This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Potential Vibrational Modes Tied to Diffuse Interstellar Bands

Daniel Majaess Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M2J6 Canada. Daniel.Majaess@msvu.ca Halis Seuret Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209, Morelos, Mexico. Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M2J6 Canada. Tina A. Harriott Department of Mathematics and Statistics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M2J6 Canada. Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M2J6 Canada. Cercis Morera-Boado IXM-Cátedra Conahcyt-Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209, Morelos, Mexico. Ailish Sullivan Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M2J6 Canada. Lou Massa Hunter College & the PhD Program of the Graduate Center, City University of New York, New York, USA. Chérif F. Matta Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M2J6 Canada. Department of Chemistry, Saint Mary’s University, Halifax, Nova Scotia, B3H3C3 Canada. Département de Chimie, Université Laval, Québec, G1V0A6 Canada. Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H4J3 Canada.
Abstract

Potential vibrational modes associated with diffuse interstellar bands (DIBs) could be discerned by examining energy differences between correlated DIBs. Consequently, 103\approx 10^{3} higher correlated DIB pairs (rσr0.8r-\sigma_{r}\geq 0.8, 12\geq 12 sightlines) were extracted from the Apache Point Observatory DIB catalog, and their energy spacings computed. In this first macro exploratory step, a histogram possibly reveals chemical bond signatures of C\equivC, C\equivN, S-H, C-O, C==O, Si-H, N-H, C-H (aliphatic), C¯\mathbf{{}^{\underline{...}}}C (in-ring), and aromatics (C-H stretch, C¯\mathbf{{}^{\underline{...}}}C in-ring, oop C-H bending, and overtones). Continued research is required to (in)validate the histogram approach, mitigate noise, scrutinize maxima, break degeneracies, and converge upon an optimal framework.

Astrochemistry (75)

1 Introduction

Heger (1922) observed that absorption lines at 5780 and 5797 Å were superposed upon the spectra of binary stars, and lacked the requisite oscillatory Doppler shifting. The source(s) of these lines lie mainly within interstellar clouds along the sightline (see also Hartmann, 1904, regarding interstellar calcium). A century later several hundred diffuse interstellar bands (DIBs) are known (e.g., Bondar, 2012; Fan et al., 2019). PAHs remain a leading hypothesis as a principal carrier (e.g., Bondar, 2020), and for several DIBs C+60{}_{60}^{+} is debated (e.g., Campbell et al., 2015; Galazutdinov et al., 2017, 2021; Schlarmann et al., 2021; Nie et al., 2022; Majaess et al., 2025). Indeed, heterofullerenes and (endo/exo)hedral inclusions are likewise being explored as DIB carriers (e.g., Kroto, 1987; Omont, 2016).

Refer to caption
Figure 1: Energy differences between higher correlated DIB pairs (rσr0.8r-\sigma_{r}\geq 0.8, EW/σEW5EW/\sigma_{EW}\geq 5) may feature maxima that reveal the underlying chemical bonds (tentative candidates are suggested). Degeneracies exist owing to broadening and overlapping wavenumbers. Independent investigations are needed to evaluate the histogram approach and identify spurious maxima. Data were extracted from the APO catalog of DIBs.

Here, the objective is to explore whether vibrational transitions may be identified by delineating energy differences between correlated DIB pairs (e.g., Jenniskens & Desert, 1993; Moutou et al., 1999; Bondar, 2020). For example, Jenniskens & Desert (1993) suggested the energy separation between DIBs 5797 and 6269 Å could be indicative of a PAH C==C vibration (7.7 μm\mu m). Moutou et al. (1999) underscored that the gap between the correlated 6196 and 6614 Å DIBs is tied to an aromatic vibration (9.8 μm\mu m). Bondar (2020, their Table 4) relays that the energy offset between DIBs 5545 and 6614 Å may be linked to a PAH or aliphatic C-H vibration (3.3 μm\mu m). DIBs associated with a given molecule may represent a vibronic progression (e.g., McCall et al., 2010, and discussion therein).

2 Analysis

The Fan et al. (2019) APO catalog was examined, and the analysis was subsequently limited to DIB pairs exhibiting higher Pearson correlated equivalent widths (rσr0.8r-\sigma_{r}\geq 0.8, EW/σEW5EW/\sigma_{EW}\geq 5), possessing 12\geq 12 sightlines, and whose energy difference falls within 5004000500-4000 cm-1. The Pearson correlation, equivalent width, and their uncertainties are described by rr, σr\sigma_{r}, EWEW, and σEW\sigma_{EW}. The sightline to VI Cyg 12 was excluded owing to its circumstellar shell and color-excess beyond the field (e.g., Maryeva et al., 2016; Xing et al., 2024).

The final sample hosts 103\simeq 10^{3} DIB pairs. Wavenumbers linked to the energy spacing between DIB pairs were compiled into a histogram (23 cm-1 bin width). Vibrations were identified by relying on Colthup et al. (1990), the ChemCompute+GAMESS quantum chemistry framework (Perri & Weber, 2014; Barca et al., 2020), and the NASA Ames PAH IR spectroscopic database (Boersma et al., 2014; Bauschlicher et al., 2018; Mattioda et al., 2020). Tentatively, the peaks in Fig. 1 can be assigned to various chemical bonds (e.g., C\equivC, C\equivN, S-H, C-O, C==O, Si-H). For example, the potential aromatic out of plane (oop) bending C-H vibration may represent the line near 745 cm-1, which is the most prominent maximum,111Linearly binned wavelength (rather than wavenumber) would reveal a maximum toward small λ\lambda. with an underestimated uncertainty (formal) being half the bin width (i.e., 745±12745\pm 12 cm-1). Peaks in its vicinity could represent differing aromatic substitution patterns. The prominence of 745\simeq 745 cm-1 (13.4 μm\mu m) in concert with 697\simeq 697 cm-1 (14.8 μm\mu m) may be indicative of mono-substitution. The feature near 606 cm-1 (16.5 μm\mu m) was identified by Moutou et al. (2000) as linked to PAHs (see also Bondar, 2020, and their DIB family). Aromatics are likewise relayed by the in-ring C¯\mathbf{{}^{\underline{...}}}C line perhaps appearing near 1573 cm-1, and C-H line beyond 3000\simeq 3000 cm-1, while shortward of the latter are aliphatic C-H. Furthermore, overdensities near 5.25 (FWHM0.12\approx 0.12 μm\mu m) and 5.7 μm\mu m (FWHM0.17\approx 0.17 μm\mu m) can be conducive to PAH emission from overtones, combinations, etc. (Boersma et al., 2009, and references therein). The two longer wavelength C¯\mathbf{{}^{\underline{...}}}C may be tied to fullerenes, and a degeneracy could likewise extend to the putative 10.8 μm\mu m and oop C-H features. The diversity of vibrational transitions reaffirms prior analyses indicating numerous molecules give rise to DIBs (e.g., on the basis of correlated equivalent widths, common correlations relative to reddening, and spectral line morphology, Cami et al., 1997; Smith et al., 2021, 2022; Ebenbichler et al., 2024).

Crucially, artifacts may exist owing to noise (e.g., N-H), and a balance was sought where sufficient statistics were achieved in concert with a reasonable selection of the correlation threshold, sightline number, and binning. Consequently, a histogram for DIB pairs displaying low correlations was constructed (i.e., |r±σr|0.5|r\pm\sigma_{r}|\leq 0.5, Fig. 2) as one possible means of assessing the veracity of the maxima. The maxima were expectedly sensitive to the criteria selected (e.g., rσr0.8r-\sigma_{r}\geq 0.8). The dominant 745\simeq 745 cm-1 line that characterized higher correlated DIB pairs (Fig. 1) vanishes, and the underlying substructure at smaller wavenumbers is likewise absent. A subset of vibrational modes potentially remain with less significance owing to the lower correlation criterion, with only one exceeding 3σ\sigma. The red dotted lines in Fig. 2 stem from the bin centers of Fig. 1. Sample sizes for Figs. 1 and 2 are 1143 and 854 DIB pairs, accordingly.

Refer to caption
Figure 2: Energy differences between low correlation DIB pairs (|r±σr|0.5|r\pm\sigma_{r}|\leq 0.5). Relative to the high correlation analysis (Fig. 1), the dominant line and substructure at smaller wavenumbers are comparatively absent. Expectedly, a lower significance is apparent for a subset of vibrational modes that possibly remain.

Yet ultimately, the preliminary vibrations designated in Fig. 1 require further benchmarking and independent vetting. Adjustments shall likewise proceed as a consensus is achieved over time, since vibrational modes can overlap, their wavelengths can shift owing to other constituents within the molecule, and broadening and degeneracies occur (e.g., Zapata Trujillo et al., 2023).

3 Conclusions

In this brief exploratory note, DIB energy differences (e.g., Fig. 1) may unveil the building blocks inherent to the broader host molecules. For example, aromatics (e.g., hydrocarbons and potentially heterocycles) and fullerenes could represent a subset of DIB carriers (Fig. 1), as noted previously by others. Subsequent key steps moving forward include continuing to isolate DIB families (i.e., same carrier) on a multi-dimensional basis of equivalent widths, optical and near-infrared reddening, line profiles, etc. (e.g., Ebenbichler et al., 2024). Such ongoing research is required to mitigate the noise in Fig. 1, which partly arises from correlated DIB pairs linked to separate carriers whose abundances are commensurate. A critical aspect is to correctly unveil the DIB tied to the origin band, which may represent the transition to the ground vibration of the first excited electronic state.222Slight offsets between observed vibrational wavenumbers implied by DIB pairs relative to those in compilations are expected if the latter are linked to the ground electronic state. Concurrently, the APO catalog can be expanded by extracting additional EWs from high-quality GOSSS and X-shooter spectra (Ma´ız Apellániz et al., 2013; Verro et al., 2022), while simultaneously characterizing the number and properties of dust clouds along the sightline by utilizing new Gaia DR3 parallax and λ3301050\lambda\simeq 330-1050 nm spectroscopic observations (Gaia Collaboration et al., 2023; Xing et al., 2024). The latter may provide the desirable rationale behind outliers amongst Pearson correlation determinations (e.g., circumstellar shell for VI Cyg 12, Xing et al., 2024, their Fig. 1). Moreover, viewing a DIB through multiple clouds along the sightline can be preferable when establishing broad correlations, thereby mitigating anomalies endemic to any one cloud.

Future work likewise includes awaiting temporally costly extensive vibrational coupled cluster calculations for an expansive set of neutral and cation species, and undertaking analyses of linearly binned wavelength histograms and unidentified infrared emission lines (UIEs).333Kwok (2022) favors mixed aromatic/aliphatic organic nanoparticles (MAONs) for UIEs rather than canonical PAHs. DIBs and UIEs should share a subsample of molecules,444e.g., Bondar (2020), and for C+60{}_{60}^{+} see Foing & Ehrenfreund (1994, DIBs) and Sadjadi et al. (2022, UIEs). however, differences are expected (e.g., λ\lambda linked to neutral versus ion species, intensity shifts, separate molecules) owing to disparate ambient temperatures, densities, neutral and ion population ratios, radiation field, etc. (broader discussions in Peeters 2002 and Bondar, 2020, and references therein).

Acknowledgments: this research relied on initiatives such as the APO Catalog of DIBs, CDS, NASA ADS, arXiv, NASA Ames PAH IR spectroscopic database, ChemCompute+GAMESS.

References

  • Barca et al. (2020) Barca, G. M. J., Bertoni, C., Carrington, L., et al. 2020, The Journal of Chemical Physics, 152, 154102, doi: 10.1063/5.0005188
  • Bauschlicher et al. (2018) Bauschlicher, Jr., C. W., Ricca, A., Boersma, C., & Allamandola, L. J. 2018, ApJS, 234, 32, doi: 10.3847/1538-4365/aaa019
  • Boersma et al. (2009) Boersma, C., Mattioda, A. L., Bauschlicher, Jr., C. W., et al. 2009, ApJ, 690, 1208, doi: 10.1088/0004-637X/690/2/1208
  • Boersma et al. (2014) Boersma, C., Bauschlicher, C. W., Ricca, A., et al. 2014, The Astrophysical Journal Supplement Series, 211, 8, doi: 10.1088/0067-0049/211/1/8
  • Bondar (2012) Bondar, A. 2012, MNRAS, 423, 725, doi: 10.1111/j.1365-2966.2012.20910.x
  • Bondar (2020) —. 2020, MNRAS, 496, 2231, doi: 10.1093/mnras/staa1610
  • Cami et al. (1997) Cami, J., Sonnentrucker, P., Ehrenfreund, P., & Foing, B. H. 1997, A&A, 326, 822
  • Campbell et al. (2015) Campbell, E. K., Holz, M., Gerlich, D., & Maier, J. P. 2015, Nature, 523, 322, doi: 10.1038/nature14566
  • Colthup et al. (1990) Colthup, N. B., Daly, L. H., & Wiberley, S. E. 1990, in Introduction to Infrared and Raman Spectroscopy (Third Edition), third edition edn., ed. N. B. Colthup, L. H. Daly, & S. E. Wiberley (San Diego: Academic Press), 387–481, doi: https://doi.org/10.1016/B978-0-08-091740-5.50016-8
  • Ebenbichler et al. (2024) Ebenbichler, A., Smoker, J. V., Lallement, R., et al. 2024, A&A, 686, A50, doi: 10.1051/0004-6361/202348871
  • Fan et al. (2019) Fan, H., Hobbs, L. M., Dahlstrom, J. A., et al. 2019, ApJ, 878, 151, doi: 10.3847/1538-4357/ab1b74
  • Foing & Ehrenfreund (1994) Foing, B. H., & Ehrenfreund, P. 1994, Nature, 369, 296, doi: 10.1038/369296a0
  • Gaia Collaboration et al. (2023) Gaia Collaboration, Vallenari, A., et al. 2023, A&A, 674, A1, doi: 10.1051/0004-6361/202243940
  • Galazutdinov et al. (2017) Galazutdinov, G. A., Shimansky, V. V., Bondar, A., Valyavin, G., & Krełowski, J. 2017, MNRAS, 465, 3956, doi: 10.1093/mnras/stw2948
  • Galazutdinov et al. (2021) Galazutdinov, G. A., Valyavin, G., Ikhsanov, N. R., & Krełowski, J. 2021, AJ, 161, 127, doi: 10.3847/1538-3881/abd4e5
  • Hartmann (1904) Hartmann, J. 1904, ApJ, 19, 268, doi: 10.1086/141112
  • Heger (1922) Heger, M. L. 1922, Lick Observatory Bulletin, 10, 146
  • Jenniskens & Desert (1993) Jenniskens, P., & Desert, F. X. 1993, A&A, 274, 465
  • Kroto (1987) Kroto, H. W. 1987, Chains and Grains in Interstellar Space, ed. A. Léger, L. d’Hendecourt, & N. Boccara (Dordrecht: Springer Netherlands), 197–206, doi: 10.1007/978-94-009-4776-4_17
  • Kwok (2022) Kwok, S. 2022, Ap&SS, 367, 16, doi: 10.1007/s10509-022-04045-6
  • Ma´ız Apellániz et al. (2013) Maíz Apellániz, J., Sota, A., Morrell, N. I., et al. 2013, in Massive Stars: From alpha to Omega, 198, doi: 10.48550/arXiv.1306.6417
  • Majaess et al. (2025) Majaess, D., Harriott, T. A., Seuret, H., et al. 2025, MNRAS, 538, 2392, doi: 10.1093/mnras/staf425
  • Maryeva et al. (2016) Maryeva, O. V., Chentsov, E. L., Goranskij, V. P., et al. 2016, MNRAS, 458, 491, doi: 10.1093/mnras/stw385
  • Mattioda et al. (2020) Mattioda, A. L., Hudgins, D. M., Boersma, C., et al. 2020, ApJS, 251, 22, doi: 10.3847/1538-4365/abc2c8
  • McCall et al. (2010) McCall, B. J., Drosback, M. M., Thorburn, J. A., et al. 2010, ApJ, 708, 1628, doi: 10.1088/0004-637X/708/2/1628
  • Moutou et al. (1999) Moutou, C., Krełowski, J., D’Hendecourt, L., & Jamroszczak, J. 1999, A&A, 351, 680, doi: 10.48550/arXiv.astro-ph/9912560
  • Moutou et al. (2000) Moutou, C., Verstraete, L., Léger, A., Sellgren, K., & Schmidt, W. 2000, A&A, 354, L17, doi: 10.48550/arXiv.astro-ph/9912559
  • Nie et al. (2022) Nie, T. P., Xiang, F. Y., & Li, A. 2022, MNRAS, 509, 4908, doi: 10.1093/mnras/stab3296
  • Omont (2016) Omont, A. 2016, A&A, 590, A52, doi: 10.1051/0004-6361/201527685
  • Peeters (2002) Peeters, E. 2002, PhD thesis, University of Groningen, Netherlands
  • Perri & Weber (2014) Perri, M. J., & Weber, S. H. 2014, Journal of Chemical Education, 91, 2206, doi: 10.1021/ed5004228
  • Sadjadi et al. (2022) Sadjadi, S., Parker, Q. A., Hsia, C.-H., & Zhang, Y. 2022, ApJ, 934, 75, doi: 10.3847/1538-4357/ac75d5
  • Schlarmann et al. (2021) Schlarmann, L., Foing, B., Cami, J., & Fan, H. 2021, A&A, 656, L17, doi: 10.1051/0004-6361/202142669
  • Smith et al. (2022) Smith, E. R., Smith, F. M., Harriott, T. A., et al. 2022, RNAAS, 6, 82, doi: 10.3847/2515-5172/ac680f
  • Smith et al. (2021) Smith, F. M., Harriott, T. A., Majaess, D., Massa, L., & Matta, C. F. 2021, MNRAS, 507, 5236, doi: 10.1093/mnras/stab2444
  • Verro et al. (2022) Verro, K., Trager, S. C., Peletier, R. F., et al. 2022, A&A, 660, A34, doi: 10.1051/0004-6361/202142388
  • Xing et al. (2024) Xing, H., Sullivan, A., Seuret, H., et al. 2024, RNAAS, 8, 90, doi: 10.3847/2515-5172/ad380d
  • Zapata Trujillo et al. (2023) Zapata Trujillo, J. C., Pettyjohn, M. M., & McKemmish, L. K. 2023, MNRAS, 524, 361, doi: 10.1093/mnras/stad1717