This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Pseudospectra of the heat operator pencil

Krishna Kumar G Department of Mathematics, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, India, 695581. krishna.math@keralauniversity.ac.in  and  Judy Augustine Department of Mathematics, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, India, 695581. judyaugustine9@gmail.com
Abstract.

This article undertakes an analysis of the one-dimensional heat equation, wherein the Dirichlet condition is applied at the left end and Neumann condition at the right end. The heat equation is restructured as a non-self-adjoint 2×22\times 2 unbounded block operator matrix pencil. The spectral, pseudospectral, and (n,ϵ)(n,\epsilon)-pseudospectral enclosures of the 2×22\times 2 unbounded block operator matrix pencil are explored to scrutinize the heat operator pencil. The plots of the discretized equation are depicted to illustrate the observations.

Key words and phrases:
Heat equation, operator pencil, block operator matrices, non-self-adjoint, eigenvalue, pseudospectrum
2020 Mathematics Subject Classification:
Primary ; Secondary
2020 Mathematics Subject Classification:
Primary 35K05, 47A08, 47A10; Secondary 15A22, 47A30, 80M20
The first author is supported through the SERB MATRICS grant with project reference no. MTR/2021/000028 and the PLEASE scheme, Department of Higher Education, Government of Kerala, Kerala, India.
The second author thanks Kerala State Council for Science, Technology and Environment (KSCSTE), Kerala, India (Ref No: KSCSTE/990/2021-FSHP-MS) for financial support.

1. Introduction

The heat transfer through an ideal rod of length dd with thermal diffusivity c2c^{2} subject to the Dirichlet condition at the left and Neumann condition at the right end is formulated as,

(1.1) ϕt=c22ϕx2, 0xd,t0,ϕ(0,t)=ϕx(d,t)=0.\displaystyle\frac{\partial\phi}{\partial t}=c^{2}\frac{\partial^{2}\phi}{\partial x^{2}},\ \ 0\leq x\leq d,\ \ t\geq 0,\ \ \phi(0,t)=\phi_{x}(d,t)=0.

The domain of the solution (one-dimensional heat equation) is a semi-infinite strip of width dd that continues indefinitely in time. The probabilistic approach, variational iteration, finite difference, and finite element are among the few methods used to study the one-dimensional heat equation; see [2, 12, 16, 22]. The one-dimensional heat equation is reformulated in this article as a linear evolution process on a suitable Hilbert space. The closed linear operator pencil arising from the heat equation is illustrated as follows. Let u=(u1u2)=(ϕϕx)u=\begin{pmatrix}u_{1}\\ u_{2}\end{pmatrix}=\begin{pmatrix}\phi\\ \phi_{x}\end{pmatrix}, then the system (1.1) is converted into

(1.2) ut=𝒜u,𝒜=(c22x2),=(IxI),u1(0,t)=u2(d,t)=0.\displaystyle\mathcal{B}u_{t}=\mathcal{A}u,\ \ \mathcal{A}=\begin{pmatrix}c^{2}\cfrac{\partial^{2}}{\partial x^{2}}&&\\ &&\end{pmatrix},\ \ \mathcal{B}=\begin{pmatrix}I&\\ \cfrac{\partial}{\partial x}&-I\end{pmatrix},\ \ u_{1}(0,t)=u_{2}(d,t)=0.

Suppose uu is variably separable and let

u(x,t)=eλtψ(x)=eλt(ψ1(x)ψ2(x)).u(x,t)=e^{\lambda t}\psi(x)=e^{\lambda t}\begin{pmatrix}\psi_{1}(x)\\ \psi_{2}(x)\end{pmatrix}.

Then the system (1.2) is converted into the generalized eigenvalue problem of the form

(1.3) (λBA)ψ=0,A=(c2d2dx2),B=(IddxI),ψ1(0)=ψ2(d)=0.\displaystyle(\lambda B-A)\psi=0,\ \ A=\begin{pmatrix}c^{2}\cfrac{d^{2}}{dx^{2}}&&\\ &&\end{pmatrix},\ \ B=\begin{pmatrix}I&\\ \cfrac{d}{dx}&-I\end{pmatrix},\ \ \psi_{1}(0)=\psi_{2}(d)=0.

Thus, the one-dimensional heat equation defined in (1.1) is transformed into a linear operator pencil, a 2×22\times 2 unbounded block operator matrix pencil. If (λBA)ψ=0(\lambda B-A)\psi=0 for some ψ0\psi\neq 0, then λ\lambda is called the generalized eigenvalue and ψ\psi is the corresponding generalized eigenfunction. The domains D(A)D(A) and D(B)D(B) are suitable subspaces of the Hilbert space L2[0,d]×L2[0,d]L^{2}[0,d]\times L^{2}[0,d] defined by

D(A)\displaystyle D(A) ={vL2[0,d]:vis absolutely continous,v′′L2[0,d]}×L2[0,d],\displaystyle=\left\{v\in L^{2}[0,d]:v^{\prime}\ \textnormal{is absolutely continous},\ v^{\prime\prime}\in L^{2}[0,d]\right\}\times L^{2}[0,d],

and

D(B)\displaystyle D(B) ={vL2[0,d]:vis absolutely continous,vL2[0,d]}×L2[0,d].\displaystyle=\left\{v\in L^{2}[0,d]:v\ \textnormal{is absolutely continous},\ v^{\prime}\in L^{2}[0,d]\right\}\times L^{2}[0,d].

Note that B2=IB^{2}=I on D(B)D(B) and for ψ=(ψ1ψ2)L2[0,d]×L2[0,d]\psi=\begin{pmatrix}\psi_{1}\\ \psi_{2}\end{pmatrix}\in L^{2}[0,d]\times L^{2}[0,d],

ψ2=0d(|ψ1(x)|2+|ψ2(x)|2)𝑑x.\displaystyle\|\psi\|^{2}=\int_{0}^{d}\left(\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}\right)\ dx.

In [11], Nagel introduces the matrix theory for unbounded operator matrices. One can find vast information about block operator matrices in [21]. This article focuses on the pseudospectral study of closed linear operator pencil and 2×22\times 2 unbounded block operator matrix pencil to analyze the one-dimensional heat equation.

1.1. Background and Outline

The operators that arise from the physical applications are closed but unbounded, and due to this, closed operators gained attention in the mathematical field. For more about closed operators, refer [7, 8]. Throughout this article, \mathbb{H} denotes a complex Hilbert space, and I,𝟎I,{\bf 0} are the identity operator, zero operators on \mathbb{H}. Further 𝒞(),()\mathcal{C}(\mathbb{H}),\mathcal{B}(\mathbb{H}) are the set of all closed, bounded operators on \mathbb{H}. The domain of A𝒞()A\in\mathcal{C}(\mathbb{H}) is denoted as D(A)D(A).

Let A,B𝒞()A,B\in\mathcal{C}(\mathbb{H}) and λ\lambda\in\mathbb{C}, then the closed linear operator pencil

(A,B)(λ)=λBA(A,B)(\lambda)=\lambda B-A

is defined on D(A)D(B)D(A)\cap D(B). If both AA and BB are self-adjoint, then (A,B)(A,B) is called a self-adjoint pencil. For more information on self-adjoint operator pencils, see [10]. The generalized resolvent of (A,B)(A,B) is defined by

ρ(A,B)={λ:(λBA)1()}.\rho(A,B)=\{\lambda\in\mathbb{C}:(\lambda B-A)^{-1}\in\mathcal{B}(\mathbb{H})\}.

The spectrum of (A,B)(A,B) is defined by σ(A,B)=ρ(A,B)\sigma(A,B)=\mathbb{C}\setminus\rho(A,B). The generalized eigenvalues of (A,B)(A,B) is defined by

σe(A,B)={λ:λBAis not one-one}.\sigma_{e}(A,B)=\{\lambda\in\mathbb{C}:\lambda B-A\ \textnormal{is not one-one}\}.

The spectral analysis of operators fails to provide the correct information while dealing with non-normal operators. During the 1990s, Trefethen advocated the concept of pseudospectrum in the context of non-normal operators resulting from the discretization of certain non-symmetric differential operators; see [18, 19].

Definition 1.1.

Let A𝒞()A\in\mathcal{C}(\mathbb{H}) and ϵ>0\epsilon>0, the ϵ\epsilon-pseudospectrum of AA is defined by

Λϵ(A)=σ(A){λ:(λIA)1ϵ1}.\Lambda_{\epsilon}(A)=\sigma(A)\cup\left\{\lambda\in\mathbb{C}:\left\|(\lambda I-A)^{-1}\right\|\geq\epsilon^{-1}\right\}.

Pseudospectra has been extensively studied due to its applications in numerical analysis and differential equations. It is used to study the norm behavior of AnA^{n} (n=1,2,n=1,2,\ldots) and etAe^{tA} (t>0t>0), analyze iterative methods for the solutions of Ax=bAx=b, and in stability analysis of the method of lines discretizations of time-dependent partial differential equations; see [13, 18, 20]. Over the periods, pseudospectrum has been studied for various differential operators like wave, convection-diffusion, and Orr-Sommerfield operators; see [3, 14, 15]. Pseudospectra provides more stable information about non-self-adjoint operators under various limiting procedures than the spectrum; see [1]. Later on, Hansen introduced the more general (n,ϵ)(n,\epsilon)-pseudospectra for linear operators on separable Hilbert spaces and pointed out that they have numerous attractive features with pseudospectra but offer a better insight into the approximation of the spectrum; see [4, 5]. The (n,ϵ)(n,\epsilon)-pseudospectrum of bounded linear operator pencils is studied in [9].

The article is organized as follows. Section 1 illustrates the formulation of the one-dimensional heat equation into a closed linear operator pencil. The suitable substitution and the separation of variables transform the one-dimensional heat equation to a 2×22\times 2 unbounded block operator matrix pencil. Section 2 studies the (n,ϵ)(n,\epsilon)-pseudospectra of closed linear operator pencil. Several important properties of the (n,ϵ)(n,\epsilon)-pseudospectrum of a closed linear operator pencil are developed. The equivalent definitions for the (n,ϵ)(n,\epsilon)-pseudospectra of closed linear operator pencil and the characterization of the (n,ϵ)(n,\epsilon)-pseudospectra of self-adjoint operator pencil are done. Section 3 concerns the 2×22\times 2 unbounded block operator matrix pencil. Using the generalized Frobenius-Schur factorization, we furnish the spectral, pseudospectral, and (n,ϵ)(n,\epsilon)-pseudospectral enclosures for 2×22\times 2 unbounded block operator matrix pencil. Section 4 identifies the heat operator pencil as a non-self-adjoint pencil. The eigenvalue analysis and the pseudospectral enclosure of the heat operator pencil are done. The pseudospectrum of discretized heat equation is plotted to illustrate the results.

2. (n,ϵ)(n,\epsilon)-pseudopsectra of the closed linear operator pencil

This section studies the (n,ϵ)(n,\epsilon)-pseudospectrum of a closed linear operator pencil for a general purpose. Let +\mathbb{Z}_{+} denote the set of all positive integers. For zz\in\mathbb{C} and r>0r>0, D(z,r):={λ:|λz|r}D(z,r):=\{\lambda:|\lambda-z|\leq r\} and D(0,r)D(0,r) is denoted as Δr\Delta_{r}. For Ω\Omega\subseteq\mathbb{C}, Ω¯:={λ¯:λΩ}\overline{\Omega}:=\{\overline{\lambda}:\lambda\in\Omega\}.

Definition 2.1.

Let A,B𝒞()A,B\in\mathcal{C}(\mathbb{H}), n+{0}n\in\mathbb{Z}_{+}\cup\{0\}, and ϵ>0\epsilon>0. The (n,ϵ)(n,\epsilon)-pseudospectrum of (A,B)(A,B) is denoted by Λn,ϵ(A,B)\Lambda_{n,\epsilon}(A,B) and is defined by

Λn,ϵ(A,B)=σ(A,B){λ:(λBA)2n12nϵ1}.\Lambda_{n,\epsilon}(A,B)=\sigma(A,B)\cup\left\{\lambda\in\mathbb{C}:\left\|(\lambda B-A)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\geq\epsilon^{-1}\right\}.

The generalized (n,ϵ)(n,\epsilon)-pseudoresolvent of (A,B)(A,B) is denoted by ρn,ϵ(A,B)\rho_{n,\epsilon}(A,B) and is defined by

ρn,ϵ(A,B)=ρ(A,B){λ:(λBA)2n12n<ϵ1}.\rho_{n,\epsilon}(A,B)=\rho(A,B)\cap\left\{\lambda\in\mathbb{C}:\left\|(\lambda B-A)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}<\epsilon^{-1}\right\}.

The following observations about the pseudospectra of closed linear operator pencil are trivial.

Remark 2.2.

Let A,B𝒞()A,B\in\mathcal{C}(\mathbb{H}), n+{0}n\in\mathbb{Z}_{+}\cup\{0\}, and ϵ>0\epsilon>0. Then

  1. (1)

    σ(A,B)Λn,ϵ(A,B)\sigma(A,B)\subseteq\Lambda_{n,\epsilon}(A,B).

  2. (2)

    If B=IB=I, then Λn,ϵ(A,I)=Λn,ϵ(A)\Lambda_{n,\epsilon}(A,I)=\Lambda_{n,\epsilon}(A).

  3. (3)

    If n=0n=0, then Λn,ϵ(A,B)=Λϵ(A,B)\Lambda_{n,\epsilon}(A,B)=\Lambda_{\epsilon}(A,B).

Lemma 2.3.

Let A,B𝒞()A,B\in\mathcal{C}(\mathbb{H}) and ϵ>0\epsilon>0. Then σ(A+C,B)Λϵ(A,B)\sigma(A+C,B)\subseteq\Lambda_{\epsilon}(A,B) for every C()C\in\mathcal{B}(\mathbb{H}) with Cϵ\|C\|\leq\epsilon.

Proof.

Suppose λσ(A+C,B)\lambda\in\sigma(A+C,B) and λσ(A,B)\lambda\notin\sigma(A,B), then

λBAC=(λBA)(I(λBA)1C).\lambda B-A-C=\left(\lambda B-A\right)\left(I-\left(\lambda B-A\right)^{-1}C\right).

It follows that

1(λBA)1C(λBA)1C.1\leq\left\|\left(\lambda B-A\right)^{-1}C\right\|\leq\left\|\left(\lambda B-A\right)^{-1}\right\|\left\|C\right\|.

Hence λΛϵ(A,B)\lambda\in\Lambda_{\epsilon}(A,B) for Cϵ\|C\|\leq\epsilon. ∎

Theorem 2.4.

Let A,B𝒞()A,B\in\mathcal{C}(\mathbb{H}), n+{0}n\in\mathbb{Z}_{+}\cup\{0\}, and ϵ>0\epsilon>0. Then the following holds.

  1. (1)

    Λn+1,ϵ(A,B)Λn,ϵ(A,B)\Lambda_{n+1,\epsilon}(A,B)\subseteq\Lambda_{n,\epsilon}(A,B).

  2. (2)

    Λn,ϵ1(A,B)Λn,ϵ2(A,B)\Lambda_{n,\epsilon_{1}}(A,B)\subseteq\Lambda_{n,\epsilon_{2}}(A,B) for every 0<ϵ1ϵ20<\epsilon_{1}\leq\epsilon_{2}.

  3. (3)

    σ(A,B)=ϵ>0Λn,ϵ(A,B)\displaystyle\sigma(A,B)=\bigcap_{\epsilon>0}\Lambda_{n,\epsilon}(A,B).

  4. (4)

    Λn,ϵ(A,B)+ΔδΛϵ(A,B)+ΔδΛϵ+δB(A,B)\Lambda_{n,\epsilon}(A,B)+\Delta_{\delta}\subseteq\Lambda_{\epsilon}(A,B)+\Delta_{\delta}\subseteq\Lambda_{\epsilon+\delta\|B\|}(A,B) for every B()B\in\mathcal{B}(\mathbb{H}) and δ>0\delta>0.

  5. (5)

    Λn,ϵ(αA,αB)=Λn,ϵ|α|(A,B)\Lambda_{n,\epsilon}(\alpha A,\alpha B)=\Lambda_{n,\frac{\epsilon}{|\alpha|}}(A,B) for every α0\alpha\neq 0.

  6. (6)

    Λn,ϵ(βA+αB,B)=α+βΛn,ϵ|β|(A,B)\Lambda_{n,\epsilon}(\beta A+\alpha B,B)=\alpha+\beta\,\Lambda_{n,\frac{\epsilon}{|\beta|}}(A,B) for every α,β\alpha,\beta\in\mathbb{C} with β0.\beta\neq 0.

Proof.
  1. (1)

    Suppose λΛn+1,ϵ(A,B)σ(A,B)\lambda\in\Lambda_{n+1,\epsilon}(A,B)\setminus\sigma(A,B). Then

    ϵ1[(λBA)1]2n+112n+1\displaystyle\epsilon^{-1}\leq\left\|[(\lambda B-A)^{-1}]^{2^{n+1}}\right\|^{\frac{1}{2^{n+1}}} [(λBA)1]2n12n+1[(λBA)1]2n12n+1\displaystyle\leq\left\|[(\lambda B-A)^{-1}]^{2^{n}}\right\|^{\frac{1}{2^{n+1}}}\left\|[(\lambda B-A)^{-1}]^{2^{n}}\right\|^{\frac{1}{2^{n+1}}}
    =[(λBA)1]2n12n.\displaystyle=\left\|[(\lambda B-A)^{-1}]^{2^{n}}\right\|^{\frac{1}{2^{n}}}.

    Hence λΛn,ϵ(A,B)σ(A,B)\lambda\in\Lambda_{n,\epsilon}(A,B)\setminus\sigma(A,B).

  2. (2)

    Let 0<ϵ1ϵ20<\epsilon_{1}\leq\epsilon_{2} and λΛn,ϵ1(A,B)\lambda\in\Lambda_{n,\epsilon_{1}}(A,B). If λσ(A,B)\lambda\in\sigma(A,B), then λΛn,ϵ2(A,B)\lambda\in\Lambda_{n,\epsilon_{2}}(A,B). If λΛn,ϵ1(A,B)σ(A,B)\lambda\in\Lambda_{n,\epsilon_{1}}(A,B)\setminus\sigma(A,B), then

    (λBA)2n12nϵ11ϵ21.\left\|(\lambda B-A)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\geq\epsilon_{1}^{-1}\geq\epsilon_{2}^{-1}.

    Hence λΛn,ϵ2(A,B)\lambda\in\Lambda_{n,\epsilon_{2}}(A,B).

  3. (3)

    If λσ(A,B)\lambda\in\sigma(A,B), then λΛn,ϵ(A,B)\lambda\in\Lambda_{n,\epsilon}(A,B) for every ϵ>0\epsilon>0 and λϵ>0Λn,ϵ(A,B)\displaystyle\lambda\in\bigcap_{\epsilon>0}\Lambda_{n,\epsilon}(A,B). Next assume that λϵ>0Λn,ϵ(A,B)\displaystyle\lambda\in\bigcap_{\epsilon>0}\Lambda_{n,\epsilon}(A,B) and λσ(A,B)\lambda\notin\sigma(A,B), then

    (λBA)2n12nϵ1for everyϵ>0.\left\|(\lambda B-A)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\geq\epsilon^{-1}\ \ \ \ \text{for every}\ \epsilon>0.

    Hence (λBA)2n=0\left\|(\lambda B-A)^{-2^{n}}\right\|=0, a contradiction.

  4. (4)

    From (1), Λn,ϵ(A,B)Λϵ(A,B)\Lambda_{n,\epsilon}(A,B)\subseteq\Lambda_{\epsilon}(A,B) and hence Λn,ϵ(A,B)+ΔδΛϵ(A,B)+Δδ\Lambda_{n,\epsilon}(A,B)+\Delta_{\delta}\subseteq\Lambda_{\epsilon}(A,B)+\Delta_{\delta}. Let λΛϵ(A,B)\lambda\in\Lambda_{\epsilon}(A,B), μ\mu\in\mathbb{C}, and |μ|δ|\mu|\leq\delta. If λσ(A,B)\lambda\in\sigma(A,B), from Lemma 2.3,

    λ+μσ(A+μB,B)ΛδB(A,B)Λϵ+δB(A,B).\lambda+\mu\in\sigma(A+\mu B,B)\subseteq\Lambda_{\delta\|B\|}(A,B)\subseteq\Lambda_{\epsilon+\delta\|B\|}(A,B).

    If λΛϵ(A,B)σ(A,B)\lambda\in\Lambda_{\epsilon}(A,B)\setminus\sigma(A,B) and λ+μσ(A,B)\lambda+\mu\in\sigma(A,B), then λ+μΛϵ+δB(A,B)\lambda+\mu\in\Lambda_{\epsilon+\delta\|B\|}(A,B). Further if λΛϵ(A,B)σ(A,B)\lambda\in\Lambda_{\epsilon}(A,B)\setminus\sigma(A,B) and (λ+μ)BA(\lambda+\mu)B-A is invertible. Choose xD(A)x\in D(A) with x=1\|x\|=1 such that (λBA)xϵ\|(\lambda B-A)x\|\leq\epsilon, then

    1=x\displaystyle 1=\|x\| =((λ+μ)BA)1((λ+μ)BA)x\displaystyle=\left\|\left(\left(\lambda+\mu\right)B-A\right)^{-1}\left(\left(\lambda+\mu\right)B-A\right)x\right\|
    (ϵ+δB)((λ+μ)BA)1.\displaystyle\leq\left(\epsilon+\delta\|B\|\right)\left\|\left(\left(\lambda+\mu\right)B-A\right)^{-1}\right\|.

    Hence λ+μΛϵ+δB(A,B)\lambda+\mu\in\Lambda_{\epsilon+\delta\|B\|}(A,B).

  5. (5)

    Let α0\alpha\neq 0, then σ(αA,αB)=σ(A,B)\sigma(\alpha A,\alpha B)=\sigma(A,B). Also

    λΛn,ϵ(αA,αB)σ(αA,αB)\displaystyle\lambda\in\Lambda_{n,\epsilon}(\alpha A,\alpha B)\setminus\sigma(\alpha A,\alpha B) (λαBαA)2n12nϵ1\displaystyle\Longleftrightarrow\left\|(\lambda\alpha B-\alpha A)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\geq\epsilon^{-1}
    (λBA)2n12n|α|ϵ\displaystyle\Longleftrightarrow\left\|(\lambda B-A)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\geq\frac{|\alpha|}{\epsilon}
    λΛn,ϵ|α|(A,B)σ(A,B).\displaystyle\Longleftrightarrow\lambda\in\Lambda_{n,\frac{\epsilon}{|\alpha|}}(A,B)\setminus\sigma(A,B).
  6. (6)

    Let α,β\alpha,\beta\in\mathbb{C} and β0\beta\neq 0, then

    ρ(βA+αB,B)\displaystyle\rho(\beta A+\alpha B,B) ={λ:(λBβAαB)1()}\displaystyle=\{\lambda\in\mathbb{C}:\left(\lambda B-\beta A-\alpha B\right)^{-1}\in\mathcal{B}(\mathbb{H})\}
    ={λ:(λαβBA)1()}.\displaystyle=\left\{\lambda\in\mathbb{C}:\left(\frac{\lambda-\alpha}{\beta}B-A\right)^{-1}\in\mathcal{B}(\mathbb{H})\right\}.

    i.e., λσ(βA+αB,B)λαβσ(A,B)λα+βσ(A,B).\lambda\in\sigma(\beta A+\alpha B,B)\Longleftrightarrow\frac{\lambda-\alpha}{\beta}\in\sigma(A,B)\Longleftrightarrow\lambda\in\alpha+\beta\,\sigma(A,B). Also

    λΛn,ϵ(βA+αB,B)σ(βA+αB,B)\displaystyle\lambda\in\Lambda_{n,\epsilon}(\beta A+\alpha B,B)\setminus\sigma(\beta A+\alpha B,B) (λBβAαB)2n12nϵ1\displaystyle\Longleftrightarrow\left\|(\lambda B-\beta A-\alpha B)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\geq\epsilon^{-1}
    1|β|(λαβBA)2n12nϵ1\displaystyle\Longleftrightarrow\ \frac{1}{|\beta|}\left\|\left(\frac{\lambda-\alpha}{\beta}B-A\right)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\geq\epsilon^{-1}
    λαβΛn,ϵ|β|(A,B)σ(A,B)\displaystyle\Longleftrightarrow\ \frac{\lambda-\alpha}{\beta}\in\Lambda_{n,\frac{\epsilon}{|\beta|}}(A,B)\setminus\sigma(A,B)
    λα+βΛn,ϵ|β|(A,B)σ(A,B).\displaystyle\Longleftrightarrow\ \lambda\in\alpha+\beta\,\Lambda_{n,\frac{\epsilon}{|\beta|}}(A,B)\setminus\sigma(A,B).

The following theorem presents some equivalent definitions for (n,ϵ)(n,\epsilon)-pseudospectra of closed linear operator pencil.

Theorem 2.5.

Let A,B𝒞()A,B\in\mathcal{C}(\mathbb{H}), n+{0}n\in\mathbb{Z}_{+}\cup\{0\}, and ϵ>0\epsilon>0. Then the following are equivalent.

  1. (1)

    zΛn,ϵ(A,B)z\in\Lambda_{n,\epsilon}(A,B).

  2. (2)

    zσ(A,B){λ:(λBA)2nuϵ2n,uD(A)D(B),u=1}.z\in\sigma(A,B)\cup\left\{\lambda\in\mathbb{C}:\,\left\|(\lambda B-A)^{2^{n}}u\right\|\leq{\epsilon}^{2^{n}},u\in D(A)\cap D(B),\|u\|=1\right\}.

  3. (3)

    zσ(A,B){λ:[(λBA)2nE]u=0,Eϵ2n,uD(A)D(B),u=1}.z\in\sigma(A,B)\cup\Big{\{}\lambda\in\mathbb{C}:\left[(\lambda B-A)^{2^{n}}-E\right]u=0,\|E\|\leq{\epsilon}^{2^{n}},u\in D(A)\cap D(B),\|u\|=1\Big{\}}.

Proof.

(1) \Longrightarrow (2). If zΛn,ϵ(A,B)σ(A,B)z\in\Lambda_{n,\epsilon}(A,B)\setminus\sigma(A,B), then (zBA)2n12nϵ1\left\|(zB-A)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\geq\epsilon^{-1} also there exists xD(A)D(B)x\in D(A)\cap D(B) with x=1\|x\|=1 such that (zBA)2nx12nϵ1\left\|(zB-A)^{-2^{n}}x\right\|^{\frac{1}{2^{n}}}\geq\epsilon^{-1}. Define v=(zBA)2nxv=(zB-A)^{-2^{n}}x and u=vv\displaystyle u=\frac{v}{\|v\|}. Then v0v\neq 0 and

(zBA)2nvv=x(zBA)2nxϵ2n.\left\|(zB-A)^{2^{n}}\frac{v}{\|v\|}\right\|=\frac{\|x\|}{\left\|(zB-A)^{-2^{n}}x\right\|}\leq\epsilon^{2^{n}}.

(2) \Longrightarrow (3). Suppose (zBA)2nuϵ2n\left\|(zB-A)^{2^{n}}u\right\|\leq{\epsilon}^{2^{n}} for some uD(A)D(B)u\in D(A)\cap D(B) with u=1\|u\|=1. Then there exists ϕ\phi\in\mathbb{H}^{\prime} such that ϕ=1\|\phi\|=1 and ϕ(u)=u=1\phi(u)=\|u\|=1. Define rank one operator E:E:\mathbb{H}\rightarrow\mathbb{H}

E(x)=ϕ(x)(zBA)2nu.E(x)=\phi(x)(zB-A)^{2^{n}}u.

Then Eϵ2n\|E\|\leq{\epsilon}^{2^{n}} and [(zBA)2nE]u=0\left[(zB-A)^{2^{n}}-E\right]u=0.
(3) \Longrightarrow (1). Suppose [(zBA)2nE]u=0\left[(zB-A)^{2^{n}}-E\right]u=0 for some E()E\in\mathcal{B}(\mathbb{H}) with Eϵ2n\|E\|\leq{\epsilon}^{2^{n}} and uD(A)D(B)u\in D(A)\cap D(B) with u=1\|u\|=1. For zσ(A,B)z\notin\sigma(A,B), we have u=(zBA)2nEuu=(zB-A)^{-2^{n}}Eu, also

1=u=(zBA)2nEu\displaystyle 1=\|u\|=\left\|(zB-A)^{-2^{n}}Eu\right\| (zBA)2nϵ2n.\displaystyle\leq\left\|(zB-A)^{-2^{n}}\right\|{\epsilon}^{2^{n}}.

Thus zΛn,ϵ(A,B).z\in\Lambda_{n,\epsilon}(A,B).

Theorem 2.6.

Let A,B𝒞()A,B\in\mathcal{C}(\mathbb{H}) and B(λ0BA)1B(\lambda_{0}B-A)^{-1} is bounded for some λ0ρ(A,B)\lambda_{0}\in\rho(A,B). Then

(λBA)1=(λ0BA)1m=0(λλ0)m[B(λ0BA)1]m,(\lambda B-A)^{-1}=(\lambda_{0}B-A)^{-1}\sum_{m=0}^{\infty}\left(\lambda-\lambda_{0}\right)^{m}\left[B(\lambda_{0}B-A)^{-1}\right]^{m},

for every λ\lambda with |λλ0|<1B(λ0BA)1\displaystyle\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|B(\lambda_{0}B-A)^{-1}\right\|}.

Proof.

Let λρ(A,B)\lambda\in\rho(A,B), then

(λBA)1\displaystyle(\lambda B-A)^{-1} =[(Aλ0B)(λλ0)B]1\displaystyle=-\left[\left(A-\lambda_{0}B\right)-\left(\lambda-\lambda_{0}\right)B\right]^{-1}
=(Aλ0B)1[I(λλ0)B(Aλ0B)1]1\displaystyle=-\left(A-\lambda_{0}B\right)^{-1}\left[I-\left(\lambda-\lambda_{0}\right)B\left(A-\lambda_{0}B\right)^{-1}\right]^{-1}
=(λ0BA)1[I(λλ0)B(λ0BA)1]1.\displaystyle=(\lambda_{0}B-A)^{-1}\left[I-\left(\lambda-\lambda_{0}\right)B(\lambda_{0}B-A)^{-1}\right]^{-1}.

If |λλ0|<1B(λ0BA)1\displaystyle\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|B(\lambda_{0}B-A)^{-1}\right\|}, then

(λBA)1=(λ0BA)1m=0(λλ0)m[B(λ0BA)1]m.(\lambda B-A)^{-1}=(\lambda_{0}B-A)^{-1}\sum_{m=0}^{\infty}\left(\lambda-\lambda_{0}\right)^{m}\left[B(\lambda_{0}B-A)^{-1}\right]^{m}.

Lemma 2.7.

Let A,B𝒞()A,B\in\mathcal{C}(\mathbb{H}) and B(λBA)1B(\lambda B-A)^{-1} is bounded for every λρ(A,B)\lambda\in\rho(A,B). Then the resolvent function of the operator pencil (A,B)(A,B) is analytic on ρ(A,B)\rho(A,B).

Proof.

Let λ,μρ(A,B)\lambda,\mu\in\rho(A,B),

(λBA)1(μBA)1=(μλ)(λBA)1B(μBA)1.(\lambda B-A)^{-1}-(\mu B-A)^{-1}=(\mu-\lambda)(\lambda B-A)^{-1}B(\mu B-A)^{-1}.

Then

limλμ(λBA)1(μBA)1λμ=(μBA)1B(μBA)1.\lim_{\lambda\rightarrow\mu}\frac{(\lambda B-A)^{-1}-(\mu B-A)^{-1}}{\lambda-\mu}=-(\mu B-A)^{-1}B(\mu B-A)^{-1}.

Theorem 2.8.

Let A,B𝒞()A,B\in\mathcal{C}(\mathbb{H}), n+{0}n\in\mathbb{Z}_{+}\cup\{0\}, and ϵ>0\epsilon>0. If B(λBA)1B(\lambda B-A)^{-1} is bounded for every λρ(A,B)\lambda\in\rho(A,B), then

  1. (i)

    Λn,ϵ(A,B)\Lambda_{n,\epsilon}(A,B) is a closed subset of \mathbb{C}.

  2. (ii)

    Any bounded component of Λn,ϵ(A,B)\Lambda_{n,\epsilon}(A,B) has non empty intersection with σ(A,B)\sigma(A,B).

Proof.
  1. (i)

    From Theorem 2.6, σ(A,B)\sigma(A,B) is closed. Define f:ρ(A,B)[0,)f:\rho(A,B)\rightarrow[0,\infty) by

    f(λ)=(λBA)2n12n.f(\lambda)=\left\|(\lambda B-A)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}.

    Then ff is continuous and

    {λρ(A,B):(λBA)2n12nϵ1}=f1([ϵ1,)),\left\{\lambda\in\rho(A,B):\left\|(\lambda B-A)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\geq\epsilon^{-1}\right\}=f^{-1}\left(\left[\epsilon^{-1},\infty\right)\right),

    is closed. Hence Λn,ϵ(A,B)\Lambda_{n,\epsilon}(A,B) is closed.

  2. (ii)

    Suppose Ω\Omega be a bounded component of Λn,ϵ(A,B)\Lambda_{n,\epsilon}(A,B) such that Ωσ(A,B)=\Omega\cap\sigma(A,B)=\emptyset. Then

    Ωρ(A,B){λρ(A,B):(λBA)2n12nϵ1}.\Omega\subseteq\rho(A,B)\cap\left\{\lambda\in\rho(A,B):\left\|(\lambda B-A)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\geq\epsilon^{-1}\right\}.

    Let G=Ω{λρ(A,B):(λBA)2n>ϵ2n}G=\Omega\cap\left\{\lambda\in\rho(A,B):\left\|(\lambda B-A)^{-2^{n}}\right\|>\epsilon^{-{2^{n}}}\right\}. We claim that GG is open. Let μG\mu\in G, since μ{λρ(A,B):(λBA)2n>ϵ2n}\mu\in\left\{\lambda\in\rho(A,B):\left\|(\lambda B-A)^{-2^{n}}\right\|>\epsilon^{-{2^{n}}}\right\}, there exists rμ>0r_{\mu}>0, such that D(μ,rμ){λρ(A,B):(λBA)2n>ϵ2n}.D(\mu,r_{\mu})\subset\left\{\lambda\in\rho(A,B):\left\|(\lambda B-A)^{-2^{n}}\right\|>\epsilon^{-{2^{n}}}\right\}. Since Ω\Omega is component, μΩ\mu\in\Omega and D(μ,rμ)D(\mu,r_{\mu}) is connected, D(μ,rμ)Ω.D(\mu,r_{\mu})\subset\Omega. Hence D(μ,rμ)GD(\mu,r_{\mu})\subset G. Now the map

    λ(λBA)2n,\lambda\mapsto\left\|(\lambda B-A)^{-2^{n}}\right\|,

    defined from GG to \mathbb{C} is subharmonic and continuous on G¯\overline{G}. For any boundary point λG\lambda\in G, (λBA)2n=ϵ2n\left\|(\lambda B-A)^{-2^{n}}\right\|=\epsilon^{-{2^{n}}}. But for λG\lambda\in G, (λBA)2n>ϵ2n\left\|(\lambda B-A)^{-2^{n}}\right\|>\epsilon^{-{2^{n}}}. This contradicts the maximum principle.

Theorem 2.9.

Let A,B𝒞()A,B\in\mathcal{C}(\mathbb{H}) such that D(A),D(B),D(A+B),D(AB)D(A),D(B),D(A+B),D(AB) are dense in \mathbb{H}, n+{0}n\in\mathbb{Z}_{+}\cup\{0\}, and ϵ>0\epsilon>0.

  1. (i)

    If AA or BB in ()\mathcal{B}(\mathbb{H}), then Λϵ(A,B)=Λϵ(A,B)¯\Lambda_{\epsilon}(A^{*},B^{*})=\overline{\Lambda_{\epsilon}(A^{*},B^{*})}.

  2. (ii)

    If A,B()A,B\in\mathcal{B}(\mathbb{H}), then Λn,ϵ(A,B)=Λn,ϵ(A,B)¯\Lambda_{n,\epsilon}(A^{*},B^{*})=\overline{\Lambda_{n,\epsilon}(A^{*},B^{*})}.

Proof.
  1. (i)

    Let AA or BB in ()\mathcal{B}(\mathbb{H}), then A+B=(A+B)A^{*}+B^{*}=\left(A+B\right)^{*}; see [17]. If λσ(A,B)\lambda\in\sigma(A,B) then λ¯σ(A,B)\overline{\lambda}\in\sigma(A^{*},B^{*}). Further if λΛϵ(A,B)σ(A,B)\lambda\in\Lambda_{\epsilon}(A,B)\setminus\sigma(A,B), then

    (λBA)1=(λ¯BA)1ϵ1.\left\|(\lambda B-A)^{-1}\right\|=\left\|\left(\ \overline{\lambda}B^{*}-A^{*}\right)^{-1}\right\|\geq\epsilon^{-1}.

    The latest step follows as (λBA)1()(\lambda B-A)^{-1}\in\mathcal{B}(\mathbb{H}); see [18]. Hence Λϵ(A,B)Λϵ(A,B)¯\Lambda_{\epsilon}(A,B)\subseteq\overline{\Lambda_{\epsilon}(A^{*},B^{*})}. Since D(A),D(B)D(A),D(B) are dense in \mathbb{H}, the other inclusion follows.

  2. (ii)

    Let A()A\in\mathcal{B}(\mathbb{H}), then (A+B)=A+B(A+B)^{*}=A^{*}+B^{*} and BA=(AB)B^{*}A^{*}=\left(AB\right)^{*}; see [17]. If λσ(A,B)\lambda\in\sigma(A,B) then λ¯σ(A,B)\overline{\lambda}\in\sigma(A^{*},B^{*}). Further if λΛn,ϵ(A,B)σ(A,B)\lambda\in\Lambda_{n,\epsilon}(A,B)\setminus\sigma(A,B) and B()B\in\mathcal{B}(\mathbb{H}),

    ((λBA)2n)=(((λBA)2n)1)=(((λBA)2n))1=(λ¯BA)2n.\left(\left(\lambda B-A\right)^{-2^{n}}\right)^{*}=\left(\left(\left(\lambda B-A\right)^{2^{n}}\right)^{-1}\right)^{*}=\left(\left(\left(\lambda B-A\right)^{2^{n}}\right)^{*}\right)^{-1}=\left(\overline{\lambda}B^{*}-A^{*}\right)^{-2^{n}}.

    Thus

    (λBA)2n12n=((λBA)2n)12n=(λ¯BA)2n12nϵ1.\left\|(\lambda B-A)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}=\left\|\left(\left(\lambda B-A\right)^{-2^{n}}\right)^{*}\right\|^{\frac{1}{2^{n}}}=\left\|\left(\ \overline{\lambda}B^{*}-A^{*}\right)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\geq\epsilon^{-1}.

    Hence Λn,ϵ(A,B)Λn,ϵ(A,B)¯\Lambda_{n,\epsilon}(A,B)\subseteq\overline{\Lambda_{n,\epsilon}(A^{*},B^{*})}. Since D(A),D(B)D(A),D(B) are dense in \mathbb{H}, the other inclusion follows.

The following theorem characterizes the (n,ϵ)(n,\epsilon)-pseudospectrum of a self-adjoint operator pencil.

Theorem 2.10.

Let A,B𝒞()A,B\in\mathcal{C}(\mathbb{H}) be self-adjoint operators with BB invertible and AB=BAAB=BA. For n+{0}n\in\mathbb{Z}_{+}\cup\{0\} and ϵ>0\epsilon>0,

Λn,ϵ(A,B)σ(A,B)+ΔϵB2n12n+ΔϵB2n12n.\Lambda_{n,\epsilon}(A,B)\subseteq\sigma(A,B)+\Delta_{\epsilon\left\|B^{-2^{n}}\right\|^{\frac{1}{2^{n}}}}\subseteq\mathbb{R}+\Delta_{\epsilon\left\|B^{-2^{n}}\right\|^{\frac{1}{2^{n}}}}.
Proof.

Suppose BB is invertible and self-adjoint. Then B1AB^{-1}A is self-adjoint and σ(A,B)=σ(B1A)\sigma(A,B)=\sigma(B^{-1}A)\subseteq\mathbb{R}; see [8]. Since AB=BAAB=BA, for λσ(A,B)\lambda\notin\sigma(A,B), (refer [7])

(λBA)2n12nB2n12n(λIB1A)1=B2n12ndist(λ,σ(B1A)).\left\|(\lambda B-A)^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\leq\left\|B^{-2^{n}}\right\|^{\frac{1}{2^{n}}}\left\|(\lambda I-B^{-1}A)^{-1}\right\|=\frac{\left\|B^{-2^{n}}\right\|^{\frac{1}{2^{n}}}}{\text{dist}\left(\lambda,\sigma(B^{-1}A)\right)}.

Thus

Λn,ϵ(A,B)σ(A,B)+ΔϵB2n12n+ΔϵB2n12n.\Lambda_{n,\epsilon}(A,B)\subseteq\sigma(A,B)+\Delta_{\epsilon\left\|B^{-2^{n}}\right\|^{\frac{1}{2^{n}}}}\subseteq\mathbb{R}+\Delta_{\epsilon\left\|B^{-2^{n}}\right\|^{\frac{1}{2^{n}}}}.

Corollary 2.11.

If A𝒞()A\in\mathcal{C}(\mathbb{H}) is self-adjoint, n+{0}n\in\mathbb{Z}_{+}\cup\{0\}, and ϵ>0\epsilon>0. Then

Λn,ϵ(A)σ(A)+Δϵ+Δϵ.\Lambda_{n,\epsilon}(A)\subseteq\sigma(A)+\Delta_{\epsilon}\subseteq\mathbb{R}+\Delta_{\epsilon}.

3. Pseudospectra of the 2×22\times 2 unbounded block operator matrix pencil

The transformation of the one-dimensional heat equation into 2×22\times 2 unbounded block operator matrix pencil stimulates the development of this section. The generalized Frobenius-Schur factorization examines the spectral, pseudospectral, and (n,ϵ)(n,\epsilon)-pseudospectral enclosures of the 2×22\times 2 unbounded block operator pencil. The following provides the generalized Frobenius-Schur factorization for 2×22\times 2 unbounded block operator matrix pencil. For more on Frobenius-Schur factorization of block operator matrices, see [6, 21]. Consider the 2×22\times 2 block operator matrices with the entries as closed operators (unbounded operators) on \mathbb{H}. Let Ai,Bi𝒞()A_{i},B_{i}\in\mathcal{C}(\mathbb{H}) (i=1,2,3,4i=1,2,3,4),

𝒜=(A1A2A3A4)and=(B1B2B3B4).\mathcal{A}=\begin{pmatrix}A_{1}&A_{2}\\ A_{3}&A_{4}\end{pmatrix}\quad\textnormal{and}\quad\mathcal{B}=\begin{pmatrix}B_{1}&B_{2}\\ B_{3}&B_{4}\end{pmatrix}.

Then

D(𝒜)\displaystyle D(\mathcal{A}) =(D(A1)D(A3))×(D(A2)D(A4)),\displaystyle=\left(D(A_{1})\cap D(A_{3})\right)\times\left(D(A_{2})\cap D(A_{4})\right),
D()\displaystyle D(\mathcal{B}) =(D(B1)D(B3))×(D(B2)D(B4)).\displaystyle=\left(D(B_{1})\cap D(B_{3})\right)\times\left(D(B_{2})\cap D(B_{4})\right).

Let λ\lambda\in\mathbb{C}, then

(𝒜,)(λ)=λ𝒜=(λB1A1λB2A2λB3A3λB4A4)(\mathcal{A},\mathcal{B})(\lambda)=\lambda\mathcal{B}-\mathcal{A}=\begin{pmatrix}\lambda B_{1}-A_{1}&\lambda B_{2}-A_{2}\\ \lambda B_{3}-A_{3}&\lambda B_{4}-A_{4}\end{pmatrix}

is defined on D(𝒜)D()D(\mathcal{A})\cap D(\mathcal{B}). If λρ(A4,B4)\lambda\in\rho(A_{4},B_{4}), then

(3.1) λ𝒜=(IF1(λ)I)(λB1S1(λ)λB4A4)(IG1(λ)I),\lambda\mathcal{B}-\mathcal{A}=\begin{pmatrix}I&F_{1}(\lambda)\\ &I\end{pmatrix}\begin{pmatrix}\lambda B_{1}-S_{1}(\lambda)&\\ &\lambda B_{4}-A_{4}\end{pmatrix}\begin{pmatrix}I&\\ G_{1}(\lambda)&I\end{pmatrix},

where S1(λ)=(λB2A2)(λB4A4)1(λB3A3)+A1S_{1}(\lambda)=\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right)+A_{1}, F1(λ)=(λB2A2)(λB4A4)1F_{1}(\lambda)=\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}, and G1(λ)=(λB4A4)1(λB3A3)G_{1}(\lambda)=\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right). This factorization is called the generalized Frobenius-Schur factorization along the first complement. If λρ(A1,B1)\lambda\in\rho(A_{1},B_{1}), then

(3.2) λ𝒜=(IF2(λ)I)(λB1A1λB4S2(λ))(IG2(λ)I),\displaystyle\lambda\mathcal{B}-\mathcal{A}=\begin{pmatrix}I&\\ F_{2}(\lambda)&I\end{pmatrix}\begin{pmatrix}\lambda B_{1}-A_{1}&\\ &\lambda B_{4}-S_{2}(\lambda)\end{pmatrix}\begin{pmatrix}I&G_{2}(\lambda)\\ &I\end{pmatrix},

where S2(λ)=(λB3A3)(λB1A1)1(λB2A2)+A4S_{2}(\lambda)=\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)+A_{4}, F2(λ)=(λB3A3)(λB1A1)1F_{2}(\lambda)=\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}, and G2(λ)=(λB1A1)1(λB2A2)G_{2}(\lambda)=\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right). This factorization is called generalized Frobenius-Schur factorization along the second complement. The following hypotheses are considered for further development.

  1. (L1)

    (A4,B4)(A_{4},B_{4}) is closed and densely defined, ρ(A4,B4)\rho(A_{4},B_{4})\neq\emptyset.

  2. (L2)

    D(A4)D(B4)D(A2)D(B2)D(A_{4})\cap D(B_{4})\subseteq D(A_{2})\cap D(B_{2}) and F1(λ)F_{1}(\lambda) is bounded for every λρ(A4,B4)\lambda\in\rho(A_{4},B_{4}).

  3. (L3)

    G1(λ)G_{1}(\lambda) is bounded on D(A3)D(B3)D(A_{3})\cap D(B_{3}) for every λρ(A4,B4)\lambda\in\rho(A_{4},B_{4}).

  4. (L4)

    D(A1)D(B1)D(A3)D(B3)D(A_{1})\cap D(B_{1})\cap D(A_{3})\cap D(B_{3}) is dense and λB1S1(λ)\lambda B_{1}-S_{1}(\lambda) is closed for every λρ(A4,B4)\lambda\in\rho(A_{4},B_{4}).

  1. (H1)

    (A1,B1)(A_{1},B_{1}) is closed and densely defined, ρ(A1,B1)\rho(A_{1},B_{1})\neq\emptyset.

  2. (H2)

    D(A1)D(B1)D(A3)D(B3)D(A_{1})\cap D(B_{1})\subseteq D(A_{3})\cap D(B_{3}) and F2(λ)F_{2}(\lambda) is bounded for every λρ(A1,B1)\lambda\in\rho(A_{1},B_{1}).

  3. (H3)

    G2(λ)G_{2}(\lambda) is bounded on D(A2)D(B2)D(A_{2})\cap D(B_{2}) for every λρ(A1,B1)\lambda\in\rho(A_{1},B_{1}).

  4. (H4)

    D(A2)D(B2)D(A4)D(B4)D(A_{2})\cap D(B_{2})\cap D(A_{4})\cap D(B_{4}) is dense and λB4S2(λ)\lambda B_{4}-S_{2}(\lambda) is closed for every λρ(A1,B1)\lambda\in\rho(A_{1},B_{1}).

Theorem 3.1.

Let the block operator matrix pencil (𝒜,)(\mathcal{A},\mathcal{B}) satisfies (L1)-(L4). Then λσ(𝒜,)\lambda\in\sigma(\mathcal{A},\mathcal{B}) if and only if λσ(S1(λ),B1)\lambda\in\sigma(S_{1}(\lambda),B_{1}). Further for λρ(𝒜,)\lambda\in\rho(\mathcal{A},\mathcal{B}),

(λ𝒜)1=(IG1(λ)I)((λB1S1(λ))1(λB4A4)1)(IF1(λ)I).\left(\lambda\mathcal{B}-\mathcal{A}\right)^{-1}=\begin{pmatrix}I&\\ -G_{1}(\lambda)&I\end{pmatrix}\begin{pmatrix}\left(\lambda B_{1}-S_{1}(\lambda)\right)^{-1}\\ &\left(\lambda B_{4}-A_{4}\right)^{-1}\end{pmatrix}\begin{pmatrix}I&-F_{1}(\lambda)\\ &I\end{pmatrix}.
Proof.

Suppose the block operator matrix pencil (𝒜,)(\mathcal{A},\mathcal{B}) satisfies (L1)-(L4). Then the generalized Frobenius-Schur factoriztion along the first complement (3.1)(\ref{fbs2}) for the block operator matrix pencil λ𝒜\lambda\mathcal{B}-\mathcal{A} gives λρ(𝒜,)\lambda\in\rho(\mathcal{A},\mathcal{B}) if and only if λρ(S1(λ),B1)\lambda\in\rho(S_{1}(\lambda),B_{1}), and

(λ𝒜)1=(IG1(λ)I)((λB1S1(λ))1(λB4A4)1)(IF1(λ)I).\left(\lambda\mathcal{B}-\mathcal{A}\right)^{-1}=\begin{pmatrix}I&\\ -G_{1}(\lambda)&I\end{pmatrix}\begin{pmatrix}\left(\lambda B_{1}-S_{1}(\lambda)\right)^{-1}\\ &\left(\lambda B_{4}-A_{4}\right)^{-1}\end{pmatrix}\begin{pmatrix}I&-F_{1}(\lambda)\\ &I\end{pmatrix}.

Theorem 3.2.

Let the block operator matrix pencil (𝒜,)(\mathcal{A},\mathcal{B}) satisfies (H1)-(H4). Then λσ(𝒜,)\lambda\in\sigma(\mathcal{A},\mathcal{B}) if and only if λσ(S2(λ),B4)\lambda\in\sigma(S_{2}(\lambda),B_{4}). Further for λρ(𝒜,)\lambda\in\rho(\mathcal{A},\mathcal{B}),

(λ𝒜)1=(IG2(λ)I)((λB1A1)1(λB4S2(λ))1)(IF2(λ)I).\left(\lambda\mathcal{B}-\mathcal{A}\right)^{-1}=\begin{pmatrix}I&-G_{2}(\lambda)\\ &I\end{pmatrix}\begin{pmatrix}\left(\lambda B_{1}-A_{1}\right)^{-1}&\\ &\left(\lambda B_{4}-S_{2}(\lambda)\right)^{-1}\end{pmatrix}\begin{pmatrix}I&\\ -F_{2}(\lambda)&I\end{pmatrix}.
Proof.

Suppose the block operator matrix pencil (𝒜,)(\mathcal{A},\mathcal{B}) satisfies (H1)-(H4). Then the generalized Frobenius-Schur factoriztion along the second complement (3.2) for the block operator matrix pencil λ𝒜\lambda\mathcal{B}-\mathcal{A} gives λρ(𝒜,)\lambda\in\rho(\mathcal{A},\mathcal{B}) if and only if λρ(S2(λ),B4)\lambda\in\rho(S_{2}(\lambda),B_{4}), and

(λ𝒜)1=(IG2(λ)I)((λB1A1)1(λB4S2(λ))1)(IF2(λ)I).\left(\lambda\mathcal{B}-\mathcal{A}\right)^{-1}=\begin{pmatrix}I&-G_{2}(\lambda)\\ &I\end{pmatrix}\begin{pmatrix}\left(\lambda B_{1}-A_{1}\right)^{-1}&\\ &\left(\lambda B_{4}-S_{2}(\lambda)\right)^{-1}\end{pmatrix}\begin{pmatrix}I&\\ -F_{2}(\lambda)&I\end{pmatrix}.

The following theorem identifies the spectral inclusion of the 2×22\times 2 unbounded block operator matrix pencil using generalized Frobenius-Schur factorizations.

Theorem 3.3.

Let the block operator matrix pencil (𝒜,)(\mathcal{A},\mathcal{B}) satisfies (L1)-(L4) and (H1)-(H4). Then

σ(𝒜,){λ:min{MS1(λ),NS1(λ),MS2(λ),NS2(λ)}1},\sigma(\mathcal{A},\mathcal{B})\subseteq\big{\{}\lambda\in\mathbb{C}:\min\left\{\left\|M_{S_{1}}(\lambda)\right\|,\left\|N_{S_{1}}(\lambda)\right\|,\left\|M_{S_{2}}(\lambda)\right\|,\left\|N_{S_{2}}(\lambda)\right\|\right\}\geq 1\big{\}},

where MS1(λ),NS1(λ),MS2(λ),NS2(λ)M_{S_{1}}(\lambda),N_{S_{1}}(\lambda),M_{S_{2}}(\lambda),N_{S_{2}}(\lambda) are defined subsequently.

Proof.

Suppose (𝒜,)(\mathcal{A},\mathcal{B}) satisfies (L1)-(L4) and (H1)-(H4), then

λB1S1(λ)\displaystyle\lambda B_{1}-S_{1}(\lambda) =(λB1A1)(λB2A2)(λB4A4)1(λB3A3),\displaystyle=\left(\lambda B_{1}-A_{1}\right)-\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right),
(λB1S1(λ))(λB1A1)1\displaystyle\left(\lambda B_{1}-S_{1}(\lambda)\right)\left(\lambda B_{1}-A_{1}\right)^{-1} =I[(λB2A2)(λB4A4)1(λB3A3)(λB1A1)1],\displaystyle=I-\left[\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\right],
(λB1A1)1(λB1S1(λ))\displaystyle\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{1}-S_{1}(\lambda)\right) =I[(λB1A1)1(λB2A2)(λB4A4)1(λB3A3)].\displaystyle=I-\left[\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right)\right].

For λρ(A1,B1)ρ(A4,B4)\lambda\in\rho(A_{1},B_{1})\cap\rho(A_{4},B_{4}), define

MS1(λ)=(λB2A2)(λB4A4)1(λB3A3)(λB1A1)1.M_{S_{1}}(\lambda)=\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}.

If MS1(λ)<1\left\|M_{S_{1}}(\lambda)\right\|<1, then λρ(S1(λ),B1)\lambda\in\rho(S_{1}(\lambda),B_{1}). For λρ(A1,B1)ρ(A4,B4)\lambda\in\rho(A_{1},B_{1})\cap\rho(A_{4},B_{4}), define

NS1(λ)=(λB1A1)1(λB2A2)(λB4A4)1(λB3A3).N_{S_{1}}(\lambda)=\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right).

If NS1(λ)<1\left\|N_{S_{1}}(\lambda)\right\|<1, then λρ(S1(λ),B1)\lambda\in\rho(S_{1}(\lambda),B_{1}). From Theorem 3.1, we obtain the spectral inclusion

(3.3) σ(𝒜,){λ:MS1(λ)1}{λ:NS1(λ)1}.\sigma(\mathcal{A},\mathcal{B})\subseteq\left\{\lambda\in\mathbb{C}:\left\|M_{S_{1}}(\lambda)\right\|\geq 1\right\}\cap\left\{\lambda\in\mathbb{C}:\left\|N_{S_{1}}(\lambda)\right\|\geq 1\right\}.

Similarly,

λB4S2(λ)\displaystyle\lambda B_{4}-S_{2}(\lambda) =λB4A4(λB3A3)(λB1A1)1(λB2A2)\displaystyle=\lambda B_{4}-A_{4}-\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)
(λB4S2(λ))(λB4A4)1\displaystyle\left(\lambda B_{4}-S_{2}(\lambda)\right)\left(\lambda B_{4}-A_{4}\right)^{-1} =I[(λB3A3)(λB1A1)1(λB2A2)(λB4A4)1]\displaystyle=I-\left[\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}\right]
(λB4A4)1(λB4S2(λ))\displaystyle\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{4}-S_{2}(\lambda)\right) =I[(λB4A4)1(λB3A3)(λB1A1)1(λB2A2)].\displaystyle=I-\left[\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\right].

For λρ(A1,B1)ρ(A4,B4)\lambda\in\rho(A_{1},B_{1})\cap\rho(A_{4},B_{4}), define

MS2(λ)=(λB3A3)(λB1A1)1(λB2A2)(λB4A4)1.M_{S_{2}}(\lambda)=\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}.

If MS2(λ)<1\left\|M_{S_{2}}(\lambda)\right\|<1, then λρ(S2(λ),B4)\lambda\in\rho(S_{2}(\lambda),B_{4}). For λρ(A1,B1)ρ(A4,B4)\lambda\in\rho(A_{1},B_{1})\cap\rho(A_{4},B_{4}), define

NS2(λ)=(λB4A4)1(λB3A3)(λB1A1)1(λB2A2).N_{S_{2}}(\lambda)=\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right).

If NS2(λ)<1\left\|N_{S_{2}}(\lambda)\right\|<1, then λρ(S2(λ),B4)\lambda\in\rho(S_{2}(\lambda),B_{4}). From Theorem 3.2,

(3.4) σ(𝒜,){λ:MS2(λ)1}{λ:NS2(λ)1}.\sigma(\mathcal{A},\mathcal{B})\subseteq\left\{\lambda\in\mathbb{C}:\left\|M_{S_{2}}(\lambda)\right\|\geq 1\right\}\cap\left\{\lambda\in\mathbb{C}:\left\|N_{S_{2}}(\lambda)\right\|\geq 1\right\}.

Combining the inclusions (3.3)(\ref{sp1}) and (3.4)(\ref{sp2}), we obtain

σ(𝒜,){λ:min{MS1(λ),NS1(λ),MS2(λ),NS2(λ)}1}.\sigma(\mathcal{A},\mathcal{B})\subseteq\big{\{}\lambda\in\mathbb{C}:\min\left\{\left\|M_{S_{1}}(\lambda)\right\|,\left\|N_{S_{1}}(\lambda)\right\|,\left\|M_{S_{2}}(\lambda)\right\|,\left\|N_{S_{2}}(\lambda)\right\|\right\}\geq 1\big{\}}.

Using the generalized Frobenius-Schur factorizations, the following theorems identify pseudospectral inclusions for the 2×22\times 2 unbounded block operator matrix pencil.

Theorem 3.4.

Let the block operator matrix pencil (𝒜,)(\mathcal{A},\mathcal{B}) satisfies (H1)-(H4). Then for ϵ>0\epsilon>0,

Λϵ(𝒜,)(Λϵ(1+δ1)(1+δ2)(A1,B1))(Λϵ(1+δ1)(1+δ2)(S2(λ),B4)),\Lambda_{\epsilon}(\mathcal{A},\mathcal{B})\subseteq\left(\Lambda_{\epsilon(1+\delta_{1})(1+\delta_{2})}\left(A_{1},B_{1}\right)\right)\cup\left(\Lambda_{\epsilon(1+\delta_{1})(1+\delta_{2})}\left(S_{2}(\lambda),B_{4}\right)\right),

where δ1=(λB1A1)1(λB2A2)\delta_{1}=\left\|\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\right\| and δ2=(λB3A3)(λB1A1)1\delta_{2}=\left\|\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\right\|.

Proof.

Suppose (𝒜,)(\mathcal{A},\mathcal{B}) satisfies (H1)-(H4) and λρ(𝒜,)\lambda\in\rho(\mathcal{A},\mathcal{B}). From Theorem 3.2, λρ(A1,B1)ρ(S2(λ),B4)\lambda\in\rho(A_{1},B_{1})\cap\rho(S_{2}(\lambda),B_{4}) and

(λ𝒜)1=(IG2(λ)I)((λB1A1)1(λB4S2(λ))1)(IF2(λ)I),\left(\lambda\mathcal{B}-\mathcal{A}\right)^{-1}=\begin{pmatrix}I&-G_{2}(\lambda)\\ &I\end{pmatrix}\begin{pmatrix}\left(\lambda B_{1}-A_{1}\right)^{-1}&\\ &\left(\lambda B_{4}-S_{2}(\lambda)\right)^{-1}\end{pmatrix}\begin{pmatrix}I&\\ -F_{2}(\lambda)&I\end{pmatrix},

where G2(λ)=(λB1A1)1(λB2A2)G_{2}(\lambda)=\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right) and F2(λ)=(λB3A3)(λB1A1)1F_{2}(\lambda)=\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}. Then

(I(λB1A1)1(λB2A2)I)\displaystyle\left\|\begin{pmatrix}I&-\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\\ &I\end{pmatrix}\right\| (II)+((λB1A1)1(λB2A2))\displaystyle\leq\left\|\begin{pmatrix}I&\\ &I\end{pmatrix}\right\|+\left\|\begin{pmatrix}&&-\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\\ &&\end{pmatrix}\right\|
1+(λB1A1)1(λB2A2),\displaystyle\leq 1+\left\|\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\right\|,

and

(I(λB3A3)(λB1A1)1I)\displaystyle\left\|\begin{pmatrix}I&\\ -\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}&I\end{pmatrix}\right\| (II)+((λB3A3)(λB1A1)1)\displaystyle\leq\left\|\begin{pmatrix}I&\\ &I\end{pmatrix}\right\|+\left\|\begin{pmatrix}&&\\ -\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}&&\end{pmatrix}\right\|
1+(λB3A3)(λB1A1)1.\displaystyle\leq 1+\left\|\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\right\|.

Denote δ1=(λB1A1)1(λB2A2)\delta_{1}=\left\|\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\right\| and δ2=(λB3A3)(λB1A1)1\delta_{2}=\left\|\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\right\|. Then

(λ𝒜)1(1+δ1)(1+δ2)max{(λB1A1)1,(λB4S2(λ))1}.\left\|\left(\lambda\mathcal{B}-\mathcal{A}\right)^{-1}\right\|\leq\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)\max\left\{\left\|\left(\lambda B_{1}-A_{1}\right)^{-1}\right\|,\left\|\left(\lambda B_{4}-S_{2}(\lambda)\right)^{-1}\right\|\right\}.

Thus for ϵ>0\epsilon>0,

Λϵ(𝒜,)(Λϵ(1+δ1)(1+δ2)(A1,B1))(Λϵ(1+δ1)(1+δ2)(S2(λ),B4)).\Lambda_{\epsilon}(\mathcal{A},\mathcal{B})\subseteq\left(\Lambda_{\epsilon(1+\delta_{1})(1+\delta_{2})}\left(A_{1},B_{1}\right)\right)\cup\left(\Lambda_{\epsilon(1+\delta_{1})(1+\delta_{2})}\left(S_{2}(\lambda),B_{4}\right)\right).

Theorem 3.5.

Let the block operator matrix pencil (𝒜,)(\mathcal{A},\mathcal{B}) satisfies (L1)-(L4). Then for ϵ>0\epsilon>0,

Λϵ(𝒜,)(Λϵ(1+η1)(1+η2)(A4,B4))(Λϵ(1+η1)(1+η2)(S1(λ),B1)),\Lambda_{\epsilon}(\mathcal{A},\mathcal{B})\subseteq\left(\Lambda_{\epsilon(1+\eta_{1})(1+\eta_{2})}\left(A_{4},B_{4}\right)\right)\cup\left(\Lambda_{\epsilon(1+\eta_{1})(1+\eta_{2})}\left(S_{1}(\lambda),B_{1}\right)\right),

where η1=(λB4A4)1(λB3A3)\eta_{1}=\left\|\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right)\right\| and η2=(λB2A2)(λB4A4)1\eta_{2}=\left\|\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}\right\|.

Proof.

Suppose (𝒜,)(\mathcal{A},\mathcal{B}) satisfies (L1)-(L4) and λρ(𝒜,)\lambda\in\rho(\mathcal{A},\mathcal{B}). From Theorem 3.1, λρ(A4,B4)ρ(S1(λ),B1)\lambda\in\rho(A_{4},B_{4})\cap\rho(S_{1}(\lambda),B_{1}) and

(λ𝒜)1=(IG1(λ)I)((λB1S1(λ))1(λB4A4)1)(IF1(λ)I),\left(\lambda\mathcal{B}-\mathcal{A}\right)^{-1}=\begin{pmatrix}I&\\ -G_{1}(\lambda)&I\end{pmatrix}\begin{pmatrix}\left(\lambda B_{1}-S_{1}(\lambda)\right)^{-1}&\\ &\left(\lambda B_{4}-A_{4}\right)^{-1}\end{pmatrix}\begin{pmatrix}I&-F_{1}(\lambda)\\ &I\end{pmatrix},

where G1(λ)=(λB4A4)1(λB3A3)G_{1}(\lambda)=\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right) and F1(λ)=(λB2A2)(λB4A4)1F_{1}(\lambda)=\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}. Denote η1=(λB4A4)1(λB3A3)\eta_{1}=\left\|\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right)\right\| and η2=(λB2A2)(λB4A4)1\eta_{2}=\left\|\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}\right\|. Then

(λ𝒜)1(1+η1)(1+η2)max{(λB4A4)1,(λB1S1(λ))1}.\left\|\left(\lambda\mathcal{B}-\mathcal{A}\right)^{-1}\right\|\leq\left(1+\eta_{1}\right)\left(1+\eta_{2}\right)\max\left\{\left\|\left(\lambda B_{4}-A_{4}\right)^{-1}\right\|,\left\|\left(\lambda B_{1}-S_{1}(\lambda)\right)^{-1}\right\|\right\}.

Hence the result follows. ∎

The following theorems use the generalized Frobenius-Schur factorizations to identify the (n,ϵ)(n,\epsilon)-pseudospectral inclusions of the 2×22\times 2 unbounded block operator matrix pencil.

Theorem 3.6.

Let the block operator matrix pencil (𝒜,)(\mathcal{A},\mathcal{B}) satisfies (H1)-(H4), n+n\in\mathbb{Z}_{+}, and ϵ>0\epsilon>0. Further G2(λ)F2(λ)=F2(λ)G2(λ)=0G_{2}(\lambda)F_{2}(\lambda)=F_{2}(\lambda)G_{2}(\lambda)=0, G2(λ)(λB4S2(λ))1=(λB1A1)1G2(λ)G_{2}(\lambda)(\lambda B_{4}-S_{2}(\lambda))^{-1}=(\lambda B_{1}-A_{1})^{-1}G_{2}(\lambda), and F2(λ)(λB1A1)1=(λB4S2(λ))1F2(λ)F_{2}(\lambda)(\lambda B_{1}-A_{1})^{-1}=(\lambda B_{4}-S_{2}(\lambda))^{-1}F_{2}(\lambda) for every λρ(𝒜,)\lambda\in\rho(\mathcal{A},\mathcal{B}). Then

Λn,ϵ(𝒜,)(Λn,ϵ(1+δ12n)12n(1+δ22n)12n(A1,B1))(Λn,ϵ(1+δ12n)12n(1+δ22n)12n(S2(λ),B4)),\Lambda_{n,\epsilon}(\mathcal{A},\mathcal{B})\subseteq\left(\Lambda_{n,\epsilon\left(1+\delta_{1}^{2^{n}}\right)^{\frac{1}{2^{n}}}\left(1+\delta_{2}^{2^{n}}\right)^{\frac{1}{2^{n}}}}\left(A_{1},B_{1}\right)\right)\cup\left(\Lambda_{n,\epsilon\left(1+\delta_{1}^{2^{n}}\right)^{\frac{1}{2^{n}}}\left(1+\delta_{2}^{2^{n}}\right)^{\frac{1}{2^{n}}}}\left(S_{2}(\lambda),B_{4}\right)\right),

where δ1=(λB1A1)1(λB2A2)\delta_{1}=\left\|\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\right\| and δ2=(λB3A3)(λB1A1)1\delta_{2}=\left\|\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\right\|.

Proof.

Suppose λρ(𝒜,)\lambda\in\rho(\mathcal{A},\mathcal{B}), from Theorem 3.2,

(λ𝒜)1=(IG2(λ)I)((λB1A1)1(λB4S2(λ))1)(IF2(λ)I).\left(\lambda\mathcal{B}-\mathcal{A}\right)^{-1}=\begin{pmatrix}I&-G_{2}(\lambda)\\ &I\end{pmatrix}\begin{pmatrix}\left(\lambda B_{1}-A_{1}\right)^{-1}&\\ &\left(\lambda B_{4}-S_{2}(\lambda)\right)^{-1}\end{pmatrix}\begin{pmatrix}I&\\ -F_{2}(\lambda)&I\end{pmatrix}.

If G2(λ)F2(λ)=F2(λ)G2(λ)=0G_{2}(\lambda)F_{2}(\lambda)=F_{2}(\lambda)G_{2}(\lambda)=0, G2(λ)(λB4S2(λ))1=(λB1A1)1G2(λ)G_{2}(\lambda)(\lambda B_{4}-S_{2}(\lambda))^{-1}=(\lambda B_{1}-A_{1})^{-1}G_{2}(\lambda), and F2(λ)(λB1A1)1=(λB4S2(λ))1F2(λ)F_{2}(\lambda)(\lambda B_{1}-A_{1})^{-1}=(\lambda B_{4}-S_{2}(\lambda))^{-1}F_{2}(\lambda), then the decomposition matrices are mutually commutative. For n+n\in\mathbb{Z}_{+},

(λ𝒜)2n=(IG2(λ)2nI)((λB1A1)2n(λB4S2(λ))2n)(IF2(λ)2nI).\left(\lambda\mathcal{B}-\mathcal{A}\right)^{-2^{n}}=\begin{pmatrix}I&G_{2}(\lambda)^{2^{n}}\\ &I\end{pmatrix}\begin{pmatrix}\left(\lambda B_{1}-A_{1}\right)^{-2^{n}}&\\ &\left(\lambda B_{4}-S_{2}(\lambda)\right)^{-2^{n}}\end{pmatrix}\begin{pmatrix}I&\\ F_{2}(\lambda)^{2^{n}}&I\end{pmatrix}.

Also

(IG2(λ)2nI)\displaystyle\left\|\begin{pmatrix}I&G_{2}(\lambda)^{2^{n}}\\ &I\end{pmatrix}\right\| =(I((λB1A1)1(λB2A2))2nI)\displaystyle=\left\|\begin{pmatrix}I&\left(\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\right)^{2^{n}}\\ &I\end{pmatrix}\right\|
(II)+(((λB1A1)1(λB2A2))2n)\displaystyle\leq\left\|\begin{pmatrix}I&\\ &I\end{pmatrix}\right\|+\left\|\begin{pmatrix}&&\left(\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\right)^{2^{n}}\\ &&\end{pmatrix}\right\|
1+((λB1A1)1(λB2A2))2n.\displaystyle\leq 1+\left\|\left(\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\right)^{2^{n}}\right\|.

Similarly

(IF2(λ)2nI)\displaystyle\left\|\begin{pmatrix}I&\\ F_{2}(\lambda)^{2^{n}}&I\end{pmatrix}\right\| =(I((λB3A3)(λB1A1)1)2nI)\displaystyle=\begin{pmatrix}I&\\ \left(\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\right)^{2^{n}}&I\end{pmatrix}
(II)+(((λB3A3)(λB1A1)1)2n)\displaystyle\leq\left\|\begin{pmatrix}I&\\ &I\end{pmatrix}\right\|+\left\|\begin{pmatrix}&&\\ \left(\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\right)^{2^{n}}&&\end{pmatrix}\right\|
1+((λB3A3)(λB1A1)1)2n.\displaystyle\leq 1+\left\|\left(\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\right)^{2^{n}}\right\|.

Denote δ1=(λB1A1)1(λB2A2)\delta_{1}=\left\|\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\right\| and δ2=(λB3A3)(λB1A1)1\delta_{2}=\left\|\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\right\|. Then

((λB1A1)1(λB2A2))2n\displaystyle\left\|\left(\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\right)^{2^{n}}\right\| (λB1A1)1(λB2A2)2n=δ12n,\displaystyle\leq\left\|\left(\lambda B_{1}-A_{1}\right)^{-1}\left(\lambda B_{2}-A_{2}\right)\right\|^{2^{n}}=\delta_{1}^{2^{n}},
((λB3A3)(λB1A1)1)2n\displaystyle\left\|\left(\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\right)^{2^{n}}\right\| (λB3A3)(λB1A1)12n=δ22n.\displaystyle\leq\left\|\left(\lambda B_{3}-A_{3}\right)\left(\lambda B_{1}-A_{1}\right)^{-1}\right\|^{2^{n}}=\delta_{2}^{2^{n}}.

Combining the above inequalities,

(λ𝒜)2n(1+δ12n)(1+δ22n)max{(λB1A1)2n,(λB4S2(λ))2n}.\left\|\left(\lambda\mathcal{B}-\mathcal{A}\right)^{-2^{n}}\right\|\leq\left(1+\delta_{1}^{2^{n}}\right)\left(1+\delta_{2}^{2^{n}}\right)\max\left\{\left\|\left(\lambda B_{1}-A_{1}\right)^{-{2^{n}}}\right\|,\left\|\left(\lambda B_{4}-S_{2}(\lambda)\right)^{-{2^{n}}}\right\|\right\}.

Hence for n+n\in\mathbb{Z}_{+} and ϵ>0\epsilon>0,

Λn,ϵ(𝒜,)(Λn,ϵ(1+δ12n)12n(1+δ22n)12n(A1,B1))(Λn,ϵ(1+δ12n)12n(1+δ22n)12n(S2(λ),B4)).\Lambda_{n,\epsilon}(\mathcal{A},\mathcal{B})\subseteq\left(\Lambda_{n,\epsilon\left(1+\delta_{1}^{2^{n}}\right)^{\frac{1}{2^{n}}}\left(1+\delta_{2}^{2^{n}}\right)^{\frac{1}{2^{n}}}}\left(A_{1},B_{1}\right)\right)\cup\left(\Lambda_{n,\epsilon\left(1+\delta_{1}^{2^{n}}\right)^{\frac{1}{2^{n}}}\left(1+\delta_{2}^{2^{n}}\right)^{\frac{1}{2^{n}}}}\left(S_{2}(\lambda),B_{4}\right)\right).

Theorem 3.7.

Let the block operator matrix pencil (𝒜,)(\mathcal{A},\mathcal{B}) satisfies (L1)-(L4), n+n\in\mathbb{Z}_{+}, and ϵ>0\epsilon>0. Further G1(λ)F1(λ)=F1(λ)G1(λ)=0G_{1}(\lambda)F_{1}(\lambda)=F_{1}(\lambda)G_{1}(\lambda)=0, (λB4A4)1G1(λ)=G1(λ)(λB1S1(λ))1\left(\lambda B_{4}-A_{4}\right)^{-1}G_{1}(\lambda)=G_{1}(\lambda)\left(\lambda B_{1}-S_{1}(\lambda)\right)^{-1}, and (λB1S1(λ))1F1(λ)=F1(λ)(λB4A4)1\left(\lambda B_{1}-S_{1}(\lambda)\right)^{-1}F_{1}(\lambda)=F_{1}(\lambda)\left(\lambda B_{4}-A_{4}\right)^{-1} for every λρ(𝒜,)\lambda\in\rho(\mathcal{A},\mathcal{B}). Then

Λn,ϵ(𝒜,)(Λn,ϵ(1+η12n)12n(1+η22n)12n(A4,B4))(Λn,ϵ(1+η12n)12n(1+η22n)12n(S1(λ),B1)),\Lambda_{n,\epsilon}(\mathcal{A},\mathcal{B})\subseteq\left(\Lambda_{n,\epsilon\left(1+\eta_{1}^{2^{n}}\right)^{\frac{1}{2^{n}}}\left(1+\eta_{2}^{2^{n}}\right)^{\frac{1}{2^{n}}}}\left(A_{4},B_{4}\right)\right)\cup\left(\Lambda_{n,\epsilon\left(1+\eta_{1}^{2^{n}}\right)^{\frac{1}{2^{n}}}\left(1+\eta_{2}^{2^{n}}\right)^{\frac{1}{2^{n}}}}\left(S_{1}(\lambda),B_{1}\right)\right),

where η1=(λB4A4)1(λB3A3)\eta_{1}=\left\|\left(\lambda B_{4}-A_{4}\right)^{-1}\left(\lambda B_{3}-A_{3}\right)\right\| and η2=(λB2A2)(λB4A4)1\eta_{2}=\left\|\left(\lambda B_{2}-A_{2}\right)\left(\lambda B_{4}-A_{4}\right)^{-1}\right\|.

Proof.

Suppose λρ(𝒜,)\lambda\in\rho(\mathcal{A},\mathcal{B}), from Theorem 3.1,

(λ𝒜)1=(IG1(λ)I)((λB1S1(λ))1(λB4A4)1)(IF1(λ)I).\left(\lambda\mathcal{B}-\mathcal{A}\right)^{-1}=\begin{pmatrix}I&\\ -G_{1}(\lambda)&I\end{pmatrix}\begin{pmatrix}\left(\lambda B_{1}-S_{1}(\lambda)\right)^{-1}&\\ &\left(\lambda B_{4}-A_{4}\right)^{-1}\end{pmatrix}\begin{pmatrix}I&-F_{1}(\lambda)\\ &I\end{pmatrix}.

The conditions assumed in the statement implies the decomposition matrices are mutually commutative. The proof follows similar as Theorem 3.6. ∎

4. Pseudospectra of the one-dimensional heat operator pencil

4.1. Eigenvalue analysis

Consider the heat transfer through a rod of thermal diffusivity c2c^{2} and length dd. The reformulation of the one-dimensional heat equation subject to the Dirichlet condition at the left and Neumann condition at the right end, along with the variable separable condition, leads to 2×22\times 2 block operator matrix pencil (A,B)(A,B), where

(4.1) A=(c2d2dx2)andB=(IddxI).A=\begin{pmatrix}c^{2}\cfrac{d^{2}}{dx^{2}}&&\\ &&\end{pmatrix}\ \ \ \text{and}\ \ \ B=\begin{pmatrix}I&\\ \cfrac{d}{dx}&-I\end{pmatrix}.

Let λ\lambda be a generalized eigenvalue and ψ=(ψ1ψ2)\psi=\begin{pmatrix}\psi_{1}\\ \psi_{2}\end{pmatrix} be the corresponding generalized eigenfunction of the heat operator pencil, then the boundary conditions give ψ1(0)=ψ2(d)=0\psi_{1}(0)=\psi_{2}(d)=0. The adjoint of AA and BB are

A=(c2d2dx2)andB=(IddxI).A^{*}=\begin{pmatrix}c^{2}\cfrac{d^{2}}{dx^{2}}&&\\ &&\end{pmatrix}\ \ \ \text{and}\ \ \ B^{*}=\begin{pmatrix}I&\cfrac{d}{dx}\\ &-I\end{pmatrix}.

The domains D(A),D(B)D(A^{*}),D(B^{*}) are dense subspaces of Hilbert space L2[0,d]×L2[0,d]L^{2}[0,d]\times L^{2}[0,d] defined by

D(A)\displaystyle D(A^{*}) ={vL2[0,d]:vis absolutely continous,v′′L2[0,d]}×L2[0,d],\displaystyle=\left\{v\in L^{2}[0,d]:v^{\prime}\ \textnormal{is absolutely continous},\ v^{\prime\prime}\in L^{2}[0,d]\right\}\times L^{2}[0,d],
D(B)\displaystyle D(B^{*}) =L2[0,d]×{vL2[0,d]:vis absolutely continous,vL2[0,d]}.\displaystyle=L^{2}[0,d]\times\left\{v\in L^{2}[0,d]:v\ \textnormal{is absolutely continous},\ v^{\prime}\in L^{2}[0,d]\right\}.

The 2×22\times 2 block operator matrix pencil (A,B)(A,B) corresponding to the one-dimensional heat equation is non-self-adjoint. The generalized eigenvalues and the generalized eigenfunctions of (A,B)(A,B) are determined as follows. Let ψ=(ψ1ψ2)\psi=\begin{pmatrix}\psi_{1}\\ \psi_{2}\end{pmatrix}, then

(λBA)ψ=(λIc2d2dx2λddxλI)(ψ1ψ2).\displaystyle(\lambda B-A)\psi=\begin{pmatrix}\lambda I-c^{2}\cfrac{d^{2}}{dx^{2}}&\\ \lambda\cfrac{d}{dx}&-\lambda I\end{pmatrix}\begin{pmatrix}\psi_{1}\\ \psi_{2}\end{pmatrix}.

Thus (λBA)ψ=0(\lambda B-A)\psi=0 gives two simultaneous differential equations

c2d2ψ1dx2=λψ1andλdψ1dx=λψ2.\displaystyle c^{2}\cfrac{d^{2}\psi_{1}}{dx^{2}}=\lambda\psi_{1}\ \ \ \text{and}\ \ \ \lambda\cfrac{d\psi_{1}}{dx}=\lambda\psi_{2}.

By solving the above system of equations, we get

ψ1(x)=(αeλxc+βeλxc)andψ2(x)=λc(αeλxcβeλxc),\psi_{1}(x)=\left(\alpha e^{\frac{\sqrt{\lambda}x}{c}}+\beta e^{-\frac{\sqrt{\lambda}x}{c}}\right)\qquad\textnormal{and}\qquad\psi_{2}(x)=\frac{\sqrt{\lambda}}{c}\left(\alpha e^{\frac{\sqrt{\lambda}x}{c}}-\beta e^{-\frac{\sqrt{\lambda}x}{c}}\right),

for some arbitary constants α,β\alpha,\beta. The boundary conditions are ψ1(0)=ψ2(d)=0\psi_{1}(0)=\psi_{2}(d)=0 and hence λ=0\lambda=0 can not be an eigenvalue. The boundary condition ψ1(0)=0\psi_{1}(0)=0 implies

ψ(x)=(sinhλxcλccoshλxc),\psi(x)=\begin{pmatrix}\sinh\frac{\sqrt{\lambda}x}{c}\\ \frac{\sqrt{\lambda}}{c}\,\cosh\frac{\sqrt{\lambda}x}{c}\end{pmatrix},

where λ\lambda is the non-zero generalized eigenvalue of the operator pencil (A,B)(A,B). The condition ψ2(d)=0\psi_{2}(d)=0 implies coshλdc=0\cosh\frac{\sqrt{\lambda}d}{c}=0 and

λn=c(n+12)πid.\sqrt{\lambda_{n}}=c\left(n+\frac{1}{2}\right)\frac{\pi i}{d}.

Hence the generalized eigenvalues of the operator pencil (A,B)(A,B) are

λn=c2(n+12)2(πd)2,\lambda_{n}=-c^{2}\left(n+\frac{1}{2}\right)^{2}\left(\frac{\pi}{d}\right)^{2},

and the corresponding generalized eigenfunctions are

ψn(x)=(sinhλnxcλnccoshλnxc).\psi^{n}(x)=\begin{pmatrix}\sinh\frac{\sqrt{\lambda_{n}}x}{c}\\ \frac{\sqrt{\lambda_{n}}}{c}\,\cosh\frac{\sqrt{\lambda_{n}}x}{c}\end{pmatrix}.

4.2. Psuedospectral analysis

This section identifies the pseudospectral enclosure of the heat operator pencil (A,B)(A,B) using Theorem 3.4. Denote D=ddxD=\cfrac{d}{dx}. The generalized Frobenius-Schur factorization along the first complement decomposes the heat operator pencil (A,B)(A,B) into

λBA=(II)(λIc2D2λI)(IDI).\lambda B-A=\begin{pmatrix}I&\\ &I\end{pmatrix}\begin{pmatrix}\lambda I-c^{2}D^{2}&\\ &-\lambda I\end{pmatrix}\begin{pmatrix}I&\\ -D&I\end{pmatrix}.

The generalized Frobenius-Schur factorization along the second complement decomposes the heat operator pencil (A,B)(A,B) into

λBA=(IλD(λIc2D2)1I)(λIc2D2λI)(II).\lambda B-A=\begin{pmatrix}I&\\ \lambda D\left(\lambda I-c^{2}D^{2}\right)^{-1}&I\end{pmatrix}\begin{pmatrix}\lambda I-c^{2}D^{2}&\\ &-\lambda I\end{pmatrix}\begin{pmatrix}I&\\ &I\end{pmatrix}.
Theorem 4.1.

Let (A,B)(A,B) be the heat operator pencil and ϵ>0\epsilon>0. Then

Λϵ(A,B)c2σ(D2)+Δϵ(1+δ1),\Lambda_{\epsilon}(A,B)\subseteq c^{2}\sigma(D^{2})+\Delta_{\epsilon(1+\delta_{1})},

where δ1=|λ|D(λIc2D2)1\delta_{1}=|\lambda|\left\|D\left(\lambda I-c^{2}D^{2}\right)^{-1}\right\| and Δϵ(1+δ1)={z:|z|<ϵ(1+δ1)}\Delta_{\epsilon(1+\delta_{1})}=\{z\in\mathbb{C}:|z|<\epsilon(1+\delta_{1})\}.

Proof.

For λ\lambda\in\mathbb{C},

λBA=(λIc2d2dx2λddxλI)=(λIc2D2λDλI)\lambda B-A=\begin{pmatrix}\lambda I-c^{2}\cfrac{d^{2}}{dx^{2}}&\\ \lambda\cfrac{d}{dx}&-\lambda I\end{pmatrix}=\begin{pmatrix}\lambda I-c^{2}D^{2}&\\ \lambda D&-\lambda I\end{pmatrix}

For λρ(D2)\lambda\in\rho(D^{2}), the generalized Frobenius-Schur factorization along the second complement decomposes the heat operator pencil (A,B)(A,B) into

λBA=(IλD(λIc2D2)1I)(λIc2D2λI)(II)\lambda B-A=\begin{pmatrix}I&\\ \lambda D\left(\lambda I-c^{2}D^{2}\right)^{-1}&I\end{pmatrix}\begin{pmatrix}\lambda I-c^{2}D^{2}&\\ &-\lambda I\end{pmatrix}\begin{pmatrix}I&\\ &I\end{pmatrix}

From Theorem 3.2, for λρ(D2)\lambda\in\rho(D^{2}),

(λBA)1=(II)((λIc2D2)11λI)(IλD(λIc2D2)1I).(\lambda B-A)^{-1}=\begin{pmatrix}I&\\ &I\end{pmatrix}\begin{pmatrix}(\lambda I-c^{2}D^{2})^{-1}&\\ &-\cfrac{1}{\lambda}I\end{pmatrix}\begin{pmatrix}I&\\ -\lambda D\left(\lambda I-c^{2}D^{2}\right)^{-1}&I\end{pmatrix}.

From Green’s function, for fL2[0,d]f\in L^{2}[0,d],

(λIc2D2)1(f)=12λcxd(eλ(xt)ceλ(xt)c)f(t)𝑑t.\left(\lambda I-c^{2}D^{2}\right)^{-1}(f)=\frac{1}{2\sqrt{\lambda}c}\int_{x}^{d}\left(e^{\frac{\sqrt{\lambda}(x-t)}{c}}-e^{-\frac{\sqrt{\lambda}(x-t)}{c}}\right)\,f(t)\ dt.

Then

D(λIc2D2)1(f)\displaystyle D\left(\lambda I-c^{2}D^{2}\right)^{-1}(f) =12c2xd(eλ(xt)c+eλ(xt)c)f(t)𝑑t\displaystyle=\frac{1}{2c^{2}}\int_{x}^{d}\left(e^{\frac{\sqrt{\lambda}(x-t)}{c}}+e^{-\frac{\sqrt{\lambda}(x-t)}{c}}\right)\,f(t)\ dt
=12c[1cxdeλ(xt)cf(t)𝑑t+1cxdeλ(xt)cf(t)𝑑t]\displaystyle=\frac{1}{2c}\left[\frac{1}{c}\int_{x}^{d}e^{\frac{\sqrt{\lambda}(x-t)}{c}}f(t)\,dt+\frac{1}{c}\int_{x}^{d}e^{-\frac{\sqrt{\lambda}(x-t)}{c}}f(t)\,dt\right]
=12c[(λIcD)1(f)+(λI+cD)1(f)].\displaystyle=\frac{1}{2c}\left[\left(\sqrt{\lambda}I-cD\right)^{-1}(f)+\left(\sqrt{\lambda}I+cD\right)^{-1}(f)\right].

Hence

λD(λIc2D2)1=λ2c[(λIcD)1+(λI+cD)1].\lambda D\left(\lambda I-c^{2}D^{2}\right)^{-1}=\frac{\lambda}{2c}\left[\left(\sqrt{\lambda}I-cD\right)^{-1}+\left(\sqrt{\lambda}I+cD\right)^{-1}\right].

From Theorem 3.4,

Λϵ(A,B)Λϵ(1+δ1)(c2D2)Λϵ(1+δ1)(𝟎)=c2Λϵ(1+δ1)c2(D2)Δϵ(1+δ1),\Lambda_{\epsilon}(A,B)\subseteq\Lambda_{\epsilon(1+\delta_{1})}\left(c^{2}D^{2}\right)\cup\Lambda_{\epsilon(1+\delta_{1})}({\bf 0})=c^{2}\,\Lambda_{\frac{\epsilon(1+\delta_{1})}{c^{2}}}\left(D^{2}\right)\cup\Delta_{\epsilon(1+\delta_{1})},

where δ1=λD(λIc2D2)1\delta_{1}=\left\|\lambda D\left(\lambda I-c^{2}D^{2}\right)^{-1}\right\| and Δϵ(1+δ1)={z:|z|ϵ(1+δ1)}\Delta_{\epsilon(1+\delta_{1})}=\left\{z\in\mathbb{C}:|z|\leq\epsilon(1+\delta_{1})\right\}. Since D2D^{2} is self-adjoint and 0σ(D2)0\in\sigma(D^{2}), from Corollary 2.11,

c2Λϵ(1+δ1)c2(D2)Δϵ(1+δ1)=c2σ(D2)+Δϵ(1+δ1).c^{2}\,\Lambda_{\frac{\epsilon(1+\delta_{1})}{c^{2}}}\left(D^{2}\right)\cup\Delta_{\epsilon(1+\delta_{1})}=c^{2}\sigma(D^{2})+\Delta_{\epsilon(1+\delta_{1})}.

Proposition 4.2.

Let v=(v1v2)L2[0,d]×L2[0,d]v=\begin{pmatrix}v_{1}\\ v_{2}\end{pmatrix}\in L^{2}[0,d]\times L^{2}[0,d]. Define

w(x)={v1(x)+v2(x)2,dx0,v1(x)+v2(x)2,0xd.\displaystyle w(x)=\begin{cases}\frac{-v_{1}(-x)+v_{2}(-x)}{\sqrt{2}},&-d\leq x\leq 0,\\ \frac{v_{1}(x)+v_{2}(x)}{\sqrt{2}},&0\leq x\leq d.\end{cases}

Then wL2[d,d]w\in L^{2}[-d,d] and w=v\|w\|=\|v\|.

Proof.

Suppose v1,v2L2[0,d]v_{1},v_{2}\in L^{2}[0,d] and ww be defined as above, then

w2\displaystyle\|w\|^{2} =dd|v(x)|2𝑑x=12d0|v1(x)+v2(x)|2𝑑x+120d|v1(x)+v2(x)|2𝑑x\displaystyle=\int_{-d}^{d}\left|v(x)\right|^{2}dx=\frac{1}{2}\int_{-d}^{0}\left|-v_{1}(-x)+v_{2}(-x)\right|^{2}dx+\frac{1}{2}\int^{d}_{0}\left|v_{1}(x)+v_{2}(x)\right|^{2}dx
=12d0|v1(x)+v2(x)|2𝑑x+120d|v1(x)+v2(x)|2𝑑x\displaystyle=-\frac{1}{2}\int_{d}^{0}\left|-v_{1}(x)+v_{2}(x)\right|^{2}dx+\frac{1}{2}\int^{d}_{0}\left|v_{1}(x)+v_{2}(x)\right|^{2}dx
=120d|v1(x)+v2(x)|2𝑑x+120d|v1(x)+v2(x)|2𝑑x\displaystyle=\frac{1}{2}\int^{d}_{0}\left|-v_{1}(x)+v_{2}(x)\right|^{2}dx+\frac{1}{2}\int^{d}_{0}\left|v_{1}(x)+v_{2}(x)\right|^{2}dx
=0d|v1(x)|2+|v2(x)|2dx=v2.\displaystyle=\int^{d}_{0}\left|v_{1}(x)\right|^{2}+\left|v_{2}(x)\right|^{2}dx=\|v\|^{2}.

The following provides another reformulation of the one-dimensional heat equation.

Remark 4.3.

Consider the heat equation

ϕt=c22ϕx2, 0xd,t0,ϕ(0,t)=ϕx(d,t)=0.\displaystyle\frac{\partial\phi}{\partial t}=c^{2}\frac{\partial^{2}\phi}{\partial x^{2}},\ \ 0\leq x\leq d,\ \ t\geq 0,\ \ \phi(0,t)=\phi_{x}(d,t)=0.

Suppose ϕ\phi is variable separable and ϕ(x,t)=ϕ1(x)ϕ2(t)\phi(x,t)=\phi_{1}(x)\,\phi_{2}(t). Define ξL2[d,d]\xi\in L^{2}[-d,d] by

ξ(x)={ϕ1(x)+ϕ1(x)2,dx0,ϕ1(x)+ϕ1(x)2,0xd.\xi(x)=\begin{cases}\frac{-\phi_{1}(-x)+\phi_{1}^{\prime}(-x)}{\sqrt{2}},&-d\leq x\leq 0,\\ \frac{\phi_{1}(x)+\phi_{1}^{\prime}(x)}{\sqrt{2}},&0\leq x\leq d.\end{cases}

From Proposition 4.2, ξ=ϕ1\|\xi\|=\|\phi_{1}\|. For ϕ1(x)=ξ(x)\phi_{1}(x)=\xi(x) and ϕ2(t)=eλt\phi_{2}(t)=e^{\lambda t}, the system becomes an eigenvalue problem of the form

(λIL)ξ=0,L=c2d2dx2,ξ(d)=ξ(d).(\lambda I-L)\xi=0,\ \ L=c^{2}\cfrac{d^{2}}{dx^{2}},\ \ \xi(d)=-\xi(-d).

4.3. Discretization

Consider a grid 0=x0<x1<<xm=d0=x_{0}<x_{1}<\cdots<x_{m}=d, xi=iδxx_{i}=i\,\delta x and 0=t0<t1<0=t_{0}<t_{1}<\cdots, tj=t0+jδtt_{j}=t_{0}+j\,\delta_{t}. Denote ϕij=ϕ(xi,tj)\phi_{i}^{j}=\phi(x_{i},t_{j}), the forward time and centered space approximation of the one-dimensional heat equation results in

ϕij+1=ϕij+c2δt(δx)2(ϕi+1j2ϕij+ϕi1j),\phi_{i}^{j+1}=\phi_{i}^{j}+\frac{c^{2}\,\delta t}{(\delta x)^{2}}\left(\phi_{i+1}^{j}-2\phi_{i}^{j}+\phi_{i-1}^{j}\right),

where i=0,1,,mi=0,1,\ldots,m and j=0,1,j=0,1,\ldots. The boundary conditions implies ϕ0j=0\phi_{0}^{j}=0 and ϕmjϕm1jδx=0\cfrac{\phi_{m}^{j}-\phi_{m-1}^{j}}{\delta x}=0 for j=0,1,j=0,1,\ldots. The above becomes a linear system

Tϕ(j)=r(j),T\phi^{(j)}=r^{(j)},

where ϕ(j)=(ϕ0j,,ϕmj)T\phi^{(j)}=\left(\phi_{0}^{j},\ldots,\phi_{m}^{j}\right)^{T} and r(j)=(r0j,,rmj)Tr^{(j)}=\left(r_{0}^{j},\ldots,r_{m}^{j}\right)^{T} where rij=ϕij+1,rmj=0r_{i}^{j}=\phi_{i}^{j+1},r_{m}^{j}=0. Denote a=c2δt(δx)2a=\cfrac{c^{2}\,\delta t}{(\delta x)^{2}}, then

T=(10a12aaa12aaa12aa11).T=\begin{pmatrix}1&0\\ a&1-2a&a\\ &a&1-2a&a\\ &&\ddots&\ddots&\ddots\\ &&&a&1-2a&a\\ &&&&-1&1\end{pmatrix}.

The first and last rows are adjusted as per the boundary conditions. We depict the plots of pseudospectrum for T10×10T_{10\times 10} for various values of aa and ϵ\epsilon.

Refer to caption
a=5, ϵ=0.25\epsilon=0.25
Refer to caption
a=5, ϵ=0.5\epsilon=0.5
Refer to caption
a=10, ϵ=0.25\epsilon=0.25
Refer to caption
a=10, ϵ=0.5\epsilon=0.5

The pseudospectra is used to measure the departure from normality or self-adjoint. In Theorem 4.1, we have seen that the pseudospectra of the heat operator pencil (A,B)(A,B) is contained in the pseudospectra of the self-adjoint operator D2D^{2}. The plots of pseudospectra of the discretized one-dimensional heat equation behave in a well-mannered way towards the negative real axis, and we have observed that the eigenvalues away from the origin are less sensitive to perturbations.

References

  • [1] E. B. Davies, Pseudospectra of differential operators, J. Operator Theory 43 (2000), no. 2, 243–262. MR1753408
  • [2] J. L. Doob, A probability approach to the heat equation, Trans. Amer. Math. Soc. 80 (1955), 216–280. MR0079376
  • [3] T. A. Driscoll and L. N. Trefethen, Pseudospectra for the wave equation with an absorbing boundary, J. Comput. Appl. Math. 69 (1996), no. 1, 125–142. MR1391615
  • [4] A. C. Hansen, On the approximation of spectra of linear operators on Hilbert spaces, J. Funct. Anal. 254 (2008), no. 8, 2092–2126. MR2402104
  • [5] A. C. Hansen, On the solvability complexity index, the nn-pseudospectrum and approximations of spectra of operators, J. Amer. Math. Soc. 24 (2011), no. 1, 81–124. MR2726600
  • [6] A. Jeribi, Spectral theory and applications of linear operators and block operator matrices, Springer, Cham, 2015. MR3408559
  • [7] T. Kato, Perturbation theory for linear operators, reprint of the 1980 edition, Classics in Mathematics, Springer, Berlin, 1995. MR1335452
  • [8] E. Kreyszig, Introductory functional analysis with applications, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. MR0992618
  • [9] G. Krishna Kumar and Judy Augustine, A pseudospectral mapping theorem for operator pencils, Oper. Matrices 16 (2022), no. 3, 709–732. MR4502031
  • [10] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, translated from the Russian by H. H. McFaden, translation edited by Ben Silver, Translations of Mathematical Monographs, 71, Amer. Math. Soc., Providence, RI, 1988. MR0971506
  • [11] R. J. Nagel, Towards a “matrix theory” for unbounded operator matrices, Math. Z. 201 (1989), no. 1, 57–68. MR0990188
  • [12] E. Rama, A. Chandulal and K. Sambaiah, Application of variational iteration method to obtain the solution of one dimensional heat equation and heat-like equations with variable coefficients, Malaya J. Mat. 9 (2021), no. 1, 996–999. MR4275198
  • [13] S. C. Reddy, Pseudospectra of operators and discretization matrices and an application to stability of the method of lines, ProQuest LLC, Ann Arbor, MI, 1991. MR2716352
  • [14] S. C. Reddy and L. N. Trefethen, Pseudospectra of the convection-diffusion operator, SIAM J. Appl. Math. 54 (1994), no. 6, 1634–1649. MR1301275
  • [15] S. C. Reddy, P. J. Schmid and D. S. Henningson, Pseudospectra of the Orr-Sommerfeld operator, SIAM J. Appl. Math. 53 (1993), no. 1, 15–47. MR1202838
  • [16] M. S. Sahimi et al., Parabolic-elliptic correspondence of a three-level finite difference approximation to the heat equation, Bull. Malays. Math. Sci. Soc. (2) 26 (2003), no. 1, 79–85. MR2055768
  • [17] V. S. Sunder, Functional analysis, Birkhäuser Advanced Texts: Basler Lehrbücher., Birkhäuser Verlag, Basel, 1997. MR1646508
  • [18] L. N. Trefethen and M. Embree, Spectra and pseudospectra, Princeton University Press, Princeton, NJ, 2005. MR2155029
  • [19] L. N. Trefethen, Pseudospectra of linear operators, SIAM Rev. 39 (1997), no. 3, 383–406. MR1469941
  • [20] L. N. Trefethen, Approximation theory and numerical linear algebra, in Algorithms for approximation, II (Shrivenham, 1988), 336–360, Chapman and Hall, London. MR1071991
  • [21] C. Tretter, Spectral theory of block operator matrices and applications, Imp. Coll. Press, London, 2008. MR2463978
  • [22] M. Zlámal, A finite element solution of the nonlinear heat equation, RAIRO Anal. Numér. 14 (1980), no. 2, 203–216. MR0571315