This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

STAR Collaboration

Probing Strangeness Canonical Ensemble with KK^{-}, ϕ(1020)\phi(1020) and Ξ\Xi^{-} Production in Au+Au Collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}}

M. S. Abdallah American University of Cairo, New Cairo 11835, New Cairo, Egypt    B. E. Aboona Texas A&M University, College Station, Texas 77843    J. Adam Brookhaven National Laboratory, Upton, New York 11973    L. Adamczyk AGH University of Science and Technology, FPACS, Cracow 30-059, Poland    J. R. Adams Ohio State University, Columbus, Ohio 43210    J. K. Adkins University of Kentucky, Lexington, Kentucky 40506-0055    G. Agakishiev Joint Institute for Nuclear Research, Dubna 141 980    I. Aggarwal Panjab University, Chandigarh 160014, India    M. M. Aggarwal Panjab University, Chandigarh 160014, India    Z. Ahammed Variable Energy Cyclotron Centre, Kolkata 700064, India    I. Alekseev Alikhanov Institute for Theoretical and Experimental Physics NRC ”Kurchatov Institute”, Moscow 117218 National Research Nuclear University MEPhI, Moscow 115409    D. M. Anderson Texas A&M University, College Station, Texas 77843    A. Aparin Joint Institute for Nuclear Research, Dubna 141 980    E. C. Aschenauer Brookhaven National Laboratory, Upton, New York 11973    M. U. Ashraf Central China Normal University, Wuhan, Hubei 430079    F. G. Atetalla Kent State University, Kent, Ohio 44242    A. Attri Panjab University, Chandigarh 160014, India    G. S. Averichev Joint Institute for Nuclear Research, Dubna 141 980    V. Bairathi Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile    W. Baker University of California, Riverside, California 92521    J. G. Ball Cap University of Houston, Houston, Texas 77204    K. Barish University of California, Riverside, California 92521    A. Behera State University of New York, Stony Brook, New York 11794    R. Bellwied University of Houston, Houston, Texas 77204    P. Bhagat University of Jammu, Jammu 180001, India    A. Bhasin University of Jammu, Jammu 180001, India    J. Bielcik Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic    J. Bielcikova Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic    I. G. Bordyuzhin Alikhanov Institute for Theoretical and Experimental Physics NRC ”Kurchatov Institute”, Moscow 117218    J. D. Brandenburg Brookhaven National Laboratory, Upton, New York 11973    A. V. Brandin National Research Nuclear University MEPhI, Moscow 115409    I. Bunzarov Joint Institute for Nuclear Research, Dubna 141 980    J. Butterworth Rice University, Houston, Texas 77251    X. Z. Cai Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800    H. Caines Yale University, New Haven, Connecticut 06520    M. Calderón de la Barca Sánchez University of California, Davis, California 95616    D. Cebra University of California, Davis, California 95616    I. Chakaberia Lawrence Berkeley National Laboratory, Berkeley, California 94720 Brookhaven National Laboratory, Upton, New York 11973    P. Chaloupka Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic    B. K. Chan University of California, Los Angeles, California 90095    F-H. Chang National Cheng Kung University, Tainan 70101    Z. Chang Brookhaven National Laboratory, Upton, New York 11973    N. Chankova-Bunzarova Joint Institute for Nuclear Research, Dubna 141 980    A. Chatterjee Central China Normal University, Wuhan, Hubei 430079    S. Chattopadhyay Variable Energy Cyclotron Centre, Kolkata 700064, India    D. Chen University of California, Riverside, California 92521    J. Chen Shandong University, Qingdao, Shandong 266237    J. H. Chen Fudan University, Shanghai, 200433    X. Chen University of Science and Technology of China, Hefei, Anhui 230026    Z. Chen Shandong University, Qingdao, Shandong 266237    J. Cheng Tsinghua University, Beijing 100084    M. Chevalier University of California, Riverside, California 92521    S. Choudhury Fudan University, Shanghai, 200433    W. Christie Brookhaven National Laboratory, Upton, New York 11973    X. Chu Brookhaven National Laboratory, Upton, New York 11973    H. J. Crawford University of California, Berkeley, California 94720    M. Csanád ELTE Eötvös Loránd University, Budapest, Hungary H-1117    M. Daugherity Abilene Christian University, Abilene, Texas 79699    T. G. Dedovich Joint Institute for Nuclear Research, Dubna 141 980    I. M. Deppner University of Heidelberg, Heidelberg 69120, Germany    A. A. Derevschikov NRC ”Kurchatov Institute”, Institute of High Energy Physics, Protvino 142281    A. Dhamija Panjab University, Chandigarh 160014, India    L. Di Carlo Wayne State University, Detroit, Michigan 48201    L. Didenko Brookhaven National Laboratory, Upton, New York 11973    P. Dixit Indian Institute of Science Education and Research (IISER), Berhampur 760010 , India    X. Dong Lawrence Berkeley National Laboratory, Berkeley, California 94720    J. L. Drachenberg Abilene Christian University, Abilene, Texas 79699    E. Duckworth Kent State University, Kent, Ohio 44242    J. C. Dunlop Brookhaven National Laboratory, Upton, New York 11973    N. Elsey Wayne State University, Detroit, Michigan 48201    J. Engelage University of California, Berkeley, California 94720    G. Eppley Rice University, Houston, Texas 77251    S. Esumi University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan    O. Evdokimov University of Illinois at Chicago, Chicago, Illinois 60607    A. Ewigleben Lehigh University, Bethlehem, Pennsylvania 18015    O. Eyser Brookhaven National Laboratory, Upton, New York 11973    R. Fatemi University of Kentucky, Lexington, Kentucky 40506-0055    F. M. Fawzi American University of Cairo, New Cairo 11835, New Cairo, Egypt    S. Fazio Brookhaven National Laboratory, Upton, New York 11973    P. Federic Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic    J. Fedorisin Joint Institute for Nuclear Research, Dubna 141 980    C. J. Feng National Cheng Kung University, Tainan 70101    Y. Feng Purdue University, West Lafayette, Indiana 47907    P. Filip Joint Institute for Nuclear Research, Dubna 141 980    E. Finch Southern Connecticut State University, New Haven, Connecticut 06515    Y. Fisyak Brookhaven National Laboratory, Upton, New York 11973    A. Francisco Yale University, New Haven, Connecticut 06520    C. Fu Central China Normal University, Wuhan, Hubei 430079    L. Fulek AGH University of Science and Technology, FPACS, Cracow 30-059, Poland    C. A. Gagliardi Texas A&M University, College Station, Texas 77843    T. Galatyuk Technische Universität Darmstadt, Darmstadt 64289, Germany    F. Geurts Rice University, Houston, Texas 77251    N. Ghimire Temple University, Philadelphia, Pennsylvania 19122    A. Gibson Valparaiso University, Valparaiso, Indiana 46383    K. Gopal Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India    X. Gou Shandong University, Qingdao, Shandong 266237    D. Grosnick Valparaiso University, Valparaiso, Indiana 46383    A. Gupta University of Jammu, Jammu 180001, India    W. Guryn Brookhaven National Laboratory, Upton, New York 11973    A. I. Hamad Kent State University, Kent, Ohio 44242    A. Hamed American University of Cairo, New Cairo 11835, New Cairo, Egypt    Y. Han Rice University, Houston, Texas 77251    S. Harabasz Technische Universität Darmstadt, Darmstadt 64289, Germany    M. D. Harasty University of California, Davis, California 95616    J. W. Harris Yale University, New Haven, Connecticut 06520    H. Harrison University of Kentucky, Lexington, Kentucky 40506-0055    S. He Central China Normal University, Wuhan, Hubei 430079    W. He Fudan University, Shanghai, 200433    X. H. He Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000    Y. He Shandong University, Qingdao, Shandong 266237    S. Heppelmann University of California, Davis, California 95616    S. Heppelmann Pennsylvania State University, University Park, Pennsylvania 16802    N. Herrmann University of Heidelberg, Heidelberg 69120, Germany    E. Hoffman University of Houston, Houston, Texas 77204    L. Holub Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic    Y. Hu Fudan University, Shanghai, 200433    H. Huang National Cheng Kung University, Tainan 70101    H. Z. Huang University of California, Los Angeles, California 90095    S. L. Huang State University of New York, Stony Brook, New York 11794    T. Huang National Cheng Kung University, Tainan 70101    X.  Huang Tsinghua University, Beijing 100084    Y. Huang Tsinghua University, Beijing 100084    T. J. Humanic Ohio State University, Columbus, Ohio 43210    G. Igo Deceased University of California, Los Angeles, California 90095    D. Isenhower Abilene Christian University, Abilene, Texas 79699    W. W. Jacobs Indiana University, Bloomington, Indiana 47408    C. Jena Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India    A. Jentsch Brookhaven National Laboratory, Upton, New York 11973    Y. Ji Lawrence Berkeley National Laboratory, Berkeley, California 94720    J. Jia Brookhaven National Laboratory, Upton, New York 11973 State University of New York, Stony Brook, New York 11794    K. Jiang University of Science and Technology of China, Hefei, Anhui 230026    X. Ju University of Science and Technology of China, Hefei, Anhui 230026    E. G. Judd University of California, Berkeley, California 94720    S. Kabana Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile    M. L. Kabir University of California, Riverside, California 92521    S. Kagamaster Lehigh University, Bethlehem, Pennsylvania 18015    D. Kalinkin Indiana University, Bloomington, Indiana 47408 Brookhaven National Laboratory, Upton, New York 11973    K. Kang Tsinghua University, Beijing 100084    D. Kapukchyan University of California, Riverside, California 92521    K. Kauder Brookhaven National Laboratory, Upton, New York 11973    H. W. Ke Brookhaven National Laboratory, Upton, New York 11973    D. Keane Kent State University, Kent, Ohio 44242    A. Kechechyan Joint Institute for Nuclear Research, Dubna 141 980    M. Kelsey Wayne State University, Detroit, Michigan 48201    Y. V. Khyzhniak National Research Nuclear University MEPhI, Moscow 115409    D. P. Kikoła Warsaw University of Technology, Warsaw 00-661, Poland    C. Kim University of California, Riverside, California 92521    B. Kimelman University of California, Davis, California 95616    D. Kincses ELTE Eötvös Loránd University, Budapest, Hungary H-1117    I. Kisel Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany    A. Kiselev Brookhaven National Laboratory, Upton, New York 11973    A. G. Knospe Lehigh University, Bethlehem, Pennsylvania 18015    H. S. Ko Lawrence Berkeley National Laboratory, Berkeley, California 94720    L. Kochenda National Research Nuclear University MEPhI, Moscow 115409    L. K. Kosarzewski Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic    L. Kramarik Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic    P. Kravtsov National Research Nuclear University MEPhI, Moscow 115409    L. Kumar Panjab University, Chandigarh 160014, India    S. Kumar Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000    R. Kunnawalkam Elayavalli Yale University, New Haven, Connecticut 06520    J. H. Kwasizur Indiana University, Bloomington, Indiana 47408    R. Lacey State University of New York, Stony Brook, New York 11794    S. Lan Central China Normal University, Wuhan, Hubei 430079    J. M. Landgraf Brookhaven National Laboratory, Upton, New York 11973    J. Lauret Brookhaven National Laboratory, Upton, New York 11973    A. Lebedev Brookhaven National Laboratory, Upton, New York 11973    R. Lednicky Joint Institute for Nuclear Research, Dubna 141 980 Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic    J. H. Lee Brookhaven National Laboratory, Upton, New York 11973    Y. H. Leung Lawrence Berkeley National Laboratory, Berkeley, California 94720    C. Li Shandong University, Qingdao, Shandong 266237    C. Li University of Science and Technology of China, Hefei, Anhui 230026    W. Li Rice University, Houston, Texas 77251    X. Li University of Science and Technology of China, Hefei, Anhui 230026    Y. Li Tsinghua University, Beijing 100084    X. Liang University of California, Riverside, California 92521    Y. Liang Kent State University, Kent, Ohio 44242    R. Licenik Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic    T. Lin Shandong University, Qingdao, Shandong 266237    Y. Lin Central China Normal University, Wuhan, Hubei 430079    M. A. Lisa Ohio State University, Columbus, Ohio 43210    F. Liu Central China Normal University, Wuhan, Hubei 430079    H. Liu Indiana University, Bloomington, Indiana 47408    H. Liu Central China Normal University, Wuhan, Hubei 430079    P.  Liu State University of New York, Stony Brook, New York 11794    T. Liu Yale University, New Haven, Connecticut 06520    X. Liu Ohio State University, Columbus, Ohio 43210    Y. Liu Texas A&M University, College Station, Texas 77843    Z. Liu University of Science and Technology of China, Hefei, Anhui 230026    T. Ljubicic Brookhaven National Laboratory, Upton, New York 11973    W. J. Llope Wayne State University, Detroit, Michigan 48201    R. S. Longacre Brookhaven National Laboratory, Upton, New York 11973    E. Loyd University of California, Riverside, California 92521    N. S.  Lukow Temple University, Philadelphia, Pennsylvania 19122    X. F. Luo Central China Normal University, Wuhan, Hubei 430079    L. Ma Fudan University, Shanghai, 200433    R. Ma Brookhaven National Laboratory, Upton, New York 11973    Y. G. Ma Fudan University, Shanghai, 200433    N. Magdy University of Illinois at Chicago, Chicago, Illinois 60607    D. Mallick National Institute of Science Education and Research, HBNI, Jatni 752050, India    S. Margetis Kent State University, Kent, Ohio 44242    C. Markert University of Texas, Austin, Texas 78712    H. S. Matis Lawrence Berkeley National Laboratory, Berkeley, California 94720    J. A. Mazer Rutgers University, Piscataway, New Jersey 08854    N. G. Minaev NRC ”Kurchatov Institute”, Institute of High Energy Physics, Protvino 142281    S. Mioduszewski Texas A&M University, College Station, Texas 77843    B. Mohanty National Institute of Science Education and Research, HBNI, Jatni 752050, India    M. M. Mondal State University of New York, Stony Brook, New York 11794    I. Mooney Wayne State University, Detroit, Michigan 48201    D. A. Morozov NRC ”Kurchatov Institute”, Institute of High Energy Physics, Protvino 142281    A. Mukherjee ELTE Eötvös Loránd University, Budapest, Hungary H-1117    M. Nagy ELTE Eötvös Loránd University, Budapest, Hungary H-1117    J. D. Nam Temple University, Philadelphia, Pennsylvania 19122    Md. Nasim Indian Institute of Science Education and Research (IISER), Berhampur 760010 , India    K. Nayak Central China Normal University, Wuhan, Hubei 430079    D. Neff University of California, Los Angeles, California 90095    J. M. Nelson University of California, Berkeley, California 94720    D. B. Nemes Yale University, New Haven, Connecticut 06520    M. Nie Shandong University, Qingdao, Shandong 266237    G. Nigmatkulov National Research Nuclear University MEPhI, Moscow 115409    T. Niida University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan    R. Nishitani University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan    L. V. Nogach NRC ”Kurchatov Institute”, Institute of High Energy Physics, Protvino 142281    T. Nonaka University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan    A. S. Nunes Brookhaven National Laboratory, Upton, New York 11973    G. Odyniec Lawrence Berkeley National Laboratory, Berkeley, California 94720    A. Ogawa Brookhaven National Laboratory, Upton, New York 11973    S. Oh Lawrence Berkeley National Laboratory, Berkeley, California 94720    V. A. Okorokov National Research Nuclear University MEPhI, Moscow 115409    B. S. Page Brookhaven National Laboratory, Upton, New York 11973    R. Pak Brookhaven National Laboratory, Upton, New York 11973    J. Pan Texas A&M University, College Station, Texas 77843    A. Pandav National Institute of Science Education and Research, HBNI, Jatni 752050, India    A. K. Pandey University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan    Y. Panebratsev Joint Institute for Nuclear Research, Dubna 141 980    P. Parfenov National Research Nuclear University MEPhI, Moscow 115409    B. Pawlik Institute of Nuclear Physics PAN, Cracow 31-342, Poland    D. Pawlowska Warsaw University of Technology, Warsaw 00-661, Poland    H. Pei Central China Normal University, Wuhan, Hubei 430079    C. Perkins University of California, Berkeley, California 94720    L. Pinsky University of Houston, Houston, Texas 77204    R. L. Pintér ELTE Eötvös Loránd University, Budapest, Hungary H-1117    J. Pluta Warsaw University of Technology, Warsaw 00-661, Poland    B. R. Pokhrel Temple University, Philadelphia, Pennsylvania 19122    G. Ponimatkin Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic    J. Porter Lawrence Berkeley National Laboratory, Berkeley, California 94720    M. Posik Temple University, Philadelphia, Pennsylvania 19122    V. Prozorova Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic    N. K. Pruthi Panjab University, Chandigarh 160014, India    M. Przybycien AGH University of Science and Technology, FPACS, Cracow 30-059, Poland    J. Putschke Wayne State University, Detroit, Michigan 48201    H. Qiu Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000    A. Quintero Temple University, Philadelphia, Pennsylvania 19122    C. Racz University of California, Riverside, California 92521    S. K. Radhakrishnan Kent State University, Kent, Ohio 44242    N. Raha Wayne State University, Detroit, Michigan 48201    R. L. Ray University of Texas, Austin, Texas 78712    R. Reed Lehigh University, Bethlehem, Pennsylvania 18015    H. G. Ritter Lawrence Berkeley National Laboratory, Berkeley, California 94720    M. Robotkova Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic    O. V. Rogachevskiy Joint Institute for Nuclear Research, Dubna 141 980    J. L. Romero University of California, Davis, California 95616    D. Roy Rutgers University, Piscataway, New Jersey 08854    L. Ruan Brookhaven National Laboratory, Upton, New York 11973    J. Rusnak Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic    N. R. Sahoo Shandong University, Qingdao, Shandong 266237    H. Sako University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan    S. Salur Rutgers University, Piscataway, New Jersey 08854    J. Sandweiss Deceased Yale University, New Haven, Connecticut 06520    S. Sato University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan    W. B. Schmidke Brookhaven National Laboratory, Upton, New York 11973    N. Schmitz Max-Planck-Institut für Physik, Munich 80805, Germany    B. R. Schweid State University of New York, Stony Brook, New York 11794    F. Seck Technische Universität Darmstadt, Darmstadt 64289, Germany    J. Seger Creighton University, Omaha, Nebraska 68178    M. Sergeeva University of California, Los Angeles, California 90095    R. Seto University of California, Riverside, California 92521    P. Seyboth Max-Planck-Institut für Physik, Munich 80805, Germany    N. Shah Indian Institute Technology, Patna, Bihar 801106, India    E. Shahaliev Joint Institute for Nuclear Research, Dubna 141 980    P. V. Shanmuganathan Brookhaven National Laboratory, Upton, New York 11973    M. Shao University of Science and Technology of China, Hefei, Anhui 230026    T. Shao Fudan University, Shanghai, 200433    A. I. Sheikh Kent State University, Kent, Ohio 44242    D. Shen Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800    S. S. Shi Central China Normal University, Wuhan, Hubei 430079    Y. Shi Shandong University, Qingdao, Shandong 266237    Q. Y. Shou Fudan University, Shanghai, 200433    E. P. Sichtermann Lawrence Berkeley National Laboratory, Berkeley, California 94720    R. Sikora AGH University of Science and Technology, FPACS, Cracow 30-059, Poland    M. Simko Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic    J. Singh Panjab University, Chandigarh 160014, India    S. Singha Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000    M. J. Skoby Purdue University, West Lafayette, Indiana 47907    N. Smirnov Yale University, New Haven, Connecticut 06520    Y. Söhngen University of Heidelberg, Heidelberg 69120, Germany    W. Solyst Indiana University, Bloomington, Indiana 47408    P. Sorensen Brookhaven National Laboratory, Upton, New York 11973    H. M. Spinka Deceased Argonne National Laboratory, Argonne, Illinois 60439    B. Srivastava Purdue University, West Lafayette, Indiana 47907    T. D. S. Stanislaus Valparaiso University, Valparaiso, Indiana 46383    M. Stefaniak Warsaw University of Technology, Warsaw 00-661, Poland    D. J. Stewart Yale University, New Haven, Connecticut 06520    M. Strikhanov National Research Nuclear University MEPhI, Moscow 115409    B. Stringfellow Purdue University, West Lafayette, Indiana 47907    A. A. P. Suaide Universidade de São Paulo, São Paulo, Brazil 05314-970    M. Sumbera Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic    B. Summa Pennsylvania State University, University Park, Pennsylvania 16802    X. M. Sun Central China Normal University, Wuhan, Hubei 430079    X. Sun University of Illinois at Chicago, Chicago, Illinois 60607    Y. Sun University of Science and Technology of China, Hefei, Anhui 230026    Y. Sun Huzhou University, Huzhou, Zhejiang 313000    B. Surrow Temple University, Philadelphia, Pennsylvania 19122    D. N. Svirida Alikhanov Institute for Theoretical and Experimental Physics NRC ”Kurchatov Institute”, Moscow 117218    Z. W. Sweger University of California, Davis, California 95616    P. Szymanski Warsaw University of Technology, Warsaw 00-661, Poland    A. H. Tang Brookhaven National Laboratory, Upton, New York 11973    Z. Tang University of Science and Technology of China, Hefei, Anhui 230026    A. Taranenko National Research Nuclear University MEPhI, Moscow 115409    T. Tarnowsky Michigan State University, East Lansing, Michigan 48824    J. H. Thomas Lawrence Berkeley National Laboratory, Berkeley, California 94720    A. R. Timmins University of Houston, Houston, Texas 77204    D. Tlusty Creighton University, Omaha, Nebraska 68178    T. Todoroki University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan    M. Tokarev Joint Institute for Nuclear Research, Dubna 141 980    C. A. Tomkiel Lehigh University, Bethlehem, Pennsylvania 18015    S. Trentalange University of California, Los Angeles, California 90095    R. E. Tribble Texas A&M University, College Station, Texas 77843    P. Tribedy Brookhaven National Laboratory, Upton, New York 11973    S. K. Tripathy ELTE Eötvös Loránd University, Budapest, Hungary H-1117    T. Truhlar Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic    B. A. Trzeciak Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic    O. D. Tsai University of California, Los Angeles, California 90095    Z. Tu Brookhaven National Laboratory, Upton, New York 11973    T. Ullrich Brookhaven National Laboratory, Upton, New York 11973    D. G. Underwood Argonne National Laboratory, Argonne, Illinois 60439 Valparaiso University, Valparaiso, Indiana 46383    I. Upsal Rice University, Houston, Texas 77251    G. Van Buren Brookhaven National Laboratory, Upton, New York 11973    J. Vanek Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic    A. N. Vasiliev NRC ”Kurchatov Institute”, Institute of High Energy Physics, Protvino 142281    I. Vassiliev Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany    V. Verkest Wayne State University, Detroit, Michigan 48201    F. Videbæk Brookhaven National Laboratory, Upton, New York 11973    S. Vokal Joint Institute for Nuclear Research, Dubna 141 980    S. A. Voloshin Wayne State University, Detroit, Michigan 48201    F. Wang Purdue University, West Lafayette, Indiana 47907    G. Wang University of California, Los Angeles, California 90095    J. S. Wang Huzhou University, Huzhou, Zhejiang 313000    P. Wang University of Science and Technology of China, Hefei, Anhui 230026    Y. Wang Central China Normal University, Wuhan, Hubei 430079    Y. Wang Tsinghua University, Beijing 100084    Z. Wang Shandong University, Qingdao, Shandong 266237    J. C. Webb Brookhaven National Laboratory, Upton, New York 11973    P. C. Weidenkaff University of Heidelberg, Heidelberg 69120, Germany    L. Wen University of California, Los Angeles, California 90095    G. D. Westfall Michigan State University, East Lansing, Michigan 48824    H. Wieman Lawrence Berkeley National Laboratory, Berkeley, California 94720    S. W. Wissink Indiana University, Bloomington, Indiana 47408    J. Wu Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000    Y. Wu University of California, Riverside, California 92521    B. Xi Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800    Z. G. Xiao Tsinghua University, Beijing 100084    G. Xie Lawrence Berkeley National Laboratory, Berkeley, California 94720    W. Xie Purdue University, West Lafayette, Indiana 47907    H. Xu Huzhou University, Huzhou, Zhejiang 313000    N. Xu Lawrence Berkeley National Laboratory, Berkeley, California 94720    Q. H. Xu Shandong University, Qingdao, Shandong 266237    Y. Xu Shandong University, Qingdao, Shandong 266237    Z. Xu Brookhaven National Laboratory, Upton, New York 11973    Z. Xu University of California, Los Angeles, California 90095    C. Yang Shandong University, Qingdao, Shandong 266237    Q. Yang Shandong University, Qingdao, Shandong 266237    S. Yang Rice University, Houston, Texas 77251    Y. Yang National Cheng Kung University, Tainan 70101    Z. Ye Rice University, Houston, Texas 77251    Z. Ye University of Illinois at Chicago, Chicago, Illinois 60607    L. Yi Shandong University, Qingdao, Shandong 266237    K. Yip Brookhaven National Laboratory, Upton, New York 11973    Y. Yu Shandong University, Qingdao, Shandong 266237    H. Zbroszczyk Warsaw University of Technology, Warsaw 00-661, Poland    W. Zha University of Science and Technology of China, Hefei, Anhui 230026    C. Zhang State University of New York, Stony Brook, New York 11794    D. Zhang Central China Normal University, Wuhan, Hubei 430079    J. Zhang Shandong University, Qingdao, Shandong 266237    S. Zhang University of Illinois at Chicago, Chicago, Illinois 60607    S. Zhang Fudan University, Shanghai, 200433    X. P. Zhang Tsinghua University, Beijing 100084    Y. Zhang Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000    Y. Zhang University of Science and Technology of China, Hefei, Anhui 230026    Y. Zhang Central China Normal University, Wuhan, Hubei 430079    Z. J. Zhang National Cheng Kung University, Tainan 70101    Z. Zhang Brookhaven National Laboratory, Upton, New York 11973    Z. Zhang University of Illinois at Chicago, Chicago, Illinois 60607    J. Zhao Purdue University, West Lafayette, Indiana 47907    C. Zhou Fudan University, Shanghai, 200433    Y. Zhou Central China Normal University, Wuhan, Hubei 430079    X. Zhu Tsinghua University, Beijing 100084    M. Zurek Argonne National Laboratory, Argonne, Illinois 60439    M. Zyzak Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany
(August 6, 2025)
Abstract

We report the first multi-differential measurements of strange hadrons of KK^{-}, ϕ\phi and Ξ\Xi^{-} yields as well as the ratios of ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} in Au+Au collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}} with the STAR experiment fixed target configuration at RHIC. The ϕ\phi mesons and Ξ\Xi^{-} hyperons are measured through hadronic decay channels, ϕK+K\phi\rightarrow K^{+}K^{-} and ΞΛπ\Xi^{-}\rightarrow\Lambda\pi^{-}. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The 4π4\pi yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} ratios while the result of canonical ensemble (CE) calculations reproduce ϕ/K\phi/K^{-}, with the correlation length rc2.7r_{c}\sim 2.7 fm, and ϕ/Ξ\phi/\Xi^{-}, rc4.2r_{c}\sim 4.2 fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3GeV\rm{3\,GeV} implies a rather different medium property at high baryon density.

I Introduction

Relativistic heavy ion physics is aiming at the detailed investigation of phase structures of strongly interacting matter, governed by quantum chromodynamics (QCD), under extreme conditions of high temperature and density Adams et al. (2005); Akiba et al. (2015); Busza et al. (2018). Particle production has been studied to investigate properties of the produced QCD matter in heavy-ion collisions. The strange quark mass is comparable to the QCD scale (ΛQCD\Lambda_{\rm{QCD}}200 MeV\sim\textup{200 MeV}), therefore strange quark plays an important role in studying the QCD phase diagram and the Equation-of-State (EoS), particularly in the high density region Rafelski and Muller (1982); Koch et al. (1986); Aichelin and Ko (1985); Fuchs (2006); Ko (2018); Adamczewski-Musch et al. (2019a).

Statistical thermal models have often been used to characterize thermal properties of the produced media Rafelski and Danos (1980); Cleymans and Satz (1993); Braun-Munzinger et al. (1995); Becattini et al. (1998); Braun-Munzinger et al. (1999); Florkowski et al. (2002); Braun-Munzinger et al. (2001, 2004); Cleymans et al. (2004); Petráň and Rafelski (2010); Andronic et al. (2018). In these models, grand canonical ensemble (GCE) and canonical ensemble (CE) statistical descriptions can be applied to conserve electric charge, baryon number, and strangeness number in order to compute the final state particle yields. Both GCE and CE models are able to describe various particle yields including strange particles produced in heavy-ion collisions at RHIC and the LHC at center-of-mass energy (sNN\sqrt{s_{\rm NN}}) greater than 7.7 GeV. It has been argued that at lower energies, strangeness number needs to be conserved locally on an event-by-event basis described by the CE, which leads to a reduction in the yields of hadrons with non-zero strangeness number (“Canonical Suppression”) Rafelski and Danos (1980); Redlich and Tounsi (2002); Rafelski and Letessier (2002), but not for the ϕ(1020)\phi(1020) meson with zero net strangeness number (S=0). The ϕ/K\phi/K^{-} ratio is expected to increase with decreasing collision energy in models using the CE treatment for strangeness, opposite to the trend in the GCE treatment. The canonical suppression power for Ξ\Xi^{-} (S=2) is even larger than for KK^{-} (S=1). The ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} ratios offer a unique test to scrutinize thermodynamic properties of strange quarks in the hot and dense QCD environment.

In heavy-ion collisions, the near/sub-threshold production of multi-strange hadrons can be achieved from the multiple collisions of nucleons, produced particles, and short-lived resonances Zeeb et al. (2004). The particle production in heavy-ion collisions below its free nucleon-nucleon (NN) threshold (sNN\sqrt{s_{\rm NN}} \sim2.89 GeV for ϕ\phi and \sim3.25 GeV for Ξ\Xi^{-}) is expected to be sensitive to the stiffness of the nuclear EoS at high density Yong et al. (2021), as it is for single-strange hadrons Aichelin and Ko (1985); Fuchs (2006). The near/sub-threshold production further provides the possibility to observe exotic states of QCD matter McLerran and Pisarski (2007) and signatures of “soft deconfinement” Fukushima et al. (2020).

Previous measurements show that the ϕ/K\phi/K^{-} ratio in heavy-ion collisions stays remarkably flat (\sim0.15) at collision energies sNN>5 GeV{\sqrt{s_{\rm NN}}>\textup{5 GeV}} Back et al. (2004); Alt et al. (2008a); Adam et al. (2020). At collision energies close to or below the ϕ\phi and Ξ\Xi NN-thresholds, recent measurements of ϕ/K\phi/K and ϕ/Ξ\phi/\Xi ratios from HADES and FOPI have achieved a significance about 2.2-3.8 sigma in central heavy ion collisions, and the results indicate a relative enhancement compared to those at high energies  Agakishiev et al. (2009a); Piasecki et al. (2015); Gasik et al. (2016); Adamczewski-Musch et al. (2018), indicative of the applicability of the CE description for strangeness production at these energies. Measurements from π\pi or proton induced nuclear reactions Muto et al. (2007); Adamczewski-Musch et al. (2019b) suggest that absorption in cold nuclear matter may play a role in the KK^{-} and ϕ\phi production yields in nuclear collision at low energies. In this Letter, we report high precision measurement of ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} ratios in Au+Au collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}} from the STAR experiment.

II EXPERIMENT AND DATA ANALYSIS

The dataset used in this analysis was collected under the fixed target (FXT) setup Meehan (2016) in the 2018 RHIC run. A single beam was provided by RHIC with total energy equal to 3.85 GeV/nucleon and incident on a gold target of thickness 0.25 mm, corresponding to a 1% interaction probability. The target is installed inside the vacuum pipe, 2 cm below the center of the beam axis, and located 200 cm to the west of the center of the STAR detector. The main detectors used are the Time Projection Chamber (TPC) Anderson et al. (2003); Meehan (2016), the Time of Flight (TOF) detector Llope (2012); Meehan (2016), and the Beam-Beam Counter (BBC) Whitten (2008). The trigger is provided by the signal in the east BBC detector and at least five hits in the TOF detector. To best utilize the detector band-width, the beam-on-target collision rate was tuned to around 1.5 kHz, and the pileup contribution to the triggered event is <1%<1\% Abdallah et al. (2021a). Tracking and particle identification (PID) are done using the TPC and TOF. Both the TPC and TOF detectors have full azimuthal coverage within a pseudorapidity range of 0<<η\eta<< 1.88 for the TPC and 0<<η\eta<< 1.5 for the TOF in FXT mode Anderson et al. (2003); Llope (2012); Meehan (2016). Events are selected with the offline reconstructed collision vertex within 1.5 cm of the target center along the beam direction. Approximately 2.6×108\times 10^{8} minimum bias (MB) triggered events passed the selection criteria and are used in this analysis.

The centrality class is selected using measured charged particle total multiplicity within the TPC acceptance. A Monte Carlo Glauber model, used in conjunction with a negative binomial distribution to model particle production in hadronic collisions, is optimized in order to best match the data and determine the centrality class Ray and Daugherity (2008); Abdallah et al. (2021a). Due to the trigger inefficiency in the low multiplicity region (corresponding to the most peripheral collisions), we only report the results from the 0–60% centrality class in this paper. In addition, in order to reduce the pile-up contamination, events above the reference multiplicity of 195 are removed from the most central centrality class.

ϕ\phi mesons are reconstructed via the decay channel ϕK+K\phi\rightarrow K^{+}K^{-} with a branching ratio (BR) of (49.2±0.549.2\pm 0.5)% , while the Ξ\Xi^{-} hyperons decay via ΞΛπpππ\Xi^{-}\rightarrow\Lambda\pi^{-}\rightarrow p\pi^{-}\pi^{-} with a BR of (63.8±0.563.8\pm 0.5)% Zyla et al. (2020). Ξ\Xi^{-} reconstruction is performed using the KFParticle package based on the Kalman Filter method Kisel (2020); Adam et al. (2021). The charged tracks are reconstructed with the TPC in a 0.5 T uniform magnetic field, and are required to consist of at least 20 TPC hits (out of a maximum of 45) and have a ratio between the number of hit points and the maximum possible number of hit points larger than 0.52 to ensure good tracking and avoid track splitting. The TPC tracking performance with these requirements in the FXT data is similar to that in other data taken in the collider mode. Monte Carlo simulations also reproduces the distributions of various tracking variables. The charged tracks are identified via a combination of the ionization energy loss (dE/dxdE/dx) measurement with the TPC and the time-of-flight (toftof) measurement with the TOF Shao et al. (2006); Xu et al. (2010). The resolution-normalized dE/dxdE/dx or β\beta deviation from the expected values are used for the PID selection. A minimum pTp_{T} cut of 0.2 GeV/cc is required in the analysis. Since the K/πK^{-}/\pi^{-} ratio is much smaller than the K+/π+K^{+}/\pi^{+} ratio at low energies, to reduce the contamination from π\pi^{-} and ee^{-} tracks, a strict PID criterion for KK^{-} is implemented by requiring the TPC dE/dxdE/dx and TOF β\beta to be within three standard deviations of the expected values. K+K^{+} tracks used for the ϕ\phi analysis are selected with a hybrid algorithm, in which the TPC dE/dxdE/dx requirement is applied at low momentum p<0.5p<0.5 GeV/cc while an additional TOF β\beta requirement is imposed at p>0.5p>0.5 GeV/cc. In the Ξ\Xi analysis, proton and π\pi^{-} tracks are identified by requiring the TPC dE/dxdE/dx to be within three standard deviations of the expect values and the TOF β\beta requirement is only applied when there is a valid measurement.

Refer to caption
Figure 1: Invariant mass distributions of K+KK^{+}K^{-} (a) and Λπ\Lambda\pi^{-} (b) in Au+Au collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}}. Black open circles represent the same-event unlike-sign distribution. The grey shaded histogram represents the normalized mixed-event (rotating daughters for Ξ\Xi^{-}) unlike-sign distribution that is used to estimate the combinatorial background. The red solid circles depict the ϕ\phi meson (a) and Ξ\Xi^{-} (b) signals obtained by subtracting the combinatorial background from the same-event distribution. Reconstructed ϕ\phi (c) and Ξ\Xi^{-} (d) acceptance, pTp_{T} vs. rapidity in the center-of-mass frame (ycmy_{\rm cm}) in the same collisions. The dotted line indicates the target rapidity location. The red curve represents the TPC and TOF acceptance edge.

Figure 1 (a) shows the invariant mass distribution of K+KK^{+}K^{-} pairs in the transverse momentum (pTp_{T}) region of 0.4–1.6 GeV/cc for 0–60% central collisions. The combinatorial background is estimated with the mixed-event (ME) technique in which K+K^{+} and KK^{-} from different events of similar characteristics (centrality, event plane angle) are paired. The mixed-event spectra are normalized to the same-event (SE) distributions in the mass range of 1.04–1.08 GeV/c2c^{2}. After the subtraction of the combinatorial background, the remainder distribution, shown as red solid circles, is fitted with a Breit-Wigner function for the signal plus a linear function which represents the remaining correlated background (<1%<1\%) from a partial reconstruction of strange hadrons. The ϕ\phi meson raw yields are extracted from the Breit-Wigner function fit within the corresponding ±\pm3Γ\Gamma mass window (mean value μ\mu\sim 1.0194 GeV/c2c^{2}, full-width-at-half-maximum Γ\Gamma\sim 6.5 MeV/c2c^{2}). The extracted ϕ\phi signal shape is consistent with its intrinsic properties convoluted with the detector smearing effect due to finite momentum resolution (<3%<3\% for single track). Note that a Voigt function has been used to extract the signal counts as a cross check, and the extracted yields are consistent with the default value within uncertainties. Figure 1 (b) shows the invariant mass distribution of Λ(pπ)π\Lambda(p\pi^{-})\pi^{-} in the pTp_{T} region of 0.5–2.0 GeV/cc for 0–40% central collisions. The combinatorial background is estimated with the rotating daughter (Rot) method, in which a daughter track of Ξ\Xi^{-} is rotated by a random angle between 150 to 210 degrees in the transverse plane. The rotated spectra are normalized to the same-event distributions in the mass ranges of 1.30–1.31 and 1.34–1.35 GeV/c2c^{2}. After the combinatorial background is subtracted, the Λπ\Lambda\pi^{-} invariant mass distribution is fitted with a Gaussian for the signal plus a linear function for the remaining correlated background (<1%<1\%). The Ξ\Xi^{-} raw yields are obtained via histogram bin counting from the invariant mass distributions with all background subtracted within mass windows of ±\pm3σ\sigma (μ\mu\sim 1.3222 GeV/c2c^{2}, Gaussian width σ\sigma\sim 2.0 MeV/c2c^{2}). The signal-to-background (S/B) ratio for ϕ\phi and Ξ\Xi^{-} within the reconstructed mass windows is about 0.7 and 0.6 respectively. The reconstructed ϕ\phi and Ξ\Xi^{-} acceptances (pTp_{T} vs. ycmy_{cm}) in the collision center-of-mass frame are shown in Fig. 1 (c) and (d), respectively. The target is located at ycm=1.05y_{cm}=-1.05, using the convention where the beam travels in the positive direction. The red curve represents the TPC and TOF acceptance edge.

Refer to caption
Refer to caption
Figure 2: KK^{-} (a), ϕ\phi meson (b) and Ξ\Xi^{-} (c) invariant yields as a function of mTm0m_{T}-m_{0} for various rapidity regions in 0–10% (left) and 10–40% (right) centrality Au+Au collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}}. Statistical and systematic uncertainties are added quadratically here for plotting. Solid and dashed black lines depict mTm_{T} exponential function fits to the measured data points with scaling factors in each rapidity windows.

Particle raw yields are calculated in each centrality and pTp_{T} bin within each rapidity slice. The raw yields are corrected for the TPC acceptance and tracking efficiency, the particle identification efficiency, and the TOF matching and PID efficiency. The TPC acceptance and tracking efficiency is obtained using the standard STAR embedding technique Adamczyk et al. (2017); Adam et al. (2020), in which a small number of MC tracks are processed through the GEANT (v3.21) simulation Brun et al. (1994), then mixed with the real data and reconstructed using the same algorithm as in the real data. The TPC PID, TOF matching and PID efficiencies are obtained from the data-driven method similar as in Ref. Adam et al. (2019). The final average reconstruction (including acceptance etc.) efficiency is \sim0.30, 0.04, and 0.02 for KK^{-}, ϕ\phi and Ξ\Xi^{-}, respectively. MC embedding simulation also reproduces various topological variables used in the Ξ\Xi^{-} reconstruction. As a cross-check, we conducted the measurement of Ξ\Xi^{-} lifetime from the same data and the result is 164.2±6.6164.2\pm 6.6 (stat.) ps, consistent with the PDG value, 163.9±1.5163.9\pm 1.5 ps. The corrected pTp_{T} spectra in symmetric rapidity bins (-0.2,0) vs. (0,0.2) are also consistent.

The systematic uncertainty of the raw yield extraction is estimated by changing the histogram fitting method to bin counting method or by changing the fitting ranges. The maximum difference between these scenarios and the default one is considered as one standard deviation. The contribution varies by pTp_{T}, rapidity, and centrality and the overall contribution is less than 5% for the invariant yield. The systematic uncertainty in the TPC acceptance and efficiency correction εTPC\varepsilon_{\rm TPC} is estimated by varying the cuts on track selection criteria  Adamczyk et al. (2017) and topological variables (for Ξ\Xi^{-} only). The contribution to the total yield is 4-5% for KK^{-}, 13-16% for ϕ\phi and 6-10% for Ξ\Xi^{-}. This leads to a 10-13% (12-18%) uncertainty in the measured ϕ/K\phi/K^{-} (ϕ/Ξ\phi/\Xi^{-}) ratio. The uncertainty of the PID efficiency correction is estimated by varying the PID selection cuts and the contribution is less than 3% to the total yield. For the pTp_{T} integrated yield, the uncertainty due to the extrapolation to the full pTp_{T} range is estimated by choosing several fitting functions including Levy, Blast-Wave, mTm_{T}-exponential, pTp_{T}-exponential Abelev et al. (2009a), and the maximum difference between these scenarios and the default one (mTm_{T}-exponential) is quoted as one standard deviation. This contribution is 5-7% for KK^{-}, 14-17% for ϕ\phi and 13-15% for Ξ\Xi^{-}, respectively. This measurement covers nearly the full rapidity range from yy=0 to the target region. The systematic uncertainty due to the rapidity coverage extrapolation is negligible compared to other systematic sources. For each individual ϕ\phi-meson, KK^{-} and Ξ\Xi^{-} measurement, some of the uncertainties are correlated or partially correlated (e.g. TPC and PID). To avoid the correlation in the ratio measurement, we vary the above cuts simultaneously for ϕ\phi, KK^{-} and Ξ\Xi^{-}, then quote the difference in the final ratios as the systematic uncertainties.

III RESULTS AND DISCUSSIONS

Refer to caption
Figure 3: KK^{-} (a) and ϕ\phi meson (b) invariant yields as a function of mTm0m_{T}-m_{0} for various rapidity regions in 40–60% centrality Au+Au collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}}.

Figure 2 and  3 show the acceptance ×\times efficiency corrected KK^{-}, ϕ\phi and Ξ\Xi^{-} invariant yields as a function of mTm0m_{T}-m_{0} (mT=m02+pT2/c2m_{T}=\sqrt{m_{0}^{2}+p_{T}^{2}/c^{2}}, where m0m_{0} is particle rest mass, and cc is the speed of light) for various rapidity ranges in 0–10%, 10–40% and 40–60% Centrality Au+Au collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}}. Dashed and solid lines depict fits to the spectra with the mTm_{T}-exponential function in order to extrapolate to the unmeasured pTp_{T} ranges (\sim20-40% for KK^{-} which vary rapidity, \sim33-50% for ϕ\phi and \sim40-60% for Ξ\Xi^{-}). The fitted inverse slope parameters indicate harder spectra for the ϕ\phi-mesons compared to the KK^{-} and Ξ\Xi^{-} within uncertainties. The inverse slope parameters gradually decrease from mid-rapidity to forward/backward rapidity and follow the Teff/cosh(y)T_{\rm eff}/\cosh(y) distribution well. The inverse slope parameter at y=0y=0, TeffT_{\rm eff}, is extracted to be 177±5(stat)±8(sys)177\pm 5(stat)\pm 8(sys) MeV for ϕ\phi meson, 158±3(stat)±3(sys)158\pm 3(stat)\pm 3(sys) MeV for KK^{-} and 156±3(stat)±24(sys)156\pm 3(stat)\pm 24(sys) MeV for Ξ\Xi^{-} in 0–10% central collisions. This agrees with the collision energy dependence trend from other experiments Alt et al. (2008a); Adamczewski-Musch et al. (2018). Table 1 lists the extracted TeffT_{\rm eff} parameter for these particles in different centrality bins from this measurement.

Table 1: Inverse slope parameter TeffT_{\rm eff} at y=0y=0 for the mTm_{T} spectra of ϕ\phi, KK^{-}, Ξ\Xi^{-} in Au+Au collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}}. The first error given corresponds to the statistical one, the second to the systematic error.
Centrality ϕ\phi TeffT_{\rm eff} (MeV) KK^{-} TeffT_{\rm eff} (MeV) Ξ\Xi^{-} TeffT_{\rm eff} (MeV)
   0–10%    177±5±8177\pm 5\pm 8    158±3±3158\pm 3\pm 3    156±3±24156\pm 3\pm 24
10–40% 159±4±5159\pm 4\pm 5 142±3±3142\pm 3\pm 3 146±4±17146\pm 4\pm 17
40–60% 151±5±11151\pm 5\pm 11 115±4±4115\pm 4\pm 4

The pTp_{T} integrated rapidity distributions dN/dydN/dy are displayed in Fig. 4 for Au+Au collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}} for three different centralities. Solid curves depict Gaussian function fits to the data points with the centroid parameter fixed to zero. They are used to extrapolate to the unmeasured rapidity region (\sim5% for KK^{-}, \sim9% for ϕ\phi and \sim6% for Ξ\Xi^{-}) for calculating total multiplicities. The integral yields follow the collision energy trend from other experiments and drop quickly toward the low energies around threshold  Alt et al. (2008a); Agakishiev et al. (2009a); Piasecki et al. (2015); Gasik et al. (2016); Adamczewski-Musch et al. (2018).

Refer to caption
Figure 4: Rapidity density distributions of KK^{-} (squares), ϕ\phi meson (circles) and Ξ\Xi^{-} (diamonds) pTp_{T}-integrated yields dN/dydN/dy in 0–10% (a), 10–40% (b) and 40–60% central (c) Au+Au collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}}. Solid lines depict Gaussian function fits to the data points.
Table 2: ϕ\phi, KK^{-}, Ξ\Xi^{-} integrated yields, TeffT_{\rm eff} and ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} ratios for given centrality classes in Au+Au collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}}. The first error given corresponds to the statistical one, the second to the systematic error.
Centrality ϕ\phi (103)(10^{-3}) KK^{-} (102)(10^{-2}) ϕ/K\phi/K^{-} Ξ\Xi^{-} (103)(10^{-3}) ϕ/Ξ\phi/\Xi^{-}
   0–10%   20.1±1.4±3.820.1\pm 1.4\pm 3.8   8.70±0.02±0.538.70\pm 0.02\pm 0.53   0.231±0.016±0.0420.231\pm 0.016\pm 0.042   13.9±0.8±2.413.9\pm 0.8\pm 2.4   1.45±0.13±0.341.45\pm 0.13\pm 0.34
10–40% 8.5±0.4±1.78.5\pm 0.4\pm 1.7 3.39±0.01±0.203.39\pm 0.01\pm 0.20 0.249±0.011±0.0460.249\pm 0.011\pm 0.046 3.61±0.32±0.593.61\pm 0.32\pm 0.59 2.34±0.23±0.652.34\pm 0.23\pm 0.65
40–60% 2.6±0.2±0.52.6\pm 0.2\pm 0.5 0.79±0.01±0.060.79\pm 0.01\pm 0.06 0.327±0.029±0.0690.327\pm 0.029\pm 0.069

The ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} ratios are presented in Fig. 5 as a function of collision energy sNN\sqrt{s_{\rm NN}}, including the midrapidity data in central Au+Au or Pb+Pb data from the AGS, SPS and RHIC BES at higher energies and 4π4\pi acceptance data from SIS at lower energies. The black solid circles show our measurements in the 0-10% centrality bin in Au+Au collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}}. The measured ϕ\phi, KK^{-} and Ξ\Xi^{-} yields in 4π\pi and the ϕ/K\phi/K^{-}, ϕ/Ξ\phi/\Xi^{-} ratios in different centrality bins are listed in Tab. 2. The ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} ratios measured at 3 GeV are slightly higher than, or comparable to, the values at high energies for sNN\sqrt{s_{\rm NN}}\geqslant 5 GeV Afanasiev et al. (2002); Back et al. (2004); Alt et al. (2008a, b, c); Abelev et al. (2009b); Agakishiev et al. (2009b); Abelev et al. (2015); Adam et al. (2020) despite the collision energy being very close to the ϕ\phi threshold and below the Ξ\Xi^{-} threshold in NN collisions. Note that the enhancement of ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} were also observed at lower collision energies in sNN=2.4GeV{\sqrt{s_{\rm NN}}=\rm{2.4\,GeV}} Au+Au Adamczewski-Musch et al. (2018) and sNN=2.6GeV{\sqrt{s_{\rm NN}}=\rm{2.6\,GeV}} Ar+KCl collisions Agakishiev et al. (2009a, b), respectively.

Various curves in Fig. 5 represent the predictions of ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} ratios from several model calculations in central A+A collisions. Statistical model calculations, based on the Grand Canonical Ensemble and Canonical Ensemble for strangeness with several different choices of strangeness correlation length (rcr_{c}), were calculated using the THERMUS package Wheaton et al. (2009) with energy dependent freeze-out parameters (chemical freeze-out temperature TchT_{\rm ch}, baryon chemical potentials μB\mu_{B}) taken from Andronic et al. (2018), for instance, TchT_{\rm ch} = 72.9 MeV and μB\mu_{B} = 701.4 MeV for sNN\sqrt{s_{\rm NN}} = 3 GeV. We noted that the ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} ratios from GCE depend on strangeness chemical potential, μS\mu_{S}. From the results of the thermal model fit to the STAR BES-I data Adam et al. (2020), there is an empirical relation μS\mu_{S} = μB/4\mu_{B}/4 in the collision energy region between 7.7 - 39 GeV. The same relation was assumed and used in the GCE calculation at lower energies presented in Fig. 5. Our measured ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} ratios are larger than this GCE calculation: χ2\chi^{2}/ndf = 26.0/2 (pp-value << 1e51e^{-5}), which indicates the event-by-event strangeness conservation is crucial Braun-Munzinger et al. (2004) in such collisions. The exact GCE calculation depends on the precise determination of TchT_{\rm ch}, μB\mu_{B}, μS\mu_{S} etc, which can be extracted through a global fit to various other particle yields at 3 GeV. In the canonical approach, the correlation length, rcr_{c}, defines a region of the particle production phase space inside which the production of the strangeness is canonically conserved. Both the ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} data from our measurement favor the CE thermodynamics for strangeness with a small strangeness correlation length (rc2.7r_{c}\sim 2.7 fm for ϕ/K\phi/K^{-} and rc4.2r_{c}\sim 4.2 fm for ϕ/Ξ\phi/\Xi^{-}). It is worthwhile to point out that the CE calculations with the same rcr_{c} parameter cannot describe our ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-} data simultaneously. The CE calculation with rc4.2r_{c}\sim 4.2 fm describes ϕ/Ξ\phi/\Xi^{-} well while it deviates by about 3.5σ\sigma for ϕ/K\phi/K^{-}. rcr_{c} is an approximation in the CE for reproducing the strange production in heavy-ion collisions. It is unclear if the same value of rcr_{c} should fit for both S=1 (e.g. Kaon) and S=2 (e.g. Ξ\Xi^{-}). On the other hand, transport model calculations Steinheimer and Bleicher (2015); Steinberg et al. (2019) with high mass strange resonances reproduce the data implying that the feed down is relevant.

Refer to caption
Figure 5: ϕ/K\phi/K^{-} (a) and ϕ/Ξ\phi/\Xi^{-} (b) ratio as a function of collision energy, sNN\sqrt{s_{\rm NN}}. The solid black circles show the measurements presented here in 0-10% centrality bin, while empty markers in black are used for data from various other energies and/or collision systems Back et al. (2004); Alt et al. (2008a); Agakishiev et al. (2009a, b); Piasecki et al. (2015); Gasik et al. (2016); Adamczewski-Musch et al. (2018); Adam et al. (2020). The vertical grey bands on the data points represent the systematic uncertainties. The grey solid line represents a THERMUS calculation based on the Grand Canonical Ensemble (GCE) while the dotted lines depict calculations based on the Canonical Ensemble (CE) with different values of the strangeness correlation radius (rcr_{c}Wheaton et al. (2009); Andronic et al. (2018). The green dashed line, green shaded band and the solid red line show transport model calculations from the public versions UrQMD1\textup{UrQMD}^{1} Bass et al. (1998); Bleicher et al. (1999), modified UrQMD2\textup{UrQMD}^{2} Steinheimer and Bleicher (2015) and SMASH Steinberg et al. (2019), respectively.

Previous measurements from smaller collision systems (Ar+KCl and Al+Al collisions) show comparable or higher ϕ/K\phi/K^{-} and/or ϕ/Ξ\phi/\Xi^{-} ratios at energies below 3 GeV Agakishiev et al. (2009a, b); Piasecki et al. (2015); Gasik et al. (2016). The exclusive measurement in pp+pp collisions at 2.7 GeV shows a much larger ϕ/K\phi/K^{-} ratio (1.04±0.231.04\pm 0.23Maeda et al. (2008), while the measured ratio at 17.3 GeV (0.11±0.010.11\pm 0.01Aduszkiewicz et al. (2017, 2020a) is comparable to that in central Au+Au/Pb+Pb collisions at similar energies Alt et al. (2008a); Adam et al. (2020). The ϕ/Ξ\phi/\Xi^{-} ratio in pp+pp collisions at 17.3 GeV Aduszkiewicz et al. (2020a, b), 5.09±0.365.09\pm 0.36, is also significantly larger than that in central Au+Au/Pb+Pb collisions  Alt et al. (2008a, c); Adam et al. (2020). In our measurement at 3 GeV, there is no obvious difference in the ϕ/K\phi/K^{-} ratio between the 0–10% and 10–40% central bins, while the result in the most peripheral 40–60% central bin shows a hint of a larger value, as shown in Tab. 2. Similarly, the ϕ/Ξ\phi/\Xi^{-} ratio in mid-central collisions seems to be larger than that in central collisions. Overall, these observations are qualitatively consistent with the expectation that a smaller canonical volume in the smaller system leads to a higher observed ϕ/K\phi/K^{-} and/or ϕ/Ξ\phi/\Xi^{-} ratio.

Hadronic transport models are widely used in the high baryon density region to study the properties of the produced dense matter Bass et al. (1998); Bleicher et al. (1999); Hartnack et al. (2012); Steinheimer and Bleicher (2015); Steinberg et al. (2019); Song et al. (2021). In the modified version of the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model Steinheimer and Bleicher (2015), UrQMD2\textup{UrQMD}^{2}, new decay channels from high mass baryon resonances to ϕ\phi and Ξ\Xi^{-} are deployed. The relevant decay branching fraction was determined by fitting the experimental data from pp+pp collisions Maeda et al. (2008). From the comparison shown in Fig. 5, the modified UrQMD2\textup{UrQMD}^{2} calculation for central (b<5fm\rm{b}<5\,\rm{fm}) Au+Au collisions agrees with the data points at low sNN{\sqrt{s_{\rm NN}}}, including our new measurement for ϕ/K\phi/K^{-}. However calculations from the public UrQMD1\textup{UrQMD}^{1} model Bass et al. (1998); Bleicher et al. (1999) underestimate our measurements for both ϕ/K\phi/K^{-} and ϕ/Ξ\phi/\Xi^{-}. The SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) model Steinberg et al. (2019) attempts to incorporate the newest available experimental data to constrain the resonance branching ratios. These data include both elementary hadronic cross sections and dilepton invariant mass spectra. The ϕ/K\phi/K^{-} ratio is reasonably reproduced using SMASH in the smaller system and sNN{\sqrt{s_{\rm NN}}} below 3 GeV, despite the overestimation of each individual (ϕ\phi, KK^{-}) transverse mass spectrum measured, e.g. in Au+Au 0-40% system by HADES Adamczewski-Musch et al. (2018); Steinberg et al. (2019). The predicted ϕ/K\phi/K^{-} ratio from the same model is about 2.5σ\sigma higher than central Au+Au 0–10% collisions at 3 GeV. This indicates that some important in-medium mechanism for strangeness production and propagation may be missing for the large system in SMASH. Both UrQMD and SMASH calculations reproduced the measured strangeness data highlighting the importance of the contributions of the resonances in the low energies. Furthermore, the ϕ\phi-meson scattering with the baryonic medium remains an open question from recent measurements of π\pi induced nucleus reactions and the pp-ϕ\phi femtoscopy Adamczewski-Musch et al. (2019b); Acharya et al. (2021). More detailed investigations are needed in order to understand the dynamics of strange and multi-strange hadrons at low energy nuclear collisions.

Our measurement of KK^{-}, ϕ\phi and Ξ\Xi production yields in 3 GeV Au+Au collisions demonstrates the necessity of the Canonical Ensemble for strangeness at low energy heavy-ion collisions. In the meantime, hadronic transport model calculations (UrQMD and SMASH) including resonance contributions reproduce the data. These observations suggest a change of the medium properties at 3 GeV compared to those from higher energy collisions. Similar conclusions have been reached from the measurements of collectivity Abdallah et al. (2021b) and high moment of protons Abdallah et al. (2021a) in 3 GeV Au+Au collisions.

IV SUMMARY

In summary, we report the systematic measurements of KK^{-}, ϕ(1020)\phi(1020) and Ξ\Xi^{-} production yields and the ϕ/K\phi/K^{-}, ϕ/Ξ\phi/\Xi^{-} ratios in Au+Au collisions at sNN=3GeV{\sqrt{s_{\rm NN}}=\rm{3\,GeV}} with the STAR experiment at RHIC. The measured ϕ/K\phi/K^{-} ratio is significantly larger than the statistical model prediction based on Grand Canonical Ensemble in the 0–10% central collisions. Both the results of ϕ/K\phi/K^{-} (rc2.7r_{c}\sim 2.7 fm) and ϕ/Ξ\phi/\Xi^{-} (rc4.2r_{c}\sim 4.2 fm) ratios favor the Canonical Ensemble model for strangeness production in such collisions. Transport models, including the resonance decays, could reasonably describe our measured ϕ/K\phi/K^{-} ratio at 3 GeV and the increasing trend of ϕ/Ξ\phi/\Xi^{-} at lower energies. The new results from this paper suggest a significant change in the strangeness production for sNN<5GeV{\sqrt{s_{\rm NN}}<\rm{5\,GeV}}, providing new insights towards the understanding of the QCD medium properties at high baryon density.

V Acknowledgement

We would like to thank K. Redlich and J. Steinheimer for fruitful discussions. We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the Higher Education Sprout Project by Ministry of Education at NCKU, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office, New National Excellency Programme of the Hungarian Ministry of Human Capacities, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, German Bundesministerium für Bildung, Wissenschaft, Forschung and Technologie (BMBF), Helmholtz Association, Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS).

References