This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Portfolio Optimization with Relative Tail Risk

Young Shin Kim111College of Business, Stony Brook University, New York, USA (aaron.kim@stonybrook.edu).
Abstract

This paper proposes analytic forms of portfolio CoVaR and CoCVaR on the normal tempered stable market model. Since CoCVaR captures the relative risk of the portfolio with respect to a benchmark return, we apply it to the relative portfolio optimization. Moreover, we derive analytic forms for the marginal contribution to CoVaR and the marginal contribution to CoCVaR. We discuss the Monte-Carlo simulation method to calculate CoCVaR and the marginal contributions of CoVaR and CoCVaR. As the empirical illustration, we show relative portfolio optimization with thirty stocks under the distress condition of the Dow Jones Industrial Average. Finally, we perform the risk budgeting method to reduce the CoVaR and CoCVaR of the portfolio based on the marginal contributions to CoVaR and CoCVaR.
Key words: Portfolio Optimization Relative Risk Normal Tempered Stable Model CoVaR CoCVaR Marginal Contribution to Risk

1 Introduction

Harry Markowitz’s mean-variance portfolio optimization technique (Markowitz (1952)) has made a remarkable impact on portfolio theory in finance. This innovative method has been extensively utilized successfully in portfolio selection, allocation, and risk management practices. The adoption of Markowitz’s mean-variance model has resulted in significant improvements in investment outcomes and become a cornerstone of modern portfolio theory. Many investors have utilized Markowitz’s method to determine an efficient portfolio weight vector. Still, constructing a portfolio that surpasses the market index (e.g., S&P 500 index or DJIA) is not easy to be achieved. For that reason, some investors use relative portfolio optimization, that is, relaxing the assumption of the portfolio variance as the tracking error, which is a variance of the relative return. Here, the relative return is the difference between the portfolio return and a benchmark return, such as the market index return

This paper presents how to improve relative portfolio optimization based on two aspects. First, we loosen the Gaussian assumption of Markowitz’s model, which was empirically rejected in literature including Fama (1963), Mandelbrot (1963a, b), and Cont and Tankov (2004). Non-Gaussian multivariate distributions have been introduced to capture stylized facts, such as fat-tails and asymmetric dependence, that are not accounted for by the Gaussian model. This paper proposes the normal tempered stable (NTS) distribution as an alternative distribution to the Gaussian distribution. The NTS is defined by the tempered stable subordinated Gaussian distribution (Barndorff-Nielsen (1978), Barndorff-Nielsen and Levendorskii (2001) and Barndorff-Nielsen and Shephard (2001)). The NTS distribution has been popularly applied in finance by capturing the fat-tails of the asset return distribution and describing asymmetric dependence (See Kim and Volkmann (2013)). For example, it is applied to financial risk management in Anand et al. (2017) and Kurosaki and Kim (2018), and portfolio management in Eberlein and Madan (2010), Anand et al. (2016), and Kim (2022). In addition, Kim et al. (2015) applies a Lévy  process generated by the two-dimensional NTS distribution to Quanto option pricing, and its extension to capture stochastic dependence is further discussed in Kim et al. (2023). Recently, the NTS distribution was applied to cryptocurrency portfolio optimization in Kurosaki and Kim (2022).

Second, we enhance the portfolio theory by replacing CoVaR and CoCVaR instead of the variance of the relative return as the risk measure. Traditionally, portfolio variance, value at risk (VaR), and conditional value at risk (CVaR) have been employed as the portfolio risk measure, but those are absolute risk measures. Relative traders prefer to use tracking errors such as the variance of relative return with respect to the benchmark return instead of the absolute risk measures. In this paper, we take CoVaR (Adrian and Brunnermeier (2016)) and CoCVaR (Huang and Uryasev (2018)) as the risk measures of relative portfolio optimization. CoVaR is proposed as a measure of systemic risk, which is the VaR of the financial system under the condition of a distressed market. Girardi and Tolga Ergün (2013) calculate CoVaR on the multivariate GARCH model and Reboredo and Ugolini (2015) use the copula method. CoCVaR (or CoES by Adrian and Brunnermeier (2016)) is an expected downturn of the financial system under the condition of a distressed market. Huang and Uryasev (2018) define the mathematical formula of CoCVaR and apply it to measure the risk of the ten largest publicly traded banks in the United States under a distressed condition of market factors222VIX, liquidity spread, three-month treasury change, term spread change, credit spread change, equity market return, and real estate sector excess return.. Recently, Liu et al. (2021) discuss CoVaR and CoCVaR on the GARCH model with two-dimensional NTS innovations and do the back-testing.

The paper discusses portfolio optimization minimizing the portfolio CoVaR and CoCVaR concerning the market index and derives the marginal contributions to risk for the portfolio CoVaR and CoCVaR. The marginal contribution to risk is the rate of change in risk with respect to a small percentage change in proportion to a member’s asset. Mathematically it is defined by the first derivative of CoVaR or CoCVaR with respect to the marginal weight. In the context of absolute optimization, the marginal contributions to VaR and CVaR are employed to identify assets with high and low levels of risk. The general form of marginal risk contributions for the VaR and CVaR are provided in Gourieroux et al. (2000). The analytic forms of the marginal contributions for VaR and CVaR are discussed under the skewed-tt distribution in Stoyanov et al. (2013), and under the NTS distribution in Kim et al. (2012) and Kim (2022). Since we focus on relative optimization in this paper, we provide analytic formulas for the marginal contributions to CoVaR and CoCVaR under the NTS market model instead of VaR and CVaR. Those marginal contributions to CoVaR and CoCVaR help relative traders to make decisions in portfolio rebalancing. However, the multiple integrals involved in these formulas can present technical difficulties for numerical calculations. To solve this problem, we use Monte-Carlo simulation (MCS) methods. Furthermore, we perform the risk budgeting based on the marginal contributions to CoVaR and CVaR empirically.

The remainder of this paper is organized as follows. The definition of portfolio CoVaR and portfolio CoCVaR are presented in Section 2. Section 3 reviews the NTS market model. Section 4 presents the portfolio CoVaR and CoCVaR on the NTS market model, along with a detailed analysis of the marginal contributions to CoVaR and CoCVaR. Empirical illustrations are given in section 5. In this section, we exhibit MCS method to calculate CoCVaR on the NTS market model and do the portfolio CoCVaR minimizing portfolio optimization with the estimated parameters. We also discuss portfolio budgeting using the marginal CoVaR and the marginal CoCVaR. Finally, Section 6 concludes. Proofs and mathematical details are presented in Appendix.

2 CoVaR and CoCVaR

Let XX be a random variable for a market factor, for instance, the market index returns, and YY be a random variable for asset or portfolio returns. We consider a random vector (X,Y)(X,Y) following a joint distribution. The CoVaR and CoCVaR of YY at a significant level η\eta under a condition of the event XVaRζ(X)X\leq-\textup{\rm VaR}_{\zeta}(X) are defined by

CoVaRη,ζ(Y|X)=VaRη(Y|XVaRζ(X))=infx{x|P(Yx|XVaRζ(X))η},\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{Y}|{X}}\right)=\textup{\rm VaR}_{\eta}(Y|X\leq-\textup{\rm VaR}_{\zeta}(X))=-\inf_{x}\{x|P(Y\leq x|X\leq-\textup{\rm VaR}_{\zeta}(X))\geq\eta\},

and

CoCVaRη,ζ(Y|X)=E[Y|Y<CoVaRη,ζ(Y|X),XVaRζ(X)],\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{Y}|{X}}\right)=-E\left[Y|Y<-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{Y}|{X}}\right),X\leq-\textup{\rm VaR}_{\zeta}(X)\right],

respectively333See Adrian and Brunnermeier (2016),Huang and Uryasev (2018), and Liu et al. (2021) for more details, where VaRζ(X)\textup{\rm VaR}_{\zeta}(X) is the Value-at-Risk (VaR) of XX for a significant level ζ\zeta given as

VaRζ(X)=infx{x|P(Xx)ζ}.\textup{\rm VaR}_{\zeta}(X)=-\inf_{x}\{x|P\left(X\leq x\right)\geq\zeta\}.

If the joint distribution of (X,Y)(X,Y) is continuous, then VaRζ(X)=FX1(ζ)\textup{\rm VaR}_{\zeta}(X)=-F_{X}^{-1}(\zeta) where FXF_{X} is the cumulative distribution function (cdf) for the marginal distribution of XX and FX1F_{X}^{-1} is the inverse function of FXF_{X}. Moreover, we have

F(X,Y)(VaRζ(X),CoVaRη,ζ(Y|X))=ηζF_{(X,Y)}(-\textup{\rm VaR}_{\zeta}(X),-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{Y}|{X}}\right))=\eta\zeta

for the joint cdf of (X,Y)(X,Y).

Consider NN number of stocks and a market index and an (N+1)(N+1)-dimensional random vector R=(R0R=(R_{0}, R1R_{1}, \cdots, RN)TR_{N})^{{\texttt{T}}}, where R0R_{0} is the index return and RnR_{n} is the return of the nnth stock for n{1n\in\{1, 22, \cdots, N}N\}. Let w=(w1w=(w_{1}, w2w_{2}, \cdots, wN)TINw_{N})^{\texttt{T}}\in I^{N} be an NN-dimensional vector satisfying n=1Nwn=1\sum_{n=1}^{N}w_{n}=1 for I=[0,1]I=[0,1]. The nnth element wnw_{n} of ww is the proportion of capital invested in the nnth stock for n{1,2,,N}n\in\{1,2,\cdots,N\}. In this case, ww be referred to as the capital allocation weight vector for the NN stocks in the market444In this paper, we consider the long-only portfolio.. Then we have the random variable of the portfolio return as Rp(w)=n=1Nwn,RnR_{p}(w)=\sum_{n=1}^{N}w_{n},R_{n}.

Suppose that RR follows (N+1)(N+1)-dimensional normal distribution with a mean vector μ=(μ0\mu=(\mu_{0}, μ1\mu_{1}, \cdots, μN)T\mu_{N})^{\texttt{T}} and a covariance matrix Σ\Sigma, that is RΦ(μ,Σ)R\sim\Phi(\mu,\Sigma). Let σn,m\sigma_{n,m} be the (n+1,m+1)(n+1,m+1)-th element of Σ\Sigma for n,m{0,1,,N}n,m\in\{0,1,\cdots,N\}. Then the bivariate random vector (R0,Rp(w))T(R_{0},R_{p}(w))^{\texttt{T}} follows the bivariated normal distribution, (R0,Rp(w))TΦ(μ¯,Σ¯)(R_{0},R_{p}(w))^{\texttt{T}}\sim\Phi(\bar{\mu},\bar{\Sigma}) with

μ¯=(μ0,μp(w))T, and Σ¯=(σ0,0σp,0(w)σp,0(w)σp2(w)),\bar{\mu}=(\mu_{0},\mu_{p}(w))^{\texttt{T}},\text{ and }\bar{\Sigma}=\left(\begin{matrix}\sigma_{0,0}&\sigma_{p,0}(w)\\ \sigma_{p,0}(w)&\sigma_{p}^{2}(w)\end{matrix}\right),

where μp(w)=n=1Nwnμn\mu_{p}(w)=\sum_{n=1}^{N}w_{n}\mu_{n}, σp,0(w)=n1Nwmσ0,n\sigma_{p,0}(w)=\sum_{n-1}^{N}w_{m}\sigma_{0,n}, σp2(w)=n=1Nm=1Nwmwmσn,m\sigma_{p}^{2}(w)=\sum_{n=1}^{N}\sum_{m=1}^{N}w_{m}w_{m}\sigma_{n,m}. We can calculate VaR of R0R_{0} as VaRζ(R0)=q1ζσ0,0μ0\textup{\rm VaR}_{\zeta}(R_{0})=q_{1-\zeta}\sqrt{\sigma_{0,0}}-\mu_{0}, where q1ζq_{1-\zeta} is (1ζ)(1-\zeta)-quantile value of the standard normal distribution. Suppose the value xx satisfies

xVaRζ(R0)fΦ(μ¯,Σ¯)(x1,x2)𝑑x1𝑑x2=ηζ,\int_{-\infty}^{x}\int_{-\infty}^{-\textup{\rm VaR}_{\zeta}(R_{0})}f_{\Phi(\bar{\mu},\bar{\Sigma})}(x_{1},x_{2})dx_{1}dx_{2}=\eta\zeta,

where fΦ(μ¯,Σ¯)f_{\Phi(\bar{\mu},\bar{\Sigma})} is the probability density function of Φ(μ¯,Σ¯)\Phi(\bar{\mu},\bar{\Sigma}). Then CoVaRη,ζ(Rp(w)|R0)=x\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right)=-x. Moreover,

CoCVaRη,ζ(Rp(w)|R0)=1ηζCoVaRη,ζ(Rp(w)|R0)VaRζ(R0)x1fΦ(μ¯,Σ¯)(x1,x2)𝑑x1𝑑x2.\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right)=-\frac{1}{\eta\zeta}\int_{-\infty}^{-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right)}\int_{-\infty}^{-\textup{\rm VaR}_{\zeta}(R_{0})}x_{1}f_{\Phi(\bar{\mu},\bar{\Sigma})}(x_{1},x_{2})dx_{1}dx_{2}.

3 Standard NTS distribution and NTS Market model

In this section, we define the multivariate standard NTS distribution and construct the market model based on the distribution.

3.1 Standard NTS Distribution

Let NN be a finite positive integer and Ξ=(Ξ1,Ξ2,,ΞN)T\Xi=(\Xi_{1},\Xi_{2},\cdots,\Xi_{N})^{{\texttt{T}}} be a multivariate random variable given by

Ξ=β(𝒯1)+diag(γ)ε𝒯,\Xi=\beta({\mathcal{T}}-1)+\textup{diag}(\gamma)\varepsilon\sqrt{{\mathcal{T}}},

where

  • 𝒯{\mathcal{T}} is the tempered stable subordinator with parameters (α,θ)(\alpha,\theta), and is independent of εn\varepsilon_{n} for all n=1,2,,Nn=1,2,\cdots,N.

  • β=(β1,β2,,βN)TN\beta=(\beta_{1},\beta_{2},\cdots,\beta_{N})^{{\texttt{T}}}\in\mathbb{R}^{N} with |βn|<2θ2α|\beta_{n}|<\sqrt{\frac{2\theta}{2-\alpha}} for all n{1,2,,N}n\in\{1,2,\cdots,N\}.

  • γ=(γ1,γ2,,γN)T+N\gamma=(\gamma_{1},\gamma_{2},\cdots,\gamma_{N})^{{\texttt{T}}}\in\mathbb{R}_{+}^{N} with γn=1βn2(2α2θ)\gamma_{n}=\sqrt{1-\beta_{n}^{2}\left(\frac{2-\alpha}{2\theta}\right)} for all n{1,2,,N}n\in\{1,2,\cdots,N\} and +=[0,)\mathbb{R}_{+}=[0,\infty).

  • ε=(ε1,ε2,,εN)T\varepsilon=(\varepsilon_{1},\varepsilon_{2},\cdots,\varepsilon_{N})^{{\texttt{T}}} is NN-dimensional standard normal distribution with a covariance matrix Σ\Sigma. That is, εnΦ(0,1)\varepsilon_{n}\sim\Phi(0,1) for n{1,2,,N}n\in\{1,2,\cdots,N\} and (k,l)(k,l)-th element of Σ\Sigma is given by ρk,l=cov(εk,εl)\rho_{k,l}=\textrm{\rm cov}(\varepsilon_{k},\varepsilon_{l}) for k,l{1,2,,N}k,l\in\{1,2,\cdots,N\}. Note that ρk,k=1\rho_{k,k}=1.

In this case, Ξ\Xi is referred to as the NN-dimensional standard NTS random variable with parameters (α(\alpha, θ\theta, β\beta, Σ)\Sigma) and we denote it by ΞstdNTSN(α\Xi\sim\textup{stdNTS}_{N}(\alpha, θ\theta, β\beta, Σ)\Sigma) (See more details in Kim and Volkmann (2013) and Kim (2022).).

  • The probability density function (pdf) f𝒯(t)f_{\mathcal{T}}(t) of 𝒯{\mathcal{T}} is f𝒯(t)=12πeiutϕ𝒯(u)𝑑uf_{\mathcal{T}}(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-iut}\phi_{\mathcal{T}}(u)du, where ϕ𝒯\phi_{{\mathcal{T}}} is the characteristic function (ch.f) of 𝒯{\mathcal{T}} given by ϕ𝒯(u)=exp(2θ1α2α((θiu)α2θα2)).\phi_{{\mathcal{T}}}(u)=\exp\left(-\frac{2\theta^{1-\frac{\alpha}{2}}}{\alpha}\left((\theta-iu)^{\frac{\alpha}{2}}-\theta^{\frac{\alpha}{2}}\right)\right).

  • The cdf of the stdNTS vector Ξ\Xi is given by

    FΞ(a1,,aN)=0aNβN(t1)γNta1β1(t1)γ1tfε(x1,,xN)𝑑x1𝑑xNf𝒯(t)𝑑t,F_{\Xi}(a_{1},\cdots,a_{N})=\int_{0}^{\infty}\int_{-\infty}^{\frac{a_{N}-\beta_{N}(t-1)}{\gamma_{N}\sqrt{t}}}\cdots\int_{-\infty}^{\frac{a_{1}-\beta_{1}(t-1)}{\gamma_{1}\sqrt{t}}}f_{\varepsilon}(x_{1},\cdots,x_{N})dx_{1}\cdots dx_{N}f_{\mathcal{T}}(t)dt, (1)

    where fεf_{\varepsilon} is the pdf of NN-dimensional normal distribution with mean 0 and covariance Σ\Sigma.

  • The pdf if the vector Ξ\Xi is given by

    fΞ(x1,,xN)=0fΦ(m(t),Σ(t))(x1,,xN)f𝒯(t)𝑑tf_{\Xi}(x_{1},\cdots,x_{N})=\int_{0}^{\infty}f_{\Phi(m(t),\Sigma(t))}(x_{1},\cdots,x_{N})f_{\mathcal{T}}(t)dt (2)

    where fΦ(m(t),Σ(t))(x1,,xN)f_{\Phi(m(t),\Sigma(t))}(x_{1},\cdots,x_{N}) is the pdf of the NN-dimensional normal distribution with mean m(t)=(β1(t1),,βN(t1))m(t)=(\beta_{1}(t-1),\cdots,\beta_{N}(t-1)) and covariance Σ(t)=(tγkγlρk,l)k,l{1,,N}\Sigma(t)=\left(t\gamma_{k}\gamma_{l}\rho_{k,l}\right)_{k,l\in\{1,\cdots,N\}}.

  • By Gil-Pelaez (1951), the marginal cdf of Ξn\Xi_{n} for n{1,2,,N}n\in\{1,2,\cdots,N\} is equal to

    FΞn(x)=121πIm(eiuxϕΞn(u))u𝑑u.F_{\Xi_{n}}(x)=\frac{1}{2}-\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{\textrm{\rm Im}(e^{-iux}\phi_{\Xi_{n}}(u))}{u}du. (3)

    where ϕΞn\phi_{\Xi_{n}} is the ch.f of Ξn\Xi_{n} given by

    ϕΞn(u)\displaystyle\phi_{\Xi_{n}}(u) =exp(βniu2θ1α2α((θiβnu+u22(1βn2(2α2θ)))α2θα2)).\displaystyle=\exp\left(-\beta_{n}iu-\frac{2\theta^{1-\frac{\alpha}{2}}}{\alpha}\left(\left(\theta-i\beta_{n}u+\frac{u^{2}}{2}\left(1-\beta_{n}^{2}\left(\frac{2-\alpha}{2\theta}\right)\right)\right)^{\frac{\alpha}{2}}-\theta^{\frac{\alpha}{2}}\right)\right).

    Moreover, the marginal pdf of Ξn\Xi_{n} is obtained by the inverse Fourier transform for the characteristic function as

    fΞn(x)=12πeiuxϕΞn(u)𝑑u.f_{\Xi_{n}}(x)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-iux}\phi_{\Xi_{n}}(u)du.
  • Covariance between Ξn\Xi_{n} and Ξm\Xi_{m} for n,m{1,2,,N}n,m\in\{1,2,\cdots,N\} is equal to

    cov(Ξn,Ξm)=γnγmρn,m+βnβm(2α2θ).\textrm{\rm cov}(\Xi_{n},\Xi_{m})=\gamma_{n}\gamma_{m}\rho_{n,m}+\beta_{n}\beta_{m}\left(\frac{2-\alpha}{2\theta}\right). (4)

3.2 NTS Market Model

Consider a portfolio having NN assets for a positive integer NN. The return of the assets in the portfolio is given by a random vector R=(R1R=(R_{1}, R2R_{2}, \cdots, RN)TR_{N})^{\texttt{T}}. We suppose that the return RR follows

R=μ+diag(σ)ΞR=\mu+\textrm{\rm diag}(\sigma)\Xi (5)

where μ=(μ1,μ2,,μN)TN\mu=(\mu_{1},\mu_{2},\cdots,\mu_{N})^{\texttt{T}}\in\mathbb{R}^{N}, σ=(σ1,σ2,,σN)T+N\sigma=(\sigma_{1},\sigma_{2},\cdots,\sigma_{N})^{\texttt{T}}\in\mathbb{R}_{+}^{N} and ΞstdNTSN(α,θ,β,Σ)\Xi\sim\textup{\rm stdNTS}_{N}(\alpha,\theta,\beta,\Sigma). Then, we have E[Rn]=μnE[R_{n}]=\mu_{n} and var(Rn)=σn2\textrm{\rm var}(R_{n})=\sigma_{n}^{2} for all n{1,2,,N}n\in\{1,2,\cdots,N\}. This market model is referred to as the NTS market model.

Let w=(w1,w2,,wN)Tw=(w_{1},w_{2},\cdots,w_{N})^{\texttt{T}} be the capital allocation weight vector. Then the portfolio return for ww is equal to RP(w)=wTRR_{P}(w)=w^{\texttt{T}}R. The distribution of RP(w)R_{P}(w) is presented in the following proposition from Kim (2022).

Proposition 3.1 (Kim (2022)).

Consider a portfolio with NN assets for a positive integer NN. Let w=(w1w=(w_{1}, w2w_{2}, \cdots, wN)Tw_{N})^{{\texttt{T}}} be the capital allocation weight vector for the portfolio. Suppose R=(R1R=(R_{1}, R2R_{2}, \cdots, RN)TNR_{N})^{\texttt{T}}\in\mathbb{R}^{N} follows the NTS market model given by (5) with μN\mu\in\mathbb{R}^{N}, σ+N\sigma\in\mathbb{R}_{+}^{N}, and ΞstdNTSN(α,θ,β,Σ)\Xi\sim\textup{stdNTS}_{N}(\alpha,\theta,\beta,\Sigma). Then

RP(w)=dμ¯(w)+σ¯(w)Ξ for ΞstdNTS1(α,θ,β¯(w),1),R_{P}(w)\stackrel{{\scriptstyle\mathrm{d}}}{{=}}\bar{\mu}(w)+\bar{\sigma}(w)\Xi~~~\text{ for }~~~\Xi\sim\textup{stdNTS}_{1}(\alpha,\theta,\bar{\beta}(w),1), (6)

where

μ¯(w)=n=1Nwnμn,σ¯(w)=n=1Nwnm=1Nwnwmcov(Rn,Rm),andβ¯(w)=n=1Nwnσnβnσp(w).\bar{\mu}(w)=\sum_{n=1}^{N}w_{n}\mu_{n},~~~\bar{\sigma}(w)=\sqrt{\sum_{n=1}^{N}w_{n}\sum_{m=1}^{N}w_{n}w_{m}\textrm{\rm cov}(R_{n},R_{m})},~~~\text{and}~~~\bar{\beta}(w)=\frac{\sum_{n=1}^{N}w_{n}\sigma_{n}\beta_{n}}{\sigma_{p}(w)}.

4 Portfolio CoVaR and CoCVaR with respect to a Market Index

Consider NN number of stocks and a market index for a given market as follows:

  • R0R_{0} is the market index return.

  • RnR_{n} for n{1,2,,N}n\in\{1,2,\cdots,N\} is the individual stock return of a stock portfolio consisting of NN stocks.

Suppose R=(R0,R1,,RN)TR=(R_{0},R_{1},\cdots,R_{N})^{{\texttt{T}}} follows a (N+1N+1)-dimensional NTS market model, that is, we have

R=μ+diag(σ)Ξ with ΞstdNTSN+1(α,θ,β,Σ)R=\mu+\textup{diag}(\sigma)\Xi\text{ with }\Xi\sim\textup{stdNTS}_{N+1}(\alpha,\theta,\beta,\Sigma) (7)

where

  • μ=(μ0,μ1,,μN)TN+1\mu=(\mu_{0},\mu_{1},\cdots,\mu_{N})^{{\texttt{T}}}\in\mathbb{R}^{N+1}, and σ=(σ0,σ1,,σN)T+N+1\sigma=(\sigma_{0},\sigma_{1},\cdots,\sigma_{N})^{{\texttt{T}}}\in\mathbb{R}_{+}^{N+1},

  • α(0,2)\alpha\in(0,2), θ>0\theta>0, β=(β0,β1,,βN)TN+1\beta=(\beta_{0},\beta_{1},\cdots,\beta_{N})^{{\texttt{T}}}\in\mathbb{R}^{N+1} with |βn|<2θ2α|\beta_{n}|<\sqrt{\frac{2\theta}{2-\alpha}} for n{0,1,,N}n\in\{0,1,\cdots,N\},

  • Σ\Sigma is the (N+1)×(N+1)(N+1)\times(N+1) covariance matrix and ρn,m\rho_{n,m} is the (n+1,m+1)(n+1,m+1)-th element of Σ\Sigma for n,m{0,1,,N}n,m\in\{0,1,\cdots,N\}.

Based on the assumption, we obtain the following proposition whose proof is in Appendix.

Proposition 4.1.

Suppose R=(R0,R1,,RN)TR=(R_{0},R_{1},\cdots,R_{N})^{{\texttt{T}}} follows a (N+1N+1)-dimensional NTS market model as (7). Let w=(w1,w2,,wN)Tw=(w_{1},w_{2},\cdots,w_{N})^{{\texttt{T}}} be a capital allocation weight vector and Rp(w)=n=1NwnRnR_{p}(w)=\sum_{n=1}^{N}w_{n}R_{n}. The bivariate random vector (R0,RP(w))T(R_{0},R_{P}(w))^{\texttt{T}} follows 2-dimensional NTS model such as

(R0Rp(w))=(μ0μp(w))+(σ000σp(w))(Ξ0Ξp(w))\left(\begin{matrix}R_{0}\\ R_{p}(w)\end{matrix}\right)=\left(\begin{matrix}\mu_{0}\\ \mu_{p}(w)\end{matrix}\right)+\left(\begin{matrix}\sigma_{0}&0\\ 0&\sigma_{p}(w)\end{matrix}\right)\left(\begin{matrix}\Xi_{0}\\ \Xi_{p}(w)\end{matrix}\right)

for

(Ξ0Ξp(w))stdNTS2(α,θ,(β0βp(w)),(1ρp(w)ρp(w)1)),\left(\begin{matrix}\Xi_{0}\\ \Xi_{p}(w)\end{matrix}\right)\sim\textup{stdNTS}_{2}\left(\alpha,\theta,\left(\begin{matrix}\beta_{0}\\ \beta_{p}(w)\end{matrix}\right),\left(\begin{matrix}1&\rho_{p}(w)\\ \rho_{p}(w)&1\end{matrix}\right)\right),

where

μp(w)=n=1Nwnμn,σp(w)=n=1Nm=1Nwnwmσnσmcov(Ξn,Ξm),βp(w)=n=1Nwnσnβnσp(w),\mu_{p}(w)=\sum_{n=1}^{N}w_{n}\mu_{n},~~~\sigma_{p}(w)=\sqrt{\sum_{n=1}^{N}\sum_{m=1}^{N}w_{n}w_{m}\sigma_{n}\sigma_{m}\textrm{\rm cov}\left(\Xi_{n},\Xi_{m}\right)},~~~\beta_{p}(w)=\frac{\sum_{n=1}^{N}w_{n}\sigma_{n}\beta_{n}}{\sigma_{p}(w)},

and

ρp(w)\displaystyle\rho_{p}(w) :=n=1Nwnγnσnρ0,nn=1Nm=1Nwnwmγnγmσnσmρn,m\displaystyle:=\frac{\sum_{n=1}^{N}w_{n}\gamma_{n}\sigma_{n}\rho_{0,n}}{\sqrt{\sum_{n=1}^{N}\sum_{m=1}^{N}w_{n}w_{m}\gamma_{n}\gamma_{m}\sigma_{n}\sigma_{m}\rho_{n,m}}} (8)

for γn=1βn2(2α2θ)\gamma_{n}=\sqrt{1-\beta_{n}^{2}\left(\frac{2-\alpha}{2\theta}\right)}.

Remark Let σ=(σ1,σ2,,σN)T\sigma_{*}=(\sigma_{1},\sigma_{2},\cdots,\sigma_{N})^{\texttt{T}}, ρ=(ρ0,1,ρ0,2,,ρ0,N)T\rho^{*}=(\rho_{0,1},\rho_{0,2},\cdots,\rho_{0,N})^{\texttt{T}}, Σ=(ρn,m)n,m{1,2,,N}\Sigma^{*}=\left(\rho_{n,m}\right)_{n,m\in\{1,2,\cdots,N\}} and γ=(γ1,γ2,,γN)T\gamma^{*}=(\gamma_{1},\gamma_{2},\cdots,\gamma_{N})^{\texttt{T}}. Then

ρp(w)\displaystyle\rho_{p}(w) :=wTVγ,σ,ρwTΣγ,σw\displaystyle:=\frac{w^{\texttt{T}}V_{\gamma,\sigma,\rho}^{*}}{\sqrt{w^{\texttt{T}}\Sigma^{*}_{\gamma,\sigma}w}}

for Vγ,σ,ρ=diag(γ)diag(σ)ρV_{\gamma,\sigma,\rho}^{*}=\textrm{\rm diag}(\gamma^{*})\textrm{\rm diag}(\sigma^{*})\rho^{*} and Σγ,σ=diag(γ)diag(σ)Σdiag(σ)diag(γ)\Sigma_{\gamma,\sigma}^{*}=\textrm{\rm diag}(\gamma^{*})\textrm{\rm diag}(\sigma^{*})\Sigma^{*}\textrm{\rm diag}(\sigma^{*})\textrm{\rm diag}(\gamma^{*}).

With the positive homogeneity and translation invariance properties of VaR and CoVaR, we have

VaRζ(R0)=σ0(w)VaRζ(Ξ0)μ0\textup{\rm VaR}_{\zeta}(R_{0})=\sigma_{0}(w)\textup{\rm VaR}_{\zeta}(\Xi_{0})-\mu_{0}

and

CoVaRη,ζ(Rp(w)|R0)=σp(w)CoVaRη,ζ(Ξp(w)|Ξ0)μp(w).\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right)=\sigma_{p}(w)\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)-\mu_{p}(w).

Since marginal distributions of Ξ0\Xi_{0}, and Ξp(w)\Xi_{p}(w) are continuous, we have VaRζ(Ξ0)=FΞ01(ζ)\textup{\rm VaR}_{\zeta}(\Xi_{0})=-F_{\Xi_{0}}^{-1}(\zeta), where FΞ0F_{\Xi_{0}} and FΞ01F_{\Xi_{0}}^{-1} are the cdf and inverse cdf of Ξ0\Xi_{0}, respectively. Moreover, CoVaRη,ζ(Ξp(w)|Ξ0)\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right) is the value satisfying

(Ξp(w)<CoVaRη,ζ(Ξp(w)|Ξ0),Ξ0<VaRζ(Ξ0))=ζη,\mathbb{P}\left(\Xi_{p}(w)<-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right),\Xi_{0}<-\textup{\rm VaR}_{\zeta}(\Xi_{0})\right)=\zeta\eta,

i.e.

F(Ξ0,Ξp(w))(VaRζ(Ξ0),CoVaRη,ζ(Ξp(w)|Ξ0))=ζη,F_{(\Xi_{0},\Xi_{p}(w))}\left(-\textup{\rm VaR}_{\zeta}(\Xi_{0}),-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)\right)=\zeta\eta, (9)

where F(Ξ0,Ξp(w))F_{(\Xi_{0},\Xi_{p}(w))} is the cdf of (Ξ0,Ξp(w))(\Xi_{0},\Xi_{p}(w)). By (1), F(Ξ0,Ξp(w))F_{(\Xi_{0},\Xi_{p}(w))} is given as

F(Ξ0,Ξp(w))(ξ0,ξp)\displaystyle F_{(\Xi_{0},\Xi_{p}(w))}(\xi_{0},\xi_{p})
=0ξpβp(w)(t1)γp(w)tξ0β0(t1)γ0tfρp(w)Φ2(x1,x2)𝑑x1𝑑x2f𝒯(t)𝑑t,\displaystyle=\int_{0}^{\infty}\int_{-\infty}^{\frac{\xi_{p}-\beta_{p}(w)(t-1)}{\gamma_{p}(w)\sqrt{t}}}\int_{-\infty}^{\frac{\xi_{0}-\beta_{0}(t-1)}{\gamma_{0}\sqrt{t}}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}dx_{2}f_{\mathcal{T}}(t)dt,

where γ0=1β02(2θ2α)\gamma_{0}=\sqrt{1-\beta_{0}^{2}\left(\frac{2\theta}{2-\alpha}\right)}, γp(w)=1(βp(w))2(2θ2α)\gamma_{p}(w)=\sqrt{1-(\beta_{p}(w))^{2}\left(\frac{2\theta}{2-\alpha}\right)} and fρΦ2f^{\Phi_{2}}_{\rho} is the pdf of the bivariate standard normal distribution with covariance ρ\rho.

By the same arguments, we have CoCVaR as

CoCVaRη,ζ(Rp(w)|R0)=σp(w)CoCVaRη,ζ(Ξp(w)|Ξ0)μp(w)\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right)=\sigma_{p}(w)\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)-\mu_{p}(w) (10)

and

CoCVaRη,ζ(Ξp(w)|Ξ0)=1ζηCoVaRη,ζ(Ξp(w)|Ξ0)VaRζ(Ξ0)x2f(Ξ0,Ξp(w))(x1,x2)𝑑x1𝑑x2\displaystyle\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)=-\frac{1}{\zeta\eta}\int_{-\infty}^{-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)}\int_{-\infty}^{-\textup{\rm VaR}_{\zeta}(\Xi_{0})}x_{2}f_{(\Xi_{0},\Xi_{p}(w))}(x_{1},x_{2})dx_{1}\,dx_{2}

where

f(Ξ0,Ξp(w))(x1,x2)=0g(x1β0(t1),x2βp(w)(t1),γ0t,γp(w)t,ρp(w))f𝒯(t)𝑑t,\displaystyle f_{(\Xi_{0},\Xi_{p}(w))}(x_{1},x_{2})=\int_{0}^{\infty}g\left(x_{1}-\beta_{0}(t-1),x_{2}-\beta_{p}(w)(t-1),\gamma_{0}\sqrt{t},\gamma_{p}(w)\sqrt{t},\rho_{p}(w)\right)f_{\mathcal{T}}(t)dt,

and

g(x,y,u,v,ρ)=12πuv1ρexp(12(1ρ2)((xu)22ρxyuv+(yv)2)),g(x,y,u,v,\rho)=\frac{1}{2\pi uv\sqrt{1-\rho}}\exp\left(-\frac{1}{2(1-\rho^{2})}\left(\left(\frac{x}{u}\right)^{2}-\frac{2\rho xy}{uv}+\left(\frac{y}{v}\right)^{2}\right)\right),

by (2). By the change of variables, we have

CoCVaRη,ζ(Ξp(w)|Ξ0)\displaystyle\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)
=1ζη0C(w,t)v(t)(βp(w)(t1)+x2γp(w)t)fρp(w)Φ2(x1,x2)𝑑x1𝑑x2f𝒯(t)𝑑t,\displaystyle=-\frac{1}{\zeta\eta}\int_{0}^{\infty}\int_{-\infty}^{C(w,t)}\int_{-\infty}^{v(t)}\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}\,dx_{2}f_{\mathcal{T}}(t)dt, (11)

or

CoCVaRη,ζ(Ξp(w)|Ξ0)=1ζηE[(βp(w)(𝒯1)+ϵpγp(w)𝒯)1ϵp<C(w,𝒯)1ϵ0<v(𝒯)]\displaystyle\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)=-\frac{1}{\zeta\eta}E\left[\left(\beta_{p}(w)({\mathcal{T}}-1)+\epsilon_{p}\gamma_{p}(w)\sqrt{{\mathcal{T}}}\right)1_{\epsilon_{p}<C(w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right] (12)

where C(w,t)=CoVaRη,ζ(Ξp(w)|Ξ0)βp(w)(t1)γp(w)tC(w,t)=\frac{-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)-\beta_{p}(w)(t-1)}{\gamma_{p}(w)\sqrt{t}}, v(t)=ξ0β0(t1)γ0tv(t)=\frac{\xi_{0}-\beta_{0}(t-1)}{\gamma_{0}\sqrt{t}}, ξ0=VaRζ(Ξ0)\xi_{0}=-\textup{\rm VaR}_{\zeta}(\Xi_{0}), (ϵ0,ϵp)(\epsilon_{0},\epsilon_{p}) is the bivariate standard normal random vector with covariance ρp(w)\rho_{p}(w), and 𝒯{\mathcal{T}} is the tempered stable subordinator with parameters (α,θ)(\alpha,\theta) independent of (ϵ0,ϵp)(\epsilon_{0},\epsilon_{p}).

4.1 Marginal Contribution to CoVaR and CoCVaR

In this section, we discuss the marginal contributions to CoVaR and CoCVaR under the (N+1)(N+1)-dimensional NTS market model with the market index defined in the previous section. Let wjw_{j} be the jjth element of the capital allocation vector w=(w1w=(w_{1}, \cdots, wN)TINw_{N})^{\texttt{T}}\in I^{N} for j{1j\in\{1, 22, \cdots, N}N\}. Let u(x,w,t)=xβp(w)(t1)γp(w)tu(x,w,t)=\frac{x-\beta_{p}(w)(t-1)}{\gamma_{p}(w)\sqrt{t}}, and v(t)=v0β0(t1)γ0tv(t)=\frac{v_{0}-\beta_{0}(t-1)}{\gamma_{0}\sqrt{t}}, where v0=VaRη(Ξ0)v_{0}=-\textup{\rm VaR}_{\eta}(\Xi_{0}), γp(w)=1(βp(w))2(2θ2α)\gamma_{p}(w)=\sqrt{1-(\beta_{p}(w))^{2}\left(\frac{2\theta}{2-\alpha}\right)}, and γ0=1β02(2θ2α)\gamma_{0}=\sqrt{1-\beta_{0}^{2}\left(\frac{2\theta}{2-\alpha}\right)}. Let fρp(w)Φ2f^{\Phi_{2}}_{\rho_{p}(w)}be the bivariate standard normal pdf with covariance ρp(w)\rho_{p}(w), that is

fρp(w)Φ2(x1,x2)=12π1(ρp(w))2exp(x122ρp(w)x1x2+x222(1(ρp(w))2)).f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})=\frac{1}{2\pi\sqrt{1-(\rho_{p}(w))^{2}}}\exp\left(-\frac{x_{1}^{2}-2\rho_{p}(w)x_{1}x_{2}+x_{2}^{2}}{2(1-(\rho_{p}(w))^{2})}\right).

Define

G(x,w)=0u(x,w,t)v(t)fρp(w)Φ2(x1,x2)𝑑x1𝑑x2f𝒯(t)𝑑tηζ.\displaystyle G(x,w)=\int_{0}^{\infty}\int_{-\infty}^{u(x,w,t)}\int_{-\infty}^{v(t)}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}dx_{2}f_{\mathcal{T}}(t)dt-\eta\zeta.

Then G(x,w)=0G(x,w)=0 if x=CoVaRη,ζ(Ξp(w)|Ξ0)x=-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right) by (9).

Proposition 4.2.

The marginal contribution to CoVaR for the jjth element of the portfolio capital allocation weight vector is

wjCoVaRη,ζ(Ξp(w)|Ξ0)=wjG(x,w)xG(x,w)|x=CoVaRη,ζ(Ξp(w)|Ξ0)\displaystyle\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)=\frac{\frac{\partial}{\partial w_{j}}G(x,w)}{\frac{\partial}{\partial x}G(x,w)}\Bigg{|}_{x=-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)} (13)

with

xG(x,w)=12πγp(w)E[1𝒯exp((u(x,w,𝒯))22)FΦ(v(𝒯)ρp(w)u(x,w,𝒯)1(ρp(w))2)]\displaystyle\frac{\partial}{\partial x}G(x,w)=\frac{1}{\sqrt{2\pi}\gamma_{p}(w)}E\left[\frac{1}{\sqrt{{\mathcal{T}}}}\exp\left(-\frac{\left(u(x,w,{\mathcal{T}})\right)^{2}}{2}\right)F_{\Phi}\left(\frac{v({\mathcal{T}})-\rho_{p}(w)u(x,w,{\mathcal{T}})}{\sqrt{1-(\rho_{p}(w))^{2}}}\right)\right] (14)

and

wjG(x,w)=ρp(w)1(ρp(w))2(wjρp(w))F(Ξ0,Ξp(w))(v0,x)\displaystyle\frac{\partial}{\partial w_{j}}G(x,w)=\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}\left(\frac{\partial}{\partial w_{j}}\rho_{p}(w)\right)F_{(\Xi_{0},\Xi_{p}(w))}\left(v_{0},x\right) (15)
+wjρp(w)(1(ρp(w))2)2E[(ρp(w)ϵp2(1+(ρp(w))2)ϵpϵ0+ρp(w)ϵ02)1ϵp<u(x,w,𝒯)1ϵ0<v(𝒯)]\displaystyle+\frac{\frac{\partial}{\partial w_{j}}\rho_{p}(w)}{(1-(\rho_{p}(w))^{2})^{2}}E\left[(\rho_{p}(w)\epsilon_{p}^{2}-(1+(\rho_{p}(w))^{2})\epsilon_{p}\epsilon_{0}+\rho_{p}(w)\epsilon_{0}^{2})1_{\epsilon_{p}<u(x,w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right]
+12πE[exp((u(x,w,𝒯))22)FΦ(v(𝒯)ρp(w)u(x,w,𝒯)1(ρp(w))2)wju(x,w,𝒯)]\displaystyle+\frac{1}{\sqrt{2\pi}}E\left[\exp\left(-\frac{\left(u(x,w,{\mathcal{T}})\right)^{2}}{2}\right)F_{\Phi}\left(\frac{v({\mathcal{T}})-\rho_{p}(w)u(x,w,{\mathcal{T}})}{\sqrt{1-(\rho_{p}(w))^{2}}}\right)\frac{\partial}{\partial w_{j}}u(x,w,{\mathcal{T}})\right]

where

  • FΦF_{\Phi} is the cdf of the standard normal distribution,

  • wjρp(w)\frac{\partial}{\partial w_{j}}\rho_{p}(w) and wju(x,w,t)\frac{\partial}{\partial w_{j}}u(x,w,t) are given by (34) and (32) in Appendix, respectively,

  • (ϵ0,ϵp)(\epsilon_{0},\epsilon_{p}) is the bivariate standard normal distributed random vector with covariance ρp(w)\rho_{p}(w),

  • and 𝒯{\mathcal{T}} is the tempered stable subordinator with parameters (α,θ)(\alpha,\theta) independent of (ϵ0,ϵp)(\epsilon_{0},\epsilon_{p}).

Here, F(Ξ0,Ξp(w))(v0,x)=ηζF_{(\Xi_{0},\Xi_{p}(w))}\left(v_{0},x\right)=\eta\zeta if x=CoVaRη,ζ(Ξp(w)|Ξ0)x=-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right).

Proposition 4.3.

The marginal contribution to CoCVaR for the jj-th element of the portfolio capital allocation weight vector is

wjCoCVaRη,ζ(Ξp(w)|Ξ0)\displaystyle\frac{\partial}{\partial w_{j}}\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right) (16)
=1ηζ(E[((𝒯1)ϵpβp(w)(2θ2α)𝒯γp(w))1ϵp<C(w,𝒯)1ϵ0<v(𝒯)]wjβp(w)\displaystyle=-\frac{1}{\eta\zeta}\Bigg{(}E\left[\left(({\mathcal{T}}-1)-\frac{\epsilon_{p}\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)\sqrt{{\mathcal{T}}}}{\gamma_{p}(w)}\right)1_{\epsilon_{p}<C(w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right]\frac{\partial}{\partial w_{j}}\beta_{p}(w)
E[(ρp(w)ϵ02(1+(ρp(w))2)ϵ0ϵp+ρp(w)ϵp2(1(ρp(w))2)2)\displaystyle\hskip 42.67912pt-E\Bigg{[}\left(\frac{\rho_{p}(w)\epsilon_{0}^{2}-(1+(\rho_{p}(w))^{2})\epsilon_{0}\epsilon_{p}+\rho_{p}(w)\epsilon_{p}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}\right)
×(ξp(w)+CoCVaRη,ζ(Ξp(w)|Ξ0))1ϵp<C(w,𝒯)1ϵ0<v(𝒯)]wjρp(w)).\displaystyle\hskip 85.35826pt\times(\xi_{p}(w)+\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right))1_{\epsilon_{p}<C(w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\Bigg{]}\frac{\partial}{\partial w_{j}}\rho_{p}(w)\Bigg{)}.

where

  • C(w,t)=u(CoVaRη,ζ(Ξp(w)|Ξ0),w,t)C(w,t)=u(-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right),w,t),

  • ξp(w)=βp(w)(𝒯1)+ϵpγp(w)𝒯\xi_{p}(w)=\beta_{p}(w)({\mathcal{T}}-1)+\epsilon_{p}\gamma_{p}(w)\sqrt{{\mathcal{T}}},

  • wjβp(w)\frac{\partial}{\partial w_{j}}\beta_{p}(w) and wjρp(w)\frac{\partial}{\partial w_{j}}\rho_{p}(w) are given by (30) and (34) in Appendix, respectively,

  • (ϵ0,ϵp)(\epsilon_{0},\epsilon_{p}) is the bivariate standard normal distributed random vector with covariance ρp(w)\rho_{p}(w),

  • and 𝒯{\mathcal{T}} is the tempered stable subordinator with parameters (α,θ)(\alpha,\theta) independent of (ϵ0,ϵp)(\epsilon_{0},\epsilon_{p}).

We deduce the marginal contribution to CoVaR as follows:

wjCoVaRη,ζ(Rp(w)|R0)\displaystyle\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right)
=CoVaRη,ζ(Ξp(w)|Ξ0)wjσp(w)+σp(w)wjCoVaRη,ζ(Ξp(w)|Ξ0)wjμp(w),\displaystyle=\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)\frac{\partial}{\partial w_{j}}\sigma_{p}(w)+\sigma_{p}(w)\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)-\frac{\partial}{\partial w_{j}}\mu_{p}(w),

or

wjCoVaRη,ζ(Rp(w)|R0)\displaystyle\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right) (17)
=n=1Nwnσnσjcov(Ξn,Ξj)σp(w)CoVaRη,ζ(Ξp(w)|Ξ0)+σp(w)wjCoVaRη,ζ(Ξp(w)|Ξ0)μj\displaystyle=\frac{\sum_{n=1}^{N}w_{n}\sigma_{n}\sigma_{j}\textrm{\rm cov}(\Xi_{n},\Xi_{j})}{\sigma_{p}(w)}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)+\sigma_{p}(w)\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)-\mu_{j}

where wjCoVaRη,ζ(Ξp(w)|Ξ0)\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right) is given as (13) in Proposition 4.2. By the same arguments, we obtain the marginal contribution to CoCVaR as follows

wjCoCVaRη,ζ(Rp(w)|R0)\displaystyle\frac{\partial}{\partial w_{j}}\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right) (18)
=n=1Nwnσnσjcov(Ξn,Ξj)σp(w)CoCVaRη,ζ(Ξp(w)|Ξ0)+σp(w)wjCoCVaRη,ζ(Ξp(w)|Ξ0)μj,\displaystyle=\frac{\sum_{n=1}^{N}w_{n}\sigma_{n}\sigma_{j}\textrm{\rm cov}(\Xi_{n},\Xi_{j})}{\sigma_{p}(w)}\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)+\sigma_{p}(w)\frac{\partial}{\partial w_{j}}\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)-\mu_{j},

where wjCoVaRη,ζ(Ξp(w)|Ξ0)\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right) is given as (16) in Proposition 4.3.

Company Symbol Company Symbol
3M MMM American Express AXP
Amgen AMGN Apple Inc. AAPL
Boeing BA Caterpillar Inc. CAT
Chevron Corporation CVX Cisco Systems CSCO
The Coca-Cola Company KO DuPont de Nemours Inc. DD
Goldman Sachs GS The Home Depot HD
Honeywell HON IBM IBM
Intel INTC Johnson & Johnson JNJ
JPMorgan Chase JPM McDonald’s MCD
Merck & Co. MRK Microsoft MSFT
Nike NKE Procter & Gamble PG
Salesforce CRM The Travelers Companies TRV
United Health Group UNH Verizon VZ
Visa Inc. V Walmart WMT
Walgreens Boots Alliance WBA The Walt Disney Company DIS
Table 1: Companies and symbols of 30 Stocks. They are selected based on the components for DJIA index as of 2022, but Dow Inc.(DOW) in the components is replaced by DuPont de Nemours Inc.(DD).

5 Empirical Illustration

We fit the parameters of the NTS market model to Dow Johns Industrial Average (DJIA) index and 30 major stocks555The selected 30 stocks are the components of the DJIA index as of 2022. Since Dow Inc.(DOW) in the components does not have enough history, it is replaced by DuPont de Nemours Inc.(DD). in the U.S. stock market. The company names and symbols of those 30 stocks are listed in Table 1.

The parameter estimation method in this section is similar as the method in Kim (2022). We take the set of daily log returns for the DJIA index and each stock from 11/27/2018 to 11/15/2022 and calculate sample means and sample standard deviations for each stock and the index. The residuals are extracted by the z-score, and then fit the stdNTS parameters to the residuals of each stock (or index) return. The curve fit method is used between the cdf of the stdNTS distribution obtained by (3) and the empirical cdf obtained by the kernel density estimation. The same as Kim (2022), we use the index-based method with DJIA index data in order to find α\alpha and θ\theta and then estimate the β\beta vector and Σ\Sigma matrix. That is, we find the 30-dimensional stdNTS parameters as the following two-step method:

  • Step 1 Find (α,θ,β0)(\alpha,\theta,\beta_{0}) using the curve fit method between the empirical cdf and stdNTS cdf for the residual of DJIA index. The parameters (α,θ)(\alpha,\theta) are considered the parameters of the tempered stable subordinator.

  • Step 2 Taking (α,θ)(\alpha,\theta) estimated at Step 1, find βn\beta_{n} by applying the curve fit method with the fixed α\alpha and θ\theta for each nn-th stock returns n{1,2,,30}n\in\{1,2,\cdots,30\}.

  • Step 3 Find sample covariance matrix (cov(Ξn,Ξm))n,m{0,1,,30}(\textrm{\rm cov}(\Xi_{n},\Xi_{m}))_{n,m\in\{0,1,\cdots,30\}} using the standardized residual. Here the index 0 is assigned to the DJIA index. Find ρn,m\rho_{n,m} using (4).

The parameters of the tempered stable subordinator in this investigation are α=1.1835\alpha=1.1835 and θ=0.0820\theta=0.0820. The other estimated parameters are presented in Table 2 with Kolmogorov-Smirnov (KS) p-values present in the table for the goodness of fit test.

5.1 Calculating CoCVaR, MCT-CoVaR and MCT-CoCVaR with MCS

In this section, we discuss MCS to find portfolio CoCVaR, MCT-CoVaR and MCT-CoCVaR using the parameters in Table 2 on the NTS market model. Here, we use R language version 4.2.2 running on MS-Windows{}^{\text{Ⓡ}} 10 operating system with the processor Intel{}^{\text{Ⓡ}} Core i7-4790, 3.60GHz. To calculate CVaR of the portfolio, we use equation (10) and CoCVaRη,ζ(Ξp(w)|Ξ0)\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right) is obtained by a multiple-integral form (11) or an expectation form (12).

Assume that we have an equally weighted portfolio Rp(w)R_{p}(w) with the 30 stocks in Table 2, i.e. wn=1/30w_{n}=1/30 for n{1,2,,30}n\in\{1,2,\cdots,30\}. We apply Proposition 4.1 to find μp(w)\mu_{p}(w), σp(w)\sigma_{p}(w), βp(w)\beta_{p}(w), ρp(w)\rho_{p}(w), Ξp(w)\Xi_{p}(w) and Ξ0(w)\Xi_{0}(w). Let MM be the sample size of the simulation and generate two sets of independent pairs of standard normal random numbers, S0={(ϵ0,m,ϵ1,m)Φ(0,Σϵ)|m=1,2,,M}S_{0}=\left\{(\epsilon_{0,m},\epsilon_{1,m})\sim\Phi\left(0,\Sigma_{\epsilon}\right)|m=1,2,\cdots,M\right\} with Σϵ=(1,00,1)\Sigma_{\epsilon}=\footnotesize\left(\begin{matrix}1,&0\\ 0,&1\end{matrix}\right) and generate one set of tempered stable subordinators, T={𝒯m|m=1,2,,M}T=\{{\mathcal{T}}_{m}|m=1,2,\cdots,M\}, which are independent of S0S_{0}. Considering the correlation ρp(w)\rho_{p}(w), we set Sp={(ϵ0,m,ϵp,m)|ϵp,m=ρp(w)ϵ0,m+1(ρp(w))2ϵ1,m,(ϵ0,m,ϵ1,m)S0}S_{p}=\{(\epsilon_{0,m},\epsilon_{p,m})|\epsilon_{p,m}=\rho_{p}(w)\epsilon_{0,m}+\sqrt{1-(\rho_{p}(w))^{2}}\epsilon_{1,m},(\epsilon_{0,m},\epsilon_{1,m})\in S_{0}\}.

Refer to caption
Figure 1: Boot strapping for CoCVaRη,ζ(Rp(w)|R0)\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right). The x-axis is the sample size. Box plots for 100 MCS prices are presented on the plate for each sample size.

We obtain CoCVaRη,ζ(Rp(w)|R0)\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right) as

μp(w)σp(w)ζηMm=1M(βp(w)(𝒯m1)+ϵp,mγp(w)𝒯m)1ϵp,m<C(w,𝒯m)1ϵ0<v(𝒯m)-\mu_{p}(w)-\frac{\sigma_{p}(w)}{\zeta\eta M}\sum_{m=1}^{M}\left(\beta_{p}(w)({\mathcal{T}}_{m}-1)+\epsilon_{p,m}\gamma_{p}(w)\sqrt{{\mathcal{T}}_{m}}\right)1_{\epsilon_{p,m}<C(w,{\mathcal{T}}_{m})}1_{\epsilon_{0}<v({\mathcal{T}}_{m})} (19)

for (ϵ0,m,ϵp,m)Sp(\epsilon_{0,m},\epsilon_{p,m})\in S_{p} and 𝒯mT{\mathcal{T}}_{m}\in T, by MCS and (10). We check the convergence of MCS using bootstrapping. We draw the first boxplot from the left by repeating the MCS 100 times using (19) for a given sample size M=1000M=1000 in Figure 1. In addition, we draw the other boxplots for each sample size M{5000,10000,50000,100000}M\in\{5000,10000,50000,100000\}, which are presented sequentially after the first box plot in the figure. We also show (by the symbol ‘*’) the CoCVaR computed by numerical integration based on (11). We observe that, as the sample size increases, the interquartile distance of MCS CoCVaR narrows, and dispersions are reduced. All box plots contain the CoCVaR computed by the numerical integration in the interquartile range. The multiple-integral form (11) takes a relatively longer numerical calculation time of 18.13 seconds, while the MCS takes 7.57 seconds for a 100,000 sample size.

Using the same arguments, we can calculate MCT-CoVaR and MCT-CoCVaR using MCS. We calculate the expectations in equations in Proposition 4.2 and 4.3 use the random numbers in SpS_{p}, and TT, and substitute those MCS expectations into (14), (15), and (16) to obtain wjCoVaRη,ζ(Ξp(w)|Ξ0)\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right) and wjCoCVaRη,ζ(Ξp(w)|Ξ0)\frac{\partial}{\partial w_{j}}\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right). Finally, we obtain wjCoVaRη,ζ(Rp(w)|R0)\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right) and wjCoCVaRη,ζ(Rp(w)|R0)\frac{\partial}{\partial w_{j}}\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right) by substituting wjCoVaRη,ζ(Ξp(w)|Ξ0)\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right) and wjCoCVaRη,ζ(Ξp(w)|Ξ0)\frac{\partial}{\partial w_{j}}\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right) into (17), and (18), respectively.

The result of MCT-CoVaR and MCT-CoCVaR values using MCS for each individual stocks of the equally weighted portfolio Rp(w)R_{p}(w) are exhibited in Table 2 with the rank of the values for the ascending order. For example, MCT-CoVaR and MCT-CoCVaR values for MRK rank 1st and those values of AXP rank 30th, respectively. DD ranks 2nd for MCT-CoVaR but 4th for MCT-CoCVaR and so on. We can see that AXP is largest CoVaR and CoCVaR contributor, and is recommended to reduce the proportion of the capital allocation. This idea will be discussed in the Risk Budgeting, below.

5.2 Portfolio Optimization

Refer to caption
Figure 2: Efficient frontier

Since CoVaR and CoCVaR can capture the relative tail risk under the condition of distressed condition of a benchmark asset or index, we can use those two risk measures for relative portfolio optimization. In this section, we show an empirical example of CoCVaR minimizing portfolio optimization for the 30 stocks with respect to the DJIA index on the NTS market model.

We set a nonlinear programming problem for the portfolio optimization as

minwCoCVaRη,ζ(Rp(w)|R0)\displaystyle\min_{w}\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{p}(w)}|{R_{0}}}\right)
subject to wTμμ\displaystyle w^{\texttt{T}}\mu\geq\mu^{*}
n=1Nwn=1\displaystyle\sum_{n=1}^{N}w_{n}=1
wn0 for all n{1,2,,N}\displaystyle w_{n}\geq 0\text{ for all }n\in\{1,2,\cdots,N\}

where the benchmark values for the portfolio expected return is μ[min(μ),max(μ)]\mu^{*}\in[\min(\mu),\max(\mu)]. Using the parameters in Table 2, we perform the portfolio optimization for 51 points of μ\mu^{*} in {μ=min(μ)+k(max(μ)min(μ))/50|k=0,1,2,,50}\{\mu=\min(\mu)+k\cdot(\max(\mu)-\min(\mu))/50\,|\,k=0,1,2,\cdots,50\}. We finally obtain the efficient frontier in Figure 2.

Symbol μn(%)\mu_{n}(\%) σn(%)\sigma_{n}(\%) βn(%)\beta_{n}(\%) KS
DJIA 0.0310 1.4575 -3.7939 0.0100 MCT-CoVaR(%) Rank MCT-CoCVaR(%) Rank
AAPL 0.1258 2.1977 -1.2679 0.0587 1.6529 17 3.5957 19
AMGN 0.0490 1.6810 1.8704 0.0416 3.2980 22 2.1241 7
AXP 0.0395 2.5245 0.5258 0.0241 7.4288 30 6.6507 30
BA -0.0564 3.4757 3.7589 0.0168 1.7783 18 6.3659 29
CAT 0.0733 2.1609 0.3824 0.0502 5.5670 26 4.8958 22
CRM 0.0284 2.5370 -1.0588 0.0514 5.1597 23 5.3903 27
CSCO 0.0117 1.9311 -1.3543 0.0323 1.5658 15 2.2187 8
CVX 0.0678 2.4216 1.5941 0.0176 5.6102 27 4.9429 23
DD -0.0096 2.4072 0.3164 0.0593 -0.1376 2 1.4762 4
DIS -0.0140 2.1879 4.1225 0.0337 0.3701 10 3.4376 18
GS 0.0791 2.2039 2.0020 0.0485 6.0133 29 5.4714 28
HD 0.0709 1.9351 -3.9629 0.0261 5.3208 25 4.9610 24
HON 0.0483 1.8365 -2.3242 0.0341 1.5242 14 2.6857 13
IBM 0.0437 1.8054 -1.5555 0.0287 0.5364 11 3.1157 16
INTC -0.0314 2.4868 -2.8086 0.0295 0.2124 8 2.6130 11
JNJ 0.0260 1.3628 -0.5663 0.0285 0.8420 12 1.5451 5
JPM 0.0333 2.1622 2.5850 0.0357 5.6910 28 5.1918 26
KO 0.0324 1.4671 -3.6931 0.0249 0.3419 9 2.6197 12
MCD 0.0476 1.5731 1.2955 0.0162 0.2091 7 2.3540 9
MMM -0.0286 1.7824 -2.1382 0.0420 0.0681 6 2.7091 14
MRK 0.0461 1.5310 -0.0218 0.0463 -0.7418 1 0.2360 1
MSFT 0.0879 2.0241 -2.1377 0.0469 2.4863 20 3.9390 20
NKE 0.0424 2.1704 -0.2999 0.0418 2.4980 21 4.5851 21
PG 0.0511 1.4348 -3.0200 0.0322 -0.1305 3 0.7501 3
TRV 0.0444 1.9422 -2.8043 0.0255 1.1151 13 3.3984 17
UNH 0.0714 1.9919 1.6187 0.0288 0.0165 5 2.5646 10
V 0.0472 1.9411 -2.5133 0.0423 5.2771 24 5.1686 25
VZ -0.0226 1.2645 -2.5648 0.0357 -0.1084 4 0.3166 2
WBA -0.0539 2.2096 -1.4927 0.0360 1.6265 16 2.7307 15
WMT 0.0508 1.4940 1.0659 0.0263 2.4613 19 1.7390 6
Table 2: NTS parameter fit using 1-day-returns from 11/27/2018 to 11/15/2022. α=1.1835\alpha=1.1835, θ=0.0820\theta=0.0820

5.3 Risk Budgeting

The MCT-CoVaR and MCT-CoCVaR allow portfolio managers to decide to rebalance their capital allocation weights. Managers can reduce portfolio risk by decreasing the weight of high-risk contributors and increasing the weight of low-risk contributors. The high-risk contributors are assets having high MCT-CoVaR (or MCT-CoCVaR), while the low-risk contributors are assets having low MCT-CoVaR (or MCT-CoCVaR).

Consider a capital allocation vector ww for a portfolio with NN member stocks. Let Δw=(Δw1\varDelta w=(\varDelta w_{1}, Δw2\varDelta w_{2}, \cdots, ΔwN)TD\varDelta w_{N})^{\texttt{T}}\in D where DD is a zero neighborhood in N\mathbb{R}^{N}, and let

ΔCoVaRη,ζ(RP(w)|R0)=CoVaRη,ζ(RP(w+Δw)|R0)CoVaRη,ζ(RP(w)|R0),\varDelta\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{P}(w)}|{R_{0}}}\right)=\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{P}(w+\varDelta w)}|{R_{0}}}\right)-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{P}(w)}|{R_{0}}}\right),

and

ΔCoCVaRη,ζ(RP(w)|R0)=CoCVaRη,ζ(RP(w+Δw)|R0)CoCVaRη,ζ(RP(w)|R0).\varDelta\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{P}(w)}|{R_{0}}}\right)=\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{P}(w+\varDelta w)}|{R_{0}}}\right)-\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{P}(w)}|{R_{0}}}\right).

The optimal portfolios with respect to CoVaR and CoCVaR are obtained by solving the following problem:

minΔwΔCoVaRη,ζ(RP(w)|R0)\displaystyle\min_{\varDelta w}\varDelta\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{P}(w)}|{R_{0}}}\right) (20)
subject to E[Rp(w+Δw)]E[RP(w)]0 and j=1NΔwj=0,\displaystyle\text{subject to }E[R_{p}(w+\varDelta w)]-E[R_{P}(w)]\geq 0\text{ and }\sum_{j=1}^{N}\varDelta w_{j}=0,

and

minΔwΔCoCVaRη,ζ(RP(w)|R0)\displaystyle\min_{\varDelta w}\varDelta\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{P}(w)}|{R_{0}}}\right) (21)
subject to E[Rp(w+Δw)]E[RP(w)]0 and j=1NΔwj=0.\displaystyle\text{subject to }E[R_{p}(w+\varDelta w)]-E[R_{P}(w)]\geq 0\text{ and }\sum_{j=1}^{N}\varDelta w_{j}=0.

Since we have

ΔCoVaRη,ζ(RP(w)|R0)j=1N(wjCoVaRη,ζ(RP(w)|R0))Δwj,\displaystyle\varDelta\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{P}(w)}|{R_{0}}}\right)\approx\sum_{j=1}^{N}\left(\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{P}(w)}|{R_{0}}}\right)\right)\varDelta w_{j},
ΔCoCVaRη,ζ(RP(w)|R0)j=1N(wjCoCVaRη,ζ(RP(w)|R0))Δwj\displaystyle\varDelta\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{P}(w)}|{R_{0}}}\right)\approx\sum_{j=1}^{N}\left(\frac{\partial}{\partial w_{j}}\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{P}(w)}|{R_{0}}}\right)\right)\varDelta w_{j}
and E[Rp(w+Δw)]E[RP(w)]=j=1NμjΔwj,\displaystyle\text{ and }E[R_{p}(w+\varDelta w)]-E[R_{P}(w)]=\sum_{j=1}^{N}\mu_{j}\varDelta w_{j},

we can find the optimal portfolio on the local domain DD with respect to CoVaR and CoCVaR, respectively, as follows:

Δw=argminΔwj=1N(wjCoVaRη,ζ(RP(w)|R0))Δwj\displaystyle\varDelta w^{*}=\operatorname*{arg\,min}_{\varDelta w}\sum_{j=1}^{N}\left(\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{R_{P}(w)}|{R_{0}}}\right)\right)\varDelta w_{j} (22)
subject to j=1NμjΔwj0 and j=1NΔwj=0.\displaystyle\text{subject to }\sum_{j=1}^{N}\mu_{j}\varDelta w_{j}\geq 0\text{ and }\sum_{j=1}^{N}\varDelta w_{j}=0.

and

Δw=argminΔwj=1N(wjCoCVaRη,ζ(RP(w)|R0))Δwj\displaystyle\varDelta w^{*}=\operatorname*{arg\,min}_{\varDelta w}\sum_{j=1}^{N}\left(\frac{\partial}{\partial w_{j}}\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{R_{P}(w)}|{R_{0}}}\right)\right)\varDelta w_{j} (23)
subject to j=1NμjΔwj0 and j=1NΔwj=0.\displaystyle\text{subject to }\sum_{j=1}^{N}\mu_{j}\varDelta w_{j}\geq 0\text{ and }\sum_{j=1}^{N}\varDelta w_{j}=0.

We perform the risk budgeting for CoVaR and CoCVaR using the 30 stocks in Table 1, i.e. N=30N=30, with the estimated parameters in Table 2, iteratively, as the following algorithm:

  1. Step 1. Generate a set of independent pairs of standard normal random numbers S0S_{0}, and a set of tempered stable subordinators, TT, which are independent of S0S_{0}, as we discussed in Section 5.1. Here, the sample size is M=100,000M=100,000.

  2. Step 2. Select an initial capital allocation weight vector ww.

  3. Step 3. Find μp(w)\mu_{p}(w), σp(w)\sigma_{p}(w), βp(w)\beta_{p}(w), and ρp(w)\rho_{p}(w) by Proposition 4.1.

  4. Step 4. Regenerate a set of bivariate standard normal random vectors Sp={(ϵ0,m,ϵp,m)|ϵp,m=ρp(w)ϵ0,m+1(ρp(w))2ϵ1,m,(ϵ0,m,ϵ1,m)S0}S_{p}=\{(\epsilon_{0,m},\epsilon_{p,m})|\epsilon_{p,m}=\rho_{p}(w)\epsilon_{0,m}+\sqrt{1-(\rho_{p}(w))^{2}}\epsilon_{1,m},(\epsilon_{0,m},\epsilon_{1,m})\in S_{0}\} with correlation ρp(w)\rho_{p}(w).

  5. Step 5. Calculate MCT-CoVaR or MCT-CoCVaR for ww using the MCS method we discussed in Section 5.1.

  6. Step 6. Perform risk budgeting and find Δw\varDelta w^{*} using (22), or using (23), for for the CoVaR risk budgeting, or the CoCVaR risk budgeting, respectively.

  7. Step 7. Change ww to w+Δww+\varDelta w^{*} and go to Step 3. Repeat [Step 2 - Step 7] LL times.

Let the initial capital allocation weight vector be equally weighted. We perform the iterative risk budgeting L=200L=200 times for the local domain be

D={(x1,x2,,x30)|xj[4104,4104],j=1,2,,30}.D=\{(x_{1},x_{2},\cdots,x_{30})\,|\,x_{j}\in[-4\cdot 10^{-4},4\cdot 10^{-4}],\,j=1,2,\cdots,30\}.

The results are exhibited in Figure 3. For each iteration, we show the values of CoVaR, and CoCVaR with the MCS method in the left and right plate, respectively. The figure shows that the portfolio CoVaR and CoCVaR with respect to the DJIA index decreases as increasing the number of iterations. That is using risk budgeting of CoVaR and CoCVaR on the NTS market model, we obtain a portfolio having the same expected return but less relative tail risk.

Refer to caption
Refer to caption
Figure 3: Risk Budgeting iteration

6 conclusion

This paper presents portfolio CoVaR and portfolio CoCVaR on the NTS market model. We develop an MCS method to calculate portfolio CoVaR and CoCVaR, and apply it to portfolio optimization. As an empirical illustration, we consider a portfolio consisting of 30 stocks and measure the CoCVaR of the portfolio with respect to the DJIA index, and then find the efficient frontiers of the portfolio, maximizing the portfolio’s expected return and minimizing the relative tail risk captured by the CoCVaR. In addition, we find an analytic formula for the marginal contributions to CoVaR and CoCVaR, which we calculate using the MCS method to overcome numerical difficulties. We also perform portfolio risk budgeting methods using the marginal contributions to CoVaR and CoCVaR on the NTS market model. We empirically show that the portfolio CoVaR and CoCVaR are decreased by using portfolio budgeting iteratively.

7 Appendix

Proof of Proposition 4.1.

By Proposition 3.1, the stock portfolio return Rp(w)=n=1NwnRnR_{p}(w)=\sum_{n=1}^{N}w_{n}R_{n} is equal to

Rp(w)=μp(w)+σp(w)Ξp(w), with Ξp(w)stdNTS1(α,θ,βp(w),1),R_{p}(w)=\mu_{p}(w)+\sigma_{p}(w)\Xi_{p}(w),\text{ with }\Xi_{p}(w)\sim\textup{stdNTS}_{1}(\alpha,\theta,\beta_{p}(w),1),

where

μp(w)=n=1Nwnμn,βp(w)=1σp(w)n=1Nwnσnβn.\mu_{p}(w)=\sum_{n=1}^{N}w_{n}\mu_{n},~~~\beta_{p}(w)=\frac{1}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\beta_{n}.

and

σp(w)=n=1Nm=1Nwnwmσnσmcov(Ξn,Ξm).\sigma_{p}(w)=\sqrt{\sum_{n=1}^{N}\sum_{m=1}^{N}w_{n}w_{m}\sigma_{n}\sigma_{m}\textrm{\rm cov}\left(\Xi_{n},\Xi_{m}\right)}. (24)

Since Ξp(w)=1σp(w)n=1NwnσnΞn,\Xi_{p}(w)=\frac{1}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\Xi_{n}, we have

Ξp(w)\displaystyle\Xi_{p}(w) =1σp(w)n=1N(wnσnβn(𝒯1)+γn𝒯εn)\displaystyle=\frac{1}{\sigma_{p}(w)}\sum_{n=1}^{N}\left(w_{n}\sigma_{n}\beta_{n}\left({\mathcal{T}}-1\right)+\gamma_{n}\sqrt{{\mathcal{T}}}\varepsilon_{n}\right)
=βp(w)(𝒯1)+n=1Nwnσnγnεnσp(w)𝒯\displaystyle=\beta_{p}(w)\left({\mathcal{T}}-1\right)+\frac{\sum_{n=1}^{N}w_{n}\sigma_{n}\gamma_{n}\varepsilon_{n}}{\sigma_{p}(w)}\sqrt{{\mathcal{T}}}

with γn=1βn2(2α2θ)\gamma_{n}=\sqrt{1-\beta_{n}^{2}\left(\frac{2-\alpha}{2\theta}\right)}. Note that we have

E[n=1Nwnσnγnεnσp(w)]=0E\left[\frac{\sum_{n=1}^{N}w_{n}\sigma_{n}\gamma_{n}\varepsilon_{n}}{\sigma_{p}(w)}\right]=0

and

var(n=1Nwnσnγnεnσp(w))\displaystyle\textrm{\rm var}\left(\frac{\sum_{n=1}^{N}w_{n}\sigma_{n}\gamma_{n}\varepsilon_{n}}{\sigma_{p}(w)}\right) =1σp(w)n=1Nm=1Nwnwmσnσmγnγnρn,m.\displaystyle=\frac{1}{\sigma_{p}(w)}\sum_{n=1}^{N}\sum_{m=1}^{N}w_{n}w_{m}\sigma_{n}\sigma_{m}\gamma_{n}\gamma_{n}\rho_{n,m}.

By (4) and (24), we get

var(n=1Nwnσnγnεnσp(w))\displaystyle\textrm{\rm var}\left(\frac{\sum_{n=1}^{N}w_{n}\sigma_{n}\gamma_{n}\varepsilon_{n}}{\sigma_{p}(w)}\right) =1(σp(w))2n=1Nm=1Nwnwmσnσm(cov(Ξn,Ξm)βnβm(2α2θ))\displaystyle=\frac{1}{(\sigma_{p}(w))^{2}}\sum_{n=1}^{N}\sum_{m=1}^{N}w_{n}w_{m}\sigma_{n}\sigma_{m}\left(\textrm{\rm cov}(\Xi_{n},\Xi_{m})-\beta_{n}\beta_{m}\left(\frac{2-\alpha}{2\theta}\right)\right)
=11(σp(w))2(n=1nwnσnβn)2(2α2θ)\displaystyle=1-\frac{1}{(\sigma_{p}(w))^{2}}\left(\sum_{n=1}^{n}w_{n}\sigma_{n}\beta_{n}\right)^{2}\left(\frac{2-\alpha}{2\theta}\right)
=1(βp(w))2(2α2θ)\displaystyle=1-\left(\beta_{p}(w)\right)^{2}\left(\frac{2-\alpha}{2\theta}\right)

For the Gaussian property, we get

n=1Nwnσnγnεnσp(w)=var(n=1Nwnσnγnεnσp(w))εp=1(βp(w))2(2α2θ)εp,\frac{\sum_{n=1}^{N}w_{n}\sigma_{n}\gamma_{n}\varepsilon_{n}}{\sigma_{p}(w)}=\sqrt{\textrm{\rm var}\left(\frac{\sum_{n=1}^{N}w_{n}\sigma_{n}\gamma_{n}\varepsilon_{n}}{\sigma_{p}(w)}\right)}\varepsilon_{p}=\sqrt{1-\left(\beta_{p}(w)\right)^{2}\left(\frac{2-\alpha}{2\theta}\right)}\varepsilon_{p},

where εpΦ(0,1)\varepsilon_{p}\sim\Phi(0,1). Hence, we have

Ξp(w)=βp(w)(𝒯1)+γp(w)𝒯εp\Xi_{p}(w)=\beta_{p}(w)\left({\mathcal{T}}-1\right)+\gamma_{p}(w)\sqrt{{\mathcal{T}}}\varepsilon_{p}

where γp(w)=1(βp(w))2(2α2θ)\gamma_{p}(w)=\sqrt{1-\left(\beta_{p}(w)\right)^{2}\left(\frac{2-\alpha}{2\theta}\right)}. Therefore, we have

cov(Ξ0,Ξp(w))=γ0γp(w)ρ0,p+β0βp(w)(2α2θ).\textrm{\rm cov}\left(\Xi_{0},\Xi_{p}(w)\right)=\gamma_{0}\gamma_{p}(w)\rho_{0,p}+\beta_{0}\beta_{p}(w)\left(\frac{2-\alpha}{2\theta}\right). (25)

On the other hand, we have

cov(Ξ0,Ξp(w))\displaystyle\textrm{\rm cov}\left(\Xi_{0},\Xi_{p}(w)\right) =cov(β0(𝒯1)+γ0𝒯ε0,1σp(w)n=1Nwnσn(βn(𝒯1)+γn𝒯εn))\displaystyle=\textrm{\rm cov}\left(\beta_{0}({\mathcal{T}}-1)+\gamma_{0}\sqrt{{\mathcal{T}}}\varepsilon_{0},\frac{1}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\left(\beta_{n}({\mathcal{T}}-1)+\gamma_{n}\sqrt{{\mathcal{T}}}\varepsilon_{n}\right)\right)
=1σp(w)n=1Nwnσncov(β0(𝒯1)+γ0𝒯ε0,βn(𝒯1)+γn𝒯εn)\displaystyle=\frac{1}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\textrm{\rm cov}\left(\beta_{0}({\mathcal{T}}-1)+\gamma_{0}\sqrt{{\mathcal{T}}}\varepsilon_{0},\beta_{n}({\mathcal{T}}-1)+\gamma_{n}\sqrt{{\mathcal{T}}}\varepsilon_{n}\right)
=1σp(w)n=1NwnσnE[(β0(𝒯1)+γ0𝒯ε0)(βn(𝒯1)+γn𝒯εn)].\displaystyle=\frac{1}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}E\left[\left(\beta_{0}({\mathcal{T}}-1)+\gamma_{0}\sqrt{{\mathcal{T}}}\varepsilon_{0}\right)\left(\beta_{n}({\mathcal{T}}-1)+\gamma_{n}\sqrt{{\mathcal{T}}}\varepsilon_{n}\right)\right].

Since we have

E[(βn(𝒯1)+γn𝒯εn)(β0(𝒯1)+γ0𝒯ε0)]\displaystyle E\left[\left(\beta_{n}({\mathcal{T}}-1)+\gamma_{n}\sqrt{{\mathcal{T}}}\varepsilon_{n}\right)\left(\beta_{0}({\mathcal{T}}-1)+\gamma_{0}\sqrt{{\mathcal{T}}}\varepsilon_{0}\right)\right]
=E[βnβ0(𝒯1)2]+E[γnγ0𝒯εnε0]\displaystyle=E\left[\beta_{n}\beta_{0}({\mathcal{T}}-1)^{2}\right]+E\left[\gamma_{n}\gamma_{0}{\mathcal{T}}\varepsilon_{n}\varepsilon_{0}\right]
=βnβ0var(𝒯)+γnγ0ρ0,n=βnβ0(2α2θ)+γnγ0ρ0,n,\displaystyle=\beta_{n}\beta_{0}\textrm{\rm var}({\mathcal{T}})+\gamma_{n}\gamma_{0}\rho_{0,n}=\beta_{n}\beta_{0}\left(\frac{2-\alpha}{2\theta}\right)+\gamma_{n}\gamma_{0}\rho_{0,n},

we obtain

cov(Ξ0,Ξp(w))\displaystyle\textrm{\rm cov}\left(\Xi_{0},\Xi_{p}(w)\right) =1σp(w)n=1Nwnσn(βnβ0(2α2θ)+γnγ0ρ0,n)\displaystyle=\frac{1}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\left(\beta_{n}\beta_{0}\left(\frac{2-\alpha}{2\theta}\right)+\gamma_{n}\gamma_{0}\rho_{0,n}\right)
=β0βp(w)(2α2θ)+γ0σp(w)n=1Nwnσnγnρ0,n.\displaystyle=\beta_{0}\beta_{p}(w)\left(\frac{2-\alpha}{2\theta}\right)+\frac{\gamma_{0}}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\gamma_{n}\rho_{0,n}. (26)

By (25) and (26), we have

γ0γp(w)ρ0,p+β0βp(w)(2α2θ)=β0βp(w)(2α2θ)+γ0σp(w)n=1Nwnσnγnρ0,n\displaystyle\gamma_{0}\gamma_{p}(w)\rho_{0,p}+\beta_{0}\beta_{p}(w)\left(\frac{2-\alpha}{2\theta}\right)=\beta_{0}\beta_{p}(w)\left(\frac{2-\alpha}{2\theta}\right)+\frac{\gamma_{0}}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\gamma_{n}\rho_{0,n}

or

ρ0,p=1σp(w)γp(w)n=1Nwnσnγnρ0,n.\displaystyle\rho_{0,p}=\frac{1}{\sigma_{p}(w)\gamma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\gamma_{n}\rho_{0,n}. (27)

Using the definition γp(w)=1(βp(w))2(2α2θ)\gamma_{p}(w)=\sqrt{1-\left(\beta_{p}(w)\right)^{2}\left(\frac{2-\alpha}{2\theta}\right)}, we obtain

σp(w)γp(w)\displaystyle\sigma_{p}(w)\gamma_{p}(w) =(σp(w))2(σp(w))2(βp(w))2(2α2θ)\displaystyle=\sqrt{\left(\sigma_{p}(w)\right)^{2}-\left(\sigma_{p}(w)\right)^{2}\left(\beta_{p}(w)\right)^{2}\left(\frac{2-\alpha}{2\theta}\right)}
=n=1Nm=1Nwnwmσnσmcov(Ξn,Ξm)(n=1Nwnσnβn)2(2α2θ)\displaystyle=\sqrt{\sum_{n=1}^{N}\sum_{m=1}^{N}w_{n}w_{m}\sigma_{n}\sigma_{m}\textrm{\rm cov}\left(\Xi_{n},\Xi_{m}\right)-\left(\sum_{n=1}^{N}w_{n}\sigma_{n}\beta_{n}\right)^{2}\left(\frac{2-\alpha}{2\theta}\right)}
=n=1Nm=1Nwnwmσnσmγnγmρn,m.\displaystyle=\sqrt{\sum_{n=1}^{N}\sum_{m=1}^{N}w_{n}w_{m}\sigma_{n}\sigma_{m}\gamma_{n}\gamma_{m}\rho_{n,m}}. (28)

By substituting (28) into (27), we obtain (8). ∎

Lemma 7.1.

Based on the setting in Section 4.1, we have
(i)

wjσp(w)=1σp(w)n=1Nwnσnσjcov(Ξn,Ξj)\displaystyle\frac{\partial}{\partial w_{j}}\sigma_{p}(w)=\frac{1}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\sigma_{j}\textrm{\rm cov}(\Xi_{n},\Xi_{j}) (29)

(ii)

wjβp(w)=σjσp(w)(βjβp(w)σp(w)n=1Nwnσncov(Ξn,Ξj))\displaystyle\frac{\partial}{\partial w_{j}}\beta_{p}(w)=\frac{\sigma_{j}}{\sigma_{p}(w)}\left(\beta_{j}-\frac{\beta_{p}(w)}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\textrm{\rm cov}(\Xi_{n},\Xi_{j})\right) (30)

and

wjγp(w)=βp(w)(2θ2α)γp(w)wjβp(w)\displaystyle\frac{\partial}{\partial w_{j}}\gamma_{p}(w)=-\frac{\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)}{\gamma_{p}(w)}\frac{\partial}{\partial w_{j}}\beta_{p}(w) (31)

(iii)

wju(x,w,t)\displaystyle\frac{\partial}{\partial w_{j}}u(x,w,t) (32)
=σjσp(w)(1tγp(w)t+u(x,w,t)βp(w)(2θ2α)(γp(w))2)(βjβp(w)σp(w)n=1Nwnσncov(Ξn,Ξj))\displaystyle=\frac{\sigma_{j}}{\sigma_{p}(w)}\left(\frac{1-t}{\gamma_{p}(w)\sqrt{t}}+\frac{u(x,w,t)\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)}{(\gamma_{p}(w))^{2}}\right)\left(\beta_{j}-\frac{\beta_{p}(w)}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\textrm{\rm cov}(\Xi_{n},\Xi_{j})\right)

(iv) Let

C(w,t)=CoVaRη,ζ(Ξp(w)|Ξ0)βp(w)(t1)γp(w)t\displaystyle C(w,t)=\frac{-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)-\beta_{p}(w)(t-1)}{\gamma_{p}(w)\sqrt{t}}

Then

wjC(w,t)\displaystyle\frac{\partial}{\partial w_{j}}C(w,t) =1t(γp(w))2wjCoVaRη,ζ(Ξp(w)|Ξ0)\displaystyle=-\frac{1}{t(\gamma_{p}(w))^{2}}\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right) (33)
+σjσp(w)(1tγp(w)t+C(w,t)βp(w)(2θ2α)(γp(w))2)(βjβp(w)σp(w)n=1Nwnσncov(Ξn,Ξj))\displaystyle+\frac{\sigma_{j}}{\sigma_{p}(w)}\left(\frac{1-t}{\gamma_{p}(w)\sqrt{t}}+\frac{C(w,t)\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)}{(\gamma_{p}(w))^{2}}\right)\left(\beta_{j}-\frac{\beta_{p}(w)}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\textrm{\rm cov}(\Xi_{n},\Xi_{j})\right)

(v)

wjρp(w)=γjσj(ρ0,jwTΣγ,σwρp(w)wTΣγ,σwn=1Nwnγnσnρn,j)\displaystyle\frac{\partial}{\partial w_{j}}\rho_{p}(w)=\gamma_{j}\sigma_{j}\left(\frac{\rho_{0,j}}{\sqrt{w^{\texttt{T}}\Sigma_{\gamma,\sigma}^{*}w}}-\frac{\rho_{p}(w)}{w^{\texttt{T}}\Sigma_{\gamma,\sigma}^{*}w}\sum_{n=1}^{N}w_{n}\gamma_{n}\sigma_{n}\rho_{n,j}\right) (34)
Proof.

(i)

wjσp(w)\displaystyle\frac{\partial}{\partial w_{j}}\sigma_{p}(w) =12σp(w)n=1N2wnσnσjcov(Ξn,Ξj)\displaystyle=\frac{1}{2\sigma_{p}(w)}\sum_{n=1}^{N}2w_{n}\sigma_{n}\sigma_{j}\textrm{\rm cov}(\Xi_{n},\Xi_{j})
=1σp(w)n=1Nwnσnσj(γnγjρn,j+βnβj(2α2θ))\displaystyle=\frac{1}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\sigma_{j}\left(\gamma_{n}\gamma_{j}\rho_{n,j}+\beta_{n}\beta_{j}\left(\frac{2-\alpha}{2\theta}\right)\right)

(ii)

wjβp(w)\displaystyle\frac{\partial}{\partial w_{j}}\beta_{p}(w) =1(σp(w))2(σjβjσp(w)(n=1Nwnσnβn)wjσp(w))\displaystyle=\frac{1}{\left(\sigma_{p}(w)\right)^{2}}\left(\sigma_{j}\beta_{j}\sigma_{p}(w)-\left(\sum_{n=1}^{N}w_{n}\sigma_{n}\beta_{n}\right)\frac{\partial}{\partial w_{j}}\sigma_{p}(w)\right)
=1(σp(w))2(σjβjσp(w)σp(w)βp(w)wjσp(w))\displaystyle=\frac{1}{\left(\sigma_{p}(w)\right)^{2}}\left(\sigma_{j}\beta_{j}\sigma_{p}(w)-\sigma_{p}(w)\beta_{p}(w)\frac{\partial}{\partial w_{j}}\sigma_{p}(w)\right)
=σjσp(w)(βjβp(w)σp(w)n=1Nwnσncov(Ξn,Ξj))\displaystyle=\frac{\sigma_{j}}{\sigma_{p}(w)}\left(\beta_{j}-\frac{\beta_{p}(w)}{\sigma_{p}(w)}\sum_{n=1}^{N}w_{n}\sigma_{n}\textrm{\rm cov}(\Xi_{n},\Xi_{j})\right)

and

wjγp(w)\displaystyle\frac{\partial}{\partial w_{j}}\gamma_{p}(w) =2βp(w)(2θ2α)21(βp(w))2(2θ2α)wjβp(w)=βp(w)(2θ2α)γp(w)wjβp(w)\displaystyle=\frac{-2\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)}{2\sqrt{1-(\beta_{p}(w))^{2}\left(\frac{2\theta}{2-\alpha}\right)}}\frac{\partial}{\partial w_{j}}\beta_{p}(w)=-\frac{\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)}{\gamma_{p}(w)}\frac{\partial}{\partial w_{j}}\beta_{p}(w)

(iii) We have

wju(x,w,t)\displaystyle\frac{\partial}{\partial w_{j}}u(x,w,t)
=1t(γp(w))2(((t1)wjβp(w))γp(w)t(x(t1)βp(w))twjγp(w))\displaystyle=\frac{1}{t(\gamma_{p}(w))^{2}}\Bigg{(}\left(-(t-1)\frac{\partial}{\partial w_{j}}\beta_{p}(w)\right)\gamma_{p}(w)\sqrt{t}-(x-(t-1)\beta_{p}(w))\sqrt{t}\frac{\partial}{\partial w_{j}}\gamma_{p}(w)\Bigg{)}
=(1tγp(w)t+u(x,w,t)βp(w)(2θ2α)(γp(w))2)wjβp(w).\displaystyle=\left(\frac{1-t}{\gamma_{p}(w)\sqrt{t}}+\frac{u(x,w,t)\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)}{(\gamma_{p}(w))^{2}}\right)\frac{\partial}{\partial w_{j}}\beta_{p}(w). (35)

We obtain (32), by substituting (30) into the last equation.

(iv) We have

wjC(w,t)\displaystyle\frac{\partial}{\partial w_{j}}C(w,t)
=1t(γp(w))2((wjCoVaRη,ζ(Ξp(w)|Ξ0)(t1)wjβp(w))γp(w)t\displaystyle=\frac{1}{t(\gamma_{p}(w))^{2}}\Bigg{(}\left(-\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)-(t-1)\frac{\partial}{\partial w_{j}}\beta_{p}(w)\right)\gamma_{p}(w)\sqrt{t}
(CoVaRη,ζ(Ξp(w)|Ξ0)(t1)βp(w))twjγp(w))\displaystyle-\left(-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)-(t-1)\beta_{p}(w)\right)\sqrt{t}\frac{\partial}{\partial w_{j}}\gamma_{p}(w)\Bigg{)}
=1t(γp(w))2wjCoVaRη,ζ(Ξp(w)|Ξ0)+(1tγp(w)t+C(w,t)βp(w)(2θ2α)(γp(w))2)wjβp(w).\displaystyle=-\frac{1}{t(\gamma_{p}(w))^{2}}\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)+\left(\frac{1-t}{\gamma_{p}(w)\sqrt{t}}+\frac{C(w,t)\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)}{(\gamma_{p}(w))^{2}}\right)\frac{\partial}{\partial w_{j}}\beta_{p}(w).

By substituting C(w,t)=u(x,w,t)|x=CoVaRη,ζ(Ξp(w)|Ξ0)C(w,t)=u(x,w,t)|_{x=-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)} into (35), we have

wjC(w,t)\displaystyle\frac{\partial}{\partial w_{j}}C(w,t) =1t(γp(w))2wjCoVaRη,ζ(Ξp(w)|Ξ0)+wju(x,w,t)|x=CoVaRη,ζ(Ξp(w)|Ξ0).\displaystyle=-\frac{1}{t(\gamma_{p}(w))^{2}}\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)+\frac{\partial}{\partial w_{j}}u(x,w,t)\Big{|}_{x=-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)}.

(v)

wjρp(w)\displaystyle\frac{\partial}{\partial w_{j}}\rho_{p}(w)
=1wTΣγ,σw(γjσjρ0,jwTΣγ,σwwTVγ,σ,ρ2wTΣγ,σwγjσjn=1N2wnγnσnρn,j)\displaystyle=\frac{1}{w^{\texttt{T}}\Sigma_{\gamma,\sigma}^{*}w}\left(\gamma_{j}\sigma_{j}\rho_{0,j}\sqrt{w^{\texttt{T}}\Sigma_{\gamma,\sigma}^{*}w}-\frac{w^{\texttt{T}}V_{\gamma,\sigma,\rho}^{*}}{2\sqrt{w^{\texttt{T}}\Sigma_{\gamma,\sigma}^{*}w}}\gamma_{j}\sigma_{j}\sum_{n=1}^{N}2w_{n}\gamma_{n}\sigma_{n}\rho_{n,j}\right)
=γjσj(ρ0,jwTΣγ,σwρp(w)wTΣγ,σwn=1Nwnγnσnρn,j)\displaystyle=\gamma_{j}\sigma_{j}\left(\frac{\rho_{0,j}}{\sqrt{w^{\texttt{T}}\Sigma_{\gamma,\sigma}^{*}w}}-\frac{\rho_{p}(w)}{w^{\texttt{T}}\Sigma_{\gamma,\sigma}^{*}w}\sum_{n=1}^{N}w_{n}\gamma_{n}\sigma_{n}\rho_{n,j}\right)

Lemma 7.2.

Let fρΦ2f^{\Phi_{2}}_{\rho} be the pdf of the bivariate standard normal distribution with covariance ρ\rho, then we have

0qfρΦ2(x,K)𝑑x=12πexp(K22)FΦ(qρK1ρ2).\displaystyle\int_{0}^{q}f^{\Phi_{2}}_{\rho}(x,K)dx=\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{K^{2}}{2}\right)F_{\Phi}\left(\frac{q-\rho K}{\sqrt{1-\rho^{2}}}\right). (36)

Moreover, if we put ρ=ρp(w)\rho=\rho_{p}(w) and let wjw_{j} be the jj-th element of wINw\in I^{N} then we have

wjfρp(w)Φ2(x1,x2)\displaystyle\frac{\partial}{\partial w_{j}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})
=(ρp(w)1(ρp(w))2ρp(w)x12(1+(ρp(w))2)x1x2+ρp(w)x22(1(ρp(w))2)2)fρp(w)Φ2(x1,x2)wjρp(w)\displaystyle=\left(\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}-\frac{\rho_{p}(w)x_{1}^{2}-(1+(\rho_{p}(w))^{2})x_{1}x_{2}+\rho_{p}(w)x_{2}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})\frac{\partial}{\partial w_{j}}\rho_{p}(w) (37)
Proof.

We have

fρΦ2(x1,x2)=12π1ρ2exp(x122ρx1x2+x222(1ρ2)),f^{\Phi_{2}}_{\rho}(x_{1},x_{2})=\frac{1}{2\pi\sqrt{1-\rho^{2}}}\exp\left(-\frac{x_{1}^{2}-2\rho x_{1}x_{2}+x_{2}^{2}}{2(1-\rho^{2})}\right),

and hence we obtain

qfρΦ2(x,K)𝑑x\displaystyle\int_{-\infty}^{q}f^{\Phi_{2}}_{\rho}(x,K)dx
=q12π1ρ2exp(x22ρxK+K22(1ρ2))𝑑x\displaystyle=\int_{-\infty}^{q}\frac{1}{2\pi\sqrt{1-\rho^{2}}}\exp\left(-\frac{x^{2}-2\rho xK+K^{2}}{2(1-\rho^{2})}\right)dx
=q12π1ρ2exp((xρK)22(1ρ2))𝑑xexp(K22)\displaystyle=\int_{-\infty}^{q}\frac{1}{2\pi\sqrt{1-\rho^{2}}}\exp\left(-\frac{(x-\rho K)^{2}}{2(1-\rho^{2})}\right)dx\exp\left(-\frac{K^{2}}{2}\right)
=12πexp(K22)FΦ(qρK1ρ2)\displaystyle=\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{K^{2}}{2}\right)F_{\Phi}\left(\frac{q-\rho K}{\sqrt{1-\rho^{2}}}\right)

which is (36). Moreover, we have

wjfρp(w)Φ2(x1,x2)\displaystyle\frac{\partial}{\partial w_{j}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})
=wj(12π1(ρp(w))2exp(x122ρp(w)x1x2+x222(1(ρp(w))2)))\displaystyle=\frac{\partial}{\partial w_{j}}\left(\frac{1}{2\pi\sqrt{1-(\rho_{p}(w))^{2}}}\exp\left(-\frac{x_{1}^{2}-2\rho_{p}(w)x_{1}x_{2}+x_{2}^{2}}{2(1-(\rho_{p}(w))^{2})}\right)\right)
=12πexp(x122ρp(w)x1x2+x222(1(ρp(w))2))wj11(ρp(w))2\displaystyle=\frac{1}{2\pi}\exp\left(-\frac{x_{1}^{2}-2\rho_{p}(w)x_{1}x_{2}+x_{2}^{2}}{2(1-(\rho_{p}(w))^{2})}\right)\frac{\partial}{\partial w_{j}}\frac{1}{\sqrt{1-(\rho_{p}(w))^{2}}}
+12π1(ρp(w))2wjexp(x122ρp(w)x1x2+x222(1(ρp(w))2))\displaystyle+\frac{1}{2\pi\sqrt{1-(\rho_{p}(w))^{2}}}\frac{\partial}{\partial w_{j}}\exp\left(-\frac{x_{1}^{2}-2\rho_{p}(w)x_{1}x_{2}+x_{2}^{2}}{2(1-(\rho_{p}(w))^{2})}\right)
=12πexp(x122ρp(w)x1x2+x222(1(ρp(w))2))(12)(1(ρp(w))2)32(2ρp(w))wjρp(w)\displaystyle=\frac{1}{2\pi}\exp\left(-\frac{x_{1}^{2}-2\rho_{p}(w)x_{1}x_{2}+x_{2}^{2}}{2(1-(\rho_{p}(w))^{2})}\right)\left(-\frac{1}{2}\right)\left(1-(\rho_{p}(w))^{2}\right)^{-\frac{3}{2}}(-2\rho_{p}(w))\frac{\partial}{\partial w_{j}}\rho_{p}(w)
+12π1(ρp(w))2exp(x122ρp(w)x1x2+x222(1(ρp(w))2))wj(x122ρp(w)x1x2+x222(1(ρp(w))2)).\displaystyle+\frac{1}{2\pi\sqrt{1-(\rho_{p}(w))^{2}}}\exp\left(-\frac{x_{1}^{2}-2\rho_{p}(w)x_{1}x_{2}+x_{2}^{2}}{2(1-(\rho_{p}(w))^{2})}\right)\frac{\partial}{\partial w_{j}}\left(-\frac{x_{1}^{2}-2\rho_{p}(w)x_{1}x_{2}+x_{2}^{2}}{2(1-(\rho_{p}(w))^{2})}\right).

Since we have

wj(x122ρp(w)x1x2+x222(1(ρp(w))2))\displaystyle\frac{\partial}{\partial w_{j}}\left(-\frac{x_{1}^{2}-2\rho_{p}(w)x_{1}x_{2}+x_{2}^{2}}{2(1-(\rho_{p}(w))^{2})}\right)
=((2x1x2)(2(1(ρp(w))2))(x122ρp(w)x1x2+x22)2(2ρp(w)))(2(1(ρp(w))2))2(wjρp(w))\displaystyle=\frac{-\left(\left(-2x_{1}x_{2}\right)\left(2(1-(\rho_{p}(w))^{2})\right)-(x_{1}^{2}-2\rho_{p}(w)x_{1}x_{2}+x_{2}^{2})2(-2\rho_{p}(w))\right)}{(2(1-(\rho_{p}(w))^{2}))^{2}}\left(\frac{\partial}{\partial w_{j}}\rho_{p}(w)\right)
=(x1x2+x1x2(ρp(w))2+ρp(w)x122(ρp(w))2x1x2+ρp(w)x22)(1(ρp(w))2)2(wjρp(w))\displaystyle=\frac{-\left(-x_{1}x_{2}+x_{1}x_{2}(\rho_{p}(w))^{2}+\rho_{p}(w)x_{1}^{2}-2(\rho_{p}(w))^{2}x_{1}x_{2}+\rho_{p}(w)x_{2}^{2}\right)}{(1-(\rho_{p}(w))^{2})^{2}}\left(\frac{\partial}{\partial w_{j}}\rho_{p}(w)\right)
=ρp(w)x12(1+(ρp(w))2)x1x2+ρp(w)x22(1(ρp(w))2)2(wjρp(w))\displaystyle=-\frac{\rho_{p}(w)x_{1}^{2}-(1+(\rho_{p}(w))^{2})x_{1}x_{2}+\rho_{p}(w)x_{2}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}\left(\frac{\partial}{\partial w_{j}}\rho_{p}(w)\right)

and

wjfρp(w)Φ2(x1,x2)\displaystyle\frac{\partial}{\partial w_{j}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})
=12πexp(x122ρp(w)x1x2+x222(1(ρp(w))2))(1(ρp(w))2)32ρp(w)wjρp(w)\displaystyle=\frac{1}{2\pi}\exp\left(-\frac{x_{1}^{2}-2\rho_{p}(w)x_{1}x_{2}+x_{2}^{2}}{2(1-(\rho_{p}(w))^{2})}\right)\left(1-(\rho_{p}(w))^{2}\right)^{-\frac{3}{2}}\rho_{p}(w)\frac{\partial}{\partial w_{j}}\rho_{p}(w)
ρp(w)x12(1+(ρp(w))2)x1x2+ρp(w)x222π1(ρp(w))2(1(ρp(w))2)2exp(x122ρp(w)x1x2+x222(1(ρp(w))2))wjρp(w)\displaystyle-\frac{\rho_{p}(w)x_{1}^{2}-(1+(\rho_{p}(w))^{2})x_{1}x_{2}+\rho_{p}(w)x_{2}^{2}}{2\pi\sqrt{1-(\rho_{p}(w))^{2}}(1-(\rho_{p}(w))^{2})^{2}}\exp\left(-\frac{x_{1}^{2}-2\rho_{p}(w)x_{1}x_{2}+x_{2}^{2}}{2(1-(\rho_{p}(w))^{2})}\right)\frac{\partial}{\partial w_{j}}\rho_{p}(w)
=(ρp(w)1(ρp(w))2ρp(w)x12(1+(ρp(w))2)x1x2+ρp(w)x22(1(ρp(w))2)2)fρp(w)Φ2(x1,x2)wjρp(w)\displaystyle=\left(\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}-\frac{\rho_{p}(w)x_{1}^{2}-(1+(\rho_{p}(w))^{2})x_{1}x_{2}+\rho_{p}(w)x_{2}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})\frac{\partial}{\partial w_{j}}\rho_{p}(w)

which is (7.2). ∎

Proof of Proposition 4.2.

Since x=CoVaRη,ζ(Ξp(w)|Ξ0)x=-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right), we get

wjCoVaRη,ζ(Ξp(w)|Ξ0)=xwj.\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)=-\frac{\partial x}{\partial w_{j}}.

By applying implicit differentiation, we have

xwj=wjG(x,w)xG(x,w),\frac{\partial x}{\partial w_{j}}=-\frac{\frac{\partial}{\partial w_{j}}G(x,w)}{\frac{\partial}{\partial x}G(x,w)},

and hence

wjCoVaRη,ζ(Ξp(w)|Ξ0)=wjG(x,w)xG(x,w)|x=CoVaRη,ζ(Ξp(w)|Ξ0).\frac{\partial}{\partial w_{j}}\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)=\frac{\frac{\partial}{\partial w_{j}}G(x,w)}{\frac{\partial}{\partial x}G(x,w)}\Bigg{|}_{x=-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)}.

We have

wjG(x,w)\displaystyle\frac{\partial}{\partial w_{j}}G(x,w) =0(u(x,w,t)v(t)wjfρp(w)Φ2(x1,x2)dx1dx2\displaystyle=\int_{0}^{\infty}\Bigg{(}\int_{-\infty}^{u(x,w,t)}\int_{-\infty}^{v(t)}\frac{\partial}{\partial w_{j}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}dx_{2}
+v(t)fρp(w)Φ2(x1,u(x,w,t))dx1wju(x,w,t))f𝒯(t)dt\displaystyle~~+\int_{-\infty}^{v(t)}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},u(x,w,t))dx_{1}\frac{\partial}{\partial w_{j}}u(x,w,t)\Bigg{)}f_{\mathcal{T}}(t)dt

By (36), we have

wjG(x,w)\displaystyle\frac{\partial}{\partial w_{j}}G(x,w)
=0(u(x,w,t)v(t)wjfρp(w)Φ2(x1,x2)dx1dx2\displaystyle=\int_{0}^{\infty}\Bigg{(}\int_{-\infty}^{u(x,w,t)}\int_{-\infty}^{v(t)}\frac{\partial}{\partial w_{j}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}dx_{2}
+12πexp((u(x,w,t))22)FΦ(v(t)ρp(w)u(x,w,t)1(ρp(w))2)wju(x,w,t))f𝒯(t)dt\displaystyle~~+\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{\left(u(x,w,t)\right)^{2}}{2}\right)F_{\Phi}\left(\frac{v(t)-\rho_{p}(w)u(x,w,t)}{\sqrt{1-(\rho_{p}(w))^{2}}}\right)\frac{\partial}{\partial w_{j}}u(x,w,t)\Bigg{)}f_{\mathcal{T}}(t)dt

Hence, by (7.2), we have

0u(x,w,t)v(t)wjfρp(w)Φ2(x1,x2)𝑑x1𝑑x2f𝒯(t)𝑑t\displaystyle\int_{0}^{\infty}\int_{-\infty}^{u(x,w,t)}\int_{-\infty}^{v(t)}\frac{\partial}{\partial w_{j}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}dx_{2}f_{\mathcal{T}}(t)dt
=(wjρp(w))0(u(x,w,t)v(t)ρp(w)1(ρp(w))2fρp(w)Φ2(x1,x2)dx1dx2\displaystyle=\left(\frac{\partial}{\partial w_{j}}\rho_{p}(w)\right)\int_{0}^{\infty}\Bigg{(}\int_{-\infty}^{u(x,w,t)}\int_{-\infty}^{v(t)}\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}dx_{2}
u(x,w,t)v(t)ρp(w)x12(1+(ρp(w))2)x1x2+ρp(w)x22(1(ρp(w))2)2fρp(w)Φ2(x1,x2)dx1dx2)f𝒯(t)dt\displaystyle-\int_{-\infty}^{u(x,w,t)}\int_{-\infty}^{v(t)}\frac{\rho_{p}(w)x_{1}^{2}-(1+(\rho_{p}(w))^{2})x_{1}x_{2}+\rho_{p}(w)x_{2}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}dx_{2}\Bigg{)}f_{\mathcal{T}}(t)dt
=(wjρp(w))(ρp(w)1(ρp(w))2F(Ξ0,Ξp(w))(v0,x)\displaystyle=\left(\frac{\partial}{\partial w_{j}}\rho_{p}(w)\right)\Bigg{(}\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}F_{(\Xi_{0},\Xi_{p}(w))}(v_{0},x)
0u(x,w,t)v(t)ρp(w)x12(1+(ρp(w))2)x1x2+ρp(w)x22(1(ρp(w))2)2fρp(w)Φ2(x1,x2)dx1dx2f𝒯(t)dt)\displaystyle-\int_{0}^{\infty}\int_{-\infty}^{u(x,w,t)}\int_{-\infty}^{v(t)}\frac{\rho_{p}(w)x_{1}^{2}-(1+(\rho_{p}(w))^{2})x_{1}x_{2}+\rho_{p}(w)x_{2}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}dx_{2}f_{\mathcal{T}}(t)dt\Bigg{)}

Assume that (ϵ0,ϵp)(\epsilon_{0},\epsilon_{p}) is the bivariate standard normal random vector with covariance ρp(w)\rho_{p}(w) and 𝒯{\mathcal{T}} is the tempered stable subordinator with parameters (α,θ)(\alpha,\theta) independent of (ϵ0,ϵp)(\epsilon_{0},\epsilon_{p}). Then we have

0u(x,w,t)v(t)wjfρp(w)Φ2(x1,x2)𝑑x1𝑑x2f𝒯(t)𝑑t\displaystyle\int_{0}^{\infty}\int_{-\infty}^{u(x,w,t)}\int_{-\infty}^{v(t)}\frac{\partial}{\partial w_{j}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}dx_{2}f_{\mathcal{T}}(t)dt
=ρp(w)1(ρp(w))2(wjρp(w))F(Ξ0,Ξp(w))(v0,x)\displaystyle=\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}\left(\frac{\partial}{\partial w_{j}}\rho_{p}(w)\right)F_{(\Xi_{0},\Xi_{p}(w))}\left(v_{0},x\right)
wjρp(w)(1(ρp(w))2)2E[(ρp(w)ϵp2(1+(ρp(w))2)ϵpϵ0+ρp(w)ϵ02)1ϵp<u(x,w,𝒯)1ϵ0<v(𝒯)],\displaystyle-\frac{\frac{\partial}{\partial w_{j}}\rho_{p}(w)}{(1-(\rho_{p}(w))^{2})^{2}}E\left[(\rho_{p}(w)\epsilon_{p}^{2}-(1+(\rho_{p}(w))^{2})\epsilon_{p}\epsilon_{0}+\rho_{p}(w)\epsilon_{0}^{2})1_{\epsilon_{p}<u(x,w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right],

and hence

wjG(x,w)\displaystyle\frac{\partial}{\partial w_{j}}G(x,w)
=ρp(w)1(ρp(w))2(wjρp(w))F(Ξ0,Ξp(w))(v0,x)\displaystyle=\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}\left(\frac{\partial}{\partial w_{j}}\rho_{p}(w)\right)F_{(\Xi_{0},\Xi_{p}(w))}\left(v_{0},x\right)
wjρp(w)(1(ρp(w))2)2E[(ρp(w)ϵp2(1+(ρp(w))2)ϵpϵ0+ρp(w)ϵ02)1ϵp<u(x,w,𝒯)1ϵ0<v(𝒯)]\displaystyle-\frac{\frac{\partial}{\partial w_{j}}\rho_{p}(w)}{(1-(\rho_{p}(w))^{2})^{2}}E\left[(\rho_{p}(w)\epsilon_{p}^{2}-(1+(\rho_{p}(w))^{2})\epsilon_{p}\epsilon_{0}+\rho_{p}(w)\epsilon_{0}^{2})1_{\epsilon_{p}<u(x,w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right]
+12πE[exp((u(x,w,𝒯))22)FΦ(v(𝒯)ρp(w)u(x,w,𝒯)1(ρp(w))2)wju(x,w,𝒯)],\displaystyle~~+\frac{1}{\sqrt{2\pi}}E\left[\exp\left(-\frac{\left(u(x,w,{\mathcal{T}})\right)^{2}}{2}\right)F_{\Phi}\left(\frac{v({\mathcal{T}})-\rho_{p}(w)u(x,w,{\mathcal{T}})}{\sqrt{1-(\rho_{p}(w))^{2}}}\right)\frac{\partial}{\partial w_{j}}u(x,w,{\mathcal{T}})\right],

which is (15). On the other hand, we have

xG(x,w)\displaystyle\frac{\partial}{\partial x}G(x,w)
=0v(t)fρp(w)Φ2(x1,u(x,w,t))𝑑x1xu(x,w,t)f𝒯(t)𝑑t\displaystyle=\int_{0}^{\infty}\int_{-\infty}^{v(t)}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},u(x,w,t))dx_{1}\frac{\partial}{\partial x}u(x,w,t)f_{\mathcal{T}}(t)dt
=012πexp((u(x,w,t))22)FΦ(v(t)ρp(w)u(x,w,t)1(ρp(w))2)xu(x,w,t)f𝒯(t)𝑑t\displaystyle=\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{\left(u(x,w,t)\right)^{2}}{2}\right)F_{\Phi}\left(\frac{v(t)-\rho_{p}(w)u(x,w,t)}{\sqrt{1-(\rho_{p}(w))^{2}}}\right)\frac{\partial}{\partial x}u(x,w,t)f_{\mathcal{T}}(t)dt

by (36). Since we have

xu(x,w,t)=1γp(w)t,\frac{\partial}{\partial x}u(x,w,t)=\frac{1}{\gamma_{p}(w)\sqrt{t}},

we obtain

xG(x,w)\displaystyle\frac{\partial}{\partial x}G(x,w)
=012πγp(w)texp((u(x,w,t))22)FΦ(v(t)ρp(w)u(x,w,t)1(ρp(w))2)f𝒯(t)𝑑t\displaystyle=\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}\gamma_{p}(w)\sqrt{t}}\exp\left(-\frac{\left(u(x,w,t)\right)^{2}}{2}\right)F_{\Phi}\left(\frac{v(t)-\rho_{p}(w)u(x,w,t)}{\sqrt{1-(\rho_{p}(w))^{2}}}\right)f_{\mathcal{T}}(t)dt
=E[12πγp(w)𝒯exp((u(x,w,𝒯))22)FΦ(v(𝒯)ρp(w)u(x,w,𝒯)1(ρp(w))2)]\displaystyle=E\left[\frac{1}{\sqrt{2\pi}\gamma_{p}(w)\sqrt{{\mathcal{T}}}}\exp\left(-\frac{\left(u(x,w,{\mathcal{T}})\right)^{2}}{2}\right)F_{\Phi}\left(\frac{v({\mathcal{T}})-\rho_{p}(w)u(x,w,{\mathcal{T}})}{\sqrt{1-(\rho_{p}(w))^{2}}}\right)\right]

which is (14). ∎

Proof of Proposition 4.3.

From (11) and the definition of CoCVaR, We have

CoCVaRη,ζ(Ξp(w)|Ξ0)=H(w)F(w),\displaystyle\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)=-\frac{H(w)}{F(w)},

where

H(w)=0C(w,t)v(t)(βp(w)(t1)+x2γp(w)t)fρp(w)Φ2(x1,x2)𝑑x1𝑑x2f𝒯(t)𝑑tH(w)=\int_{0}^{\infty}\int_{-\infty}^{C(w,t)}\int_{-\infty}^{v(t)}\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}\,dx_{2}\,f_{\mathcal{T}}(t)dt

and

F(w)=F(Ξ0,Ξp(w))(v0,CoVaRη,ζ(Ξp(w)|Ξ0)).F(w)=F_{(\Xi_{0},\Xi_{p}(w))}\left(v_{0},-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)\right).

Thus, we have

wjCoCVaRη,ζ(Ξp(w)|Ξ0)=1F(w)(wjH(w)+CoCVaRη,ζ(Ξp(w)|Ξ0)wjF(w)).\frac{\partial}{\partial w_{j}}\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)=-\frac{1}{F(w)}\left(\frac{\partial}{\partial w_{j}}H(w)+\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)\frac{\partial}{\partial w_{j}}F(w)\right). (38)

(i) Calculating wjH(w)\frac{\partial}{\partial w_{j}}H(w)
We have

wjH(w)\displaystyle\frac{\partial}{\partial w_{j}}H(w)
=0(v(t)(βp(w)(t1)+C(w,t)γp(w)t)fρp(w)Φ2(x1,C(w,t))dx1wjC(w,t)\displaystyle=\int_{0}^{\infty}\Bigg{(}\int_{-\infty}^{v(t)}\left(\beta_{p}(w)(t-1)+C(w,t)\gamma_{p}(w)\sqrt{t}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},C(w,t))dx_{1}\frac{\partial}{\partial w_{j}}C(w,t)
+C(w,t)v(t)wj((βp(w)(t1)+x2γp(w)t)fρp(w)Φ2(x1,x2))dx1dx2)f𝒯(t)dt\displaystyle+\int_{-\infty}^{C(w,t)}\int_{-\infty}^{v(t)}\frac{\partial}{\partial w_{j}}\left(\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})\right)dx_{1}\,dx_{2}\Bigg{)}f_{\mathcal{T}}(t)dt

Let

I1=0v(t)(βp(w)(t1)+C(w,t)γp(w)t)fρp(w)Φ2(x1,C(w,t))𝑑x1wjC(w,t)f𝒯(t)𝑑tI_{1}=\int_{0}^{\infty}\int_{-\infty}^{v(t)}\left(\beta_{p}(w)(t-1)+C(w,t)\gamma_{p}(w)\sqrt{t}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},C(w,t))dx_{1}\frac{\partial}{\partial w_{j}}C(w,t)f_{\mathcal{T}}(t)dt

and

I2=0C(w,t)v(t)wj((βp(w)(t1)+x2γp(w)t)fρp(w)Φ2(x1,x2))𝑑x1𝑑x2f𝒯(t)𝑑t.I_{2}=\int_{0}^{\infty}\int_{-\infty}^{C(w,t)}\int_{-\infty}^{v(t)}\frac{\partial}{\partial w_{j}}\left(\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})\right)dx_{1}\,dx_{2}f_{\mathcal{T}}(t)dt.

Then wjH(w)=I1+I2\frac{\partial}{\partial w_{j}}H(w)=I_{1}+I_{2}.

Let’s simplify I1I_{1}. Note that βp(w)(t1)+C(w,t)γp(w)t=CoVaRη,ζ(Ξp(w)|Ξ0)\beta_{p}(w)(t-1)+C(w,t)\gamma_{p}(w)\sqrt{t}=-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right) by the definition of C(w,t)C(w,t). By (36), we have

I1\displaystyle I_{1} =0CoVaRη,ζ(Ξp(w)|Ξ0)2πexp((C(w,t))22)FΦ(v(t)ρp(w)C(w,t)1(ρp(w))2)wjC(w,𝒯)f𝒯(t)𝑑t\displaystyle=\int_{0}^{\infty}\frac{-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)}{\sqrt{2\pi}}\exp\left(-\frac{\left(C(w,t)\right)^{2}}{2}\right)F_{\Phi}\left(\frac{v(t)-\rho_{p}(w)C(w,t)}{\sqrt{1-(\rho_{p}(w))^{2}}}\right)\frac{\partial}{\partial w_{j}}C(w,{\mathcal{T}})f_{\mathcal{T}}(t)dt
=CoVaRη,ζ(Ξp(w)|Ξ0)2πE[exp((C(w,𝒯))22)FΦ(v(𝒯)ρp(w)C(w,𝒯)1(ρp(w))2)wjC(w,𝒯)],\displaystyle=\frac{-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)}{\sqrt{2\pi}}E\left[\exp\left(-\frac{\left(C(w,{\mathcal{T}})\right)^{2}}{2}\right)F_{\Phi}\left(\frac{v({\mathcal{T}})-\rho_{p}(w)C(w,{\mathcal{T}})}{\sqrt{1-(\rho_{p}(w))^{2}}}\right)\frac{\partial}{\partial w_{j}}C(w,{\mathcal{T}})\right],

where 𝒯{\mathcal{T}} is the tempered stable subordinator with parameters (α,θ)(\alpha,\theta).

Consider the integral I2I_{2}. We have

wj((βp(w)(t1)+x2γp(w)t)fρp(w)Φ2(x1,x2))\displaystyle\frac{\partial}{\partial w_{j}}\left(\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})\right)
=fρp(w)Φ2(x1,x2)wj(βp(w)(t1)+x2γp(w)t)\displaystyle=f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})\frac{\partial}{\partial w_{j}}\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)
+(βp(w)(t1)+x2γp(w)t)wjfρp(w)Φ2(x1,x2)\displaystyle+\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)\frac{\partial}{\partial w_{j}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})
=fρp(w)Φ2(x1,x2)((t1)wjβp(w)+x2twjγp(w))\displaystyle=f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})\left((t-1)\frac{\partial}{\partial w_{j}}\beta_{p}(w)+x_{2}\sqrt{t}\frac{\partial}{\partial w_{j}}\gamma_{p}(w)\right)
+(βp(w)(t1)+x2γp(w)t)wjfρp(w)Φ2(x1,x2).\displaystyle+\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)\frac{\partial}{\partial w_{j}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2}).

By (31) and (7.2), we have

wj((βp(w)(t1)+x2γp(w)t)fρp(w)Φ2(x1,x2))\displaystyle\frac{\partial}{\partial w_{j}}\left(\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})\right)
=fρp(w)Φ2(x1,x2)((t1)x2βp(w)(2θ2α)tγp(w))wjβp(w)\displaystyle=f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})\left((t-1)-\frac{x_{2}\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)\sqrt{t}}{\gamma_{p}(w)}\right)\frac{\partial}{\partial w_{j}}\beta_{p}(w)
+(βp(w)(t1)+x2γp(w)t)\displaystyle+\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)
×(ρp(w)1(ρp(w))2ρp(w)x12(1+(ρp(w))2)x1x2+ρp(w)x22(1(ρp(w))2)2)\displaystyle\times\left(\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}-\frac{\rho_{p}(w)x_{1}^{2}-(1+(\rho_{p}(w))^{2})x_{1}x_{2}+\rho_{p}(w)x_{2}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}\right)
×fρp(w)Φ2(x1,x2)wjρp(w).\displaystyle\times f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})\frac{\partial}{\partial w_{j}}\rho_{p}(w).

Hence, we obtain

I2\displaystyle I_{2} =0C(w,t)v(t)((t1)x2βp(w)(2θ2α)tγp(w))fρp(w)Φ2(x1,x2)wjβp(w)\displaystyle=\int_{0}^{\infty}\int_{-\infty}^{C(w,t)}\int_{-\infty}^{v(t)}\left((t-1)-\frac{x_{2}\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)\sqrt{t}}{\gamma_{p}(w)}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})\frac{\partial}{\partial w_{j}}\beta_{p}(w)
+(βp(w)(t1)+x2γp(w)t)\displaystyle+\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)
×(ρp(w)1(ρp(w))2ρp(w)x12(1+(ρp(w))2)x1x2+ρp(w)x22(1(ρp(w))2)2)wjρp(w)\displaystyle\times\left(\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}-\frac{\rho_{p}(w)x_{1}^{2}-(1+(\rho_{p}(w))^{2})x_{1}x_{2}+\rho_{p}(w)x_{2}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}\right)\frac{\partial}{\partial w_{j}}\rho_{p}(w)
×fρp(w)Φ2(x1,x2)dx1dx2f𝒯(t)dt.\displaystyle\times f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}\,dx_{2}\,f_{\mathcal{T}}(t)dt.

Let

J1=0C(w,t)v(t)((t1)x2βp(w)(2θ2α)tγp(w))fρp(w)Φ2(x1,x2)f𝒯(t)𝑑t,J_{1}=\int_{0}^{\infty}\int_{-\infty}^{C(w,t)}\int_{-\infty}^{v(t)}\left((t-1)-\frac{x_{2}\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)\sqrt{t}}{\gamma_{p}(w)}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})f_{\mathcal{T}}(t)dt,
J2=0C(w,t)v(t)(βp(w)(t1)+x2γp(w)t)fρp(w)Φ2(x1,x2)𝑑x1𝑑x2f𝒯(t)𝑑t,J_{2}=\int_{0}^{\infty}\int_{-\infty}^{C(w,t)}\int_{-\infty}^{v(t)}\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}\,dx_{2}\,f_{\mathcal{T}}(t)dt,

and

J3\displaystyle J_{3} =0C(w,t)v(t)(βp(w)(t1)+x2γp(w)t)\displaystyle=\int_{0}^{\infty}\int_{-\infty}^{C(w,t)}\int_{-\infty}^{v(t)}\left(\beta_{p}(w)(t-1)+x_{2}\gamma_{p}(w)\sqrt{t}\right)
×(ρp(w)x12(1+(ρp(w))2)x1x2+ρp(w)x22(1(ρp(w))2)2)fρp(w)Φ2(x1,x2)dx1dx2f𝒯(t)dt\displaystyle\times\left(\frac{\rho_{p}(w)x_{1}^{2}-(1+(\rho_{p}(w))^{2})x_{1}x_{2}+\rho_{p}(w)x_{2}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}\right)f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}\,dx_{2}\,f_{\mathcal{T}}(t)dt

Then we have

I2=J1wjβp(w)+(ρp(w)1(ρp(w))2J2J3)wjρp(w).I_{2}=J_{1}\frac{\partial}{\partial w_{j}}\beta_{p}(w)+\left(\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}J_{2}-J_{3}\right)\frac{\partial}{\partial w_{j}}\rho_{p}(w).

We get J2=F(w)CoCVaRη,ζ(Ξp(w)|Ξ0)J_{2}=-F(w)\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right) by (11). Assume (ϵ0,ϵp)(\epsilon_{0},\epsilon_{p}) is the bivariate standard normal distributed random vector with covariance ρp(w)\rho_{p}(w), and 𝒯{\mathcal{T}} is the tempered stable subordinator with parameters (α,θ)(\alpha,\theta) independent of (ϵ0,ϵp)(\epsilon_{0},\epsilon_{p}). Then

J1=E[((𝒯1)ϵpβp(w)(2θ2α)𝒯γp(w))1ϵp<C(w,𝒯)1ϵ0<v(𝒯)]J_{1}=E\left[\left(({\mathcal{T}}-1)-\frac{\epsilon_{p}\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)\sqrt{{\mathcal{T}}}}{\gamma_{p}(w)}\right)1_{\epsilon_{p}<C(w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right]

and

J3=E[(ρp(w)ϵ02(1+(ρp(w))2)ϵ0ϵp+ρp(w)ϵp2(1(ρp(w))2)2)ξp(w)1ϵp<C(w,𝒯)1ϵ0<v(𝒯)]J_{3}=E\left[\left(\frac{\rho_{p}(w)\epsilon_{0}^{2}-(1+(\rho_{p}(w))^{2})\epsilon_{0}\epsilon_{p}+\rho_{p}(w)\epsilon_{p}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}\right)\xi_{p}(w)1_{\epsilon_{p}<C(w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right]

where ξp(w)=βp(w)(𝒯1)+ϵpγp(w)𝒯\xi_{p}(w)=\beta_{p}(w)({\mathcal{T}}-1)+\epsilon_{p}\gamma_{p}(w)\sqrt{{\mathcal{T}}}. Substituting I1I_{1}, J1J_{1}, J2J_{2}, J3J_{3} into

wjH(w)=I1+J1wjβp(w)+(ρp(w)1(ρp(w))2J2J3)wjρp(w),\frac{\partial}{\partial w_{j}}H(w)=I_{1}+J_{1}\frac{\partial}{\partial w_{j}}\beta_{p}(w)+\left(\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}J_{2}-J_{3}\right)\frac{\partial}{\partial w_{j}}\rho_{p}(w),

we obtain

wjH(w)\displaystyle\frac{\partial}{\partial w_{j}}H(w) (39)
=CoVaRη,ζ(Ξp(w)|Ξ0)2πE[exp((C(w,𝒯))22)FΦ(v(𝒯)ρp(w)C(w,𝒯)1(ρp(w))2)wjC(w,𝒯)]\displaystyle=\frac{-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)}{\sqrt{2\pi}}E\left[\exp\left(-\frac{\left(C(w,{\mathcal{T}})\right)^{2}}{2}\right)F_{\Phi}\left(\frac{v({\mathcal{T}})-\rho_{p}(w)C(w,{\mathcal{T}})}{\sqrt{1-(\rho_{p}(w))^{2}}}\right)\frac{\partial}{\partial w_{j}}C(w,{\mathcal{T}})\right]
+E[((𝒯1)ϵpβp(w)(2θ2α)𝒯γp(w))1ϵp<C(w,𝒯)1ϵ0<v(𝒯)]wjβp(w)\displaystyle+E\left[\left(({\mathcal{T}}-1)-\frac{\epsilon_{p}\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)\sqrt{{\mathcal{T}}}}{\gamma_{p}(w)}\right)1_{\epsilon_{p}<C(w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right]\frac{\partial}{\partial w_{j}}\beta_{p}(w)
ρp(w)1(ρp(w))2(wjρp(w))F(w)CoCVaRη,ζ(Ξp(w)|Ξ0)\displaystyle-\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}\left(\frac{\partial}{\partial w_{j}}\rho_{p}(w)\right)F(w)\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)
E[(ρp(w)ϵ02(1+(ρp(w))2)ϵ0ϵp+ρp(w)ϵp2(1(ρp(w))2)2)ξp(w)1ϵp<C(w,𝒯)1ϵ0<v(𝒯)]wjρp(w).\displaystyle-E\left[\left(\frac{\rho_{p}(w)\epsilon_{0}^{2}-(1+(\rho_{p}(w))^{2})\epsilon_{0}\epsilon_{p}+\rho_{p}(w)\epsilon_{p}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}\right)\xi_{p}(w)1_{\epsilon_{p}<C(w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right]\frac{\partial}{\partial w_{j}}\rho_{p}(w).

(ii) Calculating wjF(w)\frac{\partial}{\partial w_{j}}F(w)
Since we have

F(w)=0C(w,t)v(t)fρp(w)Φ2(x1,x2)𝑑x1𝑑x2f𝒯(t)𝑑t,\displaystyle F(w)=\int_{0}^{\infty}\int_{-\infty}^{C(w,t)}\int_{-\infty}^{v(t)}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}dx_{2}f_{\mathcal{T}}(t)dt,

we get

wjF(w)\displaystyle\frac{\partial}{\partial w_{j}}F(w) =0(C(w,t)v(t)wjfρp(w)Φ2(x1,x2)dx1dx2\displaystyle=\int_{0}^{\infty}\Bigg{(}\int_{-\infty}^{C(w,t)}\int_{-\infty}^{v(t)}\frac{\partial}{\partial w_{j}}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},x_{2})dx_{1}dx_{2}
+v(t)fρp(w)Φ2(x1,u(x,w,t))dx1wjC(w,t))f𝒯(t)dt\displaystyle~~+\int_{-\infty}^{v(t)}f^{\Phi_{2}}_{\rho_{p}(w)}(x_{1},u(x,w,t))dx_{1}\frac{\partial}{\partial w_{j}}C(w,t)\Bigg{)}f_{\mathcal{T}}(t)dt

Using the same arguments in the proof of Proposition 4.2, we obtain

wjF(w)\displaystyle\frac{\partial}{\partial w_{j}}F(w) (40)
=ρp(w)1(ρp(w))2(wjρp(w))F(w)\displaystyle=\frac{\rho_{p}(w)}{1-(\rho_{p}(w))^{2}}\left(\frac{\partial}{\partial w_{j}}\rho_{p}(w)\right)F(w)
E[(ρp(w)ϵp2(1+(ρp(w))2)ϵpϵ0+ρp(w)ϵ02(1(ρp(w))2)2)1ϵp<C(w,𝒯)1ϵ0<v(𝒯)]wjρp(w)\displaystyle-E\left[\left(\frac{\rho_{p}(w)\epsilon_{p}^{2}-(1+(\rho_{p}(w))^{2})\epsilon_{p}\epsilon_{0}+\rho_{p}(w)\epsilon_{0}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}\right)1_{\epsilon_{p}<C(w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right]\frac{\partial}{\partial w_{j}}\rho_{p}(w)
+12πE[exp((C(w,𝒯))22)FΦ(v(𝒯)ρp(w)u(x,w,𝒯)1(ρp(w))2)wjC(w,𝒯)].\displaystyle~~+\frac{1}{\sqrt{2\pi}}E\left[\exp\left(-\frac{\left(C(w,{\mathcal{T}})\right)^{2}}{2}\right)F_{\Phi}\left(\frac{v({\mathcal{T}})-\rho_{p}(w)u(x,w,{\mathcal{T}})}{\sqrt{1-(\rho_{p}(w))^{2}}}\right)\frac{\partial}{\partial w_{j}}C(w,{\mathcal{T}})\right].

By substituting (39), (40), and F(w)=F(Ξ0,Ξp(w))(v0,CoVaRη,ζ(Ξp(w)|Ξ0))=ηζF(w)=F_{(\Xi_{0},\Xi_{p}(w))}\left(v_{0},-\textup{\rm CoVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)\right)=\eta\zeta into (38), we get

wjCoCVaRη,ζ(Ξp(w)|Ξ0)\displaystyle\frac{\partial}{\partial w_{j}}\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)
=\displaystyle= 1ηζ(E[((𝒯1)ϵpβp(w)(2θ2α)𝒯γp(w))1ϵp<C(w,𝒯)1ϵ0<v(𝒯)]wjβp(w)\displaystyle-\frac{1}{\eta\zeta}\Bigg{(}E\left[\left(({\mathcal{T}}-1)-\frac{\epsilon_{p}\beta_{p}(w)\left(\frac{2\theta}{2-\alpha}\right)\sqrt{{\mathcal{T}}}}{\gamma_{p}(w)}\right)1_{\epsilon_{p}<C(w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right]\frac{\partial}{\partial w_{j}}\beta_{p}(w)
E[(ρp(w)ϵ02(1+(ρp(w))2)ϵ0ϵp+ρp(w)ϵp2(1(ρp(w))2)2)ξp(w)1ϵp<C(w,𝒯)1ϵ0<v(𝒯)]wjρp(w)\displaystyle-E\left[\left(\frac{\rho_{p}(w)\epsilon_{0}^{2}-(1+(\rho_{p}(w))^{2})\epsilon_{0}\epsilon_{p}+\rho_{p}(w)\epsilon_{p}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}\right)\xi_{p}(w)1_{\epsilon_{p}<C(w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right]\frac{\partial}{\partial w_{j}}\rho_{p}(w)
CoCVaRη,ζ(Ξp(w)|Ξ0)E[(ρp(w)ϵp2(1+(ρp(w))2)ϵpϵ0+ρp(w)ϵ02(1(ρp(w))2)2)1ϵp<C(w,𝒯)1ϵ0<v(𝒯)]wjρp(w))\displaystyle-\textup{\rm CoCVaR}_{{\eta},{\zeta}}\left({{\Xi_{p}(w)}|{\Xi_{0}}}\right)E\left[\left(\frac{\rho_{p}(w)\epsilon_{p}^{2}-(1+(\rho_{p}(w))^{2})\epsilon_{p}\epsilon_{0}+\rho_{p}(w)\epsilon_{0}^{2}}{(1-(\rho_{p}(w))^{2})^{2}}\right)1_{\epsilon_{p}<C(w,{\mathcal{T}})}1_{\epsilon_{0}<v({\mathcal{T}})}\right]\frac{\partial}{\partial w_{j}}\rho_{p}(w)\Bigg{)}

Hence we obtain (16).

References

  • Adrian and Brunnermeier (2016) Adrian, T. and Brunnermeier, M. K. (2016). Covar. American Economic Review, 106(7), 1705–41. URL https://www.aeaweb.org/articles?id=10.1257/aer.20120555.
  • Anand et al. (2016) Anand, A., Li, T., Kurosaki, T., and Kim, Y. S. (2016). Foster-Hart optimal portfolios. Journal of Banking and Finance, 68, 117–130.
  • Anand et al. (2017) Anand, A., Li, T., Kurosaki, T., and Kim, Y. S. (2017). The equity risk posed by the too-big-to-fail banks: A foster-hart estimation. Annals of Operations Research, 253(1), 21–41.
  • Barndorff-Nielsen (1978) Barndorff-Nielsen, O. (1978). Hyperbolic distributions and distributions on hyperbolae. Scandinavian Journal of Statistics, 5(3), 151–157.
  • Barndorff-Nielsen and Levendorskii (2001) Barndorff-Nielsen, O. E. and Levendorskii, S. (2001). Feller processes of normal inverse Gaussian type. Quantitative Finance, 1, 318 – 331.
  • Barndorff-Nielsen and Shephard (2001) Barndorff-Nielsen, O. E. and Shephard, N. (2001). Normal modified stable processes. Economics Series Working Papers from University of Oxford, Department of Economics, 72.
  • Cont and Tankov (2004) Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman & Hall / CRC.
  • Eberlein and Madan (2010) Eberlein, E. and Madan, D. B. (2010). On correlating Lévy processes. Journal of Risk, 13(1), 3–16.
  • Fama (1963) Fama, E. (1963). Mandelbrot and the stable Paretian hypothesis. Journal of Business, 36, 420–429.
  • Gil-Pelaez (1951) Gil-Pelaez, J. (1951). Note on the inversion theorem. Biometrika, 38(3-4).
  • Girardi and Tolga Ergün (2013) Girardi, G. and Tolga Ergün, A. (2013). Systemic risk measurement: Multivariate garch estimation of covar. Journal of Banking & Finance, 37(8), 3169–3180. URL https://www.sciencedirect.com/science/article/pii/S0378426613001155.
  • Gourieroux et al. (2000) Gourieroux, C., Laurent, J., and Scaillet, O. (2000). Sensitivity analysis of values at risk. Journal of Empirical Finance, 7, 225–245.
  • Huang and Uryasev (2018) Huang, W.-Q. and Uryasev, S. P. (2018). The cocvar approach: systemic risk contribution measurement. Journal of Risk, 20, 75–93.
  • Kim (2005) Kim, Y. (2005). The Modified Tempered Stable Processes with Applications to Finance. Ph.D. thesis, Sogang University.
  • Kim (2022) Kim, Y. S. (2022). Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model. Annals of Operations Research, 1–29.
  • Kim et al. (2012) Kim, Y. S., Giacometti, R., Rachev, S. T., Fabozzi, F. J., and Mignacca, D. (2012). Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model. Annals of Operations Research, 201(1), 325–343.
  • Kim et al. (2023) Kim, Y. S., Kim, H., Choi, J., and Fabozzi, F. J. (2023). Multi-asset option pricing using normal tempered stable processes with stochastic correlation. The Journal of Derivatives, 30(3), 42–64.
  • Kim et al. (2015) Kim, Y. S., Lee, J., Mittnik, S., and Park, J. (2015). Quanto option pricing in the presence of fat tails and asymmetric dependence. Journal of Econometrics, 187(2), 512 – 520.
  • Kim and Volkmann (2013) Kim, Y. S. and Volkmann, D. (2013). NTS copula and finance. Applied Mathematics Letters, 26, 676–680.
  • Kurosaki and Kim (2018) Kurosaki, T. and Kim, Y. S. (2018). Foster-Hart optimization for currency portfolio. Studies in Nonlinear Dynamics & Econometrics, 23(2), Published Online.
  • Kurosaki and Kim (2022) Kurosaki, T. and Kim, Y. S. (2022). Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and foster-hart risk. Finance Research Letters, 45, 102143.
  • Liu et al. (2021) Liu, Y., Djurić, P. M., Kim, Y. S., Rachev, S. T., and Glimm, J. (2021). Systemic risk modeling with Lévy copulas. Journal of Risk and Financial Management, 14(6), 251.
  • Mandelbrot (1963a) Mandelbrot, B. B. (1963a). New methods in statistical economics. Journal of Political Economy, 71, 421–440.
  • Mandelbrot (1963b) Mandelbrot, B. B. (1963b). The variation of certain speculative prices. Journal of Business, 36, 394–419.
  • Markowitz (1952) Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.
  • Reboredo and Ugolini (2015) Reboredo, J. C. and Ugolini, A. (2015). Systemic risk in european sovereign debt markets: A covar-copula approach. Journal of International Money and Finance, 51, 214–244. URL https://www.sciencedirect.com/science/article/pii/S0261560614002162.
  • Stoyanov et al. (2013) Stoyanov, S. V., Rachev, S. T., and Fabozzi, F. J. (2013). Sensitivity of portfolio VaR and CVaR to portfolio return characteristics. Annals of Operations Research, 205, 169–187.