This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Projective Embedding of Dynamical Systems:
uniform mean field equations

F. Caravelli Los Alamos National Laboratory
T-Division (T-4), Condensed Matter & Complex Systems,
Los Alamos, New Mexico 87545, USA
caravelli@lanl.gov
F. L. Traversa MemComputing Inc.
MemComputing Inc., 9909 Huennekens Street, Suite 110, San Diego, California 92121, USA
M. Bonnin F. Bonani Politecnico di Torino
Department of Electronics and Telecommunication, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
Abstract

We study embeddings of continuous dynamical systems in larger dimensions via projector operators. We call this technique PEDS, projective embedding of dynamical systems, as the stable fixed point of the original system dynamics are recovered via projection from the higher dimensional space. In this paper we provide a general definition and prove that for a particular type of rank-1 projector operator, the uniform mean field projector, the equations of motion become a mean field approximation of the dynamical system. While in general the embedding depends on a specified variable ordering, the same is not true for the uniform mean field projector. In addition, we prove that the original stable and saddle-node fixed points retain this feature in the embedding dynamics, while unstable fixed points become saddles. Direct applications of PEDS can be non-convex optimization and machine learning.

keywords:
projective embedding, projector operators, dynamical systems, fixed points, PEDS

1 Introduction

The past decades witnessed an increased interest in physics- or neuro-inspired algorithms for the analysis of dynamical systems, with the main area of application being problems that can be mapped onto optimization ones, whether continuous or discrete [2, TraversaSOLG, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Among the most important neuro-inspired algorithms, we mention neural networks, which received a large amount of attention given their wide applicability and remarkable achievements: this is an active area of research falling at the boundary between complex systems, neuromorphic computing and nonlinear dynamics, dating back to Turing [15] at least. In the study of neural networks, one of the most important open problems is the acceleration of the training phase, a problem connected to the roughness of the energy landscape [16, 17]. Network training is one of the most difficult tasks, requiring in general huge computational power and a vast number of samples. Many algorithms attempt at modifying the energy function to reduce the time spent on saddle points [18, 19]. Changing the landscape is however challenging in general, as it somehow requires some a priori knowledge of what type of local extrema should be modified. Thus, finding valuable alternatives and/or generalizations of gradient descent has been a topic of intense study. In addition to this, analog models of computation is an active area of research [20] with several applications.

From the point of view of a dynamical system, however, there are not many strategies that one can attempt to employ. A possibility, incidentally the one we explore in this paper, is to increase the dimensionality of the system, by attempting to preserve some properties related to the original dynamical system, while aiming at a trade-off between convergence optimality and the curse of dimensionality. The basic rationale for this strategy is that increasing dimensions, there are more pathways that a system can take in order to reach a certain target point. As a simple example, consider a one dimensional barrier between two minima in a potential: following gradients, one could never move from one local minimum to the other, while in a higher dimension system, pathways around that confinement barrier are, at least in principle, possible.

The technique we propose here is inspired by recent results in the context of memristive circuits [21, 22, 23, 24, 25, 26]. In circuits, Kirchhoff laws are manifestations of the conservation of physical quantities such as charge or energy. Mathematically, these can be expressed via the introduction of projection operators, i.e. matrices 𝛀\boldsymbol{\Omega} satisfying the constraint 𝛀2=𝛀\boldsymbol{\Omega}^{2}=\boldsymbol{\Omega}, and directly connected to circuit topology. For instance, for a resistive circuit made of identical unitary resistances in series with impressed voltage generators, the Ohm’s law for the network can be expressed as

i=𝛀v,\displaystyle\vec{i}=\boldsymbol{\Omega}\vec{v}, (1)

where v\vec{v} is the collection of voltage generators connected in series to each resistance, while i\vec{i} contains the branch currents. The underlying assumption of (1) is that the voltage generators viv_{i}’s are in series to the resistances ii’s, while the circuit can be represented as graph with EE edges. Given the branch currents and a certain orientation of the graph loops 1,,L1,\dots,L, we can obtain the so called loop matrix of the circuit AA, of size L×EL\times E, such that 𝛀=𝑨t(𝑨𝑨t)1𝑨\boldsymbol{\Omega}=\boldsymbol{A}^{t}(\boldsymbol{A}\boldsymbol{A}^{t})^{-1}\boldsymbol{A}, where t denotes the transpose. The details of the derivation of 𝛀\boldsymbol{\Omega} from the circuit topology are beyond the scope of this paper, where 𝛀\boldsymbol{\Omega} will be kept generic and unrelated to any underlying graph or conservation law.

We assume a continuous dynamical system, but the technique can in principle be extended to vector maps, and thus works also for numerical implementations of a dynamical system. Let us consider a dynamical system expressed in vector form as a first-order differential system

dxidt=fi(x)i=1,,m\displaystyle\frac{dx_{i}}{dt}=f_{i}(\vec{x})\qquad i=1,\dots,m (2)

where functions fi()f_{i}(\cdot) are assumed known, and analytic. We are in general interested in recovering the stable fixed points of (2), i.e. the values x\vec{x}^{*} such that fi(x)=0f_{i}(\vec{x}^{*})=0, if they exist.

To this aim we consider another dynamical system, of size mNmN, written in the form

ddtXi=𝛀Fi(X1,,Xm)+Gi(Xi)i=1,,m\displaystyle\frac{d}{dt}\vec{X}_{i}=\boldsymbol{\Omega}\vec{F}_{i}(\vec{X}_{1},\cdots,\vec{X}_{m})+\vec{G}_{i}(\vec{X}_{i})\qquad i=1,\dots,m (3)

where for each ii value we define an augmented vector Xi\vec{X}_{i} of size NN. The question we aim at answering in this contribution is to ascertain whether functions Fi\vec{F}_{i} and Gi\vec{G}_{i} exist such that the dynamical system (2) is contained, in a sense we will make more precise in the next section, into the extended system (3). The answer we provide in this paper is affirmative, as we will explicitly construct such system along with the technique to recover the original dynamical system.

From a mathematical perspective, these generalizations can be investigated by the study of the properties of fixed points in the embedded system in terms of the original ones, which is the strategy we use in this paper. A fixed point x\vec{x}^{*} is particular point of the phase space satisfying dxdt|x=f(x)=0\frac{d\vec{x}}{dt}|_{\vec{x}^{*}}=f(\vec{x}^{*})=0. We dub the method developed in this paper Projective Embedding of Dynamical Systems (PEDS), as the technique involves the embedding of a target dynamical system of dimension mm into one of dimension mNmN; ultimately, we recover the fixed points of the original dynamical system by projecting back onto a chosen set (of size mm) of observables. We will prove that the information of the fixed points of the original target system are related to the fixed points of the reduced observables. As we will see, the dynamical system in which the embedding is contained is a nontrivial and nonlinear extension of the original dynamical system which is obtained via a map between the original one and an extended one. Although the projection operator may be quite general, we prove most of the results here for a specific operator, that we call uniform mean-field projector, as in this simplified case mostly analytical proofs are available.

The structure of the paper is as follows. In Section 2 we introduce the PEDS procedure formally, and provide various examples to intuitively grasp why these definitions make sense. In Section 3 we study the uniform mean field projector, and both for 1-dimensional and mm-dimensional dynamical systems we prove exact results about the properties of the asymptotic stable fixed points and their Jacobians. In Section 4 we provide numerical examples alongside analytical analysis, to further corroborate the bulk of the paper. Finally, conclusions follow.

2 The PEDS procedure: key definitions and examples

In order to clarify the techniques developed in this paper, we now construct the simplest example of the embedding, before introducing the necessary definitions. Notation-wise, we will denote with 𝑰\boldsymbol{I} the identity matrix, while 1\vec{1} is a column vector with elements equal to 1.

Example 2.1.

Exponential dynamics.
  Let us consider the following one dimensional dynamical system:

dxdt=ax~x(0)=x0,\displaystyle\frac{dx}{dt}=a\tilde{x}\qquad x(0)=x_{0}, (4)

with aa\in\mathbb{R}, whose analytical solution is given by

x(t)=eatx0.\displaystyle x(t)=e^{at}x_{0}. (5)

Considering an N×NN\times N projector matrix 𝛀\boldsymbol{\Omega} such that 𝛀2=𝛀\boldsymbol{\Omega}^{2}=\boldsymbol{\Omega} and, thus, 𝛀(𝑰𝛀)=0\boldsymbol{\Omega}(\boldsymbol{I}-\boldsymbol{\Omega})=0, we define the following enlarged (size NN) dynamical system

dXdt=a𝛀Xα(𝑰𝛀)XX(0)=x0b,\displaystyle\frac{d\vec{X}}{dt}=a\boldsymbol{\Omega}\vec{X}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X}\qquad\vec{X}(0)=x_{0}\vec{b}, (6)

where α>0\alpha>0, and b\vec{b} is an arbitrary vector, satisfying the only requirement 𝛀b0\boldsymbol{\Omega}\vec{b}\neq\vec{0}.

Since the system above is linear, we do know the analytical solution, which is given by

X(t)=e[a𝛀α(𝑰𝛀)]tX(0)ea𝛀tX(0)\displaystyle\vec{X}(t)=e^{[a\boldsymbol{\Omega}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega})]t}\vec{X}(0)\approx e^{a\boldsymbol{\Omega}t}\vec{X}(0) (7)

where the approximation holds for t+t\rightarrow+\infty, i.e. for t1/αt\gg 1/\alpha. As for any projector 𝛀\boldsymbol{\Omega} the following identity holds

ea𝛀=𝑰+(ea1)𝛀\displaystyle e^{a\boldsymbol{\Omega}}=\boldsymbol{I}+(e^{a}-1)\boldsymbol{\Omega} (8)

the asymptotic solution reads

X(t)(𝑰𝛀)X(0)+eatx0𝛀b=(𝑰𝛀)X(0)+x(t)𝛀b\displaystyle\vec{X}(t)\approx(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X}(0)+e^{at}x_{0}\boldsymbol{\Omega}\vec{b}=(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X}(0)+x(t)\boldsymbol{\Omega}\vec{b} (9)

Therefore, projecting (9)

𝛀X(t)x(t)𝛀b,\displaystyle\boldsymbol{\Omega}\vec{X}(t)\approx x(t)\boldsymbol{\Omega}\vec{b}, (10)

i.e., the asymptotic solution of (7) is contained as a common factor in all the modes of X(t)\vec{X}(t), the “replicated” dynamics.

As a last comment, we recover the solution of the original dynamical system by averaging the elements of (10)

1N1T𝛀X(t)x(t)1N1T𝛀b,\displaystyle\frac{1}{N}\vec{1}^{T}\boldsymbol{\Omega}\vec{X}(t)\approx x(t)\frac{1}{N}\vec{1}^{T}\boldsymbol{\Omega}\vec{b}, (11)

where T represents the transpose. Therefore, choosing vector b\vec{b} such that

1N1T𝛀b=1Ni,j=1NΩijbj=1\displaystyle\frac{1}{N}\vec{1}^{T}\boldsymbol{\Omega}\vec{b}=\frac{1}{N}\sum_{i,j=1}^{N}\Omega_{ij}b_{j}=1 (12)

we find

x(t)=1N1T𝛀X(t)=1Ni,j=1NΩijXj(t)\displaystyle x(t)=\frac{1}{N}\vec{1}^{T}\boldsymbol{\Omega}\vec{X}(t)=\frac{1}{N}\sum_{i,j=1}^{N}\Omega_{ij}X_{j}(t) (13)

i.e., the projected dynamics recovers the original one dimensional system.
 

The main goal of this paper is to extend the results of Example 2.1 to arbitrary dynamical systems. Let us now identify the key steps of the procedure. First, we begin with a dynamical system in the standard form.

Refer to caption
Figure 1: Graphical representation of the PEDS procedure and of the associated maps. The horizontal arrows represent the time evolution maps Φt\Phi_{t} and Φt\Phi_{t}^{\prime}, while the vertical arrows represent the embedding 𝒪\mathcal{O} and the projection 𝒫\mathcal{P} map, respectively.
Definition 2.2.

Embedding procedure: PEDS. We explicitly define here the steps involved in developing the PEDS procedure.

  1. 1.

    We begin with a tuple ({f1(x),,fm(x)},𝛀,{G1,,Gm},𝒮,{b1,,bm},N)(\{f_{1}(\vec{x}),\cdots,f_{m}(\vec{x})\},\boldsymbol{\Omega},\{\vec{G}_{1},\cdots,\vec{G}_{m}\},\mathcal{S},\{\vec{b}_{1},\cdots,\vec{b}_{m}\},N), where 𝛀\boldsymbol{\Omega} is a size NN projector operator. We call {f1(x),,fm(x)}\{f_{1}(\vec{x}),\cdots,f_{m}(\vec{x})\} the target dynamical system, while xix_{i} represent the target variables. 𝒮\mathcal{S} represents an ordering, relevant for the case of a multi-dimensional target system if the embedding is non-commutative. Vector b\vec{b} is constant and such that 𝛀b0\boldsymbol{\Omega}\vec{b}\neq\vec{0}. Finally, NN is the dimension of the embedding for each scalar variable. As such, it can also be interpreted as the number of dimensions in which each scalar variable is expanded into.

  2. 2.

    Given the target dynamical system of dimension mm, we build an extended dynamical system of size mNmN, represented by a set of canonical equations of the form

    ddtXi=𝛀𝑭i(X1,,Xm)bi+Gi(𝛀;Xi)i=1,,m\displaystyle\frac{d}{dt}\vec{X}_{i}=\boldsymbol{\Omega}\boldsymbol{F}_{i}(\vec{X}_{1},\cdots,\vec{X}_{m})\vec{b}_{i}+\vec{G}_{i}(\boldsymbol{\Omega};\vec{X}_{i})\qquad i=1,\dots,m (14)

    This step is represented by the arrow 𝒪\mathcal{O} in Fig. 1, being it a mapping between each scalar functions fif_{i} to the vector function Fi=𝑭ibi\vec{F}_{i}=\boldsymbol{F}_{i}\vec{b}_{i}. Thus, for each dimension of the original dynamical system, we obtain an extended NN dimensional subspace in the NmNm dynamical system, so that

    ({f1(x),,fm(x)})\displaystyle(\{f_{1}(\vec{x}),\cdots,f_{m}(\vec{x})\}) 𝒪\displaystyle\underset{\mathcal{O}}{\rightarrow} ({F1(Xi),,Fm(Xi)},{G1(𝛀;Xi),,Gm(𝛀;Xi)})\displaystyle(\{\vec{F}_{1}(\vec{X}_{i}),\cdots,\vec{F}_{m}(\vec{X}_{i})\},\{\vec{G}_{1}(\boldsymbol{\Omega};\vec{X}_{i}),\cdots,\vec{G}_{m}(\boldsymbol{\Omega};\vec{X}_{i})\}) (15)
    (F,G)\displaystyle\ \ \ \equiv(F,G)

    We call the specific map 𝒪\mathcal{O} the embedding, while (F,G)(F,G) is the extended system and Xi\vec{X}_{i} the extended variable (i.e., a set of NN scalar variables in the extended system). We also dub the set Gi\vec{G}_{i}, the decay functions. In each extended subspace, Xi\vec{X}_{i} is a vector of components Xi,jX_{i,j}, while diagonal matrix 𝑿i\boldsymbol{X}_{i} is made of elements 𝑿i,jk=Xi,jδjk\boldsymbol{X}_{i,jk}=X_{i,j}\delta_{jk}, where δjk\delta_{jk} represents Kronecker symbol. The original vector can be easily recovered from the diagonal matrix as Xi=𝑿i1\vec{X}_{i}=\boldsymbol{X}_{i}\vec{1}. We stress that in principle 𝑭i\boldsymbol{F}_{i} can be a non-trivial function of Ω\Omega, as we shall discuss later on.

  3. 3.

    We consider the time evolution of both the original and the extended system, represented by maps Φt\Phi_{t}^{\prime} and Φt\Phi_{t}, respectively, in Fig. 1. In Example 2.1, the two maps were analytically expressed, thanks to the simplicity of the target system.

  4. 4.

    Arrow 𝒫\mathcal{P} in Fig. 1, finally, projects the extended dynamical system from size NmNm to an mm dimensional system, that is required to coincide with the trajectory of the target dynamical system. For each variable, the projection is derived from the projector operator as, given a certain extended variable Xi\vec{X}_{i}, we obtain x¯i=1Nj,k=1NΩjkXi,k.\bar{x}_{i}=\frac{1}{N}\sum_{j,k=1}^{N}{\Omega}_{jk}X_{i,k}.

2.1 Extended variable ordering

Before delving into the details of the construction of (14), let us clarify what we mean by ordering. During the development of the PEDS procedure, commuting variable products such as x1x2x_{1}x_{2} will be mapped onto matrix products of the form (𝛀𝑿1)(𝛀𝑿2)(\boldsymbol{\Omega}\boldsymbol{X}_{1})(\boldsymbol{\Omega}\boldsymbol{X}_{2}). As matrix products do not commute, the ordering of the variables will have a role.

Definition 2.3.

Ordering. Within the context of PEDS, an ordering SS is a map between commuting monomials of the form x1i1x2i2xmimx_{1}^{i_{1}}x_{2}^{i_{2}}\cdots x^{i_{m}}_{m} and non-commuting matrix monomials of the form (𝛀𝑿1)i1(𝛀𝑿2)i2(𝛀𝑿m)im(\boldsymbol{\Omega}\boldsymbol{X}_{1})^{i_{1}}(\boldsymbol{\Omega}\boldsymbol{X}_{2})^{i_{2}}\cdots(\boldsymbol{\Omega}\boldsymbol{X}_{m})^{i_{m}}.

In general, an ordering can be written in terms of a certain set of coefficients. We will use the following notation

{(𝛀𝑿1)i1(𝛀𝑿m)im}S=σ𝒮(m)oσ(1)σ(m)(𝛀𝑿σ(1))iσ(1)(𝛀𝑿σ(m))iσ(m)\displaystyle\{(\boldsymbol{\Omega}\boldsymbol{X}_{1})^{i_{1}}\cdots(\boldsymbol{\Omega}\boldsymbol{X}_{m})^{i_{m}}\}_{S}=\sum_{\sigma\in\mathcal{S}(m)}o_{\sigma(1)\cdots\sigma(m)}(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(1)})^{i_{\sigma(1)}}\cdots(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(m)})^{i_{\sigma(m)}} (16)

where σ\sigma is an element of the permutation group 𝒮(m)\mathcal{S}(m) over mm variables, the coefficients oσ(1)σ(m)o_{\sigma(1)\cdots\sigma(m)} are zero if at least two indices are equal, and

σ𝒮(m)oσ(1)σ(m)=1.\sum_{\sigma\in\mathcal{S}(m)}o_{\sigma(1)\cdots\sigma(m)}=1. (17)
Definition 2.4.

Given the monomial x1i1x2i2xmimx_{1}^{i_{1}}x_{2}^{i_{2}}\cdots x_{m}^{i_{m}}, the standard ordering is given by (𝛀𝑿1)i1(𝛀𝑿2)i2(𝛀𝑿m)im(\boldsymbol{\Omega}\boldsymbol{X}_{1})^{i_{1}}(\boldsymbol{\Omega}\boldsymbol{X}_{2})^{i_{2}}\cdots(\boldsymbol{\Omega}\boldsymbol{X}_{m})^{i_{m}}, i.e. a matrix monomial where the matrix products strictly follow the same sequence as in the scalar case.

Definition 2.5.

Given the monomial x1i1x2i2xmimx_{1}^{i_{1}}x_{2}^{i_{2}}\cdots x_{m}^{i_{m}}, the balanced ordering is given by

1m!σ𝒮(m)(𝛀𝑿σ(1))iσ(1)(𝛀𝑿σ(2))iσ(2)(𝛀𝑿σ(m))iσ(m)\frac{1}{m!}\sum_{\sigma\in\mathcal{S}(m)}(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(1)})^{i_{\sigma(1)}}(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(2)})^{i_{\sigma(2)}}\cdots(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(m)})^{i_{\sigma(m)}}

Notice that

1m!σ𝒮(m)1=1.\frac{1}{m!}\sum_{\sigma\in\mathcal{S}(m)}1=1.

and that, given an order-independent function MM, i.e. a function satisfying

M(a1,,am)=M(aσ(1),,aσ(m)),\displaystyle M(a_{1},\cdots,a_{m})=M(a_{\sigma(1)},\cdots,a_{\sigma(m)}), (18)

for any permutation σ𝒮(m)\sigma\in\mathcal{S}(m), then

σ𝒮(m)oσ(1),,σ(m)M(aσ(1),,aσ(m))\displaystyle\sum_{\sigma\in\mathcal{S}(m)}o_{\sigma(1),\cdots,\sigma(m)}M(a_{\sigma(1)},\cdots,a_{\sigma(m)}) =σ𝒮(m)oσ(1),,σ(m)M(a1,,am)\displaystyle=\sum_{\sigma\in\mathcal{S}(m)}o_{\sigma(1),\cdots,\sigma(m)}M(a_{1},\cdots,a_{m})
=M(a1,,am)σ𝒮(m)oσ(1),,σ(m)\displaystyle=M(a_{1},\cdots,a_{m})\sum_{\sigma\in\mathcal{S}(m)}o_{\sigma(1),\cdots,\sigma(m)}
=M(a1,,am)\displaystyle=M(a_{1},\cdots,a_{m}) (19)
Example 2.6.

  The standard ordering is characterized by

oσ(1)σ(m)=δσ(1)1δσ(m)m,\displaystyle o_{\sigma(1)\cdots\sigma(m)}=\delta_{\sigma(1)1}\cdots\delta_{\sigma(m)m}, (20)

while for the balanced ordering, oσ(1)σ(m)=1/m!o_{\sigma(1)\cdots\sigma(m)}={1}/{m!}.

Considering the case of two scalar variables (i.e., m=2m=2), choosing o12=1o_{12}=1 and o21=o11=o22=0o_{21}=o_{11}=o_{22}=0, we get {(𝛀𝑿1)i1(𝛀𝑿2)i2}S=(𝛀𝑿1)i1(𝛀𝑿2)i2\{(\boldsymbol{\Omega}\boldsymbol{X}_{1})^{i_{1}}(\boldsymbol{\Omega}\boldsymbol{X}_{2})^{i_{2}}\}_{S}=(\boldsymbol{\Omega}\boldsymbol{X}_{1})^{i_{1}}(\boldsymbol{\Omega}\boldsymbol{X}_{2})^{i_{2}}. Another possible choice is o12=a,o21=b,o11=o22=0o_{12}=a,o_{21}=b,o_{11}=o_{22}=0, where 0a,b10\leq a,b\leq 1 and a+b=1a+b=1, so that

{(𝛀𝑿1)i1(𝛀𝑿2)i2}S=a(𝛀𝑿1)i1(𝛀𝑿2)i2+b(𝛀𝑿2)i2(𝛀𝑿1)i1\{(\boldsymbol{\Omega}\boldsymbol{X}_{1})^{i_{1}}(\boldsymbol{\Omega}\boldsymbol{X}_{2})^{i_{2}}\}_{S}=a(\boldsymbol{\Omega}\boldsymbol{X}_{1})^{i_{1}}(\boldsymbol{\Omega}\boldsymbol{X}_{2})^{i_{2}}+b(\boldsymbol{\Omega}\boldsymbol{X}_{2})^{i_{2}}(\boldsymbol{\Omega}\boldsymbol{X}_{1})^{i_{1}} (21)

 

2.2 Decay functions

We discuss now the decay functions Gi(𝛀;Xi)\vec{G}_{i}(\boldsymbol{\Omega};\vec{X}_{i}). The choice made in Example 2.1 was

G(𝛀;X)=α(𝑰𝛀)X\vec{G}(\boldsymbol{\Omega};\vec{X})=-\alpha(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X} (22)

where α0\alpha\geq 0. This particular choice corresponds to a precise definition:

Definition 2.7.

Standard decay function. The decay function in (22) is called standard decay function.

As seen in Example 2.1, the standard decay function allowed to recover the target dynamical system dynamics, that in turn was reconstructed in the Span(𝛀)(\boldsymbol{\Omega}). The role played by the decay functions is to enforce that in each extended subspace, the modal components associated to the Ker(𝛀)(\boldsymbol{\Omega}) are asymptotically vanishing.

Definition 2.8.

A decay function Gi(𝛀;Xi)\vec{G}_{i}(\boldsymbol{\Omega};\vec{X}_{i}) is 𝛀\boldsymbol{\Omega}-eligible if

limt+𝛀Gi(𝛀;Xi(t))=0\lim_{t\rightarrow+\infty}\boldsymbol{\Omega}\vec{G}_{i}(\boldsymbol{\Omega};\vec{X}_{i}(t))=\vec{0} (23)

and if the solution of the dynamical system obtained projecting (14) onto the Ker(𝛀)(\boldsymbol{\Omega}) (i.e., projecting the extended equation via (𝑰𝛀)(\boldsymbol{I}-\boldsymbol{\Omega}) and defining Xci(t)=(𝑰𝛀)Xi(t)\vec{X}_{ci}(t)=(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X}_{i}(t))

dXcidt=(𝑰𝛀)Gi(𝛀;Xi)\frac{d\vec{X}_{ci}}{dt}=(\boldsymbol{I}-\boldsymbol{\Omega})\vec{G}_{i}(\boldsymbol{\Omega};\vec{X}_{i}) (24)

is decaying, i.e. if limtXci(t)=0\lim_{t\rightarrow\infty}\vec{X}_{ci}(t)=\vec{0}.

Obviously, the standard decay functions are 𝛀\boldsymbol{\Omega}-eligible.

2.3 Embedding map 𝒪\mathcal{O}

We are now ready to state the exact definition of the 𝒪\mathcal{O} map. However, this step requires to express the nonlinear scalar functions defining the target dynamical system as a power series. From this standpoint, it is convenient to formulate the Taylor expansion of an mm variable, scalar analytic function f(x)f(\vec{x}) as a superposition of monomials exploiting Kronecker symbol:

f(x)=j=0i1,,ij=0jδj,k=1mikbj;i1ijx1i1xmim=j=0i1,ij=0jaj;i1ijx1i1xmim,f(\vec{x})=\sum_{j=0}^{\infty}\sum_{i_{1},\dots,i_{j}=0}^{j}\delta_{j,\sum_{k=1}^{m}i_{k}}b_{j;i_{1}\dots i_{j}}x_{1}^{i_{1}}\cdots x_{m}^{i_{m}}=\sum_{j=0}^{\infty}\sum_{i_{1},\dots i_{j}=0}^{j}a_{j;i_{1}\dots i_{j}}x_{1}^{i_{1}}\cdots x_{m}^{i_{m}}, (25)

where aj;i1im=δj,k=1jijbj;i1ija_{j;i_{1}\cdots i_{m}}=\delta_{j,\sum_{k=1}^{j}i_{j}}b_{j;i_{1}\cdots i_{j}}.

Definition 2.9.

Matrix map.
Given a scalar analytic function f(x)f(\vec{x}) with Taylor expansion as in (25), we call a matrix map for ff the following construction

𝑭(X1,,Xm)=j=0i1,ij=0jaj;i1ij{(𝛀𝟏𝑿1)i1(𝛀𝟏𝑿m)im}S\boldsymbol{F}(\vec{X}_{1},\dots,\vec{X}_{m})=\sum_{j=0}^{\infty}\sum_{i_{1},\cdots i_{j}=0}^{j}a_{j;i_{1}\dots i_{j}}\{(\boldsymbol{\Omega_{1}}\boldsymbol{X}_{1})^{i_{1}}\cdots(\boldsymbol{\Omega_{1}}\boldsymbol{X}_{m})^{i_{m}}\}_{S} (26)

where SS is a properly defined ordering.

Definition 2.10.

Embedding map.
The embedding map 𝒪\mathcal{O} is defined as the tuple 𝒪=({fi},𝛀,{Gi},S,{bi},N)\mathcal{O}=\Big{(}\{f_{i}\},\boldsymbol{\Omega},\{\vec{G}_{i}\},S,\{\vec{b}_{i}\},N\Big{)}, where Gi\vec{G}_{i} represents decay functions, and bi\vec{b}_{i} is a set of constant vectors satisfying condition 𝛀bi0\boldsymbol{\Omega}\vec{b}_{i}\neq\vec{0}. The embedding map 𝒪\mathcal{O} of (2) is given by

dxidt=fi(x)𝒪dXidt=𝛀𝑭i(Xi,,Xm)bi+Gi(𝛀;Xi)i=1,,m\frac{dx_{i}}{dt}=f_{i}(\vec{x})\underset{\mathcal{O}}{\longrightarrow}\frac{d\vec{X}_{i}}{dt}=\boldsymbol{\Omega}\boldsymbol{F}_{i}(\vec{X}_{i},\cdots,\vec{X}_{m})\vec{b}_{i}+\vec{G}_{i}(\boldsymbol{\Omega};\vec{X}_{i})\qquad i=1,\dots,m (27)

where 𝑭i\boldsymbol{F}_{i} is the matrix map associated to fif_{i} according to Definition 2.9.

Let us now provide three examples of matrices 𝑭i\boldsymbol{F}_{i} which will be used in the following. Each target function is analytical, with series representation as in (25):

fi(x1,,xm)=k=0j1,,jmkai,k;j1,,jmx1j1xmjmf_{i}(x_{1},\cdots,x_{m})=\sum_{k=0}^{\infty}\sum_{j_{1},\cdots,j_{m}}^{k}a_{i,k;j_{1},\cdots,j_{m}}x_{1}^{j_{1}}\cdots x_{m}^{j_{m}}
Definition 2.11.

We define the following three possible matrix embeddings:

  • 1.

    the standard commutative map is

    𝑭i(c)(𝑿1,,𝑿m)=k=0j1,,jmkai,k;j1,,jm𝑿1j1𝑿mjm,\displaystyle\boldsymbol{F}^{(c)}_{i}(\boldsymbol{X}_{1},\cdots,\boldsymbol{X}_{m})=\sum_{k=0}^{\infty}\sum_{j_{1},\cdots,j_{m}}^{k}a_{i,k;j_{1},\cdots,j_{m}}\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}}, (28)
  • 2.

    the mixed commutative map is

    𝑭i(mc)(𝛀;𝑿1,,𝑿m)=ai,0𝑰+k=1j1,,jmkai,k;j1,,jm(𝛀(𝑿1j1𝑿mjm)1/k)k,\displaystyle\boldsymbol{F}^{(mc)}_{i}(\boldsymbol{\Omega};\boldsymbol{X}_{1},\cdots,\boldsymbol{X}_{m})=a_{i,0}\boldsymbol{I}+\sum_{k=1}^{\infty}\sum_{j_{1},\cdots,j_{m}}^{k}a_{i,k;j_{1},\cdots,j_{m}}(\boldsymbol{\Omega}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k})^{k}, (29)

    where ai,0a_{i,0} denotes the constant term of the series expansion for function fif_{i}

  • 3.

    the standard non-commutative map is

    𝑭i(nc)(𝛀;𝑿1,,𝑿m)=k=0j1,,jmkai,k;j1,,jm{(𝛀𝑿1)j1(𝛀𝑿m)jm}S\displaystyle\boldsymbol{F}^{(nc)}_{i}(\boldsymbol{\Omega};\boldsymbol{X}_{1},\cdots,\boldsymbol{X}_{m})=\sum_{k=0}^{\infty}\sum_{j_{1},\cdots,j_{m}}^{k}a_{i,k;j_{1},\cdots,j_{m}}\{(\boldsymbol{\Omega}\boldsymbol{X}_{1})^{j_{1}}\cdots(\boldsymbol{\Omega}\boldsymbol{X}_{m})^{j_{m}}\}_{S} (30)

    where SS is the chosen ordering.

Clearly, since diagonal matrices 𝑿𝒊\boldsymbol{X_{i}} commute, defining an ordering for the standard and the mixed commutative maps is unnecessary. As we will see, such difference is important for embeddings of vector dynamical systems in the case of the mixed commutative map, but not for a scalar system. Notice also that

  • 1.

    the standard commutative map is a linear mix of the dynamical systems functions fi(x)f_{i}(\vec{x}), since a direct calculation shows

    𝑭i(c)(𝑿1,,𝑿m)=diag(fi(X1,1,,Xm,1),,fi(X1,N,,Xm,N)).\displaystyle\boldsymbol{F}^{(c)}_{i}(\boldsymbol{X}_{1},\cdots,\boldsymbol{X}_{m})=\text{diag}\big{(}f_{i}(X_{1,1},\cdots,X_{m,1}),\cdots,f_{i}(X_{1,N},\cdots,X_{m,N})\big{)}. (31)

    which simplifies drastically the evaluation

  • 2.

    for scalar dynamical systems, the mixed commutative map and the standard non-commutative map reduce to the same quantity

  • 3.

    in the case of vector dynamical systems, the mixed commutative map preserves the commutativity of the target variables, since diagonal matrices 𝑿𝒊\boldsymbol{X_{i}} commute among themselves.

As a consequence, for scalar dynamical system we will study only the standard commutative and non-commutative maps, while the result will follow also for the mixed commutative map from the non-commutative one. However, we will have to be more careful in the vector case.

2.4 Projection operator 𝛀\boldsymbol{\Omega}

We provide here a few definitions on the projection operators of size NN we will consider in the following.

Definition 2.12.

A projector 𝛀\boldsymbol{\Omega} is called trivial if rank(𝛀)=N(\boldsymbol{\Omega})=N, or, equivalently, if Span(𝛀)=N(\boldsymbol{\Omega})=\mathbb{R}^{N}.

A simple proof shows that the only trivial projector is the identity matrix 𝑰\boldsymbol{I}.

Definition 2.13.

The uniform mean-field projector 𝛀1\boldsymbol{\Omega}_{1} is defined as the square matrix with elements

Ω1,ij=1N\Omega_{1,ij}=\frac{1}{N}

Let us consider 𝑿\boldsymbol{X} to be a diagonal matrix, as in the PEDS embedding procedure. Projection using the uniform mean-field operator yields

𝛀1𝑿=1N(1111)(X10000XN)=1N(X1X2XNX1X2XN)\boldsymbol{\Omega}_{1}\boldsymbol{X}=\frac{1}{N}\begin{pmatrix}1&\cdots&1\\ \vdots&\ddots&\vdots\\ 1&\cdots&1\end{pmatrix}\begin{pmatrix}X_{1}&0&0\\ \vdots&\ddots&\vdots\\ 0&0&X_{N}\end{pmatrix}=\frac{1}{N}\begin{pmatrix}X_{1}&X_{2}&\cdots&X_{N}\\ \vdots&\vdots&\vdots&\vdots\\ X_{1}&X_{2}&\cdots&X_{N}\end{pmatrix} (32)

therefore, the powers of 𝛀𝑿\boldsymbol{\Omega}\boldsymbol{X} appearing in the PEDS procedure, are neither trivial expressions nor sparse matrices, and indeed contain non linear components in the XiX_{i} variables.

Example 2.14.

  For N=2N=2 we have

𝛀1𝑿=12(X1X2X1X2),(𝛀1𝑿)2=14(X1(X1+X2)X2(X1+X2)X1(X1+X2)X2(X1+X2))=X𝛀1𝑿\boldsymbol{\Omega}_{1}\boldsymbol{X}=\frac{1}{2}\begin{pmatrix}X_{1}&X_{2}\\ X_{1}&X_{2}\end{pmatrix},\ \ \ \ (\boldsymbol{\Omega}_{1}\boldsymbol{X})^{2}=\frac{1}{4}\begin{pmatrix}X_{1}(X_{1}+X_{2})&X_{2}(X_{1}+X_{2})\\ X_{1}(X_{1}+X_{2})&X_{2}(X_{1}+X_{2})\end{pmatrix}=\langle X\rangle\boldsymbol{\Omega}_{1}\boldsymbol{X} (33)

where X=1Nj=1NXj\langle X\rangle=\frac{1}{N}\sum_{j=1}^{N}X_{j}.
 

The previous example can easily be generalized to size NN, showing that (𝛀1𝑿)k=Xk1𝛀1𝑿(\boldsymbol{\Omega}_{1}\boldsymbol{X})^{k}=\langle X\rangle^{k-1}\boldsymbol{\Omega}_{1}\boldsymbol{X}, thus justifying the definition of 𝛀1\boldsymbol{\Omega}_{1} as the uniform mean-field projector.

A similar property applies to vectors, as 𝛀1X=X1\boldsymbol{\Omega}_{1}\vec{X}=\langle X\rangle\vec{1}.

Example 2.15.

  Consider again the Example 2.1. We can write the embedded system as

dXdt=a𝛀Xα(𝑰𝛀)X=𝛀(a𝛀𝑿)1α(𝑰𝛀)X\frac{d\vec{X}}{dt}=a\boldsymbol{\Omega}\vec{X}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X}=\boldsymbol{\Omega}(a\boldsymbol{\Omega}\boldsymbol{X})\vec{1}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X} (34)

which is in the form of a PEDS (3), with 𝑭=a𝛀𝑿\boldsymbol{F}=a\boldsymbol{\Omega}\boldsymbol{X}, b=1\vec{b}=\vec{1} and G=α(𝑰𝛀)X\vec{G}=-\alpha(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X}.
 

We would like to stress the fact that the PEDS mapping is, in general, highly non-trivial, at least as far as the projection operator is not the trivial one: this condition is required because in this case the matrix powers of the form (𝛀𝑿i)k(\boldsymbol{\Omega}\boldsymbol{X}_{i})^{k} couple all the subspace variables in a nonlinear way.

On the other hand, for the trivial projector, the standard decay function is identically zero, and the extended system as well as any extended monomial are ordering independent. In fact, as the diagonal matrices 𝑿j\boldsymbol{X}_{j} commute among themselves, we have that

{(𝛀𝑿1)j1(𝛀𝑿m)jm}S=(𝑿1)j1(𝑿m)jm\displaystyle\{(\boldsymbol{\Omega}\boldsymbol{X}_{1})^{j_{1}}\cdots(\boldsymbol{\Omega}\boldsymbol{X}_{m})^{j_{m}}\}_{S}=(\boldsymbol{X}_{1})^{j_{1}}\cdots(\boldsymbol{X}_{m})^{j_{m}} (35)

if and only if 𝛀=𝑰\boldsymbol{\Omega}=\boldsymbol{I}. As a consequence, (27) becomes

dXidt=𝛀𝑭i(Xi,,Xm)bi=(fi(Xi,1,,Xi,m)bi,1fi(Xi,N,,Xi,m)bi,N)i=1,,m\frac{d\vec{X}_{i}}{dt}=\boldsymbol{\Omega}\boldsymbol{F}_{i}(\vec{X}_{i},\cdots,\vec{X}_{m})\vec{b}_{i}=\begin{pmatrix}f_{i}(X_{i,1},\dots,X_{i,m})b_{i,1}\\ \vdots\\ f_{i}(X_{i,N},\dots,X_{i,m})b_{i,N}\end{pmatrix}\qquad i=1,\dots,m (36)

thus showing that the PEDS procedure for the trivial projector decouples into NN identical copies of the original system.

3 Embedding via the uniform mean field projector

We derive here in a more rigorous way the key results presented above. We focus on the uniform mean field projector 𝛀1\boldsymbol{\Omega}_{1}, as the proofs are easier to be carried out. Nevertheless, several results are actually valid even for a more general projection operator 𝛀\boldsymbol{\Omega}: these will be explicitly denoted by using the general projector 𝛀\boldsymbol{\Omega} in place of the uniform mean field operator.

3.1 Simple case: Scalar target system, embedding without decay function

We start from the case of a one dimensional target dynamical system

dxdt=f(x)\frac{dx}{dt}=f(x) (37)

where f(x)f(x) is analytic, so that

f(x)=i=0aixi.f(x)=\sum_{i=0}^{\infty}a_{i}x^{i}. (38)

Following the PEDS procedure, we introduce the projector operator 𝛀\boldsymbol{\Omega}. The extended variable X\vec{X} is thus an NN-dimensional vector with components XiX_{i}, and the matrix map associated to ff takes either the standard commutative form (28) so that

F(X)=i=0ai𝑿i1\vec{F}(\vec{X})=\sum_{i=0}^{\infty}a_{i}\boldsymbol{X}^{i}\vec{1} (39)

where we have chosen b=1\vec{b}=\vec{1}, or the standard non-commutative form (30) (we remind that for scalar target systems, the mixed commutative and the standard non-commutative forms coincide)

F(X)=i=0ai𝛀𝑿i1\vec{F}(\vec{X})=\sum_{i=0}^{\infty}a_{i}\boldsymbol{\Omega}\boldsymbol{X}^{i}\vec{1} (40)

Before we begin our discussion on the embedding, it is worth giving a definition of what we mean when we say that a dynamical system is contained in another one. Taking Fig. 1 as a reference, let our target system be described by the evolution map (the solution of the dynamical system) ϕt:\phi_{t}^{\prime}:\mathbb{R}\rightarrow\mathbb{R}, while the PEDS evolution is instead a map ϕt:NN\phi_{t}:\mathbb{R}^{N}\rightarrow\mathbb{R}^{N}.

Definition 3.1.

A dynamical system AA of size NAN_{A} is contained in a dynamical system BB of dimensions NB>NAN_{B}>N_{A} if a linear operator 𝒫:NBNA\mathcal{P}:\mathbb{R}^{N_{B}}\rightarrow\mathbb{R}^{N_{A}} exists such that, for XNB\vec{X}\in\mathbb{R}^{N_{B}}

𝒫ϕt(X)=ϕt(x),\mathcal{P}\phi_{t}(\vec{X})=\phi_{t}^{\prime}(\vec{x}), (41)

where x\vec{x} has size NAN_{A}.

Given the definition above, we can now prove the following

Proposition 3.2.

Banality of mean value. Let 𝒪=(f(x),𝛀,0,1,N)\mathcal{O}=(f(x),\boldsymbol{\Omega},0,\vec{1},N) be a PEDS tuple of a target dynamical system as in (37), where the matrix map can take either the standard commuting or standard non-commuting forms. Then, the extended dynamical system (39) or (40) contains the dynamics of (38) for a generic projection operator 𝛀\boldsymbol{\Omega} satisfying 𝛀10\boldsymbol{\Omega}\vec{1}\neq\vec{0}.

Proof.

Let us consider an extended variable X\vec{X} subject to the condition X=x1\vec{X}=x\vec{1}. Then, as 𝑿=x1\boldsymbol{X}=x\vec{1} and 𝛀i=𝛀\boldsymbol{\Omega}^{i}=\boldsymbol{\Omega} i>0i>0, for both the standard commuting and non-commuting maps we have:

ddtX=dxdt1={i=0aixi𝛀1commuting mapi=0aixi𝛀1non commuting map=a0𝛀1+i=1aixi𝛀1=f(x)𝛀1\frac{d}{dt}\vec{X}=\frac{dx}{dt}\vec{1}=\begin{cases}\displaystyle\sum_{i=0}^{\infty}a_{i}x^{i}\boldsymbol{\Omega}\vec{1}&\text{commuting map}\\[4.30554pt] \displaystyle\sum_{i=0}^{\infty}a_{i}x^{i}\boldsymbol{\Omega}\vec{1}&\text{non commuting map}\end{cases}=a_{0}\boldsymbol{\Omega}\vec{1}+\sum_{i=1}^{\infty}a_{i}x^{i}\boldsymbol{\Omega}\vec{1}=f(x)\boldsymbol{\Omega}\vec{1} (42)

Therefore, projecting the previous relation onto the span of 𝛀\boldsymbol{\Omega}, i.e. evaluating 𝛀ddtX=𝛀F(𝑿)\boldsymbol{\Omega}\frac{d}{dt}\vec{X}=\boldsymbol{\Omega}\vec{F}(\boldsymbol{X}), we obtain

(dxdtf(x))𝛀1=0.\left(\frac{dx}{dt}-f(x)\right)\boldsymbol{\Omega}\vec{1}=0. (43)

It follows that as 𝛀10\boldsymbol{\Omega}\vec{1}\neq\vec{0}, then dxdtf(x)=0\frac{dx}{dt}-f(x)=0. In order to prove that the dynamical system is contained, we can project on any component ii, obtaining

ωi(dxdtf(x))=0\displaystyle\omega_{i}\left(\frac{dx}{dt}-f(x)\right)=0 (44)

if ωi=(𝛀1)i0\omega_{i}=(\boldsymbol{\Omega}\vec{1})_{i}\neq 0, we have then proven that an initial condition exists for which (41) applies. ∎

Proposition 3.2 is a warm up for the type of proofs that will follow. It shows that if the initial condition for the variables X\vec{X} are chosen homogeneously, then the extended dynamical system will follow the one dimensional dynamics of (37). However, condition X=x1\vec{X}=x\vec{1} is a strong requirement for the dynamical system. In principle, a dynamically obtained convergence towards a state of the form X=x1\vec{X}=x\vec{1} would be a much better demand. To this aim, we introduce the decay functions.

3.2 Scalar target system: Enforcing the convergence to the mean via decay functions

We consider now the following form for the extended system (14) based on the uniform mean field projector:

dXdt=𝛀1F(X)α(XX1)=𝛀1F(X)α(𝑰𝛀𝟏)X\frac{d\vec{X}}{dt}=\boldsymbol{\Omega}_{1}\vec{F}(\vec{X})-\alpha(\vec{X}-\langle X\rangle\vec{1})=\boldsymbol{\Omega}_{1}\vec{F}(\vec{X})-\alpha(\boldsymbol{I}-\boldsymbol{\Omega_{1}})\vec{X} (45)

where X=(1/N)i=1NXi\langle X\rangle=({1}/{N})\sum_{i=1}^{N}X_{i} and α>0\alpha>0. Notice that XX1=(𝑰𝛀1)X\vec{X}-\langle X\rangle\vec{1}=(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X} because of the properties of 𝛀1\boldsymbol{\Omega}_{1} discussed in Sec. 2.4. The second term on the right hand side of (45) is an “elastic” force compelling the extended trajectories to remain close to the mean. The relative strength of the two addends determines the behavior of the system.

Proposition 3.3.

Convergence to the mean. The dynamics of (45) is characterized by the same fixed points, if they exist, as for the target system (37) both for the standard commuting and non-commuting matrix maps.

Proof.

Projecting (45) through 𝛀1\boldsymbol{\Omega}_{1} and using (39) we find

𝛀1dXdt={i=0ai𝛀1𝑿i1α𝛀1(𝑰𝛀1)Xstandard commuting mapi=0ai𝛀1(𝛀𝟏𝑿)i1α𝛀1(𝑰𝛀1)Xstandard noncommuting map\boldsymbol{\Omega}_{1}\frac{d\vec{X}}{dt}=\begin{cases}\displaystyle\sum_{i=0}^{\infty}a_{i}\boldsymbol{\Omega}_{1}\boldsymbol{X}^{i}\vec{1}-\alpha\cancel{\boldsymbol{\Omega}_{1}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}}&\text{standard commuting map}\\[4.30554pt] \displaystyle\sum_{i=0}^{\infty}a_{i}\boldsymbol{\Omega}_{1}(\boldsymbol{\Omega_{1}X})^{i}\vec{1}-\alpha\cancel{\boldsymbol{\Omega}_{1}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}}&\text{standard noncommuting map}\\ \end{cases} (46)

which reduces to the banality lemma enforcing X=x1\vec{X}=x\vec{1}.

Considering the complementary projection, we have

(𝑰𝛀1)dXdt=(𝑰𝛀1)𝛀1F(X)α((𝑰𝛀1)XX(𝑰𝛀1)1)(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\frac{d\vec{X}}{dt}=\cancel{(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\boldsymbol{\Omega}_{1}}\vec{F}(\vec{X})-\alpha((\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}-\langle X\rangle\cancel{(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{1}}) (47)

or, defining Xc=(𝑰𝛀1)X\vec{X}_{c}=(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},

ddtXc=αXc.\frac{d}{dt}\vec{X}_{c}=-\alpha\vec{X}_{c}. (48)

Equation (48) represents the dynamics of the N1N-1 modes that make X\vec{X} non-uniform. The above implies that any non-uniform mode of X\vec{X} decays exponentially, and thus XX10\vec{X}-\langle X\rangle\vec{1}\rightarrow 0 in a time tτ=1/αt\gg\tau={1}/{\alpha}. This concludes the proof. ∎

In conclusion, using the uniform mean field projector 𝛀1\boldsymbol{\Omega}_{1} and the standard decay functions as in (45), X(t)\vec{X}(t) converges to the right mean, and thus to the same fixed points as the target system. Let us now provide some technical results to support the idea that the decay functions project back on the subspace of our interest. The result is in fact not strictly limited to the standard decay functions. We now prove the decay of the modes in Ker(𝛀1)(\boldsymbol{\Omega}_{1}) for a generalized set of decay functions. Let us consider

dXdt=𝛀1F{𝑫(𝑰𝛀1)Xgeneralization A(𝑰𝛀1)𝑫(𝑰𝛀1)Xgeneralization B\frac{d\vec{X}}{dt}=\boldsymbol{\Omega}_{1}\vec{F}-\begin{cases}\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}&\text{generalization A}\\ (\boldsymbol{I}-\boldsymbol{\Omega}_{1})\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}&\text{generalization B}\end{cases} (49)

where 𝑫\boldsymbol{D} is a positive diagonal matrix with diagonal elements α1,,αn>0\alpha_{1},\dots,\alpha_{n}>0. If α=α1==αn\alpha=\alpha_{1}=\dots=\alpha_{n}, both generalizations reduce to the standard decay function. In the general case, their difference becomes evident projecting via 𝛀1\boldsymbol{\Omega}_{1}

𝛀1dXdt=𝛀1F{𝛀1𝑫(𝑰𝛀1)Xgeneralization A0generalization B\displaystyle\boldsymbol{\Omega}_{1}\frac{d\vec{X}}{dt}=\boldsymbol{\Omega}_{1}\vec{F}-\begin{cases}\boldsymbol{\Omega}_{1}\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}&\text{generalization A}\\ \vec{0}&\text{generalization B}\end{cases} (50)

i.e., the PEDS embeddings

𝒪A=(f(x),𝛀1,𝑫(𝑰𝛀1)X,1,N)\mathcal{O}_{A}=(f(x),\boldsymbol{\Omega}_{1},-\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},\vec{1},N)

and

𝒪B=(f(x),𝛀1,(𝑰𝛀1)𝑫(𝑰𝛀1)X,1,N).\mathcal{O}_{B}=(f(x),\boldsymbol{\Omega}_{1},-(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},\vec{1},N).

Clearly, the first part of the proof of the banality lemma remains valid also in these cases. On the other hand, projecting via (𝑰𝛀1)(\boldsymbol{I}-\boldsymbol{\Omega}_{1}), we obtain for both generalizations the following governing equation for the non-uniform modes

dXcdt=(𝑰𝛀1)𝑫Xc\frac{d\vec{X}_{c}}{dt}=-(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\boldsymbol{D}\vec{X}_{c} (51)

whose solution is

Xc(t)=e(𝑰𝛀)𝑫tXc(0)|𝛀=𝛀1.\displaystyle\vec{X}_{c}(t)=\left.e^{-(\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{D}t}\vec{X}_{c}(0)\right|_{\boldsymbol{\Omega}=\boldsymbol{\Omega}_{1}}. (52)

We show now that the two generalizations A and B are 𝛀\boldsymbol{\Omega}-eligible, i.e. that Xc\vec{X}_{c} asymptotically approaches the zero vector. We prove the following proposition for general projectors:

Proposition 3.4.

Given the governing equation (51) written for a general projector 𝛀\boldsymbol{\Omega}, assuming Xc(0)Span(𝐈𝛀)\vec{X}_{c}(0)\in\mathrm{Span}(\boldsymbol{I}-\boldsymbol{\Omega}) then Xc(t)Span(𝐈𝛀)t\vec{X}_{c}(t)\in\mathrm{Span}(\boldsymbol{I}-\boldsymbol{\Omega})\ \forall t.

Proof.

The solution of (51) takes the form

Xc(t)=e𝑨tXc(0)\vec{X}_{c}(t)=e^{\boldsymbol{A}t}\vec{X}_{c}(0) (53)

where 𝑨=(𝑰𝛀)𝑫\boldsymbol{A}=(\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{D}. Expanding the exponential, we get

Xc(t)=Xc(0)+k=1+tkk!((𝑰𝛀)𝑫)kXc(0)\vec{X}_{c}(t)=\vec{X}_{c}(0)+\sum_{k=1}^{+\infty}\frac{t^{k}}{k!}((\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{D})^{k}\vec{X}_{c}(0)

that, projecting through 𝑰𝛀\boldsymbol{I}-\boldsymbol{\Omega}, becomes

(𝑰𝛀)Xc(t)=(𝑰𝛀)Xc(0)+k=1+tkk!((𝑰𝛀)𝑫)kXc(0).(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X}_{c}(t)=(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X}_{c}(0)+\sum_{k=1}^{+\infty}\frac{t^{k}}{k!}((\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{D})^{k}\vec{X}_{c}(0). (54)

We notice that if Xc(0)Span(𝑰𝛀)\vec{X}_{c}(0)\in\mathrm{Span}(\boldsymbol{I}-\boldsymbol{\Omega}), then we can express Xc(0)=jajvj\vec{X}_{c}(0)=\sum_{j}a_{j}\vec{v}_{j} where vj\vec{v}_{j} are eigenvectors associated to the eigenvalue equal to 1 of 𝑰𝛀\boldsymbol{I}-\boldsymbol{\Omega}. Thus, (𝑰𝛀)Xc(0)=jaj(𝑰𝛀)vj=jajvj=Xc(0)(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X}_{c}(0)=\sum_{j}a_{j}(\boldsymbol{I}-\boldsymbol{\Omega})\vec{v}_{j}=\sum_{j}a_{j}\vec{v}_{j}=\vec{X}_{c}(0). This implies that

(𝑰𝛀)Xc(t)=Xc(0)+k=1+tkk!((𝑰𝛀)𝑫)kXc(0)=e(𝑰𝛀)𝑫tXc(0)=Xc(t)(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X}_{c}(t)=\vec{X}_{c}(0)+\sum_{k=1}^{+\infty}\frac{t^{k}}{k!}((\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{D})^{k}\vec{X}_{c}(0)=e^{(\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{D}t}\vec{X}_{c}(0)=\vec{X}_{c}(t) (55)

Thus, we have (𝑰𝛀)Xc(t)=Xc(t)(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X}_{c}(t)=\vec{X}_{c}(t), i.e. Xc(t)Span(𝑰𝛀)\vec{X}_{c}(t)\in\mathrm{Span}(\boldsymbol{I}-\boldsymbol{\Omega}). ∎

As a result of the proposition above, vector Xc(t)\vec{X}_{c}(t) is contained in the subspace spanned by 𝑰𝛀\boldsymbol{I}-\boldsymbol{\Omega} at all times and for any projector, and thus also for 𝛀1\boldsymbol{\Omega}_{1}.

Corollary 3.5.

Equation (51) implies that, if Xc(0)Span(𝐈𝛀1)\vec{X}_{c}(0)\in\mathrm{Span}(\boldsymbol{I}-\boldsymbol{\Omega}_{1}), then in (50) one has limtX(t)=X1lim_{t\rightarrow\infty}\vec{X}(t)=\langle X\rangle\vec{1}.

Proof.

We consider the dynamics for the modes Xc=(𝑰𝛀1)X(t)\vec{X}_{c}=(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}(t) from (51), and we use a Lyapunov stability argument. Let us consider the following functional: V(Xc)=XcXc0V(\vec{X}_{c})=\vec{X}_{c}\cdot\vec{X}_{c}\geq 0. Then,

ddtV\displaystyle\frac{d}{dt}V =2(ddtXc(t))Xc(t)\displaystyle=2\left(\frac{d}{dt}\vec{X}_{c}(t)\right)\cdot\vec{X}_{c}(t)
=2((𝑰𝛀1)𝑫Xc(t))Xc(t)\displaystyle=-2((\boldsymbol{I}-\boldsymbol{\Omega}_{1})\boldsymbol{D}\vec{X}_{c}(t))\cdot\vec{X}_{c}(t)
=2(𝑫Xc(t))𝑫(𝑰𝛀1)TXc(t)\displaystyle=-2(\sqrt{\boldsymbol{D}}\vec{X}_{c}(t))\cdot\sqrt{\boldsymbol{D}}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})^{T}\vec{X}_{c}(t)
=2(𝑫Xc(t))𝑫(𝑰𝛀1)Xc(t).\displaystyle=-2(\sqrt{\boldsymbol{D}}\vec{X}_{c}(t))\cdot\sqrt{\boldsymbol{D}}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}_{c}(t). (56)

Using the fact that Xc(t)Span(𝑰𝛀1)\vec{X}_{c}(t)\in\text{Span}(\boldsymbol{I}-\boldsymbol{\Omega}_{1}) from the previous Proposition, we obtain that

ddtV=2𝑫Xc(t)20.\frac{d}{dt}V=-2||\sqrt{\boldsymbol{D}}\vec{X}_{c}(t)||^{2}\leq 0. (57)

Since the only minimum of V(X)V(\vec{X}) is X=0\vec{X}=\vec{0}, then Xc(t)0\vec{X}_{c}(t)\rightarrow\vec{0} for tt\rightarrow\infty. This proves that Xc(0)0\vec{X}_{c}(0)\rightarrow\vec{0}, and thus XX1\vec{X}\rightarrow\langle X\rangle\vec{1}, for tt\rightarrow\infty. ∎

Propositions 3.2, 3.3 and 3.4, along with Corollary 3.5 imply that for a one-dimensional dynamical system, the PEDS 𝒪=(f(x),𝛀1,(𝑰𝛀1)X,1,N)\mathcal{O}=(f(x),\boldsymbol{\Omega}_{1},-(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},\vec{1},N) contains the fixed points of the original dynamical system. In particular, Corollary 3.5 implies that the extended system converges to an asymptotic state of the form X(t)=x(t)1\vec{X}(t)=x(t)\vec{1}. Therefore, through the banality of the mean value Lemma, the PEDS embedding will contain the original dynamical system.

For practical purposes, it is sufficient to consider the observable x~(t)=X=1Ni,j=1NΩ1,ijXj(t)\tilde{x}(t)=\langle X\rangle=\frac{1}{N}\sum_{i,j=1}^{N}{\Omega}_{1,ij}X_{j}(t) in order to recover the location of the fixed points. Clearly, this example applies only to a one-dimensional dynamical system. However, the result can be extended to the vector case following similar considerations.

Example 3.6.

  As an example of a one dimensional dynamical system embedded in N=2N=2 dimensions, let us consider the dynamical system

dxdt=xx2\displaystyle\frac{dx}{dt}=x-x^{2} (58)

whose stable fixed point is given by x=1x^{*}=1. A PEDS embedding 𝒪=(xx2,𝛀1,α(𝑰𝛀1)X,1,2)\mathcal{O}=(x-x^{2},\boldsymbol{\Omega}_{1},-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},\vec{1},2) is given by the two coupled differential equations:

dXdt=𝛀1(𝑿𝑿2)1α(𝑰𝛀1)X\displaystyle\frac{d\vec{X}}{dt}=\boldsymbol{\Omega}_{1}\left(\boldsymbol{X}-\boldsymbol{X}^{2}\right)\vec{1}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X} (59)

whose components can be made explicit introducing X=12(X1+X2)\langle X\rangle=\frac{1}{2}(X_{1}+X_{2}) and evaluating the matrix expressions. The result is

dX1dt=XX2α(X1X)\displaystyle\frac{dX_{1}}{dt}=\langle X\rangle-\langle X\rangle^{2}-\alpha(X_{1}-\langle X\rangle) (60)
dX2dt=XX2α(X2X)\displaystyle\frac{dX_{2}}{dt}=\langle X\rangle-\langle X\rangle^{2}-\alpha(X_{2}-\langle X\rangle) (61)

whose stable fixed point is easily seen to be X1=X2=1X^{*}_{1}=X^{*}_{2}=1.
 

Example 3.6 highlights an important property of the uniform mean field embedding. We gain some intuition on how the uniform mean field projector works by exploiting a direct evaluation of the matrix powers. For instance, for the PEDS 𝒪=(f(x),𝛀1,α(𝑰𝛀1)X,1,N)\mathcal{O}=(f(x),\boldsymbol{\Omega}_{1},-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},\vec{1},N), then

dXdt=𝛀1F(X)α(𝑰𝛀1)X.\displaystyle\frac{d\vec{X}}{dt}=\boldsymbol{\Omega}_{1}\vec{F}(\vec{X})-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}. (62)

Using the properties

(𝛀1𝑿)k=Xk1𝛀1𝑿k1,𝛀1𝑿1=𝛀1X=X1,𝛀11=1(\boldsymbol{\Omega}_{1}\boldsymbol{X})^{k}=\langle X\rangle^{k-1}\boldsymbol{\Omega}_{1}\boldsymbol{X}\quad k\geq 1,\qquad\boldsymbol{\Omega}_{1}\boldsymbol{X}\vec{1}=\boldsymbol{\Omega}_{1}\vec{X}=\langle X\rangle\vec{1},\qquad\boldsymbol{\Omega}_{1}\vec{1}=\vec{1}

we obtain the equivalent form for (62)

dXdt=f(x)1α(Xx1).\displaystyle\frac{d\vec{X}}{dt}=f(\langle x\rangle)\vec{1}-\alpha(\vec{X}-\langle x\rangle\vec{1}). (63)

Multiplying on the left times 𝛀1\boldsymbol{\Omega}_{1} and times 𝑰𝛀1\boldsymbol{I}-\boldsymbol{\Omega}_{1}, yields

ddt(X1)\displaystyle\frac{d}{dt}\left(\langle X\rangle\vec{1}\right) =f(X)1,\displaystyle=f(\langle X\rangle)\vec{1}, (64)
ddt(XX1)\displaystyle\frac{d}{dt}\left(\vec{X}-\langle X\rangle\vec{1}\right) =α(XX1).\displaystyle=-\alpha(\vec{X}-\langle X\rangle\vec{1}). (65)

Therefore, the mean value X\langle X\rangle in (64) follows exactly the target system dynamics, while (65) asymptotically determines XX1\vec{X}\rightarrow\langle X\rangle\vec{1} for t1/αt\gg 1/\alpha. It follows that for scalar target systems, because of the identity (𝛀𝟏𝑿)k=Xk1𝛀𝟏𝑿(\boldsymbol{\Omega_{1}X})^{k}=\langle X\rangle^{k-1}\boldsymbol{\Omega_{1}X}, the standard commutative and non-commutative maps are identical. This is no longer true for vector target systems, as we discuss below.

3.3 General case: Vector target system

We will now focus on the generalization of the previous results to the case of a vector target dynamical system of arbitrary dimension. Such generalization is involved, basically because the ordering SS becomes important (at least for the standard non-commutative map) and this depends on the fact that matrix terms such as (𝛀𝑿)i(\boldsymbol{\Omega}\boldsymbol{X})^{i} and (𝛀𝑿)j(\boldsymbol{\Omega}\boldsymbol{X})^{j} do not commute. Nevertheless, exploiting the properties of the uniform mean field projector 𝛀1\boldsymbol{\Omega}_{1} certain exact results can be obtained.

We consider an mm dimensional target system as in (2), where a Taylor expansion of the defining functions fi(x1,,xm)f_{i}(x_{1},\dots,x_{m}) takes the form (25) after choosing the ordering SS. Following the PEDS procedure, we construct as a first instance the embedding map 𝒪=({fi},𝛀1,0,S,1,N)\mathcal{O}=(\{f_{i}\},\boldsymbol{\Omega}_{1},0,S,\vec{1},N) in the abscence of decay functions. Given the extended variables Xs\vec{X}_{s} (s=1,,ms=1,\dots,m) of size NN, we write the embedding maps (28)–(30) as

dXsdt\displaystyle\frac{d\vec{X}_{s}}{dt} =𝛀1k=0i1,,imkas,k;i1im𝑿1i1𝑿mim1\displaystyle=\boldsymbol{\Omega}_{1}\sum_{k=0}^{\infty}\sum_{i_{1},\dots,i_{m}}^{k}a_{s,k;i_{1}\dots i_{m}}\boldsymbol{X}_{1}^{i_{1}}\dots\boldsymbol{X}_{m}^{i_{m}}\vec{1}
standard commuting map (66a)
dXsdt\displaystyle\frac{d\vec{X}_{s}}{dt} =as,0𝛀1+𝛀1k=1i1,,imkas,k;i1,,im(𝛀1(𝑿1i1𝑿mim)1/k)k1\displaystyle=a_{s,0}\boldsymbol{\Omega}_{1}+\boldsymbol{\Omega}_{1}\sum_{k=1}^{\infty}\sum_{i_{1},\cdots,i_{m}}^{k}a_{s,k;i_{1},\cdots,i_{m}}(\boldsymbol{\Omega}_{1}(\boldsymbol{X}_{1}^{i_{1}}\cdots\boldsymbol{X}_{m}^{i_{m}})^{1/k})^{k}\vec{1}
mixed commuting map (66b)
dXsdt\displaystyle\frac{d\vec{X}_{s}}{dt} =𝛀1k=0i1,,imkas,k;i1im{(𝛀1𝑿1)i1(𝛀1𝑿m)im}S1\displaystyle=\boldsymbol{\Omega}_{1}\sum_{k=0}^{\infty}\sum_{i_{1},\dots,i_{m}}^{k}a_{s,k;i_{1}\dots i_{m}}\{(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{1})^{i_{1}}\dots(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{m})^{i_{m}}\}_{S}\vec{1}
standard noncommuting map (66c)

where SS is the chosen ordering of the variables. The question is whether also in this case the banality of the mean value Proposition 3.2 still holds.

An easy proof shows that assuming a solution Xs=xs1\vec{X}_{s}=x_{s}\vec{1}, the banality of the mean value lemma applies also in the vector case, irrespective of the chosen extended variable ordering.

Corollary 3.7.

Multivariate banality of the mean value. Let 𝛀1\boldsymbol{\Omega}_{1} be the uniform mean field projector, and 𝒪=({fi},𝛀1,{α(𝐈𝛀1)Xi},S,1,N)\mathcal{O}=(\{f_{i}\},\boldsymbol{\Omega}_{1},\{-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}_{i}\},S,\vec{1},N) the embedding with SS an arbitrary ordering. Following the PEDS procedure, the dynamics of the mm variables Xi\vec{X}_{i} is determined by

dXidt=𝛀1Fi(X1,,Xm)α(𝑰𝛀1)Xi\displaystyle\frac{d\vec{X}_{i}}{dt}=\boldsymbol{\Omega}_{1}\vec{F}_{i}(\vec{X}_{1},\cdots,\vec{X}_{m})-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}_{i} (67)

where Fi=𝐅i(X1,,Xm)1\vec{F}_{i}=\boldsymbol{F}_{i}(\vec{X}_{1},\cdots,\vec{X}_{m})\vec{1} is the vector constructed following the PEDS procedure defined in (66). We define the projection operator 𝒫𝛀1=1N1T\mathcal{P}_{\boldsymbol{\Omega}_{1}}=\frac{1}{N}\vec{1}^{T}, and the projected variables Xi(t)=𝒫𝛀1Xi(t)\langle X_{i}(t)\rangle=\mathcal{P}_{\boldsymbol{\Omega}_{1}}\vec{X}_{i}(t). Then, the following two statements hold true

(a)ddtXi=0ddtxi=0,(a)\ \ \ \frac{d}{dt}\langle X_{i}\rangle=0\Longrightarrow\frac{d}{dt}x_{i}=0, (68)

and (b) if the extended system approaches a fixed point Xi\vec{X}_{i}^{*} for times t1/αt\gg{1}/{\alpha}, then the projection 𝒫𝛀1Xi\mathcal{P}_{\boldsymbol{\Omega}_{1}}\vec{X}_{i}^{*} is a fixed point of the target system.

Proof.

Let us first prove statement (a)(a), which is a corollary of the banality of the mean value Proposition 3.2. We set Xi(t)=Xi(t)1\vec{X}_{i}(t)=\langle X_{i}(t)\rangle\vec{1}. In all cases of the standard commutative, mixed commutative and non-commutative maps, the standard decay function is identically zero, and it is not hard to see that, for an arbitrary orderings SS, we have in all cases the same expression for each term of the expansion:

𝛀1(𝑿1)i1(𝑿m)im1(𝛀1(𝑿1)i1kik(𝑿m)imkik)kik1{(𝛀1𝑿1)i1(𝛀1𝑿m)im}S1}\displaystyle\left.\begin{array}[]{c}\displaystyle\boldsymbol{\Omega}_{1}(\boldsymbol{X}_{1})^{i_{1}}\cdots(\boldsymbol{X}_{m})^{i_{m}}\vec{1}\\[4.30554pt] \displaystyle\left(\boldsymbol{\Omega}_{1}(\boldsymbol{X}_{1})^{\frac{i_{1}}{\sum_{k}i_{k}}}\cdots(\boldsymbol{X}_{m})^{\frac{i_{m}}{\sum_{k}i_{k}}}\right)^{\sum_{k}i_{k}}\vec{1}\\[8.61108pt] \displaystyle\{(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{1})^{i_{1}}\cdots(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{m})^{i_{m}}\}_{S}\vec{1}\end{array}\right\} =X1(t)i1Xm(t)im𝛀11\displaystyle=\langle X_{1}(t)\rangle^{i_{1}}\cdots\langle X_{m}(t)\rangle^{i_{m}}\boldsymbol{\Omega}_{1}\vec{1} (72)
=X1(t)i1Xm(t)im1\displaystyle=\langle X_{1}(t)\rangle^{i_{1}}\cdots\langle X_{m}(t)\rangle^{i_{m}}\vec{1} (73)

As a consequence, a relatively simple calculation shows

ddtXi=ddtXi(t)1=fi(X1(t),,Xm(t))𝛀11=fi(X1(t),,Xm(t))1,\displaystyle\frac{d}{dt}\vec{X}_{i}=\frac{d}{dt}\langle X_{i}(t)\rangle\vec{1}=f_{i}(\langle X_{1}(t)\rangle,\dots,\langle X_{m}(t)\rangle)\boldsymbol{\Omega}_{1}\vec{1}=f_{i}(\langle X_{1}(t)\rangle,\dots,\langle X_{m}(t)\rangle)\vec{1}, (74)

or

(ddtXi(t)fi(X1(t),,Xm(t)))1=0.\displaystyle\left(\frac{d}{dt}\langle X_{i}(t)\rangle-f_{i}(\langle X_{1}(t)\rangle,\dots,\langle X_{m}(t)\rangle)\right)\vec{1}=0. (75)

Replacing Xi(t)\langle X_{i}(t)\rangle with xi(t)x_{i}(t), we obtain that the fixed points of the extended system under the assumption Xi(t)=Xi(t)1\vec{X}_{i}(t)=\langle X_{i}(t)\rangle\vec{1} must be the same as for the target dynamical system.

We now turn to statement (b)(b). The initial condition Xi(t=0)\vec{X}_{i}(t=0) is now arbitrary. Multiplying on the left (67) times (𝑰𝛀1)(\boldsymbol{I}-\boldsymbol{\Omega}_{1}), we get

(𝑰𝛀1)dXidt=α(𝑰𝛀1)Xi(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\frac{d\vec{X}_{i}}{dt}=-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}_{i} (76)

where we define Xi,c=(𝑰𝛀1)Xi\vec{X}_{i,c}=(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}_{i}. As Span(𝑰𝛀1)=Ker(𝛀1)(\boldsymbol{I}-\boldsymbol{\Omega}_{1})=\mathrm{Ker}(\boldsymbol{\Omega}_{1}), Xi,c\vec{X}_{i,c} can be interpreted as a deviation from the average, since Xi=Xi1+Xi,c\vec{X}_{i}=\langle X_{i}\rangle\vec{1}+\vec{X}_{i,c}. Following almost the same steps as in the proof of the convergence of the mean for the one dimensional system, we arrive at

dXi,cdt=αXi,c\displaystyle\frac{d\vec{X}_{i,c}}{dt}=-\alpha\vec{X}_{i,c}\implies
(Xi(t)fi(X1(t),,Xm(t)))1\displaystyle\left(\langle X_{i}(t)\rangle-f_{i}(\langle X_{1}(t)\rangle,\dots,\langle X_{m}(t)\rangle)\right)\vec{1}
=(𝒫𝛀1Xi(t)fi(𝒫𝛀1X1(t),,𝒫𝛀1Xm(t)))10, for t1α.\displaystyle=\Big{(}\mathcal{P}_{\boldsymbol{\Omega}_{1}}\vec{X}_{i}(t)-f_{i}(\mathcal{P}_{\boldsymbol{\Omega}_{1}}\vec{X}_{1}(t),\dots,\mathcal{P}_{\boldsymbol{\Omega}_{1}}\vec{X}_{m}(t))\Big{)}\vec{1}\rightarrow\vec{0},\text{ for }t\gg\frac{1}{\alpha}. (77)

where the second expression follows from the first being α>0\alpha>0, so that Xi,c(t)0\vec{X}_{i,c}(t)\rightarrow\vec{0} for t1/αt\gg 1/\alpha. Essentially, this implies that the extended system fixed points are those of the target dynamical system: for long enough times the system converges exponentially to the mean in each variable, for which the banality lemma applies. Thus, if the projected PEDS given by 𝒪\mathcal{O} approaches a fixed point, it has to be a fixed point of the target system. Alternatively, the system must not converge. ∎

The results of this section show that at least one type of PEDS exists which preserves the fixed points of the target system, thus justifying the entire construction of the PEDS embedding. We now focus the attention on how the PEDS procedure modifies the properties of the fixed points, by analyzing their stability. Therefore, we need to look at the spectral properties of the Jacobian at the embedding fixed points.

3.4 Properties of the Jacobian and fixed points

Let us now investigate the properties of the Jacobian.

We begin with the one dimensional case

dXdt=𝛀1𝑭11α(𝑰𝛀1)X2\displaystyle\frac{d\vec{X}}{dt}=\underbrace{\boldsymbol{\Omega}_{1}\boldsymbol{F}\vec{1}}_{1}-\underbrace{\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}}_{2} (78)

For the sake of generality, we consider also the generalized decay functions in (49)

dXdt=𝛀1𝑭11{𝑫(𝑰𝛀1)X2Ageneralization A(𝑰𝛀1)𝑫(𝑰𝛀1)X2Bgeneralization B\displaystyle\frac{d\vec{X}}{dt}=\underbrace{\boldsymbol{\Omega}_{1}\boldsymbol{F}\vec{1}}_{1}-\begin{cases}\underbrace{\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}}_{2A}&\text{generalization A}\\ \underbrace{(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}}_{2B}&\text{generalization B}\end{cases} (79)

As usual, we shall derive the results for a general projector 𝛀\boldsymbol{\Omega} whenever possible.

3.4.1 Simple case: scalar target system

We will focus first on the PEDS of a one dimensional target system, as in this case the ordering is immaterial and proofs are easier to carry out. Initially we consider the PEDS map 𝒪=(f(x),𝛀1,α(𝑰𝛀1)X,b,N)\mathcal{O}=(f(x),\boldsymbol{\Omega}_{1},-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},\vec{b},N), i.e. the standard decay function. The embedding thus takes the form

ddtXi=(𝛀1𝑭bα(𝑰𝛀1)X)i=Mi.\displaystyle\frac{d}{dt}X_{i}=(\boldsymbol{\Omega}_{1}\boldsymbol{F}\vec{b}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X})_{i}=M_{i}. (80)

We prove the following:

Proposition 3.8.

One dimensional PEDS Jacobian
For a scalar target system, a PEDS of the form 𝒪=(f(x),𝛀,α(𝐈𝛀)X,b,N)\mathcal{O}=(f(x),\boldsymbol{\Omega},-\alpha(\boldsymbol{I}-\boldsymbol{\Omega})\vec{X},\vec{b},N) is characterized by the following functional form of the Jacobian

  • 1.

    for the standard non-commuting map

    Jir(nc)=j=1Nl=1NΩilz=1azk=0z1s=1N(𝛀𝑿)lskΩsr(𝛀𝑿)rjz1kbjα(𝑰𝛀)ir,{J}^{(nc)}_{ir}=\sum_{j=1}^{N}\sum_{l=1}^{N}{\Omega}_{il}\sum_{z=1}^{\infty}a_{z}\sum_{k=0}^{z-1}\sum_{s=1}^{N}(\boldsymbol{\Omega}\boldsymbol{X})^{k}_{ls}{\Omega}_{sr}(\boldsymbol{\Omega}\boldsymbol{X})^{z-1-k}_{rj}b_{j}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega})_{ir}, (81)
  • 2.

    for the standard commuting map

    Jir(c)=Ωirf(Xr)brα(𝑰𝛀)ir.\displaystyle{J}^{(c)}_{ir}={\Omega}_{ir}f^{\prime}(X_{r})b_{r}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega})_{ir}. (82)
Proof.

The Jacobian elements are defined as

Jir=MiXr=Xrj=1N(𝛀𝑭)ijbjαXr((𝑰𝛀)X)i.\displaystyle{J}_{ir}=\frac{\partial{M}_{i}}{\partial X_{r}}=\frac{\partial}{\partial X_{r}}\sum_{j=1}^{N}(\boldsymbol{\Omega F})_{ij}b_{j}-\alpha\frac{\partial}{\partial X_{r}}((\boldsymbol{I}-\boldsymbol{\Omega})\vec{X})_{i}. (83)

As we need to evaluate the derivatives of the matrix maps, we consider first the derivatives of the matrix quantities depending on 𝑿\boldsymbol{X}. We have

Xr(𝛀𝑿)ijm\displaystyle\frac{\partial}{\partial X_{r}}(\boldsymbol{\Omega}\boldsymbol{X})^{m}_{ij} =\displaystyle= k=0m1s=1N(𝛀𝑿)iskl,t=1N(ΩslXlδlt)Xr(𝛀𝑿)tjm1k\displaystyle\sum_{k=0}^{m-1}\sum_{s=1}^{N}(\boldsymbol{\Omega}\boldsymbol{X})^{k}_{is}\sum_{l,t=1}^{N}\frac{\partial({\Omega}_{sl}X_{l}\delta_{lt})}{\partial X_{r}}(\boldsymbol{\Omega}\boldsymbol{X})^{m-1-k}_{tj} (84)
=\displaystyle= k=0m1s=1N(𝛀𝑿)iskΩsr(𝛀𝑿)rjm1k,\displaystyle\sum_{k=0}^{m-1}\sum_{s=1}^{N}(\boldsymbol{\Omega}\boldsymbol{X})^{k}_{is}{\Omega}_{sr}(\boldsymbol{\Omega}\boldsymbol{X})^{m-1-k}_{rj},

where a matrix to zero power coincides with the identity matrix.

Taking into account definition (30) we find

Fij(nc)Xr\displaystyle\frac{\partial{F}_{ij}^{(nc)}}{\partial X_{r}} =\displaystyle= l=1NΩilXrz=1az(𝛀𝑿)ljz\displaystyle\sum_{l=1}^{N}{\Omega}_{il}\frac{\partial}{\partial{X_{r}}}\sum_{z=1}^{\infty}a_{z}(\boldsymbol{\Omega}\boldsymbol{X})^{z}_{lj} (85)
=\displaystyle= l=1NΩilz=1azk=0z1s=1N(𝛀𝑿)lskΩsr(𝛀𝑿)rjz1k\displaystyle\sum_{l=1}^{N}{\Omega}_{il}\sum_{z=1}^{\infty}a_{z}\sum_{k=0}^{z-1}\sum_{s=1}^{N}(\boldsymbol{\Omega}\boldsymbol{X})^{k}_{ls}{\Omega}_{sr}(\boldsymbol{\Omega}\boldsymbol{X})^{z-1-k}_{rj}

Thus, the first term of the Jacobian is simply given by

Jir(nc,1)=j=1Nl=1NΩilz=1azk=0z1s=1N(𝛀𝑿)lskΩsr(𝛀𝑿)rjz1kbj.\displaystyle{J}^{(nc,1)}_{ir}=\sum_{j=1}^{N}\sum_{l=1}^{N}{\Omega}_{il}\sum_{z=1}^{\infty}a_{z}\sum_{k=0}^{z-1}\sum_{s=1}^{N}(\boldsymbol{\Omega}\boldsymbol{X})^{k}_{ls}{\Omega}_{sr}(\boldsymbol{\Omega}\boldsymbol{X})^{z-1-k}_{rj}b_{j}. (86)

In the case of the standard commutative map, the result can be easily derived exploiting (31) if function f(x)f(x) is known in closed form. On the other hand, making use of the power expansion of the function, we can directly calculate the derivatives noticing that

XrXijk=Xr(diag(X1k,,Xmk))ij=(diag(0,,kXrk1,,0))ij=kδijδirXrk1\displaystyle\frac{\partial}{\partial X_{r}}{X}^{k}_{ij}=\frac{\partial}{\partial X_{r}}(\text{diag}(X_{1}^{k},\cdots,X_{m}^{k}))_{ij}=(\text{diag}(0,\dots,kX_{r}^{k-1},\dots,0))_{ij}=k\delta_{ij}\delta_{ir}X_{r}^{k-1} (87)

so that

Jir(c,1)\displaystyle{J}^{(c,1)}_{ir} =\displaystyle= j=1N(𝛀𝑭(c))ijXrbj\displaystyle\sum_{j=1}^{N}\frac{\partial\left(\boldsymbol{\Omega}\boldsymbol{F}^{(c)}\right)_{ij}}{\partial X_{r}}b_{j} (88)
=\displaystyle= j=1Nl=1NΩilz=0azXljzXrbj\displaystyle\sum_{j=1}^{N}\sum_{l=1}^{N}{\Omega}_{il}\sum_{z=0}^{\infty}a_{z}\frac{\partial{X}^{z}_{lj}}{\partial X_{r}}b_{j}
=\displaystyle= j=1Nl=1NΩilz=1zazδljδlrXrz1bj\displaystyle\sum_{j=1}^{N}\sum_{l=1}^{N}{\Omega}_{il}\sum_{z=1}^{\infty}za_{z}\delta_{lj}\delta_{lr}X_{r}^{z-1}b_{j}
=\displaystyle= Ωirf(Xr)br\displaystyle{\Omega}_{ir}f^{\prime}(X_{r})b_{r}

where f(x)f^{\prime}(x) denotes the derivative of f(x)f(x).

Similarly, for the standard decay function 𝑫=α𝑰\boldsymbol{D}=\alpha\boldsymbol{I}, it is not hard to see that the second term of the Jacobian is the same irrespective of the chosen matrix embedding

Jir(2)\displaystyle{J}^{(2)}_{ir} =\displaystyle= αj=1Nxr((𝑰𝛀)𝑿)ij\displaystyle-\alpha\sum_{j=1}^{N}\frac{\partial}{\partial x_{r}}\Big{(}(\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{X}\Big{)}_{ij} (89)
=\displaystyle= αj=1N(𝑰𝛀)irδrj=α(𝑰𝛀)ir\displaystyle-\alpha\sum_{j=1}^{N}(\boldsymbol{I}-\boldsymbol{\Omega})_{ir}\delta_{rj}=-\alpha(\boldsymbol{I}-\boldsymbol{\Omega})_{ir}

Summing 𝑱(1)\boldsymbol{J}^{(1)} and 𝑱(2)\boldsymbol{J}^{(2)}, we find the expression to be proven. ∎

As a direct Corollary of Proposition 3.8, we obtain that for 𝛀=𝛀1\boldsymbol{\Omega}=\boldsymbol{\Omega}_{1} and b=1\vec{b}=\vec{1}, the Jacobian takes a simpler form.

Corollary 3.9.

Consider the uniform mean field PEDS with standard decay function 𝒪=(f(x),𝛀1,α(𝐈𝛀1)X,1,N)\mathcal{O}=(f(x),\boldsymbol{\Omega}_{1},-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},\vec{1},N) of a scalar dynamical system characterized by a fixed point xx^{\ast}. The Jacobian of the PEDS in its fixed point X=x1\vec{X}^{\ast}=x^{\ast}\vec{1} is given by

Jir(X)=αδir+1N(f(x)+α)𝑱(X)=α𝑰+(f(x)+α)𝛀1,{J}_{ir}(\vec{X}^{\ast})=-\alpha{\delta}_{ir}+\frac{1}{N}(f^{\prime}(x^{\ast})+\alpha)\Longleftrightarrow\boldsymbol{J}(\vec{X}^{\ast})=-\alpha\boldsymbol{I}+(f^{\prime}(x^{\ast})+\alpha)\boldsymbol{\Omega}_{1}, (90)

both for the standard commutative and non-commutative maps.

Proof.

We exploit Proposition 3.8, considering 𝛀=𝛀1\boldsymbol{\Omega}=\boldsymbol{\Omega}_{1} and b=1\vec{b}=\vec{1}, from which, because of Proposition 3.2, we have 𝑿=x𝑰\boldsymbol{X}^{\ast}=x^{\ast}\boldsymbol{I}. Substituting into (85), we obtain

Jir(nc,1)(X)\displaystyle{J}^{(nc,1)}_{ir}(\vec{X}^{\ast}) =\displaystyle= j=1Nl=1NΩ1,ilz=1az(x)z1k=0z1s=1NΩ1,lskΩ1,srΩ1,rjz1k\displaystyle\sum_{j=1}^{N}\sum_{l=1}^{N}{\Omega}_{1,il}\sum_{z=1}^{\infty}a_{z}(x^{\ast})^{z-1}\sum_{k=0}^{z-1}\sum_{s=1}^{N}\Omega^{k}_{1,ls}{\Omega}_{1,sr}\Omega^{z-1-k}_{1,rj} (91)
=\displaystyle= j=1Nz=1az(x)z1k=0z1s=1NΩ1,isΩ1,srj=1NΩ1,rjz1k\displaystyle\sum_{j=1}^{N}\sum_{z=1}^{\infty}a_{z}(x^{\ast})^{z-1}\sum_{k=0}^{z-1}\sum_{s=1}^{N}{\Omega}_{1,is}{\Omega}_{1,sr}\sum_{j=1}^{N}{\Omega}^{z-1-k}_{1,rj}

Since 𝑰1=𝛀11=1\boldsymbol{I}\vec{1}=\boldsymbol{\Omega}_{1}\vec{1}=\vec{1}, we find

Jir(nc,1)(X)\displaystyle{J}^{(nc,1)}_{ir}(\vec{X}^{\ast}) =\displaystyle= z=1az(x)z1k=0z1Ω1,ir\displaystyle\sum_{z=1}^{\infty}a_{z}(x^{\ast})^{z-1}\sum_{k=0}^{z-1}{\Omega}_{1,ir} (92)
=\displaystyle= z=1zaz(x)z1Ω1,ir=f(x)Ω1,ir\displaystyle\sum_{z=1}^{\infty}za_{z}(x^{\ast})^{z-1}{\Omega}_{1,ir}=f^{\prime}(x^{\ast}){\Omega}_{1,ir}

therefore, in these conditions the first part of the Jacobian takes the same expression as for the standard commutative map. Summing the second term (89), finally yields for both maps

Jir(X)\displaystyle{J}_{ir}(\vec{X}^{\ast}) =\displaystyle= f(x)Ω1,irα(𝑰𝛀1)ir=αδir+(f(x)+α)Ω1,ir\displaystyle f^{\prime}(x^{\ast}){\Omega}_{1,ir}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})_{ir}=-\alpha{\delta}_{ir}+(f^{\prime}(x^{\ast})+\alpha){\Omega}_{1,ir} (93)
=\displaystyle= αδir+1N(f(x)+α).\displaystyle-\alpha{\delta}_{ir}+\frac{1}{N}(f^{\prime}(x^{\ast})+\alpha).

At this point we can start to draw some partial conclusions. In fact, we can use the properties of the fixed points of the target system to understand how these are transformed by the embedding procedure. The target system equilibrium is unstable if f(x)>0f^{\prime}(x^{\ast})>0, while it is stable for f(x)<0f^{\prime}(x^{\ast})<0. Finally, f(x)=0f^{\prime}(x^{\ast})=0 corresponds to a saddle. Since any scalar dynamical system is conservative, it can be expressed as

dxdt=f(x)=V(x)x,\displaystyle\frac{dx}{dt}=f(x)=-\frac{\partial V(x)}{\partial x}, (94)

where VV is a potential function. The extrema xx^{\ast} of V(x)V(x) correspond to minima, maxima and saddles, as we show in Fig. 2.

For the PEDS 𝒪=(f(x),𝛀1,α(𝑰𝛀1)X,1,N)\mathcal{O}=(f(x),\boldsymbol{\Omega}_{1},-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},\vec{1},N), Corollary 3.9 implies that the Jacobian spectrum follows from the spectral properties of 𝛀1\boldsymbol{\Omega}_{1}. In fact, 𝛀1\boldsymbol{\Omega}_{1} has one eigenvalue equal to 11, and N1N-1 identical, null eigenvalues. Thus, the spectrum Λ\Lambda of the Jacobian at X=x1\vec{X}^{*}=x^{\ast}\vec{1} is given by

Λ(𝑱(x))={{α}N1,{f(x)}1},\displaystyle\Lambda(\boldsymbol{J}(x^{\ast}))=\{\{-\alpha\}_{N-1},\{f^{\prime}(x^{\ast})\}_{1}\}, (95)

i.e. α-\alpha with multiplicity N1N-1, and f(x)f^{\prime}(x^{\ast}) with multiplicity 1.

Refer to caption
Figure 2: Interpreting the one dimensional dynamical system as the gradient of a potential, via f(x)=V(x)/xf(x)=-\partial V(x)/\partial x.

We can therefore carry out a stability analysis of the PEDS fixed point X\vec{X}^{\ast} as follows:

Xis{stableif x is stable,a saddle pointif x is a saddle point,a saddle pointif x is unstable.\displaystyle\vec{X}^{*}~{}\text{is}~{}\begin{cases}\text{stable}&\text{if }x^{*}\text{ is stable},\\ \text{a saddle point}&\text{if }x^{*}\text{ is a saddle point},\\ \text{a saddle point}&\text{if }x^{*}\text{ is unstable}.\end{cases} (96)

We thus see what are the benefits of the PEDS from the point of view of the target system. While in the scalar case “barriers” can be present, these can be made to disappear via the PEDS. Although this specific feature is peculiar to scalar target systems, this result will later be useful also for vector target systems. A graphical representation is shown in Fig. 3.

We can conclude that the PEDS procedure 𝒪=(f(x),𝛀1,α(𝑰𝛀1)X,1,N)\mathcal{O}=(f(x),\boldsymbol{\Omega}_{1},-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},\vec{1},N) preserves stable and saddle fixed points of the target dynamics, while it turns unstable fixed points into saddle points.

Let us now consider the Jacobian properties in presence of the generalized decay functions in (79). A simple generalization of (89) yields

Jir(2)(X)={(𝑫(𝑰𝛀))irgeneralization A((𝑰𝛀)𝑫(𝑰𝛀))irgeneralization B.\displaystyle{J}^{(2)}_{ir}(\vec{X}^{*})=\begin{cases}-\Big{(}\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega})\Big{)}_{ir}&\text{generalization A}\\[4.30554pt] -\Big{(}(\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega})\Big{)}_{ir}&\text{generalization B}.\end{cases} (97)

Therefore, the full Jacobian for 𝛀=𝛀1\boldsymbol{\Omega}=\boldsymbol{\Omega}_{1} and b=1\vec{b}=\vec{1}, becomes

𝑱(X)=f(x)𝛀1{𝑫(𝑰𝛀1)generalization A(𝑰𝛀1)𝑫(𝑰𝛀1)generalization B.\displaystyle\boldsymbol{J}(\vec{X}^{*})=f^{\prime}(x^{*})\boldsymbol{\Omega}_{1}-\begin{cases}\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})&\text{generalization A}\\[4.30554pt] (\boldsymbol{I}-\boldsymbol{\Omega}_{1})\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})&\text{generalization B}.\end{cases} (98)

We wish, now, to determine the spectrum Λ(𝑱(X))\Lambda(\boldsymbol{J}(\vec{X}^{*})). We consider the two generalizations separately:

  • 1.

    Generalization B. As a consequence of the identities 𝛀(𝑰𝛀)=(𝑰𝛀)𝛀=𝟎\boldsymbol{\Omega}(\boldsymbol{I}-\boldsymbol{\Omega})=(\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{\Omega}=\boldsymbol{0}, we can deduce [𝑱(1),𝑱(2)]=𝟎[\boldsymbol{J}^{(1)},\boldsymbol{J}^{(2)}]=\boldsymbol{0} 𝑫\forall\boldsymbol{D}. Thus, both Jacobian components can be diagonalized in the same basis assembled in matrix 𝑻\boldsymbol{T}, such that 𝑻𝛀𝑻1=𝑫1\boldsymbol{T}\boldsymbol{\Omega}\boldsymbol{T}^{-1}=\boldsymbol{D}_{1} and 𝑻(𝑰𝛀)𝑫(𝑰𝛀)𝑻1=𝑫2\boldsymbol{T}(\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{T}^{-1}=\boldsymbol{D}_{2}. Then the eigenvalues are given by the elements of the diagonal matrix 𝑫1+𝑫2\boldsymbol{D}_{1}+\boldsymbol{D}_{2}. Since it is not hard to see that Span(𝛀)=Ker((𝑰𝛀)𝑫(𝑰𝛀))\text{Span}(\boldsymbol{\Omega})=\text{Ker}((\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega})) and Span(𝛀)Span((𝑰𝛀)𝑫(𝑰𝛀))=N\text{Span}(\boldsymbol{\Omega})\cup\text{Span}((\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}))=\mathbb{R}^{N} with Span(𝛀)Span((𝑰𝛀)𝑫(𝑰𝛀))=\text{Span}(\boldsymbol{\Omega})\cap\text{Span}((\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}))=\emptyset, we can focus on the eigenvalues of the two addends of 𝑱\boldsymbol{J}. For 𝑱(1)\boldsymbol{J}^{(1)}, there are MM eigenvalues equal to 0 and NMN-M identical eigenvalues λ=f(x)\lambda=f^{\prime}(x^{*}). For 𝑱(2B)=(𝑰𝛀)𝑫(𝑰𝛀)\boldsymbol{J}^{(2B)}=(\boldsymbol{I}-\boldsymbol{\Omega})\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}), there are NMN-M null eigenvalues, while the remaining MM eigenvalues satisfy 0<λmax{Dii}0<\lambda\leq\max\{D_{ii}\}. Clearly, MM is determined by the cardinality of Span(𝛀)\text{Span}(\boldsymbol{\Omega}), equal to 1 for 𝛀1\boldsymbol{\Omega}_{1}.

  • 2.

    Generalization A. This case is slightly more complicated, since the Jacobian is not symmetric and, thus, its eigenvalues can be complex. We can provide some results exploiting Gerschgorin’s theorem

    |λJii|ki|Jki|.\displaystyle|\lambda-{J}_{ii}|\leq\sum_{k\neq i}|{J}_{ki}|. (99)

    Since 𝛀=𝛀1\boldsymbol{\Omega}=\boldsymbol{\Omega}_{1} and b=1\vec{b}=\vec{1}, we have

    Jii=1Nf(x)N1NDiiki|Jki|=N1N|f(x)+Dii|=Ri{J}_{ii}=\frac{1}{N}f^{\prime}(x^{*})-\frac{N-1}{N}D_{ii}\qquad\sum_{k\neq i}|{J}_{ki}|=\frac{N-1}{N}|f^{\prime}(x^{*})+D_{ii}|=R_{i}

    Let D¯=maxi|Dii|\bar{D}=\text{max}_{i}|D_{ii}| and R¯=N1N|f(x)|\bar{R}=\frac{N-1}{N}|f^{\prime}(x^{*})|. It follows that the eigenvalues λΛ(𝑱)\lambda\in\Lambda(\boldsymbol{J}) must be enclosed, in the complex plane, in circles of radius R¯\bar{R} and center zi=1Nf(x)N1NDiiz_{i}=\frac{1}{N}f^{\prime}(x^{*})-\frac{N-1}{N}D_{ii}.

Refer to caption
Figure 3: Interpreting the NN dimensional PEDS dynamical system fixed points, from the point of view of the potential in Fig. 2 (blue curve). Notice that while the PEDS procedure preserves the extrema of potential V(x)V(x), the embedded dynamical system cannot, in general, be expressed as the gradient of a generalized potential.

3.4.2 General case: Vector target system

The analysis of the PEDS embedding for scalar target systems carried out in the previous section showed that exploiting the uniform mean field projector and the standard or generalized decay functions, the embedding Jacobian can be fully characterized on the basis of the features of the target system fixed points (stable, unstable, or neutral). We have obtained this result both for the standard commutative map, in which essentially one “mixes” linearly the dynamical systems, and in the case of the standard non-commuting map, in which the mix is non-trivial. The difference between the two is, thus, essentially contained in the embedding intermediate dynamics.

While in higher dimensions the nature of the questions to be answered is quite similar, the derivations are technically more challenging. The reason lies in the ordering, that, as mentioned earlier, does play a role in how the PEDS is defined. However, the case 𝛀=𝛀1\boldsymbol{\Omega}=\boldsymbol{\Omega}_{1} still makes it possible to carry out an almost entirely analytical derivation, even if at least some results can be proved for a more general projector structure.

Let us focus on the following PEDS for an mm-dimensional target system

𝒪={{f1(x),,fm(x)},𝛀1,{𝑸1(𝛀1)X,,𝑸m(𝛀1)X},1,N}.\mathcal{O}=\{\{f_{1}(\vec{x}),\cdots,f_{m}(\vec{x})\},\boldsymbol{\Omega}_{1},-\{\boldsymbol{Q}_{1}(\boldsymbol{\Omega}_{1})\vec{X},\cdots,\boldsymbol{Q}_{m}(\boldsymbol{\Omega}_{1})\vec{X}\},\vec{1},N\}.

Therefore we consider an extended system as in (14) characterized by the mean field projector and any eligible decay functions.

Similarly to the scalar case, we also consider here the two generalizations 𝑸\boldsymbol{Q} to the standard decay functions defined in (49). The corresponding PEDS take the form 𝒪A=({fi(x)},𝛀1,{𝑫(𝑰𝛀1)Xi},S,1,N)\mathcal{O}_{A}=(\{f_{i}(x)\},\boldsymbol{\Omega}_{1},\{-\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}_{i}\},S,\vec{1},N) and 𝒪B=({fi(x)},𝛀1,{(𝑰𝛀1)𝑫(𝑰𝛀1)Xi},S,1,N)\mathcal{O}_{B}=(\{f_{i}(x)\},\boldsymbol{\Omega}_{1},\{-(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\boldsymbol{D}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}_{i}\},S,\vec{1},N), which in terms of PEDS equations, read

dXidt=𝛀1𝑭i(X1,,Xm)1𝑸i(𝛀1)Xi\frac{d\vec{X}_{i}}{dt}=\boldsymbol{\Omega}_{1}\boldsymbol{F}_{i}(\vec{X}_{1},\dots,\vec{X}_{m})\vec{1}-\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1})\vec{X}_{i} (100)

where

𝑸i(𝛀1)={𝑫i(𝑰𝛀1)generalization A(𝑰𝛀1)𝑫i(𝑰𝛀1)generalization B\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1})=\begin{cases}\boldsymbol{D}_{i}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})&\text{generalization A}\\[4.30554pt] (\boldsymbol{I}-\boldsymbol{\Omega}_{1})\boldsymbol{D}_{i}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})&\text{generalization B}\end{cases} (101)

being 𝑫i\boldsymbol{D}_{i} positive, diagonal matrices that make the corresponding decay function 𝛀1\boldsymbol{\Omega}_{1}-eligible.

For any eligible decay function, we can obtain the vector target system Jacobian for the PEDS system as follows. Let us consider first the standard commuting map. We use the representation in (31), so that

Fi,k(c)(X1,,Xm)=fi(X1,k,,Xm,k)bk=fi(X1,k,,Xm,k)\displaystyle F^{(c)}_{i,k}(\vec{X}_{1},\dots,\vec{X}_{m})=f_{i}(X_{1,k},\dots,X_{m,k})b_{k}=f_{i}(X_{1,k},\dots,X_{m,k}) (102)

as b=1\vec{b}=\vec{1}. We evaluate the Jacobian in blocks, starting from component 1 as in the scalar case

(𝑱ij(c,1)({Xi}))ks=r=1N𝛀1,krfi(X1,r,,Xm,r)Xj,s=𝛀1,ksfi(X1,s,,Xm,s)Xj,s\displaystyle(\boldsymbol{J}_{ij}^{(c,1)}(\{\vec{X}_{i}\}))_{ks}=\sum_{r=1}^{N}\boldsymbol{\Omega}_{1,kr}\frac{\partial f_{i}(X_{1,r},\dots,X_{m,r})}{\partial X_{j,s}}=\boldsymbol{\Omega}_{1,ks}\frac{\partial f_{i}(X_{1,s},\cdots,X_{m,s})}{\partial X_{j,s}} (103)

thus, in the fixed point Xi=xi1\vec{X}_{i}^{*}=x_{i}^{*}\vec{1} (see the multivariate banality of the mean Corollary 3.7) we find

𝑱ij(c)({Xi})=𝛀1fi,xj(x)+δij𝑸i(𝛀1).\displaystyle\boldsymbol{J}_{ij}^{(c)}(\{\vec{X}_{i}^{*}\})=\boldsymbol{\Omega}_{1}f^{\prime}_{i,x_{j}}(\vec{x}^{*})+\delta_{ij}\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1}). (104)

where fi,xj=fi(x)/xjf^{\prime}_{i,x_{j}}=\partial f_{i}(\vec{x})/\partial x_{j}. In other words, the Jacobian in the equilibria can be built as

(f1,x1(x)𝛀1+𝑸1(𝛀1)f1,x2(x)𝛀1f1,xn(x)𝛀1f2,x1(x)𝛀1f2,x2(x)𝛀1+𝑸2(𝛀1)fm,x1(x)𝛀1fm,xm(x)𝛀1+𝑸m(𝛀1))\displaystyle\begin{pmatrix}f^{\prime}_{1,x_{1}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}+\boldsymbol{Q}_{1}(\boldsymbol{\Omega}_{1})&f^{\prime}_{1,x_{2}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}&\cdots&f^{\prime}_{1,x_{n}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}\\ f^{\prime}_{2,x_{1}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}&f^{\prime}_{2,x_{2}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}+\boldsymbol{Q}_{2}(\boldsymbol{\Omega}_{1})&\cdots&\vdots\\ \vdots&\vdots&\vdots&\vdots\\ f^{\prime}_{m,x_{1}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}&\cdots&\cdots&f^{\prime}_{m,x_{m}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}+\boldsymbol{Q}_{m}(\boldsymbol{\Omega}_{1})\end{pmatrix} (105)

where each block is of size N×NN\times N.

Surprisingly, the same result holds also for the mixed and standard non-commutative maps. We start by proving this in the mixed commuting case, where ordering is immaterial.

Proposition 3.10.

Let 𝒪=({f1(x),,fm(x)},𝛀1,{𝐐i(𝛀1)Xi},S,1,N)\mathcal{O}=(\{f_{1}(\vec{x}),\cdots,f_{m}(\vec{x})\},\boldsymbol{\Omega}_{1},\{\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1})\vec{X}_{i}\},S,\vec{1},N) be the PEDS built on a mixed commutative map, considering the decay functions 𝐐i(𝛀1)X\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1})\vec{X} assumed to be 𝛀1\boldsymbol{\Omega}_{1}-eligible. Then, for any ordering SS, the Jacobian matrix, evaluated at the equilibrium Xi=xi1\vec{X}_{i}^{*}=x_{i}^{*}\vec{1} being x\vec{x} an equilibrium of the target system, is given by

𝑱ij(mc)({Xi})=𝛀1fi,xj(x)+δij𝑸i(𝛀1).\displaystyle\boldsymbol{J}_{ij}^{(mc)}(\{\vec{X}_{i}^{*}\})=\boldsymbol{\Omega}_{1}f^{\prime}_{i,x_{j}}(\vec{x}^{*})+\delta_{ij}\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1}). (106)
Proof.

We aim at evaluating the Jacobian of111As usual, we use a general projection operator wherever possible.

𝑭i(mc)(𝑿1,,𝑿m)=ai,0𝑰+k=1j1,,jmkak,i;j1,,jm(𝛀(𝑿1j1𝑿mjm)1/k)k.\displaystyle\boldsymbol{F}_{i}^{(mc)}(\boldsymbol{X}_{1},\cdots,\boldsymbol{X}_{m})=a_{i,0}\boldsymbol{I}+\sum_{k=1}^{\infty}\sum_{j_{1},\cdots,j_{m}}^{k}a_{k,i;j_{1},\cdots,j_{m}}(\boldsymbol{\Omega}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k})^{k}. (107)

as it is needed for the estimation of the first Jacobian component

(𝑱ij(mc,1)({Xi}))st\displaystyle(\boldsymbol{J}^{(mc,1)}_{ij}(\{\vec{X}_{i}\}))_{st} =\displaystyle= (𝑭i(mc)(𝑿1,,𝑿m)1)sXj,t\displaystyle\frac{\partial(\boldsymbol{F}_{i}^{(mc)}(\boldsymbol{X}_{1},\cdots,\boldsymbol{X}_{m})\vec{1})_{s}}{\partial X_{j,t}} (108)
=\displaystyle= k=1j1,,jmkak,i;j1,,jm((𝛀(𝑿1j1𝑿mjm)1/k)kXj,t1)s.\displaystyle\sum_{k=1}^{\infty}\sum_{j_{1},\cdots,j_{m}}^{k}a_{k,i;j_{1},\cdots,j_{m}}\left(\frac{\partial(\boldsymbol{\Omega}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k})^{k}}{\partial X_{j,t}}\vec{1}\right)_{s}.

Therefore, we need to evaluate

(𝛀(𝑿1j1𝑿mjm)1/k)kXj,t\displaystyle\frac{\partial(\boldsymbol{\Omega}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k})^{k}}{\partial X_{j,t}} (109)

We exploit the identity

𝑩kX=z=0k1𝑩k1z𝑩X𝑩zk1\displaystyle\frac{\partial\boldsymbol{B}^{k}}{\partial X}=\sum_{z=0}^{k-1}\boldsymbol{B}^{k-1-z}\frac{\partial\boldsymbol{B}}{\partial X}\boldsymbol{B}^{z}\qquad k\geq 1 (110)

valid for any matrix 𝑩\boldsymbol{B}, obtaining

(𝛀(𝑿1j1𝑿mjm)1/k)kXj,t\displaystyle\frac{\partial(\boldsymbol{\Omega}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k})^{k}}{\partial X_{j,t}} =\displaystyle= z=0k1(𝛀(𝑿1j1𝑿mjm)1/k)k1z(𝛀((𝑿1j1𝑿mjm)1/k)Xj,t)\displaystyle\sum_{z=0}^{k-1}\Big{(}\boldsymbol{\Omega}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k}\Big{)}^{k-1-z}\left(\boldsymbol{\Omega}\frac{\partial\big{(}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k}\big{)}}{\partial X_{j,t}}\right) (111)
×(𝛀(𝑿1j1𝑿mjm)1/k)z\displaystyle\ \ \ \ \ \times\Big{(}\boldsymbol{\Omega}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k}\Big{)}^{z}

where, since 𝑿i\boldsymbol{X}_{i} are diagonal, we have

(((𝑿1j1𝑿mjm)1/k)Xj,t)pq=δpqδpt(rjXr,tjt/k)jjkXj,tjj/k1.\left(\frac{\partial\big{(}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k}\big{)}}{\partial X_{j,t}}\right)_{pq}=\delta_{pq}\delta_{pt}\left(\prod_{r\neq j}X_{r,t}^{j_{t}/k}\right)\frac{j_{j}}{k}X_{j,t}^{j_{j}/k-1}.

Now, taking into account that 𝛀=𝛀1\boldsymbol{\Omega}=\boldsymbol{\Omega}_{1} and that the fixed points are defined by Xi=xi1\vec{X}_{i}^{*}=x_{i}^{*}\vec{1} (because of the multivariate banality of the mean Corollary 3.7), we find

((𝛀𝟏(𝑿1α1𝑿mαm)1/η)β)ij|{Xi}\displaystyle\left.\big{(}(\boldsymbol{\Omega_{1}}(\boldsymbol{X}_{1}^{\alpha_{1}}\cdots\boldsymbol{X}_{m}^{\alpha_{m}})^{1/\eta})^{\beta}\big{)}_{ij}\right|_{\{\vec{X}_{i}^{*}\}} =\displaystyle= Ω1,iji=1m(xi)βηαi\displaystyle{\Omega}_{1,ij}\prod_{i=1}^{m}(x_{i}^{*})^{\frac{\beta}{\eta}\alpha_{i}} (112)
δpqδpt(rjXr,tjt/k)jjkXj,tjj/k1|{Xi}\displaystyle\left.\delta_{pq}\delta_{pt}\left(\prod_{r\neq j}X_{r,t}^{j_{t}/k}\right)\frac{j_{j}}{k}X_{j,t}^{j_{j}/k-1}\right|_{\{\vec{X}_{i}^{*}\}} =\displaystyle= δpqδpt(rj(xr)jt/k)jjk(xj)jj/k1\displaystyle\delta_{pq}\delta_{pt}\left(\prod_{r\neq j}(x_{r}^{*})^{j_{t}/k}\right)\frac{j_{j}}{k}(x_{j}^{*})^{j_{j}/k-1} (113)

thus, substituting into (111)

((𝛀1(𝑿1j1𝑿mjm)1/k)kXj,t)pq|{Xi}=b,c,d=1Nz=0k1((𝛀𝟏(𝑿1j1𝑿mjm)1/k)k1z)pb|{Xi}\displaystyle\left.\left(\frac{\partial(\boldsymbol{\Omega}_{1}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k})^{k}}{\partial X_{j,t}}\right)_{pq}\right|_{\{\vec{X}_{i}^{*}\}}=\sum_{b,c,d=1}^{N}\sum_{z=0}^{k-1}\left.\big{(}(\boldsymbol{\Omega_{1}}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k})^{k-1-z}\big{)}_{pb}\right|_{\{\vec{X}_{i}^{*}\}}
×(Ω1,bc((𝛀1(𝑿1j1𝑿mjm)1/k)cdXj,t|{Xi})((𝛀𝟏(𝑿1j1𝑿mjm)1/k)z)dq|{Xi}\displaystyle\quad\times\left.\left(\Omega_{1,bc}\frac{\partial\left((\boldsymbol{\Omega}_{1}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k}\right)_{cd}}{\partial X_{j,t}}\right|_{\{\vec{X}_{i}^{*}\}}\right)\left.\big{(}(\boldsymbol{\Omega_{1}}(\boldsymbol{X}_{1}^{j_{1}}\cdots\boldsymbol{X}_{m}^{j_{m}})^{1/k})^{z}\big{)}_{dq}\right|_{\{\vec{X}_{i}^{*}\}}
=jj(xj)jj1rj(xr)jtb,c,d=1NΩ1,pbΩ1,bcδcdδctΩ1,dq\displaystyle\quad=j_{j}(x_{j}^{*})^{j_{j}-1}\prod_{r\neq j}(x_{r}^{*})^{j_{t}}\sum_{b,c,d=1}^{N}{\Omega}_{1,pb}{\Omega}_{1,bc}\delta_{cd}\delta_{ct}{\Omega}_{1,dq}
=jj(xj)jj1rj(xr)jtΩ1,ptΩ1,tq\displaystyle\quad=j_{j}(x_{j}^{*})^{j_{j}-1}\prod_{r\neq j}(x_{r}^{*})^{j_{t}}\Omega_{1,pt}\Omega_{1,tq} (114)

where each element of 𝛀1\boldsymbol{\Omega}_{1} is equal to 1/N1/N. Substituting into (108) we recognize the series expansion of fi,xj(x)f^{\prime}_{i,x_{j}}(\vec{x}^{*}). This leads to the final expression

(𝑱ij(mc,1)({Xi}))st=fi,xj(x)Ω1,st.(\boldsymbol{J}^{(mc,1)}_{ij}(\{\vec{X}_{i}^{*}\}))_{st}=f^{\prime}_{i,x_{j}}(\vec{x}^{*})\Omega_{1,st}. (115)

Taking into account the second Jacobian component, i.e. the Jacobian of the decay functions, finally yields the result to be proved

𝑱ij(mc)({Xi})=fi,xj(x)𝛀1+δij𝑸i(𝛀1).\boldsymbol{J}^{(mc)}_{ij}(\{\vec{X}_{i}^{*}\})=f^{\prime}_{i,x_{j}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}+\delta_{ij}\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1}). (116)

Finally, let us turn to the non-commutative map Jacobian, for which we have the following result.

Proposition 3.11.

Let 𝒪=({f1(x),,fm(x)},𝛀1,{𝐐i(𝛀1)Xi},S,1,N)\mathcal{O}=(\{f_{1}(\vec{x}),\cdots,f_{m}(\vec{x})\},\boldsymbol{\Omega}_{1},\{\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1})\vec{X}_{i}\},S,\vec{1},N) be the PEDS built on a non-commutative map, considering the decay functions 𝐐i(𝛀1)X\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1})\vec{X} assumed to be 𝛀1\boldsymbol{\Omega}_{1}-eligible. Then, for any ordering SS, the Jacobian matrix, evaluated at the equilibrium Xi=xi1\vec{X}_{i}^{*}=x_{i}^{*}\vec{1}, is given by

𝑱ij(nc)({Xi})=𝛀1fi,xj(x)+δij𝑸i(𝛀1).\displaystyle\boldsymbol{J}_{ij}^{(nc)}(\{\vec{X}_{i}^{*}\})=\boldsymbol{\Omega}_{1}f^{\prime}_{i,x_{j}}(\vec{x}^{*})+\delta_{ij}\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1}). (117)
Proof.

As we aim at demonstrating the independence of the Jacobian from the ordering SS (at the fixed points), we consider the formalism introduced in Section 2.1. Given the matrix map definition (26), we use the general form

𝑭s(X)=k=0i1,,ij=0jas,k;i1,,im{(𝛀𝑿1)i1(𝛀𝑿m)im}S\boldsymbol{F}_{s}(\vec{X})=\sum_{k=0}^{\infty}\sum_{i_{1},\cdots,i_{j}=0}^{j}a_{s,k;i_{1},\cdots,i_{m}}\{(\boldsymbol{\Omega}\boldsymbol{X}_{1})^{i_{1}}\cdots(\boldsymbol{\Omega}\boldsymbol{X}_{m})^{i_{m}}\}_{S} (118)

that forms the basis for the evaluation of the first Jacobian component. Writing, to simplify the notation, oσ(s1)σ(sm)=oσo_{\sigma(s_{1})\cdots\sigma(s_{m})}=o_{\vec{\sigma}}, we compute the derivatives

Xa,b{(𝛀𝑿1)i1(𝛀𝑿m)im}S\displaystyle\frac{\partial\phantom{X_{a,b}}}{\partial X_{a,b}}\{(\boldsymbol{\Omega}\boldsymbol{X}_{1})^{i_{1}}\cdots(\boldsymbol{\Omega}\boldsymbol{X}_{m})^{i_{m}}\}_{S}
=σ𝒮(m)oσXa,b((𝛀𝑿σ(s1))i1(𝛀𝑿σ(sm))im)\displaystyle\qquad=\sum_{\sigma\in\mathcal{S}(m)}o_{\vec{\sigma}}\frac{\partial\phantom{X_{a,b}}}{\partial X_{a,b}}\left((\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(s_{1})})^{i_{1}}\cdots(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(s_{m})})^{i_{m}}\right)
=σ𝒮(m)oσ(Xa,b(𝛀𝑿σ(s1))i1)(𝛀𝑿σ(sm))im+\displaystyle\qquad=\sum_{\sigma\in\mathcal{S}(m)}o_{\vec{\sigma}}\left(\frac{\partial\phantom{X_{a,b}}}{\partial X_{a,b}}(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(s_{1})})^{i_{1}}\right)\cdots(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(s_{m})})^{i_{m}}+\cdots
+σ𝒮(m)oσ(𝛀𝑿σ(s1))i1(Xa,b(𝛀𝑿σ(sm))im)\displaystyle\qquad\quad+\sum_{\sigma\in\mathcal{S}(m)}o_{\vec{\sigma}}(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(s_{1})})^{i_{1}}\cdots\left(\frac{\partial\phantom{X_{a,b}}}{\partial X_{a,b}}(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(s_{m})})^{i_{m}}\right)
=σ𝒮(m)oσδa,σ(s1)(Xσ(s1),b(𝛀𝑿σ(s1))i1)(𝛀𝑿σ(sm))im+\displaystyle\qquad=\sum_{\sigma\in\mathcal{S}(m)}o_{\vec{\sigma}}\delta_{a,\sigma(s_{1})}\left(\frac{\partial\phantom{X_{\sigma(s_{1}),b}}}{\partial X_{\sigma(s_{1}),b}}(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(s_{1})})^{i_{1}}\right)\cdots(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(s_{m})})^{i_{m}}+\cdots
+σ𝒮(m)oσδa,σ(sm)(𝛀𝑿σ(s1))i1(Xσ(sm),b(𝛀𝑿σ(sm))im)\displaystyle\qquad\quad+\sum_{\sigma\in\mathcal{S}(m)}o_{\vec{\sigma}}\delta_{a,\sigma(s_{m})}(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(s_{1})})^{i_{1}}\cdots\left(\frac{\partial\phantom{X_{\sigma(s_{m}),b}}}{\partial X_{\sigma(s_{m}),b}}(\boldsymbol{\Omega}\boldsymbol{X}_{\sigma(s_{m})})^{i_{m}}\right) (119)

Applying identity (110) to matrix (𝛀𝑿sk)ik(\boldsymbol{\Omega}\boldsymbol{X}_{s_{k}})^{i_{k}} we find

Xsk,b((𝛀𝑿sk)ik)ij=t=0ik1l=1N((𝛀𝑿sk)t)ilΩlb((𝛀𝑿sk)ik1t)bj,\frac{\partial\phantom{X_{s_{k},b}}}{\partial X_{s_{k},b}}\left((\boldsymbol{\Omega}\boldsymbol{X}_{s_{k}})^{i_{k}}\right)_{ij}=\sum_{t=0}^{i_{k}-1}\sum_{l=1}^{N}\left((\boldsymbol{\Omega}\boldsymbol{X}_{s_{k}})^{t}\right)_{il}{\Omega}_{lb}\left((\boldsymbol{\Omega}\boldsymbol{X}_{s_{k}})^{i_{k}-1-t}\right)_{bj}, (120)

At this point, the multivariate banality of the mean Corollary 3.7 proves that the PEDS fixed points are given by 𝑿sk=xsk𝑰\boldsymbol{X}_{s_{k}}^{*}=x_{s_{k}}^{*}\boldsymbol{I}, therefore for the mean field projector 𝛀=𝛀1\boldsymbol{\Omega}=\boldsymbol{\Omega}_{1} we find

Xsk,b((𝛀1𝑿sk)ik)ij|{Xi}\displaystyle\left.\frac{\partial\phantom{X_{s_{k},b}}}{\partial X_{s_{k},b}}\left((\boldsymbol{\Omega}_{1}\boldsymbol{X}_{s_{k}})^{i_{k}}\right)_{ij}\right|_{\{\vec{X}_{i}^{*}\}} =t=0ik1(xsk)ik1s=1NΩ1,istΩ1,sbΩ1,bjik1t\displaystyle=\sum_{t=0}^{i_{k}-1}(x^{*}_{s_{k}})^{i_{k}-1}\sum_{s=1}^{N}\Omega_{1,is}^{t}\Omega_{1,sb}\Omega_{1,bj}^{i_{k}-1-t}
=ik(xsk)ik1Ω1,ibΩ1,bj\displaystyle=i_{k}(x^{*}_{s_{k}})^{i_{k}-1}\Omega_{1,ib}\Omega_{1,bj} (121)

Substituting this expression into the derivative of the ordered product, yields

Xa,b{(𝛀1𝑿1)i1(𝛀1𝑿m)im}S|{Xi}\displaystyle\left.\frac{\partial\phantom{X_{a,b}}}{\partial X_{a,b}}\{(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{1})^{i_{1}}\cdots(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{m})^{i_{m}}\}_{S}\right|_{\{\vec{X}_{i}^{*}\}}
=σ𝒮(m)oσδa,σ(s1)(i1(xσ(s1))i11(𝛀1):b(𝛀1)b:)\displaystyle\qquad=\sum_{\sigma\in\mathcal{S}(m)}o_{\vec{\sigma}}\delta_{a,\sigma(s_{1})}\Big{(}i_{1}(x^{*}_{\sigma(s_{1})})^{i_{1}-1}(\boldsymbol{\Omega}_{1})_{:b}(\boldsymbol{\Omega}_{1})_{b:}\Big{)}
×(xσ(s2))i2𝛀1i2(xσ(sm))im𝛀1im+\displaystyle\qquad\qquad\times(x^{*}_{\sigma(s_{2})})^{i_{2}}\boldsymbol{\Omega}_{1}^{i_{2}}\cdots(x^{*}_{\sigma(s_{m})})^{i_{m}}\boldsymbol{\Omega}_{1}^{i_{m}}+\cdots
+σ𝒮(m)oσδa,σ(sm)(xσ(s1))i1𝛀1i1(xσ(s2))i2𝛀1i2\displaystyle\qquad\quad+\sum_{\sigma\in\mathcal{S}(m)}o_{\vec{\sigma}}\delta_{a,\sigma(s_{m})}(x^{*}_{\sigma(s_{1})})^{i_{1}}\boldsymbol{\Omega}_{1}^{i_{1}}(x^{*}_{\sigma(s_{2})})^{i_{2}}\boldsymbol{\Omega}_{1}^{i_{2}}\cdots
×(xσ(sm1))im1𝛀1im1(im(xσ(sm))im1(𝛀1):b(𝛀1)b:)\displaystyle\qquad\qquad\times(x^{*}_{\sigma(s_{m-1})})^{i_{m-1}}\boldsymbol{\Omega}_{1}^{i_{m-1}}\Big{(}i_{m}(x^{*}_{\sigma(s_{m})})^{i_{m}-1}(\boldsymbol{\Omega}_{1})_{:b}(\boldsymbol{\Omega}_{1})_{b:}\Big{)}
=σ𝒮(m)oσδa,σ(s1)i1(xσ(s1))i11(xσ(s2))i2(xσ(sm))im(𝛀1):b(𝛀1)b:+\displaystyle\qquad=\sum_{\sigma\in\mathcal{S}(m)}o_{\vec{\sigma}}\delta_{a,\sigma(s_{1})}i_{1}(x^{*}_{\sigma(s_{1})})^{i_{1}-1}(x^{*}_{\sigma(s_{2})})^{i_{2}}\cdots(x^{*}_{\sigma(s_{m})})^{i_{m}}(\boldsymbol{\Omega}_{1})_{:b}(\boldsymbol{\Omega}_{1})_{b:}+\cdots
+σ𝒮(m)oσδa,σ(sm)im(xσ(s1))i1(xσ(s2))i2(xσ(sm))im1(𝛀1):b(𝛀1)b:.\displaystyle\qquad\quad+\sum_{\sigma\in\mathcal{S}(m)}o_{\vec{\sigma}}\delta_{a,\sigma(s_{m})}i_{m}(x^{*}_{\sigma(s_{1})})^{i_{1}}(x^{*}_{\sigma(s_{2})})^{i_{2}}\cdots(x^{*}_{\sigma(s_{m})})^{i_{m}-1}(\boldsymbol{\Omega}_{1})_{:b}(\boldsymbol{\Omega}_{1})_{b:}. (122)

where (𝛀1):b(\boldsymbol{\Omega}_{1})_{:b} and (𝛀1)b:(\boldsymbol{\Omega}_{1})_{b:} are vectors made of the bb-th column and row of 𝛀1\boldsymbol{\Omega}_{1}, respectively. As the matrix products all collapse into the same quantity, the previous expression is independent of the ordering SS. Therefore, we can write

Xa,b{(𝛀1𝑿1)i1(𝛀1𝑿m)im}S|{Xi}=(xaj=1m(xj)ij)(𝛀1):b(𝛀1)b:.\left.\frac{\partial\phantom{X_{a,b}}}{\partial X_{a,b}}\{(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{1})^{i_{1}}\cdots(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{m})^{i_{m}}\}_{S}\right|_{\{\vec{X}_{i}^{*}\}}=\left(\frac{\partial\phantom{x_{a}}}{\partial x_{a}}\prod_{j=1}^{m}(x_{j}^{*})^{i_{j}}\right)(\boldsymbol{\Omega}_{1})_{:b}(\boldsymbol{\Omega}_{1})_{b:}. (123)

This means that, for any ordering SS, at the fixed point the sum of the terms for the derivative with respect to the elements of each extended variable Xa\vec{X}_{a} leads, once taking into account the factor 1\vec{1} in (100), to a scalar factor corresponding to fi,xa(x)f^{\prime}_{i,x_{a}}(\vec{x}^{*}), i.e. the corresponding element of the Jacobian of the target system multiplied times matrix 𝛀1\boldsymbol{\Omega}_{1}.

Concerning the second part of the Jacobian, i.e. the derivatives of 𝑸i(𝛀1)Xi\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1})\vec{X}_{i}, the result is a block diagonal matrix of the type diag{𝑸i(𝛀1)}\text{diag}\{\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1})\}.

In summary, even in this case the full Jacobian at the fixed points follows the block structure claimed in the proposition. ∎

We are now ready to discuss the Jacobian spectral properties irrespective of the chosen map, as the matrix is the same for all of the three maps that we consider. For the sake of simplicity, we limit the discussion to the standard decay functions 𝑸i(𝛀1)=αi(𝑰𝛀1)\boldsymbol{Q}_{i}(\boldsymbol{\Omega}_{1})=-\alpha_{i}(\boldsymbol{I}-\boldsymbol{\Omega}_{1}), so that

𝑱({Xi})\displaystyle\boldsymbol{J}(\{\vec{X}_{i}^{*}\}) =(f1,x1(x)𝛀1f1,x2(x)𝛀1f1,xn(x)𝛀1f2,x1(x)𝛀1f2,x2(x)𝛀1f2,x3(x)𝛀1f2,xn(x)𝛀1fn,x1(x)𝛀1fn,xn(x)𝛀1)\displaystyle=\begin{pmatrix}f^{\prime}_{1,x_{1}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}&f^{\prime}_{1,x_{2}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}&\cdots&\cdots&f^{\prime}_{1,x_{n}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}\\ f^{\prime}_{2,x_{1}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}&f^{\prime}_{2,x_{2}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}&f^{\prime}_{2,x_{3}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}&\cdots&f^{\prime}_{2,x_{n}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ f^{\prime}_{n,x_{1}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}&\cdots&\cdots&\cdots&f^{\prime}_{n,x_{n}}(\vec{x}^{*})\boldsymbol{\Omega}_{1}\end{pmatrix}
(α1(𝑰𝛀1)000α2(𝑰𝛀1)000αm(𝑰𝛀1))\displaystyle-\begin{pmatrix}\alpha_{1}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})&0&\cdots&\cdots&0\\ 0&\alpha_{2}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})&&\cdots&\vdots\\ \vdots&\vdots&\ddots&\vdots&0\\ 0&\cdots&\cdots&0&\alpha_{m}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\end{pmatrix} (124)

that can be cast in the following form

𝑱({Xi})=(𝑱m(x)+𝑫α1)𝛀1𝑫αN\boldsymbol{J}(\{\vec{X}_{i}^{*}\})=(\boldsymbol{J}_{m}(\vec{x}^{*})+\boldsymbol{D}^{1}_{\alpha})\otimes\boldsymbol{\Omega}_{1}-\boldsymbol{D}^{N}_{\alpha} (125)

where 𝑱m(x)\boldsymbol{J}_{m}(\vec{x}^{*}) is the Jacobian of the target system functions {fi(x)}\{f_{i}(\vec{x})\} evaluated at the target system equilibrium x\vec{x}^{*}, \otimes denotes matrix Kronecker product222According to the definition, the i,ji,j block of the matrix Kronecker product ABA\otimes B is aijBa_{ij}B., and

𝑫αk=diag(α1,,α1k times,α2,,α2k times,,αm,,αmk times).\boldsymbol{D}^{k}_{\alpha}=\text{diag}(\underbrace{\alpha_{1},\cdots,\alpha_{1}}_{\text{$k$ times}},\underbrace{\alpha_{2},\cdots,\alpha_{2}}_{\text{$k$ times}},\cdots,\underbrace{\alpha_{m},\cdots,\alpha_{m}}_{\text{$k$ times}}).

The Jacobian (125) is a generalization of the scalar case (see Proposition 3.8). We are interested in assessing the properties of its eigenvalues.

For the time being, we discuss the simpler case αiα\alpha_{i}\equiv\alpha, and since it will be useful later, let us think of this Jacobian for a general 𝛀\boldsymbol{\Omega}, only to then consider 𝛀𝟏\boldsymbol{\Omega_{1}} as a special case.333To motivate this generalized discussion, we briefly anticipate the result of an upcoming paper, in which we show that (126) is in fact the first term of the representation obtained for the Jacobian of a general projector 𝛀\boldsymbol{\Omega}. This general case is, however, beyond the scope of this paper. Let us therefore discuss the spectrum of

𝑱({Xi})=(𝑱m(x)+α𝑰m)𝛀α𝑰Nm.\displaystyle\boldsymbol{J}(\{\vec{X}_{i}^{*}\})=(\boldsymbol{J}_{m}(\vec{x}^{*})+\alpha\boldsymbol{I}_{m})\otimes\boldsymbol{\Omega}-\alpha\boldsymbol{I}_{Nm}. (126)

where 𝑰q\boldsymbol{I}_{q} is the identity matrix of size q×qq\times q. Being λi\lambda_{i} the eigenvalues of 𝑱m(x)\boldsymbol{J}_{m}(\vec{x}^{*}), the eigenvalues of 𝑱m(x)+α𝑰m\boldsymbol{J}_{m}(\vec{x}^{*})+\alpha\boldsymbol{I}_{m} are given by λi+α\lambda_{i}+\alpha, and α-\alpha are the eigenvalues of α𝑰Nm-\alpha\boldsymbol{I}_{Nm} for the whole matrix. Let us assume that 𝛀\boldsymbol{\Omega} has kk unitary eigenvalues (k=1k=1 for 𝛀=𝛀1\boldsymbol{\Omega}=\boldsymbol{\Omega}_{1}), while the remaining NkN-k eigenvalues are equal to 0. Then matrix 𝑱({Xi})\boldsymbol{J}(\{\vec{X}_{i}^{*}\}) has eigenvalues [27]

  • 1.

    λi\lambda_{i}, 1im1\leq i\leq m with multiplicity kk

  • 2.

    α-\alpha with multiplicity m(Nk)m(N-k).

As a consequence, if λi<0\lambda_{i}<0 i\forall i, then a stable equilibrium point for the target system is still stable in the PEDS embedding. Similarly, if the equilibrium point is unstable, or if at least some ii values exist for which λi>0\lambda_{i}>0, then it becomes a saddle point for the extended system, being characterized by m(Nk)m(N-k) negative eigenvalues and mkmk positive eigenvalues. Thus, the following classification holds

{Xi}={stableif x is stable,saddle pointif x is a saddle point,saddle pointif x is unstable.\displaystyle\{\vec{X}^{*}_{i}\}=\begin{cases}\text{stable}&\text{if $\vec{x}^{*}$ is stable},\\ \text{saddle point}&\text{if $\vec{x}^{*}$ is a saddle point},\\ \text{saddle point}&\text{if $\vec{x}^{*}$ is unstable}.\end{cases} (127)

This analysis suggests that the presence of “barriers” in the target system, characterized by unstable equilibria, can (in principle) be overcome in the PEDS embedding via their transformation into saddle points in the extended system.

3.5 Dynamical ordering-equivalence for the uniform mean field projector

The uniform mean field projector has various properties that are interesting per se. In particular, we wish to show here that not only the fixed points, but also the embedding dynamics is ordering independent.

For this purpose, consider a PEDS of the form

𝒪r=({fi(x1,,xm)},𝛀𝟏,{𝑮i(𝛀1)Xi},Sr,1,N),\mathcal{O}_{r}=(\{f_{i}(x_{1},\cdots,x_{m})\},\boldsymbol{\Omega_{1}},\{\boldsymbol{G}_{i}(\boldsymbol{\Omega}_{1})\vec{X}_{i}\},S_{r},\vec{1},N),

and for arbitrary 𝛀1\boldsymbol{\Omega}_{1}-eligible decay functions. Given the PEDS above, the standard non-commutative matrix embedding is given by

Fs=k=0i1,,ijkas,k;i1im{(𝛀1𝑿1)i1(𝛀1𝑿m)im}Sr1\displaystyle\vec{F}_{s}=\sum_{k=0}^{\infty}\sum_{i_{1},\cdots,i_{j}}^{k}a_{s,k;i_{1}\cdots i_{m}}\{(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{1})^{i_{1}}\cdots(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{m})^{i_{m}}\}_{S_{r}}\vec{1} (128)

We prove the following

Proposition 3.12.

The quantity

{(𝛀1𝑿1)i1(𝛀1𝑿m)im}Sr1\{(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{1})^{i_{1}}\cdots(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{m})^{i_{m}}\}_{S_{r}}\vec{1}

is independent of the ordering SrS_{r}, for any i1,,imi_{1},\cdots,i_{m}.

Proof.

The proof relies on the following observation. We have in general that

𝛀1𝑿s𝛀1=Xs𝛀1.\displaystyle\boldsymbol{\Omega}_{1}\boldsymbol{X}_{s}\boldsymbol{\Omega}_{1}=\langle X_{s}\rangle\boldsymbol{\Omega}_{1}. (129)

with Xs=1Nj=1NXsj\langle X_{s}\rangle=\frac{1}{N}\sum_{j=1}^{N}X_{s}^{j}. The previous result can be easily shown as follows

(𝛀1𝑿s𝛀1)ij\displaystyle(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{s}\boldsymbol{\Omega}_{1})_{ij} =\displaystyle= k1,k2=1NΩ1,ik1Xs,k1k2Ω1,k2j\displaystyle\sum_{k_{1},k_{2}=1}^{N}\Omega_{1,ik_{1}}{X}_{s,k_{1}k_{2}}{\Omega}_{1,k_{2}j} (130)
=\displaystyle= 1N2k1,k2=1NXs,k1δk1k2\displaystyle\frac{1}{N^{2}}\sum_{k_{1},k_{2}=1}^{N}X_{s,k_{1}}\delta_{k_{1}k_{2}}
=\displaystyle= 1Nk1=1NXs,k11N=XsΩ1,ij\displaystyle\frac{1}{N}\sum_{k_{1}=1}^{N}X_{s,k_{1}}\frac{1}{N}=\langle X_{s}\rangle{\Omega}_{1,ij}

Because of (129), we can always write the following

(𝛀1𝑿σ(1))σ(i1)(𝛀1𝑿σ(m))σ(im)=fσ(i1),,σ(im)(Xσ(1),,Xσ(m))𝛀1𝑿σ(m).\displaystyle(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{\sigma(1)})^{\sigma(i_{1})}\cdots(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{\sigma(m)})^{\sigma(i_{m})}=f_{\sigma(i_{1}),\cdots,\sigma(i_{m})}(\langle{X}_{\sigma(1)}\rangle,\cdots,\langle{X}_{\sigma(m)}\rangle)\boldsymbol{\Omega}_{1}\boldsymbol{X}_{\sigma(m)}. (131)

where function ff is scalar. To gain an intuition about the scalar ff, consider for instance (𝛀1𝑿1)a(𝛀1𝑿2)b(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{1})^{a}(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{2})^{b}. Using (129), the previous expression can be written as

(𝛀1𝑿1)a(𝛀1𝑿2)b=X1a1X2b1𝛀1𝑿1𝛀1𝑿2=X1aX2b1𝛀1𝑿2,\displaystyle(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{1})^{a}(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{2})^{b}=\langle X_{1}\rangle^{a-1}\langle X_{2}\rangle^{b-1}\boldsymbol{\Omega}_{1}\boldsymbol{X}_{1}\boldsymbol{\Omega}_{1}\boldsymbol{X}_{2}=\langle X_{1}\rangle^{a}\langle X_{2}\rangle^{b-1}\boldsymbol{\Omega}_{1}\boldsymbol{X}_{2}, (132)

so that f12=X1aX2b1f_{12}=\langle X_{1}\rangle^{a}\langle X_{2}\rangle^{b-1}. At this point we have

{(𝛀1𝑿1)i1(𝛀1𝑿m)im}Sr1\displaystyle\{(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{1})^{i_{1}}\cdots(\boldsymbol{\Omega}_{1}\boldsymbol{X}_{m})^{i_{m}}\}_{S_{r}}\vec{1} =\displaystyle= σSmoσfσ(i1),,σ(im)(Xσ(1),,Xσ(m))𝛀1𝑿σ(m)1\displaystyle\sum_{\sigma\in S_{m}}o_{\vec{\sigma}}f_{\sigma(i_{1}),\cdots,\sigma(i_{m})}(\langle{X}_{\sigma(1)}\rangle,\cdots,\langle{X}_{\sigma(m)}\rangle)\boldsymbol{\Omega}_{1}\boldsymbol{X}_{\sigma(m)}\vec{1} (133)
=\displaystyle= σSmoσfσ(i1),,σ(im)(Xσ(1),,Xσ(m))Xσ(m)1\displaystyle\sum_{\sigma\in S_{m}}o_{\vec{\sigma}}f_{\sigma(i_{1}),\cdots,\sigma(i_{m})}(\langle{X}_{\sigma(1)}\rangle,\cdots,\langle{X}_{\sigma(m)}\rangle)\langle X_{\sigma(m)}\rangle\vec{1}
=\displaystyle= σSmoσfσ(i1),,σ(im)(Xσ(1),,Xσ(m))Xσ(m)1\displaystyle\sum_{\sigma\in S_{m}}o_{\vec{\sigma}}f_{\sigma(i_{1}),\cdots,\sigma(i_{m})}(\langle{X}_{\sigma(1)}\rangle,\cdots,\langle{X}_{\sigma(m)}\rangle)\langle X_{\sigma(m)}\rangle\vec{1}
=\displaystyle= fi1,,im(Xσ(1),,Xσ(m))Xm1\displaystyle f_{i_{1},\cdots,i_{m}}(\langle{X}_{\sigma(1)}\rangle,\cdots,\langle{X}_{\sigma(m)}\rangle)\langle X_{m}\rangle\vec{1}

which follows from the fact that the scalar variables Xj\langle X_{j}\rangle do commute. ∎

Proposition 3.12 is important because it implies the following

Corollary 3.13.

Dynamical ordering independence for the uniform mean field projector. For any analytic functions fif_{i}, we have

𝒪r\displaystyle\mathcal{O}_{r} =\displaystyle= ({fi(x1,,xm)},𝛀𝟏,{𝑸𝒊(𝛀𝟏)Xi},Sr,1,N)\displaystyle(\{f_{i}(x_{1},\cdots,x_{m})\},\boldsymbol{\Omega_{1}},\{\boldsymbol{Q_{i}}(\boldsymbol{\Omega_{1}})\vec{X}_{i}\},S_{r},\vec{1},N) (134)
=\displaystyle= ({fi(x1,,xm)},𝛀𝟏,{𝑸𝒊(𝛀𝟏)Xi},1,N),\displaystyle(\{f_{i}(x_{1},\cdots,x_{m})\},\boldsymbol{\Omega_{1}},\{\boldsymbol{Q_{i}}(\boldsymbol{\Omega_{1}})\vec{X}_{i}\},\vec{1},N),

or, alternatively, the uniform mean field PEDS are ordering independent.

Proof.

The proof follows directly from the fact that any analytic function fi(x1,,xm)f_{i}(x_{1},\cdots,x_{m}) can be written in the form of a series expansion as in Proposition 3.12. ∎

This implies essentially that for any dynamical system, we can write the dynamics with the most convenient ordering, without affecting the dynamics.

4 Numerical Examples

We present here some numerical examples of application of the PEDS procedure.

4.1 Implementation remarks

For the sake of implementation, it would be convenient to define the PEDS transformation without having to evaluate the Taylor expansion, as for the theoretical developments in the previous Sections. This can be easily carried out for factorized vector target systems fi(x1,,xm)=k=1mfi,k(xk)f_{i}(x_{1},\cdots,x_{m})=\prod_{k=1}^{m}f_{i,k}(x_{k}) (or linear combinations of factorized terms of the same type). For such factorized target systems, the matrix map can be built as the function 𝑭i,k(𝛀𝑿k)\boldsymbol{F}_{i,k}(\boldsymbol{\Omega}\boldsymbol{X}_{k}) (and  𝑭i(𝑿1,,𝑿m)=iaik=1m𝑭i,k(𝑿k)\boldsymbol{F}_{i}(\boldsymbol{X}_{1},\cdots,\boldsymbol{X}_{m})=\sum_{i}a_{i}\prod_{k=1}^{m}\boldsymbol{F}_{i,k}(\boldsymbol{X}_{k}) or similar expressions).

The question is therefore how to efficiently evaluate such matrix functions. This can be done defining the matrix maps as the Taylor expansion evaluated in matrix 𝛀𝑿k\boldsymbol{\Omega}\boldsymbol{X}_{k}. We can write

(𝛀𝑿k)s=𝑿k1(𝑿k𝛀𝑿k)s𝑿k(\boldsymbol{\Omega}\boldsymbol{X}_{k})^{s}=\sqrt{\boldsymbol{X}_{k}}^{-1}\big{(}\sqrt{\boldsymbol{X}_{k}}\boldsymbol{\Omega}\sqrt{\boldsymbol{X}_{k}}\big{)}^{s}\sqrt{\boldsymbol{X}_{k}} (135)

where 𝑿k\sqrt{\boldsymbol{X}_{k}} always exists since 𝑿k\boldsymbol{X}_{k} is diagonal. Notice that (135) defines a similarity transformation, i.e. it conserves the spectrum of the similar matrices. An important point is to verify that if the spectrum of 𝛀𝑿k\boldsymbol{\Omega}\boldsymbol{X}_{k} is real and 𝑿k\boldsymbol{X}_{k} is diagonal, then the spectrum of 𝑿k𝛀𝑿k\sqrt{\boldsymbol{X}_{k}}\boldsymbol{\Omega}\sqrt{\boldsymbol{X}_{k}} is also real. This can be shown using the fact that, based on the definition of the Cayley polynomial and on the determinant properties, the eigenvalue problem for 𝛀𝑿k\boldsymbol{\Omega}\boldsymbol{X}_{k} is equivalent to the generalized eigenvalue problem 𝛀vλ𝑿k1v=0\boldsymbol{\Omega}\vec{v}-\lambda\boldsymbol{X}_{k}^{-1}\vec{v}=\vec{0}, assuming 𝑿k\boldsymbol{X}_{k} invertible. Then, a proof similar to the spectral theorem shows that if 𝛀\boldsymbol{\Omega} and 𝑿k1\boldsymbol{X}_{k}^{-1} are symmetric and real, then Im(λ)=0\text{Im}(\lambda)=0. This guarantees that an extension to the complex field of the scalar target system functions fi,k(xk)f_{i,k}(x_{k}) is not required. In fact, (135) implies

𝑭i,k(𝛀𝑿k)=𝑿k1𝑭i,k(𝑿k𝛀𝑿k)𝑿k.\displaystyle\boldsymbol{F}_{i,k}(\boldsymbol{\Omega}\boldsymbol{X}_{k})=\sqrt{\boldsymbol{X}_{k}}^{-1}\boldsymbol{F}_{i,k}(\sqrt{\boldsymbol{X}_{k}}\boldsymbol{\Omega}\sqrt{\boldsymbol{X}_{k}})\sqrt{\boldsymbol{X}_{k}}. (136)

Since 𝑿k𝛀𝑿k\sqrt{\boldsymbol{X}_{k}}\boldsymbol{\Omega}\sqrt{\boldsymbol{X}_{k}} is symmetric, 𝑷xk\boldsymbol{P}_{x_{k}} exists such that

𝑿k𝛀𝑿k=𝑷xk𝚺xk𝑷xk1\sqrt{\boldsymbol{X}_{k}}\boldsymbol{\Omega}\sqrt{\boldsymbol{X}_{k}}=\boldsymbol{P}_{x_{k}}\boldsymbol{\Sigma}_{x_{k}}\boldsymbol{P}_{x_{k}}^{-1}

where the real matrix 𝚺xk=diag{σxk,1,,σxk,N}\boldsymbol{\Sigma}_{x_{k}}=\text{diag}\{\sigma_{x_{k},1},\cdots,\sigma_{x_{k},N}\} is made of the elements of the spectrum of 𝑿k𝛀𝑿k\sqrt{\boldsymbol{X}_{k}}\boldsymbol{\Omega}\sqrt{\boldsymbol{X}_{k}}. As a result, we can write

𝑭i,k(𝛀𝑿k)=𝑿k1𝑷x1𝑭i,k(𝚺xk)𝑷xk1𝑿k\displaystyle\boldsymbol{F}_{i,k}(\boldsymbol{\Omega}\boldsymbol{X}_{k})=\sqrt{\boldsymbol{X}_{k}}^{-1}\boldsymbol{P}_{x_{1}}\boldsymbol{F}_{i,k}(\boldsymbol{\Sigma}_{x_{k}})\boldsymbol{P}_{x_{k}}^{-1}\sqrt{\boldsymbol{X}_{k}} (137)

where

𝑭i,k(𝚺x1)=diag(fi,k(σxk,1),,fi,k(σxk,N)).\displaystyle\boldsymbol{F}_{i,k}(\boldsymbol{\Sigma}_{x_{1}})=\text{diag}\big{(}f_{i,k}(\sigma_{x_{k},1}),\cdots,f_{i,k}(\sigma_{x_{k},N})\big{)}. (138)

Thus, evaluating the matrix maps boils down to the knowledge of the eigenvalues and eigenvectors of 𝑿k𝛀𝑿k\sqrt{\boldsymbol{X}_{k}}\boldsymbol{\Omega}\sqrt{\boldsymbol{X}_{k}}. The question is whether these two must evaluated at every time step, as 𝑿k\sqrt{\boldsymbol{X}_{k}} is a dynamical variable: unfortunately this is the case.

4.2 Uniform mean field projector

We now provide several examples to show the applications of the theory developed in this paper.

4.2.1 One dimensional potential

Our first example is a one dimensional nonlinear dynamical system, written as:

dxdt=f(x)=V(x)x.\frac{dx}{dt}=f(x)=-\frac{\partial V(x)}{\partial x}. (139)

Let us thus analyze numerically the PEDS 𝒪={f(x),𝛀1,α(𝑰𝛀1)X,1,N}\mathcal{O}=\{f(x),\boldsymbol{\Omega}_{1},-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},\vec{1},N\}, with a potential of the form

V(x)=a0+a1x+a22x2+a33x3+a44x4\displaystyle V(x)=a_{0}+a_{1}x+\frac{a_{2}}{2}x^{2}+\frac{a_{3}}{3}x^{3}+\frac{a_{4}}{4}x^{4} (140)

for a set of parameters for which two minima are present, as shown in Fig. 4. First, we compare the standard commutative and non-commutative maps. The difference is shown in Fig. 5 for identical initial conditions.

Refer to caption
Figure 4: Potential V(x)V(x) in (140), for a0=0a_{0}=0, a1=9.85a_{1}=9.85, a2=10a_{2}=10, a3=2a_{3}=2 and a4=0.395a_{4}=-0.395. The parameters are chosen to provide the potential minima.

The associated PEDS is given by the differential system

dXdt\displaystyle\frac{d\vec{X}}{dt} =\displaystyle= 𝑭(X)1α(𝑰𝛀𝟏)X\displaystyle\boldsymbol{F}(\vec{X})\vec{1}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega_{1}})\vec{X} (141)
=\displaystyle= (a1𝑰+a2(𝛀𝟏𝑿)+a3(𝛀𝟏𝑿)2+a4(𝛀𝟏𝑿)3)1α(𝑰𝛀𝟏)1\displaystyle-\Big{(}a_{1}\boldsymbol{I}+a_{2}(\boldsymbol{\Omega_{1}}\boldsymbol{X})+a_{3}(\boldsymbol{\Omega_{1}}\boldsymbol{X})^{2}+a_{4}(\boldsymbol{\Omega_{1}}\boldsymbol{X})^{3}\Big{)}\vec{1}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega_{1}})\vec{1}
Refer to caption
Figure 5: Comparison between the standard commutative and non-commutative maps for the 1D potential (140) and the target system.
Refer to caption
Figure 6: Evolution of the PEDS {f(x),𝛀1,α(𝑰𝛀𝟏)X,1,N}\{f(x),\boldsymbol{\Omega}_{1},-\alpha(\boldsymbol{I}-\boldsymbol{\Omega_{1}})\vec{X},\vec{1},N\} for random initial conditions around the maximum for random initial conditions for the non-commutative map. The blue solid lines are the target system minima. The black dashed curves are the target system trajectories (Ω=I\Omega=I), that asymptotically reach both the two minima. The red curves refer to the coupled PEDS with the uniform mean field projector using the standard non-commutative map, leading to the global minimum, as it can be seen from the plot of the x~(t)=𝒫𝛀1X(t)\tilde{x}(t)=\mathcal{P}_{\boldsymbol{\Omega}_{1}}\vec{X}(t), the green dashed line.

The results of the numerical integration, using a simple Euler scheme for Gaussian-distributed initial conditions around the potential maximum, at x=0.51x^{*}=-0.51, of the target system and of the PEDS embedding with the standard non-commutative map. The PEDS trajectories all reach the global minimum of the potential V(x)V(x), while the uncoupled trajectories split between the two stable equilibria.

4.2.2 Vector target system

As an example of vector target system, we consider a two-dimensional dynamical system embedded with the standard non-commutative map. The target system is:

dxdt\displaystyle\frac{dx}{dt} =\displaystyle= V(x,y)x\displaystyle-\frac{\partial V(x,y)}{\partial x} (142)
dydt\displaystyle\frac{dy}{dt} =\displaystyle= V(x,y)y\displaystyle-\frac{\partial V(x,y)}{\partial y} (143)

where

V(x,y)=exp(x22y22+y44)V(x,y)=\exp\left(\frac{x^{2}}{2}-\frac{y^{2}}{2}+\frac{y^{4}}{4}\right) (144)

which is characterized by two local minima,(x=0,y=±1)(x^{*}=0,y^{*}=\pm 1). The equations of motion define the gradient descent dynamics

dxdt\displaystyle\frac{dx}{dt} =\displaystyle= fx(x,y)=xV(x,y)\displaystyle f_{x}(x,y)=-xV(x,y) (145)
dydt\displaystyle\frac{dy}{dt} =\displaystyle= fy(x,y)=(yy3)V(x,y).\displaystyle f_{y}(x,y)=-(y-y^{3})V(x,y). (146)

The interest in this examples lies in the fact that the PEDS equations of motion depend on the ordering prescription considered. We discuss here the two cases defined below:

S1\displaystyle S_{1} \displaystyle\rightarrow {𝑭x(1)(X,Y)=𝛀1𝑿𝑽1(𝑿,𝒀)𝑭y(1)(X,Y)=(𝛀1𝒀)(𝑰(𝛀1𝒀)2)𝑽1(𝑿,𝒀)\displaystyle\begin{cases}\boldsymbol{F}^{(1)}_{x}(\vec{X},\vec{Y})&=-\boldsymbol{\Omega}_{1}\boldsymbol{X}\ \boldsymbol{V}_{1}(\boldsymbol{X},\boldsymbol{Y})\\ \boldsymbol{F}_{y}^{(1)}(\vec{X},\vec{Y})&=-(\boldsymbol{\Omega}_{1}\boldsymbol{Y})\big{(}\boldsymbol{I}-(\boldsymbol{\Omega}_{1}\boldsymbol{Y})^{2}\big{)}\ \boldsymbol{V}_{1}(\boldsymbol{X},\boldsymbol{Y})\\ \end{cases} (147)
S2\displaystyle S_{2} \displaystyle\rightarrow {𝑭x(2)(X,Y)=𝛀1𝑿𝑽2(𝑿,𝒀)𝑭y(2)(X,Y)=(𝛀1𝒀)(𝑰(𝛀1𝒀)2)𝑽2(𝑿,𝒀)\displaystyle\begin{cases}\boldsymbol{F}_{x}^{(2)}(\vec{X},\vec{Y})&=-\boldsymbol{\Omega}_{1}\boldsymbol{X}\ \boldsymbol{V}_{2}(\boldsymbol{X},\boldsymbol{Y})\\ \boldsymbol{F}_{y}^{(2)}(\vec{X},\vec{Y})&=-(\boldsymbol{\Omega}_{1}\boldsymbol{Y})\big{(}\boldsymbol{I}-(\boldsymbol{\Omega}_{1}\boldsymbol{Y})^{2}\big{)}\ \boldsymbol{V}_{2}(\boldsymbol{X},\boldsymbol{Y})\\ \end{cases} (148)

where

𝑽1(𝑿,𝒀)\displaystyle\boldsymbol{V}_{1}(\boldsymbol{X},\boldsymbol{Y}) =\displaystyle= exp(12(𝛀𝟏𝑿)2+(𝛀𝟏𝒀)2(12𝑰14(𝛀𝟏𝒀)2)\displaystyle\text{exp}\left(\frac{1}{2}(\boldsymbol{\Omega_{1}}\boldsymbol{X})^{2}+(\boldsymbol{\Omega_{1}}\boldsymbol{Y})^{2}(\frac{1}{2}\boldsymbol{I}-\frac{1}{4}(\boldsymbol{\Omega_{1}}\boldsymbol{Y})^{2}\right) (149)
𝑽2(𝑿,𝒀)\displaystyle\boldsymbol{V}_{2}(\boldsymbol{X},\boldsymbol{Y}) =\displaystyle= exp(12(𝛀𝟏𝑿)2)exp((𝛀𝟏𝒀)2(12𝑰14(𝛀𝟏𝒀)2))\displaystyle\text{exp}\Big{(}\frac{1}{2}(\boldsymbol{\Omega_{1}}\boldsymbol{X})^{2}\Big{)}\text{exp}\Big{(}(\boldsymbol{\Omega_{1}}\boldsymbol{Y})^{2}(\frac{1}{2}\boldsymbol{I}-\frac{1}{4}(\boldsymbol{\Omega_{1}}\boldsymbol{Y})^{2}\big{)}\Big{)} (150)

where 𝑽1𝑽2\boldsymbol{V}_{1}\neq\boldsymbol{V}_{2} since exp(𝛀1𝑿𝛀1𝒀)exp(𝛀1𝑿)exp(𝛀1𝒀)\exp(\boldsymbol{\Omega}_{1}\boldsymbol{X}\boldsymbol{\Omega}_{1}\boldsymbol{Y})\neq\exp(\boldsymbol{\Omega}_{1}\boldsymbol{X})\text{exp}(\boldsymbol{\Omega}_{1}\boldsymbol{Y}). Thus, choosing one versus the other is equivalent to a different ordering choice.

Refer to caption
Figure 7: The potential V(x,y)V(x,y) in (144), the projection with the two minima.

We embed this system of equations via 𝒪1=({fx,fy},𝛀𝟏,{α(𝑰𝛀1)X,α(𝑰𝛀1)Y},S1,1,N)\mathcal{O}_{1}=(\{f_{x},f_{y}\},\boldsymbol{\Omega_{1}},\{-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{Y}\},S_{1},\vec{1},N) and 𝒪2=({fx,fy},𝛀𝟏,{α(𝑰𝛀1)X,α(𝑰𝛀1)Y},S2,1,N)\mathcal{O}_{2}=(\{f_{x},f_{y}\},\boldsymbol{\Omega_{1}},\{-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X},-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{Y}\},S_{2},\vec{1},N), obtaining

dXdt\displaystyle\frac{d\vec{X}}{dt} =\displaystyle= 𝛀1𝑭x(i)1α(𝑰𝛀1)X,\displaystyle\boldsymbol{\Omega}_{1}\boldsymbol{F}_{x}^{(i)}\vec{1}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X}, (151)
dYdt\displaystyle\frac{d\vec{Y}}{dt} =\displaystyle= 𝛀1𝑭y(i)1α(𝑰𝛀1)Y,\displaystyle\boldsymbol{\Omega}_{1}\boldsymbol{F}_{y}^{(i)}\vec{1}-\alpha(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{Y}, (152)

where i=1,2i=1,2 is the label for S1,S2S_{1},S_{2}. The numerical solutions are shown in Fig. 8 using α=0.1\alpha=0.1 and N=50N=50. The two dynamic behaviours are essentially identical, as per Corollary 3.13. Interestingly, even if in general [𝛀𝟏𝑿,𝛀𝟏𝒀]0[\boldsymbol{\Omega_{1}X},\boldsymbol{\Omega_{1}Y}]\neq 0, for this example we can work out the full details leading to the independence on the ordering.

First, let us note that 𝛀𝟏𝑿𝛀𝟏=X𝛀1\boldsymbol{\Omega_{1}X\Omega_{1}}=\langle X\rangle\boldsymbol{\Omega}_{1}. Using this expression, we can write

f(𝛀1𝑿)=𝑰+f(X)1X𝛀1𝑿f(\boldsymbol{\Omega}_{1}\boldsymbol{X})=\boldsymbol{I}+\frac{f(\langle X\rangle)-1}{\langle X\rangle}\boldsymbol{\Omega}_{1}\boldsymbol{X}

therefore

exp(f(𝛀1𝑿)+g(𝛀1𝒀))\displaystyle\exp\left(f(\boldsymbol{\Omega}_{1}\boldsymbol{X})+g(\boldsymbol{\Omega}_{1}\boldsymbol{Y})\right) =exp(2𝑰+f(X)1X𝛀1𝑿+g(Y)1Y𝛀1𝒀)\displaystyle=\exp\left(2\boldsymbol{I}+\frac{f(\langle X\rangle)-1}{\langle X\rangle}\boldsymbol{\Omega}_{1}\boldsymbol{X}+\frac{g(\langle Y\rangle)-1}{\langle Y\rangle}\boldsymbol{\Omega}_{1}\boldsymbol{Y}\right)
=exp(2)exp[𝛀1(f(X)1X𝑿+g(Y)1Y𝒀)]\displaystyle=\exp(2)\exp\left[\boldsymbol{\Omega}_{1}\left(\frac{f(\langle X\rangle)-1}{\langle X\rangle}\boldsymbol{X}+\frac{g(\langle Y\rangle)-1}{\langle Y\rangle}\boldsymbol{Y}\right)\right] (153)

We can now apply again the same formula

exp[𝛀1(f(X)1X𝑿+g(Y)1Y𝒀)]\displaystyle\exp\left[\boldsymbol{\Omega}_{1}\left(\frac{f(\langle X\rangle)-1}{\langle X\rangle}\boldsymbol{X}+\frac{g(\langle Y\rangle)-1}{\langle Y\rangle}\boldsymbol{Y}\right)\right]
=exp[𝑰+f(X)+g(Y)21f(X)+g(Y)2𝛀1(f(X)1X𝑿+g(Y)1Y𝒀)]\displaystyle\quad=\exp\left[\boldsymbol{I}+\frac{{f(\langle X\rangle)+g(\langle Y\rangle)-2}-1}{f(\langle X\rangle)+g(\langle Y\rangle)-2}\boldsymbol{\Omega}_{1}\left(\frac{f(\langle X\rangle)-1}{\langle X\rangle}\boldsymbol{X}+\frac{g(\langle Y\rangle)-1}{\langle Y\rangle}\boldsymbol{Y}\right)\right] (154)

yielding, after taking into account the multiplication times 1\vec{1}

exp(2)exp[𝑰+f(X)+g(Y)21f(X)+g(Y)2𝛀1(f(X)1X𝑿+g(Y)1Y𝒀)]1\displaystyle\exp(2)\exp\left[\boldsymbol{I}+\frac{{f(\langle X\rangle)+g(\langle Y\rangle)-2}-1}{f(\langle X\rangle)+g(\langle Y\rangle)-2}\boldsymbol{\Omega}_{1}\left(\frac{f(\langle X\rangle)-1}{\langle X\rangle}\boldsymbol{X}+\frac{g(\langle Y\rangle)-1}{\langle Y\rangle}\boldsymbol{Y}\right)\right]\vec{1}
=exp(f(X)+g(Y))1.\displaystyle\quad=\exp\left(f(\langle X\rangle)+g(\langle Y\rangle)\right)\vec{1}. (155)

In other words, we have shown that

exp(f(𝛀1𝑿)+g(𝛀1𝒀))1=exp(f(𝛀1𝑿))exp(g(𝛀1𝒀))1,\exp\left(f(\boldsymbol{\Omega}_{1}\boldsymbol{X})+g(\boldsymbol{\Omega}_{1}\boldsymbol{Y})\right)\vec{1}=\exp\left(f(\boldsymbol{\Omega}_{1}\boldsymbol{X})\right)\exp\left(g(\boldsymbol{\Omega}_{1}\boldsymbol{Y})\right)\vec{1}, (156)

i.e. the equivalence of the dynamics of S1S_{1} and S2S_{2}.

Refer to caption
Figure 8: The two PEDS dynamics 𝒪1\mathcal{O}_{1} and 𝒪2\mathcal{O}_{2} for the xx and yy variables (left and right) for N=50N=50 and integrated using an Euler scheme with step size dt=0.1dt=0.1. We consider here the noncommutative map. We can see that the dynamics of S1S_{1} and S2S_{2} are identical. Note that both S1S_{1}, S2S_{2} and the uncoupled systems have the identical initial conditions.

4.2.3 Hamiltonian equations with dissipation

As a third example, let us consider another two-dimensional vector target system: the description of a dissipative Hamiltonian system for a single particle of mass mm. The target system reads

dxdt\displaystyle\frac{dx}{dt} =\displaystyle= pm\displaystyle\frac{p}{m} (157)
dpdt\displaystyle\frac{dp}{dt} =\displaystyle= Vxχpm\displaystyle-\frac{\partial V}{\partial x}-\chi\frac{p}{m} (158)

where χ\chi denotes the dissipation and we define the force f(x,p)=V/xf(x,p)=-\partial V/\partial x. Following the prescription of the previous sections, we write the PEDS

𝒪=({pm,f(x,p)χp/m},𝛀𝟏,{αx(𝑰𝛀𝟏)X,αp(𝑰𝛀𝟏)P},1,N).\mathcal{O}=(\{\frac{p}{m},f(x,p)-\chi{p}/{m}\},\boldsymbol{\Omega_{1}},\{-\alpha_{x}(\boldsymbol{I-\Omega_{1}})\vec{X},-\alpha_{p}(\boldsymbol{I-\Omega_{1}})\vec{P}\},\vec{1},N).

The extended system equations are given by

dXdt\displaystyle\frac{d\vec{X}}{dt} =\displaystyle= 1m𝛀1𝑷1αx(𝑰𝛀1)X\displaystyle\frac{1}{m}\boldsymbol{\Omega}_{1}\boldsymbol{P}\vec{1}-\alpha_{x}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{X} (159)
dPdt\displaystyle\frac{d\vec{P}}{dt} =\displaystyle= 𝛀1(𝑭(𝑿)χ𝑷m)1αp(𝑰𝛀1)P\displaystyle\boldsymbol{\Omega}_{1}\left(\boldsymbol{F}(\boldsymbol{X})-\chi\frac{\boldsymbol{P}}{m}\right)\vec{1}-\alpha_{p}(\boldsymbol{I}-\boldsymbol{\Omega}_{1})\vec{P} (160)

which is thus a 2N2N set of equations. Let us focus on the potential V(x,p)V(x,p) defined in (140). The results are shown in Fig. 9.

Refer to caption
Figure 9: PEDS dynamics for the Hamiltonian system with one particle, integrated using an Euler scheme with step size dt=0.001dt=0.001. The extended system has N=50N=50. Also in this case, the dynamics approaches the fixed points of the potential for the xx variable, reaching a local minimum, while the pp variables tends to the asymptotic value p=0p^{*}=0.

4.3 Beyond the uniform mean field projector

This paper is focused mostly on the uniform mean field projection 𝛀1\boldsymbol{\Omega}_{1}. Before concluding, we wish to numerically simulate also the case of a PEDS with a different projection operator. Let us consider a PEDS where 𝛀=𝑩t(𝑩𝑩t)1𝑩\boldsymbol{\Omega}=\boldsymbol{B}^{t}(\boldsymbol{B}\boldsymbol{B}^{t})^{-1}\boldsymbol{B}, where 𝑩\boldsymbol{B} is a random square matrix (uniformly distributed on [0,1][0,1]) of size N×KN\times K. The scalar target dynamical system we are interested in is again

dxdt=f(x)=V(x)x.\frac{dx}{dt}=f(x)=-\frac{\partial V(x)}{\partial x}. (161)

with the potential in (140), choosing parameters a4=a0=0a_{4}=a_{0}=0, a3=2a_{3}=-2, a2=10a_{2}=-10 and a1=9.85a_{1}=9.85 that guarantee a single potential minimum, as shown Fig. 10 (left). We then consider the PEDS 𝒪=(f(x),𝛀,α(𝑰𝛀)X,𝛀1,N)\mathcal{O}=(f(x),\boldsymbol{\Omega},-\alpha(\boldsymbol{I-\Omega})\vec{X},\boldsymbol{\Omega}\vec{1},N), with N=50N=50, and follow the observable x~=𝒫𝛀X\tilde{x}=\mathcal{P}_{\boldsymbol{\Omega}}\vec{X}. The results are shown in Fig. 10 (right). The PEDS embedding converges also in this case to the potential absolute minimum, thus confirming that a generalization of the results of this paper to arbitrary projectors is possible.

Refer to caption
Figure 10: PEDS dynamics for the target system (161) with a random projection operator. We can see that the results we established for this paper in the case 𝛀𝟏\boldsymbol{\Omega_{1}} could be possibly extended to more general projectors.

As a last comment, one of the main motivations for this study is that in circuits, conservation laws can be expressed in terms of projector operators. An example is the volatile but (almost) ideal memristor. A resistor with memory can be described, at the lowest level of approximation for a current controlled device, by an effective dynamical resistance depending on an internal parameter xx. In this sense, memristors are approximately described by the functional form R(x)=Roff(1x)+xRonR(x)=R_{\text{off}}(1-x)+xR_{\text{on}}, where Ron<RoffR_{\text{on}}<R_{\text{off}} are the boundary resistances, and x[0,1]x\in[0,1]. We assume that the internal memory parameter xx evolves according to a simple equation of the form dx/dt=RonI/βαxdx/{dt}={R_{\text{on}}}I/{\beta}-\alpha x. The parameters α\alpha and β\beta are the decay constant and the effective activation voltage per unit time, respectively. For a recent paper which inspired this study, consider [30], where transitions between effective minima of a lower dimensional potential were observed. Using Ohm’s law, we define voltage V=R(x)IV=R(x)I, so as to obtain a normalized equation for x(t)x(t)

dxdt=Vβ11χxαx=αV(x,s)x\displaystyle\frac{dx}{dt}=\frac{V}{\beta}\frac{1}{1-\chi x}-\alpha x=-\alpha\frac{\partial V(x,s)}{\partial x} (162)

where χ=(RoffRon)/Roff\chi={(R_{\text{off}}-R_{\text{on}})}/{R_{\text{off}}} and s=Sαβs=\frac{S}{\alpha\beta}, with 0χ10\leq\chi\leq 1 in the physically relevant cases, and V(x,s)V(x,s) as an effective potential, where SS is the voltage applied to the circuit, and ss is a normalized quantity with units of inverse time.

The dynamics of a single memristor (162) is fully characterized by the gradient following the dynamics of the effective potential

V(x,s)=12x2+sχlog(1χx),V(x,s)=\frac{1}{2}x^{2}+\frac{s}{\chi}\log(1-\chi x), (163)

with s=Sαβs=\frac{S}{\alpha\beta}; the constant α\alpha also acts as the learning rate in (162).

For a network of memristors, the differential equation for xi(t)x_{i}(t) is a set of coupled ODE of the form [23]:

ddtx=1β(𝑰χ𝛀𝑿)1𝛀Sαx,\displaystyle\frac{d}{dt}\vec{x}=\frac{1}{\beta}(\boldsymbol{I}-\chi\boldsymbol{\Omega X})^{-1}\boldsymbol{\Omega}\vec{S}-\alpha\vec{x}, (164)

where 𝑿ij(t)=xi(t)δij\boldsymbol{X}_{ij}(t)=x_{i}(t)\delta_{ij}. The matrix 𝛀\boldsymbol{\Omega} is the projection operator on the vector space of cycles of 𝒢\mathcal{G},the graph representing the circuit [23], and, as discussed in the Introduction, a mathematical consequence of Kirchhoff’s conservation laws. Now, we note that we can write (164) as:

ddtx=𝛀(1β(𝑰χ𝛀𝑿)1𝛀Sαx)α(𝑰𝛀)x,\displaystyle\frac{d}{dt}\vec{x}=\boldsymbol{\Omega}(\frac{1}{\beta}(\boldsymbol{I}-\chi\boldsymbol{\Omega X})^{-1}\boldsymbol{\Omega}\vec{S}-\alpha\vec{x})-\alpha(\boldsymbol{I}-\boldsymbol{\Omega})\vec{x}, (165)

which is exactly in the form of a PEDS, with a standard decay function. Thus, the results of [30] can be interpreted as the relaxation of the system towards the minima defined by the embedding function. If 𝛀=𝛀1\boldsymbol{\Omega}=\boldsymbol{\Omega}_{1}, then using the results of this paper we know that the potential (163) determines the effective minima of the system. However, in order to justify the presence of the rumbling transitions shown in [30], a deeper understanding of the PEDS properties for a general projector 𝛀\boldsymbol{\Omega} is required.

5 Conclusions and perspective

In the present paper we presented and studied a map between dynamical systems of size mm and dynamical systems in a higher number of variables. This is the first of a series of papers formally investigating the projective embeddings of dynamical systems (PEDS) paradigm that we defined here. The purpose of this work was to formally show the properties of this type of embeddings, within the context of a particular projector matrix. As we have seen, their structure is such that for long times, the asymptotic equilibria of the target dynamical system can be recovered.

We have discussed in particular the case of the uniform mean field projector operator Ω1,ij=1N{\Omega}_{1,ij}=\frac{1}{N}. For this choice, we have been able to prove analytically that the asymptotic equilibria are strictly connected to those of the original system. Aside from establishing the formalism, this paper also established some exact results about how the embedding changes the properties of the dynamics critical, including the cases of unstable equilibria and saddle points.

Specifically, we have studied the embedding of mm dimensional dynamical systems in NmNm-dimensional systems. The purpose of such embedding is to modify the nature of the fixed points of the dynamics, i.e. those satisfying {xs.t.dx/dt|x=0}\{\vec{x}^{*}\ \text{s.t.}\ {d\vec{x}}/{dt}|_{\vec{x}^{*}}=0\}. In particular, we have shown that stable and saddle type fixed points retain their properties, while unstable fixed points become saddles. This observation justify future works in this direction, in particular exploiting different types of decay functions, matrix embeddings and projectors with respect to this contribution. It is worth to mention that a follow up of this work is in preparation, in which we discuss the behavior of PEDS for general projectors; many of the results on the Jacobian obtain in this paper do actually apply also in the general case [PEDS2].

An important aspect of interest of future works will be to focus on how to further modify the spectral properties of the fixed points, i.e. the nature of the Jacobian once evaluated at x\vec{x}^{*}. What we have shown in the present paper is that, for the uniform projector, the PEDS Jacobian is always symmetric, and thus characterized by real eigenvalues, that in particular are negative if the corresponding fixed point of the target system is stable. This implies that the dynamics near stable fixed points is always laminar, e.g. slowly decaying towards the fixed point. As we will see in future works, this is not the case for general projectors, for which approximate but special techniques will have to be employed.

As discussed, the spectral signature is in part inherited by the original, target dynamical system, but modified through the extended number of dimensions. The idea of generalizing the space of solutions to higher dimensions is not new. In a way, the PEDS technique is in spirit close to both Markov Chain Monte Carlo methods [28] and the notion of lifts in convex optimization [29], but is specifically developed for the fixed points of dynamical systems.

In particular, in [30] it was observed that memristive circuits have an effective lower dimensional representation in terms of an effective potential, and that they can exhibit a “rumbling” transition, i.e. a transient chaotic tunneling between local minima of a properly defined potential. As it turns out, such dynamics is only a particular case of the PEDS introduced here, in which the projector operator was given by random circuit connections.

The rumbling transition in [30] was pinpointed numerically to be due to an effective “Lyapunov force”, shown to be present in connection with the rumbling transition phenomenon. Such force was defined essentially as a deviation from a mean field theory, and we provided evidence of an athermal and novel mechanism in which barrier escapes emerge in the effective description of a multi-particle system. This paper is a continuation of that work, attempting at generalizing those findings to general systems, although focusing specifically on a particular type of projector: in this case, these “Lyapunov” forces are not present. Similar yet different types of behavior were also observed previously within the context of memory-based computing (memcomputing) solutions [31, 32, 33, 34, 35, 36].

The main focus of this paper represents a first step towards a clarification of the general reasons why the introduction of hidden variables in a dynamical system can lead to transitions between local and global minima of the effective description via instabilities in the full system. Since maxima can be turned into saddle points, generically there cannot be no “barriers” when the target system is a gradient descent. However, as we will show formally in future works, in order to obtain the rumbling transitions, one has to go beyond the uniform mean field approximation and study a more general type of projector.

Clearly, the projective embedding studied in this paper can be employed in a variety of dynamical systems, including all sort of gradient-based dynamics, with applicability to machine learning and neural networks. These applications will also be the subject of future studies. In particular, we hope that the introduction of “hidden variables” in dynamical systems [37] can be further investigated for the purpose of machine learning and optimization applications [38]. In general, the study of transient chaos in dynamical systems and optimization [39, 40] is an interesting area of research with possible applications also in memristor-based algorithms [41].

Acknowledgments. The work of F.C. was carried out under the auspices of the NNSA of the U.S. DoE at LANL under Contract No. DE-AC52-06NA25396, and in particular grant PRD20190195 from the LDRD. F. C. would also like to thank W. Bruinsma for various comments and observations on the paper.

References