}(\Phi^{n})\big{)}^{1/n}
limnΦL2(𝖦|𝒞)2/nλ(Φ)n2𝔹(L𝖾2(𝖦|𝒞))1/nμ(Supp(Φ)n)1/n\displaystyle\leq\lim_{n\to\infty}\lVert\Phi\rVert_{L^{2}({\sf G}\,|\,\mathscr{C})}^{2/n}\,\lVert\lambda(\Phi)^{n-2}\rVert_{\mathbb{B}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}))}^{1/n}\mu\big{(}{\rm Supp}(\Phi)^{n}\big{)}^{1/n}
=limnλ(Φ)n2𝔹(L𝖾2(𝖦|𝒞))1/n\displaystyle=\lim_{n\to\infty}\lVert\lambda(\Phi)^{n-2}\rVert_{\mathbb{B}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}))}^{1/n}
=ρ𝔹(L𝖾2(𝖦|𝒞))(λ(Φ)).\displaystyle=\rho_{\mathbb{B}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}))}(\lambda(\Phi)).

To conclude, we note that λ(Φ)𝔹a(L𝖾2(𝖦|𝒞))\lambda(\Phi)\in\mathbb{B}_{a}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})) and that the inclusion 𝔹a(L𝖾2(𝖦|𝒞))𝔹(L𝖾2(𝖦|𝒞))\mathbb{B}_{a}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C}))\subset\mathbb{B}(L^{2}_{\sf e}({\sf G}\,|\,\mathscr{C})) is spectral invariant, because of [13, Corollary 1]. ∎

Informally, the previous result states that, under subexponential growth conditions, the spectra of a continuous function with compact support is independent of the algebra of reference. Therefore, following this hint -and in the hope of a stronger result-, we turn our attention to continuous functions over compact groups.

Lemma 7.4.

Let pqp\geq q with p,q[1,]p,q\in[1,\infty] and suppose that 𝖦{\sf G} is compact. Then Lp(𝖦|𝒞)L^{p}({\sf G}\,|\,\mathscr{C}) is inverse closed in Lq(𝖦|𝒞)L^{q}({\sf G}\,|\,\mathscr{C}). Moreover, Lp(𝖦|𝒞)L^{p}({\sf G}\,|\,\mathscr{C}) is symmetric if and only if L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) is symmetric and this happens if and only if C(𝖦|𝒞)C({\sf G}\,|\,\mathscr{C}) is symmetric.

Proof.

Hölder’s inequality gives ΦΨLp(𝖦|𝒞)ΦLq(𝖦|𝒞)ΨLp(𝖦|𝒞)\lVert\Phi*\Psi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Phi\rVert_{L^{q}({\sf G}\,|\,\mathscr{C})}\lVert\Psi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}. Therefore for nn\in\mathbb{N} and ΦLp(𝖦|𝒞)\Phi\in L^{p}({\sf G}\,|\,\mathscr{C}) one has

ΦnLp(𝖦|𝒞)Φn1Lq(𝖦|𝒞)ΦLp(𝖦|𝒞),\lVert\Phi^{n}\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}\leq\lVert\Phi^{n-1}\rVert_{L^{q}({\sf G}\,|\,\mathscr{C})}\lVert\Phi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})},

so

ρLp(𝖦|𝒞)(Φ)=limnΦnLp(𝖦|𝒞)1/nlimnΦn1Lq(𝖦|𝒞)1/nΦLp(𝖦|𝒞)1/n=ρLq(𝖦|𝒞)(Φ),\rho_{L^{p}({\sf G}\,|\,\mathscr{C})}(\Phi)=\lim_{n\to\infty}\lVert\Phi^{n}\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}^{1/n}\leq\lim_{n\to\infty}\lVert\Phi^{n-1}\rVert_{L^{q}({\sf G}\,|\,\mathscr{C})}^{1/n}\lVert\Phi\rVert_{L^{p}({\sf G}\,|\,\mathscr{C})}^{1/n}=\rho_{L^{q}({\sf G}\,|\,\mathscr{C})}(\Phi),

hence ρLp(𝖦|𝒞)(Φ)=ρLq(𝖦|𝒞)(Φ)\rho_{L^{p}({\sf G}\,|\,\mathscr{C})}(\Phi)=\rho_{L^{q}({\sf G}\,|\,\mathscr{C})}(\Phi), as the reversed inequality always holds. Thus inverse-closeness follows from Lemma 4.9.

For the second statement: C(𝖦|𝒞)C({\sf G}\,|\,\mathscr{C}) is a closed -subalgebra of L(𝖦|𝒞)L^{\infty}({\sf G}\,|\,\mathscr{C}), so symmetry of the latter implies symmetry of the former [39, Theorem 11.4.2]. On the other hand, if Lp(𝖦|𝒞)L^{p}({\sf G}\,|\,\mathscr{C}) is assumed symmetric, it becomes a symmetric dense, two-sided -ideal of L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) and the conclusion follows from [46]. The same reasoning applies to C(𝖦|𝒞)C({\sf G}\,|\,\mathscr{C}). ∎

In particular, and with the help of the reduction done in Lemma 7.4, we obtain the symmetry of all LpL^{p}-algebras of compact groups.

Theorem 7.5.

Suppose 𝖦{\sf G} is compact and let p[1,]p\in[1,\infty]. Then, for 𝔅=Lp(𝖦|𝒞)\mathfrak{B}=L^{p}({\sf G}\,|\,\mathscr{C}) or 𝔅=C(𝖦|𝒞)\mathfrak{B}=C({\sf G}\,|\,\mathscr{C}), 𝔅\mathfrak{B} is symmetric and inverse-closed in C(𝖦|𝒞){\rm C^{*}}({\sf G}\,|\,\mathscr{C}).

Proof.

Lemma 7.4 and its proof show that for all ΦL(𝖦|𝒞)\Phi\in L^{\infty}({\sf G}\,|\,\mathscr{C}), we have the equality of spectra

SpecL1(𝖦|𝒞)(Φ)=SpecL(𝖦|𝒞)(λ(Φ)).{\rm Spec}_{L^{1}({\sf G}\,|\,\mathscr{C})}(\Phi)={\rm Spec}_{L^{\infty}({\sf G}\,|\,\mathscr{C})}(\lambda(\Phi)).

Then the result follows from Proposition 7.3 and another application of Lemma 7.4. ∎

Remark 7.6.

We remark that the best result of this sort previously available in the literature only considered algebras arising from (untwisted) actions [29, Theorem 1]. Their method is completely different to ours, as they embed the algebras into bigger ones and deal with multipliers, moreover, it seems reasonable to argue that our method is simpler. Their result, however, still works when the algebra of coefficients is not a CC^{*}-algebra but a symmetric Banach -algebra.

Remark 7.7.

A consequence of Theorem 7.5 is that L1(𝖦|𝒞)L^{1}({\sf G}\,|\,\mathscr{C}) is symmetric as soon as 𝖦{\sf G} is compact. In the terminology of [20], this means that compact groups are hypersymmetric. We have thus provided the first examples of hypersymmetric groups with non-symmetric discretizations. Consider, for example, the rotation group SO(3){\rm SO}(3), which is compact but its discretization is not even symmetric since it contains a free subgroup (see [24]).

References

  • [1] Vadim Alekseev and David Kyed “Uniqueness questions for CC^{*}-norms on group rings” In Pacific J. Math. 298.2, 2019, pp. 257–266
  • [2] Are Austad and Eduard Ortega CC^{*}-uniqueness results for groupoids” In Int. Math. Res. Not. IMRN, 2022, pp. 3057–3073
  • [3] Are Austad and Sven Raum “Detecting ideals in reduced crossed product C*-algebras of topological dynamical systems”, 2023 arXiv:2301.01027 [math.OA]
  • [4] Michel Baillet “Analyse spectrale des opérateurs hermitiens d’une espace de Banach” In J. London Math. Soc. (2) 19.3, 1979, pp. 497–508
  • [5] Bruce A. Barnes “Ideal and representation theory of the L1L^{1}-algebra of a group with polynomial growth” In Colloq. Math. 45.2, 1981, pp. 301–315
  • [6] Bruce A. Barnes “Operators which satisfy polynomial growth conditions” In Pacific J. Math. 138.2, 1989, pp. 209–219
  • [7] Bruce A. Barnes “Symmetric Banach \ast-algebras: invariance of spectrum” In Studia Math. 141.3, 2000, pp. 251–261
  • [8] Bruce A. Barnes “The properties -regularity and uniqueness of CC^{\ast}-norm in a general -algebra” In Trans. Amer. Math. Soc. 279.2, 1983, pp. 841–859
  • [9] Bruce A. Barnes “The spectrum of integral operators on Lebesgue spaces” In J. Operator Theory 18.1, 1987, pp. 115–132
  • [10] J. Boidol \ast-regularity of exponential Lie groups” In Invent. Math. 56.3, 1980, pp. 231–238
  • [11] J. Boidol, H. Leptin, J. Schürman and D. Vahle “Räume primitiver Ideale von Gruppenalgebren” In Math. Ann. 236.1, 1978, pp. 1–13
  • [12] Joachim Boidol “Group algebras with a unique CC^{*}-norm” In J. Functional Analysis 56.2, 1984, pp. 220–232
  • [13] John Daughtry, Alan Lambert and Barnet Weinstock “Invariance of spectrum for representations of CC^{*}-algebras on Banach spaces” In Proc. Amer. Math. Soc. 125.1, 1997, pp. 189–198
  • [14] Jacques Dixmier “Opérateurs de rang fini dans les représentations unitaires” In Inst. Hautes Études Sci. Publ. Math., 1960, pp. 13–25
  • [15] Jacek Dziubanski, Jean Ludwig and Carine Molitor-Braun “Functional calculus in weighted group algebras” In Rev. Mat. Complut. 17.2, 2004, pp. 321–357
  • [16] Ruy Exel and Marcelo Laca “Continuous Fell bundles associated to measurable twisted actions” In Proc. Amer. Math. Soc. 125.3, 1997, pp. 795–799
  • [17] Ruy Exel and Chi-Keung Ng “Approximation property of CC^{*}-algebraic bundles” In Math. Proc. Cambridge Philos. Soc. 132.3, 2002, pp. 509–522
  • [18] J… Fell and R.. Doran “Representations of -algebras, locally compact groups, and Banach -algebraic bundles. Vol. 2” 126, Pure and Applied Mathematics Academic Press, Inc., Boston, MA, 1988, pp. i–viii and 747–1486
  • [19] G. Fendler et al. “Weighted group algebras on groups of polynomial growth” In Math. Z. 245.4, 2003, pp. 791–821
  • [20] F. Flores, D. Jauré and M. Măntoiu “Symmetry for algebras associated to Fell bundles over groups and groupoids” In Journal of Operator Theory, to appear
  • [21] Karlheinz Gröchenig and Andreas Klotz “Norm-controlled inversion in smooth Banach algebras, I” In J. Lond. Math. Soc. (2) 88.1, 2013, pp. 49–64
  • [22] Karlheinz Gröchenig and Andreas Klotz “Norm-controlled inversion in smooth Banach algebras, II” In Math. Nachr. 287.8-9, 2014, pp. 917–937
  • [23] A. Hulanicki, J.. Jenkins, H. Leptin and T. Pytlik “Remarks on Wiener’s Tauberian theorems for groups with polynomial growth” In Colloq. Math. 35.2, 1976, pp. 293–304
  • [24] Joe W. Jenkins “Symmetry and nonsymmetry in the group algebras of discrete groups” In Pacific J. Math. 32, 1970, pp. 131–145
  • [25] E. Kissin and V.. Shul’man “Differential properties of some dense subalgebras of CC^{\ast}-algebras” In Proc. Edinburgh Math. Soc. (2) 37.3, 1994, pp. 399–422
  • [26] Werner Kugler “On the symmetry of generalized L1L^{1}-algebras” In Math. Z. 168.3, 1979, pp. 241–262
  • [27] H. Leptin “On group algebras of nilpotent Lie groups” In Studia Math. 47, 1973, pp. 37–49
  • [28] Horst Leptin “Ideal theory in group algebras of locally compact groups” In Invent. Math. 31.3, 1975, pp. 259–278
  • [29] Horst Leptin and Detlev Poguntke “Symmetry and nonsymmetry for locally compact groups” In J. Functional Analysis 33.2, 1979, pp. 119–134
  • [30] Chi-Wai Leung \ast-regularity of certain generalized group algebras” In Arch. Math. (Basel) 96.5, 2011, pp. 445–454
  • [31] Chi-Wai Leung and Chi-Keung Ng “Functional calculus and \ast-regularity of a class of Banach algebras” In Proc. Amer. Math. Soc. 134.3, 2006, pp. 755–763
  • [32] Chi-Wai Leung and Chi-Keung Ng “Functional calculus and \ast-regularity of a class of Banach algebras. II” In J. Math. Anal. Appl. 322.2, 2006, pp. 699–711
  • [33] Chi-Wai Leung and Chi-Keung Ng “Some permanence properties of CC^{*}-unique groups” In J. Funct. Anal. 210.2, 2004, pp. 376–390
  • [34] Jean Ludwig “A class of symmetric and a class of Wiener group algebras” In J. Functional Analysis 31.2, 1979, pp. 187–194
  • [35] Jean Ludwig “Polynomial growth and ideals in group algebras” In Manuscripta Math. 30.3, 1980, pp. 215–221
  • [36] Salma Mint Elhacen and Carine Molitor-Braun “Étude de l’algèbre Lω1(G)L_{\omega}^{1}(G) avec GG groupe de Lie nilpotent et ω\omega poids polynomial” In Travaux mathématiques, Fasc. X, Sém. Math. Luxembourg, pp. 77–94
  • [37] Omar Mohsen “Higher order derivations on C*-algebras and applications to smooth functional calculus and Schwartz functions on the tangent groupoid”, 2022 arXiv:2210.08670 [math.OA]
  • [38] Nikolai Nikolski “In search of the invisible spectrum” In Ann. Inst. Fourier (Grenoble) 49.6, 1999, pp. 1925–1998
  • [39] Theodore W. Palmer “Banach algebras and the general theory of  -algebras: Volume 2, -algebras” Vol. 2. Cambridge university press, 1994
  • [40] T. Pytlik “On the spectral radius of elements in group algebras” In Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21, 1973, pp. 899–902
  • [41] T. Pytlik “Symbolic calculus on weighted group algebras” In Studia Math. 73.2, 1982, pp. 169–176
  • [42] Jean Renault “A groupoid approach to CC^{\ast}-algebras” 793, Lecture Notes in Mathematics Springer, Berlin, 1980, pp. ii+160
  • [43] Walter Rudin “Fourier analysis on groups” Reprint of the 1962 original, A Wiley-Interscience Publication, Wiley Classics Library John Wiley & Sons, Inc., New York, 1990, pp. x+285
  • [44] Ebrahim Samei and Varvara Shepelska “Norm-controlled inversion in weighted convolution algebras” In J. Fourier Anal. Appl. 25.6, 2019, pp. 3018–3044
  • [45] Ebrahim Samei and Matthew Wiersma “Quasi-Hermitian locally compact groups are amenable” In Adv. Math. 359, 2020, pp. 106897\bibrangessep25
  • [46] Josef Wichmann “The symmetric radical of an algebra with involution” In Arch. Math. (Basel) 30.1, 1978, pp. 83–88
  • [47] Norbert Wiener “Tauberian theorems” In Ann. of Math. (2) 33.1, 1932, pp. 1–100
  • [48] Dana P. Williams “A tool kit for groupoid CC^{*}-algebras” 241, Mathematical Surveys and Monographs American Mathematical Society, Providence, RI, 2019, pp. xv+398

ADDRESS

Felipe I. Flores

Department of Mathematics, University of Virginia,

114 Kerchof Hall. 141 Cabell Dr,

Charlottesville, Virginia, United States

E-mail: hmy3tf@virginia.edu