This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\DeclareDelimFormat

nametitledelim, \DeclareDelimFormattitleyeardelim, \AtAppendix \AtAppendix \AtAppendix \AtAppendix \AtAppendix \AtAppendix

Powerfree integers and Fourier bounds

Sebastián Carrillo Santana Mathematics Institute, Utrecht University, Hans Freudenthalgebouw, Budapestlaan 6, 3584 CD Utrecht, Netherlands s.carrillosantana@uu.nl
Abstract.

We develop a general approach for showing when a set of integers 𝒜\mathscr{A} has infinitely many kthk^{th} powerfree numbers without relying on equidistribution estimates for 𝒜\mathscr{A}. In particular, we show that if the Fourier transform of 𝒜\mathscr{A} satisfies certain LL^{\infty} and L1L^{1} bounds, and is also “decreasing” in some sense, then 𝒜\mathscr{A} contains infinitely many kthk^{th} powerfree numbers. We then use this method to show that there are infinitely many cubefree palindromes in base b1100b\geqslant 1100, and in the process we obtain new L1L^{1} bounds for the Fourier transform of the set of palindromes. We also show that there are infinitely many squarefree integers such that its reverse is also squarefree in any base b2b\geqslant 2. Moreover, we show that there are infinitely many squarefree integers with a missing digit in base b5b\geqslant 5, and infinitely many such cubefree integers in base b3b\geqslant 3.

1. Introduction

In the past few decades, there has been significant interest in sets of integers defined by arithmetic properties of their digits. We mention for example the work of Mauduit and Rivat [14] on the sum of digits of primes, the work of Bourgain [5, 6] and Swaenepoel [18] on primes with prescribed digits, the work of Maynard [15, 16] on primes with missing digits, and more recently the work of Dartyge, Martin, Rivat, Shparlinkski, and Swaenepoel [9] on reversible primes.

The purpose of this article is to develop a general approach for showing when a set of integers has infinitely many kthk^{th} powerfree numbers. This method is primarily based on obtaining certain bounds for the Fourier transform of a set of integers. This approach applies to many sets of integers defined by arithmetic properties of their digits, because in most of such cases, the Fourier transform has a nice multiplicative structure.

Given a set of integers 𝒜\mathscr{A} and a positive xx\in\mathbb{R}, let 𝒜(x)=𝒜[1,x]\mathscr{A}(x)\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\mathscr{A}\cap[1,x]. We define the Fourier transform of 𝒜(x)\mathscr{A}(x) as the function Sx:[0,1]S_{x}\colon[0,1]\to\mathbb{C} defined by

Sx(t)=n𝒜(x)e(nt),S_{x}(t)\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\sum_{n\in\mathscr{A}(x)}\operatorname{e}(nt),

where e(z)=e2πiz\operatorname{e}(z)=\operatorname{e}^{2\pi iz}. It is also convenient to define a normalized version:

Fx(t)=1#𝒜(x)|Sx(t)|.F_{x}(t)\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\frac{1}{\#\mathscr{A}(x)}|S_{x}(t)|.

Of course Fx(t)F_{x}(t) depends on the set 𝒜\mathscr{A}, but for ease of notation we avoid writing such dependence; from the context it should be clear what Fx(t)F_{x}(t) means, depending on the set 𝒜\mathscr{A} we are interested in. We are ready to state our main result.

Theorem 1.1.

Suppose that 𝒜\mathscr{A} is a set of integers such that its normalized Fourier transform FxF_{x} satisfies the following properties:

  1. (i)

    An LL^{\infty} type estimate of the form

    Fx(ad)exp(clogxlogd)F_{x}\Big{(}\frac{a}{d}\Big{)}\ll\exp{\Big{(}-c\frac{\log{x}}{\log{d}}\Big{)}} (1.1)

    for some absolute constant c>0c>0 and any integers a,da,d with 0<a<d0<a<d and 2d(logx)B2\leqslant d\leqslant(\log{x})^{B} for some B>0B>0.

  2. (ii)

    L1L^{1} bounds of the form

    01Fx(t)dt1x1k+δand01|Fx(t)|dtx11kδ\int_{0}^{1}F_{x}(t)\operatorname{d\!}t\ll\frac{1}{x^{\frac{1}{k}+\delta}}\quad\mbox{and}\quad\int_{0}^{1}|F_{x}^{\prime}(t)|\operatorname{d\!}t\ll x^{1-\frac{1}{k}-\delta} (1.2)

    for some positive integer k2k\geqslant 2 and some δ>0\delta>0.

  3. (iii)

    There is some integer b2b\geqslant 2 such that for any x,y{bm:m+}x,y\in\{b^{m}\;\mathrel{\mathop{\ordinarycolon}}\;m\in\mathbb{Z}^{+}\} with xyx\leqslant y, we have

    Fy(t)Fx(t).F_{y}(t)\ll F_{x}(t). (1.3)

Then 𝒜\mathscr{A} contains infinitely many kthk^{th} powerfree integers and

n𝒜(x)n is kth powerfree1#𝒜(x)ζ(k)\sum_{\begin{subarray}{c}n\in\mathscr{A}(x)\\ n\text{ is }k^{\text{th}}\text{ powerfree}\end{subarray}}1\sim\frac{\#\mathscr{A}(x)}{\zeta(k)}

as xx\to\infty.

Remark.

Observe that if 𝒜(x)xθ\mathscr{A}(x)\asymp x^{\theta} for some θ(0,1]\theta\in(0,1], then by Parseval’s identity,

01|Sx(t)|2dt=n𝒜(x)1xθ.\int_{0}^{1}|S_{x}(t)|^{2}\operatorname{d\!}t=\sum_{n\in\mathscr{A}(x)}1\ll x^{\theta}.

Therefore, by the Cauchy Schwartz inequality,

01|Fx(t)|dt1xθ2,\int_{0}^{1}|F_{x}(t)|\operatorname{d\!}t\ll\frac{1}{x^{\frac{\theta}{2}}},

and we have the same bound for Fx\mathinner{\!\left\lVert F_{x}^{\prime}\right\rVert} but multiplied by xx. This shows that (1.2) always holds for some kk as long as 𝒜(x)xθ\mathscr{A}(x)\asymp x^{\theta}. Of course, if the Fourier transform of 𝒜\mathscr{A} has considerable cancellation, in some cases, we expect to have a much stronger bound of the form

01|Fx(t)|dt1xθε\int_{0}^{1}|F_{x}(t)|\operatorname{d\!}t\ll\frac{1}{x^{\theta-\varepsilon}}

for any ε>0\varepsilon>0, but this is usually difficult to show. The reason for expecting this is because, by the work of McGehee, Pigno, and Smith [17], and independently by Konyagin [13], we know that

logxxθlogx#𝒜(x)01|Fx(t)|dt.\frac{\log{x}}{x^{\theta}}\asymp\frac{\log{x}}{\#\mathscr{A}(x)}\ll\int_{0}^{1}|F_{x}(t)|\operatorname{d\!}t. (1.4)

In particular, if θ12\theta\leqslant\frac{1}{2}, our methods are not strong enough to prove the existence of infinitely many squarefree integers because (1.2) would be impossible.

The main philosophy of Theorem 1.1 is that, if we have good enough L1L^{1} and LL^{\infty} bounds, and if we have some kind of decreasing property for Fx(t)F_{x}(t), then we can show that our set has infinitely many kthk^{th} powerfree integers for some kk that depends on how strong our L1L^{1} estimates are. There are many scenarios in which the Fourier transform Fx(t)F_{x}(t) does not exactly satisfy the same properties as in Theorem 1.1, but it nevertheless satisfies some analogous properties. Consequently, we should think of Theorem 1.1 more as a general method rather than a standalone theorem. One of the main features of this framework is that we don’t rely on equidistribution estimates. In the following subsections, we state some applications of this method.

1.1. Cubefree palindromes

Banks, Hart, and Sakata [1] showed that almost all palindromes are composite. Afterwards, Col [8] improved upon these results by obtaining an upper bound of the right order of magnitude for the number of palindromes less than or equal to xx. The author did this by obtaining equidistribution estimates for palindromes in arithmetic progressions. Recently, Tuxanidy and Panario [19] improved upon Col’s results by extending the level of distribution of palindromes in arithmetic progressions to moduli up to x15δx^{\frac{1}{5}-\delta}.

Let 𝒫b\mathscr{P}_{b} denote the set of nonnegative palindromes in base b2b\geqslant 2. Using equidistribution results for square moduli for palindromes from Tuxanidy and Panario, Chourasiya and Johnston [7] proved that there are infinitely many 4th4^{th} powerfree palindromes in any base b2b\geqslant 2, and they gave the following asymptotic:

Theorem 1.2 ([7],Theorem 1.6).

Let

𝒫b={n𝒫b:(n,b3b)=1}.\mathscr{P}_{b}^{*}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\{n\in\mathscr{P}_{b}\;\mathrel{\mathop{\ordinarycolon}}\;(n,b^{3}-b)=1\}.

Then,

n𝒫b(x)n is 4th powerfree1#𝒫b(x)ζ(4)p|b3b(11p4)1.\sum_{\begin{subarray}{c}n\in\mathscr{P}_{b}^{*}(x)\\ n\text{ is }4^{th}\text{ powerfree}\end{subarray}}1\sim\frac{\#\mathscr{P}_{b}^{*}(x)}{\zeta(4)}\prod_{p|b^{3}-b}\Big{(}1-\frac{1}{p^{4}}\Big{)}^{-1}.

By obtaining new L1L^{1} estimates for the Fourier transform of the set of palindromes, we showed independently and almost simultaneously, that for b1100b\geqslant 1100, 𝒫b\mathscr{P}_{b}^{*} contains infinitely many cubefree integers:

Theorem 1.3.

For b1100b\geqslant 1100, 𝒫b\mathscr{P}_{b}^{*} contains infinitely many cubefree palindromes, and

n𝒫b(x)n is cubefree1#𝒫b(x)ζ(3)p|b3b(11p3)1.\sum_{\begin{subarray}{c}n\in\mathscr{P}_{b}^{*}(x)\\ n\text{ is cubefree}\end{subarray}}1\sim\frac{\#\mathscr{P}_{b}^{*}(x)}{\zeta(3)}\prod_{p|b^{3}-b}\Big{(}1-\frac{1}{p^{3}}\Big{)}^{-1}.
Remark.

Of course the result also holds if we replace the word cubefree by kthk^{th} powerfree for k3k\geqslant 3, but we work with cubefree for the sake of simplicity.

Subsequently, Chourasiya and Johnston [7] obtained Theorem 1.3 for all bases b2b\geqslant 2, again using equidistribution estimates from Tuxanidy and Panario [19], and a Brun–Titchmarsh style result due to Banks and Shparlinski [2]. In this paper, we give a proof of Theorem 1.3.

1.2. Squarefree reversible integers

Given an integer nn written in base b2b\geqslant 2 as

n=j=0knjbjn=\sum_{j=0}^{k}n_{j}b^{j}

for some nj{0,,b1}n_{j}\in\{0,\ldots,b-1\}, we define the reverse of nn in base bb as

nb=j=0knjbk1j.\overleftarrow{n}_{b}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\sum_{j=0}^{k}n_{j}b^{k-1-j}.

Recently, Dartyge, Martin, Rivat, Shparlinkski, and Swaenepoel [9] showed that there are infinitely many squarefree integers nn such that nb\overleftarrow{n}_{b} is squarefree in base b=2b=2:

Theorem 1.4.

Let

𝒟l={n: 2l1n<2l and n is odd},\mathscr{D}_{l}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\{n\in\mathbb{Z}\;\mathrel{\mathop{\ordinarycolon}}\;2^{l-1}\leqslant n<2^{l}\mbox{ and }n\mbox{ is odd}\},

and let

Q(l)=#{n𝒟l:μ2(n)=μ2(n2)=1}.Q(l)=\#\{n\in\mathscr{D}_{l}\;\mathrel{\mathop{\ordinarycolon}}\;\mu^{2}(n)=\mu^{2}(\overleftarrow{n}_{2})=1\}.

Then,

Q(l)66π4#𝒟l.Q(l)\sim\frac{66}{\pi^{4}}\#\mathscr{D}_{l}.

Using results for the Fourier transform associated to reversible integers from Bhowmik and Suzuki [3], recently improved by Dartyge, Rivat, and Swaenepoel [10], and independently by Bhowmik and Suzuki [4], we generalize Theorem 1.4 for all b2b\geqslant 2:

Theorem 1.5.

Let b2b\geqslant 2, and let

b={n1:(n,b3b)=1,(nb,b3b)=1}.\mathscr{H}_{b}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\{n\in\mathbb{Z}_{\geqslant 1}\;\mathrel{\mathop{\ordinarycolon}}\;(n,b^{3}-b)=1,\;(\overleftarrow{n}_{b},b^{3}-b)=1\}.

Then,

nb(x)n,nb are squarefree1#b(x)ζ(2)2p|b3b(11p2)2.\sum_{\begin{subarray}{c}n\in\mathscr{H}_{b}(x)\\ n,\overleftarrow{n}_{b}\text{ are squarefree}\end{subarray}}1\sim\frac{\#\mathscr{H}_{b}(x)}{\zeta(2)^{2}}\prod_{p|b^{3}-b}\Big{(}1-\frac{1}{p^{2}}\Big{)}^{-2}.

1.3. Powerfree integers with missing digits

Filaseta and Konyagin [12] showed that there are infinitely many squarefree integers in base b=3,4,5b=3,4,5 consisting only of the digits 0 and 11. Afterwards, using equidistribution estimates, Erdős, Mauduit, and Sárközy [11] obtained an asymptotic for the number of kthk^{th} powerfree integers in base bb with qq excluded digits:

Theorem 1.6 ([11], Theorem 4).

Let b3b\geqslant 3, and 2qb12\leqslant q\leqslant b-1 be integers, let 𝒬{0,,b1}\mathscr{Q}\subseteq\{0,\ldots,b-1\} with #𝒬=q\#\mathscr{Q}=q, and let

𝒲b={j=0mnjbj:nj{0,,b1}𝒬,m0}.\mathscr{W}_{b}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\Big{\{}\sum_{j=0}^{m}n_{j}b^{j}\;\mathrel{\mathop{\ordinarycolon}}\;n_{j}\in\{0,\ldots,b-1\}\setminus\mathscr{Q},\,m\geqslant 0\Big{\}}.

Assume further that for some positive integer kk,

k>logblog(bq).k>\frac{\log{b}}{\log{(b-q)}}.

Then,

n𝒲b(x)n is kth powerfree(n,b2b)=11#𝒲b(x)ζ(k)p|b2b(11pk)1.\sum_{\begin{subarray}{c}n\in\mathscr{W}_{b}(x)\\ n\text{ is }k^{th}\text{ powerfree}\\ (n,b^{2}-b)=1\end{subarray}}1\sim\frac{\#\mathscr{W}_{b}(x)}{\zeta(k)}\prod_{p|b^{2}-b}\Big{(}1-\frac{1}{p^{k}}\Big{)}^{-1}.

Observe that the above result proves Filaseta and Konyagin’s result for b=3b=3. However, it is still an open question to show whether or not for b6b\geqslant 6 there are infinitely many squarefree integers such that every digit in base bb is 0 or 1.

In the particular case where we exclude one digit, say 𝒬={a0}\mathscr{Q}=\{a_{0}\}, Maynard [16] showed that for bases b10b\geqslant 10, the set 𝒲b\mathscr{W}_{b} contains infinitely many primes:

Theorem 1.7 ([16], Theorem 1.1).

Given an integer b10b\geqslant 10, and some a0{0,,b1}a_{0}\in\{0,\ldots,b-1\}, let

b={j=0knjbj:nj{0,,b1}{a0},k0}\mathscr{M}_{b}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\Big{\{}\sum_{j=0}^{k}n_{j}b^{j}\;\mathrel{\mathop{\ordinarycolon}}\;n_{j}\in\{0,\ldots,b-1\}\setminus\{a_{0}\},\,k\geqslant 0\Big{\}}

be the set of integers in base bb without a0a_{0} in the digit expansion. Then, b\mathscr{M}_{b} contains infinitely many primes and

#{pb(x):p is prime}#blogx.\#\{p\in\mathscr{M}_{b}(x)\;\mathrel{\mathop{\ordinarycolon}}\;p\mbox{ is prime}\}\asymp\frac{\#\mathscr{M}_{b}}{\log{x}}.

As a final application of our method, we use the L1L^{1} and LL^{\infty} bounds from Maynard [15, 16] to prove a weaker version of Theorem 1.6 that does not rely on equidistribution estimates:

Theorem 1.8.

Let b\mathscr{M}_{b} be as in Theorem 1.7, and let b={ab:(a,b)=1}\mathscr{M}_{b}^{*}=\{a\in\mathscr{M}_{b}\;\mathrel{\mathop{\ordinarycolon}}\;(a,b)=1\}. Then, for b5b\geqslant 5 or b=4b=4 with a0=0,3a_{0}=0,3, b\mathscr{M}_{b}^{*} contains infinitely many squarefree integers, and

nb(x)n is squarefree1#b(x)ζ(2)p|b(11p2)1.\sum_{\begin{subarray}{c}n\in\mathscr{M}_{b}^{*}(x)\\ n\text{ is squarefree}\end{subarray}}1\sim\frac{\#\mathscr{M}_{b}^{*}(x)}{\zeta(2)}\prod_{p|b}\Big{(}1-\frac{1}{p^{2}}\Big{)}^{-1}.

If b=3b=3 or b=4b=4 with a0=1,2a_{0}=1,2, then b\mathscr{M}_{b}^{*} contains infinitely many cubefree integers, and

nb(x)n is cubefree1#b(x)ζ(3)p|b(11p3)1.\sum_{\begin{subarray}{c}n\in\mathscr{M}_{b}^{*}(x)\\ n\text{ is cubefree}\end{subarray}}1\sim\frac{\#\mathscr{M}_{b}^{*}(x)}{\zeta(3)}\prod_{p|b}\Big{(}1-\frac{1}{p^{3}}\Big{)}^{-1}.
Remark.

In base 22, if the missing digit is 11, then 2={0}\mathscr{M}_{2}=\{0\}, so trivially 2\mathscr{M}_{2} does not contain infinitely many squarefree integers. If the missing digit is 0, then 2={2n1:n+}\mathscr{M}_{2}=\{2^{n}-1\;\mathrel{\mathop{\ordinarycolon}}\;n\in\mathbb{Z}^{+}\}, so that 2(x)logx\mathscr{M}_{2}(x)\asymp\log{x}. In this case, our methods are not strong enough to deal with 2\mathscr{M}_{2} because by (1.4), it is not possible to have a bound of the form

01|Fx(t)|dt1x1k+δ\int_{0}^{1}|F_{x}(t)|\operatorname{d\!}t\ll\frac{1}{x^{\frac{1}{k}+\delta}}

for some kk\in\mathbb{Z}. Moreover, we don’t expect that an exponential sum type approach would work for this, because

|nxe((2n1)x)|=|nxe(2nx)|;\Big{|}\sum_{n\leqslant\sqrt{x}}\operatorname{e}((2^{n}-1)x)\Big{|}=\Big{|}\sum_{n\leqslant\sqrt{x}}\operatorname{e}(2^{n}x)\Big{|};

this essentially shows that the Fourier transform can’t differentiate between the sets {2n1:n}\{2^{n}-1\;\mathrel{\mathop{\ordinarycolon}}\;n\in\mathbb{Z}\} and {2n:n}\{2^{n}\;\mathrel{\mathop{\ordinarycolon}}\;n\in\mathbb{Z}\}. It is still an open problem to show whether or not there are infinitely many squarefree integers of the form 2n12^{n}-1.

2. Proof of the main result

2.1. Technical Lemmas

By the orthogonality relations, note that

n𝒜(x)d|n1=\displaystyle\sum_{\begin{subarray}{c}n\in\mathscr{A}(x)\\ d|n\end{subarray}}1={} 0a<d1dn𝒜(x)e(and)\displaystyle\sum_{0\leqslant a<d}\frac{1}{d}\sum_{n\in\mathscr{A}(x)}\operatorname{e}\Big{(}\frac{an}{d}\Big{)}
=\displaystyle={} 0a<d1dSx(ad)\displaystyle\sum_{0\leqslant a<d}\frac{1}{d}S_{x}\Big{(}\frac{a}{d}\Big{)}
=\displaystyle={} #𝒜(x)d+0<a<d1dSx(ad).\displaystyle\frac{\#\mathscr{A}(x)}{d}+\sum_{0<a<d}\frac{1}{d}S_{x}\Big{(}\frac{a}{d}\Big{)}.

Therefore, by the triangle inequality and the definition of Fx(t)F_{x}(t), we have

|n𝒜(x)d|n11d#𝒜(x)|#𝒜(x)d0<a<dFx(ad).\Big{|}\sum_{\begin{subarray}{c}n\in\mathscr{A}(x)\\ d|n\end{subarray}}1-\frac{1}{d}\#\mathscr{A}(x)\Big{|}\leqslant\frac{\#\mathscr{A}(x)}{d}\sum_{0<a<d}F_{x}\Big{(}\frac{a}{d}\Big{)}. (2.1)

What this equation tells us is that in order to understand 𝒜\mathscr{A} in arithmetic progressions, it suffices to study its Fourier transform. In other words, type I information of a set is interlaced with its Fourier transform. Now, we are interested in counting the number of integers in 𝒜\mathscr{A} that are kthk^{th} powerfree for some k2k\geqslant 2. We then have

n𝒜(x)n is kth powerfree1=\displaystyle\sum_{\begin{subarray}{c}n\in\mathscr{A}(x)\\ n\text{ is }k^{\text{th}}\text{ powerfree}\end{subarray}}1={} n𝒜(x)qk|nμ(q)\displaystyle\sum_{n\in\mathscr{A}(x)}\sum_{q^{k}|n}\mu(q)
=\displaystyle={} qx1kμ(q)n𝒜(x)qk|n1\displaystyle\sum_{q\leqslant x^{\frac{1}{k}}}\mu(q)\sum_{\begin{subarray}{c}n\in\mathscr{A}(x)\\ q^{k}|n\end{subarray}}1
=\displaystyle={} #𝒜(x)qx1kμ(q)qk+qx1kμ(q)(n𝒜(x)qk|n1#𝒜(x)qk)\displaystyle\#\mathscr{A}(x)\sum_{q\leqslant x^{\frac{1}{k}}}\frac{\mu(q)}{q^{k}}+\sum_{q\leqslant x^{\frac{1}{k}}}\mu(q)\Big{(}\sum_{\begin{subarray}{c}n\in\mathscr{A}(x)\\ q^{k}|n\end{subarray}}1-\frac{\#\mathscr{A}(x)}{q^{k}}\Big{)}
=\displaystyle={} #𝒜(x)ζ(k)+o(#𝒜(x)x1k)+O(#𝒜(x)qx1k1qk0<a<qkFx(aqk)),\displaystyle\frac{\#\mathscr{A}(x)}{\zeta(k)}+o\Big{(}\frac{\#\mathscr{A}(x)}{x^{\frac{1}{k}}}\Big{)}+O\Big{(}\#\mathscr{A}(x)\sum_{q\leqslant x^{\frac{1}{k}}}\frac{1}{q^{k}}\sum_{0<a<q^{k}}F_{x}\Big{(}\frac{a}{q^{k}}\Big{)}\Big{)},

where the last equality follows from (2.1) with d=qkd=q^{k} and the classical result n1\mfracμ(n)nk=\mfrac1ζ(k)\sum_{n\geqslant 1}\mfrac{\mu(n)}{n^{k}}=\mfrac{1}{\zeta(k)}. This immediately proves the following result:

Lemma 2.1.

Suppose that 𝒜\mathscr{A} is a set of integers such that its normalized Fourier transform FxF_{x} satisfies

qx1k1qk0<a<qkFx(aqk)=o(1)\sum_{q\leqslant x^{\frac{1}{k}}}\frac{1}{q^{k}}\sum_{0<a<q^{k}}F_{x}\Big{(}\frac{a}{q^{k}}\Big{)}=o(1)

as xx\to\infty for some positive integer k2k\geqslant 2. Then 𝒜\mathscr{A} contains infinitely many kthk^{th} powerfree integers and

n𝒜(x)n is kth powerfree1#𝒜(x)ζ(k)\sum_{\begin{subarray}{c}n\in\mathscr{A}(x)\\ n\text{ is }k^{\text{th}}\text{ powerfree}\end{subarray}}1\sim\frac{\#\mathscr{A}(x)}{\zeta(k)}

as xx\to\infty.

In order to bound this double sum associated to the Fourier transform, we mainly follow the ideas of Maynard [16] from his work on primes with missing digits. We start with the following easy lemma:

Lemma 2.2.

Let fC1(,)f\in C^{1}(\mathbb{R},\mathbb{C}) be a periodic function with period 11. Then, for any integer k1k\geqslant 1,

0<a<qk|f(aqk)|qk01|f(t)|dt+01|f(t)|dt.\sum_{0<a<q^{k}}\bigg{|}f\Big{(}\frac{a}{q^{k}}\Big{)}\bigg{|}\ll q^{k}\int_{0}^{1}|f(t)|\operatorname{d\!}t+\int_{0}^{1}|f^{\prime}(t)|\operatorname{d\!}t.
Proof.

By the Fundamental Theorem of Calculus,

f(aqk)=f(t)+aqktf(x)dx,-f\Big{(}\frac{a}{q^{k}}\Big{)}=-f(t)+\int_{\frac{a}{q^{k}}}^{t}f^{\prime}(x)\operatorname{d\!}x,

so that, by the triangle inequality, we have

|f(aqk)||f(t)|+aqkt|f(x)|dx.\bigg{|}f\Big{(}\frac{a}{q^{k}}\Big{)}\bigg{|}\leqslant|f(t)|+\int_{\frac{a}{q^{k}}}^{t}|f^{\prime}(x)|\operatorname{d\!}x. (2.2)

Now, let δ>0\delta>0. Then, integrating (2.2) with respect to tt over the interval

I=(aqkδ2,aqk+δ2),I\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\Big{(}\frac{a}{q^{k}}-\frac{\delta}{2},\frac{a}{q^{k}}+\frac{\delta}{2}\Big{)},

shows that

δ|f(aqk)|I|f(t)|dt+Iaqkt|f(x)|dxdt,\delta\bigg{|}f\Big{(}\frac{a}{q^{k}}\Big{)}\bigg{|}\leqslant\int_{I}|f(t)|\operatorname{d\!}t+\int_{I}\int_{\frac{a}{q^{k}}}^{t}|f^{\prime}(x)|\operatorname{d\!}x\operatorname{d\!}t,

and since x(\mfracaqk,t)x\in\Big{(}\mfrac{a}{q^{k}},t\Big{)}, then xIx\in I, so that

δ|f(aqk)|\displaystyle\delta\bigg{|}f\Big{(}\frac{a}{q^{k}}\Big{)}\bigg{|}\leqslant{} I|f(t)|dt+II|f(x)|dxdt\displaystyle\int_{I}|f(t)|\operatorname{d\!}t+\int_{I}\int_{I}|f^{\prime}(x)|\operatorname{d\!}x\operatorname{d\!}t
=\displaystyle={} I|f(t)|dt+δI|f(x)|dx.\displaystyle\int_{I}|f(t)|\operatorname{d\!}t+\delta\int_{I}|f^{\prime}(x)|\operatorname{d\!}x.

Dividing by δ\delta allows us to obtain

|f(aqk)|1δI|f(t)|dt+I|f(t)|dt.\bigg{|}f\Big{(}\frac{a}{q^{k}}\Big{)}\bigg{|}\leqslant\frac{1}{\delta}\int_{I}|f(t)|\operatorname{d\!}t+\int_{I}|f^{\prime}(t)|\operatorname{d\!}t. (2.3)

Now, let δ=qk\delta\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=q^{-k}, and observe that with this choice of δ\delta, the intervals II don’t overlap for 0<a<qk0<a<q^{k}. Moreover, these II are contained in the interval (0,1)(0,1), and so summing (2.3) over 0<a<qk0<a<q^{k} shows that

0<a<qk|f(aqk)|qk01|f(t)|dt+01|f(t)|dt.\sum_{0<a<q^{k}}\bigg{|}f\Big{(}\frac{a}{q^{k}}\Big{)}\bigg{|}\leqslant q^{k}\int_{0}^{1}|f(t)|\operatorname{d\!}t+\int_{0}^{1}|f^{\prime}(t)|\operatorname{d\!}t.\qed

2.2. Proof of Theorem 1.1

For convenience to the reader we restate the theorem here: See 1.1

Proof.

By Lemma 2.1, it suffices to show that

qx1k1qk0<a<qkFx(aqk)=o(1)\sum_{q\leqslant x^{\frac{1}{k}}}\frac{1}{q^{k}}\sum_{0<a<q^{k}}F_{x}\Big{(}\frac{a}{q^{k}}\Big{)}=o(1)

as xx\to\infty. Moreover, without loss of generality, it suffices to prove the result for x=bmx=b^{m} as mm\to\infty. The main idea is to write

qx1k1qk0<a<qkFx(aqk)=S1+S2,\sum_{q\leqslant x^{\frac{1}{k}}}\frac{1}{q^{k}}\sum_{0<a<q^{k}}F_{x}\Big{(}\frac{a}{q^{k}}\Big{)}=S_{1}+S_{2},

where

S1=q(logx)Bk1qk0<a<qkFx(aqk),S_{1}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\sum_{q\leqslant(\log{x})^{\frac{B}{k}}}\frac{1}{q^{k}}\sum_{0<a<q^{k}}F_{x}\Big{(}\frac{a}{q^{k}}\Big{)},

and

S2=(logx)Bk<qx1k1qk0<a<qkFx(aqk).S_{2}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\sum_{(\log{x})^{\frac{B}{k}}<q\leqslant x^{\frac{1}{k}}}\frac{1}{q^{k}}\sum_{0<a<q^{k}}F_{x}\Big{(}\frac{a}{q^{k}}\Big{)}.

In order to bound S1S_{1}, we employ the LL^{\infty} estimate, and for S2S_{2}, using a large sieve type estimate, we show that the L1L^{1} estimate is sufficient to obtain the required bound. With these ideas in mind, we begin by bounding S1S_{1}: using (1.1), we obtain for some absolute constant cc

S1q(logx)Bkexp(cklogxlogq)(logx)Bkexp(cBlogxloglogx)=o(1).S_{1}\ll\sum_{q\leqslant(\log{x})^{\frac{B}{k}}}\exp\Big{(}-\frac{c}{k}\frac{\log{x}}{\log{q}}\Big{)}\ll(\log{x})^{\frac{B}{k}}\exp\Big{(}-\frac{c}{B}\frac{\log{x}}{\log{\log{x}}}\Big{)}=o(1).

To bound S2S_{2}, we employ Lemma 2.2 to see that for any uu,

1qk0<a<qkFu(aqk)01Fu(t)dt+1qk01|Fu(t)|dt.\frac{1}{q^{k}}\sum_{0<a<q^{k}}F_{u}\Big{(}\frac{a}{q^{k}}\Big{)}\ll\int_{0}^{1}F_{u}(t)\operatorname{d\!}t+\frac{1}{q^{k}}\int_{0}^{1}|F_{u}^{\prime}(t)|\operatorname{d\!}t.

This together with (1.2) shows that

1qk0<a<qkFu(aqk)1u1k+δ+u11kδqk.\frac{1}{q^{k}}\sum_{0<a<q^{k}}F_{u}\Big{(}\frac{a}{q^{k}}\Big{)}\ll\frac{1}{u^{\frac{1}{k}+\delta}}+\frac{u^{1-\frac{1}{k}-\delta}}{q^{k}}.

We now choose u=blu=b^{l} maximally subject to uxu\leqslant x and uqku\leqslant q^{k}, so that by (1.3), we have

1qk0<a<qkFx(aqk)1x1k+δ+1q1+kδ.\frac{1}{q^{k}}\sum_{0<a<q^{k}}F_{x}\Big{(}\frac{a}{q^{k}}\Big{)}\ll\frac{1}{x^{\frac{1}{k}+\delta}}+\frac{1}{q^{1+k\delta}}.

Finally, summing over (logx)Bk<qx1k(\log{x})^{\frac{B}{k}}<q\leqslant x^{\frac{1}{k}} shows that

S2\displaystyle S_{2}\ll{} (logx)Bk<qx1k(1x1k+δ+1q1+kδ)\displaystyle\sum_{(\log{x})^{\frac{B}{k}}<q\leqslant x^{\frac{1}{k}}}\Big{(}\frac{1}{x^{\frac{1}{k}+\delta}}+\frac{1}{q^{1+k\delta}}\Big{)}
\displaystyle\ll{} 1xδ+(logx)Bkx1kdtt1+kδ\displaystyle\frac{1}{x^{\delta}}+\int_{(\log{x})^{\frac{B}{k}}}^{x^{\frac{1}{k}}}\frac{\operatorname{d\!}t}{t^{1+k\delta}}
=\displaystyle={} 1xδ+1kδ(1(logx)Bδ1xδ)\displaystyle\frac{1}{x^{\delta}}+\frac{1}{k\delta}\Big{(}\frac{1}{(\log{x})^{B\delta}}-\frac{1}{x^{\delta}}\Big{)}
=\displaystyle={} o(1).\displaystyle o(1).\qed
Example 2.3.

To illustrate Theorem 1.1, let us consider the simplest example when 𝒜=+{0}\mathscr{A}=\mathbb{Z}^{+}\cup\{0\}. In this case,

Fx(t)=1x|n=0xe(nt)|=1x|e(xt)1e(t)1|=1x|sin(πxt)sin(πt)|F_{x}(t)=\frac{1}{x}\Big{|}\sum_{n=0}^{x}\operatorname{e}(nt)\Big{|}=\frac{1}{x}\Big{|}\frac{\operatorname{e}(xt)-1}{\operatorname{e}(t)-1}\Big{|}=\frac{1}{x}\Big{|}\frac{\sin(\pi xt)}{\sin(\pi t)}\Big{|}

is essentially the normalized Dirichlet kernel. We now show that Fx(t)F_{x}(t) satisfies the hypotheses of Theorem 1.1:

  1. (i)

    Let a,d+a,d\in\mathbb{Z}^{+} with a<da<d and d2d\geqslant 2. Let \mathinner{\!\left\lVert\cdot\right\rVert} denote the distance to the nearest integer function. Observe that for any uu\in\mathbb{R}, since |sin(πu)|2u|\sin(\pi u)|\geqslant 2\mathinner{\!\left\lVert u\right\rVert}, then

    Fx(ad)12xaddx.F_{x}\Big{(}\frac{a}{d}\Big{)}\leqslant\frac{1}{2x\mathinner{\!\left\lVert\frac{a}{d}\right\rVert}}\leqslant\frac{d}{x}.

    Now, since logxxε\log{x}\ll x^{\varepsilon} for any ε>0\varepsilon>0, it is clear that if we assume that dlogxd\leqslant\log{x}, we have

    Fx(ad)logxxx112log2xx112logdx=exp(logx2logd).F_{x}\Big{(}\frac{a}{d}\Big{)}\leqslant\frac{\log{x}}{x}\ll\frac{x^{1-\tfrac{1}{2\log{2}}}}{x}\leqslant\frac{x^{1-\tfrac{1}{2\log{d}}}}{x}=\exp{\Big{(}-\frac{\log{x}}{2\log{d}}\Big{)}}.
  2. (ii)

    By symmetry, observe that

    01Fx(t)dt=2012Fx(t)dt.\int_{0}^{1}F_{x}(t)\operatorname{d\!}t=2\int_{0}^{\frac{1}{2}}F_{x}(t)\operatorname{d\!}t. (2.4)

    Now, again using the inequality |sin(πx)|2x|\sin(\pi x)|\geqslant 2\mathinner{\!\left\lVert x\right\rVert}, it is clear that

    Fx(t)min{1,12xt}.F_{x}(t)\leqslant\min\Big{\{}1,\frac{1}{2x\mathinner{\!\left\lVert t\right\rVert}}\Big{\}}.

    Hence,

    012Fx(t)dt=\displaystyle\int_{0}^{\frac{1}{2}}F_{x}(t)\operatorname{d\!}t={} 01xFx(t)dt+1x12Fx(t)dt\displaystyle\int_{0}^{\frac{1}{x}}F_{x}(t)\operatorname{d\!}t+\int_{\frac{1}{x}}^{\frac{1}{2}}F_{x}(t)\operatorname{d\!}t
    \displaystyle\leqslant{} 01xdt+1x1212xtdt\displaystyle\int_{0}^{\frac{1}{x}}\operatorname{d\!}t+\int_{\frac{1}{x}}^{\frac{1}{2}}\frac{1}{2xt}\operatorname{d\!}t
    \displaystyle\ll{} logxx.\displaystyle\frac{\log{x}}{x}.

    This together with (2.4) shows that

    01Fx(t)dt1x1ε\int_{0}^{1}F_{x}(t)\operatorname{d\!}t\ll\frac{1}{x^{1-\varepsilon}}

    for any ε>0\varepsilon>0. A completely analogous argument allows us to obtain the same bound for Fx(t)1\mathinner{\!\left\lVert F_{x}^{\prime}(t)\right\rVert}_{1}, but multiplied by xx, showing that Fx(t)F_{x}(t) satisfies (1.2) for any k2k\geqslant 2.

  3. (iii)

    Observe that for any m+m\in\mathbb{Z}^{+}, we have

    |sin(2m+1πt)|=2|sin(2mπt)cos(2mπt)|2|sin(2mπt)|.|\sin(2^{m+1}\pi t)|=2|\sin(2^{m}\pi t)\cos(2^{m}\pi t)|\leqslant 2|\sin(2^{m}\pi t)|.

    Therefore,

    12m+1|sin(2m+1πt)sin(πt)|12m|sin(2mπt)sin(πt)|.\frac{1}{2^{m+1}}\Big{|}\frac{\sin(2^{m+1}\pi t)}{\sin(\pi t)}\Big{|}\leqslant\frac{1}{2^{m}}\Big{|}\frac{\sin(2^{m}\pi t)}{\sin(\pi t)}\Big{|}.

    Applying this inequality inductively, shows that for any x,yx,y powers of 22 with xyx\leqslant y, we have

    Fy(t)Fx(t).F_{y}(t)\ll F_{x}(t).

This shows that Fx(t)F_{x}(t) satisfies all the assumptions of Theorem 1.1 for any k2k\geqslant 2, and we conclude that the set of positive integers contains infinitely many kthk^{th} powerfree integers, and we recover the classic result

nxn is kth powerfree1xζ(k).\sum_{\begin{subarray}{c}n\leqslant x\\ n\text{ is }k^{\text{th}}\text{ powerfree}\end{subarray}}1\sim\frac{x}{\zeta(k)}.

3. Cubefree palindromes

Let 𝒫b\mathscr{P}_{b} denote the set of non negative palindromes in base b2b\geqslant 2. It will be convenient to consider the set of palindromes with exactly ll digits. For l2l\geqslant 2, we define

l={n𝒫b:bl1n<bl}.\mathscr{B}_{l}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\{n\in\mathscr{P}_{b}\;\mathrel{\mathop{\ordinarycolon}}\;b^{l-1}\leqslant n<b^{l}\}.

For convenience, we define 1={0,,b1}\mathscr{B}_{1}=\{0,\ldots,b-1\}. We also define a Fourier transform on l\mathscr{B}_{l}:

fl(t)=nle(nt).f_{l}(t)\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\sum_{n\in\mathscr{B}_{l}}\operatorname{e}(nt).

First, let’s see how we can explicitly compute f2l(t)f_{2l}(t): note that n2ln\in\mathcal{B}_{2l} if and only if n=n0+n1b++n2l1b2l1n=n_{0}+n_{1}b+\ldots+n_{2l-1}b^{2l-1} for some ni{0,,b1}n_{i}\in\{0,\ldots,b-1\} with ni=n2lin_{i}=n_{2l-i} for i=0,,l1i=0,\ldots,l-1 and n01n_{0}\geqslant 1. Then,

f2l(t)=\displaystyle f_{2l}(t)={} n0,,n2l1{0,,b1}n01ni=n2l1i, 0i2l1e(i=02l1nibi)\displaystyle\sum_{\begin{subarray}{c}n_{0},\ldots,n_{2l-1}\in\{0,\ldots,b-1\}\\ n_{0}\geqslant 1\\ n_{i}=n_{2l-1-i},\;0\leqslant i\leqslant 2l-1\end{subarray}}\operatorname{e}\Big{(}\sum_{i=0}^{2l-1}n_{i}b^{i}\Big{)}
=\displaystyle={} n0=1b1e((1+b2l1)not)i=1l1ni=0b1e((bi+b2l1i)nit)\displaystyle\sum_{n_{0}=1}^{b-1}\operatorname{e}((1+b^{2l-1})n_{o}t)\prod_{i=1}^{l-1}\sum_{n_{i}=0}^{b-1}\operatorname{e}((b^{i}+b^{2l-1-i})n_{i}t)
=\displaystyle={} (f1((1+b2l1)t)1)i=1l1f1((bi+b2l1i)t).\displaystyle(f_{1}((1+b^{2l-1})t)-1)\prod_{i=1}^{l-1}f_{1}((b^{i}+b^{2l-1-i})t).

Similarly,

f2l+1(t)=(f1((1+b2l)t)1)f1(blt)i=1l1f1((bi+b2li)t).f_{2l+1}(t)=(f_{1}((1+b^{2l})t)-1)f_{1}(b^{l}t)\prod_{i=1}^{l-1}f_{1}((b^{i}+b^{2l-i})t). (3.1)

This shows that the expressions for fj(t)f_{j}(t) are very explicit, because

f1(t)=0n<be(nt)=e(bt)1e(t)1.f_{1}(t)=\sum_{0\leqslant n<b}\operatorname{e}(nt)=\frac{\operatorname{e}(bt)-1}{\operatorname{e}(t)-1}.

Now, note that since f1(0)=bf_{1}(0)=b, then the product formula (3.1)\eqref{eq: ProductFormula f odd} shows that

2l+1=f2l+1(0)=(b1)bl.\mathscr{B}_{2l+1}=f_{2l+1}(0)=(b-1)b^{l}.

Since the expression for fl(t)f_{l}(t) differs according to the parity of ll, for convenience we will work only with palindromes with an odd number of digits, so we let

𝒜={n𝒫b:n has an odd number of digits}=l=02l+1.\mathscr{A}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\{n\in\mathscr{P}_{b}\;\mathrel{\mathop{\ordinarycolon}}\;n\mbox{ has an odd number of digits}\}=\bigcup_{l=0}^{\infty}\mathscr{B}_{2l+1}.

Then, if Sx(t)=n𝒜(x)e(nt)S_{x}(t)=\sum_{n\in\mathscr{A}(x)}\operatorname{e}(nt) denotes the Fourier transform of 𝒜(x)\mathscr{A}(x), and if x=b2L+1x=b^{2L+1}, we then have

Sx(t)=l=0Lf2l+1(t).S_{x}(t)=\sum_{l=0}^{L}f_{2l+1}(t).

Following [19], we define

Φl(t)=i=1l1f1((bi+b2li)t),\Phi_{l}(t)\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\prod_{i=1}^{l-1}f_{1}((b^{i}+b^{2l-i})t),

and we observe that

|Sx(t)|l=0L|f2l+1(t)|b2l=0L|Φl(t)|,|S_{x}(t)|\leqslant\sum_{l=0}^{L}|f_{2l+1}(t)|\leqslant b^{2}\sum_{l=0}^{L}|\Phi_{l}(t)|, (3.2)

where we define Φ0(t)=Φ1(t)=1\Phi_{0}(t)=\Phi_{1}(t)=1. Hence, in order to study the Fourier transform of the palindromes, it essentially suffices to study Φl(t)\Phi_{l}(t). Moreover, since it is convenient to work with a normalized version, we define

Φ~l(t)=Φl(t)#2l+1=Φl(t)(b1)bl.\tilde{\Phi}_{l}(t)\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\frac{\Phi_{l}(t)}{\#\mathscr{B}_{2l+1}}=\frac{\Phi_{l}(t)}{(b-1)b^{l}}.

We will see that Φ~l(t)\tilde{\Phi}_{l}(t) will play the role of Fx(t)F_{x}(t) from the previous sections, because it will satisfy very similar properties to the ones in the assumptions of Theorem 1.1. It will also later become clear why we work with Φl(t)\Phi_{l}(t) instead of f2l+1(t)f_{2l+1}(t). We start with the LL^{\infty} bound (the analogous of (1.1)) first proved by Col [8], and then improved by Tuxanidy and Panario [19]:

Lemma 3.1 ([19], Proposition 6.2).

Let a,d,m,la,d,m,l be integers with d2d\geqslant 2, (d,a(b3b))=1(d,a(b^{3}-b))=1. Then,

|Φ~l(ad+mb3b)|bexp(cbllogd),\Big{|}\tilde{\Phi}_{l}\Big{(}\frac{a}{d}+\frac{m}{b^{3}-b}\Big{)}\Big{|}\ll_{b}\exp\Big{(}-c_{b}\frac{l}{\log{d}}\Big{)},

where cb>0c_{b}>0 is some absolute constant depending only on bb.

This shows that Φ~l(a/d)\tilde{\Phi}_{l}(a/d) satisfies a slight extension of (1.1), but with the more restrictive condition that dd is relativity prime to both aa and b3bb^{3}-b. This leads us to consider the more restrictive set (just as in [19] and [7])

𝒫b={n𝒫b:(n,b3b)=1}.\mathscr{P}_{b}^{*}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\{n\in\mathscr{P}_{b}\;\mathrel{\mathop{\ordinarycolon}}\;(n,b^{3}-b)=1\}.

Now we prove the analogue of (1.3):

Lemma 3.2.

Let l1,l2,dl_{1},l_{2},d be positive integers such that l2l1l_{2}\leqslant l_{1} and (d,b3b)=1(d,b^{3}-b)=1. Then,

0<a<d(a,d)=1maxm|Φ~l1(ad+mb3b)|0<a<d(a,d)=1maxm|Φ~l2(ad+mb3b)|\sum_{\begin{subarray}{c}0<a<d\\ (a,d)=1\end{subarray}}\max_{m\in\mathbb{Z}}\Big{|}\tilde{\Phi}_{l_{1}}\Big{(}\frac{a}{d}+\frac{m}{b^{3}-b}\Big{)}\Big{|}\leqslant\sum_{\begin{subarray}{c}0<a<d\\ (a,d)=1\end{subarray}}\max_{m\in\mathbb{Z}}\Big{|}\tilde{\Phi}_{l_{2}}\Big{(}\frac{a}{d}+\frac{m}{b^{3}-b}\Big{)}\Big{|} (3.3)
Proof.

From the definition of Φl(t)\Phi_{l}(t) we observe that

Φl(t)=f1((b+b2l1)t)Φl1(bt).\Phi_{l}(t)=f_{1}((b+b^{2l-1})t)\Phi_{l-1}(bt).

Hence, using the trivial bound |f(θ)|b|f(\theta)|\leqslant b for any θ\theta, we have

|Φl(t)|b|Φl1(bt)|.|\Phi_{l}(t)|\leqslant b|\Phi_{l-1}(bt)|.

This shows that

|Φ~l(t)|=|Φl(t)|(b1)bl|Φl(bt)|(b1)bl1=|Φ~l1(bt)|.|\tilde{\Phi}_{l}(t)|=\frac{|\Phi_{l}(t)|}{(b-1)b^{l}}\leqslant\frac{|\Phi_{l}(bt)|}{(b-1)b^{l-1}}=|\tilde{\Phi}_{l-1}(bt)|. (3.4)

Using this equation inductively we see that if l2l1l_{2}\leqslant l_{1}, then

|Φ~l1(t)||Φ~l2(bl1l2t)|.|\tilde{\Phi}_{l_{1}}(t)|\leqslant|\tilde{\Phi}_{l_{2}}(b^{l_{1}-l_{2}}t)|.

Now, letting t=ad+mb3bt=\frac{a}{d}+\frac{m}{b^{3}-b}, and summing over 0<a<d0<a<d with (a,d)=1(a,d)=1 completes the proof upon observing that since (d,b3b)=1(d,b^{3}-b)=1 and (a,d)=1(a,d)=1, then multiplication by a power of bb keeps the sum on the right hand side of (3.3) invariant. ∎

Remark.

The main reason we work with Φl(t)\Phi_{l}(t) instead of f2l+1(t)f_{2l+1}(t) is because the later does not satisfy a condition as nice as (3.3). In fact, a recursive formula for f2l+1(t)f_{2l+1}(t) involves all the functions f2j+1(t)f_{2j+1}(t) for j=0,,l1j=0,\ldots,l-1:

f2l+1(t)=(f1((1+b2l)t)1)j=0l1f2j+1(bljt).f_{2l+1}(t)=(f_{1}((1+b^{2l})t)-1)\sum_{j=0}^{l-1}f_{2j+1}(b^{l-j}t).

Now we are interested in L1L^{1} bounds for Φl\Phi_{l} and Φl\Phi_{l}^{\prime}. Note that by Parseval’s identity,

01|f2l+1(t)|2dt=n2l+112=(b1)bland01|f2l+1(t)|2dtb5l\int_{0}^{1}|f_{2l+1}(t)|^{2}\operatorname{d\!}t=\sum_{n\in\mathscr{B}_{2l+1}}1^{2}=(b-1)b^{l}\quad\mbox{and}\quad\int_{0}^{1}|f_{2l+1}^{\prime}(t)|^{2}\operatorname{d\!}t\ll b^{5l}

so that by the Cauchy-Schwartz inequality we have

01|f2l+1(t)|dtbl/2and01|f2l+1(t)|dtb5l/2.\int_{0}^{1}|f_{2l+1}(t)|\operatorname{d\!}t\ll b^{l/2}\quad\mbox{and}\quad\int_{0}^{1}|f_{2l+1}^{\prime}(t)|\operatorname{d\!}t\ll b^{5l/2}.

We expect that Φl(t)\Phi_{l}(t) satisfies the same bounds as above. However, this is not as straightforward to show, because when expanding the product as

|Φl(t)|2=|Φl(t)Φl(t)|=bl1+1nNane(αnt)|\Phi_{l}(t)|^{2}=|\Phi_{l}(t)\Phi_{l}(-t)|=b^{l-1}+\sum_{1\leqslant n\leqslant N}a_{n}\operatorname{e}(\alpha_{n}t)

for some N+N\in\mathbb{Z}^{+} and some sequences an,αna_{n},\alpha_{n}, it is not trivial to show that αn0\alpha_{n}\neq 0. Moreover, even if this holds, we would only get a “trivial” bound for Φl1\mathinner{\!\left\lVert\Phi_{l}\right\rVert}_{1}. Therefore, we use a different approach, using similar ideas to the ones from Maynard [15] to show that for sufficiently large base bb, we can do better.

Lemma 3.3.

Let

αb=logblog(4+log(b21))2logb.\alpha_{b}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\frac{\log{b}-\log(4+\log(\frac{b}{2}-1))}{2\log{b}}.

Then, for x=b2lx=b^{2l}, we have

01|Φ~l(t)|dt1xαband01|Φ~l(t)|dtlx1αb.\int_{0}^{1}|\tilde{\Phi}_{l}(t)|\operatorname{d\!}t\ll\frac{1}{x^{\alpha_{b}}}\quad\mbox{and}\quad\int_{0}^{1}|\tilde{\Phi}_{l}^{\prime}(t)|\operatorname{d\!}t\ll lx^{1-\alpha_{b}}.

In particular, for every b1100b\geqslant 1100, there is some δb>0\delta_{b}>0 such that

01|Φ~l(t)|dt1x13+δband01|Φ~l(t)|dtx23δb.\int_{0}^{1}|\tilde{\Phi}_{l}(t)|\operatorname{d\!}t\ll\frac{1}{x^{\frac{1}{3}+\delta_{b}}}\quad\mbox{and}\quad\int_{0}^{1}|\tilde{\Phi}_{l}^{\prime}(t)|\operatorname{d\!}t\ll x^{\frac{2}{3}-\delta_{b}}.
Proof.

We begin by noting that

01|Φl(t)|dt=\displaystyle\int_{0}^{1}|\Phi_{l}(t)|\operatorname{d\!}t={} 0a<b2lab2lab2l+1b2l|Φl(t)|dt\displaystyle\sum_{0\leqslant a<b^{2l}}\int_{\frac{a}{b^{2l}}}^{\frac{a}{b^{2l}}+\frac{1}{b^{2l}}}|\Phi_{l}(t)|\operatorname{d\!}t
=\displaystyle={} 0a<b2l01b2l|Φl(ab2l+η)|dη\displaystyle\sum_{0\leqslant a<b^{2l}}\int_{0}^{\frac{1}{b^{2l}}}\Big{|}\Phi_{l}\Big{(}\frac{a}{b^{2l}}+\eta\Big{)}\Big{|}{\rm d}\eta
\displaystyle\leqslant{} 1b2l0a<b2lsupη[0,1b2l)|Φl(ab2l+η)|\displaystyle\frac{1}{b^{2l}}\sum_{0\leqslant a<b^{2l}}\sup_{\eta\in[0,\frac{1}{b^{2l}})}\Big{|}\Phi_{l}\Big{(}\frac{a}{b^{2l}}+\eta\Big{)}\Big{|}
=\displaystyle={} 1b2la1,a2,,a2l{0,,b1}supη[0,1b2l)|Φl(a1b+a2b2++a2lb2l+η)|.\displaystyle\frac{1}{b^{2l}}\sum_{a_{1},a_{2},\ldots,a_{2l}\in\{0,\ldots,b-1\}}\sup_{\eta\in[0,\frac{1}{b^{2l}})}\Big{|}\Phi_{l}\Big{(}\frac{a_{1}}{b}+\frac{a_{2}}{b^{2}}+\cdots+\frac{a_{2l}}{b^{2l}}+\eta\Big{)}\Big{|}. (3.5)

Let \mathinner{\!\left\lVert\cdot\right\rVert} denote the distance to the nearest integer function. Note that for any yy\in\mathbb{R}, since |sin(πy)|2y|\sin(\pi y)|\geqslant 2\mathinner{\!\left\lVert y\right\rVert}, then

|f1(y)|=|e(by)1e(y)1|=|sin(πby)sin(πy)|min{b,12y}.|f_{1}(y)|=\Big{|}\frac{\operatorname{e}(by)-1}{\operatorname{e}(y)-1}\Big{|}=\Big{|}\frac{\sin(\pi by)}{\sin(\pi y)}\Big{|}\leqslant\min\Big{\{}b,\frac{1}{2\mathinner{\!\left\lVert y\right\rVert}}\Big{\}}.

This together with the definition of Φl(t)\Phi_{l}(t) shows that

|Φl(t)|=\displaystyle|\Phi_{l}(t)|={} i=1l1|sin(π(bi+1+b2l+1i)t)sin(π(bi+b2li)t)|\displaystyle\prod_{i=1}^{l-1}\Big{|}\frac{\sin(\pi(b^{i+1}+b^{2l+1-i})t)}{\sin(\pi(b^{i}+b^{2l-i})t)}\Big{|}
\displaystyle\leqslant{} i=1l1min{b,12(bi+b2li)t}\displaystyle\prod_{i=1}^{l-1}\min\Big{\{}b,\frac{1}{2\mathinner{\!\left\lVert(b^{i}+b^{2l-i})t\right\rVert}}\Big{\}}
=\displaystyle={} bl1i=1l1min{1,12b(bi+b2li)t}.\displaystyle b^{l-1}\prod_{i=1}^{l-1}\min\Big{\{}1,\frac{1}{2b\mathinner{\!\left\lVert(b^{i}+b^{2l-i})t\right\rVert}}\Big{\}}. (3.6)

Now, for t[0,1)t\in[0,1), by writing

t=t1b+t2b2++tibi++t2lib2li+,t=\frac{t_{1}}{b}+\frac{t_{2}}{b^{2}}+\cdots+\frac{t_{i}}{b^{i}}+\cdots+\frac{t_{2l-i}}{b^{2l-i}}+\cdots,

we see that

bit=Integer+ti+1b+uiandb2lit=Integer+t2l+1ib+vib^{i}t=\mbox{Integer}+\frac{t_{i+1}}{b}+u_{i}\quad\mbox{and}\quad b^{2l-i}t=\mbox{Integer}+\frac{t_{2l+1-i}}{b}+v_{i}

for some ui,vi[0,1/b)u_{i},v_{i}\in[0,1/b), showing that

(bi+b2li)t=ti+1b+t2l+1ib+wi\mathinner{\!\left\lVert(b^{i}+b^{2l-i})t\right\rVert}=\mathinner{\!\left\lVert\frac{t_{i+1}}{b}+\frac{t_{2l+1-i}}{b}+w_{i}\right\rVert}

for some wi[0,2/b)w_{i}\in[0,2/b). This together with (3.5) and (3.6) shows that

01|Φl(t)|dt1bla1,,a2l1{0,,b1}i=1l1supβ[0,2b)min{1,12baib+a2lib+β}.\int_{0}^{1}|\Phi_{l}(t)|\operatorname{d\!}t\ll\frac{1}{b^{l}}\sum_{a_{1},\ldots,a_{2l-1}\in\{0,\ldots,b-1\}}\prod_{i=1}^{l-1}\sup_{\beta\in[0,\frac{2}{b})}\min\Big{\{}1,\frac{1}{2b\mathinner{\!\left\lVert\frac{a_{i}}{b}+\frac{a_{2l-i}}{b}+\beta\right\rVert}}\Big{\}}.

Given digits θ1,θ2{0,,b1}\theta_{1},\theta_{2}\in\{0,\ldots,b-1\}, we let

G(θ1,θ2)=supβ[0,2b)min{1,12bθ1b+θ2b+β}.G(\theta_{1},\theta_{2})\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\sup_{\beta\in[0,\frac{2}{b})}\min\Big{\{}1,\frac{1}{2b\mathinner{\!\left\lVert\frac{\theta_{1}}{b}+\frac{\theta_{2}}{b}+\beta\right\rVert}}\Big{\}}.

Then,

01|Φl(t)|dt\displaystyle\int_{0}^{1}|\Phi_{l}(t)|\operatorname{d\!}t\ll{} 1bla1,,a2l1{0,,b1}G(a1,a2l1)G(a2,a2l2)G(al1,al+1)\displaystyle\frac{1}{b^{l}}\sum_{a_{1},\ldots,a_{2l-1}\in\{0,\ldots,b-1\}}G(a_{1},a_{2l-1})G(a_{2},a_{2l-2})\cdots G(a_{l-1},a_{l+1})
\displaystyle\ll{} 1bl(θ1,θ2{0,,b1}G(θ1,θ2))l.\displaystyle\frac{1}{b^{l}}\Big{(}\sum_{\theta_{1},\theta_{2}\in\{0,\ldots,b-1\}}G(\theta_{1},\theta_{2})\Big{)}^{l}. (3.7)

In order to understand G(θ1,θ2)G(\theta_{1},\theta_{2}) we consider the b×bb\times b matrix

Mb=[G(i,j)]i,j{0,,b1},M_{b}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=[G(i,j)]_{i,j\in\{0,\ldots,b-1\}},

and we observe that MbM_{b} satisfies the following properties:

  1. (i)

    MbM_{b} is symmetric because G(θ1,θ2)=G(θ2,θ1)G(\theta_{1},\theta_{2})=G(\theta_{2},\theta_{1}).

  2. (ii)

    MbM_{b} is a Hankel matrix (i.e., a matrix in which each ascending skew-diagonal from left to right is constant) because

    G(θ1,θ2)=G(θ1+1,θ21).G(\theta_{1},\theta_{2})=G(\theta_{1}+1,\theta_{2}-1).
  3. (iii)

    For any θ2{0,,b2}\theta_{2}\in\{0,\ldots,b-2\}, we have G(0,θ2)=G(0,b2θ2)G(0,\theta_{2})=G(0,b-2-\theta_{2}).

For example, in base b=10b=10, the matrix looks like this:

M10=[11214161816141211121416181614121111416181614121111216181614121111214181614121111214161614121111214161814121111214161816121111214161816141111214161816141211121416181614121]M_{10}=\begin{bmatrix}1&\frac{1}{2}&\frac{1}{4}&\frac{1}{6}&\frac{1}{8}&\frac{1}{6}&\frac{1}{4}&\frac{1}{2}&1&1\\[5.0pt] \frac{1}{2}&\frac{1}{4}&\frac{1}{6}&\frac{1}{8}&\frac{1}{6}&\frac{1}{4}&\frac{1}{2}&1&1&1\\[5.0pt] \frac{1}{4}&\frac{1}{6}&\frac{1}{8}&\frac{1}{6}&\frac{1}{4}&\frac{1}{2}&1&1&1&\frac{1}{2}\\[5.0pt] \frac{1}{6}&\frac{1}{8}&\frac{1}{6}&\frac{1}{4}&\frac{1}{2}&1&1&1&\frac{1}{2}&\frac{1}{4}\\[5.0pt] \frac{1}{8}&\frac{1}{6}&\frac{1}{4}&\frac{1}{2}&1&1&1&\frac{1}{2}&\frac{1}{4}&\frac{1}{6}\\[5.0pt] \frac{1}{6}&\frac{1}{4}&\frac{1}{2}&1&1&1&\frac{1}{2}&\frac{1}{4}&\frac{1}{6}&\frac{1}{8}\\[5.0pt] \frac{1}{4}&\frac{1}{2}&1&1&1&\frac{1}{2}&\frac{1}{4}&\frac{1}{6}&\frac{1}{8}&\frac{1}{6}\\[5.0pt] \frac{1}{2}&1&1&1&\frac{1}{2}&\frac{1}{4}&\frac{1}{6}&\frac{1}{8}&\frac{1}{6}&\frac{1}{4}\\[5.0pt] 1&1&1&\frac{1}{2}&\frac{1}{4}&\frac{1}{6}&\frac{1}{8}&\frac{1}{6}&\frac{1}{4}&\frac{1}{2}\\[5.0pt] 1&1&\frac{1}{2}&\frac{1}{4}&\frac{1}{6}&\frac{1}{8}&\frac{1}{6}&\frac{1}{4}&\frac{1}{2}&1\end{bmatrix}

From the above properties, it is clear that

θ1,θ2{0,,b1}G(θ1,θ2)=b0θ2b1G(0,θ2).\sum_{\theta_{1},\theta_{2}\in\{0,\ldots,b-1\}}G(\theta_{1},\theta_{2})=b\sum_{0\leqslant\theta_{2}\leqslant b-1}G(0,\theta_{2}). (3.8)

Firsts let’s assume that bb is even. Then, for θ2b22\theta_{2}\leqslant\frac{b}{2}-2, θ2b+β12\frac{\theta_{2}}{b}+\beta\leqslant\frac{1}{2}, so that

θ2b+β=θ2b+βθ2b,\mathinner{\!\left\lVert\frac{\theta_{2}}{b}+\beta\right\rVert}=\frac{\theta_{2}}{b}+\beta\geqslant\frac{\theta_{2}}{b},

showing that for θ20\theta_{2}\neq 0,

G(0,θ2)12θ2.G(0,\theta_{2})\leqslant\frac{1}{2\theta_{2}}.

Now, it is easy to see that G(0,b21)=1b2G(0,\frac{b}{2}-1)=\frac{1}{b-2}, and also G(0,0)=G(0,b1)=G(0,b2)=1G(0,0)=G(0,b-1)=G(0,b-2)=1. Combining this with the identity G(0,θ2)=G(0,b2θ2)G(0,\theta_{2})=G(0,b-2-\theta_{2}) gives us the estimate

0θ2b1G(0,θ2)3+1θ2b211θ24+log(b21).\sum_{0\leqslant\theta_{2}\leqslant b-1}G(0,\theta_{2})\leqslant 3+\sum_{1\leqslant\theta_{2}\leqslant\frac{b}{2}-1}\frac{1}{\theta_{2}}\leqslant 4+\log\Big{(}\frac{b}{2}-1\Big{)}.

A similar argument shows that the same bound holds when bb is odd. Combining this with (3.7) and (3.8) gives us

01|Φl(t)|dt(4+log(b21))l.\int_{0}^{1}|\Phi_{l}(t)|\operatorname{d\!}t\ll\Big{(}4+\log\Big{(}\frac{b}{2}-1\Big{)}\Big{)}^{l}.

After normalizing, we obtain

01|Φ~l(t)|dt(4+log(b21)b)l=1xαb,\int_{0}^{1}|\tilde{\Phi}_{l}(t)|\operatorname{d\!}t\ll\Big{(}\frac{4+\log\Big{(}\frac{b}{2}-1\Big{)}}{b}\Big{)}^{l}=\frac{1}{x^{\alpha_{b}}},

upon recalling that x=b2lx=b^{2l} and

αb=logblog(4+log(b21))2logb.\alpha_{b}=\frac{\log{b}-\log(4+\log(\frac{b}{2}-1))}{2\log{b}}.

The bounds for Φl(t)\Phi_{l}^{\prime}(t) are completely analogous because

Φl(t)=j=1l1f1((bj+b2lj)t)(bj+b2lj)i=1ijl1f1((bi+b2li)t),\Phi_{l}^{\prime}(t)=\sum_{j=1}^{l-1}f_{1}^{\prime}((b^{j}+b^{2l-j})t)(b^{j}+b^{2l-j})\prod_{\begin{subarray}{c}i=1\\ i\neq j\end{subarray}}^{l-1}f_{1}((b^{i}+b^{2l-i})t),

so that

|Φl(t)|b2lj=1l1i=1ijl1f1((bi+b2li)t).|\Phi_{l}^{\prime}(t)|\ll b^{2l}\sum_{j=1}^{l-1}\prod_{\begin{subarray}{c}i=1\\ i\neq j\end{subarray}}^{l-1}f_{1}((b^{i}+b^{2l-i})t).

Hence, by a completely analogous argument as before, we see that we have the same bound as for Φl1\mathinner{\!\left\lVert\Phi_{l}\right\rVert}_{1}, but multiplied by lb2l=lxlb^{2l}=lx. Finally, a numerical computation shows that

α11000.333445>13.\alpha_{1100}\approx 0.333445\ldots>\frac{1}{3}.

This completes the proof. ∎

We are now ready to combine our LL^{\infty} and L1L^{1} estimates together with the “decreasing” property of Φl(t)\Phi_{l}(t) in order to prove Theorem 1.3. We restate the theorem here for convenience to the reader: See 1.3

Proof.

We follow an analogous procedure as in our proof of Theorem 1.1, and we start by writing

n𝒫b(x)n is cubefree1=\displaystyle\sum_{\begin{subarray}{c}n\in\mathscr{P}_{b}^{*}(x)\\ n\text{ is cubefree}\end{subarray}}1={} n𝒫b(x)q3|nμ(q)\displaystyle\sum_{n\in\mathscr{P}_{b}^{*}(x)}\sum_{q^{3}|n}\mu(q)
=\displaystyle={} qx13(q,b3b)=1μ(q)n𝒫b(x)q3|n1\displaystyle\sum_{\begin{subarray}{c}q\leqslant x^{\frac{1}{3}}\\ (q,b^{3}-b)=1\end{subarray}}\mu(q)\sum_{\begin{subarray}{c}n\in\mathscr{P}_{b}^{*}(x)\\ q^{3}|n\end{subarray}}1
=\displaystyle={} qx13(q,b3b)=1μ(q)#𝒫b(x)q3+qx13(q,b3b)=1μ(q)(n𝒫b(x)q3|n1#𝒫b(x)q3)\displaystyle\sum_{\begin{subarray}{c}q\leqslant x^{\frac{1}{3}}\\ (q,b^{3}-b)=1\end{subarray}}\mu(q)\frac{\#\mathscr{P}_{b}^{*}(x)}{q^{3}}+\sum_{\begin{subarray}{c}q\leqslant x^{\frac{1}{3}}\\ (q,b^{3}-b)=1\end{subarray}}\mu(q)\Big{(}\sum_{\begin{subarray}{c}n\in\mathscr{P}_{b}^{*}(x)\\ q^{3}|n\end{subarray}}1-\frac{\#\mathscr{P}_{b}^{*}(x)}{q^{3}}\Big{)}
=\displaystyle={} 𝒫b(x)ζ(3)p|b3b(11p3)1+o(#𝒫b(x)x13)+O(E),\displaystyle\frac{\mathscr{P}_{b}^{*}(x)}{\zeta(3)}\prod_{p|b^{3}-b}\Big{(}1-\frac{1}{p^{3}}\Big{)}^{-1}+o\Big{(}\frac{\#\mathscr{P}_{b}^{*}(x)}{x^{\frac{1}{3}}}\Big{)}+O(E),

where

E=qx13(q,b3b)=1(n𝒫b(x)q3|n1#𝒫b(x)q3).E\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\sum_{\begin{subarray}{c}q\leqslant x^{\frac{1}{3}}\\ (q,b^{3}-b)=1\end{subarray}}\Big{(}\sum_{\begin{subarray}{c}n\in\mathscr{P}_{b}^{*}(x)\\ q^{3}|n\end{subarray}}1-\frac{\#\mathscr{P}_{b}^{*}(x)}{q^{3}}\Big{)}.

Our objective is to show that E=o(#𝒫b(x))E=o(\#\mathscr{P}_{b}^{*}(x)). Since #𝒫b(x)x\#\mathscr{P}_{b}^{*}(x)\asymp\sqrt{x} ([19], Lemma 9.1), it suffices to show that E=o(x)E=o(\sqrt{x}). In order to do this, we start by relating #𝒫b(x)\#\mathscr{P}_{b}^{*}(x) with 𝒜(x)\mathscr{A}(x) as follows: first observe that if n𝒫bn\in\mathscr{P}_{b} has an even number of digits, then

n=n0+n1b++n2l1b2l1=n0(1+b2l1)+n1(b+b2l2)++nl1(bl1+bl),n=n_{0}+n_{1}b+\cdots+n_{2l-1}b^{2l-1}=n_{0}(1+b^{2l-1})+n_{1}(b+b^{2l-2})+\cdots+n_{l-1}(b^{l-1}+b^{l}),

so that (b+1)|n(b+1)|n. Therefore, upon recalling that 𝒜\mathscr{A} is the set of palindromes with an odd number of digits, we have

#𝒫b(x)={n𝒜(x):(n,b3b)=1}.\#\mathscr{P}_{b}^{*}(x)=\{n\in\mathscr{A}(x)\;\mathrel{\mathop{\ordinarycolon}}\;(n,b^{3}-b)=1\}.

This together with Möbius inversion

d|(n,b3b)μ(d)={1,if (n,b3b)=10,otherwise\sum_{d|(n,b^{3}-b)}\mu(d)=\begin{cases}1,&\mbox{if }(n,b^{3}-b)=1\\ 0,&\mbox{otherwise}\end{cases} (3.9)

shows that

n𝒫b(x)q3|n1#𝒫b(x)q3=d|b3bμ(d)n𝒜(x)d|n(𝟙q3|n1q3).\sum_{\begin{subarray}{c}n\in\mathscr{P}_{b}^{*}(x)\\ q^{3}|n\end{subarray}}1-\frac{\#\mathscr{P}_{b}^{*}(x)}{q^{3}}=\sum_{d|b^{3}-b}\mu(d)\sum_{\begin{subarray}{c}n\in\mathscr{A}(x)\\ d|n\end{subarray}}\Big{(}\mathds{1}_{q^{3}|n}-\frac{1}{q^{3}}\Big{)}. (3.10)

By the orthogonality relations,

𝟙d|n=1d0m<de(mnd),\mathds{1}_{d|n}=\frac{1}{d}\sum_{0\leqslant m<d}\operatorname{e}\Big{(}\frac{mn}{d}\Big{)}, (3.11)

and

𝟙q3|n1q3=1q30<a<q3e(anq3).\mathds{1}_{q^{3}|n}-\frac{1}{q^{3}}=\frac{1}{q^{3}}\sum_{0<a<q^{3}}\operatorname{e}\Big{(}\frac{an}{q^{3}}\Big{)}. (3.12)

Hence, after plugging (3.11) and (3.12) into (3.10), we see that

|n𝒫b(x)q3|n1#𝒫b(x)q3|\displaystyle\bigg{|}\sum_{\begin{subarray}{c}n\in\mathscr{P}_{b}^{*}(x)\\ q^{3}|n\end{subarray}}1-\frac{\#\mathscr{P}_{b}^{*}(x)}{q^{3}}\bigg{|}\leqslant{} d|b3b1d0m<d1q30<a<q3|n𝒜(x)e((aq3+md)n)|\displaystyle\sum_{d|b^{3}-b}\frac{1}{d}\sum_{0\leqslant m<d}\frac{1}{q^{3}}\sum_{0<a<q^{3}}\bigg{|}\sum_{n\in\mathscr{A}(x)}\operatorname{e}\Big{(}\Big{(}\frac{a}{q^{3}}+\frac{m}{d}\Big{)}n\Big{)}\bigg{|}
=\displaystyle={} d|b3b1d0m<d1q30<a<q3|Sx(aq3+md)|\displaystyle\sum_{d|b^{3}-b}\frac{1}{d}\sum_{0\leqslant m<d}\frac{1}{q^{3}}\sum_{0<a<q^{3}}\Big{|}S_{x}\Big{(}\frac{a}{q^{3}}+\frac{m}{d}\Big{)}\Big{|}
\displaystyle\ll{} 1q30<a<q3maxm|Sx(aq3+mb3b)|,\displaystyle\frac{1}{q^{3}}\sum_{0<a<q^{3}}\max_{m\in\mathbb{Z}}\Big{|}S_{x}\Big{(}\frac{a}{q^{3}}+\frac{m}{b^{3}-b}\Big{)}\Big{|},

where Sx(t)=n𝒜(x)e(nt)S_{x}(t)=\sum_{n\in\mathscr{A}(x)}\operatorname{e}(nt) is the Fourier transform of 𝒜\mathscr{A}. Now, without loss of generality, we may assume that x=b2L+1x=b^{2L+1}, so that by (3.2),

|Sx(t)|l=0L|Φl(t)|.|S_{x}(t)|\ll\sum_{l=0}^{L}|\Phi_{l}(t)|.

Therefore,

E\displaystyle E\ll{} qx13(q,b3b)=1l=0L1q30<a<q3maxm|Φl(aq3+mb3b)|\displaystyle\sum_{\begin{subarray}{c}q\leqslant x^{\frac{1}{3}}\\ (q,b^{3}-b)=1\end{subarray}}\sum_{l=0}^{L}\frac{1}{q^{3}}\sum_{0<a<q^{3}}\max_{m\in\mathbb{Z}}\Big{|}\Phi_{l}\Big{(}\frac{a}{q^{3}}+\frac{m}{b^{3}-b}\Big{)}\Big{|}
\displaystyle\ll{} logxqx13(q,b3b)=1l=0L1q30<a<q3(a,q3)=1maxm|Φl(aq3+mb3b)|,\displaystyle\log{x}\sum_{\begin{subarray}{c}q\leqslant x^{\frac{1}{3}}\\ (q,b^{3}-b)=1\end{subarray}}\sum_{l=0}^{L}\frac{1}{q^{3}}\sum_{\begin{subarray}{c}0<a<q^{3}\\ (a,q^{3})=1\end{subarray}}\max_{m\in\mathbb{Z}}\Big{|}\Phi_{l}\Big{(}\frac{a}{q^{3}}+\frac{m}{b^{3}-b}\Big{)}\Big{|},

where the last bound follows from writing aq3\frac{a}{q^{3}} in lowest terms. We now write

logxqx13(q,b3b)=1l=0L1q30<a<q3(a,q3)=1maxm|Φl(aq3+mb3b)|=S1+S2,\log{x}\sum_{\begin{subarray}{c}q\leqslant x^{\frac{1}{3}}\\ (q,b^{3}-b)=1\end{subarray}}\sum_{l=0}^{L}\frac{1}{q^{3}}\sum_{\begin{subarray}{c}0<a<q^{3}\\ (a,q^{3})=1\end{subarray}}\max_{m\in\mathbb{Z}}\Big{|}\Phi_{l}\Big{(}\frac{a}{q^{3}}+\frac{m}{b^{3}-b}\Big{)}\Big{|}=S_{1}+S_{2},

where S1S_{1} is the sum over q(logx)Bq\leqslant(\log{x})^{B} and S2S_{2} is over (logx)B<qx13(\log{x})^{B}<q\leqslant x^{\frac{1}{3}} for some BB to be chosen later. Explicitly, we have

S1=logxq(logx)B(q,b3b)=1l=0L1q30<a<q3(a,q3)=1maxm|Φl(aq3+mb3b)|,S_{1}=\log{x}\sum_{\begin{subarray}{c}q\leqslant(\log{x})^{B}\\ (q,b^{3}-b)=1\end{subarray}}\sum_{l=0}^{L}\frac{1}{q^{3}}\sum_{\begin{subarray}{c}0<a<q^{3}\\ (a,q^{3})=1\end{subarray}}\max_{m\in\mathbb{Z}}\Big{|}\Phi_{l}\Big{(}\frac{a}{q^{3}}+\frac{m}{b^{3}-b}\Big{)}\Big{|},

and

S2=logx(logx)B<qx13(q,b3b)=1l=0L1q30<a<q3(a,q3)=1maxm|Φl(aq3+mb3b)|.S_{2}=\log{x}\sum_{\begin{subarray}{c}(\log{x})^{B}<q\leqslant x^{\frac{1}{3}}\\ (q,b^{3}-b)=1\end{subarray}}\sum_{l=0}^{L}\frac{1}{q^{3}}\sum_{\begin{subarray}{c}0<a<q^{3}\\ (a,q^{3})=1\end{subarray}}\max_{m\in\mathbb{Z}}\Big{|}\Phi_{l}\Big{(}\frac{a}{q^{3}}+\frac{m}{b^{3}-b}\Big{)}\Big{|}.

We recall that it is convenient to work with the normalized version of Φl(t)\Phi_{l}(t):

Φ~l(t)=1#2l+1Φl(t)1blΦl(t).\tilde{\Phi}_{l}(t)=\frac{1}{\#\mathscr{B}_{2l+1}}\Phi_{l}(t)\asymp\frac{1}{b^{l}}\Phi_{l}(t).

In order to bound S1S_{1}, we employ the LL^{\infty} bound from Lemma 3.1:

S1\displaystyle S_{1}\ll{} logxq(logx)B(q,b3b)=1l=0L1q30<a<q3(a,q3)=1blexp(cbllogq)\displaystyle\log{x}\sum_{\begin{subarray}{c}q\leqslant(\log{x})^{B}\\ (q,b^{3}-b)=1\end{subarray}}\sum_{l=0}^{L}\frac{1}{q^{3}}\sum_{\begin{subarray}{c}0<a<q^{3}\\ (a,q^{3})=1\end{subarray}}b^{l}\exp\Big{(}-c_{b}\frac{l}{\log{q}}\Big{)}
\displaystyle\ll{} logxq(logx)BLbLexp(cbLlogq)\displaystyle\log{x}\sum_{q\leqslant(\log{x})^{B}}Lb^{L}\exp\Big{(}-c_{b}\frac{L}{\log{q}}\Big{)}
\displaystyle\ll{} (logx)B+2exp(cbBlogxloglogx)x\displaystyle(\log{x})^{B+2}\exp\Big{(}-\frac{c_{b}}{B}\frac{\log{x}}{\log{\log{x}}}\Big{)}\sqrt{x}
=\displaystyle={} o(x),\displaystyle o(\sqrt{x}),

where the third bound follows from recalling that x=b2L+1x=b^{2L+1}. For S2S_{2}, we first choose ll^{\prime} maximally subject to lll^{\prime}\leqslant l and b2lq3b^{2l^{\prime}}\leqslant q^{3} to see that, by Lemma 3.2, we have

0<a<q3(a,q3)=1maxm|Φ~l(aq3+mb3b)|0<a<q3(a,q3)=1maxm|Φ~l(aq3+mb3b)|.\sum_{\begin{subarray}{c}0<a<q^{3}\\ (a,q^{3})=1\end{subarray}}\max_{m\in\mathbb{Z}}\Big{|}\tilde{\Phi}_{l}\Big{(}\frac{a}{q^{3}}+\frac{m}{b^{3}-b}\Big{)}\Big{|}\leqslant\sum_{\begin{subarray}{c}0<a<q^{3}\\ (a,q^{3})=1\end{subarray}}\max_{m\in\mathbb{Z}}\Big{|}\tilde{\Phi}_{l^{\prime}}\Big{(}\frac{a}{q^{3}}+\frac{m}{b^{3}-b}\Big{)}\Big{|}.

Now, by Lemma 2.2 and Lemma 3.3, for b1100b\geqslant 1100 there is some δ=δb>0\delta\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\delta_{b}>0 such that

0<a<q3(a,q3)=1maxm|Φ~l(aq3+mb3b)|\displaystyle\sum_{\begin{subarray}{c}0<a<q^{3}\\ (a,q^{3})=1\end{subarray}}\max_{m\in\mathbb{Z}}\Big{|}\tilde{\Phi}_{l^{\prime}}\Big{(}\frac{a}{q^{3}}+\frac{m}{b^{3}-b}\Big{)}\Big{|}\ll{} q301|Φ~l(t)|dt+01|Φ~l(t)|dt\displaystyle q^{3}\int_{0}^{1}|\tilde{\Phi}_{l^{\prime}}(t)|\operatorname{d\!}t+\int_{0}^{1}|\tilde{\Phi}_{l^{\prime}}^{\prime}(t)|\operatorname{d\!}t
\displaystyle\ll{} q3b2l(13+δ)+lb2l(23δ).\displaystyle\frac{q^{3}}{b^{2l^{\prime}(\frac{1}{3}+\delta)}}+l^{\prime}b^{2l^{\prime}(\frac{2}{3}-\delta)}.

From our choice of ll^{\prime}, we observe that

q3b2l(13+δ)+lb2l(23δ)q3b2l(13+δ)+lq23δ.\frac{q^{3}}{b^{2l^{\prime}(\frac{1}{3}+\delta)}}+l^{\prime}b^{2l^{\prime}(\frac{2}{3}-\delta)}\ll\frac{q^{3}}{b^{2l(\frac{1}{3}+\delta)}}+lq^{2-3\delta}.

This shows that

S2=\displaystyle S_{2}={} logx(logx)B<qx13(q,b3b)=1l=0L(b1)blq30<a<q3(a,q3)=1maxm|Φ~l(aq3+mb3b)|\displaystyle\log{x}\sum_{\begin{subarray}{c}(\log{x})^{B}<q\leqslant x^{\frac{1}{3}}\\ (q,b^{3}-b)=1\end{subarray}}\sum_{l=0}^{L}\frac{(b-1)b^{l}}{q^{3}}\sum_{\begin{subarray}{c}0<a<q^{3}\\ (a,q^{3})=1\end{subarray}}\max_{m\in\mathbb{Z}}\Big{|}\tilde{\Phi}_{l}\Big{(}\frac{a}{q^{3}}+\frac{m}{b^{3}-b}\Big{)}\Big{|}
\displaystyle\ll{} logx(logx)B<qx13(q,b3b)=1l=0Lblq3(q3b2l(13+δ)+lq23δ)\displaystyle\log{x}\sum_{\begin{subarray}{c}(\log{x})^{B}<q\leqslant x^{\frac{1}{3}}\\ (q,b^{3}-b)=1\end{subarray}}\sum_{l=0}^{L}\frac{b^{l}}{q^{3}}\Big{(}\frac{q^{3}}{b^{2l(\frac{1}{3}+\delta)}}+lq^{2-3\delta}\Big{)}
\displaystyle\ll{} logx(logx)B<qx13bL(1b2L(13+δ)+Lq1+3δ)\displaystyle\log{x}\sum_{(\log{x})^{B}<q\leqslant x^{\frac{1}{3}}}b^{L}\Big{(}\frac{1}{b^{2L(\frac{1}{3}+\delta)}}+\frac{L}{q^{1+3\delta}}\Big{)}
\displaystyle\ll{} xlogx(1xδ+(logx)Bx13dtt1+3δ)\displaystyle\sqrt{x}\log{x}\Big{(}\frac{1}{x^{\delta}}+\int_{(\log{x})^{B}}^{x^{\frac{1}{3}}}\frac{\operatorname{d\!}t}{t^{1+3\delta}}\Big{)}
=\displaystyle={} xlogx(1xδ13δxδ+13δ(logx)3δB).\displaystyle\sqrt{x}\log{x}\Big{(}\frac{1}{x^{\delta}}-\frac{1}{3\delta x^{\delta}}+\frac{1}{3\delta(\log{x})^{3\delta B}}\Big{)}.

Therefore, by taking B=1δ>13δB\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\frac{1}{\delta}>\frac{1}{3\delta}, we see that S2=o(x)S_{2}=o(\sqrt{x}), so that

ES1+S2=o(x).E\ll S_{1}+S_{2}=o(\sqrt{x}).

This completes the proof. ∎

4. Squarefree reversible integers

Recall that

b={n1:(n,b3b)=1,(nb,b3b)=1}.\mathscr{H}_{b}=\{n\in\mathbb{Z}_{\geqslant 1}\;\mathrel{\mathop{\ordinarycolon}}\;(n,b^{3}-b)=1,\;(\overleftarrow{n}_{b},b^{3}-b)=1\}.

Following [10], for x=blx=b^{l}, and α,β\alpha,\beta\in\mathbb{R}, we let

x(α,β)=1x0n<xe(αnbβn)\mathcal{F}_{x}(\alpha,\beta)=\frac{1}{x}\sum_{0\leqslant n<x}\operatorname{e}(\alpha\overleftarrow{n}_{b}-\beta n)

We state the results we need from [10], showing that x(α,β)\mathcal{F}_{x}(\alpha,\beta) plays the role of the Fourier transform from Theorem 1.1:

Lemma 4.1.

Assume that x=bkx=b^{k} and y=bly=b^{l} for some k,l+k,l\in\mathbb{Z}^{+} and b2b\geqslant 2.

  1. (i)

    ([10], Lemma 6.10) Let d>1d>1 be an integer such that (d,b3b)=1(d,b^{3}-b)=1. Then, for all a<da<d with (a,d)=1(a,d)=1, we have an LL^{\infty} bound of the form

    |x(ad,β)|exp(cblogxlogd)\Big{|}\mathcal{F}_{x}\Big{(}\frac{a}{d},\beta\Big{)}\Big{|}\ll\exp\Big{(}-c_{b}\frac{\log{x}}{\log{d}}\Big{)}

    for some positive constant cbc_{b} that depends only on bb.

  2. (ii)

    ([10], Lemma 6.17) We have an L1L^{1} bound of the form

    01|x(α,β)|dβ1x1ηband01|x(α,β)|dβxηb.\int_{0}^{1}|\mathcal{F}_{x}(\alpha,\beta)|{\rm d}\beta\ll\frac{1}{x^{1-\eta_{b}}}\quad\mbox{and}\quad\int_{0}^{1}|\mathcal{F}_{x}(\alpha,\beta)|{\rm d}\beta\ll x^{\eta_{b}}.

    for some ηb(0,0.465)\eta_{b}\in(0,0.465). In particular, note that 1ηb=12+δ1-\eta_{b}=\frac{1}{2}+\delta for some δ>0\delta>0.

  3. (iii)

    ([10], Lemma 6.2) If xyx\leqslant y, then |y(α,β)||x(αyx1,β)||\mathcal{F}_{y}(\alpha,\beta)|\leqslant|\mathcal{F}_{x}(\alpha yx^{-1},\beta)| for all α,β\alpha,\beta\in\mathbb{R}.

The proof of Theorem 1.5 is completely analogous to the proof of Theorem 1.3, so we only sketch the main ideas. We begin by writing

nb(x)n,nb are squarefree1=\displaystyle\sum_{\begin{subarray}{c}n\in\mathscr{H}_{b}(x)\\ n,\overleftarrow{n}_{b}\text{ are squarefree}\end{subarray}}1={} nx(nnb,b3b)=1d12|nd22|nbμ(d1)μ(d2)\displaystyle\sum_{\begin{subarray}{c}n\leqslant x\\ (n\overleftarrow{n}_{b},b^{3}-b)=1\end{subarray}}\sum_{\begin{subarray}{c}d_{1}^{2}|n\\ d_{2}^{2}|\overleftarrow{n}_{b}\end{subarray}}\mu(d_{1})\mu(d_{2})
=\displaystyle={} d1,d2x(d1d2,b3b)=1μ(d1)μ(d2)(nx(nnb,b3b)=1d12|nd22|nb1#b(x)d12d22+#b(x)d12d22)\displaystyle\sum_{\begin{subarray}{c}d_{1},d_{2}\leqslant\sqrt{x}\\ (d_{1}d_{2},b^{3}-b)=1\end{subarray}}\mu(d_{1})\mu(d_{2})\Big{(}\sum_{\begin{subarray}{c}n\leqslant x\\ (n\overleftarrow{n}_{b},b^{3}-b)=1\\ d_{1}^{2}|n\\ d_{2}^{2}|\overleftarrow{n}_{b}\end{subarray}}1-\frac{\#\mathscr{H}_{b}(x)}{d_{1}^{2}d_{2}^{2}}+\frac{\#\mathscr{H}_{b}(x)}{d_{1}^{2}d_{2}^{2}}\Big{)}
=\displaystyle={} #b(x)ζ(2)2p|b3b(11p2)2+o(#b(x)x)+O(E),\displaystyle\frac{\#\mathscr{H}_{b}(x)}{\zeta(2)^{2}}\prod_{p|b^{3}-b}\Big{(}1-\frac{1}{p^{2}}\Big{)}^{-2}+o\Big{(}\frac{\#\mathscr{H}_{b}(x)}{x}\Big{)}+O(E),

where

E=nx(nnb,b3b)=1d12|nd22|nb11d12d22nx(nnb,b3b)=11.E=\sum_{\begin{subarray}{c}n\leqslant x\\ (n\overleftarrow{n}_{b},b^{3}-b)=1\\ d_{1}^{2}|n\\ d_{2}^{2}|\overleftarrow{n}_{b}\end{subarray}}1-\frac{1}{d_{1}^{2}d_{2}^{2}}\sum_{\begin{subarray}{c}n\leqslant x\\ (n\overleftarrow{n}_{b},b^{3}-b)=1\end{subarray}}1.

The proof of Theorem 1.5 will be complete once we show that E=o(#b(x))E=o(\#\mathscr{H}_{b}(x)), and by the definition of b\mathscr{H}_{b}, it is clear that it suffices to show that E=o(x)E=o(x). By the orthogonality relations (3.11) and Möbius inversion (3.9), observe that

E=d1,d2x(d1d2,b3b)=1d|b3bμ(d)nx1d12d22d0m<d0<a1<d10<a2<d2e(a1d12n+a2d22nb)e(mnnbd)E=\sum_{\begin{subarray}{c}d_{1},d_{2}\leqslant\sqrt{x}\\ (d_{1}d_{2},b^{3}-b)=1\end{subarray}}\sum_{d|b^{3}-b}\mu(d)\sum_{n\leqslant x}\frac{1}{d_{1}^{2}d_{2}^{2}d}\sum_{0\leqslant m<d}\sum_{\begin{subarray}{c}0<a_{1}<d_{1}\\ 0<a_{2}<d_{2}\end{subarray}}\operatorname{e}\Big{(}\frac{a_{1}}{d_{1}^{2}}n+\frac{a_{2}}{d_{2}^{2}}\overleftarrow{n}_{b}\Big{)}\operatorname{e}\Big{(}\frac{mn\overleftarrow{n}_{b}}{d}\Big{)}

Interchanging the order of summation, using the definition of x(α,β)\mathcal{F}_{x}(\alpha,\beta), and using the condition d|b3bd|b^{3}-b gives us

Exd1,d2x1d12d220<a1<d10<a2<d2maxm|x(a2d22,a1d12+mb3b)|.E\ll x\sum_{d_{1},d_{2}\leqslant\sqrt{x}}\frac{1}{d_{1}^{2}d_{2}^{2}}\sum_{\begin{subarray}{c}0<a_{1}<d_{1}\\ 0<a_{2}<d_{2}\end{subarray}}\max_{m\in\mathbb{Z}}\Big{|}\mathcal{F}_{x}\Big{(}\frac{a_{2}}{d_{2}^{2}},-\frac{a_{1}}{d_{1}^{2}}+\frac{m}{b^{3}-b}\Big{)}\Big{|}.

Finally, we split the sum over d2xd_{2}\leqslant\sqrt{x} into a sum over d2(logx)Bd_{2}\leqslant(\log{x})^{B} for some BB, and a sum over (logx)B<d2x(\log{x})^{B}<d_{2}\leqslant\sqrt{x}, and then we use Lemma 4.1 in the following fashion: for the first sum, we employ the LL^{\infty} bound, and for the second sum we combine the L1L^{1} bound together with the decreasing property of x(α,β)\mathcal{F}_{x}(\alpha,\beta). After some routine computations, it is possible to see that E=o(x)E=o(x), completing the proof of Theorem 1.5.

5. Squarefree integers with missing digits

Given an integer b2b\geqslant 2, and a0{0,,b1}a_{0}\in\{0,\ldots,b-1\}, we recall that

b={j=0knjbj:nj{0,,b1}{a0},k0}\mathscr{M}_{b}=\Big{\{}\sum_{j=0}^{k}n_{j}b^{j}\;\mathrel{\mathop{\ordinarycolon}}\;n_{j}\in\{0,\ldots,b-1\}\setminus\{a_{0}\},\,k\geqslant 0\Big{\}}

denotes the set of integers in base bb without a0a_{0} in their expansion in base bb. We also let Fx(t)F_{x}(t) denote the normalized Fourier transform associated to b\mathscr{M}_{b}. We summarize the results we need from Maynard [15, 16] in the following lemma:

Lemma 5.1.

Assume that x=bkx=b^{k} and y=bly=b^{l} for some k,l+k,l\in\mathbb{Z}^{+}.

  1. (i)

    ([16], (2.3)) If xyx\leqslant y, then Fy(t)Fx(t)F_{y}(t)\leqslant F_{x}(t) for all t[0,1]t\in[0,1].

  2. (ii)

    ([15], Lemma 8.4) Let d>1d>1 be an integer with d<x13d<x^{\frac{1}{3}}, and (d,b)=1(d,b)=1. Then, for all a<da<d with (a,d)=1(a,d)=1, we have an LL^{\infty} bound of the form

    Fx(ad)exp(cblogxlogd)F_{x}\Big{(}\frac{a}{d}\Big{)}\ll\exp\Big{(}-c_{b}\frac{\log{x}}{\log{d}}\Big{)}

    for some positive constant cbc_{b} that depends only on bb.

  3. (iii)

    ([16], Lemma 10.2) We have an L1L^{1} bound of the form

    01Fx(t)dt(λb)k=1x1logλlogb,\int_{0}^{1}F_{x}(t)\operatorname{d\!}t\ll\Big{(}\frac{\lambda}{b}\Big{)}^{k}=\frac{1}{x^{1-\frac{\log{\lambda}}{\log{b}}}},

    where λ\lambda is the largest eigenvalue of the b3×b3b^{3}\times b^{3} matrix MM given by

    Mij={G(t1,t2,t3,t4),if i1=t2+t3b+t4b2,j1=t1+t2b+t3b2for some t1,t2,t3,t4{0,,b1}0,otherwise,M_{ij}\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\begin{cases}G(t_{1},t_{2},t_{3},t_{4}),{}&\mbox{if }i-1=t_{2}+t_{3}b+t_{4}b^{2},j-1=t_{1}+t_{2}b+t_{3}b^{2}\\ {}&\mbox{for some }t_{1},t_{2},t_{3},t_{4}\in\{0,\ldots,b-1\}\\ 0,{}&\mbox{otherwise},\end{cases}

    where

    G(t1,t2,t3,t4)=sup|u|b41b1|e(j=14tjbj+bu)1e(j=14tjbj1+u)1e(j=14a0tjbj1+a0u)|.G(t_{1},t_{2},t_{3},t_{4})\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=\sup_{|u|\leqslant b^{-4}}\frac{1}{b-1}\Big{|}\frac{\operatorname{e}(\sum_{j=1}^{4}t_{j}b^{-j}+bu)-1}{\operatorname{e}(\sum_{j=1}^{4}t_{j}b^{-j-1}+u)-1}-\operatorname{e}(\sum_{j=1}^{4}a_{0}t_{j}b^{-j-1}+a_{0}u)\Big{|}.

Therefore, 𝒜\mathscr{A} satisfies the assumptions of Theorem 1.1, with the slightly more restrictive condition that (d,b)=1(d,b)=1. As we have seen in previous sections, this only changes the asymptotic by a factor of p|b(11/p2)1\prod_{p|b}(1-1/p^{2})^{-1}. More precisely, if we let α=1logλlogb\alpha\mathrel{\hbox to0.0pt{\raisebox{1.03334pt}{$\cdot$}\hss}\raisebox{-1.03334pt}{$\cdot$}}=1-\frac{\log{\lambda}}{\log{b}}, a completely analogous argument as in the previous sections, shows that if α>1/k\alpha>1/k, then 𝒜\mathscr{A} contains infinitely many kthk^{th} powerfree integers. Moreover

nb(x)n is kth powerfree1#b(x)ζ(k)p|b(11pk)1,\sum_{\begin{subarray}{c}n\in\mathscr{M}_{b}^{*}(x)\\ n\text{ is }k^{\text{th}}\text{ powerfree}\end{subarray}}1\sim\frac{\#\mathscr{M}_{b}^{*}(x)}{\zeta(k)}\prod_{p|b}\Big{(}1-\frac{1}{p^{k}}\Big{)}^{-1},

where 𝒜={a𝒜:(a,b)=1}\mathscr{A}^{*}=\{a\in\mathscr{A}\;\mathrel{\mathop{\ordinarycolon}}\;(a,b)=1\}. The following table shows the approximate values of α\alpha depending on the base bb and the excluded digit111We adapted the Mathematica file from Maynard [16], and adjusted it accordingly for lower bases bb. Our Mathematica file can be found as an ancillary file on arXiv:2504.08502. a0a_{0}:

a0\ba_{0}\backslash b 3 4 5 6 7 8 9
0 0.37837 0.51110 0.57643 0.61599 0.64284 0.66249 0.67762
1 0.36285 0.45387 0.52250 0.57233 0.60633 0.62852 0.64559
2 0.37837 0.45387 0.55152 0.56422 0.59963 0.61732 0.63896
3 0.51110 0.52250 0.56422 0.61955 0.61711 0.63511
4 0.57643 0.57233 0.59963 0.61711 0.65576
5 0.61599 0.60633 0.61732 0.63511
6 0.64284 0.62852 0.63896
7 0.66249 0.64559
8 0.67762
Figure 1. Values of α\alpha accurate to 5 decimals.

From the table and our previous discussion, Theorem 1.8 follows immediately.

Acknowledgments I would like to thank Cécile Dartyge for introducing me to the problem of powerfree palindromes. I am grateful to Daniel Johnston for pointing out the results from Bhomik and Suzuki regarding the L1L^{1} and LL^{\infty} estimates for the Fourier transform of the set associated to reversible integers. I would also like to thank my PhD supervisor, Lola Thompson, for her helpful suggestions throughout the course of writing this paper. I am grateful to David Hokken and Berend Ringeling for their insightful discussions on the decreasing nature of f2l+1(t)f_{2l+1}(t).

References

  • [1] William D. Banks, Derrick N. Hart and Mayumi Sakata “Almost all palindromes are composite” In Math. Res. Lett. 11.5-6, 2004, pp. 853–868 DOI: 10.4310/MRL.2004.v11.n6.a10
  • [2] William D. Banks and Igor E. Shparlinski “Prime divisors of palindromes” In Period. Math. Hungar. 51.1, 2005, pp. 1–10 DOI: 10.1007/s10998-005-0016-6
  • [3] Gautami Bhowmik and Yuta Suzuki “On Telhcirid’s theorem on arithmetic progressions”, 2024 arXiv: https://arxiv.org/abs/2406.13334
  • [4] Gautami Bhowmik and Yuta Suzuki “The Zsiflaw–Legeis theorem for arbitrary bases”, 2025 arXiv: https://arxiv.org/abs/2507.08714
  • [5] Jean Bourgain “Prescribing the binary digits of primes” In Israel J. Math. 194.2, 2013, pp. 935–955 DOI: 10.1007/s11856-012-0104-2
  • [6] Jean Bourgain “Prescribing the binary digits of primes, II” In Israel J. Math. 206.1, 2015, pp. 165–182 DOI: 10.1007/s11856-014-1129-5
  • [7] Shashi Chourasiya and Daniel R. Johnston “Power-free palindromes and reversed primes”, 2025 arXiv: https://arxiv.org/abs/2503.21136
  • [8] Sylvain Col “Palindromes dans les progressions arithmétiques” In Acta Arith. 137.1, 2009, pp. 1–41 DOI: 10.4064/aa137-1-1
  • [9] Cécile Dartyge, Bruno Martin, Joël Rivat, Igor E. Shparlinski and Cathy Swaenepoel “Reversible primes” In J. Lond. Math. Soc. (2) 109.3, 2024, pp. Paper No. e12883, 38 DOI: 10.1112/jlms.12883
  • [10] Cécile Dartyge, Joël Rivat and Cathy Swaenepoel “Prime numbers with an almost prime reverse”, 2025 arXiv: https://arxiv.org/abs/2506.21642
  • [11] Paul Erdős, Christian Mauduit and András Sárközy “On arithmetic properties of integers with missing digits. I. Distribution in residue classes” In J. Number Theory 70.2, 1998, pp. 99–120 DOI: 10.1006/jnth.1998.2229
  • [12] Michael Filaseta and Sergei Konyagin “Squarefree values of polynomials all of whose coefficients are 0 and 11 In Acta Arith. 74.3, 1996, pp. 191–205 DOI: 10.4064/aa-74-3-191-205
  • [13] S. V. Konyagin “On the Littlewood problem” In Izv. Akad. Nauk SSSR Ser. Mat. 45.2, 1981, pp. 243–265, 463
  • [14] Christian Mauduit and Joël Rivat “Sur un problème de Gelfond: la somme des chiffres des nombres premiers” In Ann. of Math. (2) 171.3, 2010, pp. 1591–1646 DOI: 10.4007/annals.2010.171.1591
  • [15] James Maynard “Digits of primes” In European Congress of Mathematics, 2018, pp. 641–661
  • [16] James Maynard “Primes with restricted digits” In Invent. Math. 217.1, 2019, pp. 127–218 DOI: 10.1007/s00222-019-00865-6
  • [17] O. Carruth McGehee, Louis Pigno and Brent Smith “Hardy’s inequality and the L1L^{1} norm of exponential sums” In Ann. of Math. (2) 113.3, 1981, pp. 613–618 DOI: 10.2307/2007000
  • [18] Cathy Swaenepoel “Prime numbers with a positive proportion of preassigned digits” In Proc. Lond. Math. Soc. (3) 121.1, 2020, pp. 83–151 DOI: 10.1112/plms.12314
  • [19] Aleksandr Tuxanidy and Daniel Panario “Infinitude of palindromic almost-prime numbers” In Int. Math. Res. Not. IMRN, 2024, pp. 12466–12503 DOI: 10.1093/imrn/rnae174