This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Department of Applied Mathematics
College of Science and Technology
Andhra University, Visakhapatnam, 530003, India
Corresponding author: khuddush89@gmail.com

Positive Radial Solutions for an Iterative System of Nonlinear Elliptic Equations in an Annulus

Mahammad Khuddush    K. Rajendra Prasad
(Received: date / Accepted: date)
Abstract

This paper deals with the existence of positive radial solutions to the iterative system of nonlinear elliptic equations of the form

𝚞ι˙(𝙽2)2r02𝙽2|x|2𝙽2𝚞ι˙+(|x|)𝚐ι˙(𝚞ι˙+1)=0,𝚁1<|x|<𝚁2,\displaystyle\triangle{\mathtt{u}_{{\dot{\iota}}}}-\frac{(\mathtt{N}-2)^{2}r_{0}^{2\mathtt{N}-2}}{|x|^{2\mathtt{N}-2}}\mathtt{u}_{\dot{\iota}}+\ell(|x|)\mathtt{g}_{{\dot{\iota}}}(\mathtt{u}_{{\dot{\iota}}+1})=0,~{}\mathtt{R}_{1}<|x|<\mathtt{R}_{2},

where ι˙{1,2,3,,𝚗},{\dot{\iota}}\in\{1,2,3,\cdot\cdot\cdot,\mathtt{n}\}, 𝚞1=𝚞𝚗+1,\mathtt{u}_{1}=\mathtt{u}_{\mathtt{n}+1}, 𝚞=𝚍𝚒𝚟(𝚞),\triangle{\mathtt{u}}=\mathtt{div}(\triangledown\mathtt{u}), 𝙽>2,\mathtt{N}>2, =i=1mi,\ell=\prod_{i=1}^{m}\ell_{i}, each i:(r0,+)(0,+)\ell_{i}:(r_{0},+\infty)\to(0,+\infty) is continuous, r𝙽1r^{\mathtt{N}-1}\ell is integrable, and 𝚐ι˙:[0,+)\mathtt{g}_{\dot{\iota}}:[0,+\infty)\to\mathbb{R} is continuous, by an application of various fixed point theorems in a Banach space. Further, we also establish uniqueness of solution to the addressed system by using Rus’s theorem in a complete metric space.

Keywords:
Nonlinear elliptic equation annulus positive radial solutionfixed point theoremBanach spaceRus’s theoremmetric space
MSC:
35J6635J6034B1847H10

1 Introduction

The semilinear elliptic equation of the form

𝚞+𝚐(|x|)𝚞+𝚑(|x|)𝚞𝚙=0\triangle\mathtt{u}+\mathtt{g}(|x|)\mathtt{u}+\mathtt{h}(|x|)\mathtt{u}^{\mathtt{p}}=0 (1)

arise in various fields of pure and applied mathematics such as Riemannian geometry, nuclear physics, astrophysics and so on. For more details of the background of (1), see ni ; yana . Study of nonlinear elliptic system of equations,

𝚞ι˙+𝚐ι˙(𝚞ι˙+1)=0inΩ,𝚞ι˙=0onΩ,}\left.\begin{aligned} &\triangle{\mathtt{u}_{{\dot{\iota}}}}+\mathtt{g}_{{\dot{\iota}}}(\mathtt{u}_{{\dot{\iota}}+1})=0~{}~{}\text{in}~{}~{}\Omega,\\ &\hskip 28.45274pt\mathtt{u}_{{\dot{\iota}}}=0~{}~{}\text{on}~{}~{}\partial\Omega,\\ \end{aligned}\right\} (2)

where ι˙{1,2,3,,𝚗},{\dot{\iota}}\in\{1,2,3,\cdot\cdot\cdot,{\mathtt{n}}\}, 𝚞1=𝚞𝚗+1,\mathtt{u}_{1}=\mathtt{u}_{\mathtt{n}+1}, and Ω\Omega is a bounded domain in N\mathbb{R}^{N}, has an important applications in population dynamics, combustion theory and chemical reactor theory. The recent literature for the existence, multiplicity and uniqueness of positive solutions for (2), see dal ; hai1 ; ali1 ; hai2 ; hai3 ; ali2 and references therein.

In mei , Mei studied the structure of radial solutions to the quasilinear elliptic problem of the form

𝚙𝚞λ𝚞𝚚=0inΩ,\displaystyle\triangle_{\mathtt{p}}\mathtt{u}-\frac{\uplambda}{\mathtt{u}^{\mathtt{q}}}=0~{}\text{in}~{}\Omega,
0<𝚞<1inΩ,\displaystyle\hskip 11.38092pt0<\mathtt{u}<1~{}\text{in}~{}\Omega,
𝚞=1onΩ,\displaystyle\hskip 17.07182pt\mathtt{u}=1~{}\text{on}~{}\partial\Omega,

where 1<𝚙𝙽(𝙽2),𝚚>0,λ>01<\mathtt{p}\leq\mathtt{N}\,(\mathtt{N}\geq 2),\mathtt{q}>0,\uplambda>0 and Ω={x𝙽:|x|<1}.\Omega=\{x\in\mathbb{R}^{\mathtt{N}}:|x|<1\}. In li1 , Li studied the existence of positive radial solutions of the elliptic equation with nonlinear gradient term

𝚞=𝚐(|x|,𝚞,x|x|𝚞)=0inΩab,\displaystyle-\triangle\mathtt{u}=\mathtt{g}\big{(}|x|,\mathtt{u},\frac{x}{|x|}\cdot\nabla\mathtt{u}\big{)}=0~{}~{}\text{in}~{}~{}\Omega_{a}^{b},
𝚞=0onΩab,\displaystyle\hskip 45.52458pt\mathtt{u}=0~{}~{}\text{on}~{}~{}\partial\Omega_{a}^{b},

by using fixed point index theory in cones. In chro , Chrouda and Hassine established the uniqueness of positive radial solutions to the following Dirichlet boundary value problem for the semilinear elliptic equation in an annulus,

𝚞=𝚐(𝚞)\displaystyle\triangle\mathtt{u}=\mathtt{g}(\mathtt{u}) onΩ={x𝚍:a<|x|<b},\displaystyle~{}~{}\text{on}~{}~{}\Omega=\{x\in\mathbb{R}^{\mathtt{d}}:a<|x|<b\},
𝚞=0on𝚞Ω,\displaystyle\mathtt{u}=0~{}~{}\text{on}~{}~{}\mathtt{u}\in\partial\Omega,

for any dimension 𝚍1.\mathtt{d}\geq 1. In kaji , R. Kajikiya and E. Ko established the existence of positive radial solutions for a semipositone elliptic equation of the form,

𝚞+λ𝚐(𝚞)=0inΩ,\displaystyle\triangle\mathtt{u}+\uplambda\mathtt{g}(\mathtt{u})=0~{}~{}\text{in}~{}~{}\Omega,
𝚞=0onΩ,\displaystyle\hskip 19.91684pt\mathtt{u}=0~{}~{}\text{on}~{}~{}\partial\Omega,

where Ω\Omega is a ball or an annulus in 𝙽.\mathbb{R}^{\mathtt{N}}. Recently, Son and Wang son established positive radial solutions to the nonlinear elliptic systems,

𝚞ι˙+λ𝙺ι˙(|x|)𝚐ι˙(𝚞ι˙+1)=0inΩ𝙴,\displaystyle\triangle{\mathtt{u}_{{\dot{\iota}}}}+\uplambda\mathtt{K}_{\dot{\iota}}(|x|)\mathtt{g}_{{\dot{\iota}}}(\mathtt{u}_{{\dot{\iota}}+1})=0~{}\text{in}~{}\Omega_{\mathtt{E}},
𝚞ι˙=0on|x|=r0,\displaystyle\hskip 35.56593pt\mathtt{u}_{{\dot{\iota}}}=0~{}\text{on}~{}|x|=r_{0},
𝚞ι˙0as|x|+,\displaystyle\hskip 29.87547pt\mathtt{u}_{{\dot{\iota}}}\to 0~{}\text{as}~{}|x|\to+\infty,

where ι˙{1,2,3,,𝚗},{\dot{\iota}}\in\{1,2,3,\cdot\cdot\cdot,{\mathtt{n}}\}, 𝚞1=𝚞𝚗+1,\mathtt{u}_{1}=\mathtt{u}_{\mathtt{n}+1}, λ>0,\uplambda>0, N>2,N>2, r0>0,r_{0}>0, and Ω𝙴\Omega_{\mathtt{E}} is an exterior of a ball. Motivated by the above works, in this paper we study the existence of infinitely many positive radial solutions for the following iterative system of nonlinear elliptic equations in an annulus,

𝚞ι˙(𝙽2)2r02𝙽2|x|2𝙽2𝚞ι˙+(|x|)𝚐ι˙(𝚞ι˙+1)=0,𝚁1<|x|<𝚁2,\triangle{\mathtt{u}_{{\dot{\iota}}}}-\frac{(\mathtt{N}-2)^{2}r_{0}^{2\mathtt{N}-2}}{|x|^{2\mathtt{N}-2}}\mathtt{u}_{\dot{\iota}}+\ell(|x|)\mathtt{g}_{{\dot{\iota}}}(\mathtt{u}_{{\dot{\iota}}+1})=0,~{}\mathtt{R}_{1}<|x|<\mathtt{R}_{2}, (3)

with one of the following sets of boundary conditions:

𝚞ι˙=0on|x|=𝚁1and|x|=𝚁2,𝚞ι˙=0on|x|=𝚁1and𝚞ι˙r=0on|x|=𝚁2,𝚞ι˙r=0on|x|=𝚁1and𝚞ι˙=0on|x|=𝚁2,}\left.\begin{aligned} &\hskip 25.6073pt\mathtt{u}_{{\dot{\iota}}}=0~{}~{}\text{on}~{}~{}|x|=\mathtt{R}_{1}~{}\text{and}~{}|x|=\mathtt{R}_{2},\\ &\mathtt{u}_{{\dot{\iota}}}=0~{}~{}\text{on}~{}~{}|x|=\mathtt{R}_{1}~{}\text{and}~{}\frac{\partial\mathtt{u}_{\dot{\iota}}}{\partial r}=0~{}\text{on}~{}|x|=\mathtt{R}_{2},\\ &\frac{\partial\mathtt{u}_{\dot{\iota}}}{\partial r}=0~{}~{}\text{on}~{}~{}|x|=\mathtt{R}_{1}~{}\text{and}~{}\mathtt{u}_{{\dot{\iota}}}=0~{}\text{on}~{}|x|=\mathtt{R}_{2},\end{aligned}\right\} (4)

where ι˙{1,2,3,,𝚗},{\dot{\iota}}\in\{1,2,3,\cdot\cdot\cdot,\mathtt{n}\}, 𝚞1=𝚞𝚗+1,\mathtt{u}_{1}=\mathtt{u}_{\mathtt{n}+1}, 𝚞=𝚍𝚒𝚟(𝚞),\triangle\mathtt{u}=\mathtt{div}(\triangledown\mathtt{u}), N>2,N>2, =i=1mi,\ell=\prod_{i=1}^{m}\ell_{i}, each i:(𝚁1,𝚁2)(0,+)\ell_{i}:(\mathtt{R}_{1},\mathtt{R}_{2})\to(0,+\infty) is continuous, r𝙽1r^{\mathtt{N}-1}\ell is integrable, by an application of various fixed point theorems in a Banach space. Further, we also study existence of unique solution by using Rus’s theorem in a complete metric space.

The study of positive radial solutions to (3) reduces to the study of positive solutions to the following iterative system of two-point boundary value problems,

𝚞ι˙′′(𝚜)r02𝚞ι˙(𝚜)+(𝚜)𝚐ι˙(𝚞ι˙+1(𝚜))=0,0<𝚜<1,\displaystyle\mathtt{u}^{\prime\prime}_{{\dot{\iota}}}(\mathtt{s})-r_{0}^{2}\mathtt{u}_{\dot{\iota}}(\mathtt{s})+\ell(\mathtt{s})\mathtt{g}_{{\dot{\iota}}}(\mathtt{u}_{{\dot{\iota}}+1}(\mathtt{s}))=0,~{}0<\mathtt{s}<1, (5)

where ι˙{1,2,3,,𝚗},{\dot{\iota}}\in\{1,2,3,\cdot\cdot\cdot,\mathtt{n}\}, 𝚞1=𝚞𝚗+1,\mathtt{u}_{1}=\mathtt{u}_{\mathtt{n}+1}, r0>0r_{0}>0 and (𝚜)=r02(𝙽2)2𝚜2(𝙽1)2𝙽i=1mi(𝚜),\ell(\mathtt{s})=\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\mathtt{s}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}\prod_{i=1}^{m}\ell_{i}(\mathtt{s}), i(𝚜)=i(r0𝚜12𝙽)\ell_{i}(\mathtt{s})=\ell_{i}(r_{0}\mathtt{s}^{\frac{1}{2-\mathtt{N}}}) by a Kelvin type transformation through the change of variables r=|x|r=|x| and 𝚜=(rr0)2𝙽.\mathtt{s}=\left(\frac{r}{r_{0}}\right)^{2-\mathtt{N}}. The detailed explanation of the transformation from the equation (7) to (5) see ali3 ; lan ; lee . By suitable choices of nonnegative real numbers α,β,γ\upalpha,\upbeta,\upgamma and δ,\updelta, the set of boundary conditions (5) reduces to

{α𝚞ι˙(0)β𝚞ι˙(0)=0,γ𝚞ι˙(1)+δ𝚞ι˙(1)=0,\left\{\begin{aligned} &\upalpha\mathtt{u}_{\dot{\iota}}(0)-\upbeta\mathtt{u}_{\dot{\iota}}^{\prime}(0)=0,\\ &\,\upgamma\mathtt{u}_{\dot{\iota}}(1)+\updelta\mathtt{u}_{\dot{\iota}}^{\prime}(1)=0,\end{aligned}\right. (6)

we assume that the following conditions hold throughout the paper:

  • (𝒥1)(\mathcal{J}_{1})

    𝚐ι˙:[0,+)[0,+)\mathtt{g}_{\dot{\iota}}:[0,+\infty)\to[0,+\infty) is continuous.

  • (𝒥2)(\mathcal{J}_{2})

    iL𝚙i[0,1],1𝚙i+\ell_{i}\in L^{\mathtt{p}_{i}}[0,1],1\leq\mathtt{p}_{i}\leq+\infty for 1in.1\leq i\leq n.

  • (𝒥3)(\mathcal{J}_{3})

    There exists i>0\ell_{i}^{\star}>0 such that i<i(𝚜)<\ell_{i}^{\star}<\ell_{i}(\mathtt{s})<\infty a.e. on [0,1].[0,1].

The rest of the paper is organized in the following fashion. In Section 2, we convert the boundary value problem (5)–(6) into equivalent integral equation which involves the kernel. Also, we estimate bounds for the kernel which are useful in our main results. In Section 3, we develop a criteria for the existence of atleast one positive radial solution by applying Krasnoselskii’s cone fixed point theorem in a Banach space. In Section 4, we derive necessary conditions for the existence of atleast two positive radial solution by an application of Avery-Henderson cone fixed point theorem in a Banach space. In Section 5, we establish the existence of atleast three positive radial solution by utilizing Legget-William cone fixed point theorem in a Banach space. Further, we also study uniqueness of solution in the final section.

2 Kernel and Its Bounds

In order to study BVP (5), we first consider the corresponding linear boundary value problem,

𝚞1′′(𝚜)+r02𝚞1(𝚜)=u(𝚜),0<𝚜<1,-\mathtt{u}_{1}^{\prime\prime}(\mathtt{s})+r_{0}^{2}\mathtt{u}_{1}(\mathtt{s})=u(\mathtt{s}),~{}0<\mathtt{s}<1, (7)
{α𝚞1(0)β𝚞1(0)=0,γ𝚞1(1)+δ𝚞1(1)=0,\left\{\begin{aligned} &\upalpha\mathtt{u}_{1}(0)-\upbeta\mathtt{u}_{1}^{\prime}(0)=0,\\ &\,\upgamma\mathtt{u}_{1}(1)+\updelta\mathtt{u}_{1}^{\prime}(1)=0,\end{aligned}\right. (8)

where u𝒞[0,1]u\in\mathcal{C}[0,1] is a given function.

Lemma 1

Let ϱ=r02(αδ+βγ)cosh(r0)+r0(αγ+βδr02)sinh(r0).\varrho=r_{0}^{2}(\upalpha\updelta+\upbeta\upgamma)\cosh(r_{0})+r_{0}(\upalpha\upgamma+\upbeta\updelta r_{0}^{2})\sinh(r_{0}). For every u𝒞[0,1],u\in\mathcal{C}[0,1], the linear boundary value problem (7)–(8) has a unique solution

𝚞1(𝚜)=01Ξr0(𝚜,𝚝)u(𝚝)𝚍𝚝,\mathtt{u}_{1}(\mathtt{s})=\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t})u(\mathtt{t})\mathtt{d}\mathtt{t}, (9)

where

Ξr0(𝚜,𝚝)=1ϱ{(αsinh(r0𝚜)+βr0cosh(r0𝚜))(γsinh(r0(1𝚝))+δr0cosh(r0(1𝚝))),0𝚜𝚝1,(αsinh(r0𝚝)+βr0cosh(r0𝚝))(γsinh(r0(1𝚜))+δr0cosh(r0(1𝚜))),0𝚝𝚜1.\displaystyle\Xi_{r_{0}}(\mathtt{s},\mathtt{t})=\frac{1}{\varrho}\left\{\begin{array}[]{ll}\big{(}\upalpha\sinh(r_{0}\mathtt{s})+\upbeta r_{0}\cosh(r_{0}\mathtt{s})\big{)}\big{(}\upgamma\sinh(r_{0}(1-\mathtt{t}))+\updelta r_{0}\cosh(r_{0}(1-\mathtt{t}))\big{)},\hskip 11.38092pt0\leq\mathtt{s}\leq\mathtt{t}\leq 1,\vspace{1.2mm}\\ \big{(}\upalpha\sinh(r_{0}\mathtt{t})+\upbeta r_{0}\cosh(r_{0}\mathtt{t})\big{)}\big{(}\upgamma\sinh(r_{0}(1-\mathtt{s}))+\updelta r_{0}\cosh(r_{0}(1-\mathtt{s}))\big{)},\hskip 11.38092pt0\leq\mathtt{t}\leq\mathtt{s}\leq 1.\end{array}\right.
Lemma 2

Let =max{βr0αsinh(r0)+βr0cosh(r0),δr0γsinh(r0)+δr0cosh(r0)}.\displaystyle\wp=\max\left\{\frac{\upbeta r_{0}}{\upalpha\sinh(r_{0})+\upbeta r_{0}\cosh(r_{0})},\frac{\updelta r_{0}}{\upgamma\sinh(r_{0})+\updelta r_{0}\cosh(r_{0})}\right\}. The kernel Ξr0(𝚜,𝚝)\Xi_{r_{0}}(\mathtt{s},\mathtt{t}) has the following properties:

  • (i)

    Ξr0(𝚜,𝚝)\Xi_{r_{0}}(\mathtt{s},\mathtt{t}) is nonnegative and continuous on [0,1]×[0,1],[0,1]\times[0,1],

  • (ii)

    Ξr0(𝚜,𝚝)Ξr0(𝚝,𝚝)\Xi_{r_{0}}(\mathtt{s},\mathtt{t})\leq\Xi_{r_{0}}(\mathtt{t},\mathtt{t}) for 𝚜,𝚝[0,1],\mathtt{s},\mathtt{t}\in[0,1],

  • (iii)

    Ξr0(𝚝,𝚝)Ξr0(𝚜,𝚝)\wp\Xi_{r_{0}}(\mathtt{t},\mathtt{t})\leq\Xi_{r_{0}}(\mathtt{s},\mathtt{t}) for 𝚜,𝚝[0,1].\mathtt{s},\mathtt{t}\in[0,1].

Proof

From the definition of kernel Ξr0(𝚜,𝚝),\Xi_{r_{0}}(\mathtt{s},\mathtt{t}), it is clear that (i)(i) holds. To prove (ii),(ii), consider

Ξr0(𝚜,𝚝)Ξr0(𝚝,𝚝)=\displaystyle\frac{\Xi_{r_{0}}(\mathtt{s},\mathtt{t})}{\Xi_{r_{0}}(\mathtt{t},\mathtt{t})}= {αsinh(r0𝚜)+βr0cosh(r0𝚜)αsinh(r0𝚝)+βr0cosh(r0𝚝),0𝚜𝚝1,γsinh(r0(1𝚜))+δr0cosh(r0(1𝚜))γsinh(r0(1𝚝))+δr0cosh(r0(1𝚝)),0𝚝𝚜1,\displaystyle\left\{\begin{array}[]{ll}\displaystyle\frac{\upalpha\sinh(r_{0}\mathtt{s})+\upbeta r_{0}\cosh(r_{0}\mathtt{s})}{\upalpha\sinh(r_{0}\mathtt{t})+\upbeta r_{0}\cosh(r_{0}\mathtt{t})},\hskip 58.18582pt0\leq\mathtt{s}\leq\mathtt{t}\leq 1,\vspace{1.2mm}\\ \displaystyle\frac{\upgamma\sinh(r_{0}(1-\mathtt{s}))+\updelta r_{0}\cosh(r_{0}(1-\mathtt{s}))}{\upgamma\sinh(r_{0}(1-\mathtt{t}))+\updelta r_{0}\cosh(r_{0}(1-\mathtt{t}))},\hskip 11.38092pt0\leq\mathtt{t}\leq\mathtt{s}\leq 1,\end{array}\right.
\displaystyle\leq {1,0𝚜𝚝1,1,0𝚝𝚜1,\displaystyle\left\{\begin{array}[]{ll}\displaystyle 1,\hskip 172.13925pt0\leq\mathtt{s}\leq\mathtt{t}\leq 1,\vspace{1.2mm}\\ 1,\hskip 172.13925pt0\leq\mathtt{t}\leq\mathtt{s}\leq 1,\end{array}\right.

which proves (ii).(ii). Finally for (iii),(iii), consider

Ξr0(𝚜,𝚝)Ξr0(𝚝,𝚝)=\displaystyle\frac{\Xi_{r_{0}}(\mathtt{s},\mathtt{t})}{\Xi_{r_{0}}(\mathtt{t},\mathtt{t})}= {αsinh(r0𝚜)+βr0cosh(r0𝚜)αsinh(r0𝚝)+βr0cosh(r0𝚝),0𝚜𝚝1,γsinh(r0(1𝚜))+δr0cosh(r0(1𝚜))γsinh(r0(1𝚝))+δr0cosh(r0(1𝚝)),0𝚝𝚜1,\displaystyle\left\{\begin{array}[]{ll}\displaystyle\frac{\upalpha\sinh(r_{0}\mathtt{s})+\upbeta r_{0}\cosh(r_{0}\mathtt{s})}{\upalpha\sinh(r_{0}\mathtt{t})+\upbeta r_{0}\cosh(r_{0}\mathtt{t})},\hskip 69.70915pt0\leq\mathtt{s}\leq\mathtt{t}\leq 1,\vspace{1.2mm}\\ \displaystyle\frac{\upgamma\sinh(r_{0}(1-\mathtt{s}))+\updelta r_{0}\cosh(r_{0}(1-\mathtt{s}))}{\upgamma\sinh(r_{0}(1-\mathtt{t}))+\updelta r_{0}\cosh(r_{0}(1-\mathtt{t}))},\hskip 22.76228pt0\leq\mathtt{t}\leq\mathtt{s}\leq 1,\end{array}\right.
\displaystyle\geq {βr0αsinh(r0)+βr0cosh(r0),0𝚜𝚝1,δr0γsinh(r0)+δr0cosh(r0),0𝚝𝚜1.\displaystyle\left\{\begin{array}[]{ll}\displaystyle\frac{\upbeta r_{0}}{\upalpha\sinh(r_{0})+\upbeta r_{0}\cosh(r_{0})},\hskip 80.23697pt0\leq\mathtt{s}\leq\mathtt{t}\leq 1,\vspace{1.2mm}\\ \displaystyle\frac{\updelta r_{0}}{\upgamma\sinh(r_{0})+\updelta r_{0}\cosh(r_{0})},\hskip 81.65926pt0\leq\mathtt{t}\leq\mathtt{s}\leq 1.\end{array}\right.

This completes the proof. ∎

From Lemma 1, we note that an 𝚗\mathtt{n}-tuple (𝚞1,𝚞2,,𝚞𝚗)(\mathtt{u}_{1},\mathtt{u}_{2},\cdot\cdot\cdot,\mathtt{u}_{\mathtt{n}}) is a solution of the boundary value problem (5)–(6) if and only, if

𝚞1(𝚜)=\displaystyle\mathtt{u}_{1}(\mathtt{s})= 01Ξr0(𝚜,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle\,\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1.\displaystyle\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}.

In general,

𝚞ι˙(𝚜)=\displaystyle\mathtt{u}_{\dot{\iota}}(\mathtt{s})= 01Ξr0(𝚜,s)(s)𝚐ι˙(𝚞ι˙+1(s))𝑑s,ι˙=1,2,3,,𝚗,\displaystyle\,\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},s)\ell(s)\mathtt{g}_{\dot{\iota}}\big{(}\mathtt{u}_{{\dot{\iota}}+1}(s)\big{)}ds,~{}{\dot{\iota}}=1,2,3,\cdot\cdot\cdot,{\mathtt{n}},
𝚞1(𝚜)=\displaystyle\mathtt{u}_{1}(\mathtt{s})= 𝚞𝚗+1(𝚜).\displaystyle\,\mathtt{u}_{\mathtt{n}+1}(\mathtt{s}).

We denote the Banach space 𝙲((0,1),)\mathtt{C}((0,1),\mathbb{R}) by 𝙱\mathtt{B} with the norm 𝚞=max𝚜[0,1]|𝚞(𝚜)|.\|\mathtt{u}\|=\displaystyle\max_{\mathtt{s}\in[0,1]}|\mathtt{u}(\mathtt{s})|. The cone 𝙴𝙱\mathtt{E}\subset\mathtt{B} is defined by

𝙴={𝚞𝙱:𝚞(𝚜)0on[0,1]andmin𝚜[0, 1]𝚞(𝚜)𝚞}.\mathtt{E}=\Big{\{}\mathtt{u}\in\mathtt{B}:\mathtt{u}(\mathtt{s})\geq 0~{}\text{on}~{}[0,1]~{}\text{and}~{}\min_{\mathtt{s}\in{[0,\,1]}}\mathtt{u}(\mathtt{s})\geq\wp\|\mathtt{u}\|\Big{\}}.

For any 𝚞1𝙴,\mathtt{u}_{1}\in\mathtt{E}, define an operator :𝙴𝙱\aleph:\mathtt{E}\rightarrow\mathtt{B} by

(𝚞1)(𝚜)=\displaystyle(\aleph\mathtt{u}_{1})(\mathtt{s})= 01Ξr0(𝚜,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle\,\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1.\displaystyle\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}. (10)
Lemma 3

(𝙴)𝙴\aleph(\mathtt{E})\subset\mathtt{E} and :𝙴𝙴\aleph:\mathtt{E}\rightarrow\mathtt{E} is completely continuous.

Proof

Since 𝚐ι˙(𝚞ι˙+1(𝚜))\mathtt{g}_{\dot{\iota}}(\mathtt{u}_{{\dot{\iota}}+1}(\mathtt{s})) is nonnegative for 𝚜[0,1],\mathtt{s}\in[0,1], 𝚞1𝙴.\mathtt{u}_{1}\in\mathtt{E}. Since Ξr0(𝚜,s),\Xi_{r_{0}}(\mathtt{s},s), is nonnegative for all 𝚜,𝚝[0,1],\mathtt{s},\mathtt{t}\in[0,1], it follows that (𝚞1(𝚜))0\aleph(\mathtt{u}_{1}(\mathtt{s}))\geq 0 for all 𝚜[0,1],𝚞1𝙴.\mathtt{s}\in[0,1],\,\mathtt{u}_{1}\in\mathtt{E}. Now, by Lemma 1 and 2, we have

min𝚜[0,1](𝚞1)(𝚜)\displaystyle\min_{\mathtt{s}\in[0,1]}(\aleph\mathtt{u}_{1})(\mathtt{s}) =min𝚜[0,1]{01Ξr0(𝚜,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle=\,\min_{\mathtt{s}\in[0,1]}\Bigg{\{}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1}\displaystyle\hskip 39.83368pt\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}\Bigg{\}}
{01Ξr0(𝚝1,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle\geq\wp\Bigg{\{}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1}\displaystyle\hskip 39.83368pt\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}\Bigg{\}}
{01Ξr0(𝚜,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle\geq\wp\Bigg{\{}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1}\displaystyle\hskip 39.83368pt\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}\Bigg{\}}
max𝚜[0,1]|𝚞1(𝚜)|.\displaystyle\geq\wp\,\max_{\mathtt{s}\in[0,1]}\,|\aleph\mathtt{u}_{1}(\mathtt{s})|.

Thus (𝙴)𝙴.\aleph(\mathtt{E})\subset\mathtt{E}. Therefore, by the means of Arzela-Ascoli theorem, the operator \aleph is completely continuous. ∎

3 Existence of at Least One Positive Radial Solution

In this section, we establish the existence of at least one positive radial solution for the system (5)–(6) by an application of following theorems.

Theorem 3.1

guo Let 𝙴\mathtt{E} be a cone in a Banach space 𝙱\mathtt{B} and let 𝙶,𝙵\mathtt{G},\,\mathtt{F} be open sets with 0𝙶,𝙶¯𝙵.0\in\mathtt{G},\overline{\mathtt{G}}\subset\mathtt{F}. Let :𝙴(𝙵¯\𝙶)𝙴\aleph:\mathtt{E}\cap(\overline{\mathtt{F}}\backslash\mathtt{G})\rightarrow\mathtt{E} be a completely continuous operator such that

  • (i)

    𝚞𝚞,𝚞𝙴𝙶,\|\aleph\mathtt{u}\|\geq\|\mathtt{u}\|,\,\mathtt{u}\in\mathtt{E}\cap\partial\mathtt{G}, and 𝚞𝚞,𝚞𝙴𝙵,\|\aleph\mathtt{u}\|\leq\|\mathtt{u}\|,\,\mathtt{u}\in\mathtt{E}\cap\partial\mathtt{F}, or

  • (ii)

    𝚞𝚞,𝚞𝙴𝙶,\|\aleph\mathtt{u}\|\leq\|\mathtt{u}\|,\,\mathtt{u}\in\mathtt{E}\cap\partial\mathtt{G}, and 𝚞𝚞,𝚞𝙴𝙵.\|\aleph\mathtt{u}\|\geq\|\mathtt{u}\|,\,\mathtt{u}\in\mathtt{E}\cap\partial\mathtt{F}.

Then \aleph has a fixed point in 𝙴(𝙵¯\𝙴).\mathtt{E}\cap(\overline{\mathtt{F}}\backslash\mathtt{E}).

Theorem 3.2

(Hölder’s) Let 𝚏L𝚙i[0,1]\mathtt{f}\in L^{\mathtt{p}_{i}}[0,1] with 𝚙i>1,\mathtt{p}_{i}>1, for i=1,2,,ni=1,2,\cdots,n and i=1m1𝚙i=1.\displaystyle\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}=1. Then i=1m𝚏iL1[0,1]\prod_{i=1}^{m}\mathtt{f}_{i}\in L^{1}[0,1] and i=1m𝚏i1i=1m𝚏i𝚙i.\left\|\prod_{i=1}^{m}\mathtt{f}_{i}\right\|_{1}\leq\prod_{i=1}^{m}\|\mathtt{f}_{i}\|_{\mathtt{p}_{i}}. Further, if 𝚏L1[0,1]\mathtt{f}\in L^{1}[0,1] and 𝚐L[0,1].\mathtt{g}\in L^{\infty}[0,1]. Then 𝚏𝚐L1[0,1]\mathtt{fg}\in L^{1}[0,1] and 𝚏𝚐1𝚏1𝚐.\|\mathtt{fg}\|_{1}\leq\|\mathtt{f}\|_{1}\|\mathtt{g}\|_{\infty}.

Consider the following three possible cases for iL𝚙i[0,1]:\ell_{i}\in L^{\mathtt{p}_{i}}[0,1]:

i=1m1𝚙i<1,i=1m1𝚙i=1,i=1m1𝚙i>1.\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}<1,~{}\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}=1,~{}\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}>1.

Firstly, we seek positive radial solutions for the case i=1m1𝚙i<1.\displaystyle\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}<1.

Theorem 3.3

Suppose (𝒥1)(\mathcal{J}_{1})(𝒥3)(\mathcal{J}_{3}) hold. Further, assume that there exist two positive constants a2>a1>0a_{2}>a_{1}>0 such that

  • (𝒥4)(\mathcal{J}_{4})

    𝚐ι˙(𝚞(𝚜))𝔔2a2\mathtt{g}_{\dot{\iota}}(\mathtt{u}(\mathtt{s}))\leq\mathfrak{Q}_{2}a_{2} for all 0𝚜1, 0𝚞a2,0\leq\mathtt{s}\leq 1,\,0\leq\mathtt{u}\leq a_{2}, where 𝔔2=[r02(𝙽2)2Ξ^r0𝚚i=1mi𝚙i]1\displaystyle\mathfrak{Q}_{2}=\left[\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\mathtt{q}}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}}\right]^{-1} and Ξ^r0(𝚝)=Ξr0(𝚝,𝚝)𝚝2(𝙽1)2𝙽.\widehat{\Xi}_{r_{0}}(\mathtt{t})=\Xi_{r_{0}}(\mathtt{t},\mathtt{t})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}.

  • (𝒥5)(\mathcal{J}_{5})

    𝚐ι˙(𝚞(𝚜))𝔔1a1\mathtt{g}_{\dot{\iota}}(\mathtt{u}(\mathtt{s}))\geq\mathfrak{Q}_{1}a_{1} for all 0𝚜1, 0𝚞a1,0\leq\mathtt{s}\leq 1,\,0\leq\mathtt{u}\leq a_{1}, where 𝔔1=[r02(𝙽2)2i=1mi01Ξr0(𝚝,𝚝)𝚝2(𝙽1)2𝙽𝚍𝚝]1.\displaystyle\mathfrak{Q}_{1}=\left[\frac{\wp r_{0}^{2}}{(\mathtt{N}-2)^{2}}\prod_{i=1}^{m}\ell_{i}^{\star}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t},\mathtt{t})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}\mathtt{d}\mathtt{t}\right]^{-1}.

Then iterative system (5)–(6) has atleast one positive radial solution (𝚞1,𝚞2,,𝚞𝚗)(\mathtt{u}_{1},\mathtt{u}_{2},\cdot\cdot\cdot,\mathtt{u}_{\mathtt{n}}) such that a1𝚞ι˙a2,ι˙=1,2,,𝚗.a_{1}\leq\|\mathtt{u}_{\dot{\iota}}\|\leq a_{2},\,{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}.

Proof

Let 𝙶={𝚞𝙱:𝚞<a2}.\mathtt{G}=\{\mathtt{u}\in\mathtt{B}:\|\mathtt{u}\|<a_{2}\}. For 𝚞1𝙶,\mathtt{u}_{1}\in\partial\mathtt{G}, we have 0𝚞a20\leq\mathtt{u}\leq a_{2} for all 𝚜[0,1].\mathtt{s}\in[0,1]. It follows from (𝒥4)(\mathcal{J}_{4}) that for 𝚝𝚗1[0,1],\mathtt{t}_{\mathtt{n}-1}\in[0,1],

01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}} 01Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\leq\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}
𝔔2a201Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚍𝚝𝚗\displaystyle\leq\mathfrak{Q}_{2}a_{2}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}
𝔔2a2r02(𝙽2)201Ξr0(𝚝𝚗,𝚝𝚗)𝚝𝚗2(𝙽1)2𝙽i=1mi(𝚝𝚗)𝚍𝚝𝚗.\displaystyle\leq\mathfrak{Q}_{2}a_{2}\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}}\prod_{i=1}^{m}\ell_{i}(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}.

There exists a 𝚚>1\mathtt{q}>1 such that i=1m1𝚙i+1𝚚=1.\displaystyle\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}+\frac{1}{\mathtt{q}}=1. By the first part of Theorem 3.2, we have

01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}} 𝔔2a2r02(𝙽2)2Ξ^r0𝚚i=1mi𝚙i\displaystyle\leq\mathfrak{Q}_{2}a_{2}\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\mathtt{q}}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}}
a2.\displaystyle\leq a_{2}.

It follows in similar manner for 0<𝚝𝚗2<1,0<\mathtt{t}_{\mathtt{n}-2}<1,

01Ξr0(𝚝𝚗2,𝚝𝚗1)(𝚝𝚗1)𝚐𝚗1\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-2},\mathtt{t}_{\mathtt{n}-1})\ell(\mathtt{t}_{\mathtt{n}-1})\mathtt{g}_{\mathtt{n}-1} [01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]𝚍𝚝𝚗1\displaystyle\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
01Ξr0(𝚝𝚗1,𝚝𝚗1)(𝚝𝚗1)𝚐𝚗1(a2)𝚍𝚝𝚗1\displaystyle\leq\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}-1})\ell(\mathtt{t}_{\mathtt{n}-1})\mathtt{g}_{\mathtt{n}-1}(a_{2})\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
𝔔2a201Ξr0(𝚝𝚗1,𝚝𝚗1)(𝚝𝚗1)𝚍𝚝𝚗1\displaystyle\leq\mathfrak{Q}_{2}a_{2}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}-1})\ell(\mathtt{t}_{\mathtt{n}-1})\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
𝔔2a2r02(𝙽2)2Ξ^r0𝚚i=1mi𝚙i\displaystyle\leq\mathfrak{Q}_{2}a_{2}\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\mathtt{q}}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}}
a2.\displaystyle\leq a_{2}.

Continuing with this bootstrapping argument, we reach

(𝚞1)(t)=\displaystyle(\aleph\mathtt{u}_{1})(t)= 01Ξr0(𝚜,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle\,\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1\displaystyle\hskip 28.45274pt\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}
\displaystyle\leq a2.\displaystyle\,a_{2}.

Since 𝙶=𝚞1\mathtt{G}=\|\mathtt{u}_{1}\| for 𝚞1𝙴𝙶,\mathtt{u}_{1}\in\mathtt{E}\cap\partial{\mathtt{G}}, we get

𝚞1𝚞1.\|\aleph\mathtt{u}_{1}\|\leq\|\mathtt{u}_{1}\|. (11)

Next, let 𝙵={𝚞𝙱:𝚞<a1}.\mathtt{F}=\{\mathtt{u}\in\mathtt{B}:\|\mathtt{u}\|<a_{1}\}. For 𝚞1𝙵,\mathtt{u}_{1}\in\partial\mathtt{F}, we have 0𝚞a10\leq\mathtt{u}\leq a_{1} for all 𝚜[0,1].\mathtt{s}\in[0,1]. It follows from (𝒥5)(\mathcal{J}_{5}) that for 𝚝𝚗1[0,1],\mathtt{t}_{\mathtt{n}-1}\in[0,1],

01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}} 01Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\geq\wp\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}
𝔔1a101Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚍𝚝𝚗\displaystyle\geq\wp\mathfrak{Q}_{1}a_{1}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}
𝔔1a1r02(𝙽2)201Ξr0(𝚝𝚗,𝚝𝚗)𝚝𝚗2(𝙽1)2𝙽i=1mi(𝚝𝚗)𝚍𝚝𝚗\displaystyle\geq\mathfrak{Q}_{1}a_{1}\frac{\wp r_{0}^{2}}{(\mathtt{N}-2)^{2}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}}\prod_{i=1}^{m}\ell_{i}(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}
𝔔1a1r02(𝙽2)2i=1mi01Ξr0(𝚝𝚗,𝚝𝚗)𝚝𝚗2(𝙽1)2𝙽𝚍𝚝𝚗\displaystyle\geq\mathfrak{Q}_{1}a_{1}\frac{\wp r_{0}^{2}}{(\mathtt{N}-2)^{2}}\prod_{i=1}^{m}\ell_{i}^{\star}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}}\mathtt{d}\mathtt{t}_{\mathtt{n}}
a1.\displaystyle\geq a_{1}.

It follows in similar manner for 0<𝚝𝚗2<1,0<\mathtt{t}_{\mathtt{n}-2}<1,

01Ξr0(𝚝𝚗2,𝚝𝚗1)(𝚝𝚗1)𝚐𝚗1\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-2},\mathtt{t}_{\mathtt{n}-1})\ell(\mathtt{t}_{\mathtt{n}-1})\mathtt{g}_{\mathtt{n}-1} [01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]𝚍𝚝𝚗1\displaystyle\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
01Ξr0(𝚝𝚗1,𝚝𝚗1)(𝚝𝚗1)𝚐𝚗1(a1)𝚍𝚝𝚗1\displaystyle\geq\wp\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}-1})\ell(\mathtt{t}_{\mathtt{n}-1})\mathtt{g}_{\mathtt{n}-1}(a_{1})\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
𝔔1a101Ξr0(𝚝𝚗1,𝚝𝚗1)(𝚝𝚗1)𝚍𝚝𝚗1\displaystyle\geq\wp\mathfrak{Q}_{1}a_{1}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}-1})\ell(\mathtt{t}_{\mathtt{n}-1})\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
𝔔1a1r02(𝙽2)201Ξr0(𝚝𝚗1,𝚝𝚗1)𝚝𝚗12(𝙽1)2𝙽i=1mi(𝚝𝚗1)𝚍𝚝𝚗1\displaystyle\geq\mathfrak{Q}_{1}a_{1}\frac{\wp r_{0}^{2}}{(\mathtt{N}-2)^{2}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}-1})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}-1}\prod_{i=1}^{m}\ell_{i}(\mathtt{t}_{\mathtt{n}-1})\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
𝔔1a1r02(𝙽2)2i=1mi01Ξr0(𝚝𝚗1,𝚝𝚗1)𝚝𝚗12(𝙽1)2𝙽𝚍𝚝𝚗1\displaystyle\geq\mathfrak{Q}_{1}a_{1}\frac{\wp r_{0}^{2}}{(\mathtt{N}-2)^{2}}\prod_{i=1}^{m}\ell_{i}^{\star}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}-1})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}-1}\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
a1.\displaystyle\geq a_{1}.

Continuing with bootstrapping argument, we get

(𝚞1)(𝚜)=\displaystyle(\aleph\mathtt{u}_{1})(\mathtt{s})= 01Ξr0(𝚜,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle\,\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1\displaystyle\hskip 17.07182pt\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}
\displaystyle\geq a1.\displaystyle\,a_{1}.

Thus, for 𝚞1𝙴𝙵,\mathtt{u}_{1}\in\mathtt{E}\cap\partial\mathtt{F}, we have

𝚞1𝚞1.\|\aleph\mathtt{u}_{1}\|\geq\|\mathtt{u}_{1}\|. (12)

It is clear that 0𝙵𝙵¯𝙶.0\in\mathtt{F}\subset\overline{\mathtt{F}}\subset\mathtt{G}. It follows from (11), (12) and Theorem 3.1 that the operator \aleph has a fixed point 𝚞1𝙴(𝙶¯\𝙵)\mathtt{u}_{1}\in\mathtt{E}\cap\big{(}\overline{\mathtt{G}}\backslash\mathtt{F}\big{)} such that 𝚞1(𝚜)0\mathtt{u}_{1}(\mathtt{s})\geq 0 on (0,1).(0,1). Next setting 𝚞𝚗+1=𝚞1,\mathtt{u}_{\mathtt{n}+1}=\mathtt{u}_{1}, we obtain infinitely many positive solutions (𝚞1,𝚞2,,𝚞𝚗)(\mathtt{u}_{1},\mathtt{u}_{2},\cdot\cdot\cdot,\mathtt{u}_{\mathtt{n}}) of (5)–(6) given iteratively by

𝚞ι˙(𝚜)\displaystyle\mathtt{u}_{\dot{\iota}}(\mathtt{s}) =01Ξr0(𝚜,s)(s)𝚐ι˙(𝚞ι˙+1(s))𝑑s,ι˙=1,2,,𝚗1,𝚗,\displaystyle=\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},s)\ell(s)\mathtt{g}_{{\dot{\iota}}}(\mathtt{u}_{{\dot{\iota}}+1}(s))ds,\,{\dot{\iota}}=1,2,\cdot\cdot\cdot,{\mathtt{n}}-1,\mathtt{n},
𝚞𝚗+1(𝚜)\displaystyle\mathtt{u}_{\mathtt{n}+1}(\mathtt{s}) =𝚞1(𝚜),𝚜(0,1).\displaystyle=\mathtt{u}_{1}(\mathtt{s}),\,\mathtt{s}\in(0,1).

This completes the proof.∎

For i=1m1𝚙i=1\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}=1 and i=1m1𝚙i>1,\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}>1, we have following results.

Theorem 3.4

Suppose (𝒥1)(\mathcal{J}_{1})(𝒥3)(\mathcal{J}_{3}) hold. Further, assume that there exist two positive constants b2>b1>0b_{2}>b_{1}>0 such that 𝚐ι˙(ι˙=1,2,,𝚗)\mathtt{g}_{\dot{\iota}}\,({\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}) satisfies (𝒥5)(\mathcal{J}_{5}) and

  • (𝒥6)(\mathcal{J}_{6})

    𝚐ι˙(𝚞(𝚜))𝔑2b2\mathtt{g}_{\dot{\iota}}(\mathtt{u}(\mathtt{s}))\leq\mathfrak{N}_{2}b_{2} for all 0𝚜1, 0𝚞b2,0\leq\mathtt{s}\leq 1,\,0\leq\mathtt{u}\leq b_{2}, where 𝔑2=[r02(𝙽2)2Ξ^r0i=1mi𝚙i]1\displaystyle\mathfrak{N}_{2}=\left[\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\infty}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}}\right]^{-1} and Ξ^r0(𝚝)=Ξr0(𝚝,𝚝)𝚝2(𝙽1)2𝙽.\widehat{\Xi}_{r_{0}}(\mathtt{t})=\Xi_{r_{0}}(\mathtt{t},\mathtt{t})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}.

Then iterative system (5)–(6) has atleast one positive radial solution (𝚞1,𝚞2,,𝚞𝚗)(\mathtt{u}_{1},\mathtt{u}_{2},\cdot\cdot\cdot,\mathtt{u}_{\mathtt{n}}) such that b1𝚞ι˙b2,ι˙=1,2,,𝚗.b_{1}\leq\|\mathtt{u}_{\dot{\iota}}\|\leq b_{2},\,{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}.

Theorem 3.5

Suppose (𝒥1)(\mathcal{J}_{1})(𝒥3)(\mathcal{J}_{3}) hold. Further, assume that there exist two positive constants c2>c1>0c_{2}>c_{1}>0 such that 𝚐ι˙(ι˙=1,2,,𝚗)\mathtt{g}_{\dot{\iota}}\,({\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}) satisfies (𝒥5)(\mathcal{J}_{5}) and

  • (𝒥7)(\mathcal{J}_{7})

    𝚐ι˙(𝚞(𝚜))𝔐2c2\mathtt{g}_{\dot{\iota}}(\mathtt{u}(\mathtt{s}))\leq\mathfrak{M}_{2}c_{2} for all 0𝚜1, 0𝚞c2,0\leq\mathtt{s}\leq 1,\,0\leq\mathtt{u}\leq c_{2}, where 𝔐2=[r02(𝙽2)2Ξ^r0i=1mi1]1\displaystyle\mathfrak{M}_{2}=\left[\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\infty}\prod_{i=1}^{m}\|\ell_{i}\|_{1}\right]^{-1} and Ξ^r0(𝚝)=Ξr0(𝚝,𝚝)𝚝2(𝙽1)2𝙽.\widehat{\Xi}_{r_{0}}(\mathtt{t})=\Xi_{r_{0}}(\mathtt{t},\mathtt{t})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}.

Then iterative system (5)–(6) has atleast one positive radial solution (𝚞1,𝚞2,,𝚞𝚗)(\mathtt{u}_{1},\mathtt{u}_{2},\cdot\cdot\cdot,\mathtt{u}_{\mathtt{n}}) such that c1𝚞ι˙c2,ι˙=1,2,,𝚗.c_{1}\leq\|\mathtt{u}_{\dot{\iota}}\|\leq c_{2},\,{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}.

Example 1

Consider the following nonlinear elliptic system of equations,

𝚞ι˙+(𝙽2)2r02𝙽2|x|2𝙽2𝚞ι˙+(|x|)𝚐ι˙(𝚞ι˙+1)=0,1<|x|<3,\triangle{\mathtt{u}_{{\dot{\iota}}}}+\frac{(\mathtt{N}-2)^{2}r_{0}^{2\mathtt{N}-2}}{|x|^{2\mathtt{N}-2}}\mathtt{u}_{\dot{\iota}}+\ell(|x|)\mathtt{g}_{{\dot{\iota}}}(\mathtt{u}_{{\dot{\iota}}+1})=0,~{}1<|x|<3, (13)
𝚞ι˙=0on|x|=1and|x|=3,𝚞ι˙=0on|x|=1and𝚞ι˙r=0on|x|=3,𝚞ι˙r=0on|x|=1and𝚞ι˙=0on|x|=3,}\left.\begin{aligned} &\hskip 25.6073pt\mathtt{u}_{{\dot{\iota}}}=0~{}~{}\text{on}~{}~{}|x|=1~{}\text{and}~{}|x|=3,\\ &\mathtt{u}_{{\dot{\iota}}}=0~{}~{}\text{on}~{}~{}|x|=1~{}\text{and}~{}\frac{\partial\mathtt{u}_{\dot{\iota}}}{\partial r}=0~{}\text{on}~{}|x|=3,\\ &\frac{\partial\mathtt{u}_{\dot{\iota}}}{\partial r}=0~{}~{}\text{on}~{}~{}|x|=1~{}\text{and}~{}\mathtt{u}_{{\dot{\iota}}}=0~{}\text{on}~{}|x|=3,\end{aligned}\right\} (14)

where r0=1,r_{0}=1, 𝙽=3,\mathtt{N}=3, ι˙{1,2},𝚞3=𝚞1,{\dot{\iota}}\in\{1,2\},\,\mathtt{u}_{3}=\mathtt{u}_{1}, (𝚜)=1𝚜4i=12i(𝚜),\ell(\mathtt{s})=\frac{1}{\mathtt{s}^{4}}\prod_{i=1}^{2}\ell_{i}(\mathtt{s}), i(𝚜)=i(1𝚜),\ell_{i}(\mathtt{s})=\ell_{i}\left(\frac{1}{\mathtt{s}}\right), in which

1(t)=1t2+1 and 2(t)=1t+2,\ell_{1}(t)=\frac{1}{t^{2}+1}~{}~{}~{}~{}\text{~{}~{}and~{}~{}}~{}~{}~{}~{}\ell_{2}(t)=\frac{1}{\sqrt{t+2}},

then it is clear that

1,2L𝚙[0,1] and i=12i=2.\ell_{1},\ell_{2}\in L^{\mathtt{p}}[0,1]~{}~{}\text{~{}~{}and~{}~{}}\prod_{i=1}^{2}\ell_{i}^{*}=\sqrt{2}.

Let 𝚐1(𝚞)=𝚐2(𝚞)=1+15cos(1+𝚞)+11+𝚞.\mathtt{g}_{1}(\mathtt{u})=\mathtt{g}_{2}(\mathtt{u})=1+\frac{1}{5}\cos(1+\mathtt{u})+\frac{1}{1+\mathtt{u}}. Let α=β=γ=δ=1,\upalpha=\upbeta=\gamma=\updelta=1, ϱ=2cosh(1)+2sinh(1)5.436563658,\varrho=2\cosh(1)+2\sinh(1)\approx 5.436563658,

Ξr0(𝚜,𝚝)=12cosh(1)+2sinh(1){(sinh(𝚜)+cosh(𝚜))(sinh(1𝚝)+cosh(1𝚝)),0𝚜𝚝1,(sinh(𝚝)+cosh(𝚝))(sinh(1𝚜)+cosh(1𝚜)),0𝚝𝚜1,\displaystyle\Xi_{r_{0}}(\mathtt{s},\mathtt{t})=\frac{1}{2\cosh(1)+2\sinh(1)}\left\{\begin{array}[]{ll}\big{(}\sinh(\mathtt{s})+\cosh(\mathtt{s})\big{)}\big{(}\sinh(1-\mathtt{t})+\cosh(1-\mathtt{t})\big{)},\hskip 17.07182pt0\leq\mathtt{s}\leq\mathtt{t}\leq 1,\vspace{1.2mm}\\ \big{(}\sinh(\mathtt{t})+\cosh(\mathtt{t})\big{)}\big{(}\sinh(1-\mathtt{s})+\cosh(1-\mathtt{s})\big{)},\hskip 17.07182pt0\leq\mathtt{t}\leq\mathtt{s}\leq 1,\end{array}\right.

and =1sinh(1)+cosh(1).\wp=\frac{1}{\sinh(1)+\cosh(1)}. Also,

𝔔1=[r02(𝙽2)2i=1mi01Ξr0(𝚝,𝚝)𝚝2(𝙽1)2𝙽𝚍𝚝]10.1153270463×104.\displaystyle\mathfrak{Q}_{1}=\left[\frac{\wp r_{0}^{2}}{(\mathtt{N}-2)^{2}}\prod_{i=1}^{m}\ell_{i}^{\star}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t},\mathtt{t})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}\mathtt{d}\mathtt{t}\right]^{-1}\approx 0.1153270463\times 10^{-4}.

Let 𝚙1=2,𝚙2=3\mathtt{p}_{1}=2,\mathtt{p}_{2}=3 and 𝚚=6,\mathtt{q}=6, then 1𝚙1+1𝚙2+1𝚚=1\frac{1}{\mathtt{p}_{1}}+\frac{1}{\mathtt{p}_{2}}+\frac{1}{\mathtt{q}}=1 and

𝔔2=[r02(𝙽2)2Ξ^r0𝚚i=1mi𝚙i]10.4577977612×107.\displaystyle\mathfrak{Q}_{2}=\left[\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\mathtt{q}}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}}\right]^{-1}\approx 0.4577977612\times 10^{-7}.

Choose a1=103a_{1}=10^{3} and a2=108.a_{2}=10^{8}. Then,

𝚐1(𝚞)=𝚐2(𝚞)\displaystyle\mathtt{g}_{1}(\mathtt{u})=\mathtt{g}_{2}(\mathtt{u}) =1+15cos(1+𝚞)+11+𝚞4.577977612=𝔔2a2,𝚞[0,108],\displaystyle\,=1+\frac{1}{5}\cos(1+\mathtt{u})+\frac{1}{1+\mathtt{u}}\leq 4.577977612=\mathfrak{Q}_{2}a_{2},\,\mathtt{u}\in[0,10^{8}],
𝚐1(𝚞)=𝚐2(𝚞)\displaystyle\mathtt{g}_{1}(\mathtt{u})=\mathtt{g}_{2}(\mathtt{u}) =1+15cos(1+𝚞)+11+𝚞0.011532704=𝔔1a1,𝚞[0,103].\displaystyle\,=1+\frac{1}{5}\cos(1+\mathtt{u})+\frac{1}{1+\mathtt{u}}\geq 0.011532704=\mathfrak{Q}_{1}a_{1},\,\mathtt{u}\in[0,10^{3}].

Therefore, by Theorem 3.3, the boundary value problem (13)–(14) has at least one positive solution (𝚞1,𝚞2)(\mathtt{u}_{1},\mathtt{u}_{2}) such that 103𝚞ι˙10810^{3}\leq\|\mathtt{u}_{\dot{\iota}}\|\leq 10^{8} for ι˙=1,2.{\dot{\iota}}=1,2.

4 Existence of at Least Two Positive Radial Solutions

In this section, we establish the existence of at least two positive radial solutions for the system (5)–(6) by an application of following Avery-Henderson fixed point theorem.

Let ψ\uppsi be a nonnegative continuous functional on a cone 𝙴\mathtt{E} of the real Banach space .\mathcal{B}. Then for a positive real numbers aa^{\prime} and c,c^{\prime}, we define the sets

𝙴(ψ,c)={𝚞𝙴:ψ(𝚞)<c},\mathtt{E}(\uppsi,c^{\prime})=\{\mathtt{u}\in\mathtt{E}:\uppsi(\mathtt{u})<c^{\prime}\},

and

𝙴a={𝚞𝙴:𝚞<a}.\mathtt{E}_{a^{\prime}}=\{\mathtt{u}\in\mathtt{E}:\|\mathtt{u}\|<a^{\prime}\}.
Theorem 4.1

(Avery-Hendersonavery ) Let 𝙴\mathtt{E} be a cone in a real Banach space 𝙱.\mathtt{B}. Suppose ß1\ss_{1} and ß2\ss_{2} are increasing, nonnegative continuous functionals on 𝙴\mathtt{E} and ß3\ss_{3} is nonnegative continuous functional on 𝙴\mathtt{E} with ß3(0)=0\ss_{3}(0)=0 such that, for some positive numbers cc^{\prime} and k,k, ß2(𝚞)ß3(𝚞)ß1(𝚞)\ss_{2}(\mathtt{u})\leq\ss_{3}(\mathtt{u})\leq\ss_{1}(\mathtt{u}) and 𝚞kß2(𝚞),\|\mathtt{u}\|\leq k\ss_{2}(\mathtt{u}), for all 𝚞𝙴(ß2,c)¯.\mathtt{u}\in\overline{\mathtt{E}(\ss_{2},c^{\prime})}. Suppose that there exist positive numbers aa^{\prime} and bb^{\prime} with a<b<ca^{\prime}<b^{\prime}<c^{\prime} such that ß3(λ𝚞)λß3(𝚞),\ss_{3}(\uplambda\mathtt{u})\leq\uplambda\ss_{3}(\mathtt{u}), for all 0λ10\leq\uplambda\leq 1 and 𝚞𝙴(ß3,b).\mathtt{u}\in\partial\mathtt{E}(\ss_{3},b^{\prime}). Further, let :𝙴(ß2,c)¯𝙴\aleph:\overline{\mathtt{E}(\ss_{2},c^{\prime})}\to\mathtt{E} be a completely continuous operator such that

  • (a)(a)

    ß2(𝚞)>c,\ss_{2}(\aleph\mathtt{u})>c^{\prime}, for all 𝚞𝙴(ß2,c),\mathtt{u}\in\partial\mathtt{E}(\ss_{2},c^{\prime}),

  • (b)(b)

    ß3(𝚞)<b,\ss_{3}(\aleph\mathtt{u})<b^{\prime}, for all 𝚞𝙴(ß3,b),\mathtt{u}\in\partial\mathtt{E}(\ss_{3},b^{\prime}),

  • (c)(c)

    𝙴(ß1,a)\mathtt{E}(\ss_{1},a^{\prime})\neq\emptyset and ß1(𝚞)>a,\ss_{1}(\aleph\mathtt{u})>a^{\prime}, for all 𝙴(ß1,a).\partial\mathtt{E}(\ss_{1},a^{\prime}).

Then, \aleph has at least two fixed points 𝚞1,𝚞2𝙿(ß2,c){}^{1}\mathtt{u},{}^{2}\mathtt{u}\in\mathtt{P}(\ss_{2},c^{\prime}) such that a<ß1(𝚞1)a^{\prime}<\ss_{1}({}^{1}\mathtt{u}) with ß3(𝚞1)<b\ss_{3}({}^{1}\mathtt{u})<b^{\prime} and b<ß3(𝚞2)b^{\prime}<\ss_{3}({}^{2}\mathtt{u}) with ß2(𝚞2)<c.\ss_{2}({}^{2}\mathtt{u})<c^{\prime}.

Define the nonnegative, increasing, continuous functional ß2,ß3,\ss_{2},\ss_{3}, and ß1\ss_{1} by

ß2(𝚞)=min𝚜[0,1]𝚞(𝚜),ß3(𝚞)=max𝚜[0,1]𝚞(𝚜),ß1(𝚞)=max𝚜[0,1]𝚞(𝚜).\displaystyle\ss_{2}(\mathtt{u})=\min_{\mathtt{s}\in[0,1]}\mathtt{u}(\mathtt{s}),\,\ss_{3}(\mathtt{u})=\max_{\mathtt{s}\in[0,1]}\mathtt{u}(\mathtt{s}),\,\ss_{1}(\mathtt{u})=\max_{\mathtt{s}\in[0,1]}\mathtt{u}(\mathtt{s}).

It is obvious that for each 𝚞𝙴,\mathtt{u}\in\mathtt{E},

ß2(𝚞)ß3(𝚞)=ß1(𝚞).\ss_{2}(\mathtt{u})\leq\ss_{3}(\mathtt{u})=\ss_{1}(\mathtt{u}).

In addition, by Lemma 1, for each 𝚞𝙿,\mathtt{u}\in\mathtt{P},

ß2(𝚞)𝚞.\ss_{2}(\mathtt{u})\geq\wp\|\mathtt{u}\|.

Thus

𝚞1ß2(𝚞)for all𝚞𝙴.\|\mathtt{u}\|\leq\frac{1}{\wp}\ss_{2}(\mathtt{u})~{}~{}\textnormal{for~{}all}~{}~{}\mathtt{u}\in\mathtt{E}.

Finally, we also note that

ß3(λ𝚞)=λß3(𝚞),0λ1and𝚞𝙴.\ss_{3}(\uplambda\mathtt{u})=\uplambda\ss_{3}(\mathtt{u}),~{}~{}0\leq\uplambda\leq 1~{}~{}\textnormal{and}~{}~{}\mathtt{u}\in\mathtt{E}.
Theorem 4.2

Assume that (𝒥1)(\mathcal{J}_{1})(𝒥3)(\mathcal{J}_{3}) hold and Suppose there exist real numbers a,ba^{\prime},b^{\prime} and cc^{\prime} with 0<a<b<c0<a^{\prime}<b^{\prime}<c^{\prime} such that 𝚐ι˙(ι˙=1,2,,𝚗)\mathtt{g}_{\dot{\iota}}({\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}) satisfies

  • (𝒥8)(\mathcal{J}_{8})

    𝚐ι˙(𝚞)>c𝕜1\mathtt{g}_{\dot{\iota}}(\mathtt{u})>\frac{c^{\prime}}{\Bbbk_{1}}, for all c𝚞c,c^{\prime}\leq\mathtt{u}\leq\frac{c^{\prime}}{\wp}, where 𝕜1=r02(𝙽2)2i=1mi01Ξr0(𝚝,𝚝)𝚝2(𝙽1)2𝙽𝚍𝚝,\Bbbk_{1}=\frac{\wp r_{0}^{2}}{(\mathtt{N}-2)^{2}}\prod_{i=1}^{m}\ell_{i}^{\star}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t},\mathtt{t})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}\mathtt{d}\mathtt{t},

  • (𝒥9)(\mathcal{J}_{9})

    𝚐ι˙(𝚞)<b𝕜2\mathtt{g}_{\dot{\iota}}(\mathtt{u})<\frac{b^{\prime}}{\Bbbk_{2}}, for all 0𝚞b,0\leq\mathtt{u}\leq\frac{b^{\prime}}{\wp}, where 𝕜2=r02(𝙽2)2Ξ^r0𝚚i=1mi𝚙i,\Bbbk_{2}=\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\mathtt{q}}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}},

  • (𝒥10)(\mathcal{J}_{10})

    𝚐ι˙(𝚞)>a𝕜1\mathtt{g}_{\dot{\iota}}(\mathtt{u})>\frac{a^{\prime}}{\Bbbk_{1}}, for all a𝚞a.a^{\prime}\leq\mathtt{u}\leq\frac{a^{\prime}}{\wp}.

Then the boundary value problem (5)–(6) has at least two positive radial solutions {(𝚞11,𝚞21,,𝚞𝚗1)}\{({}^{1}\mathtt{u}_{1},{}^{1}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{1}\mathtt{u}_{\mathtt{n}})\} and {(𝚞12,𝚞22,,𝚞𝚗2)}\{({}^{2}\mathtt{u}_{1},{}^{2}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{2}\mathtt{u}_{\mathtt{n}})\} satisfying

a<ß1(𝚞ι˙1)withß3(𝚞ι˙1)<b,ι˙=1,2,,𝚗,a^{\prime}<\ss_{1}\big{(}{}^{1}\mathtt{u}_{{\dot{\iota}}}\big{)}~{}~{}\textit{with}~{}~{}\ss_{3}\big{(}{}^{1}\mathtt{u}_{{\dot{\iota}}}\big{)}<b^{\prime},~{}{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n},

and

b<ß3(𝚞ι˙2)withß2(𝚞ι˙2)<c,ι˙=1,2,,𝚗.b^{\prime}<\ss_{3}\big{(}{}^{2}\mathtt{u}_{{\dot{\iota}}}\big{)}~{}~{}\textit{with}~{}~{}\ss_{2}\big{(}{}^{2}\mathtt{u}_{{\dot{\iota}}}\big{)}<c^{\prime},~{}{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}.
Proof

We begin by defining the completely continuous operator \aleph by (10). So it is easy to check that :𝙴(ß2,c)¯𝙴.\aleph:\overline{\mathtt{E}(\ss_{2},c^{\prime})}\to\mathtt{E}. Firstly, we shall verify that condition (a)(a) of Theorem 4.1 is satisfied. So, let us choose 𝚞1𝙴(ß2,c).\mathtt{u}_{1}\in\partial\mathtt{E}(\ss_{2},c^{\prime}). Then ß2(𝚞1)=min𝚜[0,1]𝚞1(𝚜)=c\ss_{2}(\mathtt{u}_{1})=\min_{\mathtt{s}\in[0,1]}\mathtt{u}_{1}(\mathtt{s})=c^{\prime} this implies that c𝚞1(𝚜)c^{\prime}\leq\mathtt{u}_{1}(\mathtt{s}) for 𝚜[0,1].\mathtt{s}\in[0,1]. Since 𝚞11ß2(𝚞1)=1c.\|\mathtt{u}_{1}\|\leq\frac{1}{\wp}\ss_{2}(\mathtt{u}_{1})=\frac{1}{\wp}c^{\prime}. So we have

c𝚞1(𝚜)c,𝚜[0,1].c^{\prime}\leq\mathtt{u}_{1}(\mathtt{s})\leq\frac{c^{\prime}}{\wp},~{}\mathtt{s}\in[0,1].

Let 𝚝𝚗1[0,1].\mathtt{t}_{\mathtt{n}-1}\in[0,1]. Then by (𝒥8),(\mathcal{J}_{8}), we have

01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}} 01Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\geq\wp\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}
c𝕜101Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚍𝚝𝚗\displaystyle\geq\frac{\wp c^{\prime}}{\Bbbk_{1}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}
cr02(𝙽2)2𝕜101Ξr0(𝚝𝚗,𝚝𝚗)𝚝𝚗2(𝙽1)2𝙽i=1mi(𝚝𝚗)𝚍𝚝𝚗\displaystyle\geq\frac{\wp c^{\prime}r_{0}^{2}}{(\mathtt{N}-2)^{2}\Bbbk_{1}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}}\prod_{i=1}^{m}\ell_{i}(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}
cr02(𝙽2)2𝕜1i=1mi01Ξr0(𝚝𝚗,𝚝𝚗)𝚝𝚗2(𝙽1)2𝙽𝚍𝚝𝚗\displaystyle\geq\frac{\wp c^{\prime}r_{0}^{2}}{(\mathtt{N}-2)^{2}\Bbbk_{1}}\prod_{i=1}^{m}\ell_{i}^{\star}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}}\mathtt{d}\mathtt{t}_{\mathtt{n}}
c.\displaystyle\geq c^{\prime}.

It follows in similar manner for 0<𝚝𝚗2<1,0<\mathtt{t}_{\mathtt{n}-2}<1,

01Ξr0(𝚝𝚗2,𝚝𝚗1)(𝚝𝚗1)𝚐𝚗1\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-2},\mathtt{t}_{\mathtt{n}-1})\ell(\mathtt{t}_{\mathtt{n}-1})\mathtt{g}_{\mathtt{n}-1} [01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]𝚍𝚝𝚗1\displaystyle\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
01Ξr0(𝚝𝚗1,𝚝𝚗1)(𝚝𝚗1)𝚐𝚗1(c)𝚍𝚝𝚗1\displaystyle\geq\wp\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}-1})\ell(\mathtt{t}_{\mathtt{n}-1})\mathtt{g}_{\mathtt{n}-1}(c^{\prime})\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
c𝕜101Ξr0(𝚝𝚗1,𝚝𝚗1)(𝚝𝚗1)𝚍𝚝𝚗1\displaystyle\geq\frac{\wp c^{\prime}}{\Bbbk_{1}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}-1})\ell(\mathtt{t}_{\mathtt{n}-1})\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
cr02(𝙽2)2𝕜101Ξr0(𝚝𝚗1,𝚝𝚗1)𝚝𝚗12(𝙽1)2𝙽i=1mi(𝚝𝚗1)𝚍𝚝𝚗1\displaystyle\geq\frac{\wp c^{\prime}r_{0}^{2}}{(\mathtt{N}-2)^{2}\Bbbk_{1}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}-1})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}-1}\prod_{i=1}^{m}\ell_{i}(\mathtt{t}_{\mathtt{n}-1})\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
cr02(𝙽2)2𝕜1i=1mi01Ξr0(𝚝𝚗1,𝚝𝚗1)𝚝𝚗12(𝙽1)2𝙽𝚍𝚝𝚗1\displaystyle\geq\frac{\wp c^{\prime}r_{0}^{2}}{(\mathtt{N}-2)^{2}\Bbbk_{1}}\prod_{i=1}^{m}\ell_{i}^{\star}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}-1})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}-1}\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
c.\displaystyle\geq c^{\prime}.

Continuing with bootstrapping argument, we get

ß2(𝚞1)=\displaystyle\ss_{2}\left(\aleph\mathtt{u}_{1}\right)= min𝚜[0,1]01Ξr0(𝚜,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle\min_{\mathtt{s}\in[0,1]}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1\displaystyle\hskip 45.52458pt\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}
\displaystyle\geq c.\displaystyle\,c^{\prime}.

This proves (i)(i) of Theorem 4.1. We next address (ii)(ii) of Theorem 4.1. So, we choose 𝚞1𝙴(ß3,b).\mathtt{u}_{1}\in\partial\mathtt{E}(\ss_{3},b^{\prime}). Then ß3(𝚞1)=max𝚜[0,1]𝚞1(𝚜)=b\ss_{3}(\mathtt{u}_{1})=\max_{\mathtt{s}\in[0,1]}\mathtt{u}_{1}(\mathtt{s})=b^{\prime} this implies that 0𝚞1(𝚜)b0\leq\mathtt{u}_{1}(\mathtt{s})\leq b^{\prime} for 𝚜[0,1].\mathtt{s}\in[0,1]. Since 𝚞11ß2(𝚞1)1ß3(𝚞1)=b.\|\mathtt{u}_{1}\|\leq\frac{1}{\wp}\ss_{2}(\mathtt{u}_{1})\leq\frac{1}{\wp}\ss_{3}(\mathtt{u}_{1})=\frac{b^{\prime}}{\wp}. So we have

0𝚞1(𝚜)2b,𝚜[0,1].0\leq\mathtt{u}_{1}(\mathtt{s})\leq\wp^{2}b^{\prime},~{}\mathtt{s}\in[0,1].

Let 0<𝚝𝚗1<1.0<\mathtt{t}_{\mathtt{n}-1}<1. Then by (𝒥9),(\mathcal{J}_{9}), we have

01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}} 01Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\leq\wp\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}
b𝕜201Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚍𝚝𝚗\displaystyle\leq\frac{\wp b^{\prime}}{\Bbbk_{2}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}
br02(𝙽2)2𝕜201Ξr0(𝚝𝚗,𝚝𝚗)𝚝𝚗2(𝙽1)2𝙽i=1mi(𝚝𝚗)𝚍𝚝𝚗.\displaystyle\leq\frac{\wp b^{\prime}r_{0}^{2}}{(\mathtt{N}-2)^{2}\Bbbk_{2}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}}\prod_{i=1}^{m}\ell_{i}(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}.

There exists a 𝚚>1\mathtt{q}>1 such that i=1m1𝚙i+1𝚚=1.\displaystyle\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}+\frac{1}{\mathtt{q}}=1. By the first part of Theorem 3.2, we have

01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}} br02(𝙽2)2𝕜2Ξ^r0𝚚i=1mi𝚙i\displaystyle\leq\frac{\wp b^{\prime}r_{0}^{2}}{(\mathtt{N}-2)^{2}\Bbbk_{2}}\|\widehat{\Xi}_{r_{0}}\|_{\mathtt{q}}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}}
b.\displaystyle\leq b^{\prime}.

Continuing with this bootstrapping argument, we get

ß3(𝚞1)=\displaystyle\ss_{3}\left(\aleph\mathtt{u}_{1}\right)= max𝚜[0,1]01Ξr0(𝚜,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle\max_{\mathtt{s}\in[0,1]}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1\displaystyle\hskip 28.45274pt\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}
\displaystyle\leq b.\displaystyle\,b^{\prime}.

Hence condition (b)(b) is satisfied. Finally, we verify that (c)(c) of Theorem 4.1 is also satisfied. We note that 𝚞1(𝚜)=a/4,𝚜[0,1]\mathtt{u}_{1}(\mathtt{s})=a^{\prime}/4,~{}\mathtt{s}\in[0,1] is a member of 𝙴(ß1,a)\mathtt{E}(\ss_{1},a^{\prime}) and a/4<a.a^{\prime}/4<a^{\prime}. So 𝙴(ß1,a).\mathtt{E}(\ss_{1},a^{\prime})\neq\emptyset. Now let 𝚞1𝙴(ß1,a).\mathtt{u}_{1}\in\mathtt{E}(\ss_{1},a^{\prime}). Then a=ß1(𝚞1)=max𝚜[0,1]𝚞1(𝚜)=𝚞1=1ß2(𝚞1)1ß3(𝚞1)=1ß1(𝚞1)=a,a^{\prime}=\ss_{1}(\mathtt{u}_{1})=\max_{\mathtt{s}\in[0,1]}\mathtt{u}_{1}(\mathtt{s})=\|\mathtt{u}_{1}\|=\frac{1}{\wp}\ss_{2}(\mathtt{u}_{1})\leq\frac{1}{\wp}\ss_{3}(\mathtt{u}_{1})=\frac{1}{\wp}\ss_{1}(\mathtt{u}_{1})=\frac{a^{\prime}}{\wp}, i.e., a𝚞1(𝚜)aa^{\prime}\leq\mathtt{u}_{1}(\mathtt{s})\leq\frac{a^{\prime}}{\wp} for 𝚜[0,1].\mathtt{s}\in[0,1]. Let 0<𝚝𝚗1<1.0<\mathtt{t}_{\mathtt{n}-1}<1. Then by (𝒥10),(\mathcal{J}_{10}), we have

01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}} 01Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\geq\wp\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}
a𝕜101Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚍𝚝𝚗\displaystyle\geq\frac{\wp a^{\prime}}{\Bbbk_{1}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}
ar02(𝙽2)2𝕜101Ξr0(𝚝𝚗,𝚝𝚗)𝚝𝚗2(𝙽1)2𝙽i=1mi(𝚝𝚗)𝚍𝚝𝚗\displaystyle\geq\frac{\wp a^{\prime}r_{0}^{2}}{(\mathtt{N}-2)^{2}\Bbbk_{1}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}}\prod_{i=1}^{m}\ell_{i}(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}
ar02(𝙽2)2𝕜1i=1mi01Ξr0(𝚝𝚗,𝚝𝚗)𝚝𝚗2(𝙽1)2𝙽𝚍𝚝𝚗\displaystyle\geq\frac{\wp a^{\prime}r_{0}^{2}}{(\mathtt{N}-2)^{2}\Bbbk_{1}}\prod_{i=1}^{m}\ell_{i}^{\star}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}}\mathtt{d}\mathtt{t}_{\mathtt{n}}
a.\displaystyle\geq a^{\prime}.

Continuing with this bootstrapping argument, we get

ß1(𝚞1)=\displaystyle\ss_{1}\left(\aleph\mathtt{u}_{1}\right)= max𝚜[0,1]01Ξr0(𝚜,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle\max_{\mathtt{s}\in[0,1]}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1\displaystyle\hskip 28.45274pt\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}
\displaystyle\geq min𝚜[0,1]01Ξr0(𝚜,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle\min_{\mathtt{s}\in[0,1]}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1\displaystyle\hskip 28.45274pt\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}
\displaystyle\geq a.\displaystyle\,a^{\prime}.

Thus condition (c)(c) of Theorem 4.1 is satisfied. Since all hypotheses of Theorem 4.1 are satisfied, the assertion follows.∎

For i=1m1𝚙i=1\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}=1 and i=1m1𝚙i>1,\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}>1, we have following results.

Theorem 4.3

Assume that (𝒥1)(\mathcal{J}_{1})(𝒥3)(\mathcal{J}_{3}) hold and Suppose there exist real numbers a,ba^{\prime},b^{\prime} and cc^{\prime} with 0<a<b<c0<a^{\prime}<b^{\prime}<c^{\prime} such that 𝚐ι˙(ι˙=1,2,,𝚗)\mathtt{g}_{\dot{\iota}}({\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}) satisfies (𝒥8),(\mathcal{J}_{8}), (𝒥10)(\mathcal{J}_{10}) and

  • (𝒥9)(\mathcal{J}_{9}^{\prime})

    𝚐ι˙(𝚞)<b𝕜3\mathtt{g}_{\dot{\iota}}(\mathtt{u})<\frac{b^{\prime}}{\Bbbk_{3}}, for all 0𝚞b,0\leq\mathtt{u}\leq\frac{b^{\prime}}{\wp}, where 𝕜3=r02(𝙽2)2Ξ^r0i=1mi𝚙i.\Bbbk_{3}=\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\infty}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}}.

Then the boundary value problem (5)–(6) has at least two positive radial solutions {(𝚞11,𝚞21,,𝚞𝚗1)}\{({}^{1}\mathtt{u}_{1},{}^{1}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{1}\mathtt{u}_{\mathtt{n}})\} and {(𝚞12,𝚞22,,𝚞𝚗2)}\{({}^{2}\mathtt{u}_{1},{}^{2}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{2}\mathtt{u}_{\mathtt{n}})\} satisfying

a<ß1(𝚞ι˙1)withß3(𝚞ι˙1)<b,ι˙=1,2,,𝚗,a^{\prime}<\ss_{1}\big{(}{}^{1}\mathtt{u}_{{\dot{\iota}}}\big{)}~{}~{}\textit{with}~{}~{}\ss_{3}\big{(}{}^{1}\mathtt{u}_{{\dot{\iota}}}\big{)}<b^{\prime},~{}{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n},

and

b<ß3(𝚞ι˙2)withß2(𝚞ι˙2)<c,ι˙=1,2,,𝚗.b^{\prime}<\ss_{3}\big{(}{}^{2}\mathtt{u}_{{\dot{\iota}}}\big{)}~{}~{}\textit{with}~{}~{}\ss_{2}\big{(}{}^{2}\mathtt{u}_{{\dot{\iota}}}\big{)}<c^{\prime},~{}{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}.
Theorem 4.4

Assume that (𝒥1)(\mathcal{J}_{1})(𝒥3)(\mathcal{J}_{3}) hold and Suppose there exist real numbers a,ba^{\prime},b^{\prime} and cc^{\prime} with 0<a<b<c0<a^{\prime}<b^{\prime}<c^{\prime} such that 𝚐ι˙(ι˙=1,2,,𝚗)\mathtt{g}_{\dot{\iota}}({\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}) satisfies (𝒥8),(\mathcal{J}_{8}), (𝒥10)(\mathcal{J}_{10}) and

  • (𝒥9′′)(\mathcal{J}_{9}^{\prime\prime})

    𝚐ι˙(𝚞)<b𝕜4\mathtt{g}_{\dot{\iota}}(\mathtt{u})<\frac{b^{\prime}}{\Bbbk_{4}}, for all 0𝚞b,0\leq\mathtt{u}\leq\frac{b^{\prime}}{\wp}, where 𝕜4=r02(𝙽2)2Ξ^r0i=1mi1.\Bbbk_{4}=\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\infty}\prod_{i=1}^{m}\|\ell_{i}\|_{1}.

Then the boundary value problem (5)–(6) has at least two positive radial solutions {(𝚞11,𝚞21,,𝚞𝚗1)}\{({}^{1}\mathtt{u}_{1},{}^{1}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{1}\mathtt{u}_{\mathtt{n}})\} and {(𝚞12,𝚞22,,𝚞𝚗2)}\{({}^{2}\mathtt{u}_{1},{}^{2}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{2}\mathtt{u}_{\mathtt{n}})\} satisfying

a<ß1(𝚞ι˙1)withß3(𝚞ι˙1)<b,ι˙=1,2,,𝚗,a^{\prime}<\ss_{1}\big{(}{}^{1}\mathtt{u}_{{\dot{\iota}}}\big{)}~{}~{}\textit{with}~{}~{}\ss_{3}\big{(}{}^{1}\mathtt{u}_{{\dot{\iota}}}\big{)}<b^{\prime},~{}{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n},

and

b<ß3(𝚞ι˙2)withß2(𝚞ι˙2)<c,ι˙=1,2,,𝚗.b^{\prime}<\ss_{3}\big{(}{}^{2}\mathtt{u}_{{\dot{\iota}}}\big{)}~{}~{}\textit{with}~{}~{}\ss_{2}\big{(}{}^{2}\mathtt{u}_{{\dot{\iota}}}\big{)}<c^{\prime},~{}{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}.
Example 2

Consider the following nonlinear elliptic system of equations,

𝚞ι˙+(𝙽2)2r02𝙽2|x|2𝙽2𝚞ι˙+(|x|)𝚐ι˙(𝚞ι˙+1)=0,1<|x|<3,\triangle{\mathtt{u}_{{\dot{\iota}}}}+\frac{(\mathtt{N}-2)^{2}r_{0}^{2\mathtt{N}-2}}{|x|^{2\mathtt{N}-2}}\mathtt{u}_{\dot{\iota}}+\ell(|x|)\mathtt{g}_{{\dot{\iota}}}(\mathtt{u}_{{\dot{\iota}}+1})=0,~{}1<|x|<3, (15)
𝚞ι˙=0on|x|=1and|x|=3,𝚞ι˙=0on|x|=1and𝚞ι˙r=0on|x|=3,𝚞ι˙r=0on|x|=1and𝚞ι˙=0on|x|=3,}\left.\begin{aligned} &\hskip 25.6073pt\mathtt{u}_{{\dot{\iota}}}=0~{}~{}\text{on}~{}~{}|x|=1~{}\text{and}~{}|x|=3,\\ &\mathtt{u}_{{\dot{\iota}}}=0~{}~{}\text{on}~{}~{}|x|=1~{}\text{and}~{}\frac{\partial\mathtt{u}_{\dot{\iota}}}{\partial r}=0~{}\text{on}~{}|x|=3,\\ &\frac{\partial\mathtt{u}_{\dot{\iota}}}{\partial r}=0~{}~{}\text{on}~{}~{}|x|=1~{}\text{and}~{}\mathtt{u}_{{\dot{\iota}}}=0~{}\text{on}~{}|x|=3,\end{aligned}\right\} (16)

where r0=1,r_{0}=1, 𝙽=3,\mathtt{N}=3, ι˙{1,2},𝚞3=𝚞1,{\dot{\iota}}\in\{1,2\},\,\mathtt{u}_{3}=\mathtt{u}_{1}, (𝚜)=1𝚜4i=12i(𝚜),\ell(\mathtt{s})=\frac{1}{\mathtt{s}^{4}}\prod_{i=1}^{2}\ell_{i}(\mathtt{s}), i(𝚜)=i(1𝚜),\ell_{i}(\mathtt{s})=\ell_{i}\left(\frac{1}{\mathtt{s}}\right), in which

1(t)=1t+1 and 2(t)=1t2+1,\ell_{1}(t)=\frac{1}{t+1}~{}~{}~{}~{}\text{~{}~{}and~{}~{}}~{}~{}~{}~{}\ell_{2}(t)=\frac{1}{t^{2}+1},

then it is clear that

1,2L𝚙[0,1] and i=12i=1.\ell_{1},\ell_{2}\in L^{\mathtt{p}}[0,1]~{}~{}\text{~{}~{}and~{}~{}}\prod_{i=1}^{2}\ell_{i}^{*}=1.

Let α=β=γ=δ=1,\upalpha=\upbeta=\gamma=\updelta=1, then ϱ=2cosh(1)+2sinh(1)5.436563658,\varrho=2\cosh(1)+2\sinh(1)\approx 5.436563658,

Ξr0(𝚜,𝚝)=12cosh(1)+2sinh(1){(sinh(𝚜)+cosh(𝚜))(sinh(1𝚝)+cosh(1𝚝)),0𝚜𝚝1,(sinh(𝚝)+cosh(𝚝))(sinh(1𝚜)+cosh(1𝚜)),0𝚝𝚜1,\displaystyle\Xi_{r_{0}}(\mathtt{s},\mathtt{t})=\frac{1}{2\cosh(1)+2\sinh(1)}\left\{\begin{array}[]{ll}\big{(}\sinh(\mathtt{s})+\cosh(\mathtt{s})\big{)}\big{(}\sinh(1-\mathtt{t})+\cosh(1-\mathtt{t})\big{)},\hskip 17.07182pt0\leq\mathtt{s}\leq\mathtt{t}\leq 1,\vspace{1.2mm}\\ \big{(}\sinh(\mathtt{t})+\cosh(\mathtt{t})\big{)}\big{(}\sinh(1-\mathtt{s})+\cosh(1-\mathtt{s})\big{)},\hskip 17.07182pt0\leq\mathtt{t}\leq\mathtt{s}\leq 1,\end{array}\right.

and =1sinh(1)+cosh(1).\wp=\frac{1}{\sinh(1)+\cosh(1)}. Also,

𝕜1=r02(𝙽2)2i=1mi01Ξr0(𝚝,𝚝)𝚝2(𝙽1)2𝙽𝚍𝚝0.1630970729×104.\displaystyle\Bbbk_{1}=\frac{\wp r_{0}^{2}}{(\mathtt{N}-2)^{2}}\prod_{i=1}^{m}\ell_{i}^{\star}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t},\mathtt{t})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}\mathtt{d}\mathtt{t}\approx 0.1630970729\times 10^{-4}.

Let 𝚙1=3,𝚙2=6\mathtt{p}_{1}=3,\mathtt{p}_{2}=6 and 𝚚=2,\mathtt{q}=2, then 1𝚙1+1𝚙2+1𝚚=1\frac{1}{\mathtt{p}_{1}}+\frac{1}{\mathtt{p}_{2}}+\frac{1}{\mathtt{q}}=1 and

𝕜2=r02(𝙽2)2Ξ^r0𝚚i=1mi𝚙i4.388193758×108.\displaystyle\Bbbk_{2}=\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\mathtt{q}}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}}\approx 4.388193758\times 10^{-8}.

Let

𝚐1(𝚞)=𝚐2(𝚞)={1016,𝚞1,1016𝚞2𝚞+1,𝚞<1.\displaystyle\mathtt{g}_{1}(\mathtt{u})=\mathtt{g}_{2}(\mathtt{u})=\left\{\begin{array}[]{ll}10^{16},\hskip 54.06006pt\mathtt{u}\geq 1,\vspace{1.2mm}\\ 10^{16}\mathtt{u}^{2}-\mathtt{u}+1,\hskip 11.38092pt\mathtt{u}<1.\end{array}\right.

Choose a=104,b=109a^{\prime}=10^{4},\,b^{\prime}=10^{9} and c=1010.c^{\prime}=10^{10}. Then,

𝚐1(𝚞)=𝚐2(𝚞)\displaystyle\mathtt{g}_{1}(\mathtt{u})=\mathtt{g}_{2}(\mathtt{u}) 6.131317885×1014=c𝕜1,𝚞[1010,2.72×1010],\displaystyle\geq 6.131317885\times 10^{14}=\frac{c^{\prime}}{\Bbbk_{1}},~{}~{}\mathtt{u}\in[10^{10},2.72\times 10^{10}],
𝚐1(𝚞)=𝚐2(𝚞)\displaystyle\mathtt{g}_{1}(\mathtt{u})=\mathtt{g}_{2}(\mathtt{u}) 2.278841945×1016=b𝕜2,𝚞[0,2.72×109],\displaystyle\leq 2.278841945\times 10^{16}=\frac{b^{\prime}}{\Bbbk_{2}},~{}~{}\mathtt{u}\in[0,2.72\times 10^{9}],
𝚐1(𝚞)=𝚐2(𝚞)\displaystyle\mathtt{g}_{1}(\mathtt{u})=\mathtt{g}_{2}(\mathtt{u}) 6.131317885×108=a𝕜1,𝚞[104,2.72×104].\displaystyle\geq 6.131317885\times 10^{8}=\frac{a^{\prime}}{\Bbbk_{1}},~{}~{}\mathtt{u}\in[10^{4},2.72\times 10^{4}].

Therefore, by Theorem 3.3, the boundary value problem (15)–(16) has at least two positive radial solutions (𝚞1ι˙,𝚞2ι˙),ι˙=1,2({}^{\dot{\iota}}\mathtt{u}_{1},{}^{\dot{\iota}}\mathtt{u}_{2}),\,{\dot{\iota}}=1,2 such that

104<max𝚜[0,1]𝚞1ι˙(𝚜)withmax𝚜[0,1]𝚞1ι˙(𝚜)<109,forι˙=1,2,10^{4}<\max_{\mathtt{s}\in[0,1]}{}^{\dot{\iota}}\mathtt{u}_{1}(\mathtt{s})~{}~{}\text{with}~{}~{}\max_{\mathtt{s}\in[0,1]}{}^{\dot{\iota}}\mathtt{u}_{1}(\mathtt{s})<10^{9},~{}~{}\text{for}~{}~{}{\dot{\iota}}=1,2,
109<max𝚜[0,1]𝚞2ι˙(𝚜)withmin𝚜[0,1]𝚞2ι˙(𝚜)<1010,forι˙=1,2.10^{9}<\max_{\mathtt{s}\in[0,1]}{}^{\dot{\iota}}\mathtt{u}_{2}(\mathtt{s})~{}~{}\text{with}~{}~{}\min_{\mathtt{s}\in[0,1]}{}^{\dot{\iota}}\mathtt{u}_{2}(\mathtt{s})<10^{10},~{}~{}\text{for}~{}~{}{\dot{\iota}}=1,2.

5 Existence of at Least Three Positive Radial Solutions

In this section, we establish the existence of at least three positive radial solutions for the system (5)–(6) by an application of following Legget-William fixed point theorem. Let a,ba^{\prime},b^{\prime} be two real numbers such that 0<a<b0<a^{\prime}<b^{\prime} and ß\ss a nonnegative, continuous, concave functional on 𝙴.\mathtt{E}. We define the following convex sets,

𝙴a={𝚞𝙴:𝚞<a},\mathtt{E}_{a^{\prime}}=\{\mathtt{u}\in\mathtt{E}:\|\mathtt{u}\|<a^{\prime}\},
𝙴(ß,a,b)={𝚞𝙴:aß(𝚞),𝚞<b}.\mathtt{E}(\ss,a^{\prime},b^{\prime})=\{\mathtt{u}\in\mathtt{E}:a^{\prime}\leq\ss(\mathtt{u}),\,\|\mathtt{u}\|<b^{\prime}\}.
Theorem 5.1

(Legget-Williamlegget ) Let 𝙴\mathtt{E} be a cone in a Banach space 𝙱.\mathtt{B}. Let ß\ss a nonnegative, continuous, concave functional on 𝙴\mathtt{E} satisfying for some c>0c^{\prime}>0 such that ß(𝚞)𝚞\ss(\mathtt{u})\leq\|\mathtt{u}\| for all 𝚞𝙴¯c.\mathtt{u}\in\overline{\mathtt{E}}_{c^{\prime}}. Suppose there exists a completely continuous operator :𝙴¯c𝙴¯c\aleph:\overline{\mathtt{E}}_{c^{\prime}}\to\overline{\mathtt{E}}_{c^{\prime}} and 0<a<b<dc0<a^{\prime}<b^{\prime}<d^{\prime}\leq c^{\prime} such that

  • (a)(a)

    {𝚞𝙴(ß,b,d):ß(𝚞)>a}\{\mathtt{u}\in\mathtt{E}(\ss,b^{\prime},d^{\prime}):\ss(\mathtt{u})>a^{\prime}\}\neq\emptyset and ß(𝚞)>b\ss(\aleph\mathtt{u})>b^{\prime} for 𝚞𝙴(ß,b,d),\mathtt{u}\in\mathtt{E}(\ss,b^{\prime},d^{\prime}),

  • (b)(b)

    𝚞<a\|\aleph\mathtt{u}\|<a^{\prime} for 𝚞<a,\|\mathtt{u}\|<a^{\prime},

  • (c)(c)

    ß(𝚞)>b\ss(\aleph\mathtt{u})>b^{\prime} for 𝚞𝙴(ß,a,c),\mathtt{u}\in\mathtt{E}(\ss,a^{\prime},c^{\prime}), with 𝚞>d\|\aleph\mathtt{u}\|>d^{\prime}

Then, \aleph has at least three fixed points 𝚞1,𝚞2,𝚞3𝙴c{}^{1}\mathtt{u},{}^{2}\mathtt{u},{}^{3}\mathtt{u}\in\mathtt{E}_{c^{\prime}} satisfying 𝚞1<a,\|{}^{1}\mathtt{u}\|<a^{\prime}, b<ß(𝚞2)b^{\prime}<\ss({}^{2}\mathtt{u}) and 𝚞3>a\|{}^{3}\mathtt{u}\|>a^{\prime} and ß(𝚞3)<b.\ss({}^{3}\mathtt{u})<b^{\prime}.

Theorem 5.2

Assume that (𝒥1)(\mathcal{J}_{1})(𝒥3)(\mathcal{J}_{3}) hold. Let 0<a<b<c0<a^{\prime}<b^{\prime}<c^{\prime} and suppose that 𝚐ι˙,ι˙=1,2,,𝚗\mathtt{g}_{\dot{\iota}},\,{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n} satisfies the following conditions,

  • (𝒥11)(\mathcal{J}_{11})

    𝚐ι˙(𝚞)<a𝔒1\mathtt{g}_{\dot{\iota}}(\mathtt{u})<\frac{a^{\prime}}{\mathfrak{O}_{1}} for 0𝚞a,0\leq\mathtt{u}\leq a^{\prime}, where 𝔒1=r02(𝙽2)2Ξ^r0𝚚i=1mi𝚙i.\mathfrak{O}_{1}=\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\mathtt{q}}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}}.

  • (𝒥12)(\mathcal{J}_{12})

    𝚐ι˙(𝚞)>b𝔒2\mathtt{g}_{\dot{\iota}}(\mathtt{u})>\frac{b^{\prime}}{\mathfrak{O}_{2}} for b𝚞c,b^{\prime}\leq\mathtt{u}\leq c^{\prime}, where 𝔒2=r02(𝙽2)2i=1mi01Ξr0(𝚝,𝚝)𝚝2(𝙽1)2𝙽𝚍𝚝.\mathfrak{O}_{2}=\frac{\wp r_{0}^{2}}{(\mathtt{N}-2)^{2}}\prod_{i=1}^{m}\ell_{i}^{\star}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t},\mathtt{t})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}\mathtt{d}\mathtt{t}.

  • (𝒥13)(\mathcal{J}_{13})

    𝚐ι˙(𝚞)<c𝔒1\mathtt{g}_{\dot{\iota}}(\mathtt{u})<\frac{c^{\prime}}{\mathfrak{O}_{1}} for 0𝚞c.0\leq\mathtt{u}\leq c^{\prime}.

Then the iterative system (5)–(6) has at least three positive solutions (𝚞11,𝚞21,,𝚞𝚗1),({}^{1}\mathtt{u}_{1},{}^{1}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{1}\mathtt{u}_{\mathtt{n}}), (𝚞12,𝚞22,,𝚞𝚗2)({}^{2}\mathtt{u}_{1},{}^{2}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{2}\mathtt{u}_{\mathtt{n}}) and (𝚞13,𝚞23,,𝚞𝚗3)({}^{3}\mathtt{u}_{1},{}^{3}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{3}\mathtt{u}_{\mathtt{n}}) with 𝚞1ι˙<a,\|{}^{\dot{\iota}}\mathtt{u}_{1}\|<a^{\prime}, b<ß(𝚞2ι˙),b^{\prime}<\ss({}^{\dot{\iota}}\mathtt{u}_{2}), 𝚞3ι˙>a\|{}^{\dot{\iota}}\mathtt{u}_{3}\|>a^{\prime} and ß(𝚞3ι˙)<b\ss({}^{\dot{\iota}}\mathtt{u}_{3})<b^{\prime} for ι˙=1,2,,𝚗.{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}.

Proof

From Lemma 3, :𝙴𝙴\aleph:\mathtt{E}\to\mathtt{E} is a completely continuous operator. If 𝚞1𝙴¯c,\mathtt{u}_{1}\in\overline{\mathtt{E}}_{c^{\prime}}, then 𝚞1c\|\mathtt{u}_{1}\|\leq c^{\prime} and for 0<𝚝𝚗1<10<\mathtt{t}_{\mathtt{n}-1}<1 and by (𝒥13),(\mathcal{J}_{13}), we have

01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}} 01Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\leq\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}
c𝔒101Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚍𝚝𝚗\displaystyle\leq\frac{c^{\prime}}{\mathfrak{O}_{1}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}
cr02(𝙽2)2𝔒101Ξr0(𝚝𝚗,𝚝𝚗)𝚝𝚗2(𝙽1)2𝙽i=1mi(𝚝𝚗)𝚍𝚝𝚗.\displaystyle\leq\frac{c^{\prime}r_{0}^{2}}{(\mathtt{N}-2)^{2}\mathfrak{O}_{1}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}}\prod_{i=1}^{m}\ell_{i}(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}.

There exists a 𝚚>1\mathtt{q}>1 such that i=1m1𝚙i+1𝚚=1.\displaystyle\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}+\frac{1}{\mathtt{q}}=1. By the first part of Theorem 3.2, we have

01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}} cr02(𝙽2)2𝔒1Ξ^r0𝚚i=1mi𝚙i\displaystyle\leq\frac{c^{\prime}r_{0}^{2}}{(\mathtt{N}-2)^{2}\mathfrak{O}_{1}}\|\widehat{\Xi}_{r_{0}}\|_{\mathtt{q}}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}}
c.\displaystyle\leq c^{\prime}.

Continuing with this bootstrapping argument, we get

𝚞1=\displaystyle\left\|\aleph\mathtt{u}_{1}\right\|= max𝚜[0,1]01Ξr0(𝚜,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle\max_{\mathtt{s}\in[0,1]}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1\displaystyle\hskip 28.45274pt\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}
\displaystyle\leq c.\displaystyle\,c^{\prime}.

Hence, :𝙴¯c𝙴¯c.\aleph:\overline{\mathtt{E}}_{c^{\prime}}\to\overline{\mathtt{E}}_{c^{\prime}}. In the same way, if 𝚞1𝙴¯a,\mathtt{u}_{1}\in\overline{\mathtt{E}}_{a^{\prime}}, then :𝙴¯a𝙴¯a.\aleph:\overline{\mathtt{E}}_{a^{\prime}}\to\overline{\mathtt{E}}_{a^{\prime}}. Therefore, condition (b)(b) of Theorem 5.1 satisfied. To check condition (a)(a) of Theorem 5.1, choose 𝚞1(𝚜)=(b+c)/2,𝚜[0,1].\mathtt{u}_{1}(\mathtt{s})=(b^{\prime}+c^{\prime})/2,\,\mathtt{s}\in[0,1]. It is easy to see that 𝚞1𝙴(ß,b,c)\mathtt{u}_{1}\in\mathtt{E}(\ss,b^{\prime},c^{\prime}) and ß(𝚞1)=ß((b+c)/2)>b.\ss(\mathtt{u}_{1})=\ss((b^{\prime}+c^{\prime})/2)>b^{\prime}. So, {𝚞1𝙴(ß,b,c):ß(𝚞1)>b}.\{\mathtt{u}_{1}\in\mathtt{E}(\ss,b^{\prime},c^{\prime}):\ss(\mathtt{u}_{1})>b^{\prime}\}\neq\emptyset. Hence, if 𝚞1𝙴(ß,b,c)\mathtt{u}_{1}\in\mathtt{E}(\ss,b^{\prime},c^{\prime}) then b<𝚞1(𝚜)<c,𝚜[0,1].b^{\prime}<\mathtt{u}_{1}(\mathtt{s})<c^{\prime},\,\mathtt{s}\in[0,1]. Let 0<𝚝𝚗1<1.0<\mathtt{t}_{\mathtt{n}-1}<1. Then by (𝒥12),(\mathcal{J}_{12}), we have

01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}} 01Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗\displaystyle\geq\wp\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}
b𝔒201Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)𝚍𝚝𝚗\displaystyle\geq\frac{\wp b^{\prime}}{\mathfrak{O}_{2}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}
br02(𝙽2)2𝔒201Ξr0(𝚝𝚗,𝚝𝚗)𝚝𝚗2(𝙽1)2𝙽i=1mi(𝚝𝚗)𝚍𝚝𝚗\displaystyle\geq\frac{\wp b^{\prime}r_{0}^{2}}{(\mathtt{N}-2)^{2}\mathfrak{O}_{2}}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}}\prod_{i=1}^{m}\ell_{i}(\mathtt{t}_{\mathtt{n}})\mathtt{d}\mathtt{t}_{\mathtt{n}}
br02(𝙽2)2𝔒2i=1mi01Ξr0(𝚝𝚗,𝚝𝚗)𝚝𝚗2(𝙽1)2𝙽𝚍𝚝𝚗\displaystyle\geq\frac{\wp b^{\prime}r_{0}^{2}}{(\mathtt{N}-2)^{2}\mathfrak{O}_{2}}\prod_{i=1}^{m}\ell_{i}^{\star}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}_{\mathtt{n}}\mathtt{d}\mathtt{t}_{\mathtt{n}}
b.\displaystyle\geq b^{\prime}.

Continuing with this bootstrapping argument, we get

min𝚜[0,1](𝚞1)=\displaystyle\min_{\mathtt{s}\in[0,1]}\left(\aleph\mathtt{u}_{1}\right)= min𝚜[0,1]01Ξr0(𝚜,𝚝1)(𝚝1)𝚐1[01Ξr0(𝚝1,𝚝2)(𝚝2)𝚐2[01Ξr0(𝚝2,𝚝3)(𝚝3)𝚐4\displaystyle\min_{\mathtt{s}\in[0,1]}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{s},\mathtt{t}_{1})\ell(\mathtt{t}_{1})\mathtt{g}_{1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{1},\mathtt{t}_{2})\ell(\mathtt{t}_{2})\mathtt{g}_{2}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{2},\mathtt{t}_{3})\ell(\mathtt{t}_{3})\mathtt{g}_{4}\cdots
𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]]𝚍𝚝3]𝚍𝚝2]𝚍𝚝1\displaystyle\hskip 28.45274pt\mathtt{g}_{\mathtt{n}-1}\Bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\Bigg{]}\cdot\cdot\cdot\Bigg{]}\mathtt{d}\mathtt{t}_{3}\Bigg{]}\mathtt{d}\mathtt{t}_{2}\Bigg{]}\mathtt{d}\mathtt{t}_{1}
\displaystyle\geq b.\displaystyle\,b^{\prime}.

Therefore, we have

ß(𝚞1)>b,for𝚞1𝙴(ß,b,c).\ss(\aleph\mathtt{u}_{1})>b^{\prime},~{}\textnormal{for}~{}\mathtt{u}_{1}\in\mathtt{E}(\ss,b^{\prime},c^{\prime}).

This implies that condition (a)(a) of Theorem 5.1 is satisfied.

Finally, if 𝚞1𝙴(ß,b,c),\mathtt{u}_{1}\in\mathtt{E}(\ss,b^{\prime},c^{\prime}), then what we have already proved, ß(𝚞1)>b.\ss(\aleph\mathtt{u}_{1})>b^{\prime}. Which proves the condition (c)(c) of Theorem 5.1. To sum up, all the conditions of Theorem 5.1 are satisfied. Therefore, \aleph has at least three fixed points, that is, problem (5)–(6) has at least three positive solutions (𝚞11,𝚞21,,𝚞𝚗1),({}^{1}\mathtt{u}_{1},{}^{1}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{1}\mathtt{u}_{\mathtt{n}}), (𝚞12,𝚞22,,𝚞𝚗2)({}^{2}\mathtt{u}_{1},{}^{2}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{2}\mathtt{u}_{\mathtt{n}}) and (𝚞13,𝚞23,,𝚞𝚗3)({}^{3}\mathtt{u}_{1},{}^{3}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{3}\mathtt{u}_{\mathtt{n}}) with 𝚞1ι˙<a,\|{}^{\dot{\iota}}\mathtt{u}_{1}\|<a^{\prime}, b<ß(𝚞2ι˙),b^{\prime}<\ss({}^{\dot{\iota}}\mathtt{u}_{2}), 𝚞3ι˙>a\|{}^{\dot{\iota}}\mathtt{u}_{3}\|>a^{\prime} and ß(𝚞3ι˙)<b\ss({}^{\dot{\iota}}\mathtt{u}_{3})<b^{\prime} for ι˙=1,2,,𝚗.{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}.

For i=1m1𝚙i=1\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}=1 and i=1m1𝚙i>1,\sum_{i=1}^{m}\frac{1}{\mathtt{p}_{i}}>1, we have following results.

Theorem 5.3

Assume that (𝒥1)(\mathcal{J}_{1})(𝒥3)(\mathcal{J}_{3}) hold. Let 0<a<b<c0<a^{\prime}<b^{\prime}<c^{\prime} and suppose that 𝚐ι˙,ι˙=1,2,,𝚗\mathtt{g}_{\dot{\iota}},\,{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n} satisfies (𝒥12),(𝒥13)(\mathcal{J}_{12}),\,(\mathcal{J}_{13}) and

  • (𝒥14)(\mathcal{J}_{14})

    𝚐ι˙(𝚞)<a𝔒3\mathtt{g}_{\dot{\iota}}(\mathtt{u})<\frac{a^{\prime}}{\mathfrak{O}_{3}} for 0𝚞a,0\leq\mathtt{u}\leq a^{\prime}, where 𝔒3=r02(𝙽2)2Ξ^r0i=1mi𝚙i.\mathfrak{O}_{3}=\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\infty}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}}.

Then the iterative system (5)–(6) has at least three positive solutions (𝚞11,𝚞21,,𝚞𝚗1),({}^{1}\mathtt{u}_{1},{}^{1}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{1}\mathtt{u}_{\mathtt{n}}), (𝚞12,𝚞22,,𝚞𝚗2)({}^{2}\mathtt{u}_{1},{}^{2}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{2}\mathtt{u}_{\mathtt{n}}) and (𝚞13,𝚞23,,𝚞𝚗3)({}^{3}\mathtt{u}_{1},{}^{3}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{3}\mathtt{u}_{\mathtt{n}}) with 𝚞1ι˙<a,\|{}^{\dot{\iota}}\mathtt{u}_{1}\|<a^{\prime}, b<ß(𝚞2ι˙),b^{\prime}<\ss({}^{\dot{\iota}}\mathtt{u}_{2}), 𝚞3ι˙>a\|{}^{\dot{\iota}}\mathtt{u}_{3}\|>a^{\prime} and ß(𝚞3ι˙)<b\ss({}^{\dot{\iota}}\mathtt{u}_{3})<b^{\prime} for ι˙=1,2,,𝚗.{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}.

Theorem 5.4

Assume that (𝒥1)(\mathcal{J}_{1})(𝒥3)(\mathcal{J}_{3}) hold. Let 0<a<b<c0<a^{\prime}<b^{\prime}<c^{\prime} and suppose that 𝚐ι˙,ι˙=1,2,,𝚗\mathtt{g}_{\dot{\iota}},\,{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n} satisfies (𝒥12),(𝒥13)(\mathcal{J}_{12}),\,(\mathcal{J}_{13}) and

  • (𝒥15)(\mathcal{J}_{15})

    𝚐ι˙(𝚞)<a𝔒4\mathtt{g}_{\dot{\iota}}(\mathtt{u})<\frac{a^{\prime}}{\mathfrak{O}_{4}} for 0𝚞a,0\leq\mathtt{u}\leq a^{\prime}, where 𝔒4=r02(𝙽2)2Ξ^r0i=1mi1.\mathfrak{O}_{4}=\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\infty}\prod_{i=1}^{m}\|\ell_{i}\|_{1}.

Then the iterative system (5)–(6) has at least three positive solutions (𝚞11,𝚞21,,𝚞𝚗1),({}^{1}\mathtt{u}_{1},{}^{1}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{1}\mathtt{u}_{\mathtt{n}}), (𝚞12,𝚞22,,𝚞𝚗2)({}^{2}\mathtt{u}_{1},{}^{2}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{2}\mathtt{u}_{\mathtt{n}}) and (𝚞13,𝚞23,,𝚞𝚗3)({}^{3}\mathtt{u}_{1},{}^{3}\mathtt{u}_{2},\cdot\cdot\cdot,{}^{3}\mathtt{u}_{\mathtt{n}}) with 𝚞1ι˙<a,\|{}^{\dot{\iota}}\mathtt{u}_{1}\|<a^{\prime}, b<ß(𝚞2ι˙),b^{\prime}<\ss({}^{\dot{\iota}}\mathtt{u}_{2}), 𝚞3ι˙>a\|{}^{\dot{\iota}}\mathtt{u}_{3}\|>a^{\prime} and ß(𝚞3ι˙)<b\ss({}^{\dot{\iota}}\mathtt{u}_{3})<b^{\prime} for ι˙=1,2,,𝚗.{\dot{\iota}}=1,2,\cdot\cdot\cdot,\mathtt{n}.

Example 3

Consider the following nonlinear elliptic system of equations,

𝚞ι˙+(𝙽2)2r02𝙽2|x|2𝙽2𝚞ι˙+(|x|)𝚐ι˙(𝚞ι˙+1)=0,1<|x|<2,\triangle{\mathtt{u}_{{\dot{\iota}}}}+\frac{(\mathtt{N}-2)^{2}r_{0}^{2\mathtt{N}-2}}{|x|^{2\mathtt{N}-2}}\mathtt{u}_{\dot{\iota}}+\ell(|x|)\mathtt{g}_{{\dot{\iota}}}(\mathtt{u}_{{\dot{\iota}}+1})=0,~{}1<|x|<2, (17)
𝚞ι˙=0on|x|=1and|x|=2,𝚞ι˙=0on|x|=1and𝚞ι˙r=0on|x|=2,𝚞ι˙r=0on|x|=1and𝚞ι˙=0on|x|=2,}\left.\begin{aligned} &\hskip 25.6073pt\mathtt{u}_{{\dot{\iota}}}=0~{}~{}\text{on}~{}~{}|x|=1~{}\text{and}~{}|x|=2,\\ &\mathtt{u}_{{\dot{\iota}}}=0~{}~{}\text{on}~{}~{}|x|=1~{}\text{and}~{}\frac{\partial\mathtt{u}_{\dot{\iota}}}{\partial r}=0~{}\text{on}~{}|x|=2,\\ &\frac{\partial\mathtt{u}_{\dot{\iota}}}{\partial r}=0~{}~{}\text{on}~{}~{}|x|=1~{}\text{and}~{}\mathtt{u}_{{\dot{\iota}}}=0~{}\text{on}~{}|x|=2,\end{aligned}\right\} (18)

where r0=1,r_{0}=1, 𝙽=3,\mathtt{N}=3, ι˙{1,2},𝚞3=𝚞1,{\dot{\iota}}\in\{1,2\},\,\mathtt{u}_{3}=\mathtt{u}_{1}, (𝚜)=1𝚜4i=12i(𝚜),\ell(\mathtt{s})=\frac{1}{\mathtt{s}^{4}}\prod_{i=1}^{2}\ell_{i}(\mathtt{s}), i(𝚜)=i(1𝚜),\ell_{i}(\mathtt{s})=\ell_{i}\left(\frac{1}{\mathtt{s}}\right), in which

1(t)=1t+1 and 2(t)=1t2+25,\ell_{1}(t)=\frac{1}{\sqrt{t+1}}~{}~{}~{}~{}\text{~{}~{}and~{}~{}}~{}~{}~{}~{}\ell_{2}(t)=\frac{1}{\sqrt{t^{2}+25}},

then it is clear that

1,2L𝚙[0,1] and i=12i=5.\ell_{1},\ell_{2}\in L^{\mathtt{p}}[0,1]~{}~{}\text{~{}~{}and~{}~{}}\prod_{i=1}^{2}\ell_{i}^{*}=5.

Let

𝚐1(𝚞)=𝚐2(𝚞)={32,𝚞1,12𝚞2+1,𝚞<1.\displaystyle\mathtt{g}_{1}(\mathtt{u})=\mathtt{g}_{2}(\mathtt{u})=\left\{\begin{array}[]{ll}\frac{3}{2},\hskip 36.98866pt\mathtt{u}\geq 1,\vspace{1.2mm}\\ \frac{1}{2}\mathtt{u}^{2}+1,\hskip 11.38092pt\mathtt{u}<1.\end{array}\right.

Let α=β=γ=δ=1,\upalpha=\upbeta=\gamma=\updelta=1, ϱ=2cosh(1)+2sinh(1)5.436563658,\varrho=2\cosh(1)+2\sinh(1)\approx 5.436563658,

Ξr0(𝚜,𝚝)=12cosh(1)+2sinh(1){(sinh(𝚜)+cosh(𝚜))(sinh(1𝚝)+cosh(1𝚝)),0𝚜𝚝1,(sinh(𝚝)+cosh(𝚝))(sinh(1𝚜)+cosh(1𝚜)),0𝚝𝚜1,\displaystyle\Xi_{r_{0}}(\mathtt{s},\mathtt{t})=\frac{1}{2\cosh(1)+2\sinh(1)}\left\{\begin{array}[]{ll}\big{(}\sinh(\mathtt{s})+\cosh(\mathtt{s})\big{)}\big{(}\sinh(1-\mathtt{t})+\cosh(1-\mathtt{t})\big{)},\hskip 17.07182pt0\leq\mathtt{s}\leq\mathtt{t}\leq 1,\vspace{1.2mm}\\ \big{(}\sinh(\mathtt{t})+\cosh(\mathtt{t})\big{)}\big{(}\sinh(1-\mathtt{s})+\cosh(1-\mathtt{s})\big{)},\hskip 17.07182pt0\leq\mathtt{t}\leq\mathtt{s}\leq 1,\end{array}\right.

and =3cosh(1).\wp=\frac{3}{\cosh(1)}. Also,

𝔒1=r02(𝙽2)2i=1mi01Ξr0(𝚝,𝚝)𝚝2(𝙽1)2𝙽𝚍𝚝4.627034665×106.\displaystyle\mathfrak{O}_{1}=\frac{\wp r_{0}^{2}}{(\mathtt{N}-2)^{2}}\prod_{i=1}^{m}\ell_{i}^{\star}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t},\mathtt{t})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}\mathtt{d}\mathtt{t}\approx 4.627034665\times 10^{6}.

Let 𝚙1=3,𝚙2=2\mathtt{p}_{1}=3,\mathtt{p}_{2}=2 and 𝚚=6,\mathtt{q}=6, then 1𝚙1+1𝚙2+1𝚚=1\frac{1}{\mathtt{p}_{1}}+\frac{1}{\mathtt{p}_{2}}+\frac{1}{\mathtt{q}}=1 and

𝔒2=r02(𝙽2)2Ξ^r0𝚚i=1mi𝚙i9.696074194×107.\displaystyle\mathfrak{O}_{2}=\frac{r_{0}^{2}}{(\mathtt{N}-2)^{2}}\|\widehat{\Xi}_{r_{0}}\|_{\mathtt{q}}\prod_{i=1}^{m}\|\ell_{i}\|_{\mathtt{p}_{i}}\approx 9.696074194\times 10^{7}.

Choose a=107,b=108a^{\prime}=10^{7},\,b^{\prime}=10^{8} and c=109.c^{\prime}=10^{9}. Then,

𝚐1(𝚞)=𝚐2(𝚞)\displaystyle\mathtt{g}_{1}(\mathtt{u})=\mathtt{g}_{2}(\mathtt{u}) 2.161211386=a𝔒1,𝚞[0,107],\displaystyle\,\leq 2.161211386=\frac{a^{\prime}}{\mathfrak{O}_{1}},~{}\mathtt{u}\in[0,10^{7}],
𝚐1(𝚞)=𝚐2(𝚞)\displaystyle\mathtt{g}_{1}(\mathtt{u})=\mathtt{g}_{2}(\mathtt{u}) 1.031345243=b𝔒2,𝚞[108,109],\displaystyle\,\geq 1.031345243=\frac{b^{\prime}}{\mathfrak{O}_{2}},~{}\mathtt{u}\in[10^{8},10^{9}],
𝚐1(𝚞)=𝚐2(𝚞)\displaystyle\mathtt{g}_{1}(\mathtt{u})=\mathtt{g}_{2}(\mathtt{u}) 216.1211386=c𝔒1,𝚞[0,109].\displaystyle\,\leq 216.1211386=\frac{c^{\prime}}{\mathfrak{O}_{1}},~{}\mathtt{u}\in[0,10^{9}].

Therefore, by Theorem 3.3, the boundary value problem (15)–(16) has at least two positive radial solutions (𝚞1ι˙,𝚞2ι˙),ι˙=1,2({}^{\dot{\iota}}\mathtt{u}_{1},{}^{\dot{\iota}}\mathtt{u}_{2}),\,{\dot{\iota}}=1,2 such that

max𝚜[0,1]𝚞1ι˙(𝚜)<107,108<min𝚜[0,1]𝚞2ι˙(𝚜)<max𝚜[0,1]𝚞2ι˙(𝚜)<109,forι˙=1,2,\max_{\mathtt{s}\in[0,1]}{}^{\dot{\iota}}\mathtt{u}_{1}(\mathtt{s})<10^{7},~{}10^{8}<\min_{\mathtt{s}\in[0,1]}{}^{\dot{\iota}}\mathtt{u}_{2}(\mathtt{s})<\max_{\mathtt{s}\in[0,1]}{}^{\dot{\iota}}\mathtt{u}_{2}(\mathtt{s})<10^{9},~{}~{}\text{for}~{}~{}{\dot{\iota}}=1,2,
107<max𝚜[0,1]𝚞3ι˙(𝚜)<109,min𝚜[0,1]𝚞3ι˙(𝚜)<108,forι˙=1,2.10^{7}<\max_{\mathtt{s}\in[0,1]}{}^{\dot{\iota}}\mathtt{u}_{3}(\mathtt{s})<10^{9},~{}~{}\min_{\mathtt{s}\in[0,1]}{}^{\dot{\iota}}\mathtt{u}_{3}(\mathtt{s})<10^{8},~{}~{}\text{for}~{}~{}{\dot{\iota}}=1,2.

6 Existence of Unique Positive Radial Solution

In the next, for the existence of unique positive radial solution to the boundary value problem (5)–(6), we employ two metrics under Rus’s theorem (see, alm ; stin for more details). Consider the set of real valued functions that are defined and continuous on [0,1][0,1] and denote this space by 𝚟=C([0,1]).\mathtt{v}=C([0,1]). For functions 𝚟1,𝚟2𝚟,\mathtt{v}_{1},\mathtt{v}_{2}\in\mathtt{v}, consider the following two metrics on 𝚟:\mathtt{v}:

𝚍(𝚟1,𝚟2)=max𝚝[0,1]|𝚟1(𝚝)𝚟2(𝚝)|,\mathtt{d}(\mathtt{v}_{1},\mathtt{v}_{2})=\max_{\mathtt{t}\in[0,1]}|\mathtt{v}_{1}(\mathtt{t})-\mathtt{v}_{2}(\mathtt{t})|, (19)
ρ(𝚟1,𝚟2)=[01|𝚟1(𝚝)𝚟2(𝚝)|𝚙𝚍𝚝]1𝚙,𝚙>1.\uprho(\mathtt{v}_{1},\mathtt{v}_{2})=\left[\int_{0}^{1}|\mathtt{v}_{1}(\mathtt{t})-\mathtt{v}_{2}(\mathtt{t})|^{\mathtt{p}}\mathtt{d}\mathtt{t}\right]^{\frac{1}{\mathtt{p}}},~{}~{}\mathtt{p}>1. (20)

For 𝚍\mathtt{d} in (19), the pair (C([0,1]),𝚍)(C([0,1]),\mathtt{d}) forms a complete metric space. For ρ\uprho in (20), the pair (C([0,1]),ρ)(C([0,1]),\uprho) forms a metric space. The relationship between the two metrics on 𝚟\mathtt{v} is given by

ρ(𝚟1,𝚟2)𝚍(𝚟1,𝚟2)for all𝚟1,𝚟2𝚟.\uprho(\mathtt{v}_{1},\mathtt{v}_{2})\leq\mathtt{d}(\mathtt{v}_{1},\mathtt{v}_{2})~{}~{}\text{for~{}all}~{}~{}\mathtt{v}_{1},\mathtt{v}_{2}\in\mathtt{v}. (21)
Theorem 6.1 (Rus rus )

Let 𝚟\mathtt{v} be a nonempty set and let 𝚍\mathtt{d} and ρ\uprho be two metrics on 𝚟\mathtt{v} such that (𝚟,𝚍)(\mathtt{v},\mathtt{d}) forms a complete metric space. If the mapping Λ:𝚟𝚟\Lambda:\mathtt{v}\to\mathtt{v} is continuous with respect to 𝚍\mathtt{d} on 𝚟\mathtt{v} and

𝚍(Λ𝚟1,Λ𝚟2)α1ρ(𝚟1,𝚟2),\mathtt{d}(\Lambda\mathtt{v}_{1},\Lambda\mathtt{v}_{2})\leq\alpha_{1}\uprho(\mathtt{v}_{1},\mathtt{v}_{2}), (22)

for some α1>0\alpha_{1}>0 and for all 𝚟1,𝚟2𝚟,\mathtt{v}_{1},\mathtt{v}_{2}\in\mathtt{v},

ρ(Λ𝚟1,Λ𝚟2)α2ρ(𝚟1,𝚟2),\uprho(\Lambda\mathtt{v}_{1},\Lambda\mathtt{v}_{2})\leq\alpha_{2}\uprho(\mathtt{v}_{1},\mathtt{v}_{2}), (23)

for some 0<α2<10<\alpha_{2}<1 for all 𝚟1,𝚟2𝚟,\mathtt{v}_{1},\mathtt{v}_{2}\in\mathtt{v}, then there is a unique 𝚟𝚟\mathtt{v}^{*}\in\mathtt{v} such that Λ𝚟=𝚟.\Lambda\mathtt{v}^{*}=\mathtt{v}^{*}.

Denote Υ(𝚝)=Ξr0(𝚝,𝚝)𝚝2(𝙽1)2𝙽i=1mi(𝚝)𝚍𝚝.\Upsilon(\mathtt{t})=\Xi_{r_{0}}(\mathtt{t},\mathtt{t})\mathtt{t}^{\frac{2(\mathtt{N}-1)}{2-\mathtt{N}}}\prod_{i=1}^{m}\ell_{i}(\mathtt{t})\mathtt{d}\mathtt{t}.

Theorem 6.2

Assume that (𝒥1),(𝒥3)(\mathcal{J}_{1}),\,(\mathcal{J}_{3}) and the following codition are satisfied.

  • (𝒥14)(\mathcal{J}_{14})

    there exists a number 𝙺>0\mathtt{K}>0 such that

    |𝚐ι˙(𝚞)𝚐ι˙(𝚟)|𝙺|𝚞𝚟|for𝚞,𝚟𝚟.|\mathtt{g}_{\dot{\iota}}(\mathtt{u})-\mathtt{g}_{\dot{\iota}}(\mathtt{v})|\leq\mathtt{K}|\mathtt{u}-\mathtt{v}|~{}~{}\text{for}~{}~{}\mathtt{u},\mathtt{v}\in\mathtt{v}.

Further, assume that there are constants 𝚙>1\mathtt{p}>1 and 𝚚>1\mathtt{q}>1 such that 1/𝚙+1/𝚚=11/\mathtt{p}+1/\mathtt{q}=1 with

[𝙺r02(𝙽2)2]𝚗+1[01|Υ(𝚝)|𝚍𝚝]𝚗[01|Υ(𝚝)|𝚚𝚍𝚝]1q<1,\left[\frac{\wp\mathtt{K}r_{0}^{2}}{(\mathtt{N}-2)^{2}}\right]^{\mathtt{n}+1}\left[\int_{0}^{1}|\Upsilon(\mathtt{t})|\mathtt{d}\mathtt{t}\right]^{\mathtt{n}}\left[\int_{0}^{1}|\Upsilon(\mathtt{t})|^{\mathtt{q}}\mathtt{d}\mathtt{t}\right]^{\frac{1}{q}}<1, (24)

then the boundary value problem (5)–(6) has a unique positive radial solution in 𝚟.\mathtt{v}.

Proof

Let 𝚞1,𝚟1C([0,1])\mathtt{u}_{1},\mathtt{v}_{1}\in C([0,1]) and 𝚝[0,1].\mathtt{t}\in[0,1]. Then by Hölder’s inequality, we have

|01Ξr0(𝚝𝚗1,𝚝𝚗)\displaystyle\bigg{|}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}}) (𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚟1(𝚝𝚗))𝚍𝚝𝚗|\displaystyle\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}-\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{v}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\bigg{|}
01|Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)||𝚐𝚗(𝚞1(𝚝𝚗))𝚐𝚗(𝚟1(𝚝𝚗))|𝚍𝚝𝚗\displaystyle\leq\int_{0}^{1}|\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\,\ell(\mathtt{t}_{\mathtt{n}})||\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}-\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{v}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}|\mathtt{d}\mathtt{t}_{\mathtt{n}}
01|Ξr0(𝚝𝚗,𝚝𝚗)(𝚝𝚗)|𝙺|𝚞1(𝚝𝚗)𝚟1(𝚝𝚗)|𝚍𝚝𝚗\displaystyle\leq\int_{0}^{1}|\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}},\mathtt{t}_{\mathtt{n}})\,\ell(\mathtt{t}_{\mathtt{n}})|\,\mathtt{K}|\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})-\mathtt{v}_{1}(\mathtt{t}_{\mathtt{n}})|\mathtt{d}\mathtt{t}_{\mathtt{n}}
𝙺r02(𝙽2)201|Υ(𝚝𝚗)||𝚞1(𝚝𝚗)𝚟1(𝚝𝚗)|𝚍𝚝𝚗\displaystyle\leq\frac{\mathtt{K}r_{0}^{2}}{(\mathtt{N}-2)^{2}}\int_{0}^{1}|\Upsilon(\mathtt{t}_{\mathtt{n}})||\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})-\mathtt{v}_{1}(\mathtt{t}_{\mathtt{n}})|\mathtt{d}\mathtt{t}_{\mathtt{n}}
𝙺r02(𝙽2)2[01|Υ(𝚝𝚗)|𝚚𝚍𝚝𝚗]1𝚚[01|𝚞1(𝚝𝚗)𝚟1(𝚝𝚗)|𝚙𝚍𝚝𝚗]1𝚙\displaystyle\leq\frac{\mathtt{K}r_{0}^{2}}{(\mathtt{N}-2)^{2}}\left[\int_{0}^{1}|\Upsilon(\mathtt{t}_{\mathtt{n}})|^{\mathtt{q}}\mathtt{d}\mathtt{t}_{\mathtt{n}}\right]^{\frac{1}{\mathtt{q}}}\left[\int_{0}^{1}|\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})-\mathtt{v}_{1}(\mathtt{t}_{\mathtt{n}})|^{\mathtt{p}}\mathtt{d}\mathtt{t}_{\mathtt{n}}\right]^{\frac{1}{\mathtt{p}}}
𝙺r02(𝙽2)2[01|Υ(𝚝𝚗)|𝚚𝚍𝚝𝚗]1𝚚ρ(𝚞1,𝚟1)\displaystyle\leq\frac{\mathtt{K}r_{0}^{2}}{(\mathtt{N}-2)^{2}}\left[\int_{0}^{1}|\Upsilon(\mathtt{t}_{\mathtt{n}})|^{\mathtt{q}}\mathtt{d}\mathtt{t}_{\mathtt{n}}\right]^{\frac{1}{\mathtt{q}}}\uprho(\mathtt{u}_{1},\mathtt{v}_{1})
α1ρ(𝚞1,𝚟1),\displaystyle\leq\alpha_{1}^{\star}\uprho(\mathtt{u}_{1},\mathtt{v}_{1}),

where

α1=𝙺r02(𝙽2)2[01|Υ(𝚝𝚗)|𝚚]1𝚚.\alpha_{1}^{\star}=\frac{\mathtt{K}r_{0}^{2}}{(\mathtt{N}-2)^{2}}\left[\int_{0}^{1}|\Upsilon(\mathtt{t}_{\mathtt{n}})|^{\mathtt{q}}\right]^{\frac{1}{\mathtt{q}}}.

It follows in similar manner for 0<𝚝𝚗2<1,0<\mathtt{t}_{\mathtt{n}-2}<1,

|01Ξr0(\displaystyle\bigg{|}\int_{0}^{1}\Xi_{r_{0}}( 𝚝𝚗2,𝚝𝚗1)(𝚝𝚗1)𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]𝚍𝚝𝚗1\displaystyle\mathtt{t}_{\mathtt{n}-2},\mathtt{t}_{\mathtt{n}-1})\ell(\mathtt{t}_{\mathtt{n}-1})\mathtt{g}_{\mathtt{n}-1}\bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\bigg{]}\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
01Ξr0(𝚝𝚗2,𝚝𝚗1)(𝚝𝚗1)𝚐𝚗1[01Ξr0(𝚝𝚗1,𝚝𝚗)(𝚝𝚗)𝚐𝚗(𝚞1(𝚝𝚗))𝚍𝚝𝚗]𝚍𝚝𝚗1|\displaystyle\hskip 28.45274pt-\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-2},\mathtt{t}_{\mathtt{n}-1})\ell(\mathtt{t}_{\mathtt{n}-1})\mathtt{g}_{\mathtt{n}-1}\bigg{[}\int_{0}^{1}\Xi_{r_{0}}(\mathtt{t}_{\mathtt{n}-1},\mathtt{t}_{\mathtt{n}})\ell(\mathtt{t}_{\mathtt{n}})\mathtt{g}_{\mathtt{n}}\big{(}\mathtt{u}_{1}(\mathtt{t}_{\mathtt{n}})\big{)}\mathtt{d}\mathtt{t}_{\mathtt{n}}\bigg{]}\mathtt{d}\mathtt{t}_{\mathtt{n}-1}\bigg{|}
𝙺r02(𝙽2)201|Υ(𝚝𝚗1)|α1ρ(𝚞1,𝚟1)𝚍𝚝𝚗1\displaystyle\leq\frac{\mathtt{K}r_{0}^{2}}{(\mathtt{N}-2)^{2}}\int_{0}^{1}|\Upsilon(\mathtt{t}_{\mathtt{n}-1})|\alpha_{1}\uprho(\mathtt{u}_{1},\mathtt{v}_{1})\mathtt{d}\mathtt{t}_{\mathtt{n}-1}
α^1α1ρ(𝚞1,𝚟1),\displaystyle\leq\widehat{\alpha}_{1}{\alpha}_{1}^{\star}\uprho(\mathtt{u}_{1},\mathtt{v}_{1}),

where

α^1=𝙺r02(𝙽2)201|Υ(𝚝)|𝚍𝚝.\widehat{\alpha}_{1}=\frac{\mathtt{K}r_{0}^{2}}{(\mathtt{N}-2)^{2}}\int_{0}^{1}|\Upsilon(\mathtt{t})|\mathtt{d}\mathtt{t}.

Continuing with bootstrapping argument, we get

|Λ𝚞1(𝚝)Λ𝚟1(𝚝)|α^1𝚗α1ρ(𝚞1,𝚟1).\left|\Lambda\mathtt{u}_{1}(\mathtt{t})-\Lambda\mathtt{v}_{1}(\mathtt{t})\right|\leq\widehat{\alpha}_{1}^{\mathtt{n}}\alpha_{1}^{\star}\uprho(\mathtt{u}_{1},\mathtt{v}_{1}).

we see that

𝚍(Λ𝚞1,Λ𝚟1)α1ρ(𝚞1,𝚟1),\mathtt{d}(\Lambda\mathtt{u}_{1},\Lambda\mathtt{v}_{1})\leq\alpha_{1}\uprho(\mathtt{u}_{1},\mathtt{v}_{1}), (25)

for some α1=𝚌^1𝚗α1>0\alpha_{1}=\widehat{\mathtt{c}}_{1}^{\mathtt{n}}\alpha_{1}^{\star}>0 for all 𝚞1,𝚟1𝚟,\mathtt{u}_{1},\mathtt{v}_{1}\in\mathtt{v}, and so the inequality (22) of Theorem 6.1 holds. Now, for all 𝚞1,𝚟1𝚟,\mathtt{u}_{1},\mathtt{v}_{1}\in\mathtt{v}, we may apply (21) to (25) to obtain

𝚍(Λ𝚞1,Λ𝚟1)α1ρ(𝚞1,𝚟1)α1𝚍(𝚞1,𝚟1).\mathtt{d}(\Lambda\mathtt{u}_{1},\Lambda\mathtt{v}_{1})\leq\alpha_{1}\uprho(\mathtt{u}_{1},\mathtt{v}_{1})\leq\alpha_{1}\mathtt{d}(\mathtt{u}_{1},\mathtt{v}_{1}).

Thus, given any ε>0\varepsilon>0 we can choose η=ε/α1\upeta=\varepsilon/\alpha_{1} so that 𝚍(Λ𝚞1,Λ𝚟1)<ε,\mathtt{d}(\Lambda\mathtt{u}_{1},\Lambda\mathtt{v}_{1})<\varepsilon, whenever 𝚍(𝚞1,𝚟1)<η.\mathtt{d}(\mathtt{u}_{1},\mathtt{v}_{1})<\upeta. Hence Λ\Lambda is continuous on 𝚟\mathtt{v} with respect to the metric 𝚍.\mathtt{d}. Finally, we show that Λ\Lambda is contractive on 𝚟\mathtt{v} with respect to the metric ρ.\uprho. From (25), for each 𝚞1,𝚟1𝚟\mathtt{u}_{1},\mathtt{v}_{1}\in\mathtt{v} consider

[01|(Λ𝚞1)(𝚝)(Λ𝚟1)(𝚝)|𝚙𝚍𝚝]1𝚙\displaystyle\bigg{[}\int_{0}^{1}|(\Lambda\mathtt{u}_{1})(\mathtt{t})-(\Lambda\mathtt{v}_{1})(\mathtt{t})|^{\mathtt{p}}\mathtt{d}\mathtt{t}\bigg{]}^{\frac{1}{\mathtt{p}}} [01|𝚌^1𝚗α1ρ(𝚞1,𝚟1)|𝚙𝚍𝚝]1𝚙\displaystyle\leq\left[\int_{0}^{1}\left|\widehat{\mathtt{c}}_{1}^{\mathtt{n}}\alpha_{1}^{\star}\uprho(\mathtt{u}_{1},\mathtt{v}_{1})\right|^{\mathtt{p}}\mathtt{d}\mathtt{t}\right]^{\frac{1}{\mathtt{p}}}
[𝙺r02(𝙽2)2]𝚗+1[01|Υ(𝚝)|𝚍𝚝]𝚗[01|Υ(𝚝)|𝚚𝚍𝚝]1qρ(𝚟1,𝚟2).\displaystyle\leq\,\left[\frac{\mathtt{K}r_{0}^{2}}{(\mathtt{N}-2)^{2}}\right]^{\mathtt{n}+1}\left[\int_{0}^{1}|\Upsilon(\mathtt{t})|\mathtt{d}\mathtt{t}\right]^{\mathtt{n}}\left[\int_{0}^{1}|\Upsilon(\mathtt{t})|^{\mathtt{q}}\mathtt{d}\mathtt{t}\right]^{\frac{1}{q}}\uprho(\mathtt{v}_{1},\mathtt{v}_{2}).

That is

ρ(Λ𝚞1,Λ𝚟1)[𝙺r02(𝙽2)2]𝚗+1[01|Υ(𝚝)|𝚍𝚝]𝚗[01|Υ(𝚝)|𝚚𝚍𝚝]1qρ(𝚟1,𝚟2).\displaystyle\uprho(\Lambda\mathtt{u}_{1},\Lambda\mathtt{v}_{1})\leq\left[\frac{\mathtt{K}r_{0}^{2}}{(\mathtt{N}-2)^{2}}\right]^{\mathtt{n}+1}\left[\int_{0}^{1}|\Upsilon(\mathtt{t})|\mathtt{d}\mathtt{t}\right]^{\mathtt{n}}\left[\int_{0}^{1}|\Upsilon(\mathtt{t})|^{\mathtt{q}}\mathtt{d}\mathtt{t}\right]^{\frac{1}{q}}\uprho(\mathtt{v}_{1},\mathtt{v}_{2}).

From the assumption (24), we have

ρ(Λ𝚟1,Λ𝚟2)α2ρ(𝚟1,𝚟2)\uprho(\Lambda\mathtt{v}_{1},\Lambda\mathtt{v}_{2})\leq\alpha_{2}\uprho(\mathtt{v}_{1},\mathtt{v}_{2})

for some α2<1\alpha_{2}<1 and all 𝚟1,𝚟2𝚟.\mathtt{v}_{1},\mathtt{v}_{2}\in\mathtt{v}. Thus, Theorem 6.1, the operator Λ\Lambda has a unique fixed point in 𝚟.\mathtt{v}. Also, we note that the operator Λ\Lambda is positive from Lemma 3. Therefore, the boundary value problem (2) has a unique positive radial solution.∎

Example 4

Consider the following nonlinear elliptic system of equations,

𝚞ι˙+(𝙽2)2r02𝙽2|x|2𝙽2𝚞ι˙+(|x|)𝚐ι˙(𝚞ι˙+1)=0,1<|x|<2,\triangle{\mathtt{u}_{{\dot{\iota}}}}+\frac{(\mathtt{N}-2)^{2}r_{0}^{2\mathtt{N}-2}}{|x|^{2\mathtt{N}-2}}\mathtt{u}_{\dot{\iota}}+\ell(|x|)\mathtt{g}_{{\dot{\iota}}}(\mathtt{u}_{{\dot{\iota}}+1})=0,~{}1<|x|<2, (26)
𝚞ι˙=0on|x|=1and|x|=2,𝚞ι˙=0on|x|=1and𝚞ι˙r=0on|x|=2,𝚞ι˙r=0on|x|=1and𝚞ι˙=0on|x|=2,}\left.\begin{aligned} &\hskip 25.6073pt\mathtt{u}_{{\dot{\iota}}}=0~{}~{}\text{on}~{}~{}|x|=1~{}\text{and}~{}|x|=2,\\ &\mathtt{u}_{{\dot{\iota}}}=0~{}~{}\text{on}~{}~{}|x|=1~{}\text{and}~{}\frac{\partial\mathtt{u}_{\dot{\iota}}}{\partial r}=0~{}\text{on}~{}|x|=2,\\ &\frac{\partial\mathtt{u}_{\dot{\iota}}}{\partial r}=0~{}~{}\text{on}~{}~{}|x|=1~{}\text{and}~{}\mathtt{u}_{{\dot{\iota}}}=0~{}\text{on}~{}|x|=2,\end{aligned}\right\} (27)

where r0=1,r_{0}=1, 𝙽=3,\mathtt{N}=3, ι˙{1,2},𝚞3=𝚞1,{\dot{\iota}}\in\{1,2\},\,\mathtt{u}_{3}=\mathtt{u}_{1}, (𝚜)=1𝚜4i=12i(𝚜),\ell(\mathtt{s})=\frac{1}{\mathtt{s}^{4}}\prod_{i=1}^{2}\ell_{i}(\mathtt{s}), i(𝚜)=i(1𝚜),\ell_{i}(\mathtt{s})=\ell_{i}\left(\frac{1}{\mathtt{s}}\right), in which 1(t)=2(t)=1t+1,\ell_{1}(t)=\ell_{2}(t)=\frac{1}{t+1}, then i=12i=1.\prod_{i=1}^{2}\ell_{i}^{*}=1. Let 𝚐1(𝚞)=1104cos(𝚞),𝚐2(𝚞)=𝚞104(𝚞+1)\mathtt{g}_{1}(\mathtt{u})=\frac{1}{10^{4}}\cos(\mathtt{u}),\,\mathtt{g}_{2}(\mathtt{u})=\frac{\mathtt{u}}{10^{4}(\mathtt{u}+1)} and α=β=γ=δ=1,\upalpha=\upbeta=\upgamma=\updelta=1, then ρ=2cosh(1)+2sinh(1)5.436563658,\uprho=2\cosh(1)+2\sinh(1)\approx 5.436563658,

Ξr0(𝚜,𝚝)=12cosh(1)+2sinh(1){(sinh(𝚜)+cosh(𝚜))(sinh(1𝚝)+cosh(1𝚝)),0𝚜𝚝1,(sinh(𝚝)+cosh(𝚝))(sinh(1𝚜)+cosh(1𝚜)),0𝚝𝚜1,\displaystyle\Xi_{r_{0}}(\mathtt{s},\mathtt{t})=\frac{1}{2\cosh(1)+2\sinh(1)}\left\{\begin{array}[]{ll}\big{(}\sinh(\mathtt{s})+\cosh(\mathtt{s})\big{)}\big{(}\sinh(1-\mathtt{t})+\cosh(1-\mathtt{t})\big{)},\hskip 17.07182pt0\leq\mathtt{s}\leq\mathtt{t}\leq 1,\vspace{1.2mm}\\ \big{(}\sinh(\mathtt{t})+\cosh(\mathtt{t})\big{)}\big{(}\sinh(1-\mathtt{s})+\cosh(1-\mathtt{s})\big{)},\hskip 17.07182pt0\leq\mathtt{t}\leq\mathtt{s}\leq 1,\end{array}\right.

and =3cosh(1).\wp=\frac{3}{\cosh(1)}. Then,

|𝚐1(𝚞)𝚐1(𝚟)|=|cos(𝚞)cos(𝚟)|1041104|𝚞𝚟|,|\mathtt{g}_{1}(\mathtt{u})-\mathtt{g}_{1}(\mathtt{v})|=\frac{|\cos(\mathtt{u})-\cos(\mathtt{v})|}{10^{4}}\leq\frac{1}{10^{4}}|\mathtt{u}-\mathtt{v}|,

and

|𝚐2(𝚞)𝚐2(𝚟)|=1104|𝚞𝚞+1𝚟𝚟+1|1104|𝚞𝚟|.|\mathtt{g}_{2}(\mathtt{u})-\mathtt{g}_{2}(\mathtt{v})|=\frac{1}{10^{4}}\left|\frac{\mathtt{u}}{\mathtt{u}+1}-\frac{\mathtt{v}}{\mathtt{v}+1}\right|\leq\frac{1}{10^{4}}|\mathtt{u}-\mathtt{v}|.

So, 𝙺=1104.\mathtt{K}=\frac{1}{10^{4}}. Let 𝚗=2\mathtt{n}=2 and 𝚙=𝚚=2.\mathtt{p}=\mathtt{q}=2. Then,

[𝙺r02(𝙽2)2]𝚗+1[01|Υ(𝚝)|𝚍𝚝]𝚗[01|Υ(𝚝)|𝚚𝚍𝚝]1q0.3149700790<1.\left[\frac{\mathtt{K}r_{0}^{2}}{(\mathtt{N}-2)^{2}}\right]^{\mathtt{n}+1}\left[\int_{0}^{1}|\Upsilon(\mathtt{t})|\mathtt{d}\mathtt{t}\right]^{\mathtt{n}}\left[\int_{0}^{1}|\Upsilon(\mathtt{t})|^{\mathtt{q}}\mathtt{d}\mathtt{t}\right]^{\frac{1}{q}}\approx 0.3149700790<1.

Therefore, from Theorem 6.2, the iterative system of boundary value problems (26)–(27) has a unique positive radial solution.

Acknowledgement

Author contributions The study was carried out in collaboration of all authors. All authors read and approved the final manuscript.

Funding Not Applicable.

Data availibility statement Data sharing not applicable to this paper as no data sets were generated or analyzed during the current study.

Compliance with ethical standards

Conflict of interest It is declared that authors has no competing interests.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

  • (1) J. Ali and S. Padhi, Existence of multiple positive radial solutions to elliptic equations in an annulus, Com. App. Anal. 22(4), 695–710 (2018).
  • (2) S. S. Almuthaybiria, C. C. Tisdell, Sharper existence and uniqueness results for solutions to third order boundary value problems, Math. Model. Anal., 25(3) (2020), 409–420.
  • (3) R. I. Avery, J. Henderson, Two positive fixed points of nonlinear operators on ordered Banach spaces, Comm. Appl. Nonlinear Anal. 8 (2001) 27–36.
  • (4) R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal. 39 (5) (2000) 559–568.
  • (5) D.D. Hai, R. Shivaji, An existence result on positive solutions for a class of semilinear elliptic systems, Proc. R. Soc. Edinb., Sect. A 134 (1) (2004) 137–141.
  • (6) J. Ali, R. Shivaji, M. Ramaswamy, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Differ. Integral Equ. 19 (6) (2006) 669–680.
  • (7) D.D. Hai, Uniqueness of positive solutions for semilinear elliptic systems, J. Math. Anal. Appl. 313 (2) (2006) 761–767.
  • (8) D.D. Hai, R. Shivaji, Uniqueness of positive solutions for a class of semipositone elliptic systems, Nonlinear Anal. 66 (2) (2007) 396–402.
  • (9) J. Ali, K. Brown, R. Shivaji, Positive solutions for n×nn\times n elliptic systems with combined nonlinear effects, Differ. Integral Equ. 24 (3-4) (2011) 307–324.
  • (10) M. B. Chrouda, K. Hassine, Uniqueness of positive radial solutions for elliptic equations in an annulus, Proc. Amer. Math. Soc., (2020). https://doi.org/10.1090/proc/15286
  • (11) D. Guo and V. Lakshmikantham: Nonlinear Problems in Abstract Cones, Academic Press, San Diego, (1988).
  • (12) R. Kajikiya, E. Ko, Existence of positive radial solutions for a semipositone elliptic equation, J. Math. Anal. Appl. 484 (2020) 123735.
  • (13) K. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities, J. Differ. Equ. 148, 407–421 (1998).
  • (14) Y. H. Lee, Multiplicity of positive radial solutions for multiparameter semilinear elliptic systems on an annulus. J. of Differ. Equ. 174(2), 420–441 (2001).
  • (15) R. W. Legget, L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673–688.
  • (16) : Yongxiang Li, Positive radial solutions for elliptic equations with nonlinear gradient terms in an annulus, Complex Var. Elliptic Equ., (2017). DOI:10.1080/17476933.2017.1292261
  • (17) Linfeng Mei, Structure of positive radial solutions of a quasilinear elliptic problem with singular nonlinearity, Complex Var. Elliptic Equ., (2017). DOI:10.1080/17476933.2017.1399367
  • (18) W. M. Ni, Some aspects of semilinear elliptic equations on n,\mathbb{R}^{n}, in Nonlinear Diffusion Equations and Their Equilibrium States II (Ed. by W. M. Ni, L. A. Peletier, J. Serrin), Springer-Verlag, New York (1988), 171–205.
  • (19) I. A. Rus, On a fixed point theorem of Maia, Studia Univ. ”Babes-Bolyai”, Mathematica, 1 (1977), 40–42.
  • (20) B. Son, P. Wang, Positive radial solutions to classes of nonlinear elliptic systems on the exterior of a ball, J. Math. Anal. Appl. 488 (2020) 124069.
  • (21) C. P. Stinson, S. S. Almuthaybiri, C. C. Tisdell, A note regarding extensions of fixed point theorems involving two metrics via an analysis of iterated functions, ANZIAM J., 61(EMAC2019) (2020), C15–C30.
  • (22) E. Yanagida, Uniqueness of positive radial solutions of u+𝚐(|𝚡|)u+𝚐(|𝚡|)up=0\triangle u+\mathtt{g}(|\mathtt{x}|)u+\mathtt{g}(|\mathtt{x}|)u^{p}=0 in n,\mathbb{R}^{n}, Arch. Rational Mech. Anal., 115(1991), 257–274.