This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

qeirreps: an open-source program for Quantum ESPRESSO to compute irreducible representations of Bloch wavefunctions

Akishi Matsugatani matsugatani@cmt.t.u-tokyo.ac.jp Seishiro Ono Yusuke Nomura Haruki Watanabe Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Abstract

Bloch wavefunctions in solids form a representation of crystalline symmetries. Recent studies revealed that symmetry representations in band structure can be used to diagnose the topological properties of weakly interacting materials. In this work, we introduce an open-source program qeirreps that computes the representation characters in a band structure based on the output file of Quantum ESPRESSO. Our program also calculates the 4\mathbb{Z}_{4} index, i.e., the sum of inversion parities at all time-reversal invariant momenta, for materials with inversion symmetry. When combined with the symmetry indicator method, this program can be used to explore new topological materials.

keywords:
Quantum ESPRESSO; Irreducible representations; Non-symmorphic space groups.

PROGRAM SUMMARY

Program title: qeirreps

Catalogue identifier:

Licensing provisions: GNU General Public Licence 3.0

Programming language: Fortran 90

Computer: any architecture with a Fortran 90 compiler

Operating system: Unix, Linux

RAM: Variable, depends on the complexity of the problem

External routines/libraries used:

  • 1.

    BLAS (http://www/netlib.org/blas)

  • 2.

    LAPACK (http://www.netlib.org/lapack)

Nature of problem: Irreducible representations of Bloch wavefunctions

Solution method: Linear algebra calculation for Bloch wavefunctions

Running time: 1 min - 1 h (strongly depends on the complexity of the problem)

1 Introduction

One of the main goals in condensed matter physics is to predict the properties of materials of our interest by solving the Schrödinger equation. In practice, this challenging problem is reduced to a manageable one in two ways. The first is to map the interacting system to a free (i.e., noninteracting) electronic system, as is done in the Kohn-Sham density functional theory (DFT) [1]. The other simplification utilizes the symmetry of the system. For example, the lattice translation symmetry of an ideal crystal that is free from impurities or disorders allows us to block-diagonalize the Hamiltonian by switching to the momentum space. The original problem of interacting electrons is thereby transformed into the one within the standard band theory. The electronic structure of an enormous number of weakly interacting materials has been successfully computed in this way.

In addition to the lattice translation symmetry, a perfect crystal tends to have other symmetries such as a spatial inversion and a discrete rotation. The set of symmetry operations of a crystal forms a group, called space group. In three dimensions, there are 230 different space groups, and the spatial symmetry of the crystal at work falls into one of them. Crystalline symmetries help us to a better understanding on the electronic band structure. Bloch wavefunctions form a representation of the space group, and the representation puts constraints on how many energy bands degenerate at each momentum and how energy bands at different momenta connect with each other. Furthermore, there has been an increasing number of evidence that the space group representation also informs us of the topological aspects of the Bloch wavefunction.

Since the discovery of the 2\mathbb{Z}_{2} topological insulator [2, 3], topological materials have attracted researchers around the world. In the early stage of the study of topological phases, the focus was on the phases protected by internal symmetries: the time-reversal, the particle-hole, and the chiral symmetry [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. These pioneering studies were united into the celebrated topological periodic table [19, 20, 21]. They were followed by a large number of studies that take into account the various types of crystalline symmetries [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. It turned out that there exist various novel topological phases protected by crystalline symmetries [22, 27, 28, 29, 30, 31, 39, 40, 41, 42], such as mirror Chern insulators [43, 44], higher-order topological insulators [39, 41, 42, 45, 46, 47, 48], and topological semimetals of the Dirac [49] and Weyl [50] type. These topological materials host robust surface states and exhibits unique bulk responses, which could be leveraged for new low-power devices. Therefore, discovering new candidates of topological materials is one of the important tasks both for the fundamental physics and for the application.

At this moment, listing up the full set of topological invariants, for a given symmetry setting, that completely characterize all possible topological phases is still a pending problem. Furthermore, even if we know the mathematical definition of topological invariants, it is sometimes difficult to compute them directly using their definitions [28, 31, 32]. These issues can be resolved with the help of crystalline symmetries. By using the information of the representations of the Bloch wavefunctions at a set of crystalline momenta, it is sometimes possible to judge the topology encoded in the Bloch wavefunctions quite easily. The prototypical example is the Fu-Kane formula [9], which determines the 2\mathbb{Z}_{2} invariant based on the inversion parities. Recently, this idea has been extended to a wider class of topological (crystalline) insulators and semimetals in all 230 space groups. The generalized schemes are nowadays known as the method of “symmetry indicators” [51, 52] and “topological quantum chemistry” [53]. Their usefulness in the search for realistic topological materials was clearly demonstrated by the recent comprehensive survey of topological materials among existing databases of inorganic substances [54, 55, 56, 57, 58]. As a result of this survey, thousands of candidates of topological (crystalline) insulators and semimetals have been identified. The theory of symmetry indicators has also been extended to magnetic space groups [59] and superconductors [60, 61, 62, 63, 64, 65], and further investigation of topological magnetic materials and superconductors is awaiting us.

Having in mind these applications, it is evidently important to make it possible to automatically compute irreducible representations of Bloch wavefunctions by using DFT. Although the authors of Refs. [54, 55, 56, 57, 58, 66] implemented this function for WIEN2k [67] and VASP [68], these softwares require paid licenses. In contrast, for the Quantum ESPRESSO [69, 70], which is a free, open-source package, the existing program can handle only one type of space groups, called “symmorphic” space groups, and does not work for the other type, called “non-symmorphic.” Given this situation, we develop an open-source code, named qeirreps, that works equally for symmorphic and non-symmorphic space groups. This would allow everyone to compute the band structure and determine the irreducible representations by themselves, and when combined with the method of symmetry-indicator, would help our search of novel topological materials like topological superconductors as partially demonstrated in Ref. [71].

The rest of this paper is organized as follows. In Sec. 2, we briefly review the theoretical background of space groups and their representations. In Sec. 3, we explain the installation and usage of qeirreps. After providing some examples: bismuth, silicon, NaCdAs, and PbPt3 in Sec. 4, we conclude in Sec. 5.

2 Theoretical background

We start with reviewing the basics of space groups and their representations.

2.1 Space group action on the real and momentum space

Let us consider a space group 𝒢\mathcal{G}. An element g𝒢g\in\mathcal{G} moves 𝒙3\bm{x}\in\mathbb{R}^{3} to

g(𝒙)\displaystyle g(\bm{x}) =pg𝒙+𝒕g3,\displaystyle=p_{g}\bm{x}+\bm{t}_{g}\ \in\mathbb{R}^{3}, (1)

where pgO(3)p_{g}\in\text{O}(3) represents the point group part and 𝒕g3\bm{t}_{g}\in\mathbb{R}^{3} represents the translation part of gg. The product of two elements g𝒢g\in\mathcal{G} and g𝒢g^{\prime}\in\mathcal{G} is defined by

pgg=pgpg,𝒕gg=pg𝒕g+𝒕g.\displaystyle p_{gg^{\prime}}=p_{g}p_{g^{\prime}},\quad\bm{t}_{gg^{\prime}}=p_{g}\bm{t}_{g^{\prime}}+\bm{t}_{g}. (2)

In general, 𝒕g\bm{t}_{g} is not necessarily a lattice vector. If we can choose the origin of 𝒙\bm{x} in such a way that 𝒕g\bm{t}_{g} becomes a lattice vector simultaneously for all g𝒢\forall g\in\mathcal{G}, the space group is symmorphic; otherwise, it is nonsymmorphic. Nonsymmorphic space groups typically contain either screw axes or glide planes.

A space group 𝒢\mathcal{G} always has a subgroup TT composed of lattice translations. An element T𝑹T_{\bm{R}} of TT can be characterized by a lattice vector 𝑹\bm{R}. We introduce the wavevector 𝒌\bm{k} through the representation of the translation symmetry U𝒌(T𝑹)=ei𝒌𝑹U_{\bm{k}}(T_{\bm{R}})=e^{-i\bm{k}\cdot\bm{R}}.

An element g𝒢g\in\mathcal{G} changes 𝒌\bm{k} to g(𝒌)=pg𝒌g(\bm{k})=p_{g}\bm{k}. We say 𝒌\bm{k} is invariant under gg when g(𝒌)=𝒌+𝑮g(\bm{k})=\bm{k}+\bm{G} with a reciprocal lattice vector 𝑮\bm{G}. For each 𝒌\bm{k}, the set of g𝒢g\in\mathcal{G} that leaves 𝒌\bm{k} invariant, i.e., {h𝒢|h(𝒌)=𝒌+𝑮}\left\{h\in\mathcal{G}\ |\ h(\bm{k})=\bm{k}+\bm{G}\right\}, forms a subgroup of 𝒢\mathcal{G} called the little group 𝒢𝒌\mathcal{G}_{\bm{k}}. Since 𝒢𝒌\mathcal{G}_{\bm{k}} is also an infinite group due to its translation subgroup TT, sometimes the finite group 𝒢𝒌/T\mathcal{G}_{\bm{k}}/T, called “little co-group [72],” is discussed instead. In this work, we always consider the little group 𝒢𝒌\mathcal{G}_{\bm{k}}.

2.2 Crystalline symmetries of band structures

The space group symmetry 𝒢\mathcal{G} can be encoded in the single-particle Hamiltonian H𝒌H_{\bm{k}} in momentum space by requiring

U𝒌(g)H𝒌\displaystyle U_{\bm{k}}(g)H_{\bm{k}} =Hpg𝒌U𝒌(g)\displaystyle=H_{p_{g}\bm{k}}U_{\bm{k}}(g) (3)

for each g𝒢g\in\mathcal{G}, where U𝒌(g)U_{\bm{k}}(g) is a unitary matrix forming a representation of 𝒢\mathcal{G}. For spinful electrons, relevant representations become ‘projective’ (in contrast to the ordinary ‘linear’ representation) and U𝒌(g)U_{\bm{k}}(g)’s satisfy

Ug𝒌(g)U𝒌(g)\displaystyle U_{g^{\prime}\bm{k}}(g)U_{\bm{k}}(g^{\prime}) =ωsp(g,g)U𝒌(gg)\displaystyle=\omega^{\text{sp}}(g,g^{\prime})U_{\bm{k}}(gg^{\prime}) (4)

for g,g𝒢g,g^{\prime}\in\mathcal{G}. The projective factor ωsp(g,g)=±1\omega^{\text{sp}}(g,g^{\prime})=\pm 1 is not unique, and we choose it as in Eq. (9). For spin-rotation invariant systems, ωsp(g,g)\omega^{\text{sp}}(g,g^{\prime}) can be set 11 by neglecting the spin degree of freedom.

There is a way of treating projective representations of 𝒢\mathcal{G} as linear representations of an enlarged group 𝒢\mathcal{G}^{\prime} who has the doubled number of elements. This method is known as ‘double group,’ and is commonly used, for example, in Ref. [73]. In this treatment, 𝒢\mathcal{G}^{\prime} contains both ±g\pm g for each element of 𝒢\mathcal{G}, and the product of ηg𝒢\eta g\in\mathcal{G}^{\prime} and ηg𝒢\eta^{\prime}g^{\prime}\in\mathcal{G}^{\prime} is defined by ηηωsp(g,g)gg𝒢\eta\eta^{\prime}\omega^{\text{sp}}(g,g^{\prime})gg^{\prime}\in\mathcal{G}^{\prime}. See C for an example. Whether one handles projective representations directly, as we do in our program, or via the double group method does not affect the physical conclusion. See more detailed discussions on the relationship between projective representations and double groups in Refs. [74, 75].

The single-particle Hamiltonian H𝒌H_{\bm{k}} can be diagonalized as

H𝒌\displaystyle H_{\bm{k}} =Ψ𝒌(ϵ𝒌1𝟙1000ϵ𝒌2𝟙2000ϵ𝒌M𝒌𝟙M𝒌)Ψ𝒌,\displaystyle=\Psi_{\bm{k}}\begin{pmatrix}\epsilon_{\bm{k}1}\mathds{1}_{1}&0&\cdots&0\\ 0&\epsilon_{\bm{k}2}\mathds{1}_{2}&\cdots&0\\ \vdots&\vdots&\ddots&\cdots\\ 0&0&\cdots&\epsilon_{\bm{k}M_{\bm{k}}}\mathds{1}_{M_{\bm{k}}}\end{pmatrix}\Psi_{\bm{k}}^{\dagger}, (5)

where ϵ𝒌n\epsilon_{\bm{k}n} (n=1,2,,M𝒌n=1,2,\cdots,M_{\bm{k}}) is the nn-th energy level of H𝒌H_{\bm{k}} and 𝟙n\mathds{1}_{n} is the identity matrix whose size is given by the order of degeneracy of ϵ𝒌n\epsilon_{\bm{k}n}. The unitary matrix Ψ𝒌\Psi_{\bm{k}} is composed of all eigenvectors of H𝒌H_{\bm{k}}. When hh is an element of 𝒢𝒌\mathcal{G}_{\bm{k}}, U𝒌(h)U_{\bm{k}}(h) can also be block-diagonalized by Ψ𝒌\Psi_{\bm{k}} as

U𝒌(h)\displaystyle U_{\bm{k}}(h) =Ψ𝒌(U𝒌1(h)000U𝒌2(h)000U𝒌M𝒌(h))Ψ𝒌(h𝒢𝒌).\displaystyle=\Psi_{\bm{k}}\begin{pmatrix}U_{\bm{k}1}(h)&0&\cdots&0\\ 0&U_{\bm{k}2}(h)&\cdots&0\\ \vdots&\vdots&\ddots&\cdots\\ 0&0&\cdots&U_{\bm{k}M_{\bm{k}}}(h)\end{pmatrix}\Psi_{\bm{k}}^{\dagger}\quad\left(\forall h\in\mathcal{G}_{\bm{k}}\right). (6)

Here, U𝒌n(h)U_{\bm{k}n}(h) is the representation of 𝒢𝒌\mathcal{G}_{\bm{k}} of the nn-th band. Although the specific representation depends on the detailed choice of Ψ𝒌\Psi_{\bm{k}}, its character

χ𝒌n(h)\displaystyle\chi_{\bm{k}n}(h) =tr[U𝒌n(h)]\displaystyle=\mathrm{tr}\left[U_{\bm{k}n}(h)\right] (7)

is basis independent. The output of our program is the list of characters χ𝒌n(h)\chi_{\bm{k}n}(h) for each the energy level ϵ𝒌n\epsilon_{\bm{k}n} at each high-symmetry point 𝒌\bm{k}.

In the absence of accidental degeneracy or symmetries other than 𝒢\mathcal{G}, the representation U𝒌n(h)U_{\bm{k}n}(h) is automatically irreducible. That is, the character χ𝒌n(h)\chi_{\bm{k}n}(h) of the nn-th band coincides with one of the characters χ𝒌α(h)=tr[U𝒌α(h)]\chi_{\bm{k}}^{\alpha}(h)=\mathrm{tr}\left[U_{\bm{k}}^{\alpha}(h)\right] of irreducible representations of 𝒢𝒌\mathcal{G}_{\bm{k}}. Otherwise, U𝒌n(h)U_{\bm{k}n}(h) can be decomposed into irreducible representations U𝒌αU_{\bm{k}}^{\alpha} as U𝒌n=αn𝒌nαU𝒌αU_{\bm{k}n}=\oplus_{\alpha}n_{\bm{k}n}^{\alpha}U_{\bm{k}}^{\alpha}, where the multiplicity of each irreducible representation is given by the formula

n𝒌nα=1|𝒢𝒌/T|h𝒢𝒌/Tχ𝒌α(h)χ𝒌n(h).n_{\bm{k}n}^{\alpha}=\frac{1}{|\mathcal{G}_{\bm{k}}/T|}\sum_{h\in\mathcal{G}_{\bm{k}}/T}\chi_{\bm{k}}^{\alpha}(h){}^{*}\,\chi_{\bm{k}n}(h). (8)

Our output file provides the list of χ𝒌α(h)\chi_{\bm{k}}^{\alpha}(h) and n𝒌nαn_{\bm{k}n}^{\alpha} in irreps_list.dat and irreps_number.dat, respectively. 111Note that the output of our program is the character of representations of 𝒢𝒌\mathcal{G}_{\bm{k}}, not 𝒢𝒌/T\mathcal{G}_{\bm{k}}/T, and one should not confuse them. Irreducible representations of 𝒢𝒌\mathcal{G}_{\bm{k}} and 𝒢𝒌/T\mathcal{G}_{\bm{k}}/T are related to each other by a simple rule, and one can convert one to the other easily.

2.3 Application

The sum of integers n𝒌nαn_{\bm{k}n}^{\alpha} in Eq. (8) over all filled bands, i.e., n𝒌α=n:filledn𝒌nαn_{\bm{k}}^{\alpha}=\sum_{n:\text{filled}}n_{\bm{k}n}^{\alpha}, counts the irreducible representation U𝒌α(h)U_{\bm{k}}^{\alpha}(h) below the Fermi level at each high-symmetry point 𝒌\bm{k}. The integers n𝒌αn_{\bm{k}}^{\alpha} can be used, for example, to diagnose the topology of band insulators through the method of symmetry indicators [51, 52] or the topological quantum chemistry [53]. These methods diagnose the topology of the target material by comparing its irreducible representations with those of atomic insulators. Useful formulas of topological indices in terms of {n𝒌α}\{n_{\bm{k}}^{\alpha}\} are provided in Refs. [76, 77, 78, 60].

For the user’s convenience, we implemented the function that automatically computes the 4\mathbb{Z}_{4} index as the sum of the inversion parities of all occupied bands at all the time-reversal invariant momenta (TRIMs). The 4\mathbb{Z}_{4} index can detect not only strong topological insulators but also topological crystalline insulators such as mirror Chern insulators or higher-order topological insulators [77, 78]. See Sec. 4.1 for an example. Other symmetry indicators can also be computed in the same way using the output of our program. We discuss several examples in Sec. 4.4.

2.4 Conventions

Let us summarize our conventions that are necessary to compare the output of our program with that of others. There are three sources of ambiguities that affect the U(1) phase of the representation U𝒌α(h)U_{\bm{k}}^{\alpha}(h): (i) the choice of representatives of 𝒢\mathcal{G}, (ii) the choice of the coordinates, and (iii) the choice of spin rotation matrices. Readers not interested in the details can skip to Sec. 3.

2.4.1 The choice of representatives of 𝒢\mathcal{G}

Although the number of elements of 𝒢\mathcal{G} is infinite because of its translation subgroup, in the actual calculation, it is sufficient to discuss a finite number of elements by choosing one g𝒢g\in\mathcal{G} for each pgp_{g}. This is because, if gg^{\prime} differs from gg by its translation part (i.e., pg=pgp_{g^{\prime}}=p_{g} and 𝒕g=𝒕g+𝑹\bm{t}_{g^{\prime}}=\bm{t}_{g}+\bm{R} for a lattice vector 𝑹\bm{R}), the little-group representation of gg^{\prime} is simply given by U𝒌(g)=U𝒌(g)ei𝒌𝑹U_{\bm{k}}(g^{\prime})=U_{\bm{k}}(g)e^{-i\bm{k}\cdot\bm{R}}. The choice of gg’s is not unique, and in our program, they are automatically selected by Quantum ESPRESSO based on the input file. The chosen elements of 𝒢\mathcal{G} are stored in our output files: the list of pgp_{g}’s is in pg.dat and the list of the corresponding 𝒕g\bm{t}_{g}’s is in tg.dat.

2.4.2 The choice of the coordinates

When using Quantum ESPRESSO, one needs to prepare an input file that contains the information of the coordinates of atomic positions. In Quantum ESPRESSO, the fixed point of point group symmetries is always set to (0,0,0)(0,0,0), and the input file must be carefully prepared. For a given material, even after fixing the symmetry operation, there can still be multiple choices of the coordinates, and the irreducible representations can in general be affected by this choice. In our examples discussed in Sec. 4, the information of the chosen coordinates is stored in the input file named *.scf.in.

To see this subtlety through a simple example, let us consider the inversion symmetric 1D system illustrated in Figure 1. In this model, there are two atoms A and B in a unit cell. In the panel (a), the atom A is placed at the origin and the coordinate of the atom B is x=12x=\frac{1}{2}. In the panel (b), the atom B is placed at the origin and the coordinate of the atom A is x=12x=\frac{1}{2}. This is the ambiguity of the coordinates mentioned above. In both cases, the inversion symmetry is about the origin x=0x=0, but the atom at the fixed point is different. This means that the inversion in (a) and that in (b) are physically different operations. As a consequence, their representations are not the same and are related by Ukxα(I)(a)=eikxUkxα(I)(b){U}_{k_{x}}^{\alpha}(I)^{\text{(a)}}=e^{ik_{x}}U_{k_{x}}^{\alpha}(I)^{\text{(b)}}.

Refer to caption
Figure 1: Two choices of the coordinate for an inversion symmetric 1D system composed of two atoms A and B in each unit cell. The origin of the coordinate is at the atom A in the panel (a), while it is at the atom B in the panel (b).

2.4.3 The choice of the spin rotation

As is well-known, the correspondence between a point group element pgO(3)p_{g}\in\text{O}(3) and the spin rotation matrix pgspSU(2)p_{g}^{\text{sp}}\in\text{SU}(2) has a sign ambiguity. Namely, when pgspSU(2)p_{g}^{\text{sp}}\in\text{SU}(2) denotes a spin rotation matrix corresponding to the point group pgp_{g}, pgspSU(2)-p_{g}^{\text{sp}}\in\text{SU}(2) is also an equally valid choice of the spin rotation matrix, and there is no unique way of resolving the ambiguity. Our choice of pgspp_{g}^{\text{sp}} is stored in srg.dat.

Given the choice of pgspp_{g}^{\text{sp}} for each gg, we fix the projective factor in Eq. (4) by

pgsppgsp\displaystyle p_{g}^{\text{sp}}p_{g^{\prime}}^{\text{sp}} =ωsp(g,g)pggsp.\displaystyle=\omega^{\text{sp}}(g,g^{\prime})p_{gg^{\prime}}^{\text{sp}}. (9)

The information of ωsp(g,g)\omega^{\text{sp}}(g,g^{\prime}) is stored in factor_system_spin.dat.

3 Installation and usage

Here we explain how to install and use qeirreps. The flowchart of the calculations is shown in Figure 2.

3.1 Compiling environment for qeirreps

A Fortran 90 compiler, BLAS, and LAPACK libraries are required for the installation of qeirreps. Quantum ESPRESSO must also be installed in advance. In addition, the program qe2respack [79] 222This program qe2respack is a part of the program package RESPACK [79]. qe2respack in the latest version of RESPACK does not support DFT calculations with spin-orbit coupling. For calculations with spin-orbit coupling, we need the specific version of qe2respack described in this section. is required, which can be downloaded or cloned from the branch of respack “maxime2” in the GitHub repository (https://github.com/mnmpdadish/respackDev/). The program qe2respack.py is in the directory util/qe2respack.

3.2 Installation of qeirreps

Our program qeirreps is released at GitHub (https://github.com/qeirreps/qeirreps). The program files which contain source files, documents, and examples can be cloned or downloaded from this repository. The file qeirreps/src/Makefile must be edited to specify the compiler and libraries in your compiling environment. By typing $ make in the source directory qeirreps/src/, the executable binary qeirreps.x is compiled.

3.3 Preparing input files of qeirreps

Our program qeirreps works based on the output of Quantum ESPRESSO. To prepare input files of qeirreps, the following three steps are needed to be done one by one:

  1. 1.

    Self-consistent first-principles (scf) calculation of a target material.

  2. 2.

    Non-self-consistent first-principles (nscf) calculation of the material for each high-symmetry momentum.

  3. 3.

    Data conversion from Quantum ESPRESSO output files to qeirreps input files.

The first two steps can be carried out by the standard functions of Quantum ESPRESSO. The result of the scf calculation is used in the successive nscf calculation. The set of high-symmetry points to be included in the calculation depends on the purpose of the calculation and the space group of the target material. When one applies the results of qeirreps to symmetry indicators or topological quantum chemistry, the minimum set of high-symmetry points are listed in Refs. [78, 57, 58].

We refer to the directory that stores the wavefunction data computed by the nscf calculation OUTDIR/PREFIX.save below. For the moment, qeirreps requires norm-conserving calculations. Pseudo-potentials must be optimized for norm-conserving calculations (for example, Optimized Norm-Conserving Vanderbilt Pseudopotential [80] is available in PseudoDojo (http://www.pseudo-dojo.org) [81]) and the option wf_collect should be set .TRUE. in the input files for DFT calculations.

The output files in OUTDIR/PREFIX.save must be converted by qe2respack into the form of input files of qeirreps. The work directory is referred to as DIRECTORY_NAME here. Then, type the following in the work directory:

$python PATH_OF_qe2respack/qe2respack.py OUTDIR/PREFIX.save,\$\ \texttt{python PATH\_OF\_qe2respack/qe2respack.py OUTDIR/PREFIX.save}\ ,

where PATH_OF_qe2respack is the path to the directory util/qe2respack. qeirreps reads the files produced by qe2respack.py in the dir-wfn directory. The contents of these files are summarized in Table 1.

Table 1: List of the output files of qe2respack.py, which serve as the input files of qeirreps.
File name Information
dat.atom_position The positions of atoms
dat.bandcalc The energy cutoff for the wavefunction, Fermi energy, and total energy
dat.sample_k The high-symmetry momenta
dat.eigenvalue The energy level of each band
dat.nkm The number of reciprocal lattice vectors used in
the expansion of wavefunctions at each momentum
dat.kg The set of reciprocal lattice vectors used in
the expansion of wavefunctions at each momentum
dat.wfn The Bloch wavefunction of each band
dat.lattice The lattice vectors
dat.symmetry The symmetry operators
Refer to caption
Figure 2: Flowchart of the process to calculate the representation characters of Bloch wavefunctions. The band structure and the wavefunctions of the target material are computed by Quantum ESPRESSO. These results are converted to the input files of qeirreps by qe2respack. Finally the representation characters are computed by qeirreps. Two files z4.dat and Bilbao.txt (marked by “#”) are produced only when the options are added to the command. One can use Bilbao.txt as the input file for CheckTopologicalMat [57].

3.4 Running qeirreps

To run qeirreps, a directory named output must be created in the directory DIRECTORY_NAME above. Then type

$ PATH_OF_qeirreps/qeirreps.x DIRECTORY_NAME,\texttt{\$ PATH\_OF\_qeirreps/qeirreps.x DIRECTORY\_NAME}\ ,

where PATH_OF_qeirreps is the path to the directory qeirreps/src. There should be 12 output files in output. Seven of them named *.dat contain the following information: (i) the list of the point group part pgp_{g} in pg.dat, (ii) the list of the translation part 𝒕g\bm{t}_{g} in tg.dat, (iii) the list of the spin rotation part pgspp^{sp}_{g} in srg.dat, (iv) the factor system ωsp(g,g)\omega^{\text{sp}}(g,g^{\prime}) associated with the electronic spin in factor_system_spin.dat, (v) the representation characters χ𝒌n(h)\chi_{\bm{k}n}(h) of Bloch wavefunctions in character.dat, (vi) the characters χ𝒌α\chi_{\bm{k}}^{\alpha} of irreducible representations of 𝒢𝒌\mathcal{G}_{\bm{k}} in irreps_list.dat, and (vii) the numbers n𝒌nαn_{\bm{k}n}^{\alpha} of irreducible representations of 𝒢𝒌\mathcal{G}_{\bm{k}} in the nn-th energy level in irreps_number.dat. The contents of these files are summarized in Table 2. Five of them named *_import.txt are the corresponding files for Mathematica usage. The standard output that appears during this calculation shows the lattice vectors, reciprocal lattice vectors, operation type of each symmetry operators, and so on.

For materials with inversion symmetry, qeirreps also implements the automatic evaluation of the 4\mathbb{Z}_{4} index. To do this, an option of filling should be added to the command as

$ PATH_OF_qeirreps/qeirreps.x DIRECTORY_NAME FILLING z4.\texttt{\$ PATH\_OF\_qeirreps/qeirreps.x DIRECTORY\_NAME FILLING z4}.

Here, z4 is the option to obtain the 4\mathbb{Z}_{4} index and FILLING is the number of electrons per unit cell of the target material and is shown in the standard output of scf calculation by Quantum ESPRESSO as “number of electrons = FILLING.” Then, the program generates an additional output named z4.dat that contains the value of the 4\mathbb{Z}_{4} index.

Our program qeirreps also provides the input file for the tool CheckTopologicalMat (https://www.cryst.ehu.es/cgi-bin/cryst/programs/topological.pl) [57]. Our program exports the input file named Bilbao.txt with the following command

$ PATH_OF_qeirreps/qeirreps.x DIRECTORY_NAME FILLING ctm,\texttt{\$ PATH\_OF\_qeirreps/qeirreps.x DIRECTORY\_NAME FILLING ctm},

where ctm is the option to obtain the input file. The tool CheckTopologicalMat tells us topological properties such as the value of symmetry indicators and gaplessness.

Table 2: List of the output files of qeirreps. Two files z4.dat and Bilbao.txt (marked by “#”) are produced only when the options are added to the command. The files named *_import.txt are for the Mathematica usage.
File name Information
pg.dat The point group part (pgp_{g}) of each symmetry operation
tg.dat The translation part (tgt_{g}) of each symmetry operation
srg.dat The spin rotation part (pgspp_{g}^{\mathrm{sp}}) of each symmetry operation
factor_system_spin.dat The factor system (ωsp(g,g)\omega^{\mathrm{sp}}(g,g^{\prime})) associated with the electric spin
character.dat The character tables of irreducible representations of Bloch wavefunctions
irreps_list.dat The characters (χ𝒌α\chi_{\bm{k}}^{\alpha}) of irreducible representations of 𝒢𝒌\mathcal{G}_{\bm{k}}
irreps_number.dat The numbers (n𝒌nαn_{\bm{k}n}^{\alpha}) of irreducible representations of 𝒢𝒌\mathcal{G}_{\bm{k}} in the nn-th energy level
z4.dat# The 4\mathbb{Z}_{4} index
Bilbao.txt# The input file for CheckTopologicalMat [57]

4 Examples

In this section, we discuss several examples to demonstrate the usage of qeirreps. We also explain how to compute topological indices based on the output of qeirreps. In all the examples, we use the primitive unit cell in the calculation of the band structure and the space group representations in the band structure.

4.1 Bismuth

Our first example is bismuth. The space group R3¯m{R\bar{3}m} (No.166166) contains the inversion symmetry II. We obtain the crystal structure data of bismuth [Figure 3 (a)] from Material Project [82] and converted it into the form of an input file for Quantum ESPRESSO (included in A.1) by SeeK-path [83, 84] 333In this particular example, we manually shifted positions of atoms in the primitive unit cell so that we can compare our results with the one in Ref. [57].

We compute the irreducible representations of wavefunctions by qeirreps, taking into account the spin-orbit coupling. Our results are shown in the band structure in Figure 3 (b). The correspondence between the labels and characters of irreducible representations is included in B.1. These results are consistent with previous studies [57, 73].

We also compute the 4\mathbb{Z}_{4} index [77, 78] using the option explained in Sec. 3.4. The output (z4.dat) shows

sum of parities for 8 k-points:
-7.99999999999963
z4 index:
2

Namely, the 4\mathbb{Z}_{4} index for bismuth with significant spin-orbit coupling is 22, indicating that this material is a higher-order topological insulator [85, 58, 57, 86]. The sample input files for bismuth are available in the directory qeirreps/example.

4.2 Silicon

To demonstrate that qeirreps equally works for nonsymmorphic space groups, let us discuss silicon. Its space group is Fd3¯m{Fd\bar{3}m} (No. 227227), which also contains the inversion symmetry II. The calculation procedure is completely the same as those for bismuth in Sec. 4.1. Our results of irreducible representations are in Figure 4 (b). The 4\mathbb{Z}_{4} index is found to be zero. These results are consistent with the previous study in Ref. [57]. Sample input files for silicon are also in the directory qeirreps/example.

Refer to caption
Figure 3: (a) The crystal structure [82] and the Brillouin zone [83, 84] of bismuth. (b) The band structure of bismuth with spin-orbit coupling.555“H0” and “H2” are distinct momenta (i.e., their difference is not a reciprocal lattice vector) but they are related by a symmetry operation. The same is true for “S0” and “S2”.K¯α(m)\bar{K}_{\alpha}(m) denotes a mm-dimensional irreducible representation UKαU_{K}^{\alpha} at a high-symmetry point KK. The correspondence between these labels and representation characters is included in B.1. The color of dots represents the inversion parity: when K¯α(m)\bar{K}_{\alpha}(m) is marked red (blue), all mm levels have the even (odd) parity.
Refer to caption
Figure 4: (a) The crystal structure [82] and the Brillouin zone [83, 84] of silicon. (b) The band structure of silicon with spin-orbit coupling. K¯α(m)\bar{K}_{\alpha}(m) denotes a mm-dimensional irreducible representation UKαU_{K}^{\alpha} at a high-symmetry point KK. The correspondence between these labels and representation characters is included in B.3. The color of dots represents the inversion parity: when K¯α(m)\bar{K}_{\alpha}(m) is marked red (blue), all mm levels have the even (odd) parity, and when it is black, the half of them are even and the other half is odd. The little group at WW does not have the inversion symmetry and open circles represent the absence of the inversion symmetry.

4.3 NaCdAs

Here we discuss NaCdAs as an example of topological materials with nonsymmorphic space group symmetries. Its space group is PnmaPnma (No. 6262) which has the inversion symmetry II. Irreducible representations computed in the presence of spin-orbit coupling are shown in Figure 5 (b). The 4\mathbb{Z}_{4} index is 1, indicating that this material is a candidate of the strong 2\mathbb{Z}_{2} topological insulator. These results are consistent with the previous study in Ref. [57]. (The 4\mathbb{Z}_{4} index in Ref. [57] is 3 because their definition of the index includes an additional minus sign.) Sample input files for NaCdAs are contained in the directory qeirreps/example.

Refer to caption
Figure 5: (a) The crystal structure [82] and the Brillouin zone [83, 84] of NaCdAs. (b) The band structure of NaCdAs with spin-orbit coupling. K¯α(m)\bar{K}_{\alpha}(m) denotes a mm-dimensional irreducible representation UKαU_{K}^{\alpha} at a high-symmetry point KK. The correspondence between these labels and representation characters is included in B.5. The color of dots represents the inversion parity: when K¯α(m)\bar{K}_{\alpha}(m) is marked red (blue), all mm levels have the even (odd) parity, and when it is black, the half of them are even and the other half is odd.

4.4 PbPt3

As our fourth example, let us discuss PbPt3, whose space group Pm3¯m{Pm\bar{3}m} (No. 221221). This space group contains various elements such as the inversion (I)(I), the rotoinversion about the zz-axis (S4z)(S_{4}^{z}), and the mirror symmetries. We also assume the time-reversal symmetry. Our results of irreducible representations in the presence of spin-orbit coupling are in Figure 6 (b).

In this symmetry settings, we can define a 4\mathbb{Z}_{4} index (other than the sum of the inversion parities) and a 8\mathbb{Z}_{8} index by [87, 77, 78]

z4\displaystyle z_{4} =32nR732nR912nR6+12nR8+nR10nR11+32nX732nX912nX6+12nX8\displaystyle=\frac{3}{2}n_{R}^{7}-\frac{3}{2}n_{R}^{9}-\frac{1}{2}n_{R}^{6}+\frac{1}{2}n_{R}^{8}+n_{R}^{10}-n_{R}^{11}+\frac{3}{2}n_{X}^{7}-\frac{3}{2}n_{X}^{9}-\frac{1}{2}n_{X}^{6}+\frac{1}{2}n_{X}^{8}
+nM6+nM7nM8nM9mod4,\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+n_{M}^{6}+n_{M}^{7}-n_{M}^{8}-n_{M}^{9}\mod 4, (10)
z8\displaystyle z_{8} =14KTRIMsαKχKαK(I)nKαK12KK4αKχKαK(S4z)nKαKmod8,\displaystyle=\frac{1}{4}\sum_{K\in\text{TRIMs}}\sum_{\alpha_{K}}\chi_{K}^{\alpha_{K}}(I)n_{K}^{\alpha_{K}}-\frac{1}{\sqrt{2}}\sum_{K^{\prime}\in K_{4}}\sum_{\alpha_{K^{\prime}}}\chi_{K^{\prime}}^{\alpha_{K^{\prime}}}(S_{4}^{z})n_{K^{\prime}}^{\alpha_{K^{\prime}}}\mod 8, (11)

where nKαKn_{K}^{\alpha_{K}} represents the number of occupied states that have irreducible representations UKαKU_{K}^{\alpha_{K}} of 𝒢K\mathcal{G}_{K}, and the set of {nKαK}\{n_{K}^{\alpha_{K}}\} is included in B.8. K4K_{4} denotes four momenta invariant under the S4zS_{4}^{z}. Although our program qeirreps does not offer an automated calculation of these indices, one can compute them manually by using character.dat or uploading Bilbao.txt to CheckTopologicalMat [57]. In this example, we find (z4,z8)=(3,6)(z_{4},z_{8})=(3,6), which is consistent with Ref. [57]. According to Ref. [77, 78], these values indicate nontrivial mirror Chern numbers. Sample input files for PbPt3 are included in qeirreps/example.

Refer to caption
Figure 6: (a) The crystal structure [82] and the Brillouin zone [83, 84] of PbPt3\mathrm{PbPt_{3}}. (b) The band structure of PbPt3\mathrm{PbPt_{3}} with spin-orbit coupling. K¯α(m)\bar{K}_{\alpha}(m) denotes a mm-dimensional irreducible representation UKαU_{K}^{\alpha} at a high-symmetry point KK. The correspondence between these labels and representation characters is included in B.7. The color of dots represents the inversion parity: when K¯α(m)\bar{K}_{\alpha}(m) is marked red (blue), all mm levels have the even (odd) parity.

5 Conclusions

In conclusion, we developed a new open-source code qeirreps for computing irreducible representations in band structures based on the output of Quantum ESPRESSO. We explained the installation of the program and demonstrated its usage through examples. When combined with the symmetry indicator method, the output of this program can be used to diagnose the topological property of weakly interacting materials. Since Quantum ESPRESSO is a free, widely-used software, qeirreps should accelerate the exploration of new topological materials.

Acknowledgement

We thank Ryotaro Arita and Motoaki Hirayama for frutuful discussions. We also thank Luis Elcoro for useful and kind correspondence. We are very grateful to the anonymous referee of this manuscript for his or her constructive comments and suggestions. All DFT calculations in this work has been done using the facilities of the Supercomputer Center, the Institute for Solid State Physics, the University of Tokyo. The work of AM and SO is supported by Materials Education program for the future leaders in Research, Industry, and Technology (MERIT). SO is also supported by the ANRI Fellowship and JSPS KAKENHI Grant No. JP20J21692. The work of YN is supported by JSPS KAKENHI Grant No. 16H06345, 17K14336, 18H01158, 20K14423. The work of HW is supported by JSPS KAKENHI Grant No. JP17K17678 and by JST PRESTO Grant No. JPMJPR18LA.

Appendix A Samples of Quantum ESPRESSO input

A.1 For the scf calculation of bismuth

&CONTROL
calculation = scf
restart_mode=’from_scratch’,
prefix=’Bi
pseudo_dir=’../../pseudo/soc/’
outdir=’./work/scf/’
tstress=.true.
tprnfor=.true.
wf_collect=.true.
/
&SYSTEM
ibrav = 0
nat = 2
ntyp = 1
ecutwfc=100.
occupations=’smearing
smearing=’m-p
degauss=0.01
use_all_frac=.true.
lspinorb=.true.
noncolin=.true.
/
&ELECTRONS
mixing_beta=0.3
conv_thr=1.0d-8
/
ATOMIC_SPECIES
Bi 208.9804 Bi.upf
ATOMIC_POSITIONS angstrom
Bi 2.30479336 1.330673067 1.153637296
Bi -0.00000000 -0.000000000 2.838187257
K_POINTS automatic
8 8 8 0 0 0
CELL_PARAMETERS angstrom
2.3047933600 1.3306730668 3.9918245533
-2.3047933600 1.3306730668 3.9918245533
0.0000000000 -2.6613461336 3.9918245533

A.2 For the nscf calculation of bismuth

&CONTROL
calculation = bands
restart_mode=’from_scratch’,
prefix=’Bi
pseudo_dir=’../../pseudo/soc/’
outdir=’./work/rep/’
tstress=.true.
tprnfor=.true.
wf_collect=.true.
/
&SYSTEM
ibrav = 0
nat = 2
ntyp = 1
ecutwfc=100.
occupations=’smearing
smearing=’m-p
degauss=0.01
use_all_frac=.true.
lspinorb=.true.
noncolin=.true.
/
&ELECTRONS
mixing_beta=0.3
conv_thr=1.0d-8
/
ATOMIC_SPECIES
Bi 208.9804 Bi.upf
ATOMIC_POSITIONS angstrom
Bi 2.30479336 1.330673067 1.153637296
Bi -0.00000000 -0.000000000 2.838187257
K_POINTS crystal
8
0.0 0.0 0.0 1
0.5 0.0 0.0 1
0.0 0.5 0.0 1
0.0 0.0 0.5 1
0.0 0.5 0.5 1
0.5 0.0 0.5 1
0.5 0.5 0.0 1
0.5 0.5 0.5 1
CELL_PARAMETERS angstrom
2.3047933600 1.3306730668 3.9918245533
-2.3047933600 1.3306730668 3.9918245533
0.0000000000 -2.6613461336 3.9918245533

A.3 For the scf calculation of silicon

&CONTROL
calculation = scf
restart_mode=’from_scratch’,
prefix=’Si
pseudo_dir=’../../pseudo/soc
outdir=’./work/scf/’
tstress=.true.
tprnfor=.true.
wf_collect=.true.
/
&SYSTEM
ibrav = 0
nat = 2
ntyp = 1
ecutwfc=100.
occupations=’smearing
smearing=’m-p
degauss=0.01
use_all_frac=.true.
lspinorb=.true.
noncolin=.true.
/
&ELECTRONS
mixing_beta=0.3
conv_thr=1.0d-8
/
ATOMIC_SPECIES
Si 28.0855 Si.upf
ATOMIC_POSITIONS crystal
Si 0.625 0.625 0.625
Si 0.375 0.375 0.375
K_POINTS automatic
8 8 8 0 0 0
CELL_PARAMETERS angstrom
0.0000000000 2.7347724300 2.7347724300
2.7347724300 0.0000000000 2.7347724300
2.7347724300 2.7347724300 0.0000000000

A.4 For the nscf calculation of silicon

&CONTROL
calculation = bands
restart_mode=’from_scratch’,
prefix=’Si
pseudo_dir=’../../pseudo/soc
outdir=’./work/rep/’
tstress=.true.
tprnfor=.true.
wf_collect=.true.
/
&SYSTEM
ibrav = 0
nat = 2
ntyp = 1
ecutwfc=100.
occupations=’smearing
smearing=’m-p
degauss=0.01
use_all_frac=.true.
lspinorb=.true.
noncolin=.true.
/
&ELECTRONS
mixing_beta=0.3
conv_thr=1.0d-8
/
ATOMIC_SPECIES
Si 28.0855 Si.upf
ATOMIC_POSITIONS crystal
Si 0.625 0.625 0.625
Si 0.375 0.375 0.375
K_POINTS crystal
8
0.0 0.0 0.0 1
0.5 0.0 0.0 1
0.0 0.5 0.0 1
0.0 0.0 0.5 1
0.0 0.5 0.5 1
0.5 0.0 0.5 1
0.5 0.5 0.0 1
0.5 0.5 0.5 1
CELL_PARAMETERS angstrom
0.0000000000 2.7347724300 2.7347724300
2.7347724300 0.0000000000 2.7347724300
2.7347724300 2.7347724300 0.0000000000

A.5 For the scf calculation of NaCdAs

&CONTROL
calculation = scf
restart_mode=’from_scratch’,
prefix=’NaCdAs
pseudo_dir=’../../pseudo/soc
outdir=’./work/scf
tstress=.true.
tprnfor=.true.
wf_collect=.true.
/
&SYSTEM
ibrav = 0
nat = 12
ntyp = 3
ecutwfc=100.
occupations=’smearing
smearing=’m-p
degauss=0.01
use_all_frac=.true.
lspinorb=.true.
noncolin=.true.
/
&ELECTRONS
mixing_beta=0.3
conv_thr=1.0d-8
/
ATOMIC_SPECIES
Na 22.989769 Na.upf
Cd 112.411 Cd.upf
As 74.9216 As.upf
ATOMIC_POSITIONS crystal
Na 0.0184820000 0.2500000000 0.1734590000
Na 0.9815180000 0.7500000000 0.8265410000
Na 0.4815180000 0.7500000000 0.6734590000
Na 0.5184820000 0.2500000000 0.3265410000
Cd 0.1500210000 0.2500000000 0.5744130000
Cd 0.8499790000 0.7500000000 0.4255870000
Cd 0.3499790000 0.7500000000 0.0744130000
Cd 0.6500210000 0.2500000000 0.9255870000
As 0.2214520000 0.7500000000 0.3907850000
As 0.7785480000 0.2500000000 0.6092150000
As 0.2785480000 0.2500000000 0.8907850000
As 0.7214520000 0.7500000000 0.1092150000
K_POINTS automatic
8 8 8 0 0 0
CELL_PARAMETERS angstrom
7.6494810000 0.0000000000 0.0000000000
0.0000000000 4.5188670000 0.0000000000
0.0000000000 0.0000000000 8.1790120000

A.6 For the nscf calculation of NaCdAs

&CONTROL
calculation = bands
restart_mode=’from_scratch’,
prefix=’NaCdAs
pseudo_dir=’../../pseudo/soc
outdir=’./work/rep
tstress=.true.
tprnfor=.true.
wf_collect=.true.
/
&SYSTEM
ibrav = 0
nat = 12
ntyp = 3
ecutwfc=100.
occupations=’smearing
smearing=’m-p
degauss=0.01
use_all_frac=.true.
lspinorb=.true.
noncolin=.true.
/
&ELECTRONS
mixing_beta=0.3
conv_thr=1.0d-8
/
ATOMIC_SPECIES
Na 22.989769 Na.upf
Cd 112.411 Cd.upf
As 74.9216 As.upf
ATOMIC_POSITIONS crystal
Na 0.0184820000 0.2500000000 0.1734590000
Na 0.9815180000 0.7500000000 0.8265410000
Na 0.4815180000 0.7500000000 0.6734590000
Na 0.5184820000 0.2500000000 0.3265410000
Cd 0.1500210000 0.2500000000 0.5744130000
Cd 0.8499790000 0.7500000000 0.4255870000
Cd 0.3499790000 0.7500000000 0.0744130000
Cd 0.6500210000 0.2500000000 0.9255870000
As 0.2214520000 0.7500000000 0.3907850000
As 0.7785480000 0.2500000000 0.6092150000
As 0.2785480000 0.2500000000 0.8907850000
As 0.7214520000 0.7500000000 0.1092150000
K_POINTS crystal
8
0.0 0.0 0.0 1
0.5 0.0 0.0 1
0.0 0.5 0.0 1
0.0 0.0 0.5 1
0.0 0.5 0.5 1
0.5 0.0 0.5 1
0.5 0.5 0.0 1
0.5 0.5 0.5 1
CELL_PARAMETERS angstrom
7.6494810000 0.0000000000 0.0000000000
0.0000000000 4.5188670000 0.0000000000
0.0000000000 0.0000000000 8.1790120000

A.7 For the scf calculation of PbPt3PbPt_{3}

&CONTROL
calculation = scf
restart_mode=’from_scratch’,
prefix=’PbPt3
pseudo_dir=’../../pseudo/soc/’
outdir=’./work/scf
tstress=.true.
tprnfor=.true.
wf_collect=.true.
/
&SYSTEM
ibrav = 0
nat = 4
ntyp = 2
ecutwfc=100.
occupations=’smearing
smearing=’m-p
degauss=0.01
use_all_frac=.true.
lspinorb=.true.
noncolin=.true.
/
&ELECTRONS
mixing_beta=0.3
conv_thr=1.0d-8
/
ATOMIC_SPECIES
Pt 195.084 Pt.upf
Pb 207.2 Pb.upf
ATOMIC_POSITIONS angstrom
Pt 0.0000000000 2.0660527150 2.0660527150
Pt 2.0660527150 0.0000000000 2.0660527150
Pt 2.0660527150 2.0660527150 0.0000000000
Pb 0.0000000000 0.0000000000 0.0000000000
K_POINTS automatic
8 8 8 0 0 0
CELL_PARAMETERS angstrom
4.1321054300 0.0000000000 0.0000000000
0.0000000000 4.1321054300 0.0000000000
0.0000000000 0.0000000000 4.1321054300

A.8 For the nscf calculation of PbPt3PbPt_{3}

&CONTROL
calculation = bands
restart_mode=’from_scratch’,
prefix=’PbPt3
pseudo_dir=’../../pseudo/soc/’
outdir=’./work/rep
tstress=.true.
tprnfor=.true.
wf_collect=.true.
/
&SYSTEM
ibrav = 0
nat = 4
ntyp = 2
ecutwfc=100.
occupations=’smearing
smearing=’m-p
degauss=0.01
use_all_frac=.true.
lspinorb=.true.
noncolin=.true.
/
&ELECTRONS
mixing_beta=0.3
conv_thr=1.0d-8
/
ATOMIC_SPECIES
Pt 195.084 Pt.upf
Pb 207.2 Pb.upf
ATOMIC_POSITIONS angstrom
Pt 0.0000000000 2.0660527150 2.0660527150
Pt 2.0660527150 0.0000000000 2.0660527150
Pt 2.0660527150 2.0660527150 0.0000000000
Pb 0.0000000000 0.0000000000 0.0000000000
K_POINTS crystal
4
0.0 0.0 0.0 1
0.0 0.5 0.0 1
0.5 0.5 0.0 1
0.5 0.5 0.5 1
CELL_PARAMETERS angstrom
4.1321054300 0.0000000000 0.0000000000
0.0000000000 4.1321054300 0.0000000000
0.0000000000 0.0000000000 4.1321054300

Appendix B Information of irreducible representations

The notations of irreducible representations in the following tables follow Ref. [73]. Note that some characters have different values due to the choice of fractional translations 𝒕g\bm{t}_{g} and spin rotation matrices pgspp_{g}^{\text{sp}}.

B.1 Character tables for bismuth [73]

\restylefloat

table

pgp_{g} pgspp_{g}^{\text{sp}} Γ¯4\bar{\Gamma}_{4} Γ¯5\bar{\Gamma}_{5} Γ¯6\bar{\Gamma}_{6} Γ¯7\bar{\Gamma}_{7} Γ¯8\bar{\Gamma}_{8} Γ¯9\bar{\Gamma}_{9}
11 (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 11 11 11 11 22 22
3001+3^{+}_{001} ((1+3i)/200(13i)/2)\left(\begin{array}[]{cc}(1+\sqrt{3}i)/2&0\\ 0&(1-\sqrt{3}i)/2\end{array}\right) 1-1 1-1 1-1 1-1 11 11
30013^{-}_{001} ((13i)/200(1+3i)/2)\left(\begin{array}[]{cc}(1-\sqrt{3}i)/2&0\\ 0&(1+\sqrt{3}i)/2\end{array}\right) 1-1 1-1 1-1 1-1 11 11
211¯02_{1\bar{1}0} (0ii0)\left(\begin{array}[]{cc}0&i\\ i&0\end{array}\right) i-i ii i-i ii 0 0
2011¯2_{01\bar{1}} (0(3i)/2(3+i)/20)\left(\begin{array}[]{cc}0&-(\sqrt{3}-i)/2\\ (\sqrt{3}+i)/2&0\end{array}\right) ii i-i ii i-i 0 0
21¯012_{\bar{1}01} (0(3+i)/2(3i)/20)\left(\begin{array}[]{cc}0&-(\sqrt{3}+i)/2\\ (\sqrt{3}-i)/2&0\end{array}\right) i-i ii i-i ii 0 0
II (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 11 11 1-1 1-1 22 2-2
I3001+I3^{+}_{001} ((1+3i)/200(13i)/2)\left(\begin{array}[]{cc}(1+\sqrt{3}i)/2&0\\ 0&(1-\sqrt{3}i)/2\end{array}\right) 1-1 1-1 11 11 11 1-1
I3001I3^{-}_{001} ((13i)/200(1+3i)/2)\left(\begin{array}[]{cc}(1-\sqrt{3}i)/2&0\\ 0&(1+\sqrt{3}i)/2\end{array}\right) 1-1 1-1 11 11 11 1-1
I211¯0I2_{1\bar{1}0} (0ii0)\left(\begin{array}[]{cc}0&i\\ i&0\end{array}\right) i-i ii ii i-i 0 0
I2011¯I2_{01\bar{1}} (0(3i)/2(3+i)/20)\left(\begin{array}[]{cc}0&-(\sqrt{3}-i)/2\\ (\sqrt{3}+i)/2&0\end{array}\right) ii i-i i-i ii 0 0
I21¯01I2_{\bar{1}01} (0(3+i)/2(3i)/20)\left(\begin{array}[]{cc}0&-(\sqrt{3}+i)/2\\ (\sqrt{3}-i)/2&0\end{array}\right) i-i ii ii i-i 0 0
\restylefloat

table

pgp_{g} pgspp_{g}^{\text{sp}} L¯3\bar{L}_{3} L¯4\bar{L}_{4} L¯5\bar{L}_{5} L¯6\bar{L}_{6}
11 (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 11 11 11 11
21¯012_{\bar{1}01} (0(3+i)/2(3i)/20)\left(\begin{array}[]{cc}0&-(\sqrt{3}+i)/2\\ (\sqrt{3}-i)/2&0\end{array}\right) i-i ii i-i ii
II (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 11 11 1-1 1-1
I21¯01I2_{\bar{1}01} (0(3+i)/2(3i)/20)\left(\begin{array}[]{cc}0&-(\sqrt{3}+i)/2\\ (\sqrt{3}-i)/2&0\end{array}\right) i-i ii ii i-i
\restylefloat

table

pgp_{g} pgspp_{g}^{\text{sp}} F¯3\bar{F}_{3} F¯4\bar{F}_{4} F¯5\bar{F}_{5} F¯6\bar{F}_{6}
11 (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 11 11 11 11
211¯02_{1\bar{1}0} (0ii0)\left(\begin{array}[]{cc}0&i\\ i&0\end{array}\right) i-i ii i-i ii
II (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 11 11 1-1 1-1
I211¯0I2_{1\bar{1}0} (0ii0)\left(\begin{array}[]{cc}0&i\\ i&0\end{array}\right) i-i ii ii i-i
\restylefloat

table

pgp_{g} pgspp_{g}^{\text{sp}} T¯4\bar{T}_{4} T¯5\bar{T}_{5} T¯6\bar{T}_{6} T¯7\bar{T}_{7} T¯8\bar{T}_{8} T¯9\bar{T}_{9}
11 (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 11 11 11 11 22 22
3001+3^{+}_{001} ((1+3i)/200(13i)/2)\left(\begin{array}[]{cc}(1+\sqrt{3}i)/2&0\\ 0&(1-\sqrt{3}i)/2\end{array}\right) 1-1 1-1 1-1 1-1 11 11
30013^{-}_{001} ((13i)/200(1+3i)/2)\left(\begin{array}[]{cc}(1-\sqrt{3}i)/2&0\\ 0&(1+\sqrt{3}i)/2\end{array}\right) 1-1 1-1 1-1 1-1 11 11
211¯02_{1\bar{1}0} (0ii0)\left(\begin{array}[]{cc}0&i\\ i&0\end{array}\right) i-i ii i-i ii 0 0
2011¯2_{01\bar{1}} (0(3i)/2(3+i)/20)\left(\begin{array}[]{cc}0&-(\sqrt{3}-i)/2\\ (\sqrt{3}+i)/2&0\end{array}\right) ii i-i ii i-i 0 0
21¯012_{\bar{1}01} (0(3+i)/2(3i)/20)\left(\begin{array}[]{cc}0&-(\sqrt{3}+i)/2\\ (\sqrt{3}-i)/2&0\end{array}\right) i-i ii i-i ii 0 0
II (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 11 11 1-1 1-1 22 2-2
I3001+I3^{+}_{001} ((1+3i)/200(13i)/2)\left(\begin{array}[]{cc}(1+\sqrt{3}i)/2&0\\ 0&(1-\sqrt{3}i)/2\end{array}\right) 1-1 1-1 11 11 11 1-1
I3001I3^{-}_{001} ((13i)/200(1+3i)/2)\left(\begin{array}[]{cc}(1-\sqrt{3}i)/2&0\\ 0&(1+\sqrt{3}i)/2\end{array}\right) 1-1 1-1 11 11 11 1-1
I211¯0I2_{1\bar{1}0} (0ii0)\left(\begin{array}[]{cc}0&i\\ i&0\end{array}\right) i-i ii ii i-i 0 0
I2011¯I2_{01\bar{1}} (0(3i)/2(3+i)/20)\left(\begin{array}[]{cc}0&-(\sqrt{3}-i)/2\\ (\sqrt{3}+i)/2&0\end{array}\right) ii i-i i-i ii 0 0
I21¯01I2_{\bar{1}01} (0(3+i)/2(3i)/20)\left(\begin{array}[]{cc}0&-(\sqrt{3}+i)/2\\ (\sqrt{3}-i)/2&0\end{array}\right) i-i ii ii i-i 0 0

B.2 Irreducible representations of bismuth

\restylefloat

table

ν\nu 30
nΓ4n_{\Gamma}^{4} 33
nΓ5n_{\Gamma}^{5} 33
nΓ6n_{\Gamma}^{6} 22
nΓ7n_{\Gamma}^{7} 22
nΓ8n_{\Gamma}^{8} 66
nΓ9n_{\Gamma}^{9} 44
nL3n_{L}^{3} 77
nL4n_{L}^{4} 77
nL5n_{L}^{5} 88
nL6n_{L}^{6} 88
nF3n_{F}^{3} 77
nF4n_{F}^{4} 77
nF5n_{F}^{5} 88
nF6n_{F}^{6} 88
nT4n_{T}^{4} 22
nT5n_{T}^{5} 22
nT6n_{T}^{6} 33
nT7n_{T}^{7} 33
nT8n_{T}^{8} 55
nT9n_{T}^{9} 55

B.3 Character tables for silicon [73]

\restylefloat

table

{pg|𝒕g}\{p_{g}|\bm{t}_{g}\} pgspp_{g}^{\text{sp}} Γ¯6\bar{\Gamma}_{6} Γ¯7\bar{\Gamma}_{7} Γ¯8\bar{\Gamma}_{8} Γ¯9\bar{\Gamma}_{9} Γ¯10\bar{\Gamma}_{10} Γ¯11\bar{\Gamma}_{11}
{1|0,0,0}\{1|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22 22 22 44 44
{2001|1/4,1/4,0}\{2_{001}|-1/4,-1/4,0\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0 0 0 0 0
{2010|1/4,0,1/4}\{2_{010}|-1/4,0,-1/4\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0 0 0 0 0
{2100|0,1/4,1/4}\{2_{100}|0,-1/4,-1/4\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0 0 0 0 0
{3111+|0,0,0}\{3^{+}_{111}|0,0,0\} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1+i)/2\\ (1-i)/2&(1+i)/2\end{array}\right) 11 11 11 11 1-1 1-1
{31¯11¯+|0,1/4,1/4}\{3^{+}_{\bar{1}1\bar{1}}|0,-1/4,-1/4\} ((1+i)/2(1i)/2(1+i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&-(1-i)/2\\ (1+i)/2&(1-i)/2\end{array}\right) 11 11 11 11 1-1 1-1
{311¯1¯+|1/4,1/4,0}\{3^{+}_{1\bar{1}\bar{1}}|-1/4,-1/4,0\} ((1+i)/2(1i)/2(1+i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1-i)/2\\ -(1+i)/2&(1-i)/2\end{array}\right) 11 11 11 11 1-1 1-1
{31¯1¯1+|1/4,0,1/4}\{3^{+}_{\bar{1}\bar{1}1}|-1/4,0,-1/4\} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&(1+i)/2\\ -(1-i)/2&(1+i)/2\end{array}\right) 11 11 11 11 1-1 1-1
{3111|0,0,0}\{3^{-}_{111}|0,0,0\} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1+i)/2\\ -(1-i)/2&(1-i)/2\end{array}\right) 11 11 11 11 1-1 1-1
{311¯1¯|1/4,0,1/4}\{3^{-}_{1\bar{1}\bar{1}}|-1/4,0,-1/4\} ((1i)/2(1i)/2(1+i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1-i)/2\\ (1+i)/2&(1+i)/2\end{array}\right) 11 11 11 11 1-1 1-1
{31¯1¯1|0,1/4,1/4}\{3^{-}_{\bar{1}\bar{1}1}|0,-1/4,-1/4\} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&-(1+i)/2\\ (1-i)/2&(1-i)/2\end{array}\right) 11 11 11 11 1-1 1-1
{31¯11¯|1/4,1/4,0}\{3^{-}_{\bar{1}1\bar{1}}|-1/4,-1/4,0\} ((1i)/2(1i)/2(1+i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&(1-i)/2\\ -(1+i)/2&(1+i)/2\end{array}\right) 11 11 11 11 1-1 1-1
{2110|1/4,1/4,0}\{2_{110}|1/4,1/4,0\} (0(1+i)2/2(1i)2/20)\left(\begin{array}[]{cc}0&-(1+i)\sqrt{2}/2\\ (1-i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0 0 0
{211¯0|0,0,0}\{2_{1\bar{1}0}|0,0,0\} (0(1i)2/2(1+i)2/20)\left(\begin{array}[]{cc}0&-(1-i)\sqrt{2}/2\\ (1+i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0 0 0
{4001|1/4,0,1/4}\{4^{-}_{001}|1/4,0,1/4\} ((1+i)2/200(1i)2/2)\left(\begin{array}[]{cc}(1+i)\sqrt{2}/2&0\\ 0&(1-i)\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
{4001+|0,1/4,1/4}\{4^{+}_{001}|0,1/4,1/4\} ((1i)2/200(1+i)2/2)\left(\begin{array}[]{cc}(1-i)\sqrt{2}/2&0\\ 0&(1+i)\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
{4100|1/4,1/4,0}\{4^{-}_{100}|1/4,1/4,0\} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
{2011|0,1/4,1/4}\{2_{011}|0,1/4,1/4\} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
{2011¯|0,0,0}\{2_{01\bar{1}}|0,0,0\} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
{4100+|1/4,0,1/4}\{4^{+}_{100}|1/4,0,1/4\} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
{4010+|1/4,1/4,0}\{4^{+}_{010}|1/4,1/4,0\} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
{2101|1/4,0,1/4}\{2_{101}|1/4,0,1/4\} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
{4010|0,1/4,1/4}\{4^{-}_{010}|0,1/4,1/4\} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
{21¯01|0,0,0}\{2_{\bar{1}01}|0,0,0\} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
\restylefloat

table

{I|0,0,0}\{I|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 2 2 -2 -2 4 -4
{I2001|1/4,1/4,0}\{I2_{001}|1/4,1/4,0\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0 0 0 0 0
{I2010|1/4,0,1/4}\{I2_{010}|1/4,0,1/4\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0 0 0 0 0
{I2100|0,1/4,1/4}\{I2_{100}|0,1/4,1/4\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0 0 0 0 0
{I3111+|0,0,0}\{I3^{+}_{111}|0,0,0\} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1+i)/2\\ (1-i)/2&(1+i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
{I31¯11¯+|0,1/4,1/4}\{I3^{+}_{\bar{1}1\bar{1}}|0,1/4,1/4\} ((1+i)/2(1i)/2(1+i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&-(1-i)/2\\ (1+i)/2&(1-i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
{I311¯1¯+|1/4,1/4,0}\{I3^{+}_{1\bar{1}\bar{1}}|1/4,1/4,0\} ((1+i)/2(1i)/2(1+i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1-i)/2\\ -(1+i)/2&(1-i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
{I31¯1¯1+|1/4,0,1/4}\{I3^{+}_{\bar{1}\bar{1}1}|1/4,0,1/4\} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&(1+i)/2\\ -(1-i)/2&(1+i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
{I3111|0,0,0}\{I3^{-}_{111}|0,0,0\} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1+i)/2\\ -(1-i)/2&(1-i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
{I311¯1¯|1/4,0,1/4}\{I3^{-}_{1\bar{1}\bar{1}}|1/4,0,1/4\} ((1i)/2(1i)/2(1+i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1-i)/2\\ (1+i)/2&(1+i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
{I31¯1¯1|0,1/4,1/4}\{I3^{-}_{\bar{1}\bar{1}1}|0,1/4,1/4\} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&-(1+i)/2\\ (1-i)/2&(1-i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
{I31¯11¯|1/4,1/4,0}\{I3^{-}_{\bar{1}1\bar{1}}|1/4,1/4,0\} ((1i)/2(1i)/2(1+i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&(1-i)/2\\ -(1+i)/2&(1+i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
{I2110|1/4,1/4,0}\{I2_{110}|-1/4,-1/4,0\} (0(1+i)2/2(1i)2/20)\left(\begin{array}[]{cc}0&-(1+i)\sqrt{2}/2\\ (1-i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0 0 0
{I211¯0|0,0,0}\{I2_{1\bar{1}0}|0,0,0\} (0(1i)2/2(1+i)2/20)\left(\begin{array}[]{cc}0&-(1-i)\sqrt{2}/2\\ (1+i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0 0 0
{I4001|1/4,0,1/4}\{I4^{-}_{001}|-1/4,0,-1/4\} ((1+i)2/200(1i)2/2)\left(\begin{array}[]{cc}(1+i)\sqrt{2}/2&0\\ 0&(1-i)\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
{I4001+|0,1/4,1/4}\{I4^{+}_{001}|0,-1/4,-1/4\} ((1i)2/200(1+i)2/2)\left(\begin{array}[]{cc}(1-i)\sqrt{2}/2&0\\ 0&(1+i)\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
{I4100|1/4,1/4,0}\{I4^{-}_{100}|-1/4,-1/4,0\} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
{I2011|0,1/4,1/4}\{I2_{011}|0,-1/4,-1/4\} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
{I2011¯|0,0,0}\{I2_{01\bar{1}}|0,0,0\} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
{I4100+|1/4,0,1/4}\{I4^{+}_{100}|-1/4,0,-1/4\} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
{I4010+|1/4,1/4,0}\{I4^{+}_{010}|-1/4,-1/4,0\} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
{I2101|1/4,0,1/4}\{I2_{101}|-1/4,0,-1/4\} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
{I4010|0,1/4,1/4}\{I4^{-}_{010}|0,-1/4,-1/4\} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
{I21¯01|0,0,0}\{I2_{\bar{1}01}|0,0,0\} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
\restylefloat

table

{pg|𝒕g}\{p_{g}|\bm{t}_{g}\} pgspp_{g}^{\text{sp}} L¯4\bar{L}_{4} L¯5\bar{L}_{5} L¯6\bar{L}_{6} L¯7\bar{L}_{7} L¯8\bar{L}_{8} L¯9\bar{L}_{9}
{1|0,0,0}\{1|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 11 11 11 11 22 22
{3111+|0,0,0}\{3^{+}_{111}|0,0,0\} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1+i)/2\\ (1-i)/2&(1+i)/2\end{array}\right) 1-1 1-1 1-1 1-1 11 11
{3111|0,0,0}\{3^{-}_{111}|0,0,0\} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1+i)/2\\ -(1-i)/2&(1-i)/2\end{array}\right) 1-1 1-1 1-1 1-1 11 11
{211¯0|0,0,0}\{2_{1\bar{1}0}|0,0,0\} (0(1i)2/2(1+i)2/20)\left(\begin{array}[]{cc}0&-(1-i)\sqrt{2}/2\\ (1+i)\sqrt{2}/2&0\end{array}\right) i-i ii i-i ii 0 0
{2011¯|0,0,0}\{2_{01\bar{1}}|0,0,0\} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) i-i ii i-i ii 0 0
{21¯01|0,0,0}\{2_{\bar{1}01}|0,0,0\} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) ii i-i ii i-i 0 0
{I|0,0,0}\{I|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 11 11 1-1 1-1 22 2-2
{I3111+|0,0,0}\{I3^{+}_{111}|0,0,0\} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1+i)/2\\ (1-i)/2&(1+i)/2\end{array}\right) 1-1 1-1 11 11 11 1-1
{I3111|0,0,0}\{I3^{-}_{111}|0,0,0\} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1+i)/2\\ -(1-i)/2&(1-i)/2\end{array}\right) 1-1 1-1 11 11 11 1-1
{I211¯0|0,0,0}\{I2_{1\bar{1}0}|0,0,0\} (0(1i)2/2(1+i)2/20)\left(\begin{array}[]{cc}0&-(1-i)\sqrt{2}/2\\ (1+i)\sqrt{2}/2&0\end{array}\right) i-i ii ii i-i 0 0
{I2011¯|0,0,0}\{I2_{01\bar{1}}|0,0,0\} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) i-i ii ii i-i 0 0
{I21¯01|0,0,0}\{I2_{\bar{1}01}|0,0,0\} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) i-i ii ii i-i 0 0
\restylefloat

table

{pg|𝒕g}\{p_{g}|\bm{t}_{g}\} pgspp_{g}^{\text{sp}} X¯5\bar{X}_{5}
{1|0,0,0}\{1|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 44
{2001|1/4,1/4,0}\{2_{001}|-1/4,-1/4,0\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0
{2010|1/4,0,1/4}\{2_{010}|-1/4,0,-1/4\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0
{2100|0,1/4,1/4}\{2_{100}|0,-1/4,-1/4\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0
{4010+|1/4,1/4,0}\{4^{+}_{010}|1/4,1/4,0\} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&\sqrt{2}/2\end{array}\right) 0
{2101|1/4,0,1/4}\{2_{101}|1/4,0,1/4\} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0
{4010|0,1/4,1/4}\{4^{-}_{010}|0,1/4,1/4\} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 0
{21¯01|0,0,0}\{2_{\bar{1}01}|0,0,0\} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0
{I|0,0,0}\{I|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 0
{I2001|1/4,1/4,0}\{I2_{001}|1/4,1/4,0\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0
{I2010|1/4,0,1/4}\{I2_{010}|1/4,0,1/4\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0
{I2100|0,1/4,1/4}\{I2_{100}|0,1/4,1/4\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0
{I4010+|1/4,1/4,0}\{I4^{+}_{010}|-1/4,-1/4,0\} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&\sqrt{2}/2\end{array}\right) 0
{I2101|1/4,0,1/4}\{I2_{101}|-1/4,0,-1/4\} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0
{I4010|0,1/4,1/4}\{I4^{-}_{010}|0,-1/4,-1/4\} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 0
{I21¯01|0,0,0}\{I2_{\bar{1}01}|0,0,0\} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0
\restylefloat

table

{pg|𝒕g}\{p_{g}|\bm{t}_{g}\} pgspp_{g}^{\text{sp}} W¯3\bar{W}_{3} W¯4\bar{W}_{4} W¯5\bar{W}_{5} W¯6\bar{W}_{6} W¯7\bar{W}_{7}
{1|0,0,0}\{1|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 11 11 11 11 22
{2100|0,1/4,1/4}\{2_{100}|0,-1/4,-1/4\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) ii ii ii ii 2i-2i
{2011|0,1/4,1/4}\{2_{011}|0,1/4,1/4\} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 1-1 11 1-1 11 0
{2011¯|0,0,0}\{2_{01\bar{1}}|0,0,0\} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) ii i-i ii i-i 0
{I2001|1/4,1/4,0}\{I2_{001}|1/4,1/4,0\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) eiπ/4e^{-i\pi/4} ei3π/4e^{i3\pi/4} ei3π/4e^{i3\pi/4} eiπ/4e^{-i\pi/4} 0
{I2010|1/4,0,1/4}\{I2_{010}|1/4,0,1/4\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) eiπ/4e^{i\pi/4} ei3π/4e^{-i3\pi/4} ei3π/4e^{-i3\pi/4} eiπ/4e^{i\pi/4} 0
{I4100|1/4,1/4,0}\{I4^{-}_{100}|-1/4,-1/4,0\} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) ei3π/4e^{i3\pi/4} ei3π/4e^{i3\pi/4} eiπ/4e^{-i\pi/4} eiπ/4e^{-i\pi/4} 0
{I4100+|1/4,0,1/4}\{I4^{+}_{100}|-1/4,0,-1/4\} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) ei3π/4e^{-i3\pi/4} ei3π/4e^{-i3\pi/4} eiπ/4e^{i\pi/4} eiπ/4e^{i\pi/4} 0

B.4 Irreducible representations of silicon

\restylefloat

table

ν\nu 8
nΓ6n_{\Gamma}^{6} 11
nΓ7n_{\Gamma}^{7} 11
nΓ8n_{\Gamma}^{8} 0
nΓ9n_{\Gamma}^{9} 0
nΓ10n_{\Gamma}^{{10}} 11
nΓ11n_{\Gamma}^{{11}} 0
nL4n_{L}^{4} 11
nL5n_{L}^{5} 11
nL6n_{L}^{6} 0
nL7n_{L}^{7} 0
nL8n_{L}^{8} 22
nL9n_{L}^{9} 11
nW3n_{W}^{3} 11
nW4n_{W}^{4} 11
nW5n_{W}^{5} 11
nW6n_{W}^{6} 11
nW7n_{W}^{7} 22

B.5 Character tables for NaCdAs [73]

\restylefloat

table

{pg|𝒕g}\{p_{g}|\bm{t}_{g}\} pgspp_{g}^{\text{sp}} Γ¯5\bar{\Gamma}_{5} Γ¯6\bar{\Gamma}_{6}
{1|0,0,0}\{1|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22
{2001|1/2,0,1/2}\{2_{001}|-1/2,0,1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{2010|0,1/2,0}\{2_{010}|0,1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0
{2100|1/2,1/2,1/2}\{2_{100}|1/2,-1/2,-1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
{I|0,0,0}\{I|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 2-2
{I2001|1/2,0,1/2}\{I2_{001}|1/2,0,-1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{I2010|0,1/2,0}\{I2_{010}|0,-1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ -1&0\end{array}\right) 0 0
{I2100|1/2,1/2,1/2}\{I2_{100}|-1/2,1/2,1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
\restylefloat

table

{pg|𝒕g}\{p_{g}|\bm{t}_{g}\} pgspp_{g}^{\text{sp}} R¯3\bar{R}_{3} R¯4\bar{R}_{4}
{1|0,0,0}\{1|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22
{2001|1/2,0,1/2}\{2_{001}|-1/2,0,1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 22 2-2
{2010|0,1/2,0}\{2_{010}|0,1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0
{2100|1/2,1/2,1/2}\{2_{100}|1/2,-1/2,-1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
{I|0,0,0}\{I|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 0 0
{I2001|1/2,0,1/2}\{I2_{001}|1/2,0,-1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{I2010|0,1/2,0}\{I2_{010}|0,-1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ -1&0\end{array}\right) 0 0
{I2100|1/2,1/2,1/2}\{I2_{100}|-1/2,1/2,1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
\restylefloat

table

{pg|𝒕g}\{p_{g}|\bm{t}_{g}\} pgspp_{g}^{\text{sp}} S¯3\bar{S}_{3} S¯4\bar{S}_{4}
{1|0,0,0}\{1|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22
{2001|1/2,0,1/2}\{2_{001}|-1/2,0,1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{2010|0,1/2,0}\{2_{010}|0,1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0
{2100|1/2,1/2,1/2}\{2_{100}|1/2,-1/2,-1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
{I|0,0,0}\{I|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 0 0
{I2001|1/2,0,1/2}\{I2_{001}|1/2,0,-1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{I2010|0,1/2,0}\{I2_{010}|0,-1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ -1&0\end{array}\right) 0 0
{I2100|1/2,1/2,1/2}\{I2_{100}|-1/2,1/2,1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 2-2 22
\restylefloat

table

{pg|𝒕g}\{p_{g}|\bm{t}_{g}\} pgspp_{g}^{\text{sp}} T¯3\bar{T}_{3} T¯4\bar{T}_{4}
{1|0,0,0}\{1|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22
{2001|1/2,0,1/2}\{2_{001}|-1/2,0,1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{2010|0,1/2,0}\{2_{010}|0,1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0
{2100|1/2,1/2,1/2}\{2_{100}|1/2,-1/2,-1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
{I|0,0,0}\{I|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 0 0
{I2001|1/2,0,1/2}\{I2_{001}|1/2,0,-1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{I2010|0,1/2,0}\{I2_{010}|0,-1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ -1&0\end{array}\right) 0 0
{I2100|1/2,1/2,1/2}\{I2_{100}|-1/2,1/2,1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 2i-2i 2i2i
\restylefloat

table

{pg|𝒕g}\{p_{g}|\bm{t}_{g}\} pgspp_{g}^{\text{sp}} U¯5\bar{U}_{5} U¯6\bar{U}_{6}
{1|0,0,0}\{1|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22
{2001|1/2,0,1/2}\{2_{001}|-1/2,0,1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{2010|0,1/2,0}\{2_{010}|0,1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0
{2100|1/2,1/2,1/2}\{2_{100}|1/2,-1/2,-1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
{I|0,0,0}\{I|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 2-2
{I2001|1/2,0,1/2}\{I2_{001}|1/2,0,-1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{I2010|0,1/2,0}\{I2_{010}|0,-1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ -1&0\end{array}\right) 0 0
{I2100|1/2,1/2,1/2}\{I2_{100}|-1/2,1/2,1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
\restylefloat

table

{pg|𝒕g}\{p_{g}|\bm{t}_{g}\} pgspp_{g}^{\text{sp}} X¯3\bar{X}_{3} X¯4\bar{X}_{4}
{1|0,0,0}\{1|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22
{2001|1/2,0,1/2}\{2_{001}|-1/2,0,1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{2010|0,1/2,0}\{2_{010}|0,1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 2i-2i 2i2i
{2100|1/2,1/2,1/2}\{2_{100}|1/2,-1/2,-1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
{I|0,0,0}\{I|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 0 0
{I2001|1/2,0,1/2}\{I2_{001}|1/2,0,-1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{I2010|0,1/2,0}\{I2_{010}|0,-1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ -1&0\end{array}\right) 0 0
{I2100|1/2,1/2,1/2}\{I2_{100}|-1/2,1/2,1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
\restylefloat

table

{pg|𝒕g}\{p_{g}|\bm{t}_{g}\} pgspp_{g}^{\text{sp}} Y¯3\bar{Y}_{3} Y¯4\bar{Y}_{4}
{1|0,0,0}\{1|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22
{2001|1/2,0,1/2}\{2_{001}|-1/2,0,1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 2i-2i 2i2i
{2010|0,1/2,0}\{2_{010}|0,1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0
{2100|1/2,1/2,1/2}\{2_{100}|1/2,-1/2,-1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
{I|0,0,0}\{I|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 0 0
{I2001|1/2,0,1/2}\{I2_{001}|1/2,0,-1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{I2010|0,1/2,0}\{I2_{010}|0,-1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ -1&0\end{array}\right) 0 0
{I2100|1/2,1/2,1/2}\{I2_{100}|-1/2,1/2,1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
\restylefloat

table

{pg|𝒕g}\{p_{g}|\bm{t}_{g}\} pgspp_{g}^{\text{sp}} Z¯3\bar{Z}_{3} Z¯4\bar{Z}_{4}
{1|0,0,0}\{1|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22
{2001|1/2,0,1/2}\{2_{001}|-1/2,0,1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{2010|0,1/2,0}\{2_{010}|0,1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 2i2i 2i-2i
{2100|1/2,1/2,1/2}\{2_{100}|1/2,-1/2,-1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0
{I|0,0,0}\{I|0,0,0\} (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 0 0
{I2001|1/2,0,1/2}\{I2_{001}|1/2,0,-1/2\} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0
{I2010|0,1/2,0}\{I2_{010}|0,-1/2,0\} (0110)\left(\begin{array}[]{cc}0&-1\\ -1&0\end{array}\right) 0 0
{I2100|1/2,1/2,1/2}\{I2_{100}|-1/2,1/2,1/2\} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0

B.6 Irreducible representations of NaCdAs

\restylefloat

table

ν\nu 176
nΓ5n_{\Gamma}^{5} 4545
nΓ6n_{\Gamma}^{6} 4343
nR3n_{R}^{3} 4444
nR4n_{R}^{4} 4444
nS3n_{S}^{3} 4444
nS4n_{S}^{4} 4444
nT3n_{T}^{3} 4444
nT4n_{T}^{4} 4444
nU5n_{U}^{5} 4444
nU6n_{U}^{6} 4444
nX3n_{X}^{3} 4444
nX4n_{X}^{4} 4444
nY3n_{Y}^{3} 4444
nY4n_{Y}^{4} 4444
nZ3n_{Z}^{3} 4444
nZ4n_{Z}^{4} 4444

B.7 Character table for PbPt3PbPt_{3} [73]

\restylefloat

table

pgp_{g} pgspp_{g}^{\text{sp}} Γ¯6\bar{\Gamma}_{6} Γ¯7\bar{\Gamma}_{7} Γ¯8\bar{\Gamma}_{8} Γ¯9\bar{\Gamma}_{9} Γ¯10\bar{\Gamma}_{10} Γ¯11\bar{\Gamma}_{11}
11 (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22 22 22 44 44
20012_{001} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0 0 0 0 0
20102_{010} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0 0 0 0 0
21002_{100} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0 0 0 0 0
3111+3^{+}_{111} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1+i)/2\\ (1-i)/2&(1+i)/2\end{array}\right) 11 11 11 11 1-1 1-1
31¯11¯+3^{+}_{\bar{1}1\bar{1}} ((1+i)/2(1i)/2(1+i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&-(1-i)/2\\ (1+i)/2&(1-i)/2\end{array}\right) 11 11 11 11 1-1 1-1
311¯1¯+3^{+}_{1\bar{1}\bar{1}} ((1+i)/2(1i)/2(1+i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1-i)/2\\ -(1+i)/2&(1-i)/2\end{array}\right) 11 11 11 11 1-1 1-1
31¯1¯1+3^{+}_{\bar{1}\bar{1}1} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&(1+i)/2\\ -(1-i)/2&(1+i)/2\end{array}\right) 11 11 11 11 1-1 1-1
31113^{-}_{111} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1+i)/2\\ -(1-i)/2&(1-i)/2\end{array}\right) 11 11 11 11 1-1 1-1
311¯1¯3^{-}_{1\bar{1}\bar{1}} ((1i)/2(1i)/2(1+i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1-i)/2\\ (1+i)/2&(1+i)/2\end{array}\right) 11 11 11 11 1-1 1-1
31¯1¯13^{-}_{\bar{1}\bar{1}1} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&-(1+i)/2\\ (1-i)/2&(1-i)/2\end{array}\right) 11 11 11 11 1-1 1-1
31¯11¯3^{-}_{\bar{1}1\bar{1}} ((1i)/2(1i)/2(1+i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&(1-i)/2\\ -(1+i)/2&(1+i)/2\end{array}\right) 11 11 11 11 1-1 1-1
21102_{110} (0(1+i)2/2(1i)2/20)\left(\begin{array}[]{cc}0&-(1+i)\sqrt{2}/2\\ (1-i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0 0 0
211¯02_{1\bar{1}0} (0(1i)2/2(1+i)2/20)\left(\begin{array}[]{cc}0&-(1-i)\sqrt{2}/2\\ (1+i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0 0 0
40014^{-}_{001} ((1+i)2/200(1i)2/2)\left(\begin{array}[]{cc}(1+i)\sqrt{2}/2&0\\ 0&(1-i)\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
4001+4^{+}_{001} ((1i)2/200(1+i)2/2)\left(\begin{array}[]{cc}(1-i)\sqrt{2}/2&0\\ 0&(1+i)\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
41004^{-}_{100} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
20112_{011} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
2011¯2_{01\bar{1}} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
4100+4^{+}_{100} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
4010+4^{+}_{010} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
21012_{101} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
40104^{-}_{010} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
21¯012_{\bar{1}01} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
\restylefloat

table

II (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 2 2 -2 -2 4 -4
I2001I2_{001} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0 0 0 0 0
I2010I2_{010} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0 0 0 0 0
I2100I2_{100} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0 0 0 0 0
I3111+I3^{+}_{111} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1+i)/2\\ (1-i)/2&(1+i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I31¯11¯+I3^{+}_{\bar{1}1\bar{1}} ((1+i)/2(1i)/2(1+i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&-(1-i)/2\\ (1+i)/2&(1-i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I311¯1¯+I3^{+}_{1\bar{1}\bar{1}} ((1+i)/2(1i)/2(1+i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1-i)/2\\ -(1+i)/2&(1-i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I31¯1¯1+I3^{+}_{\bar{1}\bar{1}1} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&(1+i)/2\\ -(1-i)/2&(1+i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I3111I3^{-}_{111} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1+i)/2\\ -(1-i)/2&(1-i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I311¯1¯I3^{-}_{1\bar{1}\bar{1}} ((1i)/2(1i)/2(1+i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1-i)/2\\ (1+i)/2&(1+i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I31¯1¯1I3^{-}_{\bar{1}\bar{1}1} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&-(1+i)/2\\ (1-i)/2&(1-i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I31¯11¯I3^{-}_{\bar{1}1\bar{1}} ((1i)/2(1i)/2(1+i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&(1-i)/2\\ -(1+i)/2&(1+i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I2110I2_{110} (0(1+i)2/2(1i)2/20)\left(\begin{array}[]{cc}0&-(1+i)\sqrt{2}/2\\ (1-i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0 0 0
I211¯0I2_{1\bar{1}0} (0(1i)2/2(1+i)2/20)\left(\begin{array}[]{cc}0&-(1-i)\sqrt{2}/2\\ (1+i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0 0 0
I4001I4^{-}_{001} ((1+i)2/200(1i)2/2)\left(\begin{array}[]{cc}(1+i)\sqrt{2}/2&0\\ 0&(1-i)\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
I4001+I4^{+}_{001} ((1i)2/200(1+i)2/2)\left(\begin{array}[]{cc}(1-i)\sqrt{2}/2&0\\ 0&(1+i)\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
I4100I4^{-}_{100} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
I2011I2_{011} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
I2011¯I2_{01\bar{1}} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
I4100+I4^{+}_{100} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
I4010+I4^{+}_{010} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
I2101I2_{101} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
I4010I4^{-}_{010} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
I21¯01I2_{\bar{1}01} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
\restylefloat

table

pgp_{g} pgspp_{g}^{\text{sp}} M¯6\bar{M}_{6} M¯7\bar{M}_{7} M¯8\bar{M}_{8} M¯9\bar{M}_{9}
11 (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22 22 22
20012_{001} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0 0 0
20102_{010} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0 0 0
21002_{100} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0 0 0
21102_{110} (0(1+i)2/2(1i)2/20)\left(\begin{array}[]{cc}0&-(1+i)\sqrt{2}/2\\ (1-i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0
211¯02_{1\bar{1}0} (0(1i)2/2(1+i)2/20)\left(\begin{array}[]{cc}0&-(1-i)\sqrt{2}/2\\ (1+i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0
40014^{-}_{001} ((1+i)2/200(1i)2/2)\left(\begin{array}[]{cc}(1+i)\sqrt{2}/2&0\\ 0&(1-i)\sqrt{2}/2\end{array}\right) 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2}
4001+4^{+}_{001} ((1i)2/200(1+i)2/2)\left(\begin{array}[]{cc}(1-i)\sqrt{2}/2&0\\ 0&(1+i)\sqrt{2}/2\end{array}\right) 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2}
II (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22 2-2 2-2
I2001I2_{001} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0 0 0
I2010I2_{010} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0 0 0
I2100I2_{100} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0 0 0
I2110I2_{110} (0(1+i)2/2(1i)2/20)\left(\begin{array}[]{cc}0&-(1+i)\sqrt{2}/2\\ (1-i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0
I211¯0I2_{1\bar{1}0} (0(1i)2/2(1+i)2/20)\left(\begin{array}[]{cc}0&-(1-i)\sqrt{2}/2\\ (1+i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0
I4001I4^{-}_{001} ((1+i)2/200(1i)2/2)\left(\begin{array}[]{cc}(1+i)\sqrt{2}/2&0\\ 0&(1-i)\sqrt{2}/2\end{array}\right) 2-\sqrt{2} 2\sqrt{2} 2\sqrt{2} 2-\sqrt{2}
I4001+I4^{+}_{001} ((1i)2/200(1+i)2/2)\left(\begin{array}[]{cc}(1-i)\sqrt{2}/2&0\\ 0&(1+i)\sqrt{2}/2\end{array}\right) 2-\sqrt{2} 2\sqrt{2} 2\sqrt{2} 2-\sqrt{2}
\restylefloat

table

pgp_{g} pgspp_{g}^{\text{sp}} R¯6\bar{R}_{6} R¯7\bar{R}_{7} R¯8\bar{R}_{8} R¯9\bar{R}_{9} R¯10\bar{R}_{10} R¯11\bar{R}_{11}
11 (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22 22 22 44 44
20012_{001} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0 0 0 0 0
20102_{010} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0 0 0 0 0
21002_{100} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0 0 0 0 0
3111+3^{+}_{111} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1+i)/2\\ (1-i)/2&(1+i)/2\end{array}\right) 11 11 11 11 1-1 1-1
31¯11¯+3^{+}_{\bar{1}1\bar{1}} ((1+i)/2(1i)/2(1+i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&-(1-i)/2\\ (1+i)/2&(1-i)/2\end{array}\right) 11 11 11 11 1-1 1-1
311¯1¯+3^{+}_{1\bar{1}\bar{1}} ((1+i)/2(1i)/2(1+i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1-i)/2\\ -(1+i)/2&(1-i)/2\end{array}\right) 11 11 11 11 1-1 1-1
31¯1¯1+3^{+}_{\bar{1}\bar{1}1} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&(1+i)/2\\ -(1-i)/2&(1+i)/2\end{array}\right) 11 11 11 11 1-1 1-1
31113^{-}_{111} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1+i)/2\\ -(1-i)/2&(1-i)/2\end{array}\right) 11 11 11 11 1-1 1-1
311¯1¯3^{-}_{1\bar{1}\bar{1}} ((1i)/2(1i)/2(1+i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1-i)/2\\ (1+i)/2&(1+i)/2\end{array}\right) 11 11 11 11 1-1 1-1
31¯1¯13^{-}_{\bar{1}\bar{1}1} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&-(1+i)/2\\ (1-i)/2&(1-i)/2\end{array}\right) 11 11 11 11 1-1 1-1
31¯11¯3^{-}_{\bar{1}1\bar{1}} ((1i)/2(1i)/2(1+i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&(1-i)/2\\ -(1+i)/2&(1+i)/2\end{array}\right) 11 11 11 11 1-1 1-1
21102_{110} (0(1+i)2/2(1i)2/20)\left(\begin{array}[]{cc}0&-(1+i)\sqrt{2}/2\\ (1-i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0 0 0
211¯02_{1\bar{1}0} (0(1i)2/2(1+i)2/20)\left(\begin{array}[]{cc}0&-(1-i)\sqrt{2}/2\\ (1+i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0 0 0
40014^{-}_{001} ((1+i)2/200(1i)2/2)\left(\begin{array}[]{cc}(1+i)\sqrt{2}/2&0\\ 0&(1-i)\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
4001+4^{+}_{001} ((1i)2/200(1+i)2/2)\left(\begin{array}[]{cc}(1-i)\sqrt{2}/2&0\\ 0&(1+i)\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
41004^{-}_{100} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
20112_{011} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
2011¯2_{01\bar{1}} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
4100+4^{+}_{100} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
4010+4^{+}_{010} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
21012_{101} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
40104^{-}_{010} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2} 0 0
21¯012_{\bar{1}01} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
\restylefloat

table

II (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 2 2 -2 -2 4 -4
I2001I2_{001} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0 0 0 0 0
I2010I2_{010} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0 0 0 0 0
I2100I2_{100} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0 0 0 0 0
I3111+I3^{+}_{111} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1+i)/2\\ (1-i)/2&(1+i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I31¯11¯+I3^{+}_{\bar{1}1\bar{1}} ((1+i)/2(1i)/2(1+i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&-(1-i)/2\\ (1+i)/2&(1-i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I311¯1¯+I3^{+}_{1\bar{1}\bar{1}} ((1+i)/2(1i)/2(1+i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1-i)/2\\ -(1+i)/2&(1-i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I31¯1¯1+I3^{+}_{\bar{1}\bar{1}1} ((1i)/2(1+i)/2(1i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&(1+i)/2\\ -(1-i)/2&(1+i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I3111I3^{-}_{111} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&(1+i)/2\\ -(1-i)/2&(1-i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I311¯1¯I3^{-}_{1\bar{1}\bar{1}} ((1i)/2(1i)/2(1+i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&-(1-i)/2\\ (1+i)/2&(1+i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I31¯1¯1I3^{-}_{\bar{1}\bar{1}1} ((1+i)/2(1+i)/2(1i)/2(1i)/2)\left(\begin{array}[]{cc}(1+i)/2&-(1+i)/2\\ (1-i)/2&(1-i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I31¯11¯I3^{-}_{\bar{1}1\bar{1}} ((1i)/2(1i)/2(1+i)/2(1+i)/2)\left(\begin{array}[]{cc}(1-i)/2&(1-i)/2\\ -(1+i)/2&(1+i)/2\end{array}\right) 1 1 1-1 1-1 1-1 1
I2110I2_{110} (0(1+i)2/2(1i)2/20)\left(\begin{array}[]{cc}0&-(1+i)\sqrt{2}/2\\ (1-i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0 0 0
I211¯0I2_{1\bar{1}0} (0(1i)2/2(1+i)2/20)\left(\begin{array}[]{cc}0&-(1-i)\sqrt{2}/2\\ (1+i)\sqrt{2}/2&0\end{array}\right) 0 0 0 0 0 0
I4001I4^{-}_{001} ((1+i)2/200(1i)2/2)\left(\begin{array}[]{cc}(1+i)\sqrt{2}/2&0\\ 0&(1-i)\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
I4001+I4^{+}_{001} ((1i)2/200(1+i)2/2)\left(\begin{array}[]{cc}(1-i)\sqrt{2}/2&0\\ 0&(1+i)\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
I4100I4^{-}_{100} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
I2011I2_{011} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
I2011¯I2_{01\bar{1}} (i2/22/22/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
I4100+I4^{+}_{100} (2/2i2/2i2/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
I4010+I4^{+}_{010} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
I2101I2_{101} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
I4010I4^{-}_{010} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 0 0
I21¯01I2_{\bar{1}01} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0 0 0
\restylefloat

table

pgp_{g} pgspp_{g}^{\text{sp}} X¯6\bar{X}_{6} X¯7\bar{X}_{7} X¯8\bar{X}_{8} X¯9\bar{X}_{9}
11 (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22 22 22
20012_{001} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0 0 0
20102_{010} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0 0 0
21002_{100} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0 0 0
4010+4^{+}_{010} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2}
21012_{101} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0
40104^{-}_{010} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2\sqrt{2} 2-\sqrt{2}
21¯012_{\bar{1}01} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0
II (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) 22 22 2-2 2-2
I2001I2_{001} (i00i)\left(\begin{array}[]{cc}-i&0\\ 0&i\end{array}\right) 0 0 0 0
I2010I2_{010} (0110)\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right) 0 0 0 0
I2100I2_{100} (0ii0)\left(\begin{array}[]{cc}0&-i\\ -i&0\end{array}\right) 0 0 0 0
I4010+I4^{+}_{010} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&-\sqrt{2}/2\\ \sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2}
I2101I2_{101} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&-i\sqrt{2}/2\\ -i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0
I4010I4^{-}_{010} (2/22/22/22/2)\left(\begin{array}[]{cc}\sqrt{2}/2&\sqrt{2}/2\\ -\sqrt{2}/2&\sqrt{2}/2\end{array}\right) 2\sqrt{2} 2-\sqrt{2} 2-\sqrt{2} 2\sqrt{2}
I21¯01I2_{\bar{1}01} (i2/2i2/2i2/2i2/2)\left(\begin{array}[]{cc}-i\sqrt{2}/2&i\sqrt{2}/2\\ i\sqrt{2}/2&i\sqrt{2}/2\end{array}\right) 0 0 0 0

B.8 Irreducible representations of PbPt3PbPt_{3}

\restylefloat

table

ν\nu 68
nΓ6n_{\Gamma}^{6} 44
nΓ7n_{\Gamma}^{7} 44
nΓ8n_{\Gamma}^{8} 33
nΓ9n_{\Gamma}^{9} 11
nΓ10n_{\Gamma}^{{10}} 77
nΓ11n_{\Gamma}^{{11}} 44
nM6n_{M}^{6} 1010
nM7n_{M}^{7} 99
nM8n_{M}^{8} 88
nM9n_{M}^{9} 77
nR6n_{R}^{6} 33
nR7n_{R}^{7} 44
nR8n_{R}^{8} 22
nR9n_{R}^{9} 33
nR10n_{R}^{{10}} 77
nR11n_{R}^{{11}} 44
nX6n_{X}^{6} 99
nX7n_{X}^{7} 99
nX8n_{X}^{8} 99
nX9n_{X}^{9} 77

Appendix C Double group

Here we provide an example of projective representations to clarify the relation to the double group.

C.1 Definition of the 2×2\mathbb{Z}_{2}\times\mathbb{Z}_{2} group

We discuss the point group G=222G=222, which is isomorphic to 2×2\mathbb{Z}_{2}\times\mathbb{Z}_{2}. As a set, GG contains four elements: G={e,X,Y,Z}G=\{e,X,Y,Z\}, where ee is the identity and XX, YY, and ZZ are, respectively, the two-fold rotation about xx, yy, and zz axis. The group product is defined by

XX=YY=ZZ=e,\displaystyle X\cdot X=Y\cdot Y=Z\cdot Z=e, (12)
XY=YX=Z,\displaystyle X\cdot Y=Y\cdot X=Z, (13)
YZ=ZY=X,\displaystyle Y\cdot Z=Z\cdot Y=X, (14)
ZX=XZ=Y.\displaystyle Z\cdot X=X\cdot Z=Y. (15)

C.2 Linear representations of the 2×2\mathbb{Z}_{2}\times\mathbb{Z}_{2} group

Linear representations of GG must satisfy

U(g)U(g)=U(gg)for g,gG.\displaystyle U(g)U(g^{\prime})=U(gg^{\prime})\quad\text{for }g,g^{\prime}\in G. (16)

There are four linear representations of GG, which are all 1D representations. They are given by U(e)=1U(e)=1, U(X)=ξU(X)=\xi, U(Y)=ξU(Y)=\xi^{\prime}, and U(Z)=ξξU(Z)=\xi\xi^{\prime}, where ξ=±1\xi=\pm 1 and ξ=±1\xi^{\prime}=\pm 1.

C.3 Projective representation of the 2×2\mathbb{Z}_{2}\times\mathbb{Z}_{2} group

Projective representations of GG must satisfy

U(g)U(g)=ω(g,g)U(gg)for g,gG\displaystyle U(g)U(g^{\prime})=\omega(g,g^{\prime})U(gg^{\prime})\quad\text{for }g,g^{\prime}\in G (17)

for a projective factor ω\omega obeying the co-cycle condition ω(g,g)ω(gg,g′′)=ω(g,gg′′)ω(g,g′′)\omega(g,g^{\prime})\omega(gg^{\prime},g^{\prime\prime})=\omega(g,g^{\prime}g^{\prime\prime})\omega(g^{\prime},g^{\prime\prime}) for g,g,g′′Gg,g^{\prime},g^{\prime\prime}\in G.

As an example, let us set

ω(e,X)=ω(e,Y)=ω(e,Z)=+1,\displaystyle\omega(e,X)=\omega(e,Y)=\omega(e,Z)=+1, (18)
ω(X,e)=ω(Y,e)=ω(Z,e)=+1,\displaystyle\omega(X,e)=\omega(Y,e)=\omega(Z,e)=+1, (19)
ω(X,X)=ω(Y,Y)=ω(Z,Z)=1,\displaystyle\omega(X,X)=\omega(Y,Y)=\omega(Z,Z)=-1, (20)
ω(X,Y)=ω(Y,Z)=ω(Z,X)=1,\displaystyle\omega(X,Y)=\omega(Y,Z)=\omega(Z,X)=-1, (21)
ω(Y,X)=ω(Z,Y)=ω(X,Z)=+1.\displaystyle\omega(Y,X)=\omega(Z,Y)=\omega(X,Z)=+1. (22)

There is only one projective representation for this particular ω\omega, which reads U(e)=σ0U(e)=\sigma_{0}, U(X)=iσxU(X)=i\sigma_{x}, U(Y)=iσyU(Y)=i\sigma_{y}, U(Z)=iσzU(Z)=i\sigma_{z}. Here, σ0\sigma_{0} is the 2D identity matrix and σx\sigma_{x}, σy\sigma_{y}, and σz\sigma_{z} are the Pauli matrices.

The choice of ω\omega is not unique. For example, one can instead use

ω(X,Y)=ω(Y,Z)=ω(Z,X)=+1,\displaystyle\omega(X,Y)=\omega(Y,Z)=\omega(Z,X)=+1, (23)
ω(Y,X)=ω(Z,Y)=ω(X,Z)=1.\displaystyle\omega(Y,X)=\omega(Z,Y)=\omega(X,Z)=-1. (24)

When all other components are unchanged, the corresponding projective representation is given by U(e)=σ0U(e)=\sigma_{0}, U(X)=iσxU(X)=-i\sigma_{x}, U(Y)=iσyU(Y)=-i\sigma_{y}, U(Z)=iσzU(Z)=-i\sigma_{z}. Other possible choices of ω\omega can also be generated by the replacement U(g)eiθ(g)U(g)U(g)\rightarrow e^{i\theta(g)}U(g) and ω(g,g)ei[θ(g)+θ(g)θ(gg)]ω(g,g)\omega(g,g^{\prime})\rightarrow e^{i[\theta(g)+\theta(g^{\prime})-\theta(gg^{\prime})]}\omega(g,g^{\prime}). (θ(g)\theta(g) must be chosen in such a way that the co-cycle condition is respected.)

C.4 Definition of the double group of the 2×2\mathbb{Z}_{2}\times\mathbb{Z}_{2} group

In the double group approach, we consider the linear representation of an enlarged group GG^{\prime}. GG^{\prime} contains both +g+g and g-g for each element of GG. Hence, G={ηg|η=±1,gG}G^{\prime}=\{\eta g|\eta=\pm 1,g\in G\} has eight elements in total. Given a projective factor ω\omega, the group product of GG^{\prime} is defined by

(ηg)(ηg)=(ηηω(g,g)gg)Gfor g,gG and η,η=±1.\displaystyle(\eta g)\cdot(\eta^{\prime}g^{\prime})=(\eta\eta^{\prime}\omega(g,g^{\prime})g\cdot g^{\prime})\in G^{\prime}\quad\text{for }g,g^{\prime}\in G\text{ and }\eta,\eta^{\prime}=\pm 1. (25)

Clearly, the very definition of the double group (i.e., the product rule itself) depends on the choice of ω\omega.

C.5 Linear representation of the double group of the 2×2\mathbb{Z}_{2}\times\mathbb{Z}_{2} group

Let us assume our first choice of ω\omega above. There are four 1D linear representations of GG^{\prime}, given by U(ηe)=1U^{\prime}(\eta e)=1, U(ηX)=ξU^{\prime}(\eta X)=\xi, U(ηY)=ξU^{\prime}(\eta Y)=\xi^{\prime}, and U(ηZ)=ξξU^{\prime}(\eta Z)=\xi\xi^{\prime}, where η=±1\eta=\pm 1, ξ=±1\xi=\pm 1, and ξ=±1\xi^{\prime}=\pm 1. There is also one 2D linear representation of GG^{\prime}, given by U(ηe)=ησ0U^{\prime}(\eta e)=\eta\sigma_{0}, U(ηX)=ηiσxU^{\prime}(\eta X)=\eta i\sigma_{x}, U(ηY)=ηiσyU^{\prime}(\eta Y)=\eta i\sigma_{y}, U(ηZ)=ηiσzU^{\prime}(\eta Z)=\eta i\sigma_{z} for η=±1\eta=\pm 1.

In the double group treatment of the projective representation, one must choose linear representations of GG^{\prime} that satisfy U(ηg)=ηU(+g)U^{\prime}(\eta g)=\eta U^{\prime}(+g) for every gGg\in G and η=±1\eta=\pm 1. Hence in this example, the valid choice is given by the 2D representation. The projective representation of GG we obtained in C.3 can be reproduced by setting U(g)=U(+g)U(g)=U^{\prime}(+g) for each gGg\in G.

References