This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Power Allocation for the Base Matrix of Spatially Coupled Sparse Regression Codes

Nian Guo, Shansuo Liang, Wei Han Nian Guo, Shansuo Liang, and Wei Han are with Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co. LTD., Hong Kong SAR, China. E-mail: {guonian4, liang.shansuo, harvey.huawei}@huawei.com.
Abstract

We investigate power allocation for the base matrix of a spatially coupled sparse regression code (SC-SPARC) for reliable communications over an additive white Gaussian noise channel. A conventional SC-SPARC allocates power uniformly to the non-zero entries of its base matrix. Yet, to achieve the channel capacity with uniform power allocation, the coupling width and the coupling length of the base matrix must satisfy regularity conditions and tend to infinity as the rate approaches the capacity. For a base matrix with a pair of finite and arbitrarily chosen coupling width and coupling length, we propose a novel power allocation policy, termed V-power allocation. V-power allocation puts more power to the outer columns of the base matrix to jumpstart the decoding process and less power to the inner columns, resembling the shape of the letter V. We show that V-power allocation outperforms uniform power allocation since it ensures successful decoding for a wider range of signal-to-noise ratios given a code rate in the limit of large blocklength. In the finite blocklength regime, we show by simulations that power allocations imitating the shape of the letter V improve the error performance of a SC-SPARC.

I Introduction

For reliable communications over an additive white Gaussian noise (AWGN) channel, Joseph and Barron [1] designed the sparse regression code (SPARC). It forms a codeword by multiplying a design matrix by a sparse message. The message is sparse as it is segmented into several sections and each section contains only one non-zero entry. The codeword is passed through an AWGN channel subject to an average power constraint. With uniform power allocation across the non-zero entries of a message and a maximum likelihood decoder, a SPARC asymptotically achieves the channel capacity of the AWGN channel [1]. To overcome the complexity barrier of the maximum likelihood decoder, the approximate message passing (AMP) decoder with polynomial complexity has been proposed [2][4]. Its decoding error is closely tracked by the state evolution (SE) and it outperforms other low-complexity decoders [5][6] in terms of the finite-blocklength error rates. By judiciously allocating power to the non-zero entries of a sparse message, SPARCs with AMP decoding continue to achieve the channel capacity [3]. For example, iterative power allocation [7] uses the asymptotic SE of the AMP decoder to decide the power allocation for a message section by section.

By introducing a spatial coupling structure to the design matrix, SC-SPARCs with AMP decoding not only achieve the channel capacity [8][9] but also display a better error performance compared to power-allocated SPARCs [4][10]. Similar to the graph-lifting of SC-LDPC codes [11][12], the design matrix of a SC-SPARC is constructed from a base matrix. Each entry of the base matrix is expanded as a Gaussian submatrix in the design matrix, and the variance of the Gaussian entry is determined by the corresponding entry in the base matrix. The coupling structure of the base matrix is determined by a coupling pair comprising a coupling width and a coupling length.

Existing works on SC-SPARCs commonly assumed that the power is uniformly allocated to the non-zero entries of the message as well as the base matrix, e.g., [7][9][10][13]. For such uniform power allocation (UPA), a decoding phenomenon termed sliding window is observed [9][13], namely, the decoding propagates from two sides to the middle of a message in a symmetric fashion. Once the outer parts of a message are successfully decoded, they act as perfect side information that facilitates the decoding of the inner parts of the message. This phenomenon is used as a decoding techinque termed seed to boost the decoding performance of SC-SPARCs [8].

While UPA is sufficient for a SC-SPARC with AMP decoding to achieve the channel capacity, the coupling pair of the base matrix must satisfy regularity conditions and tend to infinity as the rate approaches the channel capacity [8][9]. Yet, in practical implementations, the coupling pair is finite and arbitrary. Given a finite coupling pair, it has been observed that UPA might be inefficient and causes AMP decoding failure. Thus, it is of practical interest to design a power allocation policy for a base matrix with a finite coupling pair to ensure successful decoding for a wide range of power and code rates.

We propose a novel power allocation policy–V-power allocation (VPA)–for the base matrix of a SC-SPARC with AMP decoding. Its power allocation is non-increasing from the outer columns to the middle column of the base matrix, resembling the shape of the letter V. Similar to iterative power allocation [7], VPA leverages the asymptotic SE of the AMP decoder to tell whether a SC-SPARC ensures successful decoding in the limit of large blocklength. Dissimilar to conventional power allocation policies that vary the non-zero coefficients of a message, VPA only varies the non-zero entries of a base matrix. To measure the performance of a power allocation policy for the base matrix, we define a power-rate function (PRF). Given a finite coupling pair, a channel noise variance, and a rate, the PRF quantifies the minimum power so that a SC-SPARC with a power allocation policy ensures successful decoding for all power above it. We derive the PRFs for UPA and VPA, respectively, and we show that VPA outperforms UPA in terms of the PRF, meaning that VPA ensures successful decoding for a larger range of power. While VPA is designed in the infinite blocklength regime, we use simulations to show that a VPA-like power allocation improves the finite-blocklength block error rates of a SC-SPARC.

Notations: For a positive integer nn, we denote [n]{1,2,,n}[n]\triangleq\{1,2,\dots,n\}. For a matrix 𝖶\mathsf{W}, we denote by 𝖶rc\mathsf{W}_{rc} the entry at the rr-th row and the cc-th column. For a sequence a1,a2,a_{1},a_{2},\dots, we denote {ai}i=pq{ap,ap+1,,aq}\{a_{i}\}_{i=p}^{q}\triangleq\{a_{p},a_{p+1},\dots,a_{q}\}.

II Spatially coupled sparse regression codes

II-A Encoder

The encoder of a SC-SPARC forms a codeword 𝒙n\bm{x}\in\mathbb{R}^{n} by multiplying a message vector 𝜷ML\bm{\beta}\in\mathbb{R}^{ML} by a design matrix 𝖠n×ML\mathsf{A}\in\mathbb{R}^{n\times ML},

𝒙=𝖠𝜷,\displaystyle\bm{x}=\mathsf{A}\bm{\beta}, (1)

and the codeword is subject to an average power constraint

1n𝔼[𝒙2]=P.\displaystyle\frac{1}{n}\mathbb{E}[||\bm{x}||^{2}]=P. (2)

The message 𝜷\bm{\beta} is a sparse vector of length MLML. It consists of LL length-MM sections. In each section =1,2,,L\ell=1,2,\dots,L, there is only one non-zero entry, whose value is set a priori. Since the information is carried only by the indices of the non-zero entries, the alphabet size of 𝜷\bm{\beta} is MLM^{L}. As we will vary the variances of the entries of design matrix 𝖠\mathsf{A} by varying the power allocation for the base matrix, we set all the non-zero coefficients of 𝜷\bm{\beta} to 11 without loss of generality.

The design matrix 𝖠\mathsf{A}, as shown in Fig. 1, is constructed from a base matrix 𝖶\mathsf{W}. The base matrix serves as a protograph for the design matrix. Each entry 𝖶rc\mathsf{W}_{rc} of base matrix 𝖶\mathsf{W} is expanded as an MR×MCM_{R}\times M_{C} submatrix of design matrix 𝖠\mathsf{A}, whose entries are i.i.d. Gaussian random variables 𝒩(0,1L𝖶rc)\mathcal{N}\left(0,\frac{1}{L}\mathsf{W}_{rc}\right). A column block in 𝖠\mathsf{A} corresponds to a set of MCM_{C} columns that are expanded from one column in 𝖶\mathsf{W}. A row block in 𝖠\mathsf{A} corresponds to a set of MRM_{R} rows that are expanded from one row in 𝖶\mathsf{W}. The design matrix 𝖠\mathsf{A} contains LCL_{C} columns blocks and LRL_{R} row blocks. It holds that MCLC=MLM_{C}L_{C}=ML, n=MRLRn=M_{R}L_{R}.

The rate of a SC-SPARC is defined as

R=LlogMn(nats per channel use).\displaystyle R=\frac{L\log M}{n}~{}\text{(nats per channel use)}. (3)

In this work, we focus on a class of band-diagonal base matrices defined below, which is introduced in [9]. We denote by ω\omega and Λ\Lambda the coupling width and the coupling length of the base matrix, respectively.

Definition 1.

An (ω,Λ,P)\left(\omega,\Lambda,P\right) base matrix 𝖶\mathsf{W} is specified by the following properties.

  • i)

    The base matrix 𝖶\mathsf{W} is of size LR×LCL_{R}\times L_{C}, where LCΛL_{C}\triangleq\Lambda, LRω+Λ1L_{R}\triangleq\omega+\Lambda-1, Λ2ω1\Lambda\geq 2\omega-1;

  • ii)

    Given any column c[LC]c\in[L_{C}], the non-zero entries are only at rows crc+ω1c\leq r\leq c+\omega-1;

  • iii)

    The entries of 𝖶\mathsf{W} satisfy the average power constraint (2),

    1LRLCr=1LRc=1LC𝖶rc=P.\displaystyle\frac{1}{L_{R}L_{C}}\sum_{r=1}^{L_{R}}\sum_{c=1}^{L_{C}}\mathsf{W}_{rc}=P. (4)
Refer to caption
Figure 1: Base matrix and design matrix of a SC-SPARC. The base matrix has coupling width ω=3\omega=3 and coupling length Λ=7\Lambda=7.

II-B Decoder

The codeword 𝒙\bm{x} (1) is transmitted through an AWGN channel yielding 𝒚=𝒙+𝒘\bm{y}=\bm{x}+\bm{w}, where 𝒘\bm{w} is a vector of nn i.i.d. Gaussian random variables each with zero mean and variance σ2\sigma^{2}. The AMP decoder iteratively estimates the message 𝜷\bm{\beta} from the channel output 𝒚n\bm{y}\in\mathbb{R}^{n} as follows [9, Section III]. At iteration t=0t=0, the AMP decoder initializes the estiamte of 𝜷\bm{\beta} as 𝜷0=𝟎\bm{\beta}^{0}=\bm{0} and initilizes two vectors 𝒗0=𝟎\bm{v}^{0}=\bm{0}, 𝒛1=𝟎\bm{z}^{-1}=\bm{0}. At iterations t=1,2,t=1,2,\dots, the AMP decoder calculates the estimate 𝜷t\bm{\beta}^{t} as

𝒛t=𝒚𝖠𝜷t+𝒗t𝒛t1,\displaystyle\bm{z}^{t}=\bm{y}-\mathsf{A}\bm{\beta}^{t}+\bm{v}^{t}\otimes\bm{z}^{t-1}, (5)
𝜷t+1=ηt(𝜷t+(𝖲t𝖠)𝒛t),\displaystyle\bm{\beta}^{t+1}=\eta_{t}\left(\bm{\beta}^{t}+(\mathsf{S}^{t}\otimes\mathsf{A})^{*}\bm{z}^{t}\right), (6)

where \otimes denotes the entry-wise product; function ηt\eta_{t} is the minimum mean square error estimator for 𝜷\bm{\beta}; vector 𝒗t\bm{v}^{t} and matrix 𝖲t\mathsf{S}^{t} are determined by the SE parameters. In the asymptotic regime MM\rightarrow\infty, the SE parameters [9, (23)–(24)] at iterations t=0,1,t=0,1,\dots are given by

ϕrt=σ2+1LCc=1LC𝖶rcψct,r[LR],\displaystyle\phi_{r}^{t}=\sigma^{2}+\frac{1}{L_{C}}\sum_{c=1}^{L_{C}}\mathsf{W}_{rc}\psi_{c}^{t},~{}\forall r\in[L_{R}], (7a)
ψct+1=1𝟙{1RLRr=1LR𝖶rcϕrt>2},c[LC],\displaystyle\psi_{c}^{t+1}=1-\mathbbm{1}\left\{\frac{1}{RL_{R}}\sum_{r=1}^{L_{R}}\frac{\mathsf{W}_{rc}}{\phi_{r}^{t}}>2\right\},~{}\forall c\in[L_{C}], (7b)

where ψc0=1,c[Lc]\psi_{c}^{0}=1,~{}\forall c\in[L_{c}]. The SE parameter ψct\psi_{c}^{t} (7b) closely tracks the normalized mean-square error between the part of message 𝜷c\bm{\beta}_{c} and the part of the estimate 𝜷ct\bm{\beta}_{c}^{t} corresponding to column block cc at iteration tt, i.e., ψctLCL𝜷c𝜷ct22\psi_{c}^{t}\approx\frac{L_{C}}{L}||\bm{\beta}_{c}-\bm{\beta}_{c}^{t}||^{2}_{2} for all c[LC]c\in[L_{C}]. This is evidenced both by the simulations [9, Fig. 3] and the concentration inequality [9, Theorem 2].

III Power allocation and performance metrics

We define power allocation policies for a base matrix as well as the performance metrics.

For an (ω,Λ,P)(\omega,\Lambda,P) base matrix 𝖶\mathsf{W} in Definition 1, a power allocation policy is a mapping Π:LR×LC\Pi\colon\mathbb{R}\rightarrow\mathbb{R}^{L_{R}\times L_{C}} that gives a set of non-negaitve values Π(P)={𝖶rc}r[LR],c[LC]\Pi(P)=\{\mathsf{W}_{rc}\}_{r\in[L_{R}],c\in[L_{C}]} corresponding to the entries of the base matrix. The power allocation policy Π\Pi for the base matrix does not affect the non-zero coefficients of message 𝜷\bm{\beta}.

We say that a SC-SPARC successfully decodes column block cc of the message, i.e., 𝜷c\bm{\beta}_{c}, if there exists a time T+T\in\mathbb{Z}_{+} such that ψcT=0\psi_{c}^{T}=0 (7b); we say that a SC-SPARC successfully decodes the entire message if there exists a time T+T\in\mathbb{Z}_{+},

ψcT=0,c[LC].\displaystyle\psi_{c}^{T}=0,~{}\forall c\in[L_{C}]. (8)

We use the asymptotic SE parameter ψct\psi_{c}^{t} (7b) to define the performance metrics. The asymptotic SE parameter ψct\psi_{c}^{t} is fully determined by the coupling pair (ω,Λ)(\omega,\Lambda), the noise variance σ2\sigma^{2}, the rate RR, the power PP, and the power allocation policy Π\Pi. Fixing the first three parameters, it becomes ψct=ψct(R,P,Π)\psi_{c}^{t}=\psi_{c}^{t}(R,P,\Pi).

We measure the performance of a power allocation policy using the rate-power function (RPF) and the power-rate function (PRF) defined next.

Definition 2.

Fix a finite coupling pair (ω,Λ)(\omega,\Lambda), a noise variance of the AWGN channel σ2\sigma^{2}, and a power PP. The RPF RΠ(P)R_{\Pi}(P) for power allocation policy Π\Pi is the largest rate so that for any rate R<RΠ(P)R<R_{\Pi}(P), a SC-SPARC generated by an (ω,Λ,P)(\omega,\Lambda,P) base matrix with power allocation Π\Pi ensures successful decoding,

RΠ(P)sup{R:\displaystyle R_{\Pi}(P)\triangleq\sup\{R^{*}\colon R<R,T+,\displaystyle\forall R<R^{*},\exists T\in\mathbb{Z}_{+},
ψcT(R,P,Π)=0,c[LC]}.\displaystyle\psi_{c}^{T}(R,P,\Pi)=0,\forall c\in[L_{C}]\}. (9)

Fix a finite coupling pair (ω,Λ)(\omega,\Lambda), a noise variance of the AWGN channel σ2\sigma^{2}, and a rate RR. The PRF PΠ(R)P_{\Pi}(R) for power allocation policy Π\Pi is the minimum power so that for any power P>PΠ(R)P>P_{\Pi}(R), a SC-SPARC generated by an (ω,Λ,P)(\omega,\Lambda,P) base matrix with power allocation Π\Pi ensures successful decoding,

PΠ(R)inf{P:\displaystyle P_{\Pi}(R)\triangleq\inf\{P^{*}\colon P>P,T+,\displaystyle\forall P>P^{*},\exists T\in\mathbb{Z}_{+},
ψcT(R,P,Π)=0,c[LC]}.\displaystyle\psi_{c}^{T}(R,P,\Pi)=0,\forall c\in[L_{C}]\}. (10)

We aim to find a power allocation policy Π\Pi that leads to a large RΠ(R)R_{\Pi}(R), or equivalently, a small PΠ(R)P_{\Pi}(R).

IV Uniform power allocation

We say that an (ω,Λ,P)(\omega,\Lambda,P) base matrix in Definition 1 has uniform power allocation (UPA) if

𝖶rc={PLRω,crc+ω1,0,otherwise.\displaystyle\mathsf{W}_{rc}=\begin{cases}P\frac{L_{R}}{\omega},&c\leq r\leq c+\omega-1,\\ 0,&\text{otherwise}.\end{cases} (11)

We show the RPF (2) and the PRF (10) for UPA.

Theorem 1.

Fix a finite coupling pair (ω,Λ)(\omega,\Lambda) and an AWGN channel with noise variance σ2\sigma^{2}. The RPF RU(P)R_{U}(P) for UPA is given by

RU(P)=LC2LRr=1ω1r+LCLRσ2Pω;\displaystyle R_{U}(P)=\frac{L_{C}}{2L_{R}}\sum_{r=1}^{\omega}\frac{1}{r+\frac{L_{C}}{L_{R}}\frac{\sigma^{2}}{P}\omega}; (12)

the PRF PU(R)P_{U}(R) for UPA is given by

PU(R)={RU1(R),R<LC2LRr=1ω1r,,otherwise,\displaystyle P_{U}(R)=\begin{cases}R_{U}^{-1}(R),&R<\frac{L_{C}}{2L_{R}}\sum_{r=1}^{\omega}\frac{1}{r},\\ \infty,&\text{otherwise},\end{cases} (13)

where RU1R_{U}^{-1} is the inverse function of RUR_{U}.

Proof.

Appendix -A. ∎

We compare RU(P)R_{U}(P) (12) with the channel capacity C(P)=12log(1+Pσ2)C(P)=\frac{1}{2}\log\left(1+\frac{P}{\sigma^{2}}\right) of the AWGN channel with noise variance σ2\sigma^{2}. Using Right-endpoint approximation, we upper bound (12) as

RU(P)LC2LRlog(1+Pσ2ωLCLRω+Pσ2).\displaystyle R_{U}(P)\leq\frac{L_{C}}{2L_{R}}\log\left(1+\frac{P}{\sigma^{2}}\frac{\omega}{\frac{L_{C}}{L_{R}}\omega+\frac{P}{\sigma^{2}}}\right). (14)

The right side of (14) is smaller than C(P)C(P) for a finite coupling pair, implying that a SC-SPARC with a finite coupling pair no longer achieves the channel capacity. The gap closes if and only if ω,Λ\omega,\Lambda\rightarrow\infty and ωΛ0\frac{\omega}{\Lambda}\rightarrow 0.

For rates RU(P)R<C(P)R_{U}(P)\leq R<C(P), a SC-SPARC fails to ensure successful decoding, and the reason is shown in Proposition 1 stated below. We denote the index of the middle column of the base matrix by θΛ2\theta\triangleq\left\lceil\frac{\Lambda}{2}\right\rceil.

Proposition 1.

Consider a SC-SPARC generated by an (ω,Λ,P)\left(\omega,\Lambda,P\right) base matrix with UPA (11). At iteration t=1t=1, if the AMP decoder successfully decodes 2g2g column blocks of the message,

ψc1=ψΛc+1t=0,cg,\displaystyle\psi_{c}^{1}=\psi_{\Lambda-c+1}^{t}=0,~{}\forall c\leq g, (15)

for some 0gω0\leq g\leq\omega, then at iterations t=2,3,t=2,3,\dots, the AMP decoder continues to decode 2g2g column blocks of the message,

ψct=ψΛc+1t=0,cmin{gt,θ}.\displaystyle\psi_{c}^{t}=\psi_{\Lambda-c+1}^{t}=0,~{}\forall c\leq\min\left\{gt,\theta\right\}. (16)
Proof.

Appendix -B. ∎

Proposition 1 states that if g=0g=0, the decoder fails to decode even a single column block of the message; otherwise, the entire message is decoded within θg\frac{\theta}{g} iterations. Here, it suffices to limit gωg\leq\omega because gωg\geq\omega means that the entire message is successfully decoded in the first iteration (Appendix -C). Proposition 1 indicates that a SC-SPARC with UPA fails to decode at RU(P)R<C(P)R_{U}(P)\leq R<C(P) because the power (11) allocated to columns 11 and Λ\Lambda of the base matrix is smaller than the power needed to make the event in ψ11\psi_{1}^{1} (7b) occur.

V V-power allocation

V-A VPA Algorithm

Fixing an AWGN channel with noise variance σ2\sigma^{2} and a rate RR, we present VPA for an (ω,Λ,P)(\omega,\Lambda,P) base matrix.

In the extreme, a power allocation policy can allocate a different power to every non-zero entry of the base matrix 𝖶\mathsf{W}. The output {𝖶rc}r[LR],c[LC]\{\mathsf{W}_{rc}\}_{r\in[L_{R}],c\in[L_{C}]} of VPA satisfy:

  • a)

    The power does not change with rows, i.e., c[LC]\forall c\in[L_{C}],

    𝖶rc𝖶c,crc+ω1;\displaystyle\mathsf{W}_{rc}\triangleq\mathsf{W}_{c},~{}\forall c\leq r\leq c+\omega-1; (17)
  • b)

    The power is symmetric about the middle column index,

    𝖶c=𝖶Λc+1,c[LC].\displaystyle\mathsf{W}_{c}=\mathsf{W}_{\Lambda-c+1},\forall c\in[L_{C}]. (18)

We define function 𝖿t:θt+1\mathsf{f}_{t}\colon\mathbb{R}^{\theta-t+1}\rightarrow\mathbb{R}, t=1,,θt=1,\dots,\theta as111Although the summation in the denominator of the right side of (19) may include 𝖶θ+1,,𝖶Λt+1\mathsf{W}_{\theta+1},\dots,\mathsf{W}_{\Lambda-t+1}, 𝖿t\mathsf{f}_{t} is still a function of variables 𝖶t,,𝖶θ\mathsf{W}_{t},\dots,\mathsf{W}_{\theta} only, due to the symmetry assumption (18).

𝖿t({𝖶i}i=tθ)r=tt+ω1𝖶tσ2+1Lcc=tmin{r,Λt+1}𝖶c.\displaystyle\mathsf{f}_{t}\left(\{\mathsf{W}_{i}\}_{i=t}^{\theta}\right)\triangleq\sum_{r=t}^{t+\omega-1}\frac{\mathsf{W}_{t}}{\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=t}^{\min\{r,\Lambda-t+1\}}\mathsf{W}_{c^{\prime}}}. (19)

Let {δt}t=1θ\{\delta_{t}\}_{t=1}^{\theta} be a sequence of positives chosen arbitrarily.

input : ω,Λ,R,P,σ,{δt}t=1θ\omega,\Lambda,R,P,\sigma,\{\delta_{t}\}_{t=1}^{\theta}
output : {𝖶c}c[LC]\{\mathsf{W}_{c}\}_{c\in[L_{C}]}
1 for t=θ,θ1,,1t=\theta,\theta-1,\dots,1 do
2       Solve 𝖿t({𝖶i}i=tθ)=2RLR\mathsf{f}_{t}\left(\{\mathsf{W}_{i}\}_{i=t}^{\theta}\right)=2RL_{R} for 𝖶t\mathsf{W}_{t};
3       𝖶t𝖶t+δt\mathsf{W}_{t}\leftarrow\mathsf{W}_{t}+\delta_{t};
4       𝖶Λt+1𝖶t\mathsf{W}_{\Lambda-t+1}\leftarrow\mathsf{W}_{t}
5 end for
6if 1LRLcc=1Lcω𝖶c>P\frac{1}{L_{R}L_{c}}\sum_{c=1}^{L_{c}}\omega\mathsf{W}_{c}>P then
7       Declare failure
8 end if
9if 1LRLcc=1Lcω𝖶cP\frac{1}{L_{R}L_{c}}\sum_{c=1}^{L_{c}}\omega\mathsf{W}_{c}\leq P then
10       residualP1LRLcc=1Lcω𝖶c\text{residual}\leftarrow P-\frac{1}{L_{R}L_{c}}\sum_{c=1}^{L_{c}}\omega\mathsf{W}_{c};
11       𝖶1residualLRLc2ω\mathsf{W}_{1}\leftarrow\frac{\text{residual}L_{R}L_{c}}{2\omega};
12       𝖶Λ𝖶1\mathsf{W}_{\Lambda}\leftarrow\mathsf{W}_{1}
13 end if
Algorithm 1 VPA

Proposition 2, stated next, shows that VPA follows a shape of V, namely, 𝖶c\mathsf{W}_{c} is non-increasing on 1cθ1\leq c\leq\theta and is non-decreasing on θ+1cΛ\theta+1\leq c\leq\Lambda by symmetry (18).

Proposition 2.

Power allocation 𝖶1(V),𝖶2(V),,𝖶θ(V)\mathsf{W}_{1}^{(V)},\mathsf{W}_{2}^{(V)},\dots,\mathsf{W}_{\theta}^{(V)} that ensure 𝖿t=2RLR\mathsf{f}_{t}=2RL_{R} (line 2 of Algorithm 1) for all t=1,2,,θt=1,2,\dots,\theta are unique and satisfy

𝖶1(V)𝖶2(V)𝖶θ(V).\displaystyle\mathsf{W}_{1}^{(V)}\geq\mathsf{W}_{2}^{(V)}\geq\dots\geq\mathsf{W}_{\theta}^{(V)}. (20)
Proof.

Appendix -D. ∎

Although the sequence {𝖶t(V)}t=1θ\{\mathsf{W}_{t}^{(V)}\}_{t=1}^{\theta} does not perfectly coincide with the sequence {𝖶t}t=1θ\{\mathsf{W}_{t}\}_{t=1}^{\theta} formed at the end of line 5, it reflects the trend of {𝖶t}t=1θ\{\mathsf{W}_{t}\}_{t=1}^{\theta} for abitrarily small {δt}t=1θ\{\delta_{t}\}_{t=1}^{\theta}.

V-B VPA performance

Before we show the PRF for VPA, we introduce Lemma 1 below. It states that if a column block of the message is decoded at some iteration, then it remains decoded in the subsequent iterations, and that the asymptotic SE ψct\psi_{c}^{t} (7b) can be expressed in terms of 𝖿t\mathsf{f}_{t} (19) under some conditions.

Lemma 1.

Consider a SC-SPARC generated by an (ω,Λ,P)(\omega,\Lambda,P) base matrix. Fix a noise variance σ2\sigma^{2} and a rate RR.

  1. 1.

    If c[LC],t1\exists~{}c\in[L_{C}],t\geq 1, ψct=0\psi_{c}^{t}=0, then ψcs=0\psi_{c}^{s}=0, st\forall s\geq t.

  2. 2.

    For a power allocation policy satisfying a)–b), at t=1t=1,

    ψ11=1𝟙{𝖿1({𝖶i}i=1θ)>2RLR};\displaystyle\psi_{1}^{1}=1-\mathbbm{1}\left\{\mathsf{f}_{1}\left(\{\mathsf{W}_{i}\}_{i=1}^{\theta}\right)>2RL_{R}\right\}; (21)

    if ψcc=0,ct1\psi_{c}^{c}=0,\forall c\leq t-1, then at iterations 2tθ2\leq t\leq\theta,

    ψtt1𝟙{𝖿t({𝖶i}i=tθ)>2RLR}.\displaystyle\psi_{t}^{t}\leq 1-\mathbbm{1}\left\{\mathsf{f}_{t}\left(\{\mathsf{W}_{i}\}_{i=t}^{\theta}\right)>2RL_{R}\right\}. (22)
Proof.

Appendix -E. ∎

We present the PRF for VPA.

Theorem 2.

Fix a finite coupling pair (ω,Λ)(\omega,\Lambda) and an AWGN channel with noise variance σ2\sigma^{2}. The PRF PV(R)P_{V}(R) (10) for VPA (Algorithm 1) is given by

PV(R)={2ωLRLCc=1θ𝖶c(V),R<LC(ω+1)4LR,Λis even2ωLRLCc=1θ1𝖶c(V)+𝖶θ(V),R<LC(ω+2)4LR,Λis odd,otherwise.\displaystyle P_{V}(R)=\begin{cases}\frac{2\omega}{L_{R}L_{C}}\sum_{c=1}^{\theta}\mathsf{W}_{c}^{(V)},R<\frac{L_{C}(\omega+1)}{4L_{R}},~{}\Lambda~{}\text{is even}\\ \frac{2\omega}{L_{R}L_{C}}\sum_{c=1}^{\theta-1}\mathsf{W}_{c}^{(V)}+\mathsf{W}_{\theta}^{(V)},R<\frac{L_{C}(\omega+2)}{4L_{R}},\Lambda~{}\text{is odd}\\ \infty,~{}\text{otherwise}.\end{cases} (23)
Proof sketch.

The proof is divided into two steps.

(i) We show that VPA outputs {𝖶c}c[Lc]\{\mathsf{W}_{c}\}_{c\in[L_{c}]}, or equivalently it does not declare failure, if and only if P>PV(R)P>P_{V}(R) and RR less than the upper bound in (23). Appendix -F.

(ii) We show that the output {𝖶c}c[Lc]\{\mathsf{W}_{c}\}_{c\in[L_{c}]} of VPA ensures successful decoding. Appendix -G. ∎

The working principle of VPA is to allocate sufficient power to the outer columns of the base matrix in order to jumpstart the wave-like decoding process that propagates from the sides to the middle of the message, and to allocate lower power (but not too low that prohibits the decoding process) to the inner columns of the base matrix.

V-C VPA outperforms UPA

Proposition 3.

Fix a finite coupling pair (ω,Λ)(\omega,\Lambda) and an AWGN channel with noise variance σ2\sigma^{2}. The rate that ensures PV(R)<P_{V}(R)<\infty also ensures PU(R)<P_{U}(R)<\infty, i.e.,

{R:PU(R)<}{R:PV(R)<}.\displaystyle\{R\colon P_{U}(R)<\infty\}\subseteq\{R\colon P_{V}(R)<\infty\}. (24)

For a rate RR that belongs to both sets in (24), it holds that

PV(R)PU(R).\displaystyle P_{V}(R)\leq P_{U}(R). (25)
Proof.

Appendix -H. ∎

In fact, UPA is a special case of VPA by carefully selecting {δt}t=1θ\{\delta_{t}\}_{t=1}^{\theta} (Appendix -I).

VI Simulations

We use an example to illustrate (25). Consider ω=2\omega=2, Λ=5\Lambda=5, P=3P=3, σ=1\sigma=1, and R=0.45R=0.45. For UPA, we have ψ11=1𝟙{5.1708>5.4}=1\psi_{1}^{1}=1-\mathbbm{1}\{5.1708>5.4\}=1, and Proposition 1 implies that a SC-SPARC with UPA fails to decode the message. We now determine the power allocation using VPA. Choosing δt=0.01\delta_{t}=0.01, t=1,2,3\forall t=1,2,3, and following lines 1–5 of VPA, we obtain 𝖶1=9.87,𝖶2=8.74,𝖶3=5.88\mathsf{W}_{1}=9.87,\mathsf{W}_{2}=8.74,\mathsf{W}_{3}=5.88. We check that line 9 of VPA is satisfied, and we transfer the residual power to the boundary columns yielding 𝖶1=10.82\mathsf{W}_{1}=10.82. Since the power P>PV(R)P>P_{V}(R) in Theorem 2, the output of VPA ensures successful decoding.

While VPA is designed in the limit of large section length MM\rightarrow\infty, we show by simulations that power allocation imitating the shape of the letter V (20) also improves the finite-blocklength error performance of a SC-SPARC. We consider a SC-SPARC of parameters M=512,L=30,LC=15,LR=18,MR=12M=512,L=30,L_{C}=15,L_{R}=18,M_{R}=12 and an AWGN channel of variance σ2=1\sigma^{2}=1. Fig. 2 compare the SC-SPARC with UPA (11) and that with a VPA-like power allocation chosen empirically in Table I. Fig. 2 shows that the BLER of the VPA-like power allocation is smaller than that of UPA, especially in the middle part of the waterfall region. Fig. 3 shows the convergence of the BLERs. To reduce the complexities, we use the Hadamard design matrix as in [4][9], instead of using the i.i.d. Gaussian design matrix. The simulations may not perfectly match our theoretical results since the asymptotic SE is accurate only for an i.i.d. Gaussian design matrix and MM\rightarrow\infty.

Refer to caption
Figure 2: Block error rate vs. SNR(dB).
Refer to caption
Figure 3: Block error rate vs. number of iterations at SNR=10.5=10.5dB.
TABLE I: VPA-like power allocation (20)
SNR(dB) Outer columns Inner columns
9.5 𝖶1==𝖶3=42.51\mathsf{W}_{1}=\dots=\mathsf{W}_{3}=42.51 𝖶4==𝖶8=38.51\mathsf{W}_{4}=\dots=\mathsf{W}_{8}=38.51
10.0 𝖶1==𝖶5=46.67\mathsf{W}_{1}=\dots=\mathsf{W}_{5}=46.67 𝖶6==𝖶8=41.67\mathsf{W}_{6}=\dots=\mathsf{W}_{8}=41.67
10.5 𝖶1==𝖶4=52.36\mathsf{W}_{1}=\dots=\mathsf{W}_{4}=52.36 𝖶5==𝖶8=48.36\mathsf{W}_{5}=\dots=\mathsf{W}_{8}=48.36
11.0 𝖶1==𝖶5=58.32\mathsf{W}_{1}=\dots=\mathsf{W}_{5}=58.32 𝖶6==𝖶8=53.32\mathsf{W}_{6}=\dots=\mathsf{W}_{8}=53.32
11.5 𝖶1==𝖶6=64.56\mathsf{W}_{1}=\dots=\mathsf{W}_{6}=64.56 𝖶7==𝖶8=59.56\mathsf{W}_{7}=\dots=\mathsf{W}_{8}=59.56
12.0 𝖶1==𝖶6=72.52\mathsf{W}_{1}=\dots=\mathsf{W}_{6}=72.52 𝖶7==𝖶8=66.52\mathsf{W}_{7}=\dots=\mathsf{W}_{8}=66.52

VII Conclusion

In this paper, we propose V-power allocation for the base matrix of a SC-SPARC with a finite coupling pair. It yields power allocation that descends from the outer columns to the inner columns of the base matrix, resembling the shape of the letter V. By analyzing the PRFs, we show that given a code rate, V-power allocation ensures successful decoding for a wider range of power compared to uniform power allocation. Numerical simulations indicate that power allocation following the shape of the letter V reduces the finite-blocklength block error rates of a SC-SPARC.

References

  • [1] A. Joseph and A. R. Barron, “Least squares superposition codes of moderate dictionary size are reliable at rates up to capacity,” in IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 2541–2557, May 2012.
  • [2] J. Barbier and F. Krzakala. “Replica analysis and approximate message passing decoder for superposition codes,” in 2014 IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA, July 2014, pp. 1494-1498.
  • [3] C. Rush, A. Greig and R. Venkataramanan, “Capacity-achieving sparse superposition codes via approximate message passing decoding,” in IEEE Trans. Inf. Theory, vol. 63, no. 3, pp. 1476–1500, March 2017.
  • [4] J. Barbier and F. Krzakala, “Approximate message-passing decoder and capacity achieving sparse superposition codes,” in IEEE Trans. Inf. Theory, vol. 63, no. 8, pp. 4894–4927, Aug. 2017.
  • [5] A. Joseph and A. R. Barron, “Fast sparse superposition codes have near exponential error probability for R<CR<C ,” in IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 919–942, Feb. 2014.
  • [6] S. Cho, and A. Barron. “Approximate iterative Bayes optimal estimates for high-rate sparse superposition codes,” in Sixth Workshop on Information-Theoretic Methods in Science and Engineering, 2013.
  • [7] R. Venkataramanan, S. Tatikonda, and A. Barron, “Sparse regression codes,” in Foundations and Trends in Communications and Information Theory, vol. 15, nos. 1–2, pp. 1–195, 2019.
  • [8] J. Barbier, M. Dia and N. Macris, “Proof of threshold saturation for spatially coupled sparse superposition codes,” in 2016 IEEE Int. Symp. Inf. Theory, Barcelona, Spain, 2016, pp. 1173–1177.
  • [9] C. Rush, K. Hsieh and R. Venkataramanan, “Capacity-achieving spatially coupled sparse superposition codes with AMP decoding,” in IEEE Trans. Inf. Theory, vol. 67, no. 7, pp. 4446–4484, July 2021.
  • [10] K. Hsieh, C. Rush and R. Venkataramanan, “Spatially coupled sparse regression codes: design and state evolution analysis,” in 2018 IEEE Int. Symp. Inf. Theory, Vail, CO, USA, 2018, pp. 1016–1020.
  • [11] S. Kudekar, T. J. Richardson and R. L. Urbanke, “Threshold saturation via spatial coupling: why convolutional LDPC ensembles perform so well over the BEC,” in IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803–834, Feb. 2011.
  • [12] D. G. M. Mitchell, M. Lentmaier and D. J. Costello, “Spatially Coupled LDPC Codes Constructed From Protographs,” in IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 4866–4889, Sept. 2015.
  • [13] C. Rush, K. Hsieh and R. Venkataramanan, “Spatially coupled sparse regression codes with sliding window AMP decoding,” in 2019 IEEE Inf. Theory Workshop, Visby, Sweden, 2019, pp. 1–5.
  • [14] N. Guo, S. Liang, W. Han, “Power allocation for the base matrix of spatially coupled sparse regression codes”, Arxiv Preprint, May 2023.

-A Proof of Theorem 1

-A1 Proof of RU(P)R_{U}(P)

Before we prove RU(P)R_{U}(P) in (12), we first show that a SC-SPARC with UPA succesfully decodes the entire message if and only if ψ11=0\psi_{1}^{1}=0. If ψ11=0\psi_{1}^{1}=0, then g1g\geq 1 in (15), and Proposition 1 implies that the decoding is successful. To prove the reverse direction, we prove its equivalent, namely, if ψ11=1\psi_{1}^{1}=1, then a SC-SPARC with UPA cannot decode successfully. Since ψc1\psi_{c}^{1} (7b) is non-decreasing on 1cθ1\leq c\leq\theta, we conclude that ψ11=1\psi_{1}^{1}=1 implies ψc1=1\psi_{c}^{1}=1 for all c[LC]c\in[L_{C}]. Thus, g=0g=0 in (15), and Proposition 1 implies the decoding failure.

We proceed to prove RU(P)R_{U}(P) (12). We write it as

RU(P)\displaystyle R_{U}(P) =sup{R:R<R,ψ11(R,P,UPA)=0}\displaystyle=\sup\{R^{*}\colon\forall R<R^{*},\psi_{1}^{1}(R,P,\text{UPA})=0\} (26a)
=sup{R:ψ11(R,P,UPA)=0}\displaystyle=\sup\{R^{*}\colon\psi_{1}^{1}(R^{*},P,\text{UPA})=0\} (26b)
={R:r=1ωPLRωσ2+rLCPLRω=2RLR},\displaystyle=\left\{R^{*}\colon\sum_{r=1}^{\omega}\frac{P\frac{L_{R}}{\omega}}{\sigma^{2}+\frac{r}{L_{C}}P\frac{L_{R}}{\omega}}=2R^{*}L_{R}\right\}, (26c)

where (26a) holds as we have proved that a SC-SPARC with UPA decodes successfully if and only if ψ11=0\psi_{1}^{1}=0; (26b) holds since

ψ11(R,P,UPA)=1𝟙{r=1ωPLRωσ2+1LCrPLRω>2RLR}\displaystyle\psi_{1}^{1}(R,P,\text{UPA})=1-\mathbbm{1}\left\{\sum_{r=1}^{\omega}\frac{P\frac{L_{R}}{\omega}}{\sigma^{2}+\frac{1}{L_{C}}rP\frac{L_{R}}{\omega}}>2RL_{R}\right\} (27)

is non-decreasing as RR increases; (26c) holds since (26b) is equivalent to the supremum of RR that makes the event in (27) occur. Thus, (12) follows.

-A2 Proof of PU(R)P_{U}(R)

Before we prove PU(R)P_{U}(R) (12), we calcuclate the derivative of the left side of the event in (27) with respect to PP as

r=1ωPLRωσ2+1LCrPLRωP\displaystyle\frac{\partial\sum_{r=1}^{\omega}\frac{P\frac{L_{R}}{\omega}}{\sigma^{2}+\frac{1}{L_{C}}rP\frac{L_{R}}{\omega}}}{\partial P} =r=1ωLRωσ2(σ2+1LCrPLRω)2\displaystyle=\sum_{r=1}^{\omega}\frac{\frac{L_{R}}{\omega}\sigma^{2}}{\left(\sigma^{2}+\frac{1}{L_{C}}rP\frac{L_{R}}{\omega}\right)^{2}} (28a)
>0.\displaystyle>0. (28b)

Since the left side of the event in (27) increases as PP increases, we conclude that ψ11(R,P,UPA)\psi_{1}^{1}(R,P,\text{UPA}) is non-increasing as PP increases.

To express PU(R)P_{U}(R) in terms of the inverse function RU1R_{U}^{-1} of RU(R)R_{U}(R), we show that the inverse function RU1R_{U}^{-1} exists. We calculate the derivative of RU(P)R_{U}(P) with respect to PP as

dRU(P)dP\displaystyle\frac{dR_{U}(P)}{dP} =LC2LRr=1ωLCLRσ2P2ω(r+LCLRσ2Pω)2\displaystyle=\frac{L_{C}}{2L_{R}}\sum_{r=1}^{\omega}\frac{\frac{L_{C}}{L_{R}}\frac{\sigma^{2}}{P^{2}}\omega}{(r+\frac{L_{C}}{L_{R}}\frac{\sigma^{2}}{P}\omega)^{2}} (29a)
>0.\displaystyle>0. (29b)

Since RU(P)R_{U}(P) is differentiable and its derivative is positive, we conclude that RU(P)R_{U}(P) is continuous and monotone, thus RU(P)R_{U}(P) is bijective and has an inverse function.

To demonstrate the domain and the range of the inverse function RU1R_{U}^{-1}, we show the range of RU(P)R_{U}(P). Since RU(P)R_{U}(P) increases as PP increases by (29), it holds that for P<\forall P<\infty,

RU(P)\displaystyle R_{U}(P) <RU()\displaystyle<R_{U}(\infty) (30a)
=LC2LRr=1ω1r,\displaystyle=\frac{L_{C}}{2L_{R}}\sum_{r=1}^{\omega}\frac{1}{r}, (30b)

meaning that the inverse function satisfies

RU1(R)<,if and only ifR<LC2LRr=1ω1r.\displaystyle R_{U}^{-1}(R)<\infty,\text{if and only if}~{}R<\frac{L_{C}}{2L_{R}}\sum_{r=1}^{\omega}\frac{1}{r}. (31)

We proceed to show PU(R)P_{U}(R) (12). We write it as

PU(R)\displaystyle P_{U}(R) =inf{P:P>P,ψ11(R,P,UPA)=0}\displaystyle=\inf\{P^{*}\colon\forall P>P^{*},\psi_{1}^{1}(R,P,\text{UPA})=0\} (32a)
=inf{P:ψ11(R,P,UPA)=0}\displaystyle=\inf\{P^{*}\colon\psi_{1}^{1}(R,P^{*},\text{UPA})=0\} (32b)
={P:r=1ωPLRωσ2+rLCPLRω=2RLR}\displaystyle=\left\{P^{*}\colon\sum_{r=1}^{\omega}\frac{P^{*}\frac{L_{R}}{\omega}}{\sigma^{2}+\frac{r}{L_{C}}P^{*}\frac{L_{R}}{\omega}}=2RL_{R}\right\} (32c)
=R1(R),\displaystyle=R^{-1}(R), (32d)

where (32a) holds as we have shown in Appendix -A1 that a SC-SPARC with UPA decodes successfully if and only if ψ11=0\psi_{1}^{1}=0; (32b) holds as we have shown that ψ11(R,P,UPA)\psi_{1}^{1}(R,P,\text{UPA}) is non-increasing as PP increases below (28); (32c) holds since (32b) is equivalent to the infimum of PP that makes the event in (27) occur; (32d) holds by noticing that the objective functions in (32c) and (26c) are the same and by the fact that RU1R_{U}^{-1} exists.

Plugging (31) into (32d), we obtain (13).

-B Proof of Proposition 1

We show (16) by mathematical induction. We denote by 𝖶¯\bar{\mathsf{W}} the non-zero value of a base matrix with UPA (11). Plugging (7a) into (7b), we write the asymptotic SE parameter ψct\psi_{c}^{t} as

ψct=1𝟙{r=cc+ω1𝖶rcσ2+1Lcc=c¯rc¯r𝖶rcψct1>2RLR}\displaystyle\psi_{c}^{t}=1-\mathbbm{1}\left\{\sum_{r=c}^{c+\omega-1}\frac{\mathsf{W}_{rc}}{\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=\underline{c}_{r}}^{\bar{c}_{r}}\mathsf{W}_{rc^{\prime}}\psi_{c^{\prime}}^{t-1}}>2RL_{R}\right\} (33)

where Definition 1 i)–ii) implies

c¯rmax{1,rω+1},\displaystyle\underline{c}_{r}\triangleq\max\{1,r-\omega+1\}, (34)
c¯rmin{Λ,r}.\displaystyle\bar{c}_{r}\triangleq\min\{\Lambda,r\}. (35)

Initial step: At iteration t=1t=1, by the assumption of Proposition 1, ψc1=0\psi_{c}^{1}=0, cg\forall c\leq g. Plugging t1t\leftarrow 1 into (33) and using gωg\leq\omega, we write ψc1\psi_{c}^{1}, cgc\leq g as

ψc1\displaystyle\psi_{c}^{1} =1𝟙{r=cc+ω1𝖶¯σ2+1Lcmin{ω,r}𝖶¯>2RLR}\displaystyle=1-\mathbbm{1}\left\{\sum_{r=c}^{c+\omega-1}\frac{\bar{\mathsf{W}}}{\sigma^{2}+\frac{1}{L_{c}}\min\{\omega,r\}\bar{\mathsf{W}}}>2RL_{R}\right\} (36a)
=0.\displaystyle=0. (36b)

Induction step: Assuming that (16) holds at iteration tt, we show that it continues to hold at iteration t+1t+1. If tθgt\geq\frac{\theta}{g}, then Lemma 1 item 1) implies that (16) holds at iteration t+1t+1. If t<θgt<\frac{\theta}{g}, the asymptotic SE ψct+1\psi_{c}^{t+1} can be upper bounded as

ψct+1\displaystyle\psi_{c}^{t+1}
\displaystyle\leq~{} 1𝟙{r=cc+ω1𝖶¯σ2+1Lcc=rω+1r𝖶¯ψct>2RLR}\displaystyle 1-\mathbbm{1}\left\{\sum_{r=c}^{c+\omega-1}\frac{\bar{\mathsf{W}}}{\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=r-\omega+1}^{r}\bar{\mathsf{W}}\psi_{c^{\prime}}^{t}}>2RL_{R}\right\} (37a)
=\displaystyle=~{} 1𝟙{r=cc+ω1𝖶¯σ2+1Lcc=max{rω+1,gt+1}r𝖶¯>2RLR}\displaystyle 1-\mathbbm{1}\left\{\sum_{r=c}^{c+\omega-1}\frac{\bar{\mathsf{W}}}{\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=\max\{r-\omega+1,gt+1\}}^{r}\bar{\mathsf{W}}}>2RL_{R}\right\} (37b)
=\displaystyle=~{} 1𝟙{r=cc+ω1𝖶¯σ2+1Lcmin{ω,rgt}𝖶¯>2RLR}\displaystyle 1-\mathbbm{1}\left\{\sum_{r=c}^{c+\omega-1}\frac{\bar{\mathsf{W}}}{\sigma^{2}+\frac{1}{L_{c}}\min\{\omega,r-gt\}\bar{\mathsf{W}}}>2RL_{R}\right\} (37c)
=\displaystyle=~{} 1𝟙{r=cgtcgt+ω1𝖶¯σ2+1Lcmin{ω,r}𝖶¯>2RLR},\displaystyle 1-\mathbbm{1}\left\{\sum_{r=c-gt}^{c-gt+\omega-1}\frac{\bar{\mathsf{W}}}{\sigma^{2}+\frac{1}{Lc}\min\{\omega,r\}\bar{\mathsf{W}}}>2RL_{R}\right\}, (37d)
where (37a) holds by plugging tt+1t\leftarrow t+1, c¯rr\bar{c}_{r}\leq r, and c¯rrω+1\underline{c}_{r}\geq r-\omega+1 into (33); (37b) holds by the induction assumption and the fact t<θgt<\frac{\theta}{g}; (37c) holds by rewriting the summation in the denominator of (37b); (37d) holds by change of measure rr+gtr\leftarrow r+gt. Comparing (36) and (37d), we conclude that
ψct+1=0,gtcg(t+1).\displaystyle\psi_{c}^{t+1}=0,~{}\forall gt\leq c\leq g(t+1). (37e)

Using (37e), the induction assumption, and Lemma 1 item 1), we conclude that (16) holds at iteration t+1t+1.

-C gωg\leq\omega is sufficient

We show that in Proposition 1, it suffices to limit gωg\leq\omega since gωg\geq\omega implies that the entire message is successfully decoded in the first iteration. Indeed, for UPA (11), ψc1\psi_{c}^{1} (36a) is non-decreasing on 1cω1\leq c\leq\omega, remains constant on ωcθ\omega\leq c\leq\theta, and is symmetric about c=θc=\theta. As a result, ψω1=0\psi_{\omega}^{1}=0 implies ψc1=0\psi_{c}^{1}=0 for all c[LC]c\in[L_{C}].

-D Proof of Proposition 2

In Appendix -D1, we first show that the sequence of power allocation {𝖶i(V)}i=1θ\left\{\mathsf{W}_{i}^{(V)}\right\}_{i=1}^{\theta} is unique, and we then show that it is non-increasing (20). In Appendices -D2-D3, we prove the lemmas used in Appendix -D1.

-D1 Main proof

To show the uniqueness, we introduce Lemma 2 below.

Lemma 2.

Fixing {𝖶i}i=t+1θ\{\mathsf{W}_{i}\}_{i=t+1}^{\theta}, function 𝖿t\mathsf{f}_{t} is continuous in 𝖶t\mathsf{W}_{t} and is monotonically increasing as 𝖶t\mathsf{W}_{t} increases.

Proof.

Appendix -D2. ∎

Lemma 2 indicates that fixing {𝖶i}i=t+1θ\{\mathsf{W}_{i}\}_{i=t+1}^{\theta}, 𝖿t\mathsf{f}_{t} is a bijective function of 𝖶t\mathsf{W}_{t}. Thus, there exist unique power allocation 𝖶θ(V),,𝖶1(V)\mathsf{W}_{\theta}^{(V)},\dots,\mathsf{W}_{1}^{(V)} that satisfy 𝖿θ==𝖿1=2RLR\mathsf{f}_{\theta}=\dots=\mathsf{f}_{1}=2RL_{R}.

We proceed to show that the sequence {𝖶i(V)}i=1θ\{\mathsf{W}_{i}^{(V)}\}_{i=1}^{\theta} is non-increasing (20).

Lemma 3.

For any t=1,2,,θ1t=1,2,\dots,\theta-1, given 𝖶t+1𝖶t+2𝖶θ\mathsf{W}_{t+1}\geq\mathsf{W}_{t+2}\geq\dots\geq\mathsf{W}_{\theta}, if 𝖶t=𝖶t+1\mathsf{W}_{t}=\mathsf{W}_{t+1}, it holds that 𝖿t({𝖶i}i=tθ)𝖿t+1({𝖶i}i=t+1θ)\mathsf{f}_{t}(\{\mathsf{W}_{i}\}_{i=t}^{\theta})\leq\mathsf{f}_{t+1}(\{\mathsf{W}_{i}\}_{i=t+1}^{\theta}).

Proof.

Appendix -D3. ∎

The sequence {𝖶i(V)}i=1θ\{\mathsf{W}_{i}^{(V)}\}_{i=1}^{\theta} satisfies

𝖿t({𝖶i(V)}i=tθ)=𝖿t+1({𝖶i(V)}i=t+1θ)\displaystyle\mathsf{f}_{t}\left(\{\mathsf{W}_{i}^{(V)}\}_{i=t}^{\theta}\right)=\mathsf{f}_{t+1}\left(\{\mathsf{W}_{i}^{(V)}\}_{i=t+1}^{\theta}\right) (38)

for all t=1,2,,θ1t=1,2,\dots,\theta-1. At t=θ1t=\theta-1, Lemmas 23 and (38) imply that 𝖶θ1(V)𝖶θ(V)\mathsf{W}_{\theta-1}^{(V)}\geq\mathsf{W}_{\theta}^{(V)}. Similarly, iteratively applying Lemmas 23 to t=θ2,θ3,,1t=\theta-2,\theta-3,\dots,1 in the backward manner, we conclude (20).

-D2 Proof of Lemma 2

We compute the derivative of 𝖿t\mathsf{f}_{t} with respect to 𝖶t\mathsf{W}_{t}. If t+ω1<Λt+1t+\omega-1<\Lambda-t+1,

𝖿t𝖶t=r=tt+ω1σ2+1Lcc=t+1r𝖶c(σ2+1Lcc=tr𝖶c)2;\displaystyle\frac{\partial\mathsf{f}_{t}}{\partial\mathsf{W}_{t}}=\sum_{r=t}^{t+\omega-1}\frac{\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=t+1}^{r}\mathsf{W}_{c^{\prime}}}{(\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=t}^{r}\mathsf{W}_{c^{\prime}})^{2}}; (39)

if t+ω1Λt+1t+\omega-1\geq\Lambda-t+1,

𝖿t𝖶t\displaystyle\frac{\partial\mathsf{f}_{t}}{\partial\mathsf{W}_{t}} =r=tΛtσ2+1Lcc=t+1r𝖶c(σ2+1Lcc=tr𝖶c)2\displaystyle=\sum_{r=t}^{\Lambda-t}\frac{\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=t+1}^{r}\mathsf{W}_{c^{\prime}}}{(\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=t}^{r}\mathsf{W}_{c^{\prime}})^{2}}
+(2t+ωΛ1)σ2+1Lcc=t+1Λt𝖶c(σ2+1Lcc=tΛt+1𝖶c)2\displaystyle+(2t+\omega-\Lambda-1)\frac{\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=t+1}^{\Lambda-t}\mathsf{W}_{c^{\prime}}}{(\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=t}^{\Lambda-t+1}\mathsf{W}_{c^{\prime}})^{2}} (40)

Since 𝖿t\mathsf{f}_{t} is differentiable and its derivative is positive, we conclude that Lemma 2 holds.

-D3 Proof of Lemma 3

Given 𝖶t+1𝖶θ\mathsf{W}_{t+1}\geq\dots\geq\mathsf{W}_{\theta}, function 𝖿t+1\mathsf{f}_{t+1} can be written as

𝖿t+1({𝖶i}t+1θ)\displaystyle\mathsf{f}_{t+1}\left(\{\mathsf{W}_{i}\}_{t+1}^{\theta}\right)
=\displaystyle=~{} r=t+1t+ω𝖶t+1σ2+1Lcc=t+1min{r,Λt}𝖶c\displaystyle\sum_{r=t+1}^{t+\omega}\frac{\mathsf{W}_{t+1}}{\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=t+1}^{\min\{r,\Lambda-t\}}\mathsf{W}_{c^{\prime}}} (41a)
=\displaystyle=~{} r=tt+ω1𝖶t+1σ2+1Lcc=t+1min{r+1,Λt}𝖶c\displaystyle\sum_{r=t}^{t+\omega-1}\frac{\mathsf{W}_{t+1}}{\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=t+1}^{\min\{r+1,\Lambda-t\}}\mathsf{W}_{c^{\prime}}} (41b)
=\displaystyle=~{} r=tt+ω1𝖶t+1σ2+1Lc(𝖶t+1+c=t+2min{r+1,Λt}𝖶c)\displaystyle\sum_{r=t}^{t+\omega-1}\frac{\mathsf{W}_{t+1}}{\sigma^{2}+\frac{1}{L_{c}}\left(\mathsf{W}_{t+1}+\sum_{c^{\prime}=t+2}^{\min\{r+1,\Lambda-t\}}\mathsf{W}_{c^{\prime}}\right)} (41c)

where (41a) holds by definition (19); (41b) holds by change of measure rr+1r\leftarrow r+1; (41c) holds by expanding the summation in the denominator of (41b). Function 𝖿t\mathsf{f}_{t} with 𝖶t𝖶t+1\mathsf{W}_{t}\leftarrow\mathsf{W}_{t+1} can be written as

𝖿t(𝖶t+1,{𝖶i}i=t+1θ)\displaystyle\mathsf{f}_{t}\left(\mathsf{W}_{t+1},\{\mathsf{W}_{i}\}_{i=t+1}^{\theta}\right)
=\displaystyle= r=tt+ω1𝖶t+1σ2+1Lc(𝖶t+1+c=t+1min{r,Λt+1}𝖶c).\displaystyle\sum_{r=t}^{t+\omega-1}\frac{\mathsf{W}_{t+1}}{\sigma^{2}+\frac{1}{L_{c}}\left(\mathsf{W}_{t+1}+\sum_{c^{\prime}=t+1}^{\min\{r,\Lambda-t+1\}}\mathsf{W}_{c^{\prime}}\right)}. (42)

To compare (41c) and (42), it suffices to compare the summations in their denominators. We denote by DtD_{t} and Dt+1D_{t+1} the summations in the denominators of (42) and (41c), respectively, i.e.,

Dt\displaystyle D_{t} c=t+1min{r,Λt+1}𝖶c\displaystyle\triangleq\sum_{c^{\prime}=t+1}^{\min\{r,\Lambda-t+1\}}\mathsf{W}_{c^{\prime}} (43)
Dt+1\displaystyle D_{t+1} c=t+2min{r+1,Λt}𝖶c.\displaystyle\triangleq\sum_{c^{\prime}=t+2}^{\min\{r+1,\Lambda-t\}}\mathsf{W}_{c^{\prime}}. (44)

Fix r=t,,t+ω1r=t,\dots,t+\omega-1.
Case 1: If rΛt+1r\leq\Lambda-t+1 and r+1Λtr+1\leq\Lambda-t, it holds that

DtDt+1\displaystyle D_{t}-D_{t+1} =𝖶t+1𝖶r+1\displaystyle=\mathsf{W}_{t+1}-\mathsf{W}_{r+1} (45)
0\displaystyle\geq 0 (46)

where (46) holds by the fact t+1r+1Λtt+1\leq r+1\leq\Lambda-t and the fact 𝖶t+1𝖶θ\mathsf{W}_{t+1}\geq\dots\geq\mathsf{W}_{\theta}.
Case 2: If rΛt+1r\leq\Lambda-t+1 and r+1>Λtr+1>\Lambda-t, it holds that

Dt\displaystyle D_{t} =c=t+1r𝖶c\displaystyle=\sum_{c^{\prime}=t+1}^{r}\mathsf{W}_{c^{\prime}} (47)
c=t+1Λt𝖶c\displaystyle\geq\sum_{c^{\prime}=t+1}^{\Lambda-t}\mathsf{W}_{c^{\prime}} (48)
Dt+1,\displaystyle\geq D_{t+1}, (49)

where (48) holds since the assumptions on rr in Case 2 imply r{Λt,Λt+1}r\in\{\Lambda-t,\Lambda-t+1\}.
Case 3: If r>Λt+1r>\Lambda-t+1 and r+1>Λtr+1>\Lambda-t, it holds that

DtDt+1=𝖶t+1+𝖶Λt+10.\displaystyle D_{t}-D_{t+1}=\mathsf{W}_{t+1}+\mathsf{W}_{\Lambda-t+1}\geq 0. (50)

Since cases 1–3 indicate DtDt+1D_{t}\geq D_{t+1}, we conclude that if 𝖶t=𝖶t+1\mathsf{W}_{t}=\mathsf{W}_{t+1}, then 𝖿t𝖿t+1\mathsf{f}_{t}\leq\mathsf{f}_{t+1}.

-E Proof of Lemma 1

-E1 Proof of item 1)

We prove item 1) by mathematical induction. We denote the set of zero positions of ψct\psi_{c}^{t} by

𝒩t{c[Lc]:ψct=0}.\displaystyle\mathcal{N}^{t}\triangleq\{c\in[L_{c}]\colon\psi_{c}^{t}=0\}. (51)

To show item 1), it suffices to show

𝒩0𝒩1N2\displaystyle\mathcal{N}^{0}\subseteq\mathcal{N}^{1}\subseteq N^{2}\subseteq\dots (52)

Initial step: At t=0t=0, ψc0=1\psi_{c}^{0}=1 for all c[Lc]c\in[L_{c}], thus 𝒩0\mathcal{N}^{0} is an empty set. It is trivial to conclude 𝒩0𝒩1\mathcal{N}^{0}\subseteq\mathcal{N}^{1}.

Induction step: Assuming that 𝒩t1𝒩t\mathcal{N}^{t-1}\subseteq\mathcal{N}^{t}, we proceed to show 𝒩t𝒩t+1\mathcal{N}^{t}\subseteq\mathcal{N}^{t+1}. The asymptotic SE (7b) at iteration tt is given by (33). The induction assumption posits that if ψct1=0\psi_{c}^{t-1}=0, we have ψct=0\psi_{c}^{t}=0. As a result, the denominator of the event in (33) at iteration tt is larger than or equal to that at iteration t+1t+1, and we obtain ψctψct+1\psi_{c}^{t}\geq\psi_{c}^{t+1}. Since ψct{0,1}\psi_{c}^{t}\in\{0,1\} is binary for all c[LC]c\in[L_{C}], t=1,2,t=1,2,\dots, we conclude (52).

-E2 Proof of item 2)

The asymptotic SE ψ11\psi_{1}^{1} can be written as (21) by comparing (21) and (33) with c1c\leftarrow 1, t1t\leftarrow 1. It remains to show that (22) holds for t=2,,θt=2,\dots,\theta under the assumption that ψcc=0\psi_{c}^{c}=0 for ct1c\leq t-1 in Lemma 1. The SE parameter ψtt\psi_{t}^{t} is given by (33) with ctc\leftarrow t and the left side of its event can be lower bounded as

r=tt+ω1𝖶tσ2+1Lcc=c¯rc¯r𝖶cψct1\displaystyle\sum_{r=t}^{t+\omega-1}\frac{\mathsf{W}_{t}}{\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=\underline{c}_{r}}^{\bar{c}_{r}}\mathsf{W}_{c^{\prime}}\psi_{c^{\prime}}^{t-1}} (53a)
\displaystyle\geq~{} r=tt+ω1𝖶tσ2+1Lcc=max{1,rω+1,t}min{r,Λ,Λt+1}𝖶c\displaystyle\sum_{r=t}^{t+\omega-1}\frac{\mathsf{W}_{t}}{\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=\max\{1,r-\omega+1,t\}}^{\min\{r,\Lambda,\Lambda-t+1\}}\mathsf{W}_{c^{\prime}}} (53b)
=\displaystyle=~{} r=tt+ω1𝖶tσ2+1Lcc=tmin{r,Λt+1}𝖶c\displaystyle\sum_{r=t}^{t+\omega-1}\frac{\mathsf{W}_{t}}{\sigma^{2}+\frac{1}{L_{c}}\sum_{c^{\prime}=t}^{\min\{r,\Lambda-t+1\}}\mathsf{W}_{c^{\prime}}} (53c)
=\displaystyle=~{} 𝖿t({𝖶i}i=tθ),\displaystyle\mathsf{f}_{t}(\{\mathsf{W}_{i}\}_{i=t}^{\theta}), (53d)

where (53b) holds by (34)–(35), the assumption ψcc=0\psi_{c}^{c}=0 for ct1c\leq t-1, and the symmetry of ψcc\psi_{c}^{c} (18); (53c) holds since Λt+1Λ\Lambda-t+1\leq\Lambda, t2t\geq 2, and rω+1tr-\omega+1\leq t; (53d) holds by definition (19). The equality of (53b) is achieved if and only if ψct1=1\psi_{c}^{t-1}=1 for all tcθt\leq c\leq\theta. Replacing the left side of the event of ψtt\psi_{t}^{t} by its lower bound in (53d), we obtain (22).

-F Proof of Theorem 2: step (i)

Given power P<P<\infty and rate R<R<\infty, we show that VPA outputs {𝖶c}c[LC]\{\mathsf{W}_{c}\}_{c\in[L_{C}]}, i.e., it does not declare failure, if and only if P>PV(R)P>P_{V}(R) and RR is less than the upper bound in (23). To this end, we first introduce useful lemmas and notations in Appendix -F1; we prove the ‘if’ direction in Appendix -F2; we prove the ‘only if’ direction in Appendix -F3; the proof of the lemmas in Appendix -F1 are presented in Appendices -F4-F7.

-F1 Lemmas and notations

We introduce Lemmas 47. We denote by R¯\bar{R} the upper bound on RR in (23), i.e.,

R¯{LC(ω+1)4LR,Λis even,LC(ω+2)4LR,Λis odd.\displaystyle\bar{R}\triangleq\begin{cases}\frac{L_{C}(\omega+1)}{4L_{R}},&\Lambda~{}\text{is even},\\ \frac{L_{C}(\omega+2)}{4L_{R}},&\Lambda~{}\text{is odd}.\end{cases} (54)

Lemma 4, stated next, shows the existence of {𝖶i(V)}i=1θ\{\mathsf{W}_{i}^{(V)}\}_{i=1}^{\theta}.

Lemma 4.

If and only if R<R¯R<\bar{R}, there exists a sequence 𝖶1(V),𝖶2(V),,𝖶θ(V)<\mathsf{W}_{1}^{(V)},\mathsf{W}_{2}^{(V)},\dots,\mathsf{W}_{\theta}^{(V)}<\infty that satisfies 𝖿t=2RLR\mathsf{f}_{t}=2RL_{R} (line 2 of VPA) simultaneously for all t=1,2,,θt=1,2,\dots,\theta.

Proof.

Appendix -F4. ∎

Lemma 5 shows how 𝖿t𝖶t\frac{\partial\mathsf{f}_{t}}{\partial\mathsf{W}_{t}} changes with 𝖶t\mathsf{W}_{t}.

Lemma 5.

Fixing {𝖶i}i=t+1θ\{\mathsf{W}_{i}\}_{i=t+1}^{\theta}, the derivative 𝖿t𝖶t\frac{\partial\mathsf{f}_{t}}{\partial\mathsf{W}_{t}} (39)–(40) monotonically decreases as 𝖶t\mathsf{W}_{t} increases.

Proof.

Appendix -F5. ∎

Lemma 6 below shows how 𝖿t\mathsf{f}_{t} changes with 𝖶s\mathsf{W}_{s}, st+1s\geq t+1.

Lemma 6.

Fixing 𝖶i\mathsf{W}_{i} for tiθt\leq i\leq\theta, isi\neq s, st+1s\geq t+1, function 𝖿t\mathsf{f}_{t} is continuous in 𝖶s\mathsf{W}_{s} and is monotonically decreasing as 𝖶s\mathsf{W}_{s} increases.

Proof.

Appendix -F6. ∎

Lemma 7 below shows how 𝖿t𝖶t\frac{\partial\mathsf{f}_{t}}{\partial\mathsf{W}_{t}} changes with {𝖶i}i=t+1θ\{\mathsf{W}_{i}\}_{i=t+1}^{\theta}.

Lemma 7.

Consider 𝖶i=𝖶Λi+1[0,bi]\mathsf{W}_{i}=\mathsf{W}_{\Lambda-i+1}\in[0,b_{i}], t+1iθt+1\leq i\leq\theta. If the upper bounds of the intervals satisfy

σ2+1LCi=t+1Λtbi𝖶tLC,\displaystyle\sigma^{2}+\frac{1}{L_{C}}\sum_{i=t+1}^{\Lambda-t}b_{i}\leq\sqrt{\frac{\mathsf{W}_{t}}{L_{C}}}, (55)

then the derivative 𝖿t𝖶t\frac{\partial\mathsf{f}_{t}}{\partial\mathsf{W}_{t}} (39)–(40) is non-decreasing as the elements in any non-empty subset of {𝖶i}i=t+1θ\{\mathsf{W}_{i}\}_{i=t+1}^{\theta} increase on their corresponding intervals, t=1,2,,θt=1,2,\dots,\theta.

Proof.

Appendix -F7. ∎

We introduce notations that will be used in the following proof. Fixing {𝖶i(V)}i=t+1θ\{\mathsf{W}_{i}^{(V)}\}_{i=t+1}^{\theta}, we denote the derivative of 𝖿t\mathsf{f}_{t} with respect to 𝖶t\mathsf{W}_{t} at 𝖶t=𝖶¯t\mathsf{W}_{t}=\bar{\mathsf{W}}_{t} by

𝖿t(𝖶¯t)𝖿t(𝖶t,{𝖶i(V)}i=t+1θ)𝖶t|𝖶t=𝖶¯t.\displaystyle\mathsf{f}_{t}^{\prime}(\bar{\mathsf{W}}_{t})\triangleq\frac{\partial\mathsf{f}_{t}(\mathsf{W}_{t},\{\mathsf{W}_{i}^{(V)}\}_{i=t+1}^{\theta})}{\partial\mathsf{W}_{t}}\Big{|}_{\mathsf{W}_{t}=\bar{\mathsf{W}}_{t}}. (56)

Given a sequence of positive numbers {γi}i=tθ\{\gamma_{i}\}_{i=t}^{\theta}, we denote by Ks(t)K_{s}^{(t)} a positive number that ensures

𝖿t({𝖶i(V)}i=ts1,{𝖶i(V)+γi}i=sθ)\displaystyle\mathsf{f}_{t}\left(\{\mathsf{W}_{i}^{(V)}\}_{i=t}^{s-1},\{\mathsf{W}_{i}^{(V)}+\gamma_{i}\}_{i=s}^{\theta}\right)
\displaystyle-~{} 𝖿t({𝖶i(V)}i=ts,{𝖶i(V)+γi}i=s+1θ)\displaystyle\mathsf{f}_{t}\left(\{\mathsf{W}_{i}^{(V)}\}_{i=t}^{s},\{\mathsf{W}_{i}^{(V)}+\gamma_{i}\}_{i=s+1}^{\theta}\right)
\displaystyle\geq~{} Ks(t)γs,\displaystyle-K_{s}^{(t)}\gamma_{s}, (57)

for st+1s\geq t+1. Such Ks(t)K_{s}^{(t)} always exists since 𝖿t\mathsf{f}_{t} is continuously differentiable with respect to 𝖶s\mathsf{W}_{s}, i.e., it is a Lipschitz function of 𝖶s\mathsf{W}_{s}, and it decreases as 𝖶s\mathsf{W}_{s} increases by Lemma 6. Given {𝖶¯t}t=1θ\{\bar{\mathsf{W}}_{t}\}_{t=1}^{\theta}, we define sequence {gt}t=1LC\{g_{t}\}_{t=1}^{L_{C}},

gθ1,\displaystyle g_{\theta}\triangleq 1, (58a)
gts=t+1θKs(t)gs𝖿t(𝖶¯t),tθ,\displaystyle g_{t}\triangleq\frac{\sum_{s=t+1}^{\theta}K_{s}^{(t)}g_{s}}{\mathsf{f}_{t}^{\prime}(\bar{\mathsf{W}}_{t})},~{}t\leq\theta, (58b)
gtgΛt+1,t>θ.\displaystyle g_{t}\triangleq g_{\Lambda-t+1},~{}t>\theta. (58c)

Given {𝖶¯t}t=1θ1\{\bar{\mathsf{W}}_{t}\}_{t=1}^{\theta-1} and an arbitrary positive number γθ(θ)\gamma_{\theta}^{(\theta)}, we define a non-increasing sequence γθ(t)\gamma_{\theta}^{(t)}, t=1,2,,θ1t=1,2,\dots,\theta-1, as

γθ(t)min{γθ(t+1),1gt(𝖶¯t𝖶t(V))}.\displaystyle\gamma_{\theta}^{(t)}\triangleq\min\left\{\gamma_{\theta}^{(t+1)},\frac{1}{g_{t}}(\bar{\mathsf{W}}_{t}-\mathsf{W}_{t}^{(V)})\right\}. (59)

We denote

γθmaxmax{γθ>0:ωLCLRt=1LCgtγθ=PPV(R)}.\displaystyle\gamma_{\theta}^{\max}\triangleq\max\left\{\gamma_{\theta}>0\colon\frac{\omega}{L_{C}L_{R}}\sum_{t=1}^{L_{C}}g_{t}\gamma_{\theta}=P-P_{V}(R)\right\}. (60)

We define the minimum of (59) and (60) as

γθmin{γθ(1),γθmax}.\displaystyle\gamma_{\theta}^{*}\triangleq\min\{\gamma_{\theta}^{(1)},\gamma_{\theta}^{\max}\}. (61)

We define a sequence of numbers {γt}t=1θ1\{\gamma_{t}^{*}\}_{t=1}^{\theta-1} as

γtgtγθ.\displaystyle\gamma_{t}^{*}\triangleq g_{t}\gamma_{\theta}^{*}. (62)

-F2 Proof of ‘If’ direction

We show that if P>PV(R)P>P_{V}(R) and R<R¯R<\bar{R}, then VPA does not declare a failure, equivalently, there exists a sequence {𝖶c}c[LC]\{\mathsf{W}_{c}\}_{c\in[L_{C}]} that satisfies (lines 1–5 and line 9 of Algorithm 1):

𝖿t({𝖶i}i=tθ)>2RLR,t=1,2,,θ,\displaystyle\mathsf{f}_{t}(\{\mathsf{W}_{i}\}_{i=t}^{\theta})>2RL_{R},\forall t=1,2,\dots,\theta, (63)
ωLRLCc=1LC𝖶cP.\displaystyle\frac{\omega}{L_{R}L_{C}}\sum_{c=1}^{L_{C}}\mathsf{W}_{c}\leq P. (64)

For P>PV(R)P>P_{V}(R) and R<R¯R<\bar{R}, we set

𝖶t=𝖶t(V)+γt,t=1,2,,θ,\displaystyle\mathsf{W}_{t}=\mathsf{W}_{t}^{(V)}+\gamma_{t}^{*},~{}t=1,2,\dots,\theta, (65)

where 𝖶t(V)\mathsf{W}_{t}^{(V)} exists due to Lemma 4; γt\gamma_{t}^{*} is defined in (62); γθ(θ)\gamma_{\theta}^{(\theta)} defining γθ\gamma_{\theta}^{*} (61) via (59) is an arbitrary positive number; the sequence {𝖶¯t}t=1θ1\{\bar{\mathsf{W}}_{t}\}_{t=1}^{\theta-1} defining γθ\gamma_{\theta}^{*} (61) via (59) is chosen to be large enough so that

𝖶¯t>𝖶t(V),t=1,,θ1,\displaystyle\bar{\mathsf{W}}_{t}>\mathsf{W}_{t}^{(V)},~{}\forall t=1,\dots,\theta-1, (66)

and that 𝖶¯t\bar{\mathsf{W}}_{t} satisfies (55) with 𝖶t𝖶¯t\mathsf{W}_{t}\leftarrow\bar{\mathsf{W}}_{t} and bi𝖶i(V)+giγθ(t+1)b_{i}\leftarrow\mathsf{W}_{i}^{(V)}+g_{i}\gamma_{\theta}^{(t+1)}, i=t+1,,θi=t+1,\dots,\theta.

We show that the power allocation in (65) satisfies (63)–(64), respectively. The power allocation (65) satisfies the power constraint (64) due to (60)–(61). To show that the power allocation satisfies (63), it suffices to show that the following statement:

If0<γθγθ(t),then (63) holds at iterationt.\displaystyle\text{If}~{}0<\gamma_{\theta}^{*}\leq\gamma_{\theta}^{(t)},~{}\text{then \eqref{cons_1} holds at iteration}~{}t. (67)

Since 0<γθγθ(t)0<\gamma_{\theta}^{*}\leq\gamma_{\theta}^{(t)} for all t=1,2,,θt=1,2,\dots,\theta by (61), this statement allows us to conclude that the condition (63) is satisfied for all t=1,2,,θt=1,2,\dots,\theta.

It remains to prove the statement (67). The statement trivially holds for t=θt=\theta, since 𝖶θ>𝖶θ(V)\mathsf{W}_{\theta}>\mathsf{W}_{\theta}^{(V)} ensures (63) according to Lemma 2. We proceed to prove the statement for tθ1t\leq\theta-1. Taking the difference between two 𝖿t\mathsf{f}_{t} with different 𝖶t\mathsf{W}_{t}, we obtain

𝖿t({𝖶i(V)+γi}i=tθ)𝖿t(𝖶t(V),{𝖶i(V)+γi}i=t+1θ)\displaystyle\mathsf{f}_{t}\left(\{\mathsf{W}_{i}^{(V)}+\gamma_{i}^{*}\}_{i=t}^{\theta}\right)-\mathsf{f}_{t}\left(\mathsf{W}_{t}^{(V)},\{\mathsf{W}_{i}^{(V)}+\gamma_{i}^{*}\}_{i=t+1}^{\theta}\right)
>\displaystyle>~{} 𝖿t(𝖶t,{𝖶i(V)+γi}i=t+1θ)𝖶t|𝖶t=𝖶t(V)+γtγt\displaystyle\frac{\partial\mathsf{f}_{t}(\mathsf{W}_{t},\{\mathsf{W}_{i}^{(V)}+\gamma_{i}^{*}\}_{i=t+1}^{\theta})}{\partial\mathsf{W}_{t}}\Big{|}_{\mathsf{W}_{t}=\mathsf{W}_{t}^{(V)}+\gamma_{t}^{*}}\gamma_{t}^{*} (68a)
\displaystyle\geq~{} 𝖿t(𝖶t,{𝖶i(V)+γi}i=t+1θ)𝖶t|𝖶t=𝖶¯tγt\displaystyle\frac{\partial\mathsf{f}_{t}(\mathsf{W}_{t},\{\mathsf{W}_{i}^{(V)}+\gamma_{i}^{*}\}_{i=t+1}^{\theta})}{\partial\mathsf{W}_{t}}\Big{|}_{\mathsf{W}_{t}=\bar{\mathsf{W}}_{t}}\gamma_{t}^{*} (68b)
\displaystyle\geq~{} 𝖿t(𝖶¯t)γt,\displaystyle\mathsf{f}^{\prime}_{t}(\bar{\mathsf{W}}_{t})\gamma_{t}^{*}, (68c)

where (68a) holds by Mean Value Theorem and by Lemma 5; (68b) holds due to γt=gtγθgtγθ(t)𝖶¯t𝖶t(V)\gamma_{t}^{*}=g_{t}\gamma_{\theta}^{*}\leq g_{t}\gamma_{\theta}^{(t)}\leq\bar{\mathsf{W}}_{t}-\mathsf{W}_{t}^{(V)} and Lemma 5; (68c) holds due to the fact that γi=giγθgiγθ(t)giγθ(t+1)\gamma_{i}^{*}=g_{i}\gamma_{\theta}^{*}\leq g_{i}\gamma_{\theta}^{(t)}\leq g_{i}\gamma_{\theta}^{(t+1)} for all t+1iθt+1\leq i\leq\theta, the choice of 𝖶¯t\bar{\mathsf{W}}_{t} below (66), and Lemma 7. We then take the difference between two 𝖿t\mathsf{f}_{t} with different 𝖶s\mathsf{W}_{s}, st+1s\geq t+1, just like (57) with γiγi\gamma_{i}\leftarrow\gamma_{i}^{*}, i=s,,θ\forall i=s,\dots,\theta. Summing (68) and (57) for all s=t+1,t+2,,θs=t+1,t+2,\dots,\theta, we obtain

𝖿t({𝖶i(V)+γi}i=tθ)𝖿t({𝖶i(V)}i=tθ)\displaystyle\mathsf{f}_{t}\left(\{\mathsf{W}_{i}^{(V)}+\gamma_{i}^{*}\}_{i=t}^{\theta}\right)-\mathsf{f}_{t}\left(\{\mathsf{W}_{i}^{(V)}\}_{i=t}^{\theta}\right) (69a)
>\displaystyle>~{} 𝖿t(𝖶¯t)γts=t+1θKs(t)γs\displaystyle\mathsf{f}^{\prime}_{t}(\bar{\mathsf{W}}_{t})\gamma_{t}^{*}-\sum_{s=t+1}^{\theta}K_{s}^{(t)}\gamma_{s}^{*} (69b)
=\displaystyle=~{} 𝖿t(𝖶¯t)gtγθs=t+1θKs(t)gsγθ\displaystyle\mathsf{f}^{\prime}_{t}(\bar{\mathsf{W}}_{t})g_{t}\gamma_{\theta}^{*}-\sum_{s=t+1}^{\theta}K_{s}^{(t)}g_{s}\gamma_{\theta}^{*} (69c)
=\displaystyle=~{} 0,\displaystyle 0, (69d)

where (69c) holds by plugging (62) into (69b), and (69d) holds by plugging (58b) into (69c). Since the second term in (69a) is equal to 2RLR2RL_{R}, we conclude that (63) holds at iteration tt with the power allocation in (65).

-F3 Proof of ‘Only if’ direction

Given P<P<\infty and R<R<\infty, we show that if VPA does not declare failure, then P>PV(R)P>P_{V}(R) and R<R¯R<\bar{R}.

Not declaring failure implies that at the end of line 5 of Algorithm 1, VPA forms finite {𝖶t}t=1θ\{\mathsf{W}_{t}\}_{t=1}^{\theta} that ensure 𝖿t>2RLR\mathsf{f}_{t}>2RL_{R} for all t=1,2,,θt=1,2,\dots,\theta. We show by mathematical induction that there exist {𝖶t(V)}t=1θ\{\mathsf{W}_{t}^{(V)}\}_{t=1}^{\theta} that satisfy

𝖿t({𝖶i(V)}i=tθ)=2RLR\displaystyle\mathsf{f}_{t}\left(\{\mathsf{W}_{i}^{(V)}\}_{i=t}^{\theta}\right)=2RL_{R} (70a)
𝖶t(V)<𝖶t,t=1,2,,θ.\displaystyle\mathsf{W}_{t}^{(V)}<\mathsf{W}_{t},t=1,2,\dots,\theta. (70b)

for all 1tθ1\leq t\leq\theta and for any {𝖶t}t=1θ\{\mathsf{W}_{t}\}_{t=1}^{\theta} yielded by VPA.

Initial step: Since 𝖿θ(𝖶θ)>2RLR\mathsf{f}_{\theta}(\mathsf{W}_{\theta})>2RL_{R}, 𝖿θ(0)=0\mathsf{f}_{\theta}(0)=0, and 𝖿t\mathsf{f}_{t} is continuously increasing by Lemma 2, we conclude that there exists 𝖶θ(V)\mathsf{W}_{\theta}^{(V)} that satisfies (70) at t=θt=\theta.

Induction step: Assuming that there exist {𝖶t(V)}t=s+1θ\{\mathsf{W}_{t}^{(V)}\}_{t=s+1}^{\theta} that satisfy (70) for t=s+1,,θt=s+1,\dots,\theta, we show that together with {𝖶t(V)}t=s+1θ\{\mathsf{W}_{t}^{(V)}\}_{t=s+1}^{\theta}, there exists 𝖶s(V)\mathsf{W}_{s}^{(V)} that satisfies (70) at t=st=s. From Lemma 6 and the induction assumption, we conclude

𝖿s(𝖶s,{𝖶t(V)}t=s+1θ)>𝖿s({𝖶i}i=sθ).\displaystyle\mathsf{f}_{s}\left(\mathsf{W}_{s},\{\mathsf{W}_{t}^{(V)}\}_{t=s+1}^{\theta}\right)>\mathsf{f}_{s}\left(\{\mathsf{W}_{i}\}_{i=s}^{\theta}\right). (71)

Since 𝖿s({𝖶i}i=sθ)>2RLR\mathsf{f}_{s}(\{\mathsf{W}_{i}\}_{i=s}^{\theta})>2RL_{R}, 𝖿s(0,{𝖶t(V)}t=s+1θ)=0\mathsf{f}_{s}(0,\{\mathsf{W}_{t}^{(V)}\}_{t=s+1}^{\theta})=0, and 𝖿s\mathsf{f}_{s} is continuously increasing in 𝖶s\mathsf{W}_{s} by Lemma 2, there exists 𝖶s(V)\mathsf{W}_{s}^{(V)} that satisfies (70).

The existence of {𝖶t(V)}t=1θ\{\mathsf{W}_{t}^{(V)}\}_{t=1}^{\theta} satisfying (70) implies P>PV(R)P>P_{V}(R) due to (70b) and implies R<R¯R<\bar{R} due to Lemma 4.

-F4 Proof of Lemma 4

Fixing 𝖶s=0\mathsf{W}_{s}=0 for all st+1s\geq t+1, we denote

Rt12LRlim𝖶t𝖿t(𝖶t,0,0,,0).\displaystyle R_{t}\triangleq\frac{1}{2L_{R}}\lim_{\mathsf{W}_{t}\rightarrow\infty}\mathsf{f}_{t}(\mathsf{W}_{t},0,0,\dots,0). (72)

Before we prove Lemma 4, we show

R¯=min{Rt,t=1,2,,θ}.\displaystyle\bar{R}=\min\{R_{t},t=1,2,\dots,\theta\}. (73)

For 2t<Λω+22t<\Lambda-\omega+2,

Rt=ωLC2LR;\displaystyle R_{t}=\frac{\omega L_{C}}{2L_{R}}; (74)

for Λω+2<2t<Λ+1\Lambda-\omega+2<2t<\Lambda+1,

Rt=12LR((Λ2t+1)LC+(2t+ωΛ1)LC2);\displaystyle R_{t}=\frac{1}{2L_{R}}\left((\Lambda-2t+1)L_{C}+(2t+\omega-\Lambda-1)\frac{L_{C}}{2}\right); (75)

for 2t=Λ+12t=\Lambda+1,

Rt=ωLC2LR.\displaystyle R_{t}=\frac{\omega L_{C}}{2L_{R}}. (76)

If Λ\Lambda is even, 2θ<Λ+12\theta<\Lambda+1, the first two cases (74)–(75) describe RtR_{t} for all t=1,2,,θt=1,2,\dots,\theta, and the minimum in (73) is achieved at 2t=Λ2t=\Lambda, yielding

R¯=RΛ2=LC(ω+1)4LR.\displaystyle\bar{R}=R_{\frac{\Lambda}{2}}=\frac{L_{C}(\omega+1)}{4L_{R}}. (77)

If Λ\Lambda is odd, 2θ=Λ+12\theta=\Lambda+1, the three cases (74)–(76) jointly describe RtR_{t} for all t=1,2,,θt=1,2,\dots,\theta, and the minimum in (73) is achieved at 2t=Λ12t=\Lambda-1, yielding

R¯=RΛ12=LC(ω+2)4LR.\displaystyle\bar{R}=R_{\frac{\Lambda-1}{2}}=\frac{L_{C}(\omega+2)}{4L_{R}}. (78)

We begin to prove Lemma 4.

We show that if R<R¯R<\bar{R}, there exist 𝖶1(V),,𝖶θ(V)<\mathsf{W}_{1}^{(V)},\dots,\mathsf{W}_{\theta}^{(V)}<\infty that satisfy 𝖿t=2RLR\mathsf{f}_{t}=2RL_{R} for all t=1,2,,θt=1,2,\dots,\theta. We prove this by mathematical induction.

Initial step: Since R<R¯RθR<\bar{R}\leq R_{\theta} and 𝖿θ[0,2RθLR)\mathsf{f}_{\theta}\in[0,2R_{\theta}L_{R}) is continuously increasing in 𝖶θ\mathsf{W}_{\theta}, there exists 𝖶θ(V)<\mathsf{W}_{\theta}^{(V)}<\infty that satisfies 𝖿θ(𝖶θ(V))=2RLR\mathsf{f}_{\theta}(\mathsf{W}_{\theta}^{(V)})=2RL_{R}.

Induction step: Assuming there exist 𝖶t+1(V),,𝖶θ(V)<\mathsf{W}_{t+1}^{(V)},\dots,\mathsf{W}_{\theta}^{(V)}<\infty that satisfy 𝖿i=2RLR\mathsf{f}_{i}=2RL_{R} for all i=t+1,,θi=t+1,\dots,\theta, we show that together with {𝖶i(V)}i=t+1θ\{\mathsf{W}_{i}^{(V)}\}_{i=t+1}^{\theta}, there exists 𝖶t(V)<\mathsf{W}_{t}^{(V)}<\infty that satisfies 𝖿t=2RLR\mathsf{f}_{t}=2RL_{R}. Since {𝖶i(V)}i=t+1θ\{\mathsf{W}_{i}^{(V)}\}_{i=t+1}^{\theta} are finite by the induction assumption, it holds that

lim𝖶t𝖿t(𝖶t,{𝖶i(V)}i=t+1θ)=2RtLR\displaystyle\lim_{\mathsf{W}_{t}\rightarrow\infty}\mathsf{f}_{t}\left(\mathsf{W}_{t},\{\mathsf{W}_{i}^{(V)}\}_{i=t+1}^{\theta}\right)=2R_{t}L_{R} (79)

Since R<R¯RtR<\bar{R}\leq R_{t} and 𝖿t[0,2RtLR)\mathsf{f}_{t}\in[0,2R_{t}L_{R}) is continuously increasing in 𝖶t[0,)\mathsf{W}_{t}\in[0,\infty), there exists 𝖶t<\mathsf{W}_{t}<\infty that achieves 𝖿t=2RLR\mathsf{f}_{t}=2RL_{R}.

We show that if there exist 𝖶1(V),𝖶2(V),,𝖶θ(V)<\mathsf{W}_{1}^{(V)},\mathsf{W}_{2}^{(V)},\dots,\mathsf{W}_{\theta}^{(V)}<\infty that satisfy 𝖿t=2RLR\mathsf{f}_{t}=2RL_{R} for all t=1,2,,θt=1,2,\dots,\theta, then the rate satisfies R<R¯R<\bar{R}. It holds that

2RLR\displaystyle 2RL_{R} =𝖿t(𝖶t(V),𝖶t+1(V),,𝖶θ(V))\displaystyle=\mathsf{f}_{t}\left(\mathsf{W}_{t}^{(V)},\mathsf{W}_{t+1}^{(V)},\dots,\mathsf{W}_{\theta}^{(V)}\right) (80a)
<lim𝖶t𝖿t(𝖶t,𝖶t+1(V),,𝖶θ(V))\displaystyle<\lim_{\mathsf{W}_{t}\rightarrow\infty}\mathsf{f}_{t}\left(\mathsf{W}_{t},\mathsf{W}_{t+1}^{(V)},\dots,\mathsf{W}_{\theta}^{(V)}\right) (80b)
=2RtLR,\displaystyle=2R_{t}L_{R}, (80c)

where (80b) is by Lemma 2; (80c) holds since {𝖶i(V)}i=t+1θ\{\mathsf{W}_{i}^{(V)}\}_{i=t+1}^{\theta} are finite. Since (80) holds for all t=1,2,,θt=1,2,\dots,\theta, we conclude R<R¯R<\bar{R}, where R¯\bar{R} is defined in (73).

-F5 Proof of Lemma 5

Since 𝖶t\mathsf{W}_{t} only appears in the denominator of 𝖿tWt\frac{\partial\mathsf{f}_{t}}{\partial W_{t}} (39)–(40) as a summand, the increase of 𝖶t\mathsf{W}_{t} leads to the decrease of 𝖿tWt\frac{\partial\mathsf{f}_{t}}{\partial W_{t}}.

-F6 Proof of Lemma 6

We show that the derivative of 𝖿t\mathsf{f}_{t} with respect to 𝖶s\mathsf{W}_{s} for st+1s\geq t+1 is negative. For Λs+1>min{r,Λt+1}\Lambda-s+1>\min\{r,\Lambda-t+1\},

𝖿t𝖶s=r=tt+ω1𝖶t1LC(σ2+1LCc=tmin{r,Λt+1}𝖶c)2<0.\displaystyle\frac{\partial\mathsf{f}_{t}}{\partial\mathsf{W}_{s}}=\sum_{r=t}^{t+\omega-1}\frac{-\mathsf{W}_{t}\frac{1}{L_{C}}}{\left(\sigma^{2}+\frac{1}{L_{C}}\sum_{c^{\prime}=t}^{\min\{r,\Lambda-t+1\}}\mathsf{W}_{c^{\prime}}\right)^{2}}<0. (81)

For Λs+1min{r,Λt+1}\Lambda-s+1\leq\min\{r,\Lambda-t+1\},

𝖿t𝖶s=r=tt+ω1𝖶t2LC(σ2+1LCc=tmin{r,Λt+1}𝖶c)2<0.\displaystyle\frac{\partial\mathsf{f}_{t}}{\partial\mathsf{W}_{s}}=\sum_{r=t}^{t+\omega-1}\frac{-\mathsf{W}_{t}\frac{2}{L_{C}}}{\left(\sigma^{2}+\frac{1}{L_{C}}\sum_{c^{\prime}=t}^{\min\{r,\Lambda-t+1\}}\mathsf{W}_{c^{\prime}}\right)^{2}}<0. (82)

-F7 Proof of Lemma 7

We denote by Mr,t+1σ2+1LCi=t+1r𝖶iM_{r,t+1}\triangleq\sigma^{2}+\frac{1}{L_{C}}\sum_{i=t+1}^{r}\mathsf{W}_{i}, t+1rΛtt+1\leq r\leq\Lambda-t, and we rewrite 𝖿t𝖶t\frac{\partial\mathsf{f}_{t}}{\partial\mathsf{W}_{t}} in (39)–(40) as follows. If t+ω1<Λt+1t+\omega-1<\Lambda-t+1,

𝖿t𝖶t\displaystyle\frac{\partial\mathsf{f}_{t}}{\partial\mathsf{W}_{t}} =σ2(σ2+1LC𝖶t)2\displaystyle=\frac{\sigma^{2}}{(\sigma^{2}+\frac{1}{L_{C}}\mathsf{W}_{t})^{2}} (83a)
+r=t+1t+ω11(Mr,t+1+1LC𝖶tMr,t+1)2;\displaystyle+\sum_{r=t+1}^{t+\omega-1}\frac{1}{(\sqrt{M_{r,t+1}}+\frac{1}{L_{C}}\frac{\mathsf{W}_{t}}{\sqrt{M_{r,t+1}}})^{2}}; (83b)

if t+ω1Λt+1t+\omega-1\geq\Lambda-t+1,

𝖿t𝖶t=σ2(σ2+1LC𝖶t)2\displaystyle\frac{\partial\mathsf{f}_{t}}{\partial\mathsf{W}_{t}}=\frac{\sigma^{2}}{(\sigma^{2}+\frac{1}{L_{C}}\mathsf{W}_{t})^{2}} (84a)
+r=t+1Λt1(Mr,t+1+1LC𝖶tMr,t+1)2\displaystyle+\sum_{r=t+1}^{\Lambda-t}\frac{1}{(\sqrt{M_{r,t+1}}+\frac{1}{L_{C}}\frac{\mathsf{W}_{t}}{\sqrt{M_{r,t+1}}})^{2}} (84b)
+(2t+ωΛ1)1(MΛt,t+2LC𝖶tMΛt,t+1)2.\displaystyle+(2t+\omega-\Lambda-1)\frac{1}{(\sqrt{M_{\Lambda-t,t}}+\frac{2}{L_{C}}\frac{\mathsf{W}_{t}}{\sqrt{M_{\Lambda-t,t+1}}})^{2}}. (84c)

We observe that (i) each summand in (83b) and (84b) monotonically increases as Mr,t+1M_{r,t+1} increases on Mr,t+1[0,𝖶tLC]M_{r,t+1}\in\left[0,\sqrt{\frac{\mathsf{W}_{t}}{L_{C}}}\right]; (ii) (84c) increases as MΛt,t+1M_{\Lambda-t,t+1} increases on MΛt,t+1[0,2𝖶tLC]M_{\Lambda-t,t+1}\in\left[0,\sqrt{\frac{2\mathsf{W}_{t}}{L_{C}}}\right]; (iii) Mr,t+1M_{r,t+1} increases as rr increases.

Since (55) means MΛt,t+1𝖶tLCM_{\Lambda-t,t+1}\leq\sqrt{\frac{\mathsf{W}_{t}}{L_{C}}}, observation (iii) implies that {𝖶i}i=t+1θ\{\mathsf{W}_{i}\}_{i=t+1}^{\theta} satisfy Mr,t+1𝖶tLCM_{r,t+1}\leq\sqrt{\frac{\mathsf{W}_{t}}{L_{C}}} for all t+1rΛtt+1\leq r\leq\Lambda-t. Thus, observations (i)–(ii) imply that 𝖿t𝖶t\frac{\partial\mathsf{f}_{t}}{\partial\mathsf{W}_{t}} (83)–(84) is non-decreasing as the elements in any non-empty subset of {𝖶i}i=t+1θ\{\mathsf{W}_{i}\}_{i=t+1}^{\theta} increase on their corresponding intervals.

-G Proof of Theorem 2: step (ii)

We show that the output power allocation of VPA ensures successful decoding. The power determined at the end of line 5 of Algorithm 1 satisfies

𝖿t({𝖶i}i=tθ)>2RLR,t=1,,θ,\displaystyle\mathsf{f}_{t}\left(\{\mathsf{W}_{i}\}_{i=t}^{\theta}\right)>2RL_{R},\forall t=1,\dots,\theta, (85)

since δt>0\delta_{t}>0 for all t=1,2,,θt=1,2,\dots,\theta and Lemma 2, which states that 𝖿t\mathsf{f}_{t} increases as 𝖶t\mathsf{W}_{t} increases. Plugging (85) into Lemma 1 item 2), we conclude ψcθ=0\psi_{c}^{\theta}=0, c[LC]\forall c\in[L_{C}], meaning that VPA ensures successful decoding within θ\theta iterations.

Since the left sides of the inequalites in lines 6 and 9 are equal to the left side of (4), representing the resultant power, lines 6 and 9 check the satisfaction of the power constraint (4). After transferring the resiudal power to 𝖶1\mathsf{W}_{1} and 𝖶Λ\mathsf{W}_{\Lambda} in lines 9–13, the resultant power still satisfies (85) since 𝖿t,t2\mathsf{f}_{t},t\geq 2 does not depend on 𝖶1\mathsf{W}_{1} and 𝖶Λ\mathsf{W}_{\Lambda}, and 𝖿1\mathsf{f}_{1} by Lemma 2 monotonically increases as 𝖶1\mathsf{W}_{1} increases.

-H Proof of Proposition 3

We first show (24). It suffices to show that the upper bound on RR in (13) is smaller than or equal to that in (23). For clarity, we denote the upper bounds on RR in (13) and (23) by R¯U\bar{R}_{U} and R¯V\bar{R}_{V}, respectively. We upper bound R¯U\bar{R}_{U} as

R¯U\displaystyle\bar{R}_{U} =LC2LRr=1ω1r\displaystyle=\frac{L_{C}}{2L_{R}}\sum_{r=1}^{\omega}\frac{1}{r} (86a)
LC2LR(1+ω12)\displaystyle\leq\frac{L_{C}}{2L_{R}}\left(1+\frac{\omega-1}{2}\right) (86b)
=LC(ω+1)4LR\displaystyle=\frac{L_{C}(\omega+1)}{4L_{R}} (86c)
R¯V\displaystyle\leq\bar{R}_{V} (86d)

where (86b) holds by lower bounding rr by 22 for all r2r\geq 2.

Given rate RR that ensures PU(R)<P_{U}(R)<\infty and PV(R)<P_{V}(R)<\infty, we proceed to show (25). We denote by 𝖶¯PU(R)LRω\bar{\mathsf{W}}\triangleq P_{U}(R)\frac{L_{R}}{\omega} the UPA at PU(R)P_{U}(R). To show (25), it suffices to show

𝖶t(V)𝖶¯.\displaystyle\mathsf{W}_{t}^{(V)}\leq\bar{\mathsf{W}}. (87)

To this end, from (21) and (32), we conclude

𝖿1(𝖶¯,𝖶¯,,𝖶¯)=2RLR.\displaystyle\mathsf{f}_{1}(\bar{\mathsf{W}},\bar{\mathsf{W}},\dots,\bar{\mathsf{W}})=2RL_{R}. (88)

Lemma 3 implies for all t=2,3,,θt=2,3,\dots,\theta,

𝖿t(𝖶¯,𝖶¯,,𝖶¯)2RLR.\displaystyle\mathsf{f}_{t}(\bar{\mathsf{W}},\bar{\mathsf{W}},\dots,\bar{\mathsf{W}})\geq 2RL_{R}. (89)

At t=θt=\theta, Lemma 2 and (89) imply (87). At t=θ1t=\theta-1, since Lemma 6 implies 𝖿θ1(𝖶¯,𝖶θ(V))𝖿θ1(𝖶¯,𝖶¯)\mathsf{f}_{\theta-1}(\bar{\mathsf{W}},\mathsf{W}_{\theta}^{(V)})\geq\mathsf{f}_{\theta-1}(\bar{\mathsf{W}},\bar{\mathsf{W}}), we conclude from Lemma 2 and (89) that (87) holds at t=θ1t=\theta-1. Simiarly, at t=θ2,θ3,,1t=\theta-2,\theta-3,\dots,1, iteratively using Lemmas 2 and 6 and (88)–(89), we obtain (87).

-I UPA is a special case of VPA

We show that UPA is a special case of VPA. This is an alternative proof for (25). Consider any P>PU(R)P>P_{U}(R) and R<R¯UR<\bar{R}_{U} with UPA 𝖶¯PLRω\bar{\mathsf{W}}^{\prime}\triangleq P\frac{L_{R}}{\omega}. Due to the fact that 𝖿1\mathsf{f}_{1} in (88) increases as 𝖶¯\bar{\mathsf{W}} increases, 𝖶¯>𝖶¯\bar{\mathsf{W}}^{\prime}>\bar{\mathsf{W}}, and Lemma 3, we conclude 𝖿t(𝖶¯,𝖶¯,,𝖶¯)>2RLR\mathsf{f}_{t}(\bar{\mathsf{W}}^{\prime},\bar{\mathsf{W}}^{\prime},\dots,\bar{\mathsf{W}}^{\prime})>2RL_{R} for all t=1,2,,θt=1,2,\dots,\theta. VPA recovers UPA by choosing δt=𝖶¯𝖶t\delta_{t}=\bar{\mathsf{W}}^{\prime}-\mathsf{W}_{t}, where 𝖶t\mathsf{W}_{t} is the output of line 2 of Algorithm 1. The difference δt\delta_{t} is positive for all t=1,2,,θt=1,2,\dots,\theta since Lemma 2 implies that the output of line 2 satisfies 𝖶t<𝖶¯\mathsf{W}_{t}<\bar{\mathsf{W}}^{\prime}.