This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Probabilistic Dual Frames and Minimization of Dual Frame Potentials

Dongwei Chen Department of Mathematics, Colorado State University, CO, US, 80523 dongwei.chen@colostate.edu
Abstract.

This paper studies probabilistic dual frames and associated dual frame potentials from the optimal mass transport perspective. The main contribution in this work shows that given a probabilistic frame, its dual frame potential is minimized if and only if the probabilistic frame is tight and the probabilistic dual frame is the canonical dual. In particular, the tightness condition can be dropped if the probabilistic dual frame potential is minimized only among probabilistic dual frames of pushforward type.

Key words and phrases:
probabilistic frame; probabilistic dual frame; frame potential; probabilistic dual frame potential; optimal transport;
2020 Mathematics Subject Classification:
Primary 42C15; Secondary 49Q22

1. Introduction and Main Results

A sequence of vectors {𝐟i}i=1∞\{{\bf f}_{i}\}_{i=1}^{\infty} in a separable Hilbert space β„‹\mathcal{H} is called a frame if there exist 0<A≀B<∞0<A\leq B<\infty such that for any πŸβˆˆβ„‹{\bf f}\in\mathcal{H},

Aβ€‹β€–πŸβ€–2β‰€βˆ‘i=1∞|⟨𝐟,𝐟i⟩|2≀Bβ€‹β€–πŸβ€–2.A\|{\bf f}\|^{2}\leq\sum_{i=1}^{\infty}|\left\langle{\bf f},{\bf f}_{i}\right\rangle|^{2}\leq B\|{\bf f}\|^{2}.

Furthermore, {𝐟i}i=1∞\{{\bf f}_{i}\}_{i=1}^{\infty} is called a tight frame if A=BA=B and Parseval if A=B=1A=B=1. Frames were firstly introduced by Duffin and Schaeffer in the context of nonharmonic analysis [10] and have been applied in many areas, such as the Kadison-Singer problem [4], time-frequency analysis[15], and wavelet analysis[9]. As the extension of orthonormal basis, a frame permits linear dependence between frame elements and allows each vector in β„‹\mathcal{H} to be written as a linear combination of frame elements in a redundant way. A sequence of vectors {𝐠i}i=1∞\{{\bf g}_{i}\}_{i=1}^{\infty} in β„‹\mathcal{H} is a dual frame for the frame {𝐟i}i=1∞\{{\bf f}_{i}\}_{i=1}^{\infty} if for any πŸβˆˆβ„‹{\bf f}\in\mathcal{H},

𝐟=βˆ‘i=1∞⟨𝐟,𝐠iβŸ©β€‹πŸi=βˆ‘i=1∞⟨𝐟,𝐟iβŸ©β€‹π i.{\bf f}=\sum_{i=1}^{\infty}\left\langle{\bf f},{\bf g}_{i}\right\rangle{\bf f}_{i}=\sum_{i=1}^{\infty}\left\langle{\bf f},{\bf f}_{i}\right\rangle{\bf g}_{i}.

An example of dual frames is the canonical dual {π’βˆ’1β€‹πŸi}i=1∞\{{\bf S}^{-1}{\bf f}_{i}\}_{i=1}^{\infty} where 𝐒:β„‹β†’β„‹{\bf S}:\mathcal{H}\rightarrow\mathcal{H} is the frame operator and is given by 𝐒​(𝐟)=βˆ‘i=1∞⟨𝐟,𝐟iβŸ©β€‹πŸi,βˆ€πŸβˆˆβ„‹{\bf S}({\bf f})=\sum_{i=1}^{\infty}\left\langle{\bf f},{\bf f}_{i}\right\rangle{\bf f}_{i},\ \forall\ {\bf f}\in\mathcal{H}. Indeed, 𝐒:β„‹β†’β„‹{\bf S}:\mathcal{H}\rightarrow\mathcal{H} is bounded, positive, and invertible. See [7] for more details on frames.

Letting ΞΌf:=βˆ‘i=1N1N​δ𝐲i\mu_{f}:=\sum\limits_{i=1}^{N}\frac{1}{N}\delta_{{\bf y}_{i}} be the uniform distribution on {𝐲i}i=1N\{{\bf y}_{i}\}_{i=1}^{N} where Nβ‰₯nN\geq n, {𝐲i}i=1N\{{\bf y}_{i}\}_{i=1}^{N} being a (finite) frame in the Euclidean space ℝn\mathbb{R}^{n} becomes for any π±βˆˆβ„n{\bf x}\in\mathbb{R}^{n},

AN​‖𝐱‖2β‰€βˆ«β„n|⟨𝐱,𝐲⟩|2​𝑑μf​(𝐲)=1Nβ€‹βˆ‘i=1N|⟨𝐱,𝐲i⟩|2≀BN​‖𝐱‖2.\frac{A}{N}\|{\bf x}\|^{2}\leq\int_{\mathbb{R}^{n}}|\left\langle{\bf x},{\bf y}\right\rangle|^{2}d\mu_{f}({\bf y})=\frac{1}{N}\sum_{i=1}^{N}|\left\langle{\bf x},{\bf y}_{i}\right\rangle|^{2}\leq\frac{B}{N}\|{\bf x}\|^{2}.

Therefore, finite frames can be taken as discrete probabilistic measures on ℝn\mathbb{R}^{n}, and inspired by this insight, M. Ehler and K. A. Okoudjou in [11, 13] proposed the concept of probabilistic frame, which is a probability measure on ℝn\mathbb{R}^{n} satisfying a frame-like condition. Throughout the paper, we let 𝒫​(ℝn)\mathcal{P}(\mathbb{R}^{n}) be the set of Borel probability measures on ℝn\mathbb{R}^{n} and 𝒫2​(ℝn)βŠ‚π’«β€‹(ℝn)\mathcal{P}_{2}(\mathbb{R}^{n})\subset\mathcal{P}(\mathbb{R}^{n}) be such that

𝒫2​(ℝn):={ΞΌβˆˆπ’«β€‹(ℝn):M2​(ΞΌ)=βˆ«β„n‖𝐱‖2​𝑑μ​(𝐱)<+∞}.\mathcal{P}_{2}(\mathbb{R}^{n}):=\left\{\mu\in\mathcal{P}(\mathbb{R}^{n}):M_{2}(\mu)=\int_{\mathbb{R}^{n}}\|{\bf x}\|^{2}d\mu({\bf x})<+\infty\right\}.

We use f#​μf_{\#}\mu to denote the pushforward of ΞΌ\mu by a measurable map f:ℝn→ℝnf:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}:

f#​μ​(E):=(μ∘fβˆ’1)​(E)=μ​(fβˆ’1​(E))​for any Borel set​EβŠ‚β„n.f_{\#}\mu(E):=(\mu\circ f^{-1})(E)=\mu\big{(}f^{-1}(E)\big{)}\ \text{for any Borel set}\ E\subset\mathbb{R}^{n}.

In particular, 𝐀#​μ{\bf A}_{\#}\mu is used to denote f#​μf_{\#}\mu if ff is linearly represented by the matrix 𝐀{\bf A}. And the support of ΞΌβˆˆπ’«β€‹(ℝn)\mu\in\mathcal{P}(\mathbb{R}^{n}) is given by

supp⁑(ΞΌ):={π±βˆˆβ„n:for any​r>0,μ​(Br​(𝐱))>0},\operatorname{supp}(\mu):=\{{\bf x}\in\mathbb{R}^{n}:\text{for any}\ r>0,\mu(B_{r}({\bf x}))>0\},

where Br​(𝐱)B_{r}({\bf x}) is an open ball centered at 𝐱{\bf x} with radius r>0r>0. Then, we have the following definition for probabilistic frames.

Definition 1.1.

ΞΌβˆˆπ’«β€‹(ℝn)\mu\in\mathcal{P}(\mathbb{R}^{n}) is said to be a probabilistic frame for ℝn\mathbb{R}^{n} if there exist 0<A≀B<∞0<A\leq B<\infty such that for any π±βˆˆβ„n{\bf x}\in\mathbb{R}^{n},

A​‖𝐱‖2β‰€βˆ«β„n|⟨𝐱,𝐲⟩|2​𝑑μ​(𝐲)≀B​‖𝐱‖2.A\|{\bf x}\|^{2}\leq\int_{\mathbb{R}^{n}}|\left\langle{\bf x},{\bf y}\right\rangle|^{2}d\mu({\bf y})\leq B\|{\bf x}\|^{2}.

ΞΌ\mu is called a tight probabilistic frame if A=BA=B and Parseval if A=B=1A=B=1. Moreover, ΞΌ\mu is said to be a Bessel probability measure if only the upper bound holds.

Clearly if ΞΌβˆˆπ’«2​(ℝn)\mu\in\mathcal{P}_{2}(\mathbb{R}^{n}), ΞΌ\mu is Bessel with bound M2​(ΞΌ)M_{2}(\mu). Furthermore, we define the frame operator 𝐒μ{\bf S}_{\mu} for the Bessel probability measure ΞΌ\mu as the following matrix:

𝐒μ:=βˆ«β„n𝐲𝐲t​𝑑μ​(𝐲).{\bf S}_{\mu}:=\int_{\mathbb{R}^{n}}{\bf y}{\bf y}^{t}d\mu({\bf y}).

Probabilistic frames can be characterized by frame operators as below.

Proposition 1.2 (Theorem 12.1 in [13], Proposition 3.1 in [16]).

Let ΞΌβˆˆπ’«β€‹(ℝn)\mu\in\mathcal{P}(\mathbb{R}^{n}).

  • (1)(1)

    ΞΌ\mu is a probabilistic frame ⇔\Leftrightarrow 𝐒μ{\bf S}_{\mu} is positive definite ⇔\Leftrightarrow ΞΌβˆˆπ’«2​(ℝn)\mu\in\mathcal{P}_{2}(\mathbb{R}^{n}) and s​p​a​n​{supp⁑(ΞΌ)}=ℝnspan\{\operatorname{supp}(\mu)\}=\mathbb{R}^{n}.

  • (2)(2)

    ΞΌ\mu is a tight probabilistic frame with bound A>0A>0 ⇔\Leftrightarrow 𝐒μ=Aβ€‹πˆπ{\bf S}_{\mu}=A\ {\bf Id} where 𝐈𝐝{\bf Id} is the identity matrix of size nΓ—nn\times n.

It is noted that probabilistic frames can be studied by optimal transport. Since probabilistic frames are in 𝒫2​(ℝn)\mathcal{P}_{2}(\mathbb{R}^{n}), then one can use the 2-Wasserstein metric W2​(ΞΌ,Ξ½)W_{2}(\mu,\nu) to quantify the distance between two probabilistic frames ΞΌ\mu and Ξ½\nu:

W22​(ΞΌ,Ξ½):=infΞ³βˆˆΞ“β€‹(ΞΌ,Ξ½)β€‹βˆ«β„n×ℝnβ€–π±βˆ’π²β€–2​𝑑γ​(𝐱,𝐲).W_{2}^{2}(\mu,\nu):=\underset{\gamma\in\Gamma(\mu,\nu)}{\text{inf}}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\left\|{\bf x}-{\bf y}\right\|^{2}\ d\gamma({\bf x},{\bf y}).

Here Γ​(ΞΌ,Ξ½)\Gamma(\mu,\nu) is the set of transport couplings with marginals ΞΌ\mu and Ξ½\nu, i.e.,

Γ​(ΞΌ,Ξ½):={Ξ³βˆˆπ’«β€‹(ℝn×ℝn):Ο€x#​γ=ΞΌ,Ο€y#​γ=Ξ½},\Gamma(\mu,\nu):=\left\{\gamma\in\mathcal{P}(\mathbb{R}^{n}\times\mathbb{R}^{n}):{\pi_{{x}}}_{\#}\gamma=\mu,\ {\pi_{{y}}}_{\#}\gamma=\nu\right\},

where Ο€x\pi_{{x}}, Ο€y\pi_{{y}} are projections on 𝐱{\bf x} and 𝐲{\bf y} coordinates: for any (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x},{\bf y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, Ο€x​(𝐱,𝐲)=𝐱\pi_{{x}}({\bf x},{\bf y})={\bf x} and Ο€y​(𝐱,𝐲)=𝐲\pi_{{y}}({\bf x},{\bf y})={\bf y}. For interested readers, we refer to [11, 12, 5, 6] for more details on probabilistic frames, and [14] for optimal transport.

One of our main contributions in this work is about the minimization of probabilistic dual frame potentials. The energy minimization problem is an active topic in mathematics and people in the frame theory community are particularly interested in the minimization of frame potential [2, 12, 8, 1, 18]. Given a unit-norm frame {𝐟i}i=1NβŠ‚π•Šnβˆ’1\{{\bf f}_{i}\}_{i=1}^{N}\subset\mathbb{S}^{n-1} where Nβ‰₯dN\geq d, its frame potential (FP) is defined as

F​P​({𝐟i}i=1N):=βˆ‘i=1Nβˆ‘j=1N|⟨𝐟i,𝐟j⟩|2.FP(\{{\bf f}_{i}\}_{i=1}^{N}):=\sum_{i=1}^{N}\sum_{j=1}^{N}|\langle{\bf f}_{i},{\bf f}_{j}\rangle|^{2}.

Benedetto and Fickus in [2] showed that F​P​({𝐟i}i=1N)β‰₯N2n,FP(\{{\bf f}_{i}\}_{i=1}^{N})\geq\frac{N^{2}}{n}, and the equality holds if and only if the unit-norm frame {𝐟i}i=1N\{{\bf f}_{i}\}_{i=1}^{N} is tight. Similarly, the authors in [12, 18] defined the probabilistic frame potential (PFP) for a given (Bessel) probability measure ΞΌβˆˆπ’«2​(ℝn)\mu\in\mathcal{P}_{2}(\mathbb{R}^{n}) and found its lower bound:

P​F​P​(ΞΌ):=βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2​𝑑μ​(𝐱)​𝑑μ​(𝐲)β‰₯M22​(ΞΌ)n,PFP(\mu):=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2}d\mu({\bf x})d\mu({\bf y})\geq\frac{M_{2}^{2}(\mu)}{n},

and if ΞΌβ‰ Ξ΄πŸŽ\mu\neq\delta_{{\bf 0}}, the equality holds if and only if ΞΌ\mu is a tight probabilistic frame.

Our work for probabilistic dual frame potentials is motivated by the dual frame potentials for finite frames proposed in [8]. Given a frame {𝐟i}i=1N\{{\bf f}_{i}\}_{i=1}^{N} and its dual frame {𝐠i}i=1N\{{\bf g}_{i}\}_{i=1}^{N} in β„‚n\mathbb{C}^{n}, Theorem 2.2 in [8] shows that the dual frame potential (DFP) between {𝐟i}i=1N\{{\bf f}_{i}\}_{i=1}^{N} and {𝐠i}i=1N\{{\bf g}_{i}\}_{i=1}^{N} satisfies

D​F​P​({𝐟i}i,{𝐠i}i):=βˆ‘i=1Nβˆ‘j=1N|⟨𝐟i,𝐠j⟩|2β‰₯n,DFP(\{{\bf f}_{i}\}_{i},\{{\bf g}_{i}\}_{i}):=\sum_{i=1}^{N}\sum_{j=1}^{N}|\langle{\bf f}_{i},{\bf g}_{j}\rangle|^{2}\geq n,

and equality holds if and only if {𝐠j}j=1N\{{\bf g}_{j}\}_{j=1}^{N} is the canonical dual frame {π’βˆ’1β€‹πŸj}j=1N\{{\bf S}^{-1}{\bf f}_{j}\}_{j=1}^{N}.

The main results given by Theorem 3.5 and Theorem 3.7 in this paper say that given a probabilistic frame ΞΌ\mu (with bounds AA and BB) and its probabilistic dual frame Ξ½\nu, the probabilistic dual frame potential D​P​Fμ​(Ξ½)DPF_{\mu}(\nu) between ΞΌ\mu and Ξ½\nu satisfies

D​P​Fμ​(Ξ½):=βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2​𝑑μ​(𝐱)​𝑑ν​(𝐲)β‰₯AB​n,DPF_{\mu}(\nu):=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2}d\mu({\bf x})d\nu({\bf y})\geq\frac{A}{B}n,

and the equality holds if and only if ΞΌ\mu is a tight probabilistic frame and Ξ½\nu is the canonical dual π’ΞΌβˆ’1#​μ{{\bf S}^{-1}_{\mu}}_{\#}\mu. And the tightness condition can be dropped: if T#​μT_{\#}\mu is a probabilistic dual frame to ΞΌ\mu where the map T:ℝn→ℝnT:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} is measurable, then

D​P​Fμ​(T#​μ):=βˆ«β„nβˆ«β„n|⟨𝐱,T​(𝐲)⟩|2​𝑑μ​(𝐱)​𝑑μ​(𝐲)β‰₯n,DPF_{\mu}(T_{\#}\mu):=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},T({\bf y})\rangle|^{2}d\mu({\bf x})d\mu({\bf y})\geq n,

and the equality holds if and only if T​(𝐲)=π’ΞΌβˆ’1​𝐲T({\bf y})={\bf S}_{\mu}^{-1}{\bf y} for ΞΌ\mu almost all π²βˆˆβ„n{\bf y}\in\mathbb{R}^{n}.

This paper is organized as follows. In Section 2, we show some properties about probabilistic dual frames, and we especially focus on the probabilistic dual frames of pushforward type. In Section 3, we give a lower bound for the probabilistic dual frame potential, which is admitted if and only if the given probabilistic frame is tight and the associated probabilistic dual frame is the canonical dual. And the tightness can be dropped if the dual frame potential is minimized only among probabilistic dual frames of pushforward type. In Section 4, we discuss the generalization of probabilistic dual frames and related open questions. Finally, in Section 5, we give the proof of Proposition 2.3 and Proposition 2.10

2. Probabilistic Dual Frames

This section starts with probabilistic dual frames. Throughout the paper, we use 𝐀{\bf A} and 𝐱{\bf x} for a real matrix and vector in ℝn\mathbb{R}^{n}, and AA and xx for real numbers. Especially, 𝟎{\bf 0} is used to denote the zero vector in ℝn\mathbb{R}^{n}, 𝟎nΓ—n{\bf 0}_{n\times n} the nΓ—nn\times n zero matrix, and 0 the real zero number. We use 𝐈𝐝{\bf Id} for the nΓ—nn\times n identity matrix, and 𝐀t{\bf A}^{t} the transpose of matrix 𝐀{\bf A}.

Definition 2.1.

Let ΞΌ\mu be a probabilistic frame. Ξ½βˆˆπ’«2​(ℝn)\nu\in\mathcal{P}_{2}(\mathbb{R}^{n}) is called a probabilistic dual frame of ΞΌ\mu if there exists Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu) such that

βˆ«β„n×ℝn𝐱𝐲t​𝑑γ​(𝐱,𝐲)=𝐈𝐝.\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}{\bf x}{\bf y}^{t}d\gamma({\bf x,y})={\bf Id}.

Probabilistic dual frames are also known as transport duals and it was shown that every probabilistic dual frame is a probabilistic frame [17]. π’ΞΌβˆ’1#​μ{{\bf S}_{\mu}^{-1}}_{\#}\mu is called the canonical (probabilistic) dual frame of ΞΌ\mu (with bounds 1B\frac{1}{B} and 1A\frac{1}{A}), since one can let Ξ³:=(πˆπΓ—π’ΞΌβˆ’1)#β€‹ΞΌβˆˆΞ“β€‹(ΞΌ,π’ΞΌβˆ’1#​μ)\gamma:={({\bf Id}\times{\bf S}_{\mu}^{-1})}_{\#}\mu\in\Gamma(\mu,{{\bf S}_{\mu}^{-1}}_{\#}\mu). And we have the following equivalence for probabilistic dual frames.

Lemma 2.2.

Let ΞΌ\mu be a probabilistic frame. Suppose Ξ½βˆˆπ’«2​(ℝn)\nu\in\mathcal{P}_{2}(\mathbb{R}^{n}) and Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu). The following are equivalent:

  • (1).(1).

    Ξ½\nu is a probabilistic dual frame of ΞΌ\mu with respect to Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu).

  • (2).(2).

    For any πŸβˆˆβ„n{\bf f}\in\mathbb{R}^{n},

    𝐟=βˆ«β„n×ℝnπ±β€‹βŸ¨π²,πŸβŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲)​orβ€‹πŸ=βˆ«β„n×ℝnπ²β€‹βŸ¨π±,πŸβŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲).{\bf f}=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}{\bf x}\langle{\bf y},{\bf f}\rangle d\gamma({\bf x},{\bf y})\ \text{or}\ {\bf f}=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}{\bf y}\langle{\bf x},{\bf f}\rangle d\gamma({\bf x},{\bf y}).
  • (3).(3).

    For any 𝐟,π βˆˆβ„n{\bf f},{\bf g}\in\mathbb{R}^{n},

    ⟨𝐟,𝐠⟩=βˆ«β„n×ℝn⟨𝐱,π βŸ©β€‹βŸ¨π²,πŸβŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲)​orβ€‹βŸ¨πŸ,𝐠⟩=βˆ«β„n×ℝn⟨𝐲,π βŸ©β€‹βŸ¨π±,πŸβŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲).\langle{\bf f},{\bf g}\rangle=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf x},{\bf g}\rangle\langle{\bf y},{\bf f}\rangle d\gamma({\bf x},{\bf y})\ \text{or}\ \langle{\bf f},{\bf g}\rangle=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf y},{\bf g}\rangle\langle{\bf x},{\bf f}\rangle d\gamma({\bf x},{\bf y}).
Proof.

Since Ξ½\nu is a probabilistic dual frame of ΞΌ\mu with respect to Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu), then

βˆ«β„n×ℝn𝐱𝐲t​𝑑γ​(𝐱,𝐲)=βˆ«β„n×ℝn𝐲𝐱t​𝑑γ​(𝐱,𝐲)=𝐈𝐝,\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}{\bf x}{\bf y}^{t}d\gamma({\bf x,y})=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}{\bf y}{\bf x}^{t}d\gamma({\bf x,y})={\bf Id},

which shows that (1)(1) and (2)(2) are equivalent. Clearly (2)(2) implies (3)(3). And (3)(3) shows that for any π βˆˆβ„n{\bf g}\in\mathbb{R}^{n},

βŸ¨πŸβˆ’βˆ«β„n×ℝnπ²β€‹βŸ¨π±,πŸβŸ©β€‹πΞ³β€‹(𝐱,𝐲),𝐠⟩=⟨𝐟,π βŸ©βˆ’βˆ«β„π§βŸ¨π²,π βŸ©β€‹βŸ¨π±,πŸβŸ©β€‹πΞ³β€‹(𝐱,𝐲)=𝟎.\big{\langle}{\bf f}-\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}{\bf y}\langle\bf{x},{\bf f}\rangle d\gamma({\bf x},{\bf y}),{\bf g}\big{\rangle}=\langle{\bf f},{\bf g}\rangle-\int_{\mathbb{R}^{n}}\langle{\bf y},{\bf g}\rangle\langle{\bf x},{\bf f}\rangle d\gamma({\bf x},{\bf y})=0.

Therefore, (2)(2) follows. ∎

From the above lemma, we know that if Ξ½\nu is a probabilistic dual frame of ΞΌ\mu with respect to some Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu), then for any πŸβˆˆβ„n{\bf f}\in\mathbb{R}^{n},

β€–πŸβ€–2=βˆ«β„n×ℝn⟨𝐟,π±βŸ©β€‹βŸ¨π²,πŸβŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲).\|{\bf f}\|^{2}=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf f},{\bf x}\rangle\langle{\bf y},{\bf f}\rangle d\gamma({\bf x,y}).

Conversely, we show that the probabilistic dual frame is admitted if the equality holds in a dense subset of ℝn\mathbb{R}^{n}, and the proof is placed in Section 5.

Proposition 2.3.

Let ΞΌ\mu be a probabilistic frame and DD dense subset in ℝn\mathbb{R}^{n}. If there exists Ξ½βˆˆπ’«2​(ℝn)\nu\in\mathcal{P}_{2}(\mathbb{R}^{n}) and Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu) such that βˆ«β„n×ℝn𝐱𝐲t​𝑑γ​(𝐱,𝐲)\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}{\bf x}{\bf y}^{t}d\gamma({\bf x,y}) is symmetric and

β€–πŸβ€–2=βˆ«β„n×ℝn⟨𝐟,π±βŸ©β€‹βŸ¨π²,πŸβŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲),for any 𝐟∈D,\|{\bf f}\|^{2}=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf f},{\bf x}\rangle\langle{\bf y},{\bf f}\rangle d\gamma({\bf x,y}),\ \text{for any ${\bf f}\in D$},

then Ξ½\nu is a probabilistic dual frame of ΞΌ\mu with respect to Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu).

Recall that given a measurable space (X,Ξ£,ΞΌ)(X,\Sigma,\mu), the essential supremum of a measurable function f:X→ℝf:X\rightarrow\mathbb{R} with respect to ΞΌ\mu, denoted by ΞΌ\mu-esssup​f\text{esssup}\ f, is the smallest number Ξ±\alpha such that the set {x:f​(x)>Ξ±}\{x:f(x)>\alpha\} has measure zero, and if no such number exists, the essential supremum is infinity. By the linearity of matrix trace, we have the following identity that plays a role in obtaining the lower bound of probabilistic dual frame potential.

Lemma 2.4.

Let ΞΌ\mu be a probabilistic frame and Ξ½\nu a probabilistic dual frame to ΞΌ\mu with respect to Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu). Then

γ​-esssup​{⟨𝐱,𝐲⟩:𝐱,π²βˆˆβ„n}β‰₯βˆ«β„n×ℝn⟨𝐱,π²βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲)=n.\gamma{\text{-}}\text{esssup}\ \{\langle{\bf x,y}\rangle:{\bf x},{\bf y}\in\mathbb{R}^{n}\}\geq\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf x,y}\rangle d\gamma({\bf x,y})=n.

And the equality holds if and only if for Ξ³\gamma almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x},{\bf y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, ⟨𝐱,𝐲⟩=n\langle{\bf x,y}\rangle=n. Furthermore, if pβ‰₯1p\geq 1, then

Ξ³-esssup{|⟨𝐱,𝐲⟩|p:𝐱,π²βˆˆβ„n}β‰₯βˆ«β„n×ℝn|⟨𝐱,𝐲⟩|pdΞ³(𝐱,𝐲)β‰₯np,\gamma{\text{-}}\text{esssup}\ \{|\langle{\bf x,y}\rangle|^{p}:{\bf x},{\bf y}\in\mathbb{R}^{n}\}\geq\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}|\langle{\bf x,y}\rangle|^{p}d\gamma({\bf x,y})\geq n^{p},

and for the equalities, Ξ³-esssup{|⟨𝐱,𝐲⟩|p:𝐱,π²βˆˆβ„n}=np\gamma{\text{-}}\text{esssup}\ \{|\langle{\bf x,y}\rangle|^{p}:{\bf x},{\bf y}\in\mathbb{R}^{n}\}=n^{p}, or the last equality holds, if and only if for Ξ³\gamma almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x},{\bf y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, ⟨𝐱,𝐲⟩=n\langle{\bf x,y}\rangle=n.

Proof.

Since Ξ½\nu is a probabilistic dual frame to ΞΌ\mu with respect to Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu), then

βˆ«β„n×ℝn𝐱𝐲t​𝑑γ​(𝐱,𝐲)=𝐈𝐝.\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}{\bf x}{\bf y}^{t}d\gamma({\bf x,y})={\bf Id}.

Therefore, by taking trace on both sides, we have

n=t​r​a​c​e​(𝐈𝐝)=βˆ«β„n×ℝnt​r​a​c​e​(𝐱𝐲t)​𝑑γ​(𝐱,𝐲)=βˆ«β„n×ℝn⟨𝐱,π²βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲).n=trace({\bf Id})=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}trace({\bf x}{\bf y}^{t})d\gamma({\bf x,y})=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf x},{\bf y}\rangle d\gamma({\bf x,y}).

Clearly, we have

γ​-esssup​{⟨𝐱,𝐲⟩:𝐱,π²βˆˆβ„n}β‰₯βˆ«β„n×ℝn⟨𝐱,π²βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲)=n.\gamma{\text{-}}\text{esssup}\ \{\langle{\bf x,y}\rangle:{\bf x},{\bf y}\in\mathbb{R}^{n}\}\geq\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf x,y}\rangle d\gamma({\bf x,y})=n.

And the equality holds if and only if for Ξ³\gamma almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x},{\bf y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, ⟨𝐱,𝐲⟩\langle{\bf x,y}\rangle is a constant, which is true if and only if the constant is nn. Since |β‹…|p:ℝ→ℝ|\cdot|^{p}:\mathbb{R}\rightarrow\mathbb{R} is nonlinear and convex where pβ‰₯1p\geq 1, then by Jensen’s Inequality,

βˆ«β„n×ℝn|⟨𝐱,𝐲⟩|p​𝑑γ​(𝐱,𝐲)β‰₯|βˆ«β„n×ℝn⟨𝐱,π²βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲)|p=np,\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}|\langle{\bf x,y}\rangle|^{p}d\gamma({\bf x,y})\geq\Big{|}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf x,y}\rangle d\gamma({\bf x,y})\Big{|}^{p}=n^{p},

and the equality holds if and only if for Ξ³\gamma almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x},{\bf y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, ⟨𝐱,𝐲⟩\langle{\bf x,y}\rangle is a constant and thus equal to nn. Then, we have

Ξ³-esssup{|⟨𝐱,𝐲⟩|p:𝐱,π²βˆˆβ„n}β‰₯βˆ«β„n×ℝn|⟨𝐱,𝐲⟩|pdΞ³(𝐱,𝐲)β‰₯np,\gamma{\text{-}}\text{esssup}\ \{|\langle{\bf x,y}\rangle|^{p}:{\bf x},{\bf y}\in\mathbb{R}^{n}\}\geq\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}|\langle{\bf x,y}\rangle|^{p}d\gamma({\bf x,y})\geq n^{p},

and the first equality holds if and only if for Ξ³\gamma almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x},{\bf y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, ⟨𝐱,𝐲⟩\langle{\bf x,y}\rangle is constant. Then, combining with the last equality condition, we get the desired conditon for the case where Ξ³-esssup{|⟨𝐱,𝐲⟩|p:𝐱,π²βˆˆβ„n}=np\gamma{\text{-}}\text{esssup}\ \{|\langle{\bf x,y}\rangle|^{p}:{\bf x},{\bf y}\in\mathbb{R}^{n}\}=n^{p}. ∎

Lemma 2.4 shows an analogous result from Propitiation 24 in [1], claiming that if {𝐟i}i=1N\{{\bf f}_{i}\}_{i=1}^{N} is a frame for ℝn\mathbb{R}^{n} and {𝐠i}i=1N\{{\bf g}_{i}\}_{i=1}^{N} is a dual frame of {𝐟i}i=1N\{{\bf f}_{i}\}_{i=1}^{N}, then

βˆ‘i=1N|⟨𝐟i,𝐠i⟩|2β‰₯n2N,\sum_{i=1}^{N}|\langle{\bf f}_{i},{\bf g}_{i}\rangle|^{2}\geq\frac{n^{2}}{N},

and the equality holds if and only if ⟨𝐟i,𝐠i⟩=nN\langle{\bf f}_{i},{\bf g}_{i}\rangle=\frac{n}{N}, for each ii. Indeed, If ΞΌ=1Nβ€‹βˆ‘i=1Nδ𝐟i\mu=\frac{1}{N}\sum_{i=1}^{N}\delta_{{\bf f}_{i}} is a probabilistic frame and Ξ½=1Nβ€‹βˆ‘i=1Nδ𝐑i\nu=\frac{1}{N}\sum_{i=1}^{N}\delta_{{\bf h}_{i}} a dual frame of ΞΌ\mu with respect to (𝐈𝐝,T)#β€‹ΞΌβˆˆΞ“β€‹(ΞΌ,Ξ½)({\bf Id},T)_{\#}\mu\in\Gamma(\mu,\nu) where T:ℝn→ℝnT:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} is such that for each ii, T​(𝐟i)=𝐑iT({\bf f}_{i})={\bf h}_{i}, that is to say, T#​μ=Ξ½T_{\#}\mu=\nu. Then by Lemma 2.4,

βˆ«β„n×ℝn|⟨𝐱,𝐲⟩|2​𝑑γ​(𝐱,𝐲)=1Nβ€‹βˆ‘i=1N|⟨𝐟i,𝐑i⟩|2β‰₯|βˆ«β„n×ℝn⟨𝐱,π²βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲)|2=n2,\begin{split}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}|\langle{\bf x,y}\rangle|^{2}d\gamma({\bf x,y})=\frac{1}{N}\sum_{i=1}^{N}|\langle{\bf f}_{i},{\bf h}_{i}\rangle|^{2}&\geq\Big{|}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf x,y}\rangle d\gamma({\bf x,y})\Big{|}^{2}=n^{2},\end{split}

and the equality holds if and only if ⟨𝐟i,𝐑i⟩=n\langle{\bf f}_{i},{\bf h}_{i}\rangle=n, for each ii. For the remaining part of this section, we will focus on a particular type of probabilistic dual frame, which are pushforwards of measurable maps.

Definition 2.5.

Let ΞΌ\mu be a probabilistic frame and T:ℝn→ℝnT:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} a measurable map such that T#β€‹ΞΌβˆˆπ’«2​(ℝn)T_{\#}\mu\in\mathcal{P}_{2}(\mathbb{R}^{n}). T#​μT_{\#}\mu is called a probabilistic dual frame of ΞΌ\mu if

βˆ«β„n𝐱​T​(𝐱)t​𝑑μ​(𝐱)=𝐈𝐝.\int_{\mathbb{R}^{n}}{\bf x}T({\bf x})^{t}d\mu({\bf x})={\bf Id}.

Indeed, T#​μT_{\#}\mu is a dual frame of ΞΌ\mu under Ξ³T:=(𝐈𝐝,T)#β€‹ΞΌβˆˆΞ“β€‹(ΞΌ,T#​μ)\gamma_{T}:=({\bf Id},T)_{\#}\mu\in\Gamma(\mu,T_{\#}\mu), since

βˆ«β„n×ℝn𝐱𝐲t​𝑑γT​(𝐱,𝐲)=βˆ«β„n𝐱​T​(𝐱)t​𝑑μ​(𝐱)=𝐈𝐝.\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}{\bf x}{\bf y}^{t}d\gamma_{T}({\bf x},{\bf y})=\int_{\mathbb{R}^{n}}{\bf x}T({\bf x})^{t}d\mu({\bf x})={\bf Id}.

Clearly, the canonical probabilistic dual frame π’ΞΌβˆ’1#​μ{{\bf S}_{\mu}^{-1}}_{\#}\mu is of pushforward type. In [17], Wickman showed that given a probabilistic frame ΞΌ\mu, ψh#​μ{\psi_{h}}_{\#}\mu is its probabilistic dual frame, where h:ℝn→ℝnh:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} is such that h#β€‹ΞΌβˆˆπ’«2​(ℝn)h_{\#}\mu\in\mathcal{P}_{2}(\mathbb{R}^{n}) and ψh:ℝn→ℝn\psi_{h}:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} is

ψh​(𝐱)=π’ΞΌβˆ’1​𝐱+h​(𝐱)βˆ’βˆ«β„nβŸ¨π’ΞΌβˆ’1​𝐱,π²βŸ©β€‹h​(𝐲)​𝑑μ​(𝐲),π±βˆˆβ„n.\psi_{h}({\bf x})={{\bf S}_{\mu}^{-1}}{\bf x}+h({\bf x})-\int_{\mathbb{R}^{n}}\langle{\bf S}_{\mu}^{-1}{\bf x},{\bf y}\rangle h({\bf y})d\mu({\bf y}),\ {\bf x}\in\mathbb{R}^{n}.

Indeed, the authors in [6] showed that all probabilistic dual frames of pushforward type can be characterized by Wickman’s construction. Note that not every probabilistic dual frame is of pushforward type. For example, Ξ½=12​δ12+12​δ32\nu=\frac{1}{2}\delta_{\frac{1}{2}}+\frac{1}{2}\delta_{\frac{3}{2}} is a dual frame of Ξ΄1\delta_{1} under the coupling Ξ³=(I​d,T)#β€‹Ξ½βˆˆΞ“β€‹(ΞΌ,Ξ΄1)\gamma=(Id,T)_{\#}\nu\in\Gamma(\mu,\delta_{1}) where T​(x)=1,xβˆˆβ„T(x)=1,x\in\mathbb{R}. However, there does not exist a map M:ℝ→ℝM:\mathbb{R}\rightarrow\mathbb{R} such that Ξ½=M#​δ1\nu=M_{\#}\delta_{1}.

Corollary 2.6 (Proposition 5.8 in [6]).

Let ΞΌ\mu be a probabilistic frame and the map T:ℝn→ℝnT:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} measurable. If T#​μT_{\#}\mu is a probabilistic dual frame of ΞΌ\mu, then T:ℝn→ℝnT:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} precisely satisfies for any π±βˆˆβ„n{\bf x}\in\mathbb{R}^{n},

T​(𝐱)=π’ΞΌβˆ’1​𝐱+h​(𝐱)βˆ’βˆ«β„nβŸ¨π’ΞΌβˆ’1​𝐱,π²βŸ©β€‹h​(𝐲)​𝑑μ​(𝐲),T({\bf x})={{\bf S}_{\mu}^{-1}}{\bf x}+h({\bf x})-\int_{\mathbb{R}^{n}}\langle{\bf S}_{\mu}^{-1}{\bf x},{\bf y}\rangle h({\bf y})d\mu({\bf y}),

where h:ℝn→ℝnh:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} is such that h#β€‹ΞΌβˆˆπ’«2​(ℝn)h_{\#}\mu\in\mathcal{P}_{2}(\mathbb{R}^{n}).

In the below, we prove that any Bessel probability measure can be transformed into a tight probabilistic frame, and we then show that probabilistic dual frames of pushforward type can be used to characterize tight probabilistic frames.

Lemma 2.7.

Let ΞΌ\mu be a Bessel probability measure with bound B>0B>0. Then for any real number kβ‰₯12k\geq\frac{1}{2}, there exists Ξ½kβˆˆπ’«2​(ℝn)\nu_{k}\in\mathcal{P}_{2}(\mathbb{R}^{n}) such that 12​μ+12​νk\frac{1}{2}\mu+\frac{1}{2}\nu_{k} is a tight probabilistic frame with bound k​B>0kB>0. Especially, there exists Ξ½βˆˆπ’«2​(ℝn)\nu\in\mathcal{P}_{2}(\mathbb{R}^{n}) such that 12​μ+12​ν\frac{1}{2}\mu+\frac{1}{2}\nu is a tight probabilistic frame with bound B>0B>0.

Proof.

Let 𝐒μ{\bf S}_{\mu} be the frame operator of ΞΌ\mu, which is positive semidefinite. Since ΞΌ\mu is Bessel, then 𝐒μ≀Bβ€‹πˆπ{\bf S}_{\mu}\leq B{\bf Id} and thus Bβ€‹πˆπβˆ’12​k​𝐒μβ‰₯0B{\bf Id}-\frac{1}{2k}{\bf S}_{\mu}\geq 0 where kβ‰₯12k\geq\frac{1}{2}. By the spectral theorem, Bβ€‹πˆπβˆ’12​k​𝐒μB{\bf Id}-\frac{1}{2k}{\bf S}_{\mu} has a square root (Bβ€‹πˆπβˆ’12​k​𝐒μ)1/2(B{\bf Id}-\frac{1}{2k}{\bf S}_{\mu})^{1/2}. Then, for any π±βˆˆβ„π§\bf x\in\mathbb{R}^{n},

B​𝐱=12​k​𝐒μ​𝐱+(Bβ€‹πˆπβˆ’12​k​𝐒μ)1/2​(Bβ€‹πˆπβˆ’12​k​𝐒μ)1/2​𝐱.B{\bf x}=\frac{1}{2k}{\bf S}_{\mu}{\bf x}+(B{\bf Id}-\frac{1}{2k}{\bf S}_{\mu})^{1/2}(B{\bf Id}-\frac{1}{2k}{\bf S}_{\mu})^{1/2}{\bf x}.

Now let Ξ·kβˆˆπ’«2​(ℝn)\eta_{k}\in\mathcal{P}_{2}(\mathbb{R}^{n}) be any known tight frame with bound 2​k2k, then

(Bβ€‹πˆπβˆ’12​k​𝐒μ)1/2​𝐱=12​kβ€‹βˆ«β„nπ²β€‹βŸ¨(Bβ€‹πˆπβˆ’12​k​𝐒μ)1/2​𝐱,π²βŸ©β€‹π‘‘Ξ·k​(𝐲).(B{\bf Id}-\frac{1}{2k}{\bf S}_{\mu})^{1/2}{\bf x}=\frac{1}{2k}\int_{\mathbb{R}^{n}}{\bf y}\big{\langle}(B{\bf Id}-\frac{1}{2k}{\bf S}_{\mu})^{1/2}{\bf x},{\bf y}\big{\rangle}d\eta_{k}({\bf y}).

Therefore,

B​𝐱=12​k​𝐒μ​𝐱+12​k​(Bβ€‹πˆπβˆ’12​k​𝐒μ)1/2β€‹βˆ«β„nπ²β€‹βŸ¨(Bβ€‹πˆπβˆ’12​k​𝐒μ)1/2​𝐱,π²βŸ©β€‹π‘‘Ξ·k​(𝐲).B{\bf x}=\frac{1}{2k}{\bf S}_{\mu}{\bf x}+\frac{1}{2k}(B{\bf Id}-\frac{1}{2k}{\bf S}_{\mu})^{1/2}\int_{\mathbb{R}^{n}}{\bf y}\big{\langle}(B{\bf Id}-\frac{1}{2k}{\bf S}_{\mu})^{1/2}{\bf x},{\bf y}\big{\rangle}d\eta_{k}({\bf y}).

Taking inner product with 𝐱{\bf x} leads to

B​‖𝐱‖2=12​kβ€‹βˆ«β„n⟨𝐱,𝐲⟩2​𝑑μ​(𝐲)+12​kβ€‹βˆ«β„n⟨𝐱,(Bβ€‹πˆπβˆ’12​k​𝐒μ)1/2β€‹π²βŸ©2​𝑑ηk​(𝐲).B\|{\bf x}\|^{2}=\frac{1}{2k}\int_{\mathbb{R}^{n}}\langle{\bf x},{\bf y}\rangle^{2}d\mu({\bf y})+\frac{1}{2k}\int_{\mathbb{R}^{n}}\big{\langle}{\bf x},(B{\bf Id}-\frac{1}{2k}{\bf S}_{\mu})^{1/2}{\bf y}\big{\rangle}^{2}d\eta_{k}({\bf y}).

Now let Ξ½k:=(Bβ€‹πˆπβˆ’12​k​𝐒μ)1/2#​ηkβˆˆπ’«2​(ℝn)\nu_{k}:={(B{\bf Id}-\frac{1}{2k}{\bf S}_{\mu})^{1/2}}_{\#}\eta_{k}\in\mathcal{P}_{2}(\mathbb{R}^{n}), then for any π±βˆˆβ„π§\bf x\in\mathbb{R}^{n},

k​B​‖𝐱‖2=βˆ«β„n⟨𝐱,𝐲⟩2​𝑑μ+Ξ½k2​(𝐲),kB\|{\bf x}\|^{2}=\int_{\mathbb{R}^{n}}\langle{\bf x},{\bf y}\rangle^{2}d\frac{\mu+\nu_{k}}{2}({\bf y}),

which implies that 12​μ+12​νk\frac{1}{2}\mu+\frac{1}{2}\nu_{k} is a tight probabilistic frame with bound k​BkB. We get the last result by letting k=1k=1. ∎

Lemma 2.8.

Let ΞΌ\mu be a probabilistic frame. The statements below are equivalent:

  • (1).(1).

    ΞΌ\mu is a tight probabilistic frame.

  • (2).(2).

    (kβ€‹πˆπ)#​μ{(k{\bf Id})}_{\#}\mu where k>0k>0 is a probabilistic dual frame of pushforward type for ΞΌ\mu. In this case, the frame bound for ΞΌ\mu is 1k\frac{1}{k}.

Proof.

(1)⟹(2)(1)\implies(2) follows by letting the probabilistic dual frame be the canonical dual of μ\mu. Conversely, if (2)(2) holds, then

kβ€‹βˆ«β„n𝐱𝐱t​𝑑μ​(𝐱)=𝐈𝐝.k\int_{\mathbb{R}^{n}}{\bf x}{\bf x}^{t}d\mu({\bf x})={\bf Id}.

Therefore, 𝐒μ=1kβ€‹πˆπ{\bf S}_{\mu}=\frac{1}{k}{\bf Id} and thus ΞΌ\mu is a tight probabilistic frame with bound 1k\frac{1}{k}. ∎

We have the following trace equality for probabilistic dual frames of pushforward type from Lemma 2.4.

Lemma 2.9.

Let ΞΌ\mu be a probabilistic frame and T#​μT_{\#}\mu a probabilistic dual frame for ΞΌ\mu where T:ℝn→ℝnT:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} is measurable. Then, we have

βˆ«β„n⟨𝐱,T​(𝐱)βŸ©β€‹π‘‘ΞΌβ€‹(𝐱)=βˆ«β„nβ€–π’ΞΌβˆ’1/2​𝐱‖2​𝑑μ​(𝐱)=n.\int_{\mathbb{R}^{n}}\langle{\bf x},T({\bf x})\rangle d\mu({\bf x})=\int_{\mathbb{R}^{n}}\|{\bf S}_{\mu}^{-1/2}{\bf x}\|^{2}d\mu({\bf x})=n.
Proof.

Clearly, the first equality follows from Lemma 2.4 by letting Ξ½=T#​μ\nu=T_{\#}\mu and Ξ³=(𝐈𝐝,T)#​μ\gamma=({\bf Id},T)_{\#}\mu. Since π’ΞΌβˆ’1#​μ{{\bf S}_{\mu}^{-1}}_{\#}\mu is also a probabilistic dual frame, then

n=βˆ«β„n⟨𝐱,π’ΞΌβˆ’1β€‹π±βŸ©β€‹π‘‘ΞΌβ€‹(𝐱)=βˆ«β„nβŸ¨π’ΞΌβˆ’1/2​𝐱,π’ΞΌβˆ’1/2β€‹π±βŸ©β€‹π‘‘ΞΌβ€‹(𝐱)=βˆ«β„nβ€–π’ΞΌβˆ’1/2​𝐱‖2​𝑑μ​(𝐱).n=\int_{\mathbb{R}^{n}}\langle{\bf x},{{\bf S}_{\mu}^{-1}}{\bf x}\rangle d\mu({\bf x})=\int_{\mathbb{R}^{n}}\langle{{\bf S}_{\mu}^{-1/2}}{\bf x},{{\bf S}_{\mu}^{-1/2}}{\bf x}\rangle d\mu({\bf x})=\int_{\mathbb{R}^{n}}\|{\bf S}_{\mu}^{-1/2}{\bf x}\|^{2}d\mu({\bf x}).

∎

It has been shown that if a probability measure is closed to a given probabilistic frame in some sense, then this probability measure is a frame, and especially, the author gave a sufficient perturbation condition using probabilistic dual frames in Theorem 3.6 of [5]: Suppose ΞΌ\mu is a probabilistic frame and Ξ½\nu a probabilistic dual frame of ΞΌ\mu with respect to Ξ³12βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma_{12}\in\Gamma(\mu,\nu). Let Ξ·βˆˆπ’«2​(ℝn)\eta\in\mathcal{P}_{2}(\mathbb{R}^{n}) and Ξ³23βˆˆΞ“β€‹(Ξ½,Ξ·)\gamma_{23}\in\Gamma(\nu,\eta). Then, by Gluing Lemma[14, pp.59], there exists Ο€~βˆˆπ’«β€‹(ℝn×ℝn×ℝn)\tilde{\pi}\in\mathcal{P}(\mathbb{R}^{n}\times\mathbb{R}^{n}\times\mathbb{R}^{n}) with marginals Ξ³12\gamma_{12} and Ξ³23\gamma_{23}, and if

Οƒ:=βˆ«β„n×ℝn×ℝnβ€–π±βˆ’π³β€–β€‹β€–π²β€–β€‹π‘‘Ο€~​(𝐱,𝐲,𝐳)<1,\sigma:=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}\times\mathbb{R}^{n}}\|{\bf x}-{\bf z}\|\|{\bf y}\|d\tilde{\pi}({\bf x},{\bf y},{\bf z})<1,

then Ξ·\eta is a probabilistic frame with bounds (1βˆ’Οƒ)2M2​(Ξ½)​and​M2​(Ξ·)\frac{(1-\sigma)^{2}}{M_{2}(\nu)}\ \text{and}\ M_{2}(\eta). If the dual frame Ξ½\nu is of pushforward type, i.e., Ξ½=T#​μ\nu=T_{\#}\mu for map T:ℝn→ℝnT:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}. Then Ξ³12βˆˆΞ“β€‹(ΞΌ,T#​μ)\gamma_{12}\in\Gamma(\mu,T_{\#}\mu) and Gluing Lemma implies Ο€~=Ξ³12βŠ—Ξ·\tilde{\pi}=\gamma_{12}\otimes\eta. Then the above condition becomes

βˆ«β„n×ℝnβ€–π±βˆ’π³β€–β€‹β€–T​𝐱‖​𝑑μ​(𝐱)​𝑑η​(𝐳)<1.\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\|{\bf x}-{\bf z}\|\|T{\bf x}\|d\mu({\bf x})d\eta({\bf z})<1.

Indeed, as stated below, the conclusion of Ξ·\eta being a probabilistic frame holds for any coupling γ∈(ΞΌ,Ξ·)\gamma\in(\mu,\eta) besides the product measure ΞΌβŠ—Ξ·\mu\otimes\eta, and its proof is placed at Section 5. The following also generalizes Proposition 3.9 in [5] where T#​μ=π’ΞΌβˆ’1#​μT_{\#}\mu={{\bf S}_{\mu}^{-1}}_{\#}\mu.

Proposition 2.10.

Let ΞΌ\mu be a probabilistic frame and T:ℝn→ℝnT:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} be such that T#​μT_{\#}\mu is a probabilistic dual frame to ΞΌ\mu. Given Ξ·βˆˆπ’«2​(ℝn)\eta\in\mathcal{P}_{2}(\mathbb{R}^{n}) and Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ·)\gamma\in\Gamma(\mu,\eta), if

ΞΊ:=βˆ«β„n×ℝnβ€–π±βˆ’π³β€–β€‹β€–T​𝐱‖​𝑑γ​(𝐱,𝐳)<1,\kappa:=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\|{\bf x}-{\bf z}\|\|T{\bf x}\|d\gamma({\bf x},{\bf z})<1,

then Ξ·\eta is a probabilistic frame with bounds (1βˆ’ΞΊ)2M2​(T#​μ)\frac{(1-\kappa)^{2}}{M_{2}(T_{\#}\mu)} and M2​(Ξ·)M_{2}(\eta). In particular, if B>0B>0 is the upper bound of T#​μT_{\#}\mu, then the bounds for Ξ·\eta are (1βˆ’ΞΊ)2B\frac{(1-\kappa)^{2}}{B} and M2​(Ξ·)M_{2}(\eta).

3. Probabilistic Dual Frame Potentials

In this section, we study probabilistic dual frame potentials, which is motivated by dual frame potentials for finite frames proposed by [8]. The authors in [8] found a lower bound for dual frame potentials and the minimizer is just the canonical dual. We sketch their statement and proof as below to make the paper complete.

Theorem 3.1 (Theorem 2.2 in [8]).

Let {𝐟i}i=1N\{{\bf f}_{i}\}_{i=1}^{N} be a frame for β„‚n\mathbb{C}^{n} with frame operator 𝐒{\bf S}, and {𝐠i}i=1N\{{\bf g}_{i}\}_{i=1}^{N} a dual frame of {𝐟i}i=1N\{{\bf f}_{i}\}_{i=1}^{N} where N>nN>n. Then the dual frame potential between {𝐟i}i=1N\{{\bf f}_{i}\}_{i=1}^{N} and {𝐠i}i=1N\{{\bf g}_{i}\}_{i=1}^{N} satisfies

D​F​P​({𝐟i}i,{𝐠i}i):=βˆ‘i=1Nβˆ‘j=1N|⟨𝐟i,𝐠j⟩|2β‰₯n,DFP(\{{\bf f}_{i}\}_{i},\{{\bf g}_{i}\}_{i}):=\sum_{i=1}^{N}\sum_{j=1}^{N}|\langle{\bf f}_{i},{\bf g}_{j}\rangle|^{2}\geq n,

and equality holds if and only if {𝐠j}j=1N\{{\bf g}_{j}\}_{j=1}^{N} is the canonical dual frame {π’βˆ’1β€‹πŸj}j=1N\{{\bf S}^{-1}{\bf f}_{j}\}_{j=1}^{N}.

Proof.

It is well-known (see [7], Lemma 5.4.2) that for a fixed πŸβˆˆβ„‚n{\bf f}\in\mathbb{C}^{n}, the frame coefficients {⟨𝐟,π’βˆ’1β€‹πŸj⟩}i=1N\{\langle{\bf f},{\bf S}^{-1}{\bf f}_{j}\rangle\}_{i=1}^{N} has the least l2l^{2}-norm energy among any other sequence representing 𝐟{\bf f}. That is to say, if 𝐟=βˆ‘i=1Nciβ€‹πŸi{\bf f}=\sum_{i=1}^{N}c_{i}{\bf f}_{i} for some coefficients {ci}i=1N\{c_{i}\}_{i=1}^{N}, then

(3.1) βˆ‘i=1N|ci|2=βˆ‘i=1N|⟨𝐟,π’βˆ’1β€‹πŸi⟩|2+βˆ‘i=1N|ciβˆ’βŸ¨πŸ,π’βˆ’1β€‹πŸi⟩|2.\sum_{i=1}^{N}|c_{i}|^{2}=\sum_{i=1}^{N}|\langle{\bf f},{\bf S}^{-1}{\bf f}_{i}\rangle|^{2}+\sum_{i=1}^{N}|c_{i}-\langle{\bf f},{\bf S}^{-1}{\bf f}_{i}\rangle|^{2}.

Therefore,

βˆ‘i=1N|ci|2β‰₯βˆ‘i=1N|⟨𝐟,π’βˆ’1β€‹πŸi⟩|2,\sum_{i=1}^{N}|c_{i}|^{2}\geq\sum_{i=1}^{N}|\langle{\bf f},{\bf S}^{-1}{\bf f}_{i}\rangle|^{2},

and the equality holds if and only if ci=⟨𝐟,π’βˆ’1β€‹πŸi⟩c_{i}=\langle{\bf f},{\bf S}^{-1}{\bf f}_{i}\rangle, 1≀i≀N1\leq i\leq N. Since {𝐠i}i=1N\{{\bf g}_{i}\}_{i=1}^{N} a dual frame of {𝐟i}i=1N\{{\bf f}_{i}\}_{i=1}^{N}, then 𝐟=βˆ‘i=1N⟨𝐟,𝐠iβŸ©β€‹πŸi{\bf f}=\sum_{i=1}^{N}\langle{\bf f},{\bf g}_{i}\rangle{\bf f}_{i}. Therefore,

βˆ‘j=1N|⟨𝐟,𝐠j⟩|2β‰₯βˆ‘j=1N|⟨𝐟,π’βˆ’1β€‹πŸj⟩|2,\sum_{j=1}^{N}|\langle{\bf f},{\bf g}_{j}\rangle|^{2}\geq\sum_{j=1}^{N}|\langle{\bf f},{\bf S}^{-1}{\bf f}_{j}\rangle|^{2},

and the equality holds if and only if 𝐠j=π’βˆ’1β€‹πŸj{\bf g}_{j}={\bf S}^{-1}{\bf f}_{j}, 1≀j≀N1\leq j\leq N. Now let 𝐟=𝐟i{\bf f}={\bf f}_{i} and sum over ii, we have

βˆ‘i=1Nβˆ‘j=1N|⟨𝐟i,𝐠j⟩|2β‰₯βˆ‘i=1Nβˆ‘j=1N|⟨𝐟i,π’βˆ’1β€‹πŸj⟩|2=n,\sum_{i=1}^{N}\sum_{j=1}^{N}|\langle{\bf f}_{i},{\bf g}_{j}\rangle|^{2}\geq\sum_{i=1}^{N}\sum_{j=1}^{N}|\langle{\bf f}_{i},{\bf S}^{-1}{\bf f}_{j}\rangle|^{2}=n,

and the equality in the first inequality holds if and only if 𝐠j=π’βˆ’1β€‹πŸj{\bf g}_{j}={\bf S}^{-1}{\bf f}_{j}, 1≀j≀N1\leq j\leq N. The last equality can be verified by Proposition 17 in [1]. ∎

Similarly, we define the probabilistic dual frame potential for a probabilistic dual pair and show that it is invariant under unitary operation.

Definition 3.2.

Let ΞΌ\mu be a probabilistic frame and Ξ½βˆˆπ’«2​(ℝn)\nu\in\mathcal{P}_{2}(\mathbb{R}^{n}) a probabilistic dual frame to ΞΌ\mu. The probabilistic dual frame potential between ΞΌ\mu and Ξ½\nu is

D​F​Pμ​(Ξ½):=βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2​𝑑μ​(𝐱)​𝑑ν​(𝐲).DFP_{\mu}(\nu):=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2}d\mu({\bf x})d\nu({\bf y}).

Note that if T#​μT_{\#}\mu a probabilistic dual frame for ΞΌ\mu where T:ℝn→ℝnT:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} is measurable, then the probabilistic dual frame potential between ΞΌ\mu and T#​μT_{\#}\mu becomes

D​P​Fμ​(T#​μ):=βˆ«β„nβˆ«β„n|⟨𝐱,T​(𝐲)⟩|2​𝑑μ​(𝐱)​𝑑μ​(𝐲).DPF_{\mu}(T_{\#}\mu):=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},T({\bf y})\rangle|^{2}d\mu({\bf x})d\mu({\bf y}).
Lemma 3.3.

Let ΞΌ\mu be a probabilistic frame and 𝐔{\bf U} an unitary nΓ—nn\times n matrix. Then 𝐔#​μ{\bf U}_{\#}\mu is a probabilistic frame, and if Ξ½βˆˆπ’«2​(ℝn)\nu\in\mathcal{P}_{2}(\mathbb{R}^{n}) is a probabilistic dual frame to ΞΌ\mu, then 𝐔#​ν{\bf U}_{\#}\nu is also a dual frame to 𝐔#​μ{\bf U}_{\#}\mu. Furthermore, the probabilistic dual frame potential is unitarily invariant. That is to say, D​F​Pμ​(Ξ½)=D​F​P𝐔#​μ​(𝐔#​ν)DFP_{\mu}(\nu)=DFP_{{\bf U}_{\#}\mu}({\bf U}_{\#}\nu).

Proof.

Since 𝐔{\bf U} is unitary, then the frame operator of 𝐔#​μ{\bf U}_{\#}\mu is positive definite, i.e.,

S𝐔#​μ=βˆ«β„n𝐲𝐲t​𝑑𝐔#​μ​(𝐲)=βˆ«β„nU​𝐱𝐱t​Ut​𝑑μ​(𝐱)=U​Sμ​Ut>0.S_{{\bf U}_{\#}\mu}=\int_{\mathbb{R}^{n}}{\bf y}{\bf y}^{t}d{\bf U}_{\#}\mu({\bf y})=\int_{\mathbb{R}^{n}}U{\bf x}{{\bf x}}^{t}U^{t}d\mu({\bf x})=US_{\mu}U^{t}>0.

Therefore, 𝐔#​μ{\bf U}_{\#}\mu is a probabilistic frame. If Ξ½\nu is a probabilistic dual frame to ΞΌ\mu, then by Lemma 2.2, there exists Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu) such that for any 𝐟,π βˆˆβ„n{\bf f},{\bf g}\in\mathbb{R}^{n},

⟨𝐟,𝐠⟩=βˆ«β„n×ℝn⟨𝐱,πŸβŸ©β€‹βŸ¨π²,π βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲).\langle{\bf f},{\bf g}\rangle=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf x},{\bf f}\rangle\langle{\bf y},{\bf g}\rangle d\gamma({\bf x},{\bf y}).

Now define Ξ³β€²:=(𝐔,𝐔)#β€‹Ξ³βˆˆΞ“β€‹(𝐔#​μ,𝐔#​ν)\gamma^{\prime}:=({\bf U},{\bf U})_{\#}\gamma\in\Gamma({\bf U}_{\#}\mu,{\bf U}_{\#}\nu). Then for any 𝐟,π βˆˆβ„n{\bf f},{\bf g}\in\mathbb{R}^{n},

βˆ«β„n×ℝn⟨𝐱,πŸβŸ©β€‹βŸ¨π²,π βŸ©β€‹π‘‘Ξ³β€²β€‹(𝐱,𝐲)=βˆ«β„n×ℝnβŸ¨π”π±,πŸβŸ©β€‹βŸ¨π”π²,π βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲)=βˆ«β„n×ℝn⟨𝐱,𝐔tβ€‹πŸβŸ©β€‹βŸ¨π²,𝐔tβ€‹π βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲)=βŸ¨π”tβ€‹πŸ,𝐔tβ€‹π βŸ©=⟨𝐟,𝐠⟩,\begin{split}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf x},{\bf f}\rangle\langle{\bf y},{\bf g}\rangle d\gamma^{\prime}({\bf x},{\bf y})&=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf U}{\bf x},{\bf f}\rangle\langle{\bf U}{\bf y},{\bf g}\rangle d\gamma({\bf x},{\bf y})\\ &=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf x},{\bf U}^{t}{\bf f}\rangle\langle{\bf y},{\bf U}^{t}{\bf g}\rangle d\gamma({\bf x},{\bf y})\\ &=\langle{\bf U}^{t}{\bf f},{\bf U}^{t}{\bf g}\rangle=\langle{\bf f},{\bf g}\rangle,\end{split}

where the last equality comes from 𝐔t{\bf U}^{t} being unitary. Therefore, by Lemma 2.2 again, 𝐔#​ν{\bf U}_{\#}\nu is also a probabilistic dual frame to 𝐔#​μ{\bf U}_{\#}\mu with respect to Ξ³β€²\gamma^{\prime}. And the associated probabilistic dual frame potential is unitarily invariant, since

D​F​Pμ​(Ξ½)=βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2​𝑑μ​(𝐱)​𝑑ν​(𝐲)=βˆ«β„nβˆ«β„n|βŸ¨π”π±,π”π²βŸ©|2​𝑑μ​(𝐱)​𝑑ν​(𝐲)=βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2​𝑑𝐔#​μ​(𝐱)​𝑑𝐔#​ν​(𝐲)=D​F​PU#​μ​(U#​ν).\begin{split}DFP_{\mu}(\nu)&=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2}d\mu({\bf x})d\nu({\bf y})=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf U}{\bf x},{\bf U}{\bf y}\rangle|^{2}d\mu({\bf x})d\nu({\bf y})\\ &=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2}d{\bf U}_{\#}\mu({\bf x})d{\bf U}_{\#}\nu({\bf y})=DFP_{U_{\#}\mu}(U_{\#}\nu).\end{split}

∎

As Equation 3.1 suggests, for a fixed πŸβˆˆβ„n{\bf f}\in\mathbb{R}^{n} and a frame {𝐟i}i=1N\{{\bf f}_{i}\}_{i=1}^{N}, the canonical dual frame coefficient sequence {⟨𝐟,π’βˆ’1β€‹πŸj⟩}i=1N\{\langle{\bf f},{\bf S}^{-1}{\bf f}_{j}\rangle\}_{i=1}^{N} has the least l2l^{2}-norm energy among any other sequences representing 𝐟{\bf f} (see [7], Lemma 5.4.2). We obtain an analogous result for probabilistic frames, which shows that among all reconstructions, the canonical dual frame representation has the least L2​(ΞΌ,ℝn)L^{2}(\mu,\mathbb{R}^{n}) energy.

Proposition 3.4.

Let ΞΌ\mu be a probabilistic frame with frame operator 𝐒μ{\bf S}_{\mu}. For any fixed πŸβˆˆβ„n{\bf f}\in\mathbb{R}^{n}, if 𝐟=βˆ«β„n𝐱​ω​(𝐱)​𝑑μ​(𝐱){\bf f}=\int_{\mathbb{R}^{n}}{\bf x}\omega({\bf x})d\mu({\bf x}) for some Ο‰βˆˆL2​(ΞΌ,ℝn)\omega\in L^{2}(\mu,\mathbb{R}^{n}), then

βˆ«β„nΟ‰2​(𝐱)​𝑑μ​(𝐱)=βˆ«β„n|βŸ¨π’ΞΌβˆ’1β€‹πŸ,𝐱⟩|2​𝑑μ​(𝐱)+βˆ«β„n|ω​(𝐱)βˆ’βŸ¨π’ΞΌβˆ’1β€‹πŸ,𝐱⟩|2​𝑑μ​(𝐱).\int_{\mathbb{R}^{n}}\omega^{2}({\bf x})d\mu({\bf x})=\int_{\mathbb{R}^{n}}|\langle{\bf S}_{\mu}^{-1}{\bf f},{\bf x}\rangle|^{2}d\mu({\bf x})+\int_{\mathbb{R}^{n}}|\omega({\bf x})-\langle{\bf S}_{\mu}^{-1}{\bf f},{\bf x}\rangle|^{2}d\mu({\bf x}).

Furthermore,

βˆ«β„nΟ‰2​(𝐱)​𝑑μ​(𝐱)β‰₯βˆ«β„n|βŸ¨π’ΞΌβˆ’1β€‹πŸ,𝐱⟩|2​𝑑μ​(𝐱),\int_{\mathbb{R}^{n}}\omega^{2}({\bf x})d\mu({\bf x})\geq\int_{\mathbb{R}^{n}}|\langle{\bf S}_{\mu}^{-1}{\bf f},{\bf x}\rangle|^{2}d\mu({\bf x}),

and the equality holds if and only if ω​(𝐱)=βŸ¨π’ΞΌβˆ’1β€‹πŸ,𝐱⟩\omega({\bf x})=\langle{\bf S}_{\mu}^{-1}{\bf f},{\bf x}\rangle for ΞΌ\mu almost all π±βˆˆβ„n{\bf x}\in\mathbb{R}^{n}.

Proof.

For the probabilistic frame ΞΌ\mu, the synthesis operator V:L2​(ΞΌ)→ℝnV:L^{2}(\mu)\rightarrow\mathbb{R}^{n} and its adjoint analysis operator Vβˆ—:ℝnβ†’L2​(ΞΌ,ℝn)V^{*}:\mathbb{R}^{n}\rightarrow L^{2}(\mu,\mathbb{R}^{n}) are defined as

V​(ψ)=βˆ«β„nπ±β€‹Οˆβ€‹(𝐱)​𝑑μ​(𝐱)βˆˆβ„n,(Vβˆ—β€‹π±)​(β‹…)=⟨𝐱,β‹…βŸ©βˆˆL2​(ΞΌ,ℝn).V(\psi)=\int_{\mathbb{R}^{n}}{\bf x}\ \psi({\bf x})d\mu({\bf x})\in\mathbb{R}^{n},\ (V^{*}{\bf x})(\cdot)=\langle{\bf x},\cdot\rangle\in L^{2}(\mu,\mathbb{R}^{n}).

It can be shown that VV and Vβˆ—V^{*} are bounded linear and thus Ker⁑V=(Ran⁑Vβˆ—)βŸ‚\operatorname{Ker}V=(\operatorname{Ran}{V^{*}})^{\perp}, where Ran⁑(Vβˆ—)\operatorname{Ran}(V^{*}) is the range of the analysis operator Vβˆ—V^{*}, and Ker⁑V\operatorname{Ker}V is the kernel of the synthesis operator VV given by

Ker⁑V={ψ∈L2​(ΞΌ):V​(ψ)=βˆ«β„nπ±β€‹Οˆβ€‹(𝐱)​𝑑μ​(𝐱)=𝟎}.\operatorname{Ker}V=\{\psi\in L^{2}(\mu):V(\psi)=\int_{\mathbb{R}^{n}}{\bf x}\ \psi({\bf x})d\mu({\bf x})={\bf 0}\}.

For the given Ο‰βˆˆL2​(ΞΌ,ℝn)\omega\in L^{2}(\mu,\mathbb{R}^{n}),

ω​(β‹…)=ω​(β‹…)βˆ’βŸ¨π’ΞΌβˆ’1β€‹πŸ,β‹…βŸ©+βŸ¨π’ΞΌβˆ’1β€‹πŸ,β‹…βŸ©.\omega(\cdot)=\omega(\cdot)-\langle{\bf S}_{\mu}^{-1}{\bf f},\cdot\rangle+\langle{\bf S}_{\mu}^{-1}{\bf f},\cdot\rangle.

Since

V​(Ο‰βˆ’βŸ¨π’ΞΌβˆ’1β€‹πŸ,β‹…βŸ©)=βˆ«β„nω​(𝐱)​𝐱​𝑑μ​(𝐱)βˆ’βˆ«β„nβŸ¨π’ΞΌβˆ’1β€‹πŸ,π±βŸ©β€‹π±β€‹π‘‘ΞΌβ€‹(𝐱)=πŸβˆ’πŸ=0,V(\omega-\langle{\bf S}_{\mu}^{-1}{\bf f},\cdot\rangle)=\int_{\mathbb{R}^{n}}\omega({\bf x}){\bf x}d\mu({\bf x})-\int_{\mathbb{R}^{n}}\langle{\bf S}_{\mu}^{-1}{\bf f},{\bf x}\rangle{\bf x}d\mu({\bf x})={\bf f}-{\bf f}=0,

then Ο‰βˆ’βŸ¨π’ΞΌβˆ’1β€‹πŸ,β‹…βŸ©βˆˆKer⁑V=(Ran⁑Vβˆ—)βŸ‚\omega-\langle{\bf S}_{\mu}^{-1}{\bf f},\cdot\rangle\in\operatorname{Ker}V=(\operatorname{Ran}{V^{*}})^{\perp}. Since βŸ¨π’ΞΌβˆ’1β€‹πŸ,β‹…βŸ©βˆˆRan⁑Vβˆ—\langle{\bf S}_{\mu}^{-1}{\bf f},\cdot\rangle\in\operatorname{Ran}{V^{*}}, then Ο‰βˆ’βŸ¨π’ΞΌβˆ’1β€‹πŸ,β‹…βŸ©\omega-\langle{\bf S}_{\mu}^{-1}{\bf f},\cdot\rangle is orthogonal to βŸ¨π’ΞΌβˆ’1β€‹πŸ,β‹…βŸ©\langle{\bf S}_{\mu}^{-1}{\bf f},\cdot\rangle in L2​(ΞΌ,ℝn)L^{2}(\mu,\mathbb{R}^{n}). Therefore, by Pythagorean identity,

β€–Ο‰β€–L2​(ΞΌ)2=β€–Ο‰βˆ’βŸ¨π’ΞΌβˆ’1β€‹πŸ,β‹…βŸ©β€–L2​(ΞΌ)2+β€–βŸ¨π’ΞΌβˆ’1β€‹πŸ,β‹…βŸ©β€–L2​(ΞΌ)2.\|\omega\|_{L^{2}(\mu)}^{2}=\|\omega-\langle{\bf S}_{\mu}^{-1}{\bf f},\cdot\rangle\|_{L^{2}(\mu)}^{2}+\|\langle{\bf S}_{\mu}^{-1}{\bf f},\cdot\rangle\|_{L^{2}(\mu)}^{2}.

That is to say,

βˆ«β„nΟ‰2​(𝐱)​𝑑μ​(𝐱)=βˆ«β„n|ω​(𝐱)βˆ’βŸ¨π’ΞΌβˆ’1β€‹πŸ,𝐱⟩|2​𝑑μ​(𝐱)+βˆ«β„n|βŸ¨π’ΞΌβˆ’1β€‹πŸ,𝐱⟩|2​𝑑μ​(𝐱).\int_{\mathbb{R}^{n}}\omega^{2}({\bf x})d\mu({\bf x})=\int_{\mathbb{R}^{n}}|\omega({\bf x})-\langle{\bf S}_{\mu}^{-1}{\bf f},{\bf x}\rangle|^{2}d\mu({\bf x})+\int_{\mathbb{R}^{n}}|\langle{\bf S}_{\mu}^{-1}{\bf f},{\bf x}\rangle|^{2}d\mu({\bf x}).

Therefore,

βˆ«β„nΟ‰2​(𝐱)​𝑑μ​(𝐱)β‰₯βˆ«β„n|βŸ¨π’ΞΌβˆ’1β€‹πŸ,𝐱⟩|2​𝑑μ​(𝐱),\int_{\mathbb{R}^{n}}\omega^{2}({\bf x})d\mu({\bf x})\geq\int_{\mathbb{R}^{n}}|\langle{\bf S}_{\mu}^{-1}{\bf f},{\bf x}\rangle|^{2}d\mu({\bf x}),

and the equality holds if and only if

βˆ«β„n|ω​(𝐱)βˆ’βŸ¨π’ΞΌβˆ’1β€‹πŸ,𝐱⟩|2​𝑑μ​(𝐱)=0,\int_{\mathbb{R}^{n}}|\omega({\bf x})-\langle{\bf S}_{\mu}^{-1}{\bf f},{\bf x}\rangle|^{2}d\mu({\bf x})=0,

which is true if and only if ω​(𝐱)=βŸ¨π’ΞΌβˆ’1β€‹πŸ,𝐱⟩\omega({\bf x})=\langle{\bf S}_{\mu}^{-1}{\bf f},{\bf x}\rangle for ΞΌ\mu almost all π±βˆˆβ„n{\bf x}\in\mathbb{R}^{n}. ∎

We then can show that the minimizer of probabilistic dual frame potential among all probabilistic dual frames of pushforward type is the canonical dual.

Theorem 3.5.

Suppose ΞΌ\mu is a probabilistic frame with frame operator 𝐒μ{\bf S}_{\mu} and T#​μT_{\#}\mu a probabilistic dual frame to ΞΌ\mu where T:ℝn→ℝnT:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} is a measurable map. Then

D​P​Fμ​(T#​μ):=βˆ«β„nβˆ«β„n|⟨𝐱,T​(𝐲)⟩|2​𝑑μ​(𝐱)​𝑑μ​(𝐲)β‰₯n.DPF_{\mu}(T_{\#}\mu):=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},T({\bf y})\rangle|^{2}d\mu({\bf x})d\mu({\bf y})\geq n.

And the equality holds if and only if T​(𝐲)=π’ΞΌβˆ’1​𝐲T({\bf y})={\bf S}_{\mu}^{-1}{\bf y} for ΞΌ\mu almost all π²βˆˆβ„n{\bf y}\in\mathbb{R}^{n}.

Proof.

Since T#​μT_{\#}\mu a probabilistic dual frame to ΞΌ\mu, then for any π±βˆˆβ„n{\bf x}\in\mathbb{R}^{n},

𝐱=βˆ«β„nπ²β€‹βŸ¨π±,T​(𝐲)βŸ©β€‹π‘‘ΞΌβ€‹(𝐲).{\bf x}=\int_{\mathbb{R}^{n}}{\bf y}\langle{\bf x},T({\bf y})\rangle d\mu({\bf y}).

Note that ⟨𝐱,T​(β‹…)⟩:ℝnβ†’β„βˆˆL2​(ΞΌ,ℝn)\langle{\bf x},T(\cdot)\rangle:\mathbb{R}^{n}\rightarrow\mathbb{R}\in L^{2}(\mu,\mathbb{R}^{n}), since

βˆ«β„n|⟨𝐱,T​(𝐲)⟩|2​𝑑μ​(𝐲)≀‖𝐱‖2β€‹βˆ«β„nβ€–T​(𝐲)β€–2​𝑑μ​(𝐲)<+∞.\int_{\mathbb{R}^{n}}|\langle{\bf x},T({\bf y})\rangle|^{2}d\mu({\bf y})\leq\|{\bf x}\|^{2}\int_{\mathbb{R}^{n}}\|T({\bf y})\|^{2}d\mu({\bf y})<+\infty.

Then, by Proposition 3.4, we know that for any fixed π±βˆˆβ„n{\bf x}\in\mathbb{R}^{n},

(3.2) βˆ«β„n|⟨𝐱,T​(𝐲)⟩|2​𝑑μ​(𝐲)β‰₯βˆ«β„n|βŸ¨π’ΞΌβˆ’1​𝐱,𝐲⟩|2​𝑑μ​(𝐲)=βˆ«β„n|⟨𝐱,π’ΞΌβˆ’1β€‹π²βŸ©|2​𝑑μ​(𝐲),\int_{\mathbb{R}^{n}}|\langle{\bf x},T({\bf y})\rangle|^{2}d\mu({\bf y})\geq\int_{\mathbb{R}^{n}}|\langle{\bf S}_{\mu}^{-1}{\bf x},{\bf y}\rangle|^{2}d\mu({\bf y})=\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf S}_{\mu}^{-1}{\bf y}\rangle|^{2}d\mu({\bf y}),

and the equality holds if and only if T​(𝐲)=π’ΞΌβˆ’1​𝐲T({\bf y})={\bf S}_{\mu}^{-1}{\bf y} for ΞΌ\mu almost all π²βˆˆβ„n{\bf y}\in\mathbb{R}^{n}. Then,

βˆ«β„nβˆ«β„n|⟨𝐱,T​(𝐲)⟩|2​𝑑μ​(𝐲)​𝑑μ​(𝐱)β‰₯βˆ«β„nβˆ«β„n|⟨𝐱,π’ΞΌβˆ’1β€‹π²βŸ©|2​𝑑μ​(𝐲)​𝑑μ​(𝐱)=βˆ«β„nβˆ«β„n|βŸ¨π’ΞΌβˆ’1/2​𝐱,π’ΞΌβˆ’1/2β€‹π²βŸ©|2​𝑑μ​(𝐱)​𝑑μ​(𝐲)=βˆ«β„nβ€–π’ΞΌβˆ’1/2​𝐲‖2​𝑑μ​(𝐲)=n,\begin{split}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},T({\bf y})\rangle|^{2}d\mu({\bf y})d\mu({\bf x})&\geq\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf S}_{\mu}^{-1}{\bf y}\rangle|^{2}d\mu({\bf y})d\mu({\bf x})\\ &=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf S}_{\mu}^{-1/2}{\bf x},{\bf S}_{\mu}^{-1/2}{\bf y}\rangle|^{2}d\mu({\bf x})d\mu({\bf y})\\ &=\int_{\mathbb{R}^{n}}\|{\bf S}_{\mu}^{-1/2}{\bf y}\|^{2}d\mu({\bf y})=n,\end{split}

where the second step is due to the symmetry of π’ΞΌβˆ’1/2{\bf S}_{\mu}^{-1/2}, the equality in the third step follows from the fact that π’ΞΌβˆ’1/2#​μ{{\bf S}_{\mu}^{-1/2}}_{\#}\mu is a Parseval frame, and the last identity comes from Lemma 2.9. The equality clearly holds if T​(𝐲)=π’ΞΌβˆ’1​𝐲T({\bf y})={\bf S}_{\mu}^{-1}{\bf y} for ΞΌ\mu almost all π²βˆˆβ„n{\bf y}\in\mathbb{R}^{n}. Conversely, if the equality holds, then the equality in the first step holds. Thus, for ΞΌ\mu almost all π±βˆˆβ„n{\bf x}\in\mathbb{R}^{n},

βˆ«β„n|⟨𝐱,T​(𝐲)⟩|2​𝑑μ​(𝐲)=βˆ«β„n|⟨𝐱,π’ΞΌβˆ’1β€‹π²βŸ©|2​𝑑μ​(𝐲).\int_{\mathbb{R}^{n}}|\langle{\bf x},T({\bf y})\rangle|^{2}d\mu({\bf y})=\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf S}_{\mu}^{-1}{\bf y}\rangle|^{2}d\mu({\bf y}).

In particular, at least for some 𝐱0∈supp⁑(μ){\bf x}_{0}\in\operatorname{supp}(\mu), we have

βˆ«β„n|⟨𝐱0,T​(𝐲)⟩|2​𝑑μ​(𝐲)=βˆ«β„n|⟨𝐱0,π’ΞΌβˆ’1β€‹π²βŸ©|2​𝑑μ​(𝐲),\int_{\mathbb{R}^{n}}|\langle{\bf x}_{0},T({\bf y})\rangle|^{2}d\mu({\bf y})=\int_{\mathbb{R}^{n}}|\langle{\bf x}_{0},{\bf S}_{\mu}^{-1}{\bf y}\rangle|^{2}d\mu({\bf y}),

which implies that T​(𝐲)=π’ΞΌβˆ’1​𝐲T({\bf y})={\bf S}_{\mu}^{-1}{\bf y} for ΞΌ\mu almost all π²βˆˆβ„n{\bf y}\in\mathbb{R}^{n} by the equality condition in Equation 3.2. ∎

We then have the following corollary about the probabilistic 2​p2p-dual frame potential of pushforward type where p>1p>1.

Corollary 3.6.

Let p>1p>1. Suppose ΞΌ\mu is a probabilistic frame and T#β€‹ΞΌβˆˆπ’«2​(ℝn)T_{\#}\mu\in\mathcal{P}_{2}(\mathbb{R}^{n}) a probabilistic dual frame of pushforward type of ΞΌ\mu where T:ℝn→ℝnT:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}, then

βˆ«β„nβˆ«β„n|⟨𝐱,T​(𝐲)⟩|2​p​𝑑μ​(𝐱)​𝑑μ​(𝐲)β‰₯np,\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},T({\bf y})\rangle|^{2p}d\mu({\bf x})d\mu({\bf y})\geq n^{p},

where the equality does not hold when nβ‰₯2n\geq 2 or |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3. Furthermore, if nβ‰₯2n\geq 2 (or |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3) and pβ‰₯1p\geq 1,

ΞΌβŠ—ΞΌ-esssup{|⟨𝐱,T(𝐲)⟩|2​p:𝐱,π²βˆˆβ„n}>np.\mu\otimes\mu{\text{-}}\text{esssup}\ \{|\langle{\bf x},T({\bf y})\rangle|^{2p}:{\bf x},{\bf y}\in\mathbb{R}^{n}\}>n^{p}.
Proof.

Since |β‹…|p:ℝ→ℝ|\cdot|^{p}:\mathbb{R}\rightarrow\mathbb{R} is nonlinear and strictly convex when p>1p>1, then by Jensen’s Inequality and Theorem 3.5, we have

βˆ«β„nβˆ«β„n|⟨𝐱,T​(𝐲)⟩|2​p​𝑑μ​(𝐱)​𝑑μ​(𝐲)β‰₯|βˆ«β„nβˆ«β„n|⟨𝐱,T​(𝐲)⟩|2​𝑑μ​(𝐱)​𝑑μ​(𝐲)|pβ‰₯np.\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},T({\bf y})\rangle|^{2p}d\mu({\bf x})d\mu({\bf y})\geq\Big{|}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},T({\bf y})\rangle|^{2}d\mu({\bf x})d\mu({\bf y})\Big{|}^{p}\geq n^{p}.

Furthermore, the equality in the first inequality holds if and only if for ΞΌβŠ—ΞΌ\mu\otimes\mu almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x,y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, |⟨𝐱,T​(𝐲)⟩||\langle{\bf x},T({\bf y})\rangle| is constant, and the equality in the second inequality holds if and only if for ΞΌ\mu almost all π²βˆˆβ„n{\bf y}\in\mathbb{R}^{n}, T​(𝐲)=π’ΞΌβˆ’1​𝐲T({\bf y})={\bf S}_{\mu}^{-1}{\bf y}. Therefore, the equality holds if and only if for ΞΌβŠ—ΞΌ\mu\otimes\mu almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x,y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, |⟨𝐱,π’ΞΌβˆ’1β€‹π²βŸ©|=n|\langle{\bf x},{\bf S}_{\mu}^{-1}{\bf y}\rangle|=\sqrt{n}. Since π’ΞΌβˆ’1{\bf S}_{\mu}^{-1} is positive definite, then one can define an inner product βŸ¨β‹…,β‹…βŸ©ΞΌ:ℝn×ℝn→ℝ\langle\cdot,\cdot\rangle_{\mu}:\mathbb{R}^{n}\times\mathbb{R}^{n}\rightarrow\mathbb{R} given by ⟨𝐱,𝐲⟩μ=𝐱tβ€‹π’ΞΌβˆ’1​𝐲\langle{\bf x},{\bf y}\rangle_{\mu}={\bf x}^{t}{\bf S}_{\mu}^{-1}{\bf y}, and the reduced norm is given by

‖𝐱‖μ=⟨𝐱,𝐱⟩μ.\|{\bf x}\|_{\mu}=\sqrt{\langle{\bf x},{\bf x}\rangle_{\mu}}.

Therefore, if nβ‰₯2n\geq 2 or |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3 and the equality holds, then for ΞΌβŠ—ΞΌ\mu\otimes\mu almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x,y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, |⟨𝐱,𝐲⟩μ|=n|\langle{\bf x},{\bf y}\rangle_{\mu}|=\sqrt{n}. Hence, for any 𝐱,𝐲∈supp⁑(ΞΌ){\bf x,y}\in\operatorname{supp}(\mu), |⟨𝐱,𝐲⟩μ|=n|\langle{\bf x},{\bf y}\rangle_{\mu}|=\sqrt{n}, |⟨𝐲,𝐲⟩μ|=n|\langle{\bf y},{\bf y}\rangle_{\mu}|=\sqrt{n}, and |⟨𝐱,𝐱⟩μ|=n|\langle{\bf x},{\bf x}\rangle_{\mu}|=\sqrt{n}. Then, ‖𝐱‖μ​‖𝐲‖μ=n=|⟨𝐱,𝐲⟩μ|\|{\bf x}\|_{\mu}\|{\bf y}\|_{\mu}=\sqrt{n}=|\langle{\bf x},{\bf y}\rangle_{\mu}| and thus by Cauchy Schwartz inequality, there exists cβˆˆβ„c\in\mathbb{R} such that 𝐲=c​𝐱{\bf y}=c{\bf x}, which imples |c|​‖𝐱‖μ2=n|c|\|{\bf x}\|_{\mu}^{2}=\sqrt{n} implies that c=1c=1 or c=βˆ’1c=-1. Hence, supp⁑(ΞΌ)\operatorname{supp}(\mu) has at most two points, either supp⁑(ΞΌ)={𝐱}\operatorname{supp}(\mu)=\{{\bf x}\} or supp⁑(ΞΌ)={𝐱,βˆ’π±}\operatorname{supp}(\mu)=\{{\bf x},-{\bf x}\} for some π±βˆˆβ„n{\bf x}\in\mathbb{R}^{n}, and thus the linear span of supp⁑(ΞΌ)\operatorname{supp}(\mu) is an one-dimensional subspace, which contradicts with the assumption that |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3 or ΞΌ\mu is a probabilistic frame when nβ‰₯2n\geq 2. Furthermore, when nβ‰₯2n\geq 2 and p>1p>1 or |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3 and p>1p>1 , we have

ΞΌβŠ—ΞΌ-esssup{|⟨𝐱,T(𝐲)⟩|2​p:𝐱,π²βˆˆβ„n}β‰₯βˆ«β„nβˆ«β„n|⟨𝐱,T(𝐲)⟩|2​pdΞΌ(𝐱)dΞΌ(𝐲)>np.\mu\otimes\mu{\text{-}}\text{esssup}\ \{|\langle{\bf x},T({\bf y})\rangle|^{2p}:{\bf x},{\bf y}\in\mathbb{R}^{n}\}\geq\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},T({\bf y})\rangle|^{2p}d\mu({\bf x})d\mu({\bf y})>n^{p}.

For the p=1p=1 case, i.e., nβ‰₯2n\geq 2 and p=1p=1 or |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3 and p=1p=1, we have

ΞΌβŠ—ΞΌ-esssup{|⟨𝐱,T(𝐲)⟩|2:𝐱,π²βˆˆβ„n}β‰₯βˆ«β„nβˆ«β„n|⟨𝐱,T(𝐲)⟩|2dΞΌ(𝐱)dΞΌ(𝐲)β‰₯n.\mu\otimes\mu{\text{-}}\text{esssup}\ \{|\langle{\bf x},T({\bf y})\rangle|^{2}:{\bf x},{\bf y}\in\mathbb{R}^{n}\}\geq\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},T({\bf y})\rangle|^{2}d\mu({\bf x})d\mu({\bf y})\geq n.

Similarly, both equalities hold if and only if for ΞΌβŠ—ΞΌ\mu\otimes\mu almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x,y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, |⟨𝐱,π’ΞΌβˆ’1β€‹π²βŸ©||\langle{\bf x},{\bf S}_{\mu}^{-1}{\bf y}\rangle| is the constant n\sqrt{n}. Using a similar argument as above, we claim that if the equality holds, supp⁑(ΞΌ)\operatorname{supp}(\mu) has at most two points and the linear span of supp⁑(ΞΌ)\operatorname{supp}(\mu) is one-dimensional, which contradict with the assumption that |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3 or ΞΌ\mu is a probabilistic frame when nβ‰₯2n\geq 2. This completes the proof. ∎

Finally, we have the last theorem in this paper. For a given probabilistic frame with bounds AA and BB, we claim that the lower bound of probabilistic dual frame potential is given by n​ABn\frac{A}{B}, which is no great than nn, the lower bound of probabilistic dual frame potential among all dual frames of pushforward type in Theorem 3.5. This is because there exist probabilistic dual frames of non-pushforward type, and the minimization of probabilistic dual frame potential in Theorem 3.7 is among a lager set compared to the case in Theorem 3.5. However, the effect of probabilistic dual frames of non-pushforward type becomes negligible when the given probabilistic frame is tight (A=BA=B), since these two lower bounds are both nn.

Theorem 3.7.

Let ΞΌ\mu be a probabilistic frame with bounds AA and BB, and Ξ½βˆˆπ’«2​(ℝn)\nu\in\mathcal{P}_{2}(\mathbb{R}^{n}) a probabilistic dual frame to ΞΌ\mu. Then

D​P​Fμ​(Ξ½):=βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2​𝑑μ​(𝐱)​𝑑ν​(𝐲)β‰₯AB​nDPF_{\mu}(\nu):=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2}d\mu({\bf x})d\nu({\bf y})\geq\frac{A}{B}n

And the equality holds if and only if ΞΌ\mu is a tight probabilistic frame and Ξ½=π’ΞΌβˆ’1#​μ\nu={{\bf S}^{-1}_{\mu}}_{\#}\mu.

Proof.

Note that ΞΌ\mu is a probabilistic frame with bounds AA and BB, then

D​P​Fμ​(Ξ½):=βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2​𝑑μ​(𝐱)​𝑑ν​(𝐲)β‰₯Aβ€‹βˆ«β„n‖𝐲‖2​𝑑ν​(𝐲).DPF_{\mu}(\nu):=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2}d\mu({\bf x})d\nu({\bf y})\geq A\int_{\mathbb{R}^{n}}\|{\bf y}\|^{2}d\nu({\bf y}).

Since Ξ½\nu is a probabilistic dual frame to ΞΌ\mu, then by Lemma 2.4, there exists Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu) such that

βˆ«β„n×ℝn⟨𝐱,π²βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲)=n.\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf x,y}\rangle d\gamma({\bf x,y})=n.

Then, using Cauchy Schwartz inequality twice, we have

(3.3) n=βˆ«β„n×ℝn⟨𝐱,π²βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲)β‰€βˆ«β„n×ℝn‖𝐱‖​‖𝐲‖​𝑑γ​(𝐱,𝐲)β‰€βˆ«β„n‖𝐱‖2​𝑑μ​(𝐱)β€‹βˆ«β„n‖𝐲‖2​𝑑ν​(𝐲).\begin{split}n=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf x,y}\rangle d\gamma({\bf x,y})&\leq\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\|{\bf x}\|\|{\bf y}\|d\gamma({\bf x,y})\\ &\leq\sqrt{\int_{\mathbb{R}^{n}}\|{\bf x}\|^{2}d\mu({\bf x})\int_{\mathbb{R}^{n}}\|{\bf y}\|^{2}d\nu({\bf y})}.\end{split}

Therefore, we have

βˆ«β„n‖𝐲‖2​𝑑ν​(𝐲)β‰₯n2βˆ«β„n‖𝐱‖2​𝑑μ​(𝐱)β‰₯n2n​B=nB,\int_{\mathbb{R}^{n}}\|{\bf y}\|^{2}d\nu({\bf y})\geq\frac{n^{2}}{\int_{\mathbb{R}^{n}}\|{\bf x}\|^{2}d\mu({\bf x})}\geq\frac{n^{2}}{nB}=\frac{n}{B},

and the last inequality above follows from the following fact:

0<βˆ«β„n‖𝐱‖2​𝑑μ​(𝐱)=βˆ‘i=1nβˆ«β„n|⟨𝐞i,𝐱⟩|2​𝑑μ​(𝐱)β‰€βˆ‘i=1nBβ€‹β€–πžiβ€–2=n​B,0<\int_{\mathbb{R}^{n}}\|{\bf x}\|^{2}d\mu({\bf x})=\sum_{i=1}^{n}\int_{\mathbb{R}^{n}}|\langle{\bf e}_{i},{\bf x}\rangle|^{2}d\mu({\bf x})\leq\sum_{i=1}^{n}B\|{\bf e}_{i}\|^{2}=nB,

where {𝐞i}i=1n\{{\bf e}_{i}\}_{i=1}^{n} is the standard orthonormal basis in ℝn\mathbb{R}^{n}. Therefore,

D​P​Fμ​(Ξ½):=βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2​𝑑μ​(𝐱)​𝑑ν​(𝐲)β‰₯Aβ€‹βˆ«β„n‖𝐲‖2​𝑑ν​(𝐲)β‰₯n​AB.DPF_{\mu}(\nu):=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2}d\mu({\bf x})d\nu({\bf y})\geq A\int_{\mathbb{R}^{n}}\|{\bf y}\|^{2}d\nu({\bf y})\geq n\frac{A}{B}.

By the above proof and Lemma 2.9, the equality holds if ΞΌ\mu is a tight probabilistic frame and Ξ½=π’ΞΌβˆ’1#​μ\nu={{\bf S}^{-1}_{\mu}}_{\#}\mu. Conversely, if the equality holds, then for Ξ½\nu almost all 𝐲{\bf y},

βˆ«β„n|⟨𝐱,𝐲⟩|2​𝑑μ​(𝐱)=A​‖𝐲‖2,\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2}d\mu({\bf x})=A\|{\bf y}\|^{2},

and

βˆ«β„n‖𝐲‖2​𝑑ν​(𝐲)=n2βˆ«β„n‖𝐱‖2​𝑑μ​(𝐱)=nB,\int_{\mathbb{R}^{n}}\|{\bf y}\|^{2}d\nu({\bf y})=\frac{n^{2}}{\int_{\mathbb{R}^{n}}\|{\bf x}\|^{2}d\mu({\bf x})}=\frac{n}{B},

which implies that the equalities in the two Cauchy Schwartz inequalities in Equation 3.3 must hold. Thus, for the first equality in Equation 3.3, we can claim that for Ξ³\gamma almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x,y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, there exists a constant c𝐱c_{\bf x} that may be relate to 𝐱{\bf x} such that 𝐲=c𝐱​𝐱{\bf y}=c_{\bf x}{\bf x} and ⟨𝐱,𝐲⟩=‖𝐱‖​‖𝐲‖\langle{\bf x,y}\rangle=\|{\bf x}\|\|{\bf y}\|, i.e., c𝐱​‖𝐱‖2=|c𝐱|​‖𝐱‖2c_{\bf x}\|{\bf x}\|^{2}=|c_{\bf x}|\|{\bf x}\|^{2}, which implies c𝐱>0c_{\bf x}>0. Then, Ξ³\gamma is supported on the graph of the map T:ℝn→ℝnT:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} where T​(𝐱)=c𝐱​𝐱T({\bf{x}})=c_{\bf{x}}{\bf{x}}, that is to say, Ξ³=(𝐈𝐝,T)#​μ\gamma=({\bf{Id}},T)_{\#}\mu. For the second equality in Equation 3.3, we claim that there exists a positive constant cc such that βˆ₯β‹…βˆ₯𝐲=cβˆ₯β‹…βˆ₯𝐱\|\cdot\|_{{\bf y}}=c\|\cdot\|_{\bf x} in the sense that βˆ₯β‹…βˆ₯𝐲\|\cdot\|_{{\bf y}} and βˆ₯β‹…βˆ₯𝐱\|\cdot\|_{{\bf x}} are linearly dependent vectors in L2​(Ξ³,ℝn×ℝn)L^{2}(\gamma,\mathbb{R}^{n}\times\mathbb{R}^{n}) where β€–(𝐱,𝐲)‖𝐲=‖𝐲‖\|({\bf x,y})\|_{{\bf y}}=\|{\bf y}\| and β€–(𝐱,𝐲)‖𝐱=‖𝐱‖\|({\bf x,y})\|_{{\bf x}}=\|{\bf x}\|. Therefore, for Ξ³\gamma almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x},{\bf y})\in\mathbb{R}^{n}\times\mathbb{R}^{n},

𝐲=c𝐱​𝐱​and​‖𝐲‖=c​‖𝐱‖.{\bf y}=c_{\bf x}{\bf x}\ \text{and}\ \|{\bf y}\|=c\|{\bf x}\|.

Thus, c𝐱=cc_{\bf x}=c, independent of 𝐱\bf x, and Ξ³=(𝐈𝐝,cβ€‹πˆπ)#β€‹ΞΌβˆˆΞ“β€‹(ΞΌ,(cβ€‹πˆπ)#​μ)\gamma=({\bf Id},c{\bf Id})_{\#}\mu\in\Gamma(\mu,(c{\bf Id})_{\#}\mu). Since Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu), then Ξ½=(cβ€‹πˆπ)#​μ\nu=(c{\bf Id})_{\#}\mu, which is also a probabilistic dual frame of ΞΌ\mu with respect to Ξ³=(𝐈𝐝,cβ€‹πˆπ)#​μ\gamma=({\bf Id},c{\bf Id})_{\#}\mu. Then

𝐈𝐝=βˆ«β„n×ℝn𝐱𝐲t​𝑑γ​(𝐱,𝐲)=cβ€‹βˆ«β„n𝐱𝐱t​𝑑μ​(𝐱)=c​𝐒μ{\bf Id}=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}{\bf x}{\bf y}^{t}d\gamma({\bf x,y})=c\int_{\mathbb{R}^{n}}{\bf x}{\bf x}^{t}d\mu({\bf x})=c{\bf S}_{\mu}

which implies 𝐒μ=1cβ€‹πˆπ{\bf S}_{\mu}=\frac{1}{c}{\bf Id} where c>0c>0. Hence, ΞΌ\mu is a tight probabilistic frame with bound 1c\frac{1}{c} and Ξ½=(cβ€‹πˆπ)#​μ=π’ΞΌβˆ’1#​μ\nu=(c{\bf Id})_{\#}\mu={{\bf S}^{-1}_{\mu}}_{\#}\mu. This completes the proof. ∎

Theorem 3.7 says that the lower bound of probabilistic dual frame potential is admitted if and only if the given probabilistic frame is tight and the probabilistic dual frame is canonical, which is a β€œmixture” of equality conditions for the frame potential and dual frame potential mentioned in Section 1. However, when the given probabilistic frame is tight, the equality condition in Theorem 3.5 and Theorem 3.7 coincide: the equality holds if and only if the probabilistic dual frame is the canonical dual. We also have the following corollary about the probabilistic 2​p2p-dual frame potential where p>1p>1.

Corollary 3.8.

Let p>1p>1. Suppose ΞΌ\mu is a probabilistic frame with bounds AA and BB, and Ξ½\nu a probabilistic dual frame to ΞΌ\mu, then

βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2​p​𝑑μ​(𝐱)​𝑑ν​(𝐲)β‰₯np​ApBp,\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2p}d\mu({\bf x})d\nu({\bf y})\geq n^{p}\frac{A^{p}}{B^{p}},

where the equality does not hold when nβ‰₯2n\geq 2 or |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3. Furthermore, if nβ‰₯2n\geq 2 (or |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3) and pβ‰₯1p\geq 1,

ΞΌβŠ—Ξ½-esssup{|⟨𝐱,𝐲⟩|2​p:𝐱,π²βˆˆβ„n}>npApBp.\mu\otimes\nu{\text{-}}\text{esssup}\ \{|\langle{\bf x,y}\rangle|^{2p}:{\bf x,y}\in\mathbb{R}^{n}\}>n^{p}\frac{A^{p}}{B^{p}}.
Proof.

Since |β‹…|p:ℝ→ℝ|\cdot|^{p}:\mathbb{R}\rightarrow\mathbb{R} is nonlinear and strictly convex when p>1p>1, then by Jensen’s Inequality and Theorem 3.7, we have

βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2​p​𝑑μ​(𝐱)​𝑑ν​(𝐲)β‰₯|βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2​𝑑μ​(𝐱)​𝑑ν​(𝐲)|pβ‰₯np​ApBp.\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2p}d\mu({\bf x})d\nu({\bf y})\geq\Big{|}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2}d\mu({\bf x})d\nu({\bf y})\Big{|}^{p}\geq n^{p}\frac{A^{p}}{B^{p}}.

Furthermore, the equality in the first inequality holds if and only if for ΞΌβŠ—Ξ½\mu\otimes\nu almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x,y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, |⟨𝐱,𝐲⟩||\langle{\bf x},{\bf y}\rangle| is constant, and the equality in the second inequality holds if and only if ΞΌ\mu is a tight probabilistic frame and Ξ½=π’ΞΌβˆ’1#​μ\nu={{\bf S}^{-1}_{\mu}}_{\#}\mu. Then, both equalities hold if and only if 𝐒μ=Aβ€‹πˆπ{\bf S}_{\mu}=A{\bf Id}, Ξ½=(1Aβ€‹πˆπ)#​μ\nu=(\frac{1}{A}{\bf Id})_{\#}\mu, and for ΞΌβŠ—Ξ½\mu\otimes\nu almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x,y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, |⟨𝐱,𝐲⟩|=n|\langle{\bf x},{\bf y}\rangle|=\sqrt{n}. Note that if 𝐱∈supp⁑(ΞΌ){\bf x}\in\operatorname{supp}(\mu), then 1Aβ€‹π±βˆˆsupp⁑(Ξ½)\frac{1}{A}{\bf x}\in\operatorname{supp}(\nu). Therefore, if |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3 (or nβ‰₯2n\geq 2) and the equality holds, then for any 𝐱,𝐲∈supp⁑(ΞΌ){\bf x,y}\in\operatorname{supp}(\mu), |⟨𝐱,1Aβ€‹π²βŸ©|=n|\langle{\bf x},\frac{1}{A}{\bf y}\rangle|=\sqrt{n}, |⟨𝐱,1Aβ€‹π±βŸ©|=n|\langle{\bf x},\frac{1}{A}{\bf x}\rangle|=\sqrt{n} and |⟨𝐲,1Aβ€‹π²βŸ©|=n|\langle{\bf y},\frac{1}{A}{\bf y}\rangle|=\sqrt{n}, implying ‖𝐱‖=‖𝐲‖=A​n1/4\|{\bf x}\|=\|{\bf y}\|=\sqrt{A}n^{1/4} and thus ‖𝐱‖​‖𝐲‖=A​n=|⟨𝐱,𝐲⟩|\|{\bf x}\|\|{\bf y}\|=A\sqrt{n}=|\langle{\bf x},{\bf y}\rangle|. By Cauchy Schwartz inequality, we must have 𝐲=𝐱{\bf y}={\bf x} or 𝐲=βˆ’π±{\bf y}=-{\bf x}. Therefore, supp⁑(ΞΌ)\operatorname{supp}(\mu) has at most two points, either supp⁑(ΞΌ)={𝐱}\operatorname{supp}(\mu)=\{{\bf x}\} or supp⁑(ΞΌ)={𝐱,βˆ’π±}\operatorname{supp}(\mu)=\{{\bf x},-{\bf x}\}, and the linear span of supp⁑(ΞΌ)\operatorname{supp}(\mu) is an one-dimensional subspace, which contradicts with the assumption that |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3 or ΞΌ\mu is a probabilistic frame when nβ‰₯2n\geq 2. Moreover, when nβ‰₯2n\geq 2 (or |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3) and p>1p>1, we have

ΞΌβŠ—Ξ½-esssup{|⟨𝐱,𝐲⟩|2​p:𝐱,π²βˆˆβ„n}β‰₯βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2​pdΞΌ(𝐱)dΞ½(𝐲)>npApBp.\mu\otimes\nu{\text{-}}\text{esssup}\ \{|\langle{\bf x,y}\rangle|^{2p}:{\bf x,y}\in\mathbb{R}^{n}\}\geq\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2p}d\mu({\bf x})d\nu({\bf y})>n^{p}\frac{A^{p}}{B^{p}}.

For the p=1p=1 case, i.e. nβ‰₯2n\geq 2 (or |supp⁑(ΞΌ)|β‰₯3|\operatorname{supp}(\mu)|\geq 3) and p=1p=1, we have

ΞΌβŠ—Ξ½-esssup{|⟨𝐱,𝐲⟩|2:𝐱,π²βˆˆβ„n}β‰₯βˆ«β„nβˆ«β„n|⟨𝐱,𝐲⟩|2dΞΌ(𝐱)dΞ½(𝐲)β‰₯nAB.\mu\otimes\nu{\text{-}}\text{esssup}\ \{|\langle{\bf x,y}\rangle|^{2}:{\bf x,y}\in\mathbb{R}^{n}\}\geq\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{2}d\mu({\bf x})d\nu({\bf y})\geq n\frac{A}{B}.

Similarly, both equalities hold if and only if for ΞΌβŠ—Ξ½\mu\otimes\nu almost all (𝐱,𝐲)βˆˆβ„n×ℝn({\bf x,y})\in\mathbb{R}^{n}\times\mathbb{R}^{n}, |⟨𝐱,𝐲⟩|=n|\langle{\bf x},{\bf y}\rangle|=\sqrt{n}, 𝐒μ=Aβ€‹πˆπ{\bf S}_{\mu}=A{\bf Id}, and Ξ½=(1Aβ€‹πˆπ)#​μ\nu=(\frac{1}{A}{\bf Id})_{\#}\mu. And we get an analogous contradiction by using the same argument above, if the equality holds. ∎

We finish this section by the following case when n=1n=1 and |supp⁑(ΞΌ)|≀2|\operatorname{supp}(\mu)|\leq 2. When n=1n=1 and supp⁑(ΞΌ)={z}\operatorname{supp}(\mu)=\{z\} where zβ‰ 0z\neq 0, we claim that both equalities in the probabilistic pp-dual frame potential where pβ‰₯1p\geq 1 and associated supremum dual frame potential hold if and only if the probabilistic dual frame is the canonical dual. However, when n=1n=1 and supp⁑(ΞΌ)={z,βˆ’z}\operatorname{supp}(\mu)=\{z,-z\} , we claim that the canonical dual condition for equalities in the probabilistic 2​p2p-dual frame potential and associated supremum dual frame potential.

Example 3.1.

Note that any ΞΌ=Ξ΄z\mu=\delta_{z} where zβ‰ 0βˆˆβ„z\neq 0\in\mathbb{R} is a tight probabilistic frame for the real line. And the set of probabilistic dual frame of ΞΌ=Ξ΄z\mu=\delta_{z} is the collection of probability measures on ℝ\mathbb{R} with mean value 1z\frac{1}{z} and finite second moments. Indeed, let Ξ½βˆˆπ’«2​(ℝ)\nu\in\mathcal{P}_{2}(\mathbb{R}) be a probabilistic dual frame to ΞΌ\mu with respect to Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu). Since ΞΌ=Ξ΄z\mu=\delta_{z} is the delta measure at zz, then Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu) is unique and is given by the product measure Ξ³=ΞΌβŠ—Ξ½\gamma=\mu\otimes\nu. Therefore,

βˆ«β„βˆ«β„x​y​𝑑μ​(x)​𝑑ν​(y)=zβ€‹βˆ«β„y​𝑑ν​(y)=1.\int_{\mathbb{R}}\int_{\mathbb{R}}xyd\mu(x)d\nu(y)=z\int_{\mathbb{R}}yd\nu(y)=1.

Hence, the mean of Ξ½\nu is 1z\frac{1}{z}. Now let pβ‰₯1p\geq 1. Note that |β‹…|p:ℝ→ℝ|\cdot|^{p}:\mathbb{R}\rightarrow\mathbb{R} is nonlinear and convex, then by Jessen’s inequality, we have

βˆ«β„βˆ«β„|x​y|p​𝑑μ​(x)​𝑑ν​(y)β‰₯|βˆ«β„βˆ«β„x​y​𝑑μ​(x)​𝑑ν​(y)|p=1,\int_{\mathbb{R}}\int_{\mathbb{R}}|xy|^{p}d\mu({x})d\nu({y})\geq\left|\int_{\mathbb{R}}\int_{\mathbb{R}}xyd\mu({x})d\nu({y})\right|^{p}=1,

and the equality holds if and only if for ΞΌβŠ—Ξ½=Ξ΄zβŠ—Ξ½\mu\otimes\nu=\delta_{z}\otimes\nu almost all (x,y)βˆˆβ„Γ—β„(x,y)\in\mathbb{R}\times\mathbb{R}, x​y=1xy=1, which is true if and only if Ξ½=SΞΌβˆ’1#​μ=Ξ΄1z\nu={{S}_{\mu}^{-1}}_{\#}{\mu}=\delta_{\frac{1}{z}}. Therefore, when pβ‰₯1p\geq 1,

βˆ«β„βˆ«β„|x​y|p​𝑑μ​(x)​𝑑ν​(y)β‰₯1,\int_{\mathbb{R}}\int_{\mathbb{R}}|xy|^{p}d\mu({x})d\nu({y})\geq 1,

and the equality holds if and only if Ξ½=SΞΌβˆ’1#​μ=Ξ΄1z\nu={{S}_{\mu}^{-1}}_{\#}{\mu}=\delta_{\frac{1}{z}}. Furthermore,

ΞΌβŠ—Ξ½-esssup{|xy|p:x,yβˆˆβ„}β‰₯βˆ«β„βˆ«β„|xy|pdΞΌ(x)dΞ½(y)β‰₯1,\mu\otimes\nu{\text{-}}\text{esssup}\ \{|xy|^{p}:x,y\in\mathbb{R}\}\geq\int_{\mathbb{R}}\int_{\mathbb{R}}|xy|^{p}d\mu({x})d\nu({y})\geq 1,

and both equalities hold if and only if for ΞΌβŠ—Ξ½\mu\otimes\nu almost all (x,y)βˆˆβ„Γ—β„(x,y)\in\mathbb{R}\times\mathbb{R}, |x​y|=1|xy|=1, and Ξ½=SΞΌβˆ’1#​μ=Ξ΄1z\nu={{S}_{\mu}^{-1}}_{\#}{\mu}=\delta_{\frac{1}{z}}. Since Ξ½=Ξ΄1z\nu=\delta_{\frac{1}{z}}, the first statement is unnecessary and thus,

ΞΌβŠ—Ξ½-esssup{|xy|p:x,yβˆˆβ„}β‰₯1,\mu\otimes\nu{\text{-}}\text{esssup}\ \{|xy|^{p}:x,y\in\mathbb{R}\}\geq 1,

and the equality holds if and only if Ξ½=SΞΌβˆ’1#​μ=Ξ΄1z\nu={{S}_{\mu}^{-1}}_{\#}{\mu}=\delta_{\frac{1}{z}}.

Example 3.2.

Let 0<w<10<w<1 and ΞΌ=w​δz+(1βˆ’w)β€‹Ξ΄βˆ’z\mu=w\delta_{z}+(1-w)\delta_{-z} where zβ‰ 0βˆˆβ„z\neq 0\in\mathbb{R}. Clearly, ΞΌ\mu is a tight probabilistic frame for the real line. Now let pβ‰₯1p\geq 1 and Ξ½\nu be a probabilistic dual frame for ΞΌ\mu. Since |β‹…|p:ℝ→ℝ|\cdot|^{p}:\mathbb{R}\rightarrow\mathbb{R} where p>1p>1 is nonlinear and convex, then by Jessen’s inequality and Theorem 3.7,

βˆ«β„βˆ«β„|x​y|2​p​𝑑μ​(x)​𝑑ν​(y)β‰₯|βˆ«β„βˆ«β„x2​y2​𝑑μ​(x)​𝑑ν​(y)|pβ‰₯1,\int_{\mathbb{R}}\int_{\mathbb{R}}|xy|^{2p}d\mu({x})d\nu({y})\geq\left|\int_{\mathbb{R}}\int_{\mathbb{R}}x^{2}y^{2}d\mu({x})d\nu({y})\right|^{p}\geq 1,

and both equalities hold if and only if for ΞΌβŠ—Ξ½\mu\otimes\nu almost all (x,y)βˆˆβ„Γ—β„(x,y)\in\mathbb{R}\times\mathbb{R}, |x​y|=1|xy|=1, and Ξ½=SΞΌβˆ’1#​μ=w​δ1z+(1βˆ’w)β€‹Ξ΄βˆ’1z\nu={{S}_{\mu}^{-1}}_{\#}{\mu}=w\delta_{\frac{1}{z}}+(1-w)\delta_{-\frac{1}{z}}, which is clearly true if and only if Ξ½=w​δ1z+(1βˆ’w)β€‹Ξ΄βˆ’1z\nu=w\delta_{\frac{1}{z}}+(1-w)\delta_{-\frac{1}{z}}. By Theorem 3.7, we still have the above result when p=1p=1. Therefore, when pβ‰₯1p\geq 1, we have

βˆ«β„βˆ«β„|x​y|2​p​𝑑μ​(x)​𝑑ν​(y)β‰₯1,\int_{\mathbb{R}}\int_{\mathbb{R}}|xy|^{2p}d\mu({x})d\nu({y})\geq 1,

and the equality holds if and only if Ξ½=w​δ1z+(1βˆ’w)β€‹Ξ΄βˆ’1z\nu=w\delta_{\frac{1}{z}}+(1-w)\delta_{-\frac{1}{z}}. Similarly, we have

ΞΌβŠ—Ξ½-esssup{|xy|2​p:x,yβˆˆβ„}β‰₯βˆ«β„βˆ«β„|xy|2​pdΞΌ(x)dΞ½(y)β‰₯1,\mu\otimes\nu{\text{-}}\text{esssup}\ \{|xy|^{2p}:x,y\in\mathbb{R}\}\geq\int_{\mathbb{R}}\int_{\mathbb{R}}|xy|^{2p}d\mu({x})d\nu({y})\geq 1,

and the equality holds again if and only if for ΞΌβŠ—Ξ½\mu\otimes\nu almost all (x,y)βˆˆβ„Γ—β„(x,y)\in\mathbb{R}\times\mathbb{R}, |x​y|=1|xy|=1, and Ξ½=SΞΌβˆ’1#​μ=w​δ1z+(1βˆ’w)β€‹Ξ΄βˆ’1z\nu={{S}_{\mu}^{-1}}_{\#}{\mu}=w\delta_{\frac{1}{z}}+(1-w)\delta_{-\frac{1}{z}}. Dropping the unnecessary constant condition, we have

ΞΌβŠ—Ξ½-esssup{|xy|2​p:x,yβˆˆβ„}β‰₯1,\mu\otimes\nu{\text{-}}\text{esssup}\ \{|xy|^{2p}:x,y\in\mathbb{R}\}\geq 1,

and the equality holds if and only if Ξ½=SΞΌβˆ’1#​μ=w​δ1z+(1βˆ’w)β€‹Ξ΄βˆ’1z\nu={{S}_{\mu}^{-1}}_{\#}{\mu}=w\delta_{\frac{1}{z}}+(1-w)\delta_{-\frac{1}{z}}.

4. Concluding Questions

In this section, we finish the paper by the last proposition, which can be used to rewrite the probabilistic (dual) frame potential in terms of the pp-Wasserstein distance Wp​(β‹…,β‹…)W_{p}(\cdot,\cdot). This may provide a new clue on the minimization of many kinds of frame potentials from Wasserstein distance and optimal transport perspective. We use Ο€π±βŸ‚\pi_{{\bf x}^{\perp}} to denote the orthogonal projection to the plane π±βŸ‚{\bf x}^{\perp} of vectors perpendicular to π±βˆˆβ„n{\bf x}\in\mathbb{R}^{n}, and (Ο€π±βŸ‚)#(\pi_{{\bf x}^{\perp}})_{\#} the associated pushforward on measures.

Proposition 4.1 (Proposition 1.2 in [6]).

For any point 𝐱{\bf x} in the unit sphere Snβˆ’1S^{n-1} and any pβ‰₯1p\geq 1, we have

Wpp​(ΞΌ,(Ο€π±βŸ‚)#​μ)=βˆ«β„n|⟨𝐱,𝐲⟩|p​𝑑μ​(𝐲).W_{p}^{p}(\mu,(\pi_{{\bf x}^{\perp}})_{\#}\mu)=\int_{\mathbb{R}^{n}}|\langle{\bf x},{\bf y}\rangle|^{p}d\mu({\bf y}).

If the probabilistic frame is supported on the unit sphere Snβˆ’1S^{n-1}, the authors in [6] rewrote the minimization problem of probabilistic pp-frame potential as

infΞΌβˆˆπ’«β€‹(Snβˆ’1)β€‹βˆ¬(Snβˆ’1)2|⟨𝐱,𝐲⟩|p​𝑑μ​(𝐲)​𝑑μ​(𝐱)=infΞΌβˆˆπ’«β€‹(Snβˆ’1)β€‹βˆ«Snβˆ’1Wpp​(ΞΌ,(Ο€π±βŸ‚)#​μ)​𝑑μ​(𝐱).\underset{\mu\in{\mathcal{P}}(S^{n-1})}{\inf}\iint_{(S^{n-1})^{2}}|\left\langle{\bf x},{\bf y}\right\rangle|^{p}d\mu({\bf y})d\mu({\bf x})=\underset{\mu\in{\mathcal{P}}(S^{n-1})}{\inf}\int_{S^{n-1}}W^{p}_{p}(\mu,(\pi_{{\bf x}^{\perp}})_{\#}\mu)\ d\mu({\bf x}).

Significant progress has been done for this question when p>0p>0 is even [12, 18, 3], and when nβ‰₯2n\geq 2 and p>0p>0 not even, the authors in [3] conjecture that the optimizer is a finite discrete measure on the unit sphere Snβˆ’1S^{n-1}.

This paper gives a lower bound for the pp-probabilistic dual frame potential in Theorem 3.7 and Corollary 3.8 where pβ‰₯1p\geq 1 is even. And when pβ‰₯1p\geq 1 is non-even, the problem is generally open except the case in Example 3.1. However, if the probabilistic frame ΞΌ\mu is supported on Snβˆ’1S^{n-1} and pβ‰₯1p\geq 1 is not even, the probabilistic pp-dual frame potential can be written as

∫Snβˆ’1βˆ«β„n|⟨𝐱,𝐲⟩|p​𝑑ν​(𝐲)​𝑑μ​(𝐱)=∫Snβˆ’1Wpp​(Ξ½,(Ο€π±βŸ‚)#​ν)​𝑑μ​(𝐱),\int_{S^{n-1}}\int_{\mathbb{R}^{n}}|\left\langle{\bf x},{\bf y}\right\rangle|^{p}d\nu({\bf y})d\mu({\bf x})=\int_{S^{n-1}}W^{p}_{p}(\nu,(\pi_{{\bf x}^{\perp}})_{\#}\nu)\ d\mu({\bf x}),

which may shed new lights on the lower bound from Wasserstein metric perspective.

5. Proofs of Proposition 2.3 and Proposition 2.10

Proof of Proposition 2.3.

Note that for any 𝐟,𝐠∈D{\bf f},{\bf g}\in D,

⟨𝐟,𝐠⟩=12​(β€–πŸ+𝐠‖2βˆ’β€–πŸβ€–2βˆ’β€–π β€–2)=12β€‹βˆ«β„n×ℝn⟨𝐟+𝐠,π±βŸ©β€‹βŸ¨π²,𝐟+π βŸ©βˆ’βŸ¨πŸ,π±βŸ©β€‹βŸ¨π²,πŸβŸ©βˆ’βŸ¨π ,π±βŸ©β€‹βŸ¨π²,π βŸ©β€‹d​γ​(𝐱,𝐲)=12β€‹βˆ«β„n×ℝn⟨𝐟,π±βŸ©β€‹βŸ¨π²,𝐠⟩+⟨𝐠,π±βŸ©β€‹βŸ¨π²,πŸβŸ©β€‹d​γ​(𝐱,𝐲).\begin{split}\langle{\bf f},{\bf g}\rangle&=\frac{1}{2}(\|{\bf f}+{\bf g}\|^{2}-\|{\bf f}\|^{2}-\|{\bf g}\|^{2})\\ &=\frac{1}{2}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf f+g},{\bf x}\rangle\langle{\bf y},{\bf f+g}\rangle-\langle{\bf f},{\bf x}\rangle\langle{\bf y},{\bf f}\rangle-\langle{\bf g},{\bf x}\rangle\langle{\bf y},{\bf g}\rangle d\gamma({\bf x,y})\\ &=\frac{1}{2}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf f},{\bf x}\rangle\langle{\bf y},{\bf g}\rangle+\langle{\bf g},{\bf x}\rangle\langle{\bf y},{\bf f}\rangle d\gamma({\bf x,y}).\end{split}

Since βˆ«β„n×ℝn𝐱𝐲t​𝑑γ​(𝐱,𝐲)\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}{\bf x}{\bf y}^{t}d\gamma({\bf x,y}) is symmetric, then any 𝐟,𝐠∈D{\bf f},{\bf g}\in D,

⟨𝐟,𝐠⟩=βˆ«β„n×ℝn⟨𝐱,π βŸ©β€‹βŸ¨π²,πŸβŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲).\langle{\bf f},{\bf g}\rangle=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf x},{\bf g}\rangle\langle{\bf y},{\bf f}\rangle d\gamma({\bf x},{\bf y}).

Since DD is dense in ℝn\mathbb{R}^{n}, then for any 𝐟,π βˆˆβ„n{\bf f},{\bf g}\in\mathbb{R}^{n}, there exist {𝐟}𝐒,{𝐠}π£βŠ‚πƒ\{\bf f\}_{i},\{\bf g\}_{j}\subset D such that 𝐟iβ†’πŸ{\bf f}_{i}\rightarrow{\bf f} and 𝐠j→𝐠{\bf g}_{j}\rightarrow{\bf g}. Then by Lemma 2.2, we have

⟨𝐟,𝐠⟩=limiβ†’βˆžlimjβ†’βˆžβŸ¨πŸi,𝐠j⟩=limiβ†’βˆžlimjβ†’βˆžβˆ«β„n×ℝn⟨𝐟i,π±βŸ©β€‹βŸ¨π²,𝐠jβŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲)=βˆ«β„n×ℝnlimiβ†’βˆžlimjβ†’βˆžβŸ¨πŸi,π±βŸ©β€‹βŸ¨π²,𝐠jβŸ©β€‹d​γ​(𝐱,𝐲)=βˆ«β„n×ℝn⟨𝐟,π±βŸ©β€‹βŸ¨π²,π βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲).\begin{split}\langle{\bf f},{\bf g}\rangle=\lim_{i\rightarrow\infty}\lim_{j\rightarrow\infty}\langle{\bf f}_{i},{\bf g}_{j}\rangle&=\lim_{i\rightarrow\infty}\lim_{j\rightarrow\infty}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf f}_{i},{\bf x}\rangle\langle{\bf y},{\bf g}_{j}\rangle d\gamma({\bf x,y})\\ &=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\lim_{i\rightarrow\infty}\lim_{j\rightarrow\infty}\langle{\bf f}_{i},{\bf x}\rangle\langle{\bf y},{\bf g}_{j}\rangle d\gamma({\bf x,y})\\ &=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf f},{\bf x}\rangle\langle{\bf y},{\bf g}\rangle d\gamma({\bf x,y}).\\ \end{split}

By Lemma 2.2 again, Ξ½\nu is a probabilistic dual frame of ΞΌ\mu with respect to Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ½)\gamma\in\Gamma(\mu,\nu). We can exchange the limit and integral in the end, since for any π©βˆˆβ„n{\bf p}\in\mathbb{R}^{n},

βˆ«β„n×ℝn⟨𝐩,π±βŸ©β€‹βŸ¨π²,β‹…βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲):ℝn→ℝ\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf p},{\bf x}\rangle\langle{\bf y},\cdot\rangle d\gamma({\bf x,y}):\mathbb{R}^{n}\rightarrow\mathbb{R}

is a bounded linear operator: for any π³βˆˆβ„n{\bf z}\in\mathbb{R}^{n},

|βˆ«β„n×ℝn⟨𝐩,π±βŸ©β€‹βŸ¨π²,π³βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲)|2β‰€βˆ«β„n|⟨𝐩,𝐱⟩|2​𝑑μ​(𝐱)β€‹βˆ«β„n|⟨𝐳,𝐲⟩|2​𝑑ν​(𝐲)≀‖𝐩‖2​M2​(ΞΌ)​M2​(Ξ½)​‖𝐳‖2.\begin{split}\Big{|}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle{\bf p},{\bf x}\rangle\langle{\bf y},{\bf z}\rangle d\gamma({\bf x,y})\Big{|}^{2}&\leq\int_{\mathbb{R}^{n}}|\langle{\bf p},{\bf x}\rangle|^{2}d\mu({\bf x})\int_{\mathbb{R}^{n}}|\langle{\bf z},{\bf y}\rangle|^{2}d\nu({\bf y})\\ &\leq\|{\bf p}\|^{2}M_{2}(\mu)M_{2}(\nu)\ \|{\bf z}\|^{2}.\end{split}

Similarly, for any fixed πͺ{\bf q} in ℝn\mathbb{R}^{n}, the following linear operator

βˆ«β„n×ℝnβŸ¨β‹…,π±βŸ©β€‹βŸ¨π²,πͺβŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐲):ℝn→ℝ\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\langle\cdot,{\bf x}\rangle\langle{\bf y,q}\rangle d\gamma({\bf x,y}):\mathbb{R}^{n}\rightarrow\mathbb{R}

is also bounded. ∎

Proof of Proposition 2.10.

Since Ξ·βˆˆπ’«2​(ℝn)\eta\in\mathcal{P}_{2}(\mathbb{R}^{n}), then Ξ·\eta is Bessel with bound M2​(Ξ·)M_{2}(\eta). Next let us show the lower frame bound. Define a linear operator L:ℝn→ℝnL:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} by

L​(𝐟)=βˆ«β„n×ℝn⟨𝐟,Tβ€‹π±βŸ©β€‹π³β€‹π‘‘Ξ³β€‹(𝐱,𝐳),for anyβ€‹πŸβˆˆβ„n.L({\bf f})=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\left\langle{\bf f},T{\bf x}\right\rangle{\bf z}d\gamma({\bf x,z}),\ \text{for any}\ {\bf f}\in\mathbb{R}^{n}.

Since T#​μT_{\#}\mu is a probabilistic dual frame to ΞΌ\mu and Ξ³βˆˆΞ“β€‹(ΞΌ,Ξ·)\gamma\in\Gamma(\mu,\eta), then

𝐟=βˆ«β„n⟨𝐟,Tβ€‹π±βŸ©β€‹π±β€‹π‘‘ΞΌβ€‹(𝐱)=βˆ«β„n×ℝn⟨𝐟,Tβ€‹π±βŸ©β€‹π±β€‹π‘‘Ξ³β€‹(𝐱,𝐳),for anyβ€‹πŸβˆˆβ„n.{\bf f}=\int_{\mathbb{R}^{n}}\left\langle{\bf f},T{\bf x}\right\rangle{\bf x}d\mu({\bf x})=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\left\langle{\bf f},T{\bf x}\right\rangle{\bf x}d\gamma({\bf x,z}),\ \text{for any}\ {\bf f}\in\mathbb{R}^{n}.

Therefore,

β€–πŸβˆ’L​(𝐟)β€–=β€–βˆ«β„n×ℝn⟨𝐟,Tβ€‹π±βŸ©β€‹π±β€‹π‘‘Ξ³β€‹(𝐱,𝐳)βˆ’βˆ«β„n×ℝn⟨𝐟,Tβ€‹π±βŸ©β€‹π³β€‹π‘‘Ξ³β€‹(𝐱,𝐳)β€–=β€–βˆ«β„n×ℝn⟨𝐟,Tβ€‹π±βŸ©β€‹(π±βˆ’π³)​𝑑γ​(𝐱,𝐳)β€–β‰€ΞΊβ€‹β€–πŸβ€–<β€–πŸβ€–.\begin{split}\|{\bf f}-L({\bf f})\|&=\Big{\|}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\left\langle{\bf f},T{\bf x}\right\rangle{\bf x}d\gamma({\bf x,z})-\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\left\langle{\bf f},T{\bf x}\right\rangle{\bf z}d\gamma({\bf x,z})\Big{\|}\\ &=\Big{\|}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\left\langle{\bf f},T{\bf x}\right\rangle({\bf x-z})d\gamma({\bf x,z})\Big{\|}\leq\kappa\|{\bf f}\|<\|{\bf f}\|.\end{split}

Thus, L:ℝn→ℝnL:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} is invertible and β€–Lβˆ’1‖≀11βˆ’ΞΊ\|L^{-1}\|\leq\frac{1}{1-\kappa}. Then for any πŸβˆˆβ„n{\bf f}\in\mathbb{R}^{n},

𝐟=L​Lβˆ’1​(𝐟)=βˆ«β„n×ℝn⟨Lβˆ’1β€‹πŸ,Tβ€‹π±βŸ©β€‹π³β€‹π‘‘Ξ³β€‹(𝐱,𝐳).{\bf f}=LL^{-1}({\bf f})=\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\left\langle L^{-1}{\bf f},T{\bf x}\right\rangle{\bf z}d\gamma({\bf x,z}).

Therefore,

β€–πŸβ€–4=|⟨𝐟,𝐟⟩|2=|βˆ«β„n×ℝn⟨Lβˆ’1β€‹πŸ,Tβ€‹π±βŸ©β€‹βŸ¨πŸ,π³βŸ©β€‹π‘‘Ξ³β€‹(𝐱,𝐳)|2β‰€βˆ«β„n×ℝn|⟨Lβˆ’1β€‹πŸ,Tβ€‹π±βŸ©|2​𝑑γ​(𝐱,𝐳)β€‹βˆ«β„n×ℝn|⟨𝐟,𝐳⟩|2​𝑑γ​(𝐱,𝐳)=βˆ«β„n|⟨Lβˆ’1β€‹πŸ,𝐱⟩|2​𝑑T#​μ​(𝐱)β€‹βˆ«β„n|⟨𝐟,𝐳⟩|2​𝑑η​(𝐳)≀B​‖Lβˆ’1β€‹πŸβ€–2β€‹βˆ«β„n|⟨𝐟,𝐳⟩|2​𝑑η​(𝐳)≀Bβ€‹β€–πŸβ€–2(1βˆ’ΞΊ)2β€‹βˆ«β„n|⟨𝐟,𝐳⟩|2​𝑑η​(𝐳),\begin{split}\|{\bf f}\|^{4}&=|\left\langle{\bf f},{\bf f}\right\rangle|^{2}=\Big{|}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\left\langle L^{-1}{\bf f},T{\bf x}\right\rangle\left\langle{\bf f},{\bf z}\right\rangle d\gamma({\bf x,z})\Big{|}^{2}\\ &\leq\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}|\left\langle L^{-1}{\bf f},T{\bf x}\right\rangle|^{2}d\gamma({\bf x,z})\ \int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}|\left\langle{\bf f},{\bf z}\right\rangle|^{2}d\gamma({\bf x,z})\\ &=\int_{\mathbb{R}^{n}}|\left\langle L^{-1}{\bf f},{\bf x}\right\rangle|^{2}dT_{\#}\mu({\bf x})\ \int_{\mathbb{R}^{n}}|\left\langle{\bf f},{\bf z}\right\rangle|^{2}d\eta({\bf z})\\ &\leq B\|L^{-1}{\bf f}\|^{2}\ \int_{\mathbb{R}^{n}}|\left\langle{\bf f},{\bf z}\right\rangle|^{2}d\eta({\bf z})\leq\frac{B\|{\bf f}\|^{2}}{(1-\kappa)^{2}}\ \int_{\mathbb{R}^{n}}|\left\langle{\bf f},{\bf z}\right\rangle|^{2}d\eta({\bf z}),\end{split}

where the first inequality is due to Cauchy Schwartz inequality and the second inequality follows from the frame property of T#​μT_{\#}\mu. Thus, for any πŸβˆˆβ„n{\bf f}\in\mathbb{R}^{n},

(1βˆ’ΞΊ)2Bβ€‹β€–πŸβ€–2β‰€βˆ«β„n|⟨𝐟,𝐳⟩|2​𝑑η​(𝐳)≀M2​(Ξ·)β€‹β€–πŸβ€–2.\frac{(1-\kappa)^{2}}{B}\|{\bf f}\|^{2}\leq\int_{\mathbb{R}^{n}}|\left\langle{\bf f},{\bf z}\right\rangle|^{2}d\eta({\bf z})\leq M_{2}(\eta)\|{\bf f}\|^{2}.

Therefore, Ξ·\eta is a probabilistic frame with bounds (1βˆ’ΞΊ)2B​and​M2​(Ξ·)\frac{(1-\kappa)^{2}}{B}\ \text{and}\ M_{2}(\eta). Since M2​(T#​μ)M_{2}(T_{\#}\mu) is always an upper bound for T#​μT_{\#}\mu, then Ξ·\eta is a probabilistic frame with bounds

(1βˆ’ΞΊ)2M2​(T#​μ)​and​M2​(Ξ·).\frac{(1-\kappa)^{2}}{M_{2}(T_{\#}\mu)}\ \text{and}\ M_{2}(\eta).

∎

References

  • [1] Roza Aceska and McKenna Kaczanowski. Cross-frame potential. Numerical Functional Analysis and Optimization, 43(15):1707–1731, 2022.
  • [2] JohnΒ J Benedetto and Matthew Fickus. Finite normalized tight frames. Advances in Computational Mathematics, 18:357–385, 2003.
  • [3] Dmitriy Bilyk, Alexey Glazyrin, Ryan Matzke, Josiah Park, and Oleksandr Vlasiuk. Optimal measures for p-frame energies on spheres. Rev. Mat. Iberoam., 2022.
  • [4] PeterΒ G Casazza. The Kadison–Singer and Paulsen problems in finite frame theory. Finite frames: theory and applications, pages 381–413, 2013.
  • [5] Dongwei Chen. Paley-wiener theorem for probabilistic frames. arXiv preprint arXiv:2310.17830, 2023.
  • [6] Dongwei Chen and Martin Schmoll. Probabilistic frames and wasserstein distances. arXiv preprint arXiv:2501.02602, 2025.
  • [7] Ole Christensen. An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis, 2016.
  • [8] Ole Christensen, Somantika Datta, and RaeΒ Young Kim. Equiangular frames and generalizations of the welch bound to dual pairs of frames. Linear and Multilinear Algebra, 68(12):2495–2505, 2020.
  • [9] Ingrid Daubechies. Ten lectures on wavelets. SIAM, 1992.
  • [10] RichardΒ J Duffin and AlbertΒ C Schaeffer. A class of nonharmonic Fourier series. Transactions of the American Mathematical Society, 72(2):341–366, 1952.
  • [11] Martin Ehler. Random tight frames. Journal of Fourier Analysis and Applications, 18(1):1–20, 2012.
  • [12] Martin Ehler and KassoΒ A Okoudjou. Minimization of the probabilistic p-frame potential. Journal of Statistical Planning and Inference, 142(3):645–659, 2012.
  • [13] Martin Ehler and KassoΒ A Okoudjou. Probabilistic frames: an overview. Finite frames, pages 415–436, 2013.
  • [14] Alessio Figalli and Federico Glaudo. An Invitation to Optimal Transport, Wasserstein Distances, and Gradient Flows. EMS Press, 2021.
  • [15] Karlheinz GrΓΆchenig. Foundations of time-frequency analysis. Springer Science & Business Media, 2001.
  • [16] MΒ Maslouhi and SΒ Loukili. Probabilistic tight frames and representation of positive operator-valued measures. Applied and Computational Harmonic Analysis, 47(1):212–225, 2019.
  • [17] Clare Wickman and Kasso Okoudjou. Duality and geodesics for probabilistic frames. Linear Algebra and Its Applications, 532:198–221, 2017.
  • [18] Clare Wickman and KassoΒ A Okoudjou. Gradient flows for probabilistic frame potentials in the Wasserstein space. SIAM Journal on Mathematical Analysis, 55(3):2324–2346, 2023.