This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Projective and Whittaker functors on category 𝒪\mathcal{O}.

Juan Camilo Arias and Erik Backelin Erik Backelin, Departamento de Matemáticas, Universidad de los Andes, Carrera 1 N. 18A - 10, Bogotá, COLOMBIA erbackel@uniandes.edu.co Juan Camilo Arias, Departamento de Matemáticas, Universidad de los Andes, Carrera 1 N. 18A - 10, Bogotá, COLOMBIA. Tel: +571 3394999 ext. 3705 Fax: +571 3324427 jc.arias147@uniandes.edu.co
Abstract.

We show that the Whittaker functor on a regular block of the BGG-category 𝒪\mathcal{O} of a semisimple complex Lie algebra can be obtained by composing a translation to the wall functor with Soergel and Miličić’s equivalence between the category of Whittaker modules and a singular block of 𝒪\mathcal{O}. We show that the Whittaker functor is a quotient functor that commutes with all projective functors and endomorphisms between them.

2000 Mathematics Subject Classification:
Primary 17B10, 18G15, 17B20

1. Introduction

Let 𝔤\mathfrak{g} be a complex semisimple Lie algebra, 𝔟\mathfrak{b} a Borel subalgebra, 𝔥\mathfrak{h} a Cartan subalgebra and 𝔫=[𝔟,𝔟]\mathfrak{n}=[\mathfrak{b},\mathfrak{b}]. Let 𝒪\mathcal{O} be the Bernstein-Gelfand-Gelfand (BGG) category of representations of 𝔤\mathfrak{g}. Let U=U(𝔤)U=U(\mathfrak{g}) be the universal enveloping algebra of 𝔤\mathfrak{g} and ZZ its center. Let f:U(𝔫)f:U(\mathfrak{n})\to\mathbb{C} be an algebra homomorphism and 𝒩f\mathcal{N}_{f} the corresponding category of Whittaker modules (finitely generated UU-modules that are locally finite over ZZ and locally annihilated by Kerf\operatorname{Ker}f). For a UU-module VV let Γf(V)\Gamma_{f}(V) denote the submodule of vectors annihilated by some power of Kerf\operatorname{Ker}f. In [1] the Whittaker functor

Γ¯f:𝒪𝒩f,MΓf(M¯)\overline{\Gamma}_{f}:\mathcal{O}\to\mathcal{N}_{f},\ M\mapsto\Gamma_{f}(\overline{M})

was introduced. Here M¯\overline{M} denote the completion of MM, i.e. the product of its weight spaces. It is exact and maps Verma modules to standard Whittaker modules. In this paper we shall establish a few basic properties of this functor that we haven’t found in the literature.

When ff is a regular character (i.e. f(Eα)0f(E_{\alpha})\neq 0 for all simple root vectors EαE_{\alpha}) Kostant [10] showed that 𝒩f\mathcal{N}_{f} is equivalent to the category of finite dimensional ZZ-modules. The functor is MWhf(M)={mM|Kerfm=0}M\mapsto Wh_{f}(M)=\{m\in M|\operatorname{Ker}f\cdot m=0\}.

On the other hand, if we fix a dominant weight λ𝔥\lambda\in\mathfrak{h}^{*} and the corresponding block 𝒪λ^𝒪\mathcal{O}_{\widehat{\lambda}}\subset\mathcal{O} there is Soergel’s functor 𝕍:𝒪λ^Zmod\mathbb{V}:\mathcal{O}_{\widehat{\lambda}}\to Z-\operatorname{mod}, 𝕍(M)=Hom(Pw0λ,M)\mathbb{V}(M)=\operatorname{Hom}(P_{w_{0}\cdot\lambda},M), where Pw0λP_{w_{0}\cdot\lambda} is the anti-dominant projective. It was shown in [1] that if we restrict Γ¯f\overline{\Gamma}_{f} to 𝒪λ^\mathcal{O}_{\widehat{\lambda}} and compose it with Kostant’s equivalence WhfWh_{f} the resulting functor is naturally equivalent to 𝕍\mathbb{V} (see Proposition 2 for a short proof). Thus one may think of Γ¯f\overline{\Gamma}_{f} as a ”partial” Soergel functor, for a general character ff.

Let λ\lambda be dominant, integral and regular and μ\mu be dominant and integral and assume that ff is a character such that Wμ=WfW_{\mu}=W_{f}. Then using the machinery of Harish-Chandra bimodules Soergel and Miličić, [13] established an equivalences between (an enhancement of) 𝒪μ^\mathcal{O}_{\widehat{\mu}} and the block 𝒩λ^f\mathcal{N}^{f}_{\widehat{\lambda}}. Harish-Chandra bimodule theory provides an equivalence κ:𝒪λ^𝒪λ\kappa:\mathcal{O}_{\widehat{\lambda}}\overset{\sim}{\longrightarrow}\mathcal{O}^{\prime}_{\lambda}. If we compose κ\kappa with the translation to the wall functor Θλμ:𝒪λ𝒪μ^\Theta^{\mu}_{\lambda}:\mathcal{O}^{\prime}_{\lambda}\to\mathcal{O}^{\prime}_{\widehat{\mu}} and then compose the result with the equivalence σ:𝒪μ^𝒩λ^f\sigma:\mathcal{O}_{\widehat{\mu}}\overset{\sim}{\longrightarrow}\mathcal{N}^{f}_{\widehat{\lambda}} we obtain a functor τ=σΘλμκ:𝒪λ^𝒩λ^f\tau=\sigma\Theta^{\mu}_{\lambda}\kappa:\mathcal{O}_{\widehat{\lambda}}\to\mathcal{N}^{f}_{\widehat{\lambda}}. We show in Theorem 1 that τ\tau is naturally equivalent to Γ¯f\overline{\Gamma}_{f}.

As a consequence we establish that Γ¯f\overline{\Gamma}_{f} has a left and a right adjoint. (It has eluded us to directly prove the existence of these adjoints without using τ\tau.) We also prove that Γ¯f\overline{\Gamma}_{f} is a quotient functor, Corollary 2.

The idea behind the proofs of these facts is that the Whittaker functor Γ¯f\overline{\Gamma}_{f} commutes not just with projective functors but actually with morphisms between projective functors in the following sense: Let 𝒫\mathcal{P} and 𝒫\mathcal{P}^{\prime} be projective endofunctors of the category of all ZZ-finite UU-modules; in particular such functors act on 𝒪\mathcal{O} and on Whittaker modules. Let ϕ:𝒫𝒫\phi:\mathcal{P}\to\mathcal{P}^{\prime} be a natural transformation. Then we are constructing equivalences Θ𝒫:𝒫Γ¯fΓ¯f𝒫\Theta_{\mathcal{P}}:\mathcal{P}\circ\overline{\Gamma}_{f}\to\overline{\Gamma}_{f}\circ\mathcal{P} such that Γ¯fϕ\overline{\Gamma}_{f}\circ\phi (composing a natural transformation with a functor) and ϕΓ¯f\phi\circ\overline{\Gamma}_{f} (precomposing a natural transformation with a functor) becomes equivalent after conjugation with Θ\Theta: Θ𝒫(ϕΓ¯f)=(Γ¯fϕ)Θ𝒫\Theta_{\mathcal{P}^{\prime}}(\phi\circ\overline{\Gamma}_{f})=(\overline{\Gamma}_{f}\circ\phi)\Theta_{\mathcal{P}}. This is showed in Proposition 3. We also show that the functor τ\tau commutes with projective functors and their morphisms in this sense. With this in hand, in order to establish Theorem 1 it is enough to observe that Γ¯f(Δλ)τ(Δλ)\overline{\Gamma}_{f}(\Delta_{\lambda})\cong\tau(\Delta_{\lambda}).

1.0.1.

We wonder if the commutativity between Γ¯f\overline{\Gamma}_{f} and projective functors may be of interest in the study of the so called Rouqier complexes, see [7], [11]. Rouquier complexes occur naturally when one constructs projective resolutions of Verma modules by iterated use of wall-crossing functors. They are mostly interpreted as complexes of Soergel bimodules and they have been of fundamental importance in establishing Hodge theoretical properties of the category of Soergel bimodules. In their original form however Rouquier complexes are complexes of projective functors (and as such carry more information) and the results of this paper may perhaps help to find symmetries of them. One may construct Rouqier complexes of Whittaker modules and it follows from the results here that these have good exactness properties, see Corollary 1. One may also use the composition of the Whittaker functor and its adjoint to provide endofunctors of 𝒪λ^\mathcal{O}_{\widehat{\lambda}} that commute with all projective endofunctors of 𝒪λ^\mathcal{O}_{\widehat{\lambda}}. In section 3.2 we added some computations of the adjoints of Γ¯f\overline{\Gamma}_{f} in order to facilitate this.

1.0.2. Acknowledgements

We like to thank Paul Bressler for many useful conversations.

2. Preliminaries.

In this section we collect the known facts that we will need about category 𝒪\mathcal{O}, Harish-Chandra bimodules, Whittaker modules and the Whittaker functor.

2.1. Root data

Let 𝔤𝔟𝔥\mathfrak{g}\supset\mathfrak{b}\supset\mathfrak{h} be a complex semisimple Lie algebra containing a Borel and a Cartan subalgebra and put 𝔫:=[𝔟,𝔟]\mathfrak{n}:=[\mathfrak{b},\mathfrak{b}]. Let WW be the Weyl group and 𝔹𝔥\mathbb{B}\subset\mathfrak{h}^{*} the simple roots and ρ\rho the half sum of the positive roots. We consider the dotdot-action of WW on 𝔥\mathfrak{h}^{*} defined by wλ=w(λ+ρ)ρw\cdot\lambda=w(\lambda+\rho)-\rho; we let S(𝔥)WS(\mathfrak{h})^{W} be the invariants with respect to the dot-action. Let w0Ww_{0}\in W be the longest element.

Let U=U(𝔤)U=U(\mathfrak{g}) be the universal enveloping algebra of 𝔤\mathfrak{g} and ZUZ\subset U its center. For λ𝔥\lambda\in\mathfrak{h}^{*} let JλZJ_{\lambda}\subset Z be the maximal ideal that annihilates a Verma module with highest weight λ\lambda. Let Wλ={wW|wλ=λ}W_{\lambda}=\{w\in W|w\cdot\lambda=\lambda\}. Let WλW^{\lambda} be the set of longest representatives of the left cosets W/WλW/W_{\lambda} and Wλ{}^{\lambda}W the set of longest representatives of the right cosets WλWW_{\lambda}\setminus W.

Let f:U(𝔫)f:U(\mathfrak{n})\to\mathbb{C} be an algebra homomorphism. Let 𝔹f={α𝔹|f(Eα)0}\mathbb{B}_{f}=\{\alpha\in\mathbb{B}|f(E_{\alpha})\neq 0\}, where Eα𝔫E_{\alpha}\in\mathfrak{n} is the Chevalley generator corresponding to α𝔹\alpha\in\mathbb{B}, and let WfW_{f} be the subgroup of WW generated by simple reflections sαs_{\alpha}, α𝔹f\alpha\in\mathbb{B}_{f}.

We say that ff is non-degenerate if 𝔹f=𝔹\mathbb{B}_{f}=\mathbb{B} and that ff is trivial if 𝔹f=\mathbb{B}_{f}=\emptyset.

2.1.1.

Let 𝔤\mathfrak{g}-mod\operatorname{mod} denote the category of all (left) UU-modules and let {\mathcal{F}} be the category of finite dimensional UU-modules. Let \mathcal{M} denote the category of finitely generated UU-modules such that the action of the subalgebra ZUZ\subset U is locally finite. For λ𝔥\lambda\in\mathfrak{h}^{*} define full subcategories of \mathcal{M}:

λ={V|JλV=0},λ^={V|n>0:JλnV=0}.\mathcal{M}_{\lambda}=\{V\in\mathcal{M}|J_{\lambda}V=0\},\ \mathcal{M}_{\widehat{\lambda}}=\{V\in\mathcal{M}|\,\exists n>0:\,J^{n}_{\lambda}V=0\}.

We let iλ:λ^i_{\lambda}:\mathcal{M}_{{\widehat{\lambda}}}\to\mathcal{M} denote the inclusion functor and define

prλ:λ^,M{mM|n>0:Jλnm=0}.pr_{\lambda}:\mathcal{M}\to\mathcal{M}_{{\widehat{\lambda}}},\ M\mapsto\{m\in M|\,\exists n>0:\,J^{n}_{\lambda}\cdot m=0\}.

Then we have the block decomposition =λ𝔥λ^\mathcal{M}=\oplus_{\lambda\in\mathfrak{h}^{*}}\mathcal{M}_{\widehat{\lambda}}. For any full subcategory 𝒞\mathcal{C} of \mathcal{M} we define full subcategories 𝒞λ=𝒞λ\mathcal{C}_{\lambda}=\mathcal{C}\cap\mathcal{M}_{\lambda} and 𝒞λ^=𝒞λ^\mathcal{C}_{\widehat{\lambda}}=\mathcal{C}\cap\mathcal{M}_{\widehat{\lambda}}.

2.2. Category 𝒪\mathcal{O}.

See [8]. Let 𝒪\mathcal{O} be the BGG-category of finitely generated UU-modules which are locally finite over 𝔫\mathfrak{n} and semisimple over 𝔥\mathfrak{h}. Any M𝒪M\in\mathcal{O} thus has the weight space decomposition M=ν𝔥MνM=\oplus_{\nu\in\mathfrak{h}^{*}}M^{\nu} and each MνM^{\nu} is a finite dimensional vector space. 𝒪\mathcal{O} is a full subcategory of \mathcal{M}. Also, let 𝒪𝒪\mathcal{O}^{\prime}\supset\mathcal{O} be the category of finitely generated UU-modules which are locally finite over 𝔟\mathfrak{b} and locally finite over ZZ.

For λ𝔥\lambda\in\mathfrak{h}^{*} we get full subcategories 𝒪λOλ^𝒪\mathcal{O}_{\lambda}\subset O_{\widehat{\lambda}}\subset\mathcal{O} and 𝒪λOλ^𝒪\mathcal{O}^{\prime}_{\lambda}\subset O^{\prime}_{\widehat{\lambda}}\subset\mathcal{O}^{\prime} and block decompositions 𝒪=λ𝔥𝒪λ^\mathcal{O}=\oplus_{\lambda\in\mathfrak{h}^{*}}\mathcal{O}_{\widehat{\lambda}} and 𝒪=λ𝔥𝒪λ^\mathcal{O}^{\prime}=\oplus_{\lambda\in\mathfrak{h}^{*}}\mathcal{O}^{\prime}_{\widehat{\lambda}}.

For M=ν𝔥Mν𝒪M=\oplus_{\nu\in\mathfrak{h}^{*}}M^{\nu}\in\mathcal{O} we let M=ν𝔥Hom(Mν,)M^{*}=\oplus_{\nu\in\mathfrak{h}^{*}}\operatorname{Hom}_{\mathbb{C}}(M^{\nu},\mathbb{C}) with the 𝔤\mathfrak{g}-module structure given by the Chevalley involution: (xf)(m)=f(xtrm)(xf)(m)=f(x^{tr}m) for x𝔤x\in\mathfrak{g}, fMf\in M^{*} and mMm\in M. Then M𝒪M^{*}\in\mathcal{O} and MMM\overset{\sim}{\longrightarrow}M^{**}.

For λ𝔥\lambda\in\mathfrak{h}^{*} denote by λ\mathbb{C}_{\lambda} the corresponding one dimensional representation of 𝔟\mathfrak{b} (by means of the projection 𝔟𝔥\mathfrak{b}\to\mathfrak{h}). Let Δλ=U(𝔤)U(𝔟)λ\Delta_{\lambda}=U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\mathbb{C}_{\lambda} be the Verma module with highest weight λ\lambda, λ\nabla_{\lambda} its dual, LλL_{\lambda} its simple quotient and PλP_{\lambda} a projective cover of LλL_{\lambda} in 𝒪λ^\mathcal{O}_{\widehat{\lambda}} and Iλ=PλI_{\lambda}=P^{*}_{\lambda} an injective hull of LλL_{\lambda}.

Assume that a module M𝒪M\in\mathcal{O} has a filtration 0=F0F1Fn=M0=F_{0}\subset F_{1}\subset\ldots\subset F_{n}=M such that Fi/Fi1ΔλiF_{i}/F_{i-1}\cong\Delta_{\lambda_{i}} for each ii. Then we say that MM has a Verma flag and we write (M:Δλ)=#{i|λi=λ}(M:\Delta_{\lambda})=\#\{i|\,\lambda_{i}=\lambda\} for the corresponding Verma flag multiplicity. For any V𝒪V\in\mathcal{O} we write [V:L][V:L] for the Jordan Hölder-multiplicity of LL in VV, for LL a simple module. Any projective module admits a Verma flag and BGG-reciprocity states (Pλ:Δμ)=[Δμ:Lλ](P_{\lambda}:\Delta_{\mu})=[\Delta_{\mu}:L_{\lambda}].

2.3. Whittaker modules and functor.

Let 𝒩\mathcal{N} be the category of finitely generated UU-modules which are locally finite over U(𝔫)U(\mathfrak{n}) and locally finite over ZZ. This is a finite length category. Let f:U(𝔫)f:U(\mathfrak{n})\to\mathbb{C} be an algebra homomorphism and denote by f\mathbb{C}_{f} the corresponding one dimensional representation of U(𝔫)U(\mathfrak{n}).

Let 𝒩f\mathcal{N}^{f} be the full subcategory of 𝒩\mathcal{N} whose objects are locally annihilated by some power of Kerf\operatorname{Ker}f. Objects of 𝒩f\mathcal{N}^{f} are called Whittaker modules. (Thus, if ff is the trivial homomorphism then 𝒩f=𝒪\mathcal{N}^{f}=\mathcal{O}^{\prime}.) Since 𝔫\mathfrak{n} is nilpotent we have by [5]

𝒩=f:U(𝔫)𝒩f.\mathcal{N}=\oplus_{f:U(\mathfrak{n})\to\mathbb{C}}\,\mathcal{N}^{f}.

The categories 𝒩\mathcal{N} and 𝒩f\mathcal{N}^{f} also decomposes over the center ZZ:

𝒩=λ𝔥𝒩λ^,𝒩f=λ𝔥𝒩λ^f.\mathcal{N}=\oplus_{\lambda\in\mathfrak{h}^{*}}\mathcal{N}_{{\widehat{\lambda}}},\;\;\mathcal{N}^{f}=\oplus_{\lambda\in\mathfrak{h}^{*}}\mathcal{N}^{f}_{\widehat{\lambda}}.
Lemma 1.

a) Let MM be a 𝔤\mathfrak{g}-module and assume that each mMm\in M is annihilated by some power of Eαf(Eα)E_{\alpha}-f(E_{\alpha}) for α𝔹\alpha\in\mathbb{B}. Then MM is locally finite over 𝔫\mathfrak{n}. In particular, if MM is finitely generated over UU then M𝒩fM\in\mathcal{N}^{f}.

b) For EE\in{\mathcal{F}} and M𝒩fM\in\mathcal{N}^{f} we have EM𝒩fE\otimes M\in\mathcal{N}^{f}.

Proof.

a) Define a new 𝔫\mathfrak{n}-action on MM by xm=(xf(x))mx*m=(x-f(x))m. Then the generators EαE_{\alpha} of 𝔫\mathfrak{n} acts nilpotently on mm. By [3], Lemma 7.3.7. this implies that U(𝔫)mU(\mathfrak{n})*m is finite dimensional for each mMm\in M.

b) Let emEMe\otimes m\in E\otimes M. Then (Eαf(Eα))(em)=Eαe(Eαf(Eα))m(E_{\alpha}-f(E_{\alpha}))(e\otimes m)=E_{\alpha}e\otimes(E_{\alpha}-f(E_{\alpha}))m and therefore by induction

(Eαf(Eα))n(em)=j=0n(nj)Eαje(Eαf(Eα))njm.(E_{\alpha}-f(E_{\alpha}))^{n}(e\otimes m)=\sum^{n}_{j=0}\binom{n}{j}E^{j}_{\alpha}e\otimes(E_{\alpha}-f(E_{\alpha}))^{n-j}m.

Since EE is finite dimensional Eαje=0E^{j}_{\alpha}e=0 for j>>0j>>0 and since also (Eαf(Eα))njm=0(E_{\alpha}-f(E_{\alpha}))^{n-j}m=0 for nj>>0n-j>>0 we get that the above sum vanishes for n>>0n>>0. Thus b) follows from a). ∎

2.3.1. Standard Whittaker modules

See [12], [13]. Let ff be fixed and let 𝔭\mathfrak{p} denote the parabolic subalgebra of 𝔤\mathfrak{g} generated by 𝔟\mathfrak{b} and EαE_{\alpha} for α𝔹f\alpha\in\mathbb{B}_{f}. Let 𝔩\mathfrak{l} be the reductive Levi factor of 𝔭\mathfrak{p} and put Jλ(𝔩)=AnnZ(𝔩)U(𝔩)U(𝔟𝔩)λJ^{(\mathfrak{l})}_{\lambda}=\operatorname{Ann}_{Z(\mathfrak{l})}U(\mathfrak{l})\otimes_{U(\mathfrak{b}\cap\mathfrak{l})}\mathbb{C}_{\lambda}, for λ𝔥\lambda\in\mathfrak{h}^{*}.

Consider the U(𝔩)U(\mathfrak{l})-module U(𝔩)/Jλ(𝔩)U(𝔫𝔩)fU(\mathfrak{l})/J^{(\mathfrak{l})}_{\lambda}\otimes_{U(\mathfrak{n}\cap\mathfrak{l})}\mathbb{C}_{f} as a U(𝔭)U(\mathfrak{p})-module by means of the projection 𝔭𝔭/rad𝔭𝔩\mathfrak{p}\to\mathfrak{p}/rad\,\mathfrak{p}\cong\mathfrak{l} and define the standard Whittaker module

Δλ(f)=UU(𝔭)(U(𝔩)/Jλ(𝔩)U(𝔫𝔩)f),λ𝔥.\Delta_{\lambda}(f)=U\otimes_{U(\mathfrak{p})}(U(\mathfrak{l})/J^{(\mathfrak{l})}_{\lambda}\otimes_{U(\mathfrak{n}\cap\mathfrak{l})}\mathbb{C}_{f}),\;\lambda\in\mathfrak{h}^{*}.

Note that when ff is the trivial homomorphism then Δλ(f)=Δλ\Delta_{\lambda}(f)=\Delta_{\lambda}. Δλ(f)\Delta_{\lambda}(f) has a unique irreducible quotient Lλ(f)L_{\lambda}(f).

Also, define

Δλn(f)=UU(𝔭)(U(𝔩)/(Jλ(𝔩))nU(𝔫𝔩)f)\Delta^{n}_{\lambda}(f)=U\otimes_{U(\mathfrak{p})}(U(\mathfrak{l})/(J^{(\mathfrak{l})}_{\lambda})^{n}\otimes_{U(\mathfrak{n}\cap\mathfrak{l})}\mathbb{C}_{f})

for n1n\geq 1.

2.4. The Whittaker functor

For a 𝔤\mathfrak{g}-module VV we define

Γf(V)={vV|(Kerf)nv=0,forn>>0}\Gamma_{f}(V)=\{v\in V|(\operatorname{Ker}f)^{n}v=0,\operatorname{for}n>>0\}

and

Whf(V)={vV|(Kerf)v=0}.Wh_{f}(V)=\{v\in V|(\operatorname{Ker}f)v=0\}.

Then Γf(V)\Gamma_{f}(V) is a 𝔤\mathfrak{g}-submodule of VV while Whf(V)Wh_{f}(V) is merely a ZZ-submodule. It is clear that Γf\Gamma_{f} and WhfWh_{f} yield functors. WhfWh_{f} was introduced by Kostant, [10].

For M=λ𝔥Mλ𝒪M=\oplus_{\lambda\in\mathfrak{h}^{*}}M^{\lambda}\in\mathcal{O} we define the completion M¯=λ𝔥Mλ\overline{M}=\prod_{\lambda\in\mathfrak{h}^{*}}M^{\lambda}. This has a natural 𝔤\mathfrak{g}-module structure making MM¯M\subseteq\overline{M} a submodule. Let ZmodfdZ-\operatorname{mod}_{fd} denote the category of finite dimensional ZZ-modules. In [1] the second author introduced the functors

Γ¯f:𝒪𝒩f,MΓf(M¯) and \overline{\Gamma}_{f}:\mathcal{O}\to\mathcal{N}^{f},\ M\mapsto\Gamma_{f}(\overline{M})\hbox{ and }
Wh¯f:𝒪Zmodfd,MWhf(M¯).\overline{Wh}_{f}:\mathcal{O}\to Z-\operatorname{mod}_{fd},\ M\mapsto Wh_{f}(\overline{M}).

Γ¯f\overline{\Gamma}_{f} is called the Whittaker functor; it is exact for any ff. The functor Wh¯f\overline{Wh}_{f} is exact if and only if ff is non-degenerate. These functors commute with the action of ZZ. Assume that ff is non-degenerate: [10] (see also [14] for a geometric proof) showed that the functor

Whf:𝒩fZmodfdWh_{f}:\mathcal{N}^{f}\to Z-\operatorname{mod}_{fd}

is an equivalence of categories; its quasi-inverse is MUU(𝔫)ZMM\mapsto U\otimes_{U(\mathfrak{n})\otimes Z}M. Here the left ZZ-module structure on MM is the given one and the U(𝔫)U(\mathfrak{n})-module structure is the unique one such that KerfM=0\operatorname{Ker}f\cdot M=0.

In [1] it was proved that

Proposition 1.

For any λ𝔥\lambda\in\mathfrak{h}^{*} we have Γ¯f(Δλ)Δλ(f)\overline{\Gamma}_{f}(\Delta_{\lambda})\cong\Delta_{\lambda}(f). If, moreover, λ\lambda is dominant and xWμx\in{}^{\mu}W then Γ¯f(Lxλ)Lxλ(f)\overline{\Gamma}_{f}(L_{x\cdot\lambda})\cong L_{x\cdot\lambda}(f) and for xWμx\notin{}^{\mu}W we have Γ¯f(Lxλ)=0\overline{\Gamma}_{f}(L_{x\cdot\lambda})=0.

2.4.1.

Let λ\lambda be integral and dominant. Let J=AnnZ(Pw0λ)J=\operatorname{Ann}_{Z}(P_{w_{0}\cdot\lambda}) and put C=Z(g)/JC=Z(g)/J. Let 𝕍:𝒪λ^Zmod\mathbb{V}:\mathcal{O}_{{\widehat{\lambda}}}\to Z-\operatorname{mod} be Soergel’s functor 𝕍(M)=Hom𝒪(Pw0λ,M)\mathbb{V}(M)=\operatorname{Hom}_{\mathcal{O}}(P_{w_{0}\cdot\lambda},M) [16]. Thus, C=𝕍(Pw0λ)C=\mathbb{V}(P_{w_{0}\cdot\lambda}). Since 𝕍\mathbb{V} is fully faithful on projective objects we conclude that J𝒪λ^=0J\mathcal{O}_{{\widehat{\lambda}}}=0. Thus, also JΓ¯f(M)=JWh¯f(M)=0J\overline{\Gamma}_{f}(M)=J\overline{Wh}_{f}(M)=0 for M𝒪λ^M\in\mathcal{O}_{{\widehat{\lambda}}}. The following result was proved in [1]. We include here a short proof that Soergel once explained to us.

Proposition 2.

Assume that ff is non-degenerate. Then Wh¯f|𝒪λ^\overline{Wh}_{f}|_{\mathcal{O}_{\widehat{\lambda}}} is equivalent to 𝕍\mathbb{V}.

Proof.

The assumption on ff implies that Wh¯f\overline{Wh}_{f} is exact. Let vWh¯f(Pw0λ)v\in\overline{Wh}_{f}(P_{w_{0}\cdot\lambda}) be such that v¯0\overline{v}\neq 0 in Wh¯f(Lw0λ)\overline{Wh}_{f}(L_{w_{0}\cdot\lambda}) under the surjection Wh¯f(Pw0λ)Wh¯f(Lw0λ)\overline{Wh}_{f}(P_{w_{0}\cdot\lambda})\twoheadrightarrow\overline{Wh}_{f}(L_{w_{0}\cdot\lambda}) induced by the surjection Pw0λLw0λP_{w_{0}\cdot\lambda}\twoheadrightarrow L_{w_{0}\cdot\lambda}. By Yoneda Lemma

Homfunctors(𝕍,Wh¯f)=HomZ(𝕍(Pw0λ),Wh¯f(Pw0λ))=\operatorname{Hom}_{functors}(\mathbb{V},\overline{Wh}_{f})=\operatorname{Hom}_{Z}(\mathbb{V}(P_{w_{0}\cdot\lambda}),\overline{Wh}_{f}(P_{w_{0}\cdot\lambda}))=
=HomZ(C,Wh¯f(Pw0λ))=HomC(C,Wh¯f(Pw0λ))=Wh¯f(Pw0λ).=\operatorname{Hom}_{Z}(C,\overline{Wh}_{f}(P_{w_{0}\cdot\lambda}))=\operatorname{Hom}_{C}(C,\overline{Wh}_{f}(P_{w_{0}\cdot\lambda}))=\overline{Wh}_{f}(P_{w_{0}\cdot\lambda}).

Let h:𝕍Wh¯fh:\mathbb{V}\to\overline{Wh}_{f} be the natural transformation that corresponds to vWh¯f(Pw0λ)v\in\overline{Wh}_{f}(P_{w_{0}\cdot\lambda}). Then we see that hLw0λ:𝕍(Lw0λ)Wh¯f(Lw0λ)h_{L_{w_{0}\cdot\lambda}}:\mathbb{V}(L_{w_{0}\cdot\lambda})\to\overline{Wh}_{f}(L_{w_{0}\cdot\lambda}) is an isomorphism since it is non-zero and both sides are one dimensional vector spaces. Also, since 𝕍(Lxλ)=Wh¯f(Lxλ)=0\mathbb{V}(L_{x\cdot\lambda})=\overline{Wh}_{f}(L_{x\cdot\lambda})=0 for xw0x\neq w_{0} we get that hLxλh_{L_{x\cdot\lambda}} is an isomorphism as well. Hence, by exactness of both functors and the five lemma hMh_{M} is an isomorphism for all M𝒪λ^M\in\mathcal{O}_{{\widehat{\lambda}}}. ∎

2.5. Projective functors

Let EE\in{\mathcal{F}} and MM\in\mathcal{M}; then there is the functor

TE:,TE(M)=EM.T_{E}:\mathcal{M}\to\mathcal{M},\ T_{E}(M)=E\otimes M.

A projective functor from λ^\mathcal{M}_{\widehat{\lambda}} to μ^\mathcal{M}_{\widehat{\mu}} is a direct summand in a functor prμTEiλpr_{\mu}T_{E}i_{\lambda}. Projective functors are exact and they have left and right adjoints which coincide.

By [4] we have the following important: Assume that λ\lambda is dominant and let 𝒫,𝒫:λ^μ^\mathcal{P},\mathcal{P}^{\prime}:\mathcal{M}_{\widehat{\lambda}}\to\mathcal{M}_{\widehat{\mu}} be projective functors. Let gHom(𝒫(Δλ),𝒫(Δλ))g\in\operatorname{Hom}(\mathcal{P}(\Delta_{\lambda}),\mathcal{P}^{\prime}(\Delta_{\lambda})). Then there is a natural transformation ϕ:𝒫𝒫\phi:\mathcal{P}\to\mathcal{P}^{\prime} such that ϕ(Δλ)=g\phi(\Delta_{\lambda})=g. Moreover, ϕ\phi is uniquely determined by gg if gg is an isomorphism and if gg is an idempotent then we can chose ϕ\phi to be an idempotent as well. Thus decomposing 𝒫(Δλ)\mathcal{P}(\Delta_{\lambda}) into a direct sum of indecomposables and decomposing 𝒫\mathcal{P} is the same thing.

Assume that λ,μ𝔥\lambda,\mu\in\mathfrak{h}^{*} such that μλ\mu-\lambda is integral and WλWμW_{\lambda}\subseteq W_{\mu}. Let VV be a finite dimensional irreducible 𝔤\mathfrak{g}-module with extremal weight μλ\mu-\lambda. Then there is the translation to the wall functor

(2.1) Θλμ:λ^μ^,Mprμ(TV(M)).\Theta^{\mu}_{\lambda}:\mathcal{M}_{{\widehat{\lambda}}}\to\mathcal{M}_{{\widehat{\mu}}},\;M\mapsto pr_{\mu}(T_{V}(M)).

Its left and right adjoint is translation out of the wall;

(2.2) Θμλ:μ^λ^,Mprλ(TV(M)).\Theta^{\lambda}_{\mu}:\mathcal{M}_{{\widehat{\mu}}}\to\mathcal{M}_{{\widehat{\lambda}}},\;M\mapsto pr_{\lambda}(T_{V^{\prime}}(M)).

Here VV^{\prime} is a finite dimensional irreducible 𝔤\mathfrak{g}-module with extremal weight λμ\lambda-\mu. We have ΘλμΘμλIdμ^|Wμ|\Theta^{\mu}_{\lambda}\Theta^{\lambda}_{\mu}\cong Id^{|W_{\mu}|}_{\mathcal{M}_{\widehat{\mu}}}.

2.5.1. Projective functors on 𝒪\mathcal{O}

Any projective functor 𝒫:λ^μ^\mathcal{P}:\mathcal{M}_{\widehat{\lambda}}\to\mathcal{M}_{\widehat{\mu}} descends to functors 𝒫:𝒪λ^𝒪μ^\mathcal{P}:\mathcal{O}_{\widehat{\lambda}}\to\mathcal{O}_{\widehat{\mu}} and 𝒫:𝒪λ^𝒪μ^\mathcal{P}:\mathcal{O}^{\prime}_{\widehat{\lambda}}\to\mathcal{O}^{\prime}_{\widehat{\mu}}. Those are the projective functors on 𝒪\mathcal{O} and 𝒪\mathcal{O}^{\prime}; they are exact, maps projectives to projectives and commute with duality: 𝒫(M)𝒫(M)\mathcal{P}(M^{*})\cong\mathcal{P}(M)^{*}.

Let λ\lambda and μ\mu be as in Section 2.5. Thus we get translation to and out of the wall: Θλμ:𝒪λ^𝒪μ^\Theta^{\mu}_{\lambda}:\mathcal{O}_{{\widehat{\lambda}}}\to\mathcal{O}_{{\widehat{\mu}}} and Θμλ:𝒪μ^𝒪λ^\Theta^{\lambda}_{\mu}:\mathcal{O}_{{\widehat{\mu}}}\to\mathcal{O}_{{\widehat{\lambda}}}.

We have

ΘλμΔxλΔxμ,xW,\Theta^{\mu}_{\lambda}\Delta_{x\cdot\lambda}\cong\Delta_{x\cdot\mu},\,x\in W,
ΘλμLxλ=Lxμ,xWμ,\Theta^{\mu}_{\lambda}L_{x\cdot\lambda}=L_{x\cdot\mu},\,x\in W^{\mu},

and ΘλμL(xλ)=0\Theta^{\mu}_{\lambda}L(x\cdot\lambda)=0, for xWμx\notin W^{\mu}.

For any projective module P𝒪λ^P\in\mathcal{O}_{\widehat{\lambda}} there is a unique (upto isomorphism) projective functor 𝒫:𝒪λ^𝒪λ^\mathcal{P}:\mathcal{O}_{\widehat{\lambda}}\to\mathcal{O}_{\widehat{\lambda}} such that 𝒫(Δλ)=P\mathcal{P}(\Delta_{\lambda})=P.

2.5.2. Projective functors on 𝒩f\mathcal{N}^{f}

By Lemma 1 any projective functor 𝒫:λ^μ^\mathcal{P}:\mathcal{M}_{\widehat{\lambda}}\to\mathcal{M}_{\widehat{\mu}} descends to a functor 𝒫:𝒩λ^f𝒩μ^f\mathcal{P}:\mathcal{N}^{f}_{\widehat{\lambda}}\to\mathcal{N}^{f}_{\widehat{\mu}}. Those are our projective functors on 𝒩f\mathcal{N}^{f}. 111Contrary to the case of 𝒪\mathcal{O} it is a priori not clear whether an indecomposable projective functor on \mathcal{M} when restricted to 𝒩f\mathcal{N}^{f} remains indecomposable. However we only need those projective functors on 𝒩f\mathcal{N}^{f} that are restrictions of projective endofunctors of \mathcal{M}.

2.6. Harish-Chandra bimodules and Soergel-Miličić’s equivalence.

Throughout this section we fix dominant integral weights λ\lambda and μ\mu with λ\lambda regular. 222One could weaken the integrality condition to λμ\lambda-\mu is integral here. But for the sake of simplicity we have assumed both λ\lambda and μ\mu are integral.

2.6.1.

Let XX be a UUU-U-bimodule. Then we have the adjoint action adad of 𝔤\mathfrak{g} on XX given by ad(g)x=gxxgad(g)x=gx-xg and the sub-bimodule XadfXX_{adf}\subseteq X consisting of ad-finite vectors. If XX is ad-finite (i.e. if X=XadfX=X_{adf}) then XX is finitely generated as a bimodule iff X is finitely generated as a left module iff XX is finitely generated as a right module.

The category of Harish Chandra bimodules \mathcal{H} is the category of finitely generated UUU-U-bimodules which are locally finite with respect to the adjoint action of 𝔤\mathfrak{g} and to the left (or equivalently the right) action of the center ZZ. The category of Harish-Chandra bimodules decomposes into blocks μ^λ^:=λ^μ^{}_{{\widehat{\lambda}}}\mathcal{H}_{{\widehat{\mu}}}:={}_{{\widehat{\lambda}}}\mathcal{H}\cap\mathcal{H}_{{\widehat{\mu}}}, for λ,μ𝔥\lambda,\mu\in\mathfrak{h}^{*}, where

λ^={X|n>0,JλnX=0},{}_{{\widehat{\lambda}}}\mathcal{H}=\{X\in\mathcal{H}|\;\exists n>0,J^{n}_{\lambda}X=0\},
μ^={X|n>0,XJμn=0}.\mathcal{H}_{{\widehat{\mu}}}=\{X\in\mathcal{H}|\;\exists n>0,XJ^{n}_{\mu}=0\}.

Similarly we define λ,μ,μλ{}_{\lambda}\mathcal{H},\mathcal{H}_{\mu},{}_{\lambda}\mathcal{H}_{\mu} and μλ^{}_{{\widehat{\lambda}}}\mathcal{H}_{\mu}. There is an autoequivalence Vs(V)=:VsV\mapsto s(V)=:V^{s} of \mathcal{H} where Vs=VV^{s}=V as a set and the UUU-U-bimodule action is given by uvu:=(u)tvutu*v*u^{\prime}:=(u^{\prime})^{t}vu^{t} for vVsv\in V^{s}. Since the Chevalley involution fixes ZZ we have (μ^λ^)s=λ^μ^({}_{{\widehat{\lambda}}}\mathcal{H}_{{\widehat{\mu}}})^{s}={}_{{\widehat{\mu}}}\mathcal{H}_{{\widehat{\lambda}}}.

For EE\in{\mathcal{F}} we consider the UUU-U-bimodule El=EE^{l}=E as a set and with action ueu=ueu*e*u^{\prime}=ue and the UUU-U-bimodule Er=EE^{r}=E as a set and action ueu=(u)teu*e*u^{\prime}=(u^{\prime})^{t}e. Note that (El)s=Er(E^{l})^{s}=E^{r}.

Consider the canonical projections (prμ)l:μ^(pr_{\mu})^{l}:\mathcal{H}\to{}_{{\widehat{\mu}}}\mathcal{H} and (prμ)r:μ^(pr_{\mu})^{r}:\mathcal{H}\to\mathcal{H}_{{\widehat{\mu}}}. Since the left and right UU-action commute we see that (prμ)l(λ)=λμ^(pr_{\mu})^{l}(\mathcal{H}_{\lambda})={}_{{\widehat{\mu}}}\mathcal{H}_{\lambda} (prμ)l(λ^)=λ^μ^(pr_{\mu})^{l}(\mathcal{H}_{{\widehat{\lambda}}})={}_{{\widehat{\mu}}}\mathcal{H}_{{\widehat{\lambda}}} and similarly for (prμ)r(pr_{\mu})^{r}. If VV is any finite dimensional bimodule and XX\in\mathcal{H} then VXV\otimes X\in\mathcal{H} with the canonical bimodule structure. Note that (VX)s=VsXs(V\otimes X)^{s}=V^{s}\otimes X^{s}.

Similarly, if 𝒫\mathcal{P} is a projective functor on \mathcal{M} we get projective functors 𝒫l,𝒫r:\mathcal{P}^{l},\mathcal{P}^{r}:\mathcal{H}\to\mathcal{H}.

2.6.2. Equivalences with category 𝒪\mathcal{O}

By results of Bernstein and Gelfand [4], Soergel [15] and Soergel and Miličić [13] we have mutually inverse equivalences

Fμ:𝒪μ^λ^μ^:GμF_{\mu}:\mathcal{O}^{\prime}_{{\widehat{\mu}}}\leftrightarrows{}_{{\widehat{\mu}}}\mathcal{H}_{{\widehat{\lambda}}}:G_{\mu}

where Fμ(X)=limnHom(Δλn,X)adfF_{\mu}(X)={\varinjlim}_{n}\operatorname{Hom}_{\mathbb{C}}(\Delta^{n}_{\lambda},X)_{adf} and Gμ(Y)=limnYUΔλnG_{\mu}(Y)={\varprojlim}_{n}Y\otimes_{U}\Delta^{n}_{\lambda}. (Here the UU-bimodule structure on Hom(Δλn,X)\operatorname{Hom}_{\mathbb{C}}(\Delta^{n}_{\lambda},X) is given by (ufu)(m)=uf(um)(ufu^{\prime})(m)=u\cdot f(u^{\prime}m).)

These functors restrict to equivalences

Fμ:𝒪μ^λμ^:GμF_{\mu}:\mathcal{O}_{{\widehat{\mu}}}\leftrightarrows{}_{{\widehat{\mu}}}\mathcal{H}_{{\lambda}}:G_{\mu}

where Fμ(X)=Hom(Δλ,X)adfF_{\mu}(X)=\operatorname{Hom}_{\mathbb{C}}(\Delta_{\lambda},X)_{adf} and Gμ(Y)=YUΔλG_{\mu}(Y)=Y\otimes_{U}\Delta_{\lambda} which in turn restrict to equivalences

Fμ:𝒪μλμ:Gμ.F_{\mu}:\mathcal{O}_{\mu}\leftrightarrows{}_{\mu}\mathcal{H}_{{\lambda}}:G_{\mu}.

Let κ:𝒪λ^𝒪λ\kappa:\mathcal{O}_{\widehat{\lambda}}\overset{\sim}{\longrightarrow}\mathcal{O}^{\prime}_{\lambda} denote the equivalence which is defined as the composition

(2.3) κ:𝒪λ^Fλλλ^𝑠λ^λGλ𝒪λ.\kappa:\mathcal{O}_{\widehat{\lambda}}\overset{F_{\lambda}}{\to}{}_{{\widehat{\lambda}}}\mathcal{H}_{\lambda}\overset{s}{\to}{}_{\lambda}\mathcal{H}_{{\widehat{\lambda}}}\overset{G_{\lambda}}{\to}\mathcal{O}^{\prime}_{\lambda}.

Then we have

(2.4) κ(Δxλ)Δx1λ,xW.\kappa(\Delta_{x\cdot\lambda})\cong\Delta_{x^{-1}\cdot\lambda},\ x\in W.

2.6.3. Soergel Miličić’s equivalence

Assume now that Wf=WμW_{f}=W_{\mu}. Soergel and Miličić [13] constructed the equivalence

Gf:μ^λ^𝒩λ^f,XlimnXUΔμn(f).G_{f}:{}_{\widehat{{\lambda}}}\mathcal{H}_{{\widehat{\mu}}}\to\mathcal{N}^{f}_{\widehat{{\lambda}}},\ X\mapsto{\varprojlim}_{n}X\otimes_{U}\Delta^{n}_{\mu}(f).

Thus we get the equivalence σ=GfsFμ:𝒪μ^𝒩λ^f\sigma=G_{f}\circ s\circ F_{\mu}:\mathcal{O}_{{\widehat{\mu}}}\to\mathcal{N}^{f}_{{\widehat{\lambda}}}. It is known that

(2.5) σ(Δxμ)Δx1λ(f),xW.\sigma(\Delta_{x\cdot\mu})\cong\Delta_{x^{-1}\cdot\lambda}(f),\;x\in W.

The following lemma is easy to prove, for details see [9].

Lemma 2.

For M𝒪λM\in\mathcal{O}_{\lambda} we have a natural isomorphism ElFλ(M)Fλ(EM)E^{l}\otimes F_{\lambda}(M)\overset{\sim}{\longrightarrow}F_{\lambda}(E\otimes M), eϕ{xeϕ(x)}e\otimes\phi\mapsto\{x\mapsto e\otimes\phi(x)\}. It induces an isomorphism (prλ)l(ElFλ(M))Fλ(prλ(EM))(pr_{\lambda})^{l}(E^{l}\otimes F_{\lambda}(M))\overset{\sim}{\longrightarrow}F_{\lambda}(pr_{\lambda}(E\otimes M)). Similarly, we have a natural isomorphism (Θλμ)lFλ(M)FμΘλμ(M)(\Theta^{\mu}_{\lambda})^{l}F_{\lambda}(M)\cong F_{\mu}\Theta^{\mu}_{\lambda}(M).

3. The main results.

Throughout this section we assume that λ\lambda is a regular dominant integral weight and μ\mu a dominant integral weight. Let f:U(𝔫)f:U(\mathfrak{n})\to\mathbb{C} be a character such that 𝔹f=𝔹μ\mathbb{B}_{f}=\mathbb{B}_{\mu}.

Proposition 3.

a.) For any projective functor 𝒫:\mathcal{P}:\mathcal{M}\to\mathcal{M} there is a natural isomorphism Θ𝒫:𝒫Γ¯fΓ¯f𝒫\Theta_{\mathcal{P}}:\mathcal{P}\circ\overline{\Gamma}_{f}\to\overline{\Gamma}_{f}\circ\mathcal{P} between functors from 𝒪\mathcal{O} to 𝒩f\mathcal{N}^{f}. b) For any morphism ϕ:𝒫𝒫\phi:\mathcal{P}\to\mathcal{P}^{\prime} of projective functors we have a commutative diagram

𝒫Γ¯f\textstyle{\mathcal{P}\circ\overline{\Gamma}_{f}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕΓ¯f\scriptstyle{\phi\circ\overline{\Gamma}_{f}}Θ𝒫\scriptstyle{\Theta_{\mathcal{P}}}𝒫Γ¯f\textstyle{\mathcal{P}^{\prime}\circ\overline{\Gamma}_{f}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Θ𝒫\scriptstyle{\Theta_{\mathcal{P}^{\prime}}}Γ¯f𝒫\textstyle{\overline{\Gamma}_{f}\circ\mathcal{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Γ¯fϕ\scriptstyle{\overline{\Gamma}_{f}\circ\phi}Γ¯f𝒫\textstyle{\overline{\Gamma}_{f}\circ\mathcal{P}^{\prime}}
Proof.

It is enough to prove a)a) and b)b) when 𝒫=TE\mathcal{P}=T_{E} and 𝒫=TE\mathcal{P}^{\prime}=T_{E^{\prime}} because then it follows that a)a) also holds for any direct summand in TET_{E} by taking ϕ:TETE\phi:T_{E}\to T_{E} to be an orthogonal projection onto this summand. Then the general case for b)b) follows as well.

We prove a) for 𝒫=TE\mathcal{P}=T_{E}. Since EE is finite dimensional we have EM¯=EM¯.\overline{E\otimes M}=E\otimes\overline{M}. Therefore

Γ¯f(EM)=Γf(EM¯)=Γf(EM¯).\overline{\Gamma}_{f}(E\otimes M)=\Gamma_{f}(\overline{E\otimes M})=\Gamma_{f}(E\otimes\overline{M}).

By Lemma 1 b) we conclude that EΓf(M¯)Γf(EM¯)E\otimes\Gamma_{f}(\overline{M})\subseteq\Gamma_{f}(E\otimes\overline{M}). This inclusion is denoted ΘTE(M)\Theta_{T_{E}}(M). In order to prove that it is an isomorphism, we proceed as follows: Let e1,ek{e}_{1},\ldots{e}_{k} be a basis for EE where ei{e}_{i} is a weight vector of weight λi\lambda_{i} ordered in such a way that λi<λj\lambda_{i}<\lambda_{j} implies i<ji<j. Let i=1keimiΓf(EM¯)\sum^{k}_{i=1}{e}_{i}\otimes m_{i}\in\Gamma_{f}(E\otimes\overline{M}). We must prove that each miΓf(M¯)m_{i}\in\Gamma_{f}(\overline{M}). Pick n=n1>0n=n_{1}>0 such that for all α𝔹\alpha\in\mathbb{B} we have

0=(Eαf(Eα))n(i=1keimi)=i=1kj=0n(nj)Eαjei(Eαf(Eα))njmi.0=(E_{\alpha}-f(E_{\alpha}))^{n}(\sum^{k}_{i=1}{e}_{i}\otimes m_{i})=\sum^{k}_{i=1}\sum^{n}_{j=0}\binom{n}{j}E^{j}_{\alpha}{e}_{i}\otimes(E_{\alpha}-f(E_{\alpha}))^{n-j}m_{i}.

Note that Span{e2,,ek}\operatorname{Span}_{\mathbb{C}}\{e_{2},\ldots,e_{k}\} is a U(𝔫)U(\mathfrak{n})-submodule of VV. Therefore it follows that e1(Eαf(Eα))nm1=0e_{1}\otimes(E_{\alpha}-f(E_{\alpha}))^{n}m_{1}=0 and hence that (Eαf(Eα))nm1=0(E_{\alpha}-f(E_{\alpha}))^{n}m_{1}=0.

Note that Eαkei=0E^{k}_{\alpha}{e}_{i}=0 for all ii. Let n2=n+kn_{2}=n+k. Then (Eαf(Eα))n2(e1m1)=0(E_{\alpha}-f(E_{\alpha}))^{n_{2}}(e_{1}\otimes m_{1})=0 and therefore

(Eαf(Eα))n2(i=2keimi)=0.(E_{\alpha}-f(E_{\alpha}))^{n_{2}}(\sum^{k}_{i=2}{e}_{i}\otimes m_{i})=0.

By repeating the above argument we conclude that (Eαf(Eα))n2m2=0(E_{\alpha}-f(E_{\alpha}))^{n_{2}}m_{2}=0. Proceeding by induction we conclude that miΓf(M¯)m_{i}\in\Gamma_{f}(\overline{M}) for all ii.

We now prove b)b) for 𝒫=TE\mathcal{P}=T_{E} and 𝒫=TE\mathcal{P}^{\prime}=T_{E^{\prime}}. Let M𝒪M\in\mathcal{O} and ϕM:TE(M)TE(M)\phi_{M}:T_{E}(M)\to T_{E^{\prime}}(M) be the morphism given by ϕ:TETE\phi:T_{E}\to T_{E^{\prime}}. We must show that the following diagram commutes:

TEΓ¯f(M)\textstyle{T_{E}\overline{\Gamma}_{f}(M)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕΓ¯f(M)\scriptstyle{\phi_{\overline{\Gamma}_{f}(M)}}ΘTE\scriptstyle{\Theta_{T_{E}}}TEΓ¯f(M)\textstyle{T_{E^{\prime}}\overline{\Gamma}_{f}(M)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΘTE\scriptstyle{\Theta_{T_{E^{\prime}}}}Γ¯fTE(M)\textstyle{\overline{\Gamma}_{f}T_{E}(M)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Γ¯fϕM\scriptstyle{\overline{\Gamma}_{f}{\phi_{M}}}Γ¯fTE(M)\textstyle{\overline{\Gamma}_{f}T_{E^{\prime}}(M)}

Let e1,ek{e}_{1},\ldots{e}_{k} and e1,,el{e}^{\prime}_{1},\ldots,{e}^{\prime}_{l} be bases of EE and EE^{\prime}. Let U¯=U/𝔞\overline{U}=U/\mathfrak{a} where 𝔞Z\mathfrak{a}\subset Z is an ideal of finite codimension such that 𝔞M=𝔞TE(M)=0\mathfrak{a}M=\mathfrak{a}T_{E}(M)=0. Then automatically 𝔞Γ¯f(M)=0\mathfrak{a}\overline{\Gamma}_{f}(M)=0. Pick uijU¯u_{ij}\in\overline{U} such that ϕU¯(ei1)=ejuij\phi_{\overline{U}}({e}_{i}\otimes 1)=\sum{e}^{\prime}_{j}\otimes u_{ij}. Then ϕA(eia)=ejuija\phi_{A}({e}_{i}\otimes a)=\sum{e}^{\prime}_{j}\otimes u_{ij}a for any AU¯A\in\overline{U}-mod\operatorname{mod}, by functoriality. Hence we get for eimTEΓ¯f(M){e}_{i}\operatorname{\otimes}m\in T_{E}\overline{\Gamma}_{f}(M) that

Γ¯fϕM(ΘTE(eim))=Γ¯fϕM(eim)=\overline{\Gamma}_{f}{\phi_{M}}(\Theta_{T_{E}}({e}_{i}\operatorname{\otimes}m))=\overline{\Gamma}_{f}{\phi_{M}}({e}_{i}\operatorname{\otimes}m)=
ejuijm=ϕΓ¯f(M)(eim)=ΘTE(ϕΓ¯f(M)(eim)).\sum{e}^{\prime}_{j}\operatorname{\otimes}u_{ij}m=\phi_{\overline{\Gamma}_{f}(M)}({e}_{i}\operatorname{\otimes}m)=\Theta_{T_{E^{\prime}}}(\phi_{\overline{\Gamma}_{f}(M)}({e}_{i}\operatorname{\otimes}m)).

A weaker version of a) above was proved in [6] Proposition 2.3.4. He showed that Γ¯f(TE(Δλ))TE(Γ¯f(Δλ))\overline{\Gamma}_{f}(T_{E}(\Delta_{\lambda}))\cong T_{E}(\overline{\Gamma}_{f}(\Delta_{\lambda})).

3.0.1.

Let ss be a simple reflection and assume that Wμ={e,s}W_{\mu}=\{e,s\}. Then there is the wallcrossing functor Θs:=ΘμλΘλμ:𝒪λ^𝒪λ^\Theta_{s}:=\Theta^{\lambda}_{\mu}\Theta^{\mu}_{\lambda}:\mathcal{O}_{\widehat{\lambda}}\to\mathcal{O}_{\widehat{\lambda}}. Let Ψs\Psi_{s} denote the complex of functors IdΘsId\to\Theta_{s} (given by the adjunction morphism). Then if w=s1smw=s_{1}\cdots s_{m} is a reduced expression of an element in WW we get the Rouqier complex functor Ψw=Ψs1Ψsm\Psi_{w}=\Psi_{s_{1}}\circ\cdots\circ\Psi_{s_{m}}, see [11].

Corollary 1.

Let xWx\in W and let ss be a simple reflection such that xxsx\prec xs. Then Θs(Δxλ(f))=Θs(Δxsλ(f))\Theta_{s}(\Delta_{x\cdot\lambda}(f))=\Theta_{s}(\Delta_{xs\cdot\lambda}(f)) and the adjunction morphisms IdΘsId\to\Theta_{s} and ΘsId\Theta_{s}\to Id define a short exact sequence

0Δxλ(f)Θs(Δxλ(f))Δxsλ(f)0.0\to\Delta_{x\cdot\lambda}(f)\to\Theta_{s}(\Delta_{x\cdot\lambda}(f))\to\Delta_{xs\cdot\lambda}(f)\to 0.

Hence the Rouquier complex Ψw(Δxλ(f))\Psi_{w}(\Delta_{x\cdot\lambda}(f)) is an exact resolution of its 0’th cohomology for any xWx\in W.

Proof.

It is well-known that the sequence 0ΔxλΘs(Δxλ)Δxsλ00\to\Delta_{x\cdot\lambda}\to\Theta_{s}(\Delta_{x\cdot\lambda})\to\Delta_{xs\cdot\lambda}\to 0 is exact. Applying the functor Γ¯f\overline{\Gamma}_{f} we get from Propositions 1 and 3 the first two statements of the lemma. This implies formally that the above Whittaker Rouquier complex is exact as well. ∎

3.1. The functor τ:𝒪λ^𝒩λ^f\tau:\mathcal{O}_{{\widehat{\lambda}}}\to\mathcal{N}^{f}_{{\widehat{\lambda}}}

Recall the equivalences

κ:𝒪λ^Fλλλ^𝑠λ^λGλ𝒪λ and σ:𝒪μ^Fμλ^μ^𝑠μ^λ^Gf𝒩λ^f.\kappa:\mathcal{O}_{{\widehat{\lambda}}}\overset{F_{{\lambda}}}{\longrightarrow}{}_{{\widehat{\lambda}}}\mathcal{H}_{{\lambda}}\overset{s}{\longrightarrow}{}_{{\lambda}}\mathcal{H}_{{\widehat{\lambda}}}\overset{G_{{\lambda}}}{\longrightarrow}\mathcal{O}^{\prime}_{\lambda}\hbox{ and }\sigma:\mathcal{O}^{\prime}_{{\widehat{\mu}}}\overset{F_{\mu}}{\longrightarrow}{}_{{\widehat{\mu}}}\mathcal{H}_{{\widehat{\lambda}}}\overset{s}{\longrightarrow}{}_{{\widehat{\lambda}}}\mathcal{H}_{{\widehat{\mu}}}\overset{G_{f}}{\longrightarrow}\mathcal{N}^{f}_{{\widehat{\lambda}}}.

Let τ\tau denote the composition

(3.1) τ=σΘλμκ:𝒪λ^𝜅𝒪λΘλμ𝒪μ^𝜎𝒩λ^f.\tau=\sigma\circ\Theta^{\mu}_{\lambda}\circ\kappa:\mathcal{O}_{{\widehat{\lambda}}}\overset{\kappa}{\longrightarrow}\mathcal{O}^{\prime}_{\lambda}\overset{\Theta^{\mu}_{\lambda}}{\longrightarrow}\mathcal{O}^{\prime}_{{\widehat{\mu}}}\overset{\sigma}{\longrightarrow}\mathcal{N}^{f}_{{\widehat{\lambda}}}.

It is evident that τ\tau is exact. We shall show in Theorem 1 that τ\tau is equivalent to Γ¯f\overline{\Gamma}_{f}. Since κ\kappa and σ\sigma are equivalences τ\tau is in reality determined by the projective functor Θλμ:𝒪λ𝒪μ^\Theta^{\mu}_{\lambda}:\mathcal{O}^{\prime}_{\lambda}\to\mathcal{O}^{\prime}_{{\widehat{\mu}}}. We shall see in Lemma 3 below that the functor τ\tau commutes with projective functors (and with morphisms of projective functors). The functor Θλμ:𝒪λ𝒪μ^\Theta^{\mu}_{\lambda}:\mathcal{O}^{\prime}_{\lambda}\to\mathcal{O}^{\prime}_{{\widehat{\mu}}} obviously doesn’t commute with projective functors, but after conjugating it with the equivalences σ\sigma and κ\kappa it does. The reason for this is essentially that the left and right action of UU on a Harish-Chandra bimodule commutes.

The left adjoint of the inclusion i:𝒪λ𝒪λ^i:\mathcal{O}^{\prime}_{\lambda}\to\mathcal{O}^{\prime}_{{\widehat{\lambda}}} is ()UUλ(\ )\otimes_{U}U_{\lambda} and its right adjoint is ()Jλ(\ )^{J_{\lambda}}, the functor of taking JλJ_{\lambda}-invariants. Therefore τ\tau has the left adjoint

(3.2) τL=κ1Θμλ()UUλσ1.\tau^{L}=\kappa^{-1}\circ\Theta^{\lambda}_{\mu}(\ )\otimes_{U}U_{\lambda}\circ\sigma^{-1}.

and the right adjoint

(3.3) τR=κ1Θμλ()Jλσ1.\tau^{R}=\kappa^{-1}\circ\Theta^{\lambda}_{\mu}(\ )^{J_{\lambda}}\circ\sigma^{-1}.

3.1.1.

Expanding the maps in (3.1) we deduce a canonical equivalence of functors

(3.4) τGf(Θλμ)rFλ:𝒪λ^Fλλλ^(Θλμ)rμ^λ^Gf𝒩λ^f.\tau\cong G_{f}\circ(\Theta^{\mu}_{\lambda})^{r}\circ F_{\lambda}:\mathcal{O}_{{\widehat{\lambda}}}\overset{F_{\lambda}}{\longrightarrow}{}_{{\widehat{\lambda}}}\mathcal{H}_{{\lambda}}\overset{(\Theta^{\mu}_{\lambda})^{r}}{\longrightarrow}{}_{{\widehat{\lambda}}}\mathcal{H}_{{\widehat{\mu}}}\overset{G_{f}}{\longrightarrow}\mathcal{N}^{f}_{{\widehat{\lambda}}}.

This formula is easier to work with.

Lemma 3.

a) For any projective functor 𝒫:λ^λ^\mathcal{P}:\mathcal{M}_{\widehat{\lambda}}\to\mathcal{M}_{\widehat{\lambda}} there is a natural isomorphism η𝒫:𝒫ττ𝒫\eta_{\mathcal{P}}:\mathcal{P}\circ\tau\to\tau\circ\mathcal{P} between functors from 𝒪λ^\mathcal{O}_{\widehat{\lambda}} to 𝒩λ^f\mathcal{N}^{f}_{\widehat{\lambda}}. b) For any morphism ϕ:𝒫𝒫\phi:\mathcal{P}\to\mathcal{P}^{\prime} of projective functors we have a commutative diagram

𝒫τ\textstyle{\mathcal{P}\tau\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕτ\scriptstyle{\phi_{\tau}}η𝒫\scriptstyle{\eta_{\mathcal{P}}}𝒫τ\textstyle{\mathcal{P}^{\prime}\tau\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η𝒫\scriptstyle{\eta_{\mathcal{P}^{\prime}}}τ𝒫\textstyle{\tau\mathcal{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau}τ𝒫\textstyle{\tau\mathcal{P}^{\prime}}
Proof.

By similar arguments as were given in the beginning of the proof of Proposition 3 we may assume that 𝒫=prλTEiλ\mathcal{P}=pr_{\lambda}T_{E}i_{\lambda} and 𝒫=prλTEiλ\mathcal{P}^{\prime}=pr_{\lambda}T_{E^{\prime}}i_{\lambda}. Let VV be a finite dimensional irreducible representation with extremal weight μλ\mu-\lambda so that Θλμ=prμTV\Theta^{\mu}_{\lambda}=pr_{\mu}T_{V}. We use (3.4) as the definition of τ\tau.

a) Let M𝒪λ^M\in\mathcal{O}_{{\widehat{\lambda}}}. Let η𝒫=η𝒫(M)\eta_{\mathcal{P}}=\eta_{\mathcal{P}}(M) denote the composition of the natural isomorphisms:

𝒫τ(M)=𝒫Gf(Θλμ)rFλ(M)Gf𝒫l(Θλμ)rFλ(M)\mathcal{P}\tau(M)=\mathcal{P}G_{f}\circ(\Theta^{\mu}_{\lambda})^{r}\circ F_{\lambda}(M)\cong G_{f}\circ\mathcal{P}^{l}\circ(\Theta^{\mu}_{\lambda})^{r}\circ F_{\lambda}(M)\cong
Gf(Θλμ)r𝒫lFλ(M)Gf(Θλμ)rFλ(𝒫M)=τ𝒫(M).G_{f}\circ(\Theta^{\mu}_{\lambda})^{r}\circ\mathcal{P}^{l}\circ F_{\lambda}(M)\cong G_{f}\circ(\Theta^{\mu}_{\lambda})^{r}\circ F_{\lambda}(\mathcal{P}M)=\tau\mathcal{P}(M).

Let us describe η𝒫\eta_{\mathcal{P}} explicitly. Let X𝒪λ^X\in\mathcal{O}_{\widehat{\lambda}} and Yμ^λ^Y\in{}_{{\widehat{\lambda}}}\mathcal{H}_{{\widehat{\mu}}}. An element in 𝒫X\mathcal{P}X is a (linear combination of elements of the form) exe\otimes x, eEe\in E and xXx\in X and an element in FλXF_{\lambda}X can be represented by a \mathbb{C}-linear function ψ:ΔnX\psi:\Delta^{n}\to X (for nn sufficiently large). An element in (Θλμ)rY(VrY)(\Theta^{\mu}_{\lambda})^{r}Y\;(\subseteq V^{r}\otimes Y) can be written as vryv^{r}\otimes y for vVv\in V, yYy\in Y, and an element in Gf(Y)G_{f}(Y) can be represented by yU1¯YUΔμn(f)y\otimes_{U}\overline{1}\in Y\otimes_{U}\Delta^{n}_{\mu}(f) (for nn sufficiently large). Here 1¯Δμn(f)\overline{1}\in\Delta^{n}_{\mu}(f) is a generator.

Therefore an element in 𝒫τ(M)\mathcal{P}\tau(M) can be written as (a linear combination of elements)

e((vrψ)U1¯),e\otimes((v^{r}\otimes\psi)\otimes_{U}\overline{1}),

where ψHom(ΔnM)\psi\in\operatorname{Hom}_{\mathbb{C}}(\Delta^{n}\to M), eEe\in E and vVv\in V. We then have

(3.5) η𝒫(e((vrψ)U1¯))=(vr(elψ))U1¯,\eta_{\mathcal{P}}(e\otimes((v^{r}\otimes\psi)\otimes_{U}\overline{1}))=(v^{r}\otimes(e^{l}\otimes\psi))\otimes_{U}\overline{1},

where elψHom(Δλ,EM)e^{l}\otimes\psi\in\operatorname{Hom}(\Delta_{\lambda},E\otimes M) denotes the function deψ(d)d\mapsto e\otimes\psi(d).

b) Let M𝒪λ^M\in\mathcal{O}_{\widehat{\lambda}}. We want to establish the commutativity of the diagram

(3.6) 𝒫τ(M)\textstyle{\mathcal{P}\tau(M)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕτ(M)\scriptstyle{\phi_{\tau(M)}}η𝒫\scriptstyle{\eta_{\mathcal{P}}}𝒫τ(M)\textstyle{\mathcal{P}^{\prime}\tau(M)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η𝒫\scriptstyle{\eta_{\mathcal{P}^{\prime}}}τ𝒫(M)\textstyle{\tau\mathcal{P}(M)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ(ϕM)\scriptstyle{\tau(\phi_{M})}τ𝒫(M)\textstyle{\tau\mathcal{P}^{\prime}(M)}

Let N>0N>0 be such that JλNJ^{N}_{\lambda} annihilates MM, τ(M)\tau(M) and 𝒫(M)\mathcal{P}(M) and define U¯=U/JλN\overline{U}=U/J^{N}_{\lambda}.

Let e1,ek{e}_{1},\ldots{e}_{k} and e1,,ele^{\prime}_{1},\ldots,e^{\prime}_{l} be bases of EE and EE^{\prime}, respectively. Then ϕU¯:𝒫U¯𝒫U¯\phi_{\overline{U}}:\mathcal{P}\overline{U}\to\mathcal{P}^{\prime}\overline{U} is given by ϕU¯(ei1)=jejuij\phi_{\overline{U}}({e}_{i}\otimes 1)=\sum_{j}e^{\prime}_{j}\otimes u_{ij} for some uijU¯u_{ij}\in\overline{U}. Therefore we get ϕA:𝒫A𝒫A\phi_{A}:\mathcal{P}A\to\mathcal{P}^{\prime}A is given by ϕA(eia)=ejuija\phi_{A}({e}_{i}\otimes a)=\sum e^{\prime}_{j}\otimes u_{ij}a, for AU¯A\in\overline{U}-mod\operatorname{mod} by functoriality.
We now calculate

τ(ϕM)η𝒫(ei((vrψ)U1¯))=τ(ϕM)((vr(eilψ))U1¯)=\tau(\phi_{M})\circ\eta_{\mathcal{P}}(e_{i}\otimes((v^{r}\otimes\psi)\otimes_{U}\overline{1}))=\tau(\phi_{M})((v^{r}\otimes(e^{l}_{i}\otimes\psi))\otimes_{U}\overline{1})=
j(vr(ejluijψ))U1¯.\sum_{j}(v^{r}\otimes(e^{\prime l}_{j}\otimes u_{ij}\psi))\otimes_{U}\overline{1}.

On the other hand we have

η𝒫ϕτ(M)(ei((vrψ)U1¯))=jη𝒫(ejuij((vrψ)U1¯))=\eta_{\mathcal{P}^{\prime}}\circ\phi_{\tau(M)}(e_{i}\otimes((v^{r}\otimes\psi)\otimes_{U}\overline{1}))=\sum_{j}\eta_{\mathcal{P}^{\prime}}(e^{\prime}_{j}\otimes u_{ij}((v^{r}\otimes\psi)\otimes_{U}\overline{1}))=
jη𝒫(ej((vruijψ)U1¯))=j(vr(ejluijψ))U1¯.\sum_{j}\eta_{\mathcal{P}^{\prime}}(e^{\prime}_{j}\otimes((v^{r}\otimes u_{ij}\psi)\otimes_{U}\overline{1}))=\sum_{j}(v^{r}\otimes(e^{\prime l}_{j}\otimes u_{ij}\psi))\otimes_{U}\overline{1}.

Theorem 1.

τ\tau is naturally equivalent to Γ¯f\overline{\Gamma}_{f}.

Proof.

Let Proj(𝒪λ^)Proj(\mathcal{O}_{\widehat{\lambda}}) denote the full subcategory of projective objects in 𝒪λ^\mathcal{O}_{\widehat{\lambda}}. Let 𝒜{\mathcal{A}} be the full subcategory of 𝒪λ^\mathcal{O}_{\widehat{\lambda}} whose objects are of the form 𝒫(Δλ)\mathcal{P}(\Delta_{\lambda}), where 𝒫:λ^λ^\mathcal{P}:\mathcal{M}_{{\widehat{\lambda}}}\to\mathcal{M}_{{\widehat{\lambda}}} is a projective functor. Then the inclusion 𝒜Proj(𝒪λ^){\mathcal{A}}\to Proj(\mathcal{O}_{\widehat{\lambda}}) is an equivalence of categories. Let P=𝒫(Δλ),P=𝒫(Δλ)P=\mathcal{P}(\Delta_{\lambda}),P^{\prime}=\mathcal{P}^{\prime}(\Delta_{\lambda})\in{\mathcal{H}} and let g:PPg:P\to P^{\prime} be a morphism. Then according to [4] there is a natural transformation ϕ:𝒫𝒫\phi:\mathcal{P}\to\mathcal{P}^{\prime} (not necessarily unique) such that ϕΔλ=g\phi_{\Delta_{\lambda}}=g. By Proposition 1 we have Γ¯f(Δλ)Δλ(f)\overline{\Gamma}_{f}(\Delta_{\lambda})\cong\Delta_{\lambda}(f) and using (2.4), (2.5) and Θλμ(Δλ)Δμ\Theta^{\mu}_{\lambda}(\Delta_{\lambda})\cong\Delta_{\mu} we also obtain τ(Δλ)Δλ(f).\tau(\Delta_{\lambda})\cong\Delta_{\lambda}(f). Fix an isomorphism

ϵ:Γ¯f(Δλ)τ(Δλ).\epsilon:\overline{\Gamma}_{f}(\Delta_{\lambda})\overset{\sim}{\longrightarrow}\tau(\Delta_{\lambda}).

Consider the diagram

Γ¯f𝒫(Δλ)\textstyle{\overline{\Gamma}_{f}\mathcal{P}({\Delta_{\lambda}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Γ¯f(ϕΔλ)\scriptstyle{\overline{\Gamma}_{f}(\phi_{{\Delta_{\lambda}}})}Θ𝒫1\scriptstyle{\Theta^{-1}_{\mathcal{P}}}Γ¯f𝒫(Δλ)\textstyle{\overline{\Gamma}_{f}\mathcal{P}^{\prime}({\Delta_{\lambda}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Θ𝒫1\scriptstyle{\Theta^{-1}_{\mathcal{P}^{\prime}}}𝒫Γ¯f(Δλ)\textstyle{\mathcal{P}\overline{\Gamma}_{f}({\Delta_{\lambda}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕΓ¯fΔλ\scriptstyle{\phi_{\overline{\Gamma}_{f}{\Delta_{\lambda}}}}𝒫(ϵ)\scriptstyle{\mathcal{P}(\epsilon)}𝒫Γ¯f(Δλ)\textstyle{\mathcal{P}^{\prime}\overline{\Gamma}_{f}({\Delta_{\lambda}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒫(ϵ)\scriptstyle{\mathcal{P}^{\prime}(\epsilon)}𝒫τ(Δλ)\textstyle{\mathcal{P}\tau({\Delta_{\lambda}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕτΔλ\scriptstyle{\phi_{\tau{\Delta_{\lambda}}}}η𝒫\scriptstyle{\eta_{\mathcal{P}}}𝒫τ(Δλ)\textstyle{\mathcal{P}^{\prime}\tau({\Delta_{\lambda}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η𝒫\scriptstyle{\eta_{\mathcal{P}^{\prime}}}τ𝒫(Δλ)\textstyle{\tau\mathcal{P}({\Delta_{\lambda}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ(ϕΔλ)\scriptstyle{\tau(\phi_{{\Delta_{\lambda}}})}τ𝒫(Δλ)\textstyle{\tau\mathcal{P}^{\prime}({\Delta_{\lambda}})}

The middle square is obviously commutative and by Proposition 3 and Lemma 3 the top and the bottom squares are commutative as well. Thus the outer square is commutative and therefore we can define the natural transformation ψ:Γ¯f|𝒜τ|𝒜\psi:\overline{\Gamma}_{f}|_{\mathcal{A}}\to\tau|_{\mathcal{A}} by

ψP=η𝒫𝒫(ϵ)Θ𝒫1(Δλ):Γ¯f(P)τ(P).\psi_{P}=\eta_{\mathcal{P}}\circ\mathcal{P}(\epsilon)\circ\Theta^{-1}_{\mathcal{P}}(\Delta_{\lambda}):\overline{\Gamma}_{f}(P)\to\tau(P).

Evidently ψ\psi is an equivalence and it induces an equivalence between the induced functors

Γ¯f,τ:Db(𝒪λ^)Kb(Proj(𝒪λ^))Kb(𝒜)Db(𝒩λ^f).\overline{\Gamma}_{f},\tau:D^{b}(\mathcal{O}_{\widehat{\lambda}})\cong K^{b}(Proj(\mathcal{O}_{{\widehat{\lambda}}}))\cong K^{b}({\mathcal{A}})\to D^{b}(\mathcal{N}^{f}_{{\widehat{\lambda}}}).

Since Γ¯f\overline{\Gamma}_{f} and τ\tau are exact and 𝒪λ^\mathcal{O}_{\widehat{\lambda}} is the heart of the standard tt-structure on Db(𝒪λ^)D^{b}(\mathcal{O}_{\widehat{\lambda}}) the last equivalence restricts to an equivalence between the original functors Γ¯f,τ:𝒪λ^𝒩λ^f\overline{\Gamma}_{f},\tau:\mathcal{O}_{\widehat{\lambda}}\to\mathcal{N}^{f}_{{\widehat{\lambda}}}. ∎

Remark 1.

As a special case we see that Soergel’s functor 𝕍\mathbb{V} is equivalent to σΘλρκ\sigma\Theta^{-\rho}_{\lambda}\kappa. This follows from Theorem 1 and Proposition 2.

Corollary 2.

The functor Γ¯f:𝒪λ^𝒩λ^f\overline{\Gamma}_{f}:\mathcal{O}_{\widehat{\lambda}}\to\mathcal{N}^{f}_{{\widehat{\lambda}}} has a left adjoint Γ¯fL\overline{\Gamma}_{f}^{L} and a right adjoint Γ¯fR\overline{\Gamma}_{f}^{R}. The restricted functor Γ¯f:𝒪λ^Γ¯f(𝒪λ^)\overline{\Gamma}_{f}:\mathcal{O}_{\widehat{\lambda}}\to\overline{\Gamma}_{f}(\mathcal{O}_{\widehat{\lambda}}) is a quotient functor, i.e. the adjunction map VΓ¯fΓ¯fLVV\mapsto\overline{\Gamma}_{f}\overline{\Gamma}_{f}^{L}V is an isomorphism for VΓ¯f(𝒪λ^)V\in\overline{\Gamma}_{f}(\mathcal{O}_{\widehat{\lambda}}).

Proof.

The functors Γ¯fL\overline{\Gamma}_{f}^{L} and Γ¯fR\overline{\Gamma}_{f}^{R} are obtained by transporting the functors τL\tau^{L} and τR\tau^{R} from (3.2) and (3.3) by means of the equivalence Γ¯fτ\overline{\Gamma}_{f}\cong\tau. Let V=Γ¯f(M)V=\overline{\Gamma}_{f}(M), M𝒪λ^M\in\mathcal{O}_{\widehat{\lambda}}. We must prove that the adjunction VΓ¯fΓ¯fLVV\to\overline{\Gamma}_{f}\overline{\Gamma}_{f}^{L}V is an isomorphism.

We first show that Δλ(f)Γ¯fΓ¯fLΔλ(f)\Delta_{\lambda}(f)\mapsto\overline{\Gamma}_{f}\overline{\Gamma}_{f}^{L}\Delta_{\lambda}(f) is an isomorphism. For this purpose it is obviously enough to show that the adjunction Δλ(f)ττL(Δλ(f))\Delta_{\lambda}(f)\overset{\sim}{\longrightarrow}\tau\tau^{L}(\Delta_{\lambda}(f)) is an isomorphism. Recall that τ\tau equals the composition

𝒪λ^𝜅𝒪λΘλμ𝒪μ^𝜎𝒩λ^f.\mathcal{O}_{{\widehat{\lambda}}}\overset{\kappa}{\to}\mathcal{O}^{\prime}_{\lambda}\overset{\Theta^{\mu}_{\lambda}}{\longrightarrow}\mathcal{O}^{\prime}_{{\widehat{\mu}}}\overset{\sigma}{\to}\mathcal{N}^{f}_{{\widehat{\lambda}}}.

The left adjoint of 𝒪λΘλμ𝒪μ^\mathcal{O}^{\prime}_{\lambda}\overset{\Theta^{\mu}_{\lambda}}{\longrightarrow}\mathcal{O}^{\prime}_{{\widehat{\mu}}} is Θμλ()UUλ\Theta^{\lambda}_{\mu}(\ )\otimes_{U}U_{\lambda}, see (3.2). Since κ\kappa and σ\sigma are equivalences and σ1Δλ(f)Δμ\sigma^{-1}\Delta_{\lambda}(f)\cong\Delta_{\mu} it suffices to show that the adjunction map ΔμΘλμ(Θμλ(Δμ)UUλ)\Delta_{\mu}\mapsto\Theta^{\mu}_{\lambda}(\Theta^{\lambda}_{\mu}(\Delta_{\mu})\otimes_{U}U_{\lambda}) is an isomorphism. This is proved in Lemma 4 below.

Note that since Γ¯f\overline{\Gamma}_{f} commutes with projective functors and morphisms between them also its left and right adjoints do. Thus, for any projective functor 𝒫\mathcal{P}, the adjunction map 𝒫(Δλ(f))Γ¯fΓ¯fL(𝒫(Δλ(f))\mathcal{P}(\Delta_{\lambda}(f))\to\overline{\Gamma}_{f}\overline{\Gamma}_{f}^{L}(\mathcal{P}(\Delta_{\lambda}(f)) is equivalent to the map 𝒫[Δλ(f)Γ¯fΓ¯fL(Δλ(f)]\mathcal{P}[\Delta_{\lambda}(f)\to\overline{\Gamma}_{f}\overline{\Gamma}_{f}^{L}(\Delta_{\lambda}(f)] which is an isomorphism by the above.

Now pick a projective resolution 𝒫(Δλ)𝒫(Δλ)M0\mathcal{P}^{\prime}(\Delta_{\lambda})\to\mathcal{P}(\Delta_{\lambda})\to M\to 0. Applying Γ¯f\overline{\Gamma}_{f} we get the exact sequence

𝒫(Δμ)𝒫(Δμ)V0.\mathcal{P}^{\prime}(\Delta_{\mu})\to\mathcal{P}(\Delta_{\mu})\to V\to 0.

Applying the adjunction morphisms vertically we get a commutative diagram

𝒫(Δμ)\textstyle{\mathcal{P}^{\prime}(\Delta_{\mu})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}𝒫(Δμ)\textstyle{\mathcal{P}(\Delta_{\mu})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}V\textstyle{V\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}Γ¯fΓ¯fL𝒫(Δμ)\textstyle{\overline{\Gamma}_{f}\overline{\Gamma}_{f}^{L}\mathcal{P}^{\prime}(\Delta_{\mu})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Γ¯fΓ¯fL𝒫(Δμ)\textstyle{\overline{\Gamma}_{f}\overline{\Gamma}_{f}^{L}\mathcal{P}(\Delta_{\mu})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Γ¯fΓ¯fLV\textstyle{\overline{\Gamma}_{f}\overline{\Gamma}_{f}^{L}V\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

Therefore VΓ¯fΓ¯fLVV\to\overline{\Gamma}_{f}\overline{\Gamma}_{f}^{L}V is an isomorphism. ∎

Recall that the left adjoint of the functor 𝒪λΘλμ𝒪μ^\mathcal{O}^{\prime}_{\lambda}\overset{\Theta^{\mu}_{\lambda}}{\longrightarrow}\mathcal{O}^{\prime}_{{\widehat{\mu}}} is Θμλ()UUλ\Theta^{\lambda}_{\mu}(\ )\otimes_{U}U_{\lambda}.

Lemma 4.

The adjunction morphism π:ΔμΘλμ(Θμλ(Δμ)UUλ)\pi:\Delta_{\mu}\mapsto\Theta^{\mu}_{\lambda}(\Theta^{\lambda}_{\mu}(\Delta_{\mu})\otimes_{U}U_{\lambda}) is an isomorphism.

Proof.

We shall prove that Θλμ(Θμλ(Δμ)UUλ)Δμ\Theta^{\mu}_{\lambda}(\Theta^{\lambda}_{\mu}(\Delta_{\mu})\otimes_{U}U_{\lambda})\cong\Delta_{\mu}. From this it will follow that π\pi is an isomorphism because π\pi is nonzero (as it corresponds to the natural surjection ΘμλΔμ(ΘμλΔμ)UUλ\Theta^{\lambda}_{\mu}\Delta_{\mu}\mapsto(\Theta^{\lambda}_{\mu}\Delta_{\mu})\otimes_{U}U_{\lambda} under adjunction) and any nonzero endomorphism of a Verma module is an isomorphism.

We have Θμλ(Δμ)=Pwλ\Theta^{\lambda}_{\mu}(\Delta_{\mu})=P_{w\cdot\lambda}, where ww is the longest element in WμW^{\mu}. Write P=PwλP=P_{w\cdot\lambda}. Let nx=(P:Δxλ)=[Δxλ:Lwλ]n_{x}=(P:\Delta_{x\cdot\lambda})=[\Delta_{x\cdot\lambda}:L_{w\cdot\lambda}]. We shall show that PP is multiplicity free, i.e. that nx1n_{x}\leq 1 for all xWx\in W. Since nxnen_{x}\leq n_{e} it suffices to show that ne=1n_{e}=1. Since Δλ\Delta_{\lambda} is projective we have

dimHom(Δλ,P)=[P:Lλ]=xW(P:Δxλ)[Δxλ:Lλ]=(P:Δλ)=ne.\dim\operatorname{Hom}(\Delta_{\lambda},P)=[P:L_{\lambda}]=\sum_{x\in W}(P:\Delta_{x\cdot\lambda})\cdot[\Delta_{x\cdot\lambda}:L_{\lambda}]=(P:\Delta_{\lambda})=n_{e}.

But on the other hand

Hom(Δλ,P)=Hom(Δλ,ΘμλΔμ)=Hom(ΘλμΔλ,Δμ)=Hom(Δμ,Δμ)\operatorname{Hom}(\Delta_{\lambda},P)=\operatorname{Hom}(\Delta_{\lambda},\Theta^{\lambda}_{\mu}\Delta_{\mu})=\operatorname{Hom}(\Theta^{\mu}_{\lambda}\Delta_{\lambda},\Delta_{\mu})=\operatorname{Hom}(\Delta_{\mu},\Delta_{\mu})

and therefore ne=dimHom(Δμ,Δμ)=1n_{e}=\dim\operatorname{Hom}(\Delta_{\mu},\Delta_{\mu})=1.

This implies that PJλΔλP^{J_{\lambda}}\cong\Delta_{\lambda}, see e.g. [2]. Therefore [PJλ:Δw0λ]=1[P^{J_{\lambda}}:\Delta_{w_{0}\cdot\lambda}]=1.

We claim that this implies that [P/JλP:Δw0λ]=1[P/J_{\lambda}P:\Delta_{w_{0}\cdot\lambda}]=1. Since we have a surjection P/JλPΔwλP/J_{\lambda}P\to\Delta_{w\cdot\lambda} it is enough to show that [P/JλP:Δw0λ]1[P/J_{\lambda}P:\Delta_{w_{0}\cdot\lambda}]\leq 1. Let I=P=Θμλ(μ)I=P^{*}=\Theta^{\lambda}_{\mu}(\nabla_{\mu}) (= injective hull of LwλL_{w\cdot\lambda}) and T=Θμλ(Δw0μ)T=\Theta^{\lambda}_{\mu}(\Delta_{w_{0}\cdot\mu}) (a tilting module). Since (P/JλP)=IJλ(P/J_{\lambda}P)^{*}=I^{J_{\lambda}} it is enough to show that [IJλ:Δw0λ]1[I^{J_{\lambda}}:\Delta_{w_{0}\cdot\lambda}]\leq 1.

Now TPT\subseteq P and hence TJλPJλT^{J_{\lambda}}\subseteq P^{J_{\lambda}} so that [TJλ:Δw0μ]1[T^{J_{\lambda}}:\Delta_{w_{0}\cdot\mu}]\leq 1. Let K=Ker(μΔw0μ)K=\operatorname{Ker}(\nabla_{\mu}\twoheadrightarrow\Delta_{w_{0}\cdot\mu}). Then we have [K:Δw0μ]=0[K:\Delta_{w_{0}\cdot\mu}]=0 and therefore [ΘμλK:Δw0λ]=0[\Theta^{\lambda}_{\mu}K:\Delta_{w_{0}\cdot\lambda}]=0. The exact sequence 0ΘμλKIT00\to\Theta^{\lambda}_{\mu}K\to I\to T\to 0 gives the sequence

0(ΘμλK)JλIJλTJλ.0\to(\Theta^{\lambda}_{\mu}K)^{J_{\lambda}}\to I^{J_{\lambda}}\to T^{J_{\lambda}}.

Thus, [IJλ:Δw0μ][TJλ:Δw0μ]1[I^{J_{\lambda}}:\Delta_{w_{0}\cdot\mu}]\leq[T^{J_{\lambda}}:\Delta_{w_{0}\cdot\mu}]\leq 1. This proves the claim.

Consider now a Verma flag

0F1F2FN=P,Fi/Fi1Δxiλ,0\subset F_{1}\subset F_{2}\subset\ldots\subset F_{N}=P,\ F_{i}/F_{i-1}\cong\Delta_{x_{i}\cdot\lambda},

so that N=[P:Δw0λ]N=[P:\Delta_{w_{0}\cdot\lambda}]. Then we have xiλwλx_{i}\cdot\lambda\geq w\cdot\lambda for each ii. Since [P/JλP:Δw0λ]=1[P/J_{\lambda}P:\Delta_{w_{0}\cdot\lambda}]=1 we have [JλP:Δw0λ]=N1[J_{\lambda}P:\Delta_{w_{0}\cdot\lambda}]=N-1. Clearly JλFiFi1J_{\lambda}F_{i}\subseteq F_{i-1} and the latter equality implies that the image of JλFiJ_{\lambda}F_{i} in Fi1/Fi2ΔxiF_{i-1}/F_{i-2}\cong\Delta_{x_{i}} contains the copy of Δw0λ\Delta_{w_{0}\cdot\lambda} for all i2i\geq 2. Let tiFit_{i}\in F_{i} be such that its image in Fi/Fi1F_{i}/F_{i-1} is a highest weight vector of weight wλw\cdot\lambda. Pick siU(𝔫)tis_{i}\in U(\mathfrak{n}_{-})t_{i} such that the image of sis_{i} in Fi/Fi1F_{i}/F_{i-1} is a highest weight vector of weight w0λw_{0}\cdot\lambda. Since the image of Jλsi0J_{\lambda}\cdot s_{i}\neq 0 in Fi1/Fi2F_{i-1}/F_{i-2} it follows that also the image of Jλti0J_{\lambda}\cdot t_{i}\neq 0 in Fi1/Fi2F_{i-1}/F_{i-2}. This shows that [JλP:Lwλ]N1[J_{\lambda}P:L_{w\cdot\lambda}]\geq N-1. This implies that [ΘλμJλP:Lμ]N1[\Theta^{\mu}_{\lambda}J_{\lambda}P:L_{\mu}]\geq N-1.

On the other hand we have a short exact sequence

0ΘλμJλPΘλμPΘλμ(P/JλP)0.0\to\Theta^{\mu}_{\lambda}J_{\lambda}P\to\Theta^{\mu}_{\lambda}P\to\Theta^{\mu}_{\lambda}(P/J_{\lambda}P)\to 0.

It follows that ΘλμJλP\Theta^{\mu}_{\lambda}J_{\lambda}P contains a submodule of ΘλμP=ΔμN\Theta^{\mu}_{\lambda}P=\Delta^{N}_{\mu} isomorphic to ΔμN1\Delta^{N-1}_{\mu}. Since moreover Θλμ(P/JλP)Δμ\Theta^{\mu}_{\lambda}(P/J_{\lambda}P)\twoheadrightarrow\Delta_{\mu} we conclude that ΘλμJλPΔμN1\Theta^{\mu}_{\lambda}J_{\lambda}P\cong\Delta^{N-1}_{\mu} and that Θλμ(P/JλP)Δμ\Theta^{\mu}_{\lambda}(P/J_{\lambda}P)\cong\Delta_{\mu}. ∎

Remark 2.

Assume that ff is non-degenerate so that by Proposition 2 WhfΓ¯f𝕍Wh_{f}\circ\overline{\Gamma}_{f}\cong\mathbb{V}. Hence the left adjoint of Γ¯f\overline{\Gamma}_{f} is Pw0λZWh¯fP_{w_{0}\cdot\lambda}\otimes_{Z}\overline{Wh}_{f} in this case.

Remark 3.

If M𝒩λ^fM\in\mathcal{N}^{f}_{\widehat{\lambda}} (for arbitrary ff) is induced from a Whittaker module over the reductive Lie algebra 𝔩\mathfrak{l} (see Section 2.3.1), then the adjoints Γ¯fL(M)\overline{\Gamma}_{f}^{L}(M) and Γ¯fR(M)\overline{\Gamma}_{f}^{R}(M) can be calculated directly only using the definition of Γ¯f\overline{\Gamma}_{f} without using τL\tau^{L} and τR\tau^{R}.

3.2. Calculation of Γ¯fL\overline{\Gamma}_{f}^{L} and Γ¯fR\overline{\Gamma}_{f}^{R}.

We end this paper by calculating Γ¯fL\overline{\Gamma}_{f}^{L} and Γ¯fR\overline{\Gamma}_{f}^{R} on some standard Whittaker modules. Note that Γ¯fL:𝒩λ^f𝒪λ^\overline{\Gamma}_{f}^{L}:\mathcal{N}^{f}_{{\widehat{\lambda}}}\to\mathcal{O}_{\widehat{\lambda}} is right exact and Γ¯fR:𝒩λ^f𝒪λ^\overline{\Gamma}_{f}^{R}:\mathcal{N}^{f}_{{\widehat{\lambda}}}\to\mathcal{O}_{\widehat{\lambda}} is left exact. Recall that they commute with all projective functors.

We have

Γ¯fR(Δxλ(f))τR(Δxλ(f))κ1(Θμλ())Jλσ1(Δxλ(f))κ1Θμλ(Δxμ)Jλ.\overline{\Gamma}_{f}^{R}(\Delta_{x\cdot\lambda}(f))\cong\tau^{R}(\Delta_{x\cdot\lambda}(f))\cong\kappa^{-1}\circ(\Theta^{\lambda}_{\mu}(\ ))^{J_{\lambda}}\circ\sigma^{-1}(\Delta_{x\cdot\lambda}(f))\cong\kappa^{-1}\circ\Theta^{\lambda}_{\mu}(\Delta_{x\cdot\mu})^{J_{\lambda}}.

If x=ex=e then we have Θμλ(Δμ)JλΔλ\Theta^{\lambda}_{\mu}(\Delta_{\mu})^{J_{\lambda}}\cong\Delta_{\lambda}, as explained in the proof of Lemma 4, and therefore Γ¯fR(Δλ(f))Δλ\overline{\Gamma}_{f}^{R}(\Delta_{\lambda}(f))\cong\Delta_{\lambda}. When x=w0x=w_{0} one can prove that T=Θμλ(Δw0μ)T=\Theta^{\lambda}_{\mu}(\Delta_{w_{0}\cdot\mu}) is a multiplicity free tilting module of highest weight w0wλw_{0}w\cdot\lambda and that in this case TJλ=Δw0wλT^{J_{\lambda}}=\Delta_{w_{0}w\cdot\lambda}, where ww is the longest element in WμW_{\mu}. Hence, Γ¯fR(Δw0λ(f))=Δw1w0λ\overline{\Gamma}_{f}^{R}(\Delta_{w_{0}\cdot\lambda}(f))=\Delta_{w^{-1}w_{0}\cdot\lambda}.

Similarly, we have

Γ¯fL(Δxλ(f))κ1(Θμλ()UUλ)σ1(Δxλ(f))κ1(Θμλ(Δxμ)UUλ).\overline{\Gamma}_{f}^{L}(\Delta_{x\cdot\lambda}(f))\cong\kappa^{-1}\circ(\Theta^{\lambda}_{\mu}(\ )\otimes_{U}U_{\lambda})\circ\sigma^{-1}(\Delta_{x\cdot\lambda}(f))\cong\kappa^{-1}\circ(\Theta^{\lambda}_{\mu}(\Delta_{x\cdot\mu})\otimes_{U}U_{\lambda}).

Now for x=ex=e we have Θμλ(Δμ)UUλ=Pwλ/JλPwλ\Theta^{\lambda}_{\mu}(\Delta_{\mu})\otimes_{U}U_{\lambda}=P_{w\cdot\lambda}/J_{\lambda}P_{w\cdot\lambda} so that Γ¯fL(Δλ(f))κ1Pwλ/JλPwλ\overline{\Gamma}_{f}^{L}(\Delta_{\lambda}(f))\cong\kappa^{-1}P_{w\cdot\lambda}/J_{\lambda}P_{w\cdot\lambda}. On the other hand, T/JλT=w0wλT/J_{\lambda}T=\nabla_{w_{0}w\cdot\lambda} (as follows from the above and selfduality of TT) and therefore Γ¯fL(Δw0λ(f))ww0λ\overline{\Gamma}_{f}^{L}(\Delta_{w_{0}\cdot\lambda}(f))\cong\nabla_{ww_{0}\cdot\lambda}.

References

  • [1] Erik Backelin. Representation of the category O in Whittaker categories. Internat. Math. Res. Notices, (4):153–172, 1997.
  • [2] Erik Backelin. The Hom-spaces between projective functors. Represent. Theory, 5:267–283, 2001.
  • [3] Bojko Bakalov and Alexander Kirillov, Jr. Lectures on tensor categories and modular functors, volume 21 of University Lecture Series. American Mathematical Society, Providence, RI, 2001.
  • [4] J. N. Bernstein and S. I. Gelfand. Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras. Compositio Math., 41(2):245–285, 1980.
  • [5] N. Bourbaki. Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées. Actualités Scientifiques et Industrielles, No. 1364. Hermann, Paris, 1975.
  • [6] Adam Brown. Arakawa-Suzuki functors for Whittaker modules. J. Algebra, 538:261–289, 2019.
  • [7] Ben Elias and Geordie Williamson. The Hodge theory of Soergel bimodules. Ann. of Math. (2), 180(3):1089–1136, 2014.
  • [8] James E. Humphreys. Representations of semisimple Lie algebras in the BGG category O, volume 94 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
  • [9] Jens Carsten Jantzen. Einhüllende Algebren halbeinfacher Lie-Algebren, volume 3 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1983.
  • [10] Bertram Kostant. On Whittaker vectors and representation theory. Invent. Math., 48(2):101–184, 1978.
  • [11] Nicolas Libedinsky and Geordie Williamson. Standard objects in 2-braid groups. Proc. Lond. Math. Soc. (3), 109(5):1264–1280, 2014.
  • [12] Edward McDowell. On modules induced from Whittaker modules. J. Algebra, 96(1):161–177, 1985.
  • [13] Dragan Miličić and Wolfgang Soergel. The composition series of modules induced from Whittaker modules. Comment. Math. Helv., 72(4):503–520, 1997.
  • [14] Dragan Miličić and Wolfgang Soergel. Twisted Harish-Chandra sheaves and Whittaker modules: the nondegenerate case. 37:183–196, 2014.
  • [15] Wolfgang Soergel. Équivalences de certaines catégories de 𝔤\mathfrak{g}-modules. C. R. Acad. Sci. Paris Sér. I Math., 303(15):725–728, 1986.
  • [16] Wolfgang Soergel. Kategorie 𝒪\mathcal{O}, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Amer. Math. Soc., 3(2):421–445, 1990.