This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

qq-Deformations and tt-Deformations of the Markov triples

Takeyoshi Kogiso
Department of Mathematics, Josai University,
1-1, Keyakidai Sakado, Saitama, 350-0295, Japan
E-mail address: kogiso@josai.ac.jp
Abstract

In the present paper, we generalize the Markov triples in two different directions. One is generalization in direction of using the qq-deformation of rational number introduced by [5] in connection with cluster algebras, quantum topology and analytic number theory. The other is a generalization in direction of using castling transforms on prehomogeneous vector spaces [6] which plays an important role in the study of representation theory and automorphic functions. In addition, the present paper gives a relationship between the two generalizations. This may provide some kind of bridging between different fields.

Introduction

It is well known that Markov triple (x,y,z)=(Tr(w(A,B))/3,Tr(w(A,B)w(A,B))/3,Tr(w(A,B))/3)(x,y,z)=(\mathrm{Tr}(w(A,B))/3,\mathrm{Tr}(w(A,B)w^{\prime}(A,B))/3,\mathrm{Tr}(w^{\prime}(A,B))/3) as a solution of Markov equation x2+y2+z2=3xyzx^{2}+y^{2}+z^{2}=3xyz for a triple of Christoffel abab-word (w(a,b),w(a,b)w(a,b),w(a,b))(w(a,b),w(a,b)w^{\prime}(a,b),w^{\prime}(a,b)), where A=(2111),B=(5221)A=\begin{pmatrix}2&1\\ 1&1\end{pmatrix},~{}B=\begin{pmatrix}5&2\\ 2&1\end{pmatrix}.

This paper introduces two generalizations of Markov triple in two completely different directions and the relation between them.

Sophie Morier-Genoud and Valentine Ovsienko [5] introduced qq-deformation of fractions as the followings. For a positive rational number rs=[a1,,a2m]=[[c1,,cr]]\frac{r}{s}=[a_{1},\dots,a_{2m}]=[[c_{1},\dots,c_{r}]], they defined [a1,,a2m]q[a_{1},\dots,a_{2m}]_{q} and [c1,,cr]q[c_{1},\dots,c_{r}]_{q} as qq-deformation respectively. Furthermore they proved the former coincides with the latter. Thus they defined [rs]q:=[a1,,a2m]q=[[c1,,cr]]q[\frac{r}{s}]_{q}:=[a_{1},\dots,a_{2m}]_{q}=[[c_{1},\dots,c_{r}]]_{q} as qq-deformation of rs=[a1,,a2m]=[[c1,,cr]]\frac{r}{s}=[a_{1},\dots,a_{2m}]_{=}[[c_{1},\dots,c_{r}]].

Our first generalization of Markov triples (hw(a,b)(q),hw(a,b)w(a,b)(q),hw(a,b)(q))(h_{w(a,b)}(q),h_{w(a,b)w^{\prime}(a,b)}(q),h_{w^{\prime}(a,b)}(q)) are given by the properties of qq-deformation of a positive fraction. (x,y,z)=(hw(a,b)(q),hw(a,b)w(a,b)(q),hw(a,b))=(Tr(w(Aq,Bq)/[3]q,Tr(w(Aq,Bq)w(Aq,Bq))/[3]q,Tr(w(Aq,Bq)/[3]q)(x,y,z)=(h_{w(a,b)}(q),h_{w(a,b)w^{\prime}(a,b)}(q),h_{w^{\prime}(a,b)})=(\mathrm{Tr}(w(A_{q},B_{q})/[3]_{q},\mathrm{Tr}(w(A_{q},B_{q})w^{\prime}(A_{q},B_{q}))/[3]_{q},\mathrm{Tr}(w^{\prime}(A_{q},B_{q})/[3]_{q}) is a solution of qq-deformed Markov equation

x2+y2+z2+(q1)2q3=[3]qxyzx^{2}+y^{2}+z^{2}+\frac{(q-1)^{2}}{q^{3}}=[3]_{q}xyz

where Aq=(q+1q11q1),Bq=(q3+q2+2q+1qq+1qq+1qq2)SL(2,[q,q1])A_{q}=\begin{pmatrix}q+1&q^{-1}\\ 1&q^{-1}\end{pmatrix},~{}B_{q}=\begin{pmatrix}\frac{q^{3}+q^{2}+2q+1}{q}&\frac{q+1}{q}\\ \frac{q+1}{q}&q^{-2}\end{pmatrix}\in SL(2,{\mathbb{Z}}[q,q^{-1}]).

On the other hand, Mikio Sato [6] introduced Theory of prehomogeneous vector spaces and classified irreducible prehomogeneous vector spaces with Tatsuo Kimura by using castling transformations of prehomogeneous vector spaces. Our second generalization of Markov triples are given by an application of castling transformations of tt-dimensional prehomogeneous vector spaces. We find that a certain subtree of the case for t=3t=3 is related to Markov tree of Markov triples (Tr(w(A,B))/3,Tr(w(A,B)w(A,B))/3,Tr(w(A,B))/3)(\mathrm{Tr}(w(A,B))/3,\mathrm{Tr}(w(A,B)w^{\prime}(A,B))/3,\mathrm{Tr}(w^{\prime}(A,B))/3) and show that subtree in tree of castling transformation of tt-dimensional prehomogeneous vector space corresponds to a tree of triplets (fw(t),fww(t),fw(t))(f_{w}(t),f_{ww^{\prime}}(t),f_{w^{\prime}}(t)) of polynomials associated to a triple of Christoffel abab-words (w(a,b),w(a,b)w(a,b),w(a,b))(w(a,b),w(a,b)w^{\prime}(a,b),w^{\prime}(a,b)). This triple (x,y,z)=(fw(a,b)(t),fw(a,b)w(a,b)(t),fw(a,b)(t))(x,y,z)=(f_{w(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)}(t),f_{w^{\prime}(a,b)}(t)) is a solution of a tt-deformed Markov equation

x2+y2+z2+(t3)=txyz.x^{2}+y^{2}+z^{2}+(t-3)=txyz.

Moreover there exists a relation fw(a,b)(q1[3]q)=qhw(a,b)(q)f_{w(a,b)}(q^{-1}[3]_{q})=qh_{w(a,b)}(q) between qq-deformations and tt-deformations.

This paper is organized into the following sections.

In §1\S 1, properties of qq-deformation of continued fractions along [5] is described.

In §2\S 2, by using §1\S 1, we defined qq-deformation of Markov triples and introduce properties and application of them.

In §3\S 3, from the view point of castling transformation of prehomogeneous vector spaces, we define castling Markov triples (=tt-deformations of Markov triples) and introduce properties of them.

In §4\S 4, relation between the qq-deformations and the tt-deformation is described.

1 qq-Deformation of continued fractions due to Morier-Genoud and Ovsienko

For a rational number rs\frac{r}{s}\in{\mathbb{Q}} and that r,sr,s are positive coprime integers. It is well known that rs\frac{r}{s} has different continued fraction expansions as follows:

rs=a1+1a2+1+1a2m=[a1,a2,,a2m]=c11c211ck=[[c1,c2,,ck]]\begin{array}[]{lll}\frac{r}{s}&=a_{1}+\cfrac{1}{a_{2}+\cfrac{1}{\ddots+\cfrac{1}{a_{2m}}}}&=[a_{1},a_{2},\dots,a_{2m}]\\ &=c_{1}-\cfrac{1}{c_{2}-\cfrac{1}{\ddots-\cfrac{1}{c_{k}}}}&=[[c_{1},c_{2},\dots,c_{k}]]\end{array} (1.1)

with ci2c_{i}\geq 2 and ai1a_{i}\geq 1, denoted by [a1,,a2m][a_{1},\dots,a_{2m}] and [[c1,,ck]][[c_{1},\dots,c_{k}]], respectively. They are usually called regular and negative continued fractions, respectively. Considering an even number of coefficients in the regular expansion and coefficients greater than 2 in the negative expansion make the expansions unique. Sophie Morier-Genord and Valentin Ovsienko [5] introduced qq-deformed rationals and qq-continued fractions as follows:

Let qq be a formal parameter, put

[a]p:=1qa1q[a]_{p}:=\frac{1-q^{a}}{1-q} (1.2)

where aa is a non-negative integer.

(a)

[a1,a2,,a2m]q:=[a1]q+qa1[a2]q1+qa2[a3]q+qa3[a4]q1+qa4[a2m1]q+qa2m1[a2m]q1[a_{1},a_{2},\dots,a_{2m}]_{q}:=[a_{1}]_{q}+\cfrac{q^{a_{1}}}{[a_{2}]_{q^{-1}}+\cfrac{q^{-a_{2}}}{[a_{3}]_{q}+\cfrac{q^{a_{3}}}{[a_{4}]_{q^{-1}}+\cfrac{q^{-a_{4}}}{\cfrac{\ddots}{[a_{2m-1}]_{q}+\cfrac{q^{a_{2m-1}}}{[a_{2m}]_{q^{-1}}}}}}}} (1.3)

(b)

[[c1,c2,,ck]]q:=[c1]qqc11[c2]qqc21[c3]qqc31[c4]qqc41[ck1]qqck11[ck]q[[c_{1},c_{2},\dots,c_{k}]]_{q}:=[c_{1}]_{q}-\cfrac{q^{c_{1}-1}}{[c_{2}]_{q}-\cfrac{q^{c_{2}-1}}{[c_{3}]_{q}-\cfrac{q^{c_{3}-1}}{[c_{4}]_{q}-\cfrac{q^{c_{4}-1}}{\cfrac{\ddots}{[c_{k-1}]_{q}-\cfrac{q^{c_{k-1}-1}}{[c_{k}]_{q}}}}}}} (1.4)
Theorem 1.1.

(Morier-Genoud and Ovsienko [5]) If a rational number rs\frac{r}{s} has a regular and negative continued fraction expansion form rs=[a1,,a2m]=[[c1,,ck]]\frac{r}{s}=[a_{1},\dots,a_{2m}]=[[c_{1},\dots,c_{k}]],

then

[a1,,a2m]q=[[c1,,ck]]q=:[rs]q[a_{1},\dots,a_{2m}]_{q}=[[c_{1},\dots,c_{k}]]_{q}=:[\frac{r}{s}]_{q} (1.5)
Example 1.2.

[52]q=[[3,2]]q=[2,2]q=1+2q+q2+q31+q[\frac{5}{2}]_{q}=[[3,2]]_{q}=[2,2]_{q}=\frac{1+2q+q^{2}+q^{3}}{1+q}

[53]q=[[2,3]]q=[1,1,1,1]q=1+q+2q2+q31+q+q2[\frac{5}{3}]_{q}=[[2,3]]_{q}=[1,1,1,1]_{q}=\frac{1+q+2q^{2}+q^{3}}{1+q+q^{2}}

[73]q=[[3,2,2]]q=[2,3]q=1+2q+2q2+q3+q41+q+q2[\frac{7}{3}]_{q}=[[3,2,2]]_{q}=[2,3]_{q}=\frac{1+2q+2q^{2}+q^{3}+q^{4}}{1+q+q^{2}}

[74]q=[[2,4]]q=[1,1,2,1]q=1+q+2q2+2q3+q41+q+q2+q3[\frac{7}{4}]_{q}=[[2,4]]_{q}=[1,1,2,1]_{q}=\frac{1+q+2q^{2}+2q^{3}+q^{4}}{1+q+q^{2}+q^{3}}

[75]q=[[2,2,3]]q=[1,1,2,1]q=1+q+2q2+2q3+q41+q+2q2+q3[\frac{7}{5}]_{q}=[[2,2,3]]_{q}=[1,1,2,1]_{q}=\frac{1+q+2q^{2}+2q^{3}+q^{4}}{1+q+2q^{2}+q^{3}}

Theorem 1.3.

(Morier-Genoud and Ovsienko [5]) The following two matrices

Mq+(a1,,a2m):=([a1]qqa110)([a2]q1qa210)([a2m1]qqa2m110)([a2m]q1qa2m10)M^{+}_{q}(a_{1},\dots,a_{2m}):=\begin{pmatrix}[a_{1}]_{q}&q^{a_{1}}\\ 1&0\end{pmatrix}\begin{pmatrix}[a_{2}]_{q^{-1}}&q^{-a_{2}}\\ 1&0\end{pmatrix}\cdots\begin{pmatrix}[a_{2m-1}]_{q}&q^{a_{2m-1}}\\ 1&0\end{pmatrix}\begin{pmatrix}[a_{2m}]_{q^{-1}}&-q^{-a_{2m}}\\ 1&0\end{pmatrix} (1.6)
Mq(c1,,ck):=([c1]qqc1110)([c2]qqc2110)([ck1]qqck1110)([ck]qqck110)M_{q}(c_{1},\dots,c_{k}):=\begin{pmatrix}[c_{1}]_{q}&-q^{c_{1}-1}\\ 1&0\end{pmatrix}\begin{pmatrix}[c_{2}]_{q}&-q^{c_{2}-1}\\ 1&0\end{pmatrix}\cdots\begin{pmatrix}[c_{k}-1]_{q}&-q^{c_{k-1}-1}\\ 1&0\end{pmatrix}\begin{pmatrix}[c_{k}]_{q}&-q^{c_{k}-1}\\ 1&0\end{pmatrix} (1.7)

satisfy the following equations:

(i)

Mq+(a1,,a2m)=(q2m1q𝒮𝒮2m1)M_{q}^{+}(a_{1},\dots,a_{2m})=\begin{pmatrix}q\mathcal{R}&\mathcal{R}^{\prime}_{2m-1}\\ q\mathcal{S}&\mathcal{S}^{\prime}_{2m-1}\end{pmatrix} (1.8)

where (q)𝒮(q)=[a1,a2,,a2m]q,2m1(q)𝒮2m1(q)=[a1,,a2m1]q\frac{\mathcal{R}(q)}{\mathcal{S}(q)}=[a_{1},a_{2},\dots,a_{2m}]_{q},~{}~{}\frac{\mathcal{R}^{\prime}_{2m-1}(q)}{\mathcal{S}^{\prime}_{2m-1}(q)}=[a_{1},\dots,a_{2m-1}]_{q}

(ii)

Mq(c1,,ck)=(qck1k1𝒮qck1𝒮k1)M_{q}(c_{1},\dots,c_{k})=\begin{pmatrix}\mathcal{R}&-q^{c_{k}-1}\mathcal{R}_{k-1}\\ \mathcal{S}&-q^{c_{k}-1}\mathcal{S}^{\prime}_{k-1}\end{pmatrix} (1.9)

where (q)𝒮(q)=[[c1,,ck]]q,k1(q)𝒮k1(q)=[c1,,ck1]q\frac{\mathcal{R}(q)}{\mathcal{S}(q)}=[[c_{1},\dots,c_{k}]]_{q},~{}~{}\frac{\mathcal{R}_{k-1}(q)}{\mathcal{S}_{k-1}(q)}=[c_{1},\dots,c_{k-1}]_{q}

Theorem 1.4.

(Morier-Genoud and Ovsienko [5]) Rq:=(q101),Lq:=(101q1),Sq:=(0q110)R_{q}:=\begin{pmatrix}q&1\\ 0&1\end{pmatrix},~{}L_{q}:=\begin{pmatrix}1&0\\ 1&q^{-1}\end{pmatrix},~{}S_{q}:=\begin{pmatrix}0&-q^{-1}\\ 1&0\end{pmatrix}, then

Mq+(a1,,a2m)=Rqa1Lqa2Rqa2m1Lqa2mM_{q}^{+}(a_{1},\dots,a_{2m})=R_{q}^{a_{1}}L_{q}^{a_{2}}\cdots R_{q}^{a_{2m-1}}L_{q}^{a_{2m}} (1.10)

and

Mq+(c1,,ck)=Rqc1SqRqc2SqSqRqckSq.M_{q}^{+}(c_{1},\dots,c_{k})=R_{q}^{c_{1}}S_{q}R_{q}^{c_{2}}S_{q}\cdots S_{q}R_{q}^{c_{k}}S_{q}. (1.11)

2 qq-Deformations of the Markov equation and Markov triples

A triple (x,y,z)(x,y,z) of positive integers is called Markov triple (up to permutation) when (x,y,z)(x,y,z) is a solution of the Markov equation

x2+y2+z2=3xyz.x^{2}+y^{2}+z^{2}=3xyz. (2.1)

A well-defined set of representative is obtained starting with (1,1,1),(1,2,1),(1,5,2)(1,1,1),(1,2,1),(1,5,2) and then proceeding recursively going from Markov triple (p,q,r)(p,q,r) to the new Markov triples (3qrp,q,r),(p,3prq,r),(p,q,3pqr)(3qr-p,q,r),(p,3pr-q,r),(p,q,3pq-r)(up to permutation). The Markov tree of representatives of Markov triples (Figure 1) and the tree of triples of Christoffel abab-words (Figure2) are well known( cf. [1]).

Refer to caption
Figure 1:

We consider the following tree of triple of Christoffel abab-words (Cohn word ) form P.201 in [2] corresponding to Markov triples along Bombieri [2] and its modification-version in [1]

Refer to caption
Figure 2:
Theorem 2.1.

([2], [3], [4]) For A:=(2111),B:=(5221)A:=\begin{pmatrix}2&1\\ 1&1\end{pmatrix},B:=\begin{pmatrix}5&2\\ 2&1\end{pmatrix} and triple of Christoffel abab-word)

(w(a,b),w(a,b)w(a,b),w(a,b))(w(a,b),w(a,b)w^{\prime}(a,b),w^{\prime}(a,b)), a triple of matrices (w(A,B),w(A,B)w(A,B),w(A,B))(w(A,B),w(A,B)w^{\prime}(A,B),w^{\prime}(A,B)) is called triple of Cohn matrices.

Then

13(Tr(w(A,B)),Tr(w(A,B)w(A,B)),Tr(w(A,B)))=(w(A,B)1,2,{w(A,B)w(A,B)}1,2,w(A,B)1,2)\frac{1}{3}(\mathrm{Tr}(w(A,B)),\mathrm{Tr}(w(A,B)w^{\prime}(A,B)),\mathrm{Tr}(w^{\prime}(A,B)))=(w(A,B)_{1,2},\{w(A,B)w^{\prime}(A,B)\}_{1,2},w^{\prime}(A,B)_{1,2}) is a Markov triple.

We obtain the following qq-deformation of triple of Cohn matrices and triple of Markov numbers.

Put Aq:=RqLq=(q+1q11q1),Bq:=Rq2Lq2=(q3+q2+2q+1qq+1q2q+1qq2)SL(2,[q,q1])A_{q}:=R_{q}L_{q}=\begin{pmatrix}q+1&q^{-1}\\ 1&q^{-1}\end{pmatrix},~{}B_{q}:=R_{q}^{2}L_{q}^{2}=\begin{pmatrix}\frac{q^{3}+q^{2}+2q+1}{q}&\frac{q+1}{q^{2}}\\ \frac{q+1}{q}&q^{-2}\end{pmatrix}\in SL(2,{\mathbb{Z}}[q,q^{-1}]).

Lemma 2.2.

Let (M,MN,N)(M,MN,N) be a triple of qq-deformation of Cohn matrices corresponding Christoffel abab-word triple (w1(a,b),w1(a,b)w2(a,b),w2(a,b))(w_{1}(a,b),w_{1}(a,b)w_{2}(a,b),w_{2}(a,b)) such that

(M,MN,N)=(w1(Aq,Bq),w1(Aq,Bq)w2(Aq,Bq),w2(Aq,Bq)).(M,MN,N)=(w_{1}(A_{q},B_{q}),w_{1}(A_{q},B_{q})w_{2}(A_{q},B_{q}),w_{2}(A_{q},B_{q})). (2.2)

Then the following relation holds.

Tr(MNM1N1)+2=(q1)2q3[3]q2\mathrm{Tr}(MNM^{-1}N^{-1})+2=-\frac{(q-1)^{2}}{q^{3}}[3]_{q}^{2} (2.3)
Proof..

In general, the following relation holds for a matrix relation P=XQP=XQ,

Tr([P,Q])=Tr([P1,Q1])=Tr(P1Q1PQ)=Tr(Q1X1Q1XQQ)=Tr(X1Q1XQ)=Tr([X,Q]).\mathrm{Tr}([P,Q])=\mathrm{Tr}([P^{-1},Q^{-1}])=\mathrm{Tr}(P^{-1}Q^{-1}PQ)=\mathrm{Tr}(Q^{-1}X^{-1}Q^{-1}XQQ)=\mathrm{Tr}(X^{-1}Q^{-1}XQ)=\mathrm{Tr}([X,Q]). (2.4)

Similarly, for Q=PXQ=PX, Tr([P,Q])=Tr([P,X])\mathrm{Tr}([P,Q])=\mathrm{Tr}([P,X]).

By applying this relation to qq-Markov Cohn matrices triple (w(Aq,Bq),w(Aq,Bq)w(Aq,Bq),w(Aq,Bq))(w(A_{q},B_{q}),w(A_{q},B_{q})w^{\prime}(A_{q},B_{q}),w^{\prime}(A_{q},B_{q})) repeatedly, it is possible to reduce the initial relation to the simplest relation as follows:

Tr([w(Aq,Bq),w(Aq,Bq)])+2=Tr([Aq,Bq])+2=(q1)2[3]q2q3\mathrm{Tr}([w(A_{q},B_{q}),w^{\prime}(A_{q},B_{q})])+2=\mathrm{Tr}([A_{q},B_{q}])+2=-\frac{(q-1)^{2}[3]_{q}^{2}}{q^{3}} (2.5)

Similarly we can obtain the following Lemma form the proof of Lemma 2.2.

Lemma 2.3.

Let (M,MN,N)(M,MN,N) be qq-Markov Cohn matrices triple and put X:=(m1,1m1,2m2,1m2,2){M,MN,N}X:=\begin{pmatrix}m_{1,1}&m_{1,2}\\ m_{2,1}&m_{2,2}\end{pmatrix}\in\{M,MN,N\}

then we obtain

(1)

Tr(X)/[3]q=m1,2(q1)m2,2[q,q1]\mathrm{Tr}(X)/[3]_{q}=m_{1,2}-(q-1)m_{2,2}\in{\mathbb{Z}}[q,q^{-1}] (2.6)

(2)

Tr(X)[3]q[q,q1]\mathrm{Tr}(X)\in[3]_{q}{\mathbb{Z}}[q,q^{-1}] (2.7)

(3)

m1,2=(q1)m2,2+Tr(X)/[3]q.m_{1,2}=(q-1)m_{2,2}+\mathrm{Tr}(X)/[3]_{q}. (2.8)
Theorem 2.4.

Put Aq:=(q+1q11q1),Bq:=(q3+q2+2q+1qq+1q2q+1qq2)SL(2,[q,q1])A_{q}:=\begin{pmatrix}q+1&q^{-1}\\ 1&q^{-1}\end{pmatrix},~{}B_{q}:=\begin{pmatrix}\frac{q^{3}+q^{2}+2q+1}{q}&\frac{q+1}{q^{2}}\\ \frac{q+1}{q}&q^{-2}\end{pmatrix}\in SL(2,{\mathbb{Z}}[q,q^{-1}]).

Then we have the followings:

For triples Christoffel abab-words (w(a,b),w(a,b)w(a,b),w(a,b)),(w(a,b),w(a,b)w^{\prime}(a,b),w^{\prime}(a,b)),

(x,y,z)=(Trw(Aq,Bq)/[3]q,{Tr{w(Aq,Bq)w(Aq,Bq)}}/[3]q,Trw(Aq,Bq)/[3]q)(x,y,z)=(\mathrm{Tr}w(A_{q},B_{q})/[3]_{q},\{\mathrm{Tr}\{w(A_{q},B_{q})w^{\prime}(A_{q},B_{q})\}\}/[3]_{q},\mathrm{Tr}w^{\prime}(A_{q},B_{q})/[3]_{q})

=:(hw(a,b)(q),hw(a,b)w(a,b)(q),hw(a,b)(q))[q,q1]3=:(h_{w(a,b)}(q),h_{w(a,b)w^{\prime}(a,b)}(q),h_{w^{\prime}(a,b)}(q))\in{\mathbb{Z}}[q,q^{-1}]^{3}

is a solution of the following equation:

x2+y2+z2+(q1)2q3=[3]qxyzx^{2}+y^{2}+z^{2}+\frac{(q-1)^{2}}{q^{3}}=[3]_{q}xyz (2.9)
Proof..

Fricke identity holds on SL(2,[q,q1]SL(2,{\mathbb{Z}}[q,q^{-1}] as follows:

Tr(X)2+Tr(XY)2+Tr(Y)2=Tr(X)Tr(XY)Tr(Y)+Tr(XYX1Y1)+2\mathrm{Tr}(X)^{2}+\mathrm{Tr}(XY)^{2}+\mathrm{Tr}(Y)^{2}=\mathrm{Tr}(X)\mathrm{Tr}(XY)\mathrm{Tr}(Y)+\mathrm{Tr}(XYX^{-1}Y^{-1})+2 (2.10)

By using Lemma 2.2 and Lemma 2.3, we obtain

(x,y,z)=(Tr(w(Aq,Bq)/[3]q,Tr(ww(Aq,Bq))/[3]q,Tr(w(Aq,Bq))/[3]q)[q,q1]3(x,y,z)=(\mathrm{Tr}(w(A_{q},B_{q})/[3]_{q},\mathrm{Tr}(ww^{\prime}(A_{q},B_{q}))/[3]_{q},\mathrm{Tr}(w^{\prime}(A_{q},B_{q}))/[3]_{q})\in{\mathbb{Z}}[q,q^{-1}]^{3} is a solution of the qq-deformed Markov equation x2+y2+z2+(q1)2q3=[3]qxyzx^{2}+y^{2}+z^{2}+\frac{(q-1)^{2}}{q^{3}}=[3]_{q}xyz

Remark 2.5.

(x,y,z)=([3]qhw(q),[3]qfww(q),[3]qhw(q))(x,y,z)=([3]_{q}h_{w}(q),[3]_{q}f_{ww^{\prime}}(q),[3]_{q}h_{w^{\prime}}(q))

=(Trw(Aq,Bq),Trw(Aq,Bq)w(Aq,Bq),Tr(w(Aq,Bq))([3]q[q,q1])3=(\mathrm{Tr}w(A_{q},B_{q}),\mathrm{Tr}w(A_{q},B_{q})w^{\prime}(A_{q},B_{q}),\mathrm{Tr}(w^{\prime}(A_{q},B_{q}))\in([3]_{q}{\mathbb{Z}}[q,q^{-1}])^{3} is a solution of the equation

x2+y2+z2+(q1)2[3]q2q3=xyzx^{2}+y^{2}+z^{2}+\frac{(q-1)^{2}[3]_{q}^{2}}{q^{3}}=xyz (2.11)
Theorem 2.6.

(x,y,z)=(aq,bq,cq)(x,y,z)=(a_{q},b_{q},c_{q}) is a solution of

x2+y2+z2+(q1)2q3=[3]qxyzx^{2}+y^{2}+z^{2}+\frac{(q-1)^{2}}{q^{3}}=[3]_{q}xyz (2.12)

Then

(x~,y,z)=([3]qbqcqaq,bq,cq),(x,y~,z)=(aq,[3]qaqcqbq,cq),(x,y,z~)=(aq,bq,[3]qaqbqcq)(\tilde{x},y,z)=([3]_{q}b_{q}c_{q}-a_{q},b_{q},c_{q}),(x,\tilde{y},z)=(a_{q},[3]_{q}a_{q}c_{q}-b_{q},c_{q}),(x,y,\tilde{z})=(a_{q},b_{q},[3]_{q}a_{q}b_{q}-c_{q}) are also solutions of the equation (2.12)(2.12)

Proof..

x~2+y2+z2+(q1)2q3=([3]qbqcqaq)2+bq2+cq2+(q1)2q3\tilde{x}^{2}+y^{2}+z^{2}+\frac{(q-1)^{2}}{q^{3}}=([3]_{q}b_{q}c_{q}-a_{q})^{2}+b_{q}^{2}+c_{q}^{2}+\frac{(q-1)^{2}}{q^{3}}

=[3]q2bq2cq22[3]qaqbqcq+{aq2+bq2+cq2+(q1)2q3}=[3]q^{2}b_{q}^{2}c_{q}^{2}-2[3]_{q}a_{q}b_{q}c_{q}+\{a_{q}^{2}+b_{q}^{2}+c_{q}^{2}+\frac{(q-1)^{2}}{q^{3}}\}

=[3]q2bqcq[3]qaqbqcq=[3]q([3]qbqcqaq)bqcq=[3]qx~yz=[3]_{q}^{2}b_{q}c_{q}-[3]_{q}a_{q}b_{q}c_{q}=[3]_{q}([3]_{q}b_{q}c_{q}-a_{q})b_{q}c_{q}=[3]_{q}\tilde{x}yz

Then (x~,y,z)(\tilde{x},y,z) is also a solution of (2.12)(2.12) . Similarly (x,y~,z),(x,y,z~)(x,\tilde{y},z),(x,y,\tilde{z}) are also solutions of (2.12)(2.12). ∎

Remark 2.7.

In classical situation, a Markov triple (a,b,c)(a,b,c) is orthogonal to (a3bc,b,c)(a-3bc,b,c) as 3-dimensional vectors. However for a solution (aq,bq,cq)(a_{q},b_{q},c_{q}) of the equation (2.12)(2.12), we consider usual inner product (,)(\cdot,\cdot) on 3{\mathbb{R}}^{3}. Then, since ((aq,bq,cq),(aq[3]qbqcq,bq,cq))=aq2+bq2+cq2[3]qaqbqcq=(q1)2q30,((a_{q},b_{q},c_{q}),(a_{q}-[3]_{q}b_{q}c_{q},b_{q},c_{q}))=a_{q}^{2}+b_{q}^{2}+c_{q}^{2}-[3]_{q}a_{q}b_{q}c_{q}=-\frac{(q-1)^{2}}{q^{3}}\neq 0, (aq,bq,cq)(a_{q},b_{q},c_{q}) is not orthogonal to (aq[3]qbqcq)(a_{q}-[3]_{q}b_{q}c_{q}) for usual inner product.However, since (0(q0))~{}~{}(\rightarrow 0~{}(q\rightarrow 0)), the inner product is near to orthogonal.

Example 2.8.

ha3b(q)2+ha3ba2b(q)2+ha2b(q)2+(q1)2q3h_{a^{3}b}(q)^{2}+h_{a^{3}ba^{2}b}(q)^{2}+h_{a^{2}b}(q)^{2}+\frac{(q-1)^{2}}{q^{3}}

=tr(Aq3Bq)[3]q2+tr(Aq3BqAq2Bq)[3]q2+tr(Aq2Bq)[3]q2+(q1)2q3=\frac{\mathrm{tr}(A_{q}^{3}B_{q})}{[3]_{q}}^{2}+\frac{\mathrm{tr}(A_{q}^{3}B_{q}A_{q}^{2}B_{q})}{[3]_{q}}^{2}+\frac{\mathrm{tr}(A_{q}^{2}B_{q})}{[3]_{q}}^{2}+\frac{(q-1)^{2}}{q^{3}}.

={(q2+1)(q6+3q5+3q4+3q3+3q2+3q+1)q5}2=\{\frac{\left({q}^{2}+1\right)\left({q}^{6}+3\,{q}^{5}+3\,{q}^{4}+3\,{q}^{3}+3\,{q}^{2}+3\,q+1\right)}{{q}^{5}}\}^{2}

+{(q4+q3+q2+q+1)(q12+5q11+12q10+22q9+32q8+39q7+43q6+39q5+32q4+22q3+12q2+5q+1)q9}2+\{\frac{\left({q}^{4}+{q}^{3}+{q}^{2}+q+1\right)\left({q}^{12}+5\,{q}^{11}+12\,{q}^{10}+22\,{q}^{9}+32\,{q}^{8}+39\,{q}^{7}+43\,{q}^{6}+39\,{q}^{5}+32\,{q}^{4}+22\,{q}^{3}+12\,{q}^{2}+5\,q+1\right)}{{q}^{9}}\}^{2}

+{q4+q3+q2+q+1q3}2+(q1)2q3+\{\frac{{q}^{4}+{q}^{3}+{q}^{2}+q+1}{{q}^{3}}\}^{2}+\frac{(q-1)^{2}}{q^{3}}

=[3]q{(q2+1)(q6+3q5+3q4+3q3+3q2+3q+1)q5}=[3]_{q}\{\frac{\left({q}^{2}+1\right)\left({q}^{6}+3\,{q}^{5}+3\,{q}^{4}+3\,{q}^{3}+3\,{q}^{2}+3\,q+1\right)}{{q}^{5}}\}

{(q4+q3+q2+q+1)(q12+5q11+12q10+22q9+32q8+39q7+43q6+39q5+32q4+22q3+12q2+5q+1)q9}\{\frac{\left({q}^{4}+{q}^{3}+{q}^{2}+q+1\right)\left({q}^{12}+5\,{q}^{11}+12\,{q}^{10}+22\,{q}^{9}+32\,{q}^{8}+39\,{q}^{7}+43\,{q}^{6}+39\,{q}^{5}+32\,{q}^{4}+22\,{q}^{3}+12\,{q}^{2}+5\,q+1\right)}{{q}^{9}}\}

{q4+q3+q2+q+1q3}\{\frac{{q}^{4}+{q}^{3}+{q}^{2}+q+1}{{q}^{3}}\}

=[3]qtr(Aq3Bq)[3]qtr(Aq3BqAq2Bq)[3]qtr(Aq2Bq)[3]q=[3]qha3b(q)ha3ba2b(q)ha2b(q)=[3]_{q}\frac{\mathrm{tr}(A_{q}^{3}B_{q})}{[3]_{q}}\frac{\mathrm{tr}(A_{q}^{3}B_{q}A_{q}^{2}B_{q})}{[3]_{q}}\frac{\mathrm{tr}(A_{q}^{2}B_{q})}{[3]_{q}}=[3]_{q}h_{a^{3}b}(q)h_{a^{3}ba^{2}b}(q)h_{a^{2}b}(q)

2.1 An application of qq-Markov triples to fixed points of associated Cohn matrices

Here we introduce an application of qq-deformation of Markov triples (hw(a,b)(q),hw(a,b)w(a,b)(q),hw(a.b)(q))(h_{w(a,b)}(q),h_{w(a,b)w^{\prime}(a,b)}(q),h_{w^{\prime}(a.b)}(q)) to fixed point of qq-Cohn matrix w(Aq,Bq)w(Aq,Bq)w(A_{q},B_{q})w^{\prime}(A_{q},B_{q}).

In Theorem 16 of [2], Bombieri proved a nice properties of Cohn matrix coming from Christoffel abab-words and applied to quadratic irrational number. The following theorem is related to qq-quadratic irrational number and qq-Cohn matrix w(Aq,Bq)w(A_{q},B_{q}) for Christoffel abab-word w(a,b)w(a,b).

Theorem 2.9.

For fixed point θq(w(a,b))\theta_{q}(w(a,b)) of linear fractional transformation with respect to qq-Cohn matrix w(Aq,Bq)w(A_{q},B_{q}) corresponding to Christoffel abab-word w(a,b)w(a,b), we obtain

θq(w(a,b))=[Π¯]q.\theta_{q}(w(a,b))=[\overline{\Pi}]_{q}. (2.13)

by using a finite sequence Π\Pi that is obtained by substituting

a1,1,b2,2.a\mapsto 1,1,~{}~{}b\mapsto 2,2. (2.14)
Proof..

From the definition of qq-rational number [rs]q=[a1,,a2m]q=[[c1,,ck]]q[\frac{r}{s}]_{q}=[a_{1},\dots,a_{2m}]_{q}=[[c_{1},\dots,c_{k}]]_{q} and w(Aq,Bq)1,1w(Aq,Bq)2,1=[a1,,a2m]q\frac{w(A_{q},B_{q})_{1,1}}{w(A_{q},B_{q})_{2,1}}=[a_{1},\dots,a_{2m}]_{q} due to Theorem1.3 and Theorem1.4 , we can transform the relation w(Aq,Bq)θq(w(a,b))=θq(w(a,b))w(A_{q},B_{q})\cdot\theta_{q}(w(a,b))=\theta_{q}(w(a,b)) to

θq(w(a,b)):=[a1]q+qa1[a2]q1+qa2[a3]q+qa3[a4]q1+qa4[a2m1]q+qa2m1[a2m]q1+q2mθq(w(a,b))\theta_{q}(w(a,b)):=[a_{1}]_{q}+\cfrac{q^{a_{1}}}{[a_{2}]_{q^{-1}}+\cfrac{q^{-a_{2}}}{[a_{3}]_{q}+\cfrac{q^{a_{3}}}{[a_{4}]_{q^{-1}}+\cfrac{q^{-a_{4}}}{\cfrac{\ddots}{[a_{2m-1}]_{q}+\cfrac{q^{a_{2m-1}}}{[a_{2m}]_{q^{-1}}+\cfrac{q^{-2m}}{\theta_{q}(w(a,b))}}}}}}} (2.15)

Then we obtain that θ(w(a,b))=[a1,,a2m¯]q\theta(w(a,b))=[\overline{a_{1},\dots,a_{2m}}]_{q}

On the other hand, the definition of AqA_{q} and Bq,B_{q}, Aq=RqLq=([1,1]qq11q1)A_{q}=R_{q}L_{q}=\begin{pmatrix}[1,1]_{q}&q^{-1}\\ 1&q^{-1}\end{pmatrix} and Bq=Rq2Lq2=(q1[2,2]qq2[2]qq1[2]qq2)B_{q}=R_{q}^{2}L_{q}^{2}=\begin{pmatrix}q^{-1}[2,2]_{q}&q^{-2}[2]_{q}\\ q^{-1}[2]_{q}&q^{-2}\end{pmatrix}. Thus we have θq(w(a,b))=[Π¯]q\theta_{q}(w(a,b))=[\overline{\Pi}]_{q}, where θq(w(a,b))=[Π¯]q,\theta_{q}(w(a,b))=[\overline{\Pi}]_{q}, we here Π\Pi is a finite sequence that obtained by substituting a1,1,b2,2.a\mapsto 1,1,~{}~{}b\mapsto 2,2.

Example 2.10.

θq(a2b)=[1,1,1,1,2,2¯]q\theta_{q}(a^{2}b)=[\overline{1,1,1,1,2,2}]_{q}

=q8+3q7+5q6+7q5+5q4+3q3+q2q12q(q6+2q5+4q4+4q3+4q2+3q+1)=\frac{{q}^{8}+3\,{q}^{7}+5\,{q}^{6}+7\,{q}^{5}+5\,{q}^{4}+3\,{q}^{3}+{q}^{2}-q-1}{2q\left({q}^{6}+2\,{q}^{5}+4\,{q}^{4}+4\,{q}^{3}+4\,{q}^{2}+3\,q+1\right)}

+q16+6q15+19q14+44q13+81q12+126q11+171q10+204q9+213q8+204q7+171q6+126q5+81q4+44q3+19q2+6q+12q(q6+2q5+4q4+4q3+4q2+3q+1)+\frac{\sqrt{{q}^{16}+6\,{q}^{15}+19\,{q}^{14}+44\,{q}^{13}+81\,{q}^{12}+126\,{q}^{11}+171\,{q}^{10}+204\,{q}^{9}+213\,{q}^{8}+204\,{q}^{7}+171\,{q}^{6}+126\,{q}^{5}+81\,{q}^{4}+44\,{q}^{3}+19\,{q}^{2}+6\,q+1}}{2q\left({q}^{6}+2\,{q}^{5}+4\,{q}^{4}+4\,{q}^{3}+4\,{q}^{2}+3\,q+1\right)}

Remark 2.11.

The qq-polynomial q16+6q15+19q14+44q13+81q12+126q11+171q10+204q9+213q8+204q7+171q6+126q5+81q4+44q3+19q2+6q+1{q}^{16}+6\,{q}^{15}+19\,{q}^{14}+44\,{q}^{13}+81\,{q}^{12}+126\,{q}^{11}+171\,{q}^{10}+204\,{q}^{9}+213\,{q}^{8}+204\,{q}^{7}+171\,{q}^{6}+126\,{q}^{5}+81\,{q}^{4}+44\,{q}^{3}+19\,{q}^{2}+6\,q+1in the square root is vertical symmetry at middle term 213q8213q^{8}.

Remark 2.12.

For qq-Cohn matrix Cq(w(a,b))=(rqtqsquq)C_{q}(w(a,b))=\begin{pmatrix}r_{q}&t_{q}\\ s_{q}&u_{q}\end{pmatrix} for Christoffel abab-word w(a,b)w(a,b).

If rqsqrs\frac{r_{q}}{s_{q}}\rightarrow\frac{r}{s} (q1)(q\rightarrow 1), then we have

rs=[w(a,b)|a1,1,b2,2]=[Π]\frac{r}{s}=[w(a,b)|_{a\mapsto 1,1,~{}b\mapsto 2,2}]=[\Pi] and rqsq=[rs]q\frac{r_{q}}{s_{q}}=[\frac{r}{s}]_{q}.

2.2 Other qq-deformations of Markov triples

Proposition 2.13.

For Aq:=(q+1q11q1),Bq:=(q3+q2+2q+1qq+1q2q+1qq2)A_{q}:=\begin{pmatrix}q+1&q^{-1}\\ 1&q^{-1}\end{pmatrix},~{}B_{q}:=\begin{pmatrix}\frac{q^{3}+q^{2}+2q+1}{q}&\frac{q+1}{q^{2}}\\ \frac{q+1}{q}&q^{-2}\end{pmatrix}

and Christoffel abab-word w(a,b),w(a,b)w(a,b),w(a,b))w(a,b),w(a,b)w^{\prime}(a,b),w(a,b)),

(x,y,z,x)=w(Aq,Bq)1,2,{w(Aq,Bq)w(Aq,Bq)}1,2,w(Aq,Bq)1,2,Tr(w(Aq,Bq)/[3]q)[q,q1]3(x,y,z,x^{\prime})=w(A_{q},B_{q})_{1,2},\{w(A_{q},B_{q})w^{\prime}(A_{q},B_{q})\}_{1,2},w^{\prime}(A_{q},B_{q})_{1,2},\mathrm{Tr}(w(A_{q},B_{q})/[3]_{q})\in{\mathbb{Z}}[q,q^{-1}]^{3} is a solution of the equation:

1q3x2+y2+z2=[3]qxyz\frac{1}{q^{3}}x^{2}+y^{2}+z^{2}=[3]_{q}x^{\prime}yz (2.16)

on [q,q1]3.{\mathbb{Z}}[q,q^{-1}]^{3}.

Proposition 2.14.

For Aq:=(q+1q11q1),Bq:=(q3+q2+2q+1qq+1q2q+1qq2),A_{q}:=\begin{pmatrix}q+1&q^{-1}\\ 1&q^{-1}\end{pmatrix},~{}B_{q}:=\begin{pmatrix}\frac{q^{3}+q^{2}+2q+1}{q}&\frac{q+1}{q^{2}}\\ \frac{q+1}{q}&q^{-2}\end{pmatrix},

(x,y,z,y,z)=(x,y,z,y^{\prime},z^{\prime})=

(hw1(a,b)(q),hw1(a,b)w2(a,b)(q),hw2(a,b)(q),{(w1(Aq,Bq)w2(Aq,Bq))}1,2|qq1qdeg.hw1(a,b)w2(a,b)(q),(h_{w_{1}(a,b)}(q),h_{w_{1}(a,b)w_{2}(a,b)}(q),h_{w_{2}(a,b)}(q),\left\{(w_{1}(A_{q},B_{q})w_{2}(A_{q},B_{q}))\right\}_{1,2}|_{q\mapsto q^{-1}}\cdot q^{\textrm{deg.}h_{w_{1}(a,b)w_{2}(a,b)}(q)}, w2(Aq,Bq)1,2)w_{2}(A_{q},B_{q})_{1,2}) is a solution of

1q3x2+y2+z2+(q1)2q3=[3]qxyz.\frac{1}{q^{3}}x^{2}+y^{2}+z^{2}+\frac{(q-1)^{2}}{q^{3}}=[3]_{q}xy^{\prime}z^{\prime}. (2.17)

where hw(a,b):=Trw(Aq,Bq)/[3]qh_{w(a,b)}:=\mathrm{Tr}w(A_{q},B_{q})/[3]_{q}.

Example 2.15.

For (w1(a,b),w1(a,b)w2(a,b),w2(a,b))=(a3b,a3ba2b,a2b)(w_{1}(a,b),w_{1}(a,b)w_{2}(a,b),w_{2}(a,b))=(a^{3}b,a^{3}ba^{2}b,a^{2}b) corresponding to a Markov triple (34,1325,13)(34,1325,13),

w1(Aq,Bq)1,2=q7+4q6+6q5+7q4+7q3+5q2+3q+1q5w2(Aq,Bq)1,2=q5+3q4+3q3+3q2+2q+1q4{w1(Aq,Bq)w2(Aq,Bq)}1,2:=q9(q15+7q14+23q13+52q12+93q11+138q10+177q9+197q8+194q7+167q6+125q5+81q4+44q3+19q2+6q+1).\begin{array}[]{l}w_{1}(A_{q},B_{q})_{1,2}={\frac{{q}^{7}+4\,{q}^{6}+6\,{q}^{5}+7\,{q}^{4}+7\,{q}^{3}+5\,{q}^{2}+3\,q+1}{{q}^{5}}}\\ w_{2}(A_{q},B_{q})_{1,2}={\frac{{q}^{5}+3\,{q}^{4}+3\,{q}^{3}+3\,{q}^{2}+2\,q+1}{{q}^{4}}}\\ \{w_{1}(A_{q},B_{q})w_{2}(A_{q},B_{q})\}_{1,2}:=q^{-9}({q}^{15}+7\,{q}^{14}+23\,{q}^{13}+52\,{q}^{12}+93\,{q}^{11}+138\,{q}^{10}\\ +177\,{q}^{9}+197\,{q}^{8}+194\,{q}^{7}+167\,{q}^{6}+125\,{q}^{5}+81\,{q}^{4}+44\,{q}^{3}+19\,{q}^{2}+6\,q+1).\end{array}

Then

1q3w1(Aq,Bq)1,22+{w1(Aq,Bq)w2(Aq,Bq)}1,22+w2(Aq,Bq)1,22\frac{1}{q^{3}}w_{1}(A_{q},B_{q})_{1,2}^{2}+\{w_{1}(A_{q},B_{q})w_{2}(A_{q},B_{q})\}_{1,2}^{2}+w_{2}(A_{q},B_{q})_{1,2}^{2}

=q18(q2+1)(q6+3q5+3q4+3q3+3q2+3q+1)=q^{-18}({q}^{2}+1)\left({q}^{6}+3\,{q}^{5}+3\,{q}^{4}+3\,{q}^{3}+3\,{q}^{2}+3\,q+1\right)

(q15+7q14+23q13+52q12+93q11+138q10+177q9+197q8+194q7({q}^{15}+7\,{q}^{14}+23\,{q}^{13}+52\,{q}^{12}+93\,{q}^{11}+138\,{q}^{10}+177\,{q}^{9}+197\,{q}^{8}+194\,{q}^{7}

+167q6+125q5+81q4+44q3+19q2+6q+1)(q2+q+1)(q5+3q4+3q3+3q2+2q+1)+167\,{q}^{6}+125\,{q}^{5}+81\,{q}^{4}+44\,{q}^{3}+19\,{q}^{2}+6\,q+1)({q}^{2}+q+1)({q}^{5}+3\,{q}^{4}+3\,{q}^{3}+3\,{q}^{2}+2\,q+1)

=[3]qha3b(q){w1(Aq,Bq)w2(Aq,Bq)}1,2w2(Aq,Bq)1,2.=[3]_{q}h_{a^{3}b}(q)\{w_{1}(A_{q},B_{q})w_{2}(A_{q},B_{q})\}_{1,2}w_{2}(A_{q},B_{q})_{1,2}.

Example 2.16.

For Christoffel abab-word triple (w1(a,b),w1(a,b)w2(a,b),w2(a,b))(w_{1}(a,b),w_{1}(a,b)w_{2}(a,b),w_{2}(a,b)) =(abab2,=(abab^{2}, abab2ab2,ab2)abab^{2}ab^{2},ab^{2}), let corresponding qq-Cohn matrices triple be (w1(Aq,Bq),w1(Aq,Bq)w2(Aq,Bq),(w_{1}(A_{q},B_{q}),w_{1}(A_{q},B_{q})w_{2}(A_{q},B_{q}), w2(Aq,Bq))=(AqBqAqBq2,AqBqAqBq2AqBq2,AqBq2)w_{2}(A_{q},B_{q}))=(A_{q}B_{q}A_{q}B_{q}^{2},A_{q}B_{q}A_{q}B_{q}^{2}A_{q}B_{q}^{2},A_{q}B_{q}^{2}),

then

habab2(q):=Tr(AqBqAqBq2)/[3]q=q8(q14+4q13+11q12+22q11+36q10+50q9+60q8+65q7+60q6+50q5+36q4+22q3+11q2+4q+1)h_{abab^{2}}(q):=\mathrm{Tr}(A_{q}B_{q}A_{q}B_{q}^{2})/[3]_{q}=q^{-8}({q}^{14}+4\,{q}^{13}+11\,{q}^{12}+22\,{q}^{11}+36\,{q}^{10}+50\,{q}^{9}+60\,{q}^{8}+65\,{q}^{7}+60\,{q}^{6}+50\,{q}^{5}+36\,{q}^{4}+22\,{q}^{3}+11\,{q}^{2}+4\,q+1)

habab2ab2(q):=Tr(AqBqAqBq2AqBq2)/[3]q=q13(q2+1)h_{abab^{2}ab^{2}}(q):=\mathrm{Tr}(A_{q}B_{q}A_{q}B_{q}^{2}A_{q}B_{q}^{2})/[3]_{q}=q^{-13}({q}^{2}+1)

(q22+7q21+29q20+87q19+208q18+417q17+724q16+1114q15+1540q14+1931q13+2206q12+2305q11+2206q10+1931q9+1540q8+1114q7+724q6+417q5+208q4+87q3+29q2+7q+1)\cdot({q}^{22}+7\,{q}^{21}+29\,{q}^{20}+87\,{q}^{19}+208\,{q}^{18}+417\,{q}^{17}+724\,{q}^{16}+1114\,{q}^{15}+1540\,{q}^{14}+1931\,{q}^{13}+2206\,{q}^{12}+2305\,{q}^{11}+2206\,{q}^{10}+1931\,{q}^{9}+1540\,{q}^{8}+1114\,{q}^{7}+724\,{q}^{6}+417\,{q}^{5}+208\,{q}^{4}+87\,{q}^{3}+29\,{q}^{2}+7\,q+1)

hab2(q):=q8+2q7+4q6+5q5+5q4+5q3+4q2+2q+1q5h_{ab^{2}}(q):={\frac{{q}^{8}+2\,{q}^{7}+4\,{q}^{6}+5\,{q}^{5}+5\,{q}^{4}+5\,{q}^{3}+4\,{q}^{2}+2\,q+1}{{q}^{5}}}

1q3habab2(q)2+habab(q)2ab2)2+hab(q)2)2+(q1)2q3\frac{1}{q^{3}}h_{abab^{2}}(q)^{2}+h_{abab}(q)^{2}ab^{2})^{2}+h_{ab}(q)^{2})^{2}+\frac{(q-1)^{2}}{q^{3}}

=q26(q2+q+1)(q2q+1)=q^{-26}\left({q}^{2}+q+1\right)\left({q}^{2}-q+1\right)

(q+1)(q7+3q6+5q5+6q4+6q3+5q2+2q+1)\cdot(q+1)({q}^{7}+3\,{q}^{6}+5\,{q}^{5}+6\,{q}^{4}+6\,{q}^{3}+5\,{q}^{2}+2\,q+1)

(q14+4q13+11q12+22q11+36q10+50q9+60q8+65q7+60q6+50q5+36q4+22q3+11q2+4q+1)\cdot({q}^{14}+4\,{q}^{13}+11\,{q}^{12}+22\,{q}^{11}+36\,{q}^{10}+50\,{q}^{9}+60\,{q}^{8}+65\,{q}^{7}+60\,{q}^{6}+50\,{q}^{5}+36\,{q}^{4}+22\,{q}^{3}+11\,{q}^{2}+4\,q+1)

(q22+6q21+25q20+75q19+184q18+378q17+675q16+1063q15+1501q14+1913q13+2217q12+2341q11+2255q10+1982q9+1582q8+1142q7+738q6+422q5+209q4+87q3+29q2+7q+1)\cdot({q}^{22}+6\,{q}^{21}+25\,{q}^{20}+75\,{q}^{19}+184\,{q}^{18}+378\,{q}^{17}+675\,{q}^{16}+1063\,{q}^{15}+1501\,{q}^{14}+1913\,{q}^{13}+2217\,{q}^{12}+2341\,{q}^{11}+2255\,{q}^{10}+1982\,{q}^{9}+1582\,{q}^{8}+1142\,{q}^{7}+738\,{q}^{6}+422\,{q}^{5}+209\,{q}^{4}+87\,{q}^{3}+29\,{q}^{2}+7\,q+1)

=[3]qhabab2(q)(q23(AqBqAqBq2AqBq2)1,2)qq1)(AqBq2)1,2.=[3]_{q}h_{abab^{2}}(q)(q^{23}\cdot(A_{q}B_{q}A_{q}B_{q}^{2}A_{q}B_{q}^{2})_{1,2})_{q\mapsto q^{-1}})\cdot(A_{q}B_{q}^{2})_{1,2}.

3 A relation of castling transformations of 3-dimensional prehomogeneous vector spaces and Markov triplets and the generalization

3.1 Prehomogeneous vector spaces and castling transformations

Let GG be a linear algebraic group and ρ\rho its rational representation on a finite dimensional vector space VV, all defined over the complex number field {\mathbb{C}}. If VV has a Zariski-dense GG-orbit 𝕆{\mathbb{O}}, we call the triplet (G,ρ,V)(G,\rho,V) a prehomogeneous vector space (abbreviated by PV). In this case, we call v𝕆v\in{\mathbb{O}} a generic point, and the isotropy subgroup Gv={gGρ(g)v=v}G_{v}=\{g\in G\mid\rho(g)v=v\} at vv is called a generic isotropy subgroup. We call a prehomogeneous vector space (G,ρ,V)(G,\rho,V) a reductive prehomogeneous vector space if GG is reductive. Let ρ:GGL(V)\rho:G\to GL(V) be a rational representation of a linear algebraic group GG on an mm-dimensional vector space VV and let nn be a positive integer with m>nm>n. A triplet 𝒞1:=(G×GL(n),ρΛ1,VV(n))\mathcal{C}_{1}:=(G\times GL(n),\rho\otimes\Lambda_{1},V\otimes V(n)) is a prehomogeneous vector space if and only if a triplet 𝒞2:=(G×GL(mn),ρΛ1,VV(mn))\mathcal{C}_{2}:=(G\times GL(m-n),\rho^{\ast}\otimes\Lambda_{1},V^{\ast}\otimes V(m-n)) is a prehomogeneous vector space. We say that 𝒞1\mathcal{C}_{1} and 𝒞2\mathcal{C}_{2} are the castling transforms of each other. Two triplets are said to be castling equivalent if one is obtained from the other by a finite number of successive castling transformations. (cf. [6], [7]). Assume that (G,ρ,V)(G,\rho,V) is a prehomogeneous vector space with a Zariski-dense GG-orbit 𝕆{\mathbb{O}}. A non-zero rational function f(v)f(v) on VV is called a relative invariant if there exists a rational character χ:GGL(1)\chi:G\to GL(1) satisfying f(ρ(g)v)=χ(g)f(v)f(\rho(g)v)=\chi(g)f(v) for gGg\in G. In this case, we write fχf\leftrightarrow\chi. Let Si={vVfi(v)=0}S_{i}=\{v\in V\mid f_{i}(v)=0\} (i=1,,l)(i=1,\ldots,l) be irreducible components of S:=V𝕆S:=V\setminus{\mathbb{O}} with codimension one. When GG is connected, these irreducible polynomials fi(v)f_{i}(v) (i=1,,l)(i=1,\ldots,l) are algebraically independent relative invariants and any relative invariant f(v)f(v) can be expressed uniquely as f(v)=cf1(v)m1fl(v)mlf(v)=cf_{1}(v)^{m_{1}}\cdots f_{l}(v)^{m_{l}} with c×c\in{\mathbb{C}}^{\times} and m1,,mlm_{1},\ldots,m_{l}\in{\mathbb{Z}}. These fi(v)f_{i}(v) (i=1,,l)(i=1,\ldots,l) are called the basic relative invariants of (G,ρ,V)(G,\rho,V).

Example 3.1.

Let a triplet (SO(3)×GL(1),Λ1Λ1,V(3)V(1))(SO(3)\times GL(1),\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(1)) be a 3-dimensional prehomogeneous vector space, and hence its castling transform (SO(3)×GL(2),Λ1Λ1,V(3)V(2))(SO(3)\times GL(2),\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(2)) is also a prehomogeneous vector space. The later can be regarded as (SO(3)×SL(2)×GL(1),Λ1Λ1Λ1,V(3)V(2)V(1))(SO(3)\times SL(2)\times GL(1),\Lambda_{1}\otimes\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(2)\otimes V(1)), and its castling transform is given by (SO(3)×SL(2)×GL(5),Λ1Λ1Λ1,V(3)V(2)V(5))(SO(3)\times SL(2)\times GL(5),\Lambda_{1}\otimes\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(2)\otimes V(5)). Moreover, two new castling transforms are obtained from this space as follows. One is the castling transform (SO(3)×SL(5)×GL(13),Λ1Λ1Λ1,V(3)V(5)V(13))(SO(3)\times SL(5)\times GL(13),\Lambda_{1}\otimes\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(5)\otimes V(13)) when the space above is regarded as (SO(3)×SL(5)×GL(2),Λ1Λ1Λ1,V(3)V(5)V(2))(SO(3)\times SL(5)\times GL(2),\Lambda_{1}\otimes\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(5)\otimes V(2)), and the other is the castling transform (SO(3)×SL(2)×SL(5)×GL(29),Λ1Λ1Λ1Λ1,V(3)V(2)V(5)V(29))(SO(3)\times SL(2)\times SL(5)\times GL(29),\Lambda_{1}\otimes\Lambda_{1}\otimes\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(2)\otimes V(5)\otimes V(29)) obtained when the space is regarded as (SO(3)×SL(2)×SL(5)×GL(1),Λ1Λ1Λ1Λ1,V(3)V(2)V(5)V(1))(SO(3)\times SL(2)\times SL(5)\times GL(1),\Lambda_{1}\otimes\Lambda_{1}\otimes\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(2)\otimes V(5)\otimes V(1)) and so on. Thus we have a tree of prehomogeneous vector spaces from a seed prehomogeneous vector space (SO(3)×GL(1),Λ1Λ1,V(3)V(1))(SO(3)\times GL(1),\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(1)).

In general, we abbreviate the triplet (SO(3)×SL(m1)××SL(mn1)×GL(mn),Λ1Λ1Λ1Λ1,V(3)V(m1)V(mn1)V(mn))(SO(3)\times SL(m_{1})\times\cdots\times SL(m_{n-1})\times GL(m_{n}),\Lambda_{1}\otimes\Lambda_{1}\otimes\cdots\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(m_{1})\otimes\cdots\otimes V(m_{n-1})\otimes V(m_{n})) as (3,m1,,mn1,mn)(3,m_{1},\dots,m_{n-1},m_{n}). By successive castling transformations we can draw the tree as Figure 3.

Remark 3.2.

We can discuss the same argument for another 3-dimensional PV (G,ρ,V(3))(G,\rho,V(3)) in stead of (SO(3)×GL(1),Λ1Λ1,V(3)V(1))(SO(3)\times GL(1),\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(1)). For example, we can choose (G,ρ,V(3))=(GL(2),2Λ1,V(3))(G,\rho,V(3))=(GL(2),2\Lambda_{1},V(3)) in stead of (SO(3)×GL(1),Λ1Λ1,V(3)V(1))(SO(3)\times GL(1),\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(1)).

3.2 A relation between castling transformations of 3-dimensional prehomogeneous vector spaces and Markov triples

Refer to caption
Figure 3:

Figure 3 is the tree of castling transforms from a seed PV (G×GL(1),ρΛ1,V(3)V(1))(G\times GL(1),\rho\otimes\Lambda_{1},V(3)\otimes V(1)) for 3-dimensional PV (G,ρ,V(3)).(G,\rho,V(3)). Let (G,ρ,V(3))(G,\rho,V(3)) be a 3-dimensional PV. In this section, we consider triples (m1,m2,m3)(m_{1},m_{2},m_{3}) in PV (3,m1,m2,m3)(3,m_{1},m_{2},m_{3}) which is castling transform of a (3,1,1,2)=(G×GL(1)×GL(1)×SL(2),ρΛ1Λ1Λ1,V(3)V(1)V(1)V(2))(3,1,1,2)=(G\times GL(1)\times GL(1)\times SL(2),\rho\otimes\Lambda_{1}\otimes\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(1)\otimes V(1)\otimes V(2)). We explain that this triple (m1,m2,m3)(m_{1},m_{2},m_{3}) of integers satisfies a certain Diophantine equation. Here we remark that subtree of 4-simple prehomogeneous vector spaces in the tree of castling transforms of the seed prehomogeneous vector space (G×GL(1),ρΛ1,V(3)V(1))(G\times GL(1),\rho\otimes\Lambda_{1},V(3)\otimes V(1)). The branch (3,2,5,29)(3,2,5,29), (3,5,29,433)(3,5,29,433), (3,2,29,169)(3,2,29,169), (3,5,13,194)(3,5,13,194), (3,5,194,2897)(3,5,194,2897), (3,13,194,7561)(3,13,194,7561), \dots satisfy the following relations:

22+52+292=870=3×2×5×29,52+292+4332=188355=3×5×29×433,22+292+1692=29406=3×2×29×169,52+132+1942=37830=3×5×13×194,132+1942+75612=57206526=3×13×194×7651,\begin{array}[]{l}2^{2}+5^{2}+29^{2}=870=3\times 2\times 5\times 29,\\ 5^{2}+29^{2}+433^{2}=188355=3\times 5\times 29\times 433,\\ 2^{2}+29^{2}+169^{2}=29406=3\times 2\times 29\times 169,\\ 5^{2}+13^{2}+194^{2}=37830=3\times 5\times 13\times 194,\\ 13^{2}+194^{2}+7561^{2}=57206526=3\times 13\times 194\times 7651,\\ \cdots\end{array}

In general, the following theorem holds.

Theorem 3.3.

Let (G,ρ,V(3))(G,\rho,V(3)) be a 3-dimensional PV. For 4-simple prehomogeneous vector space (G×GL(m1)×SL(m2)×SL(m3),ρΛ1Λ1,V(3)V(m1)V(m2)V(m3))(G\times GL(m_{1})\times SL(m_{2})\times SL(m_{3}),\rho\otimes\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(m_{1})\otimes V(m_{2})\otimes V(m_{3})) (abbreviated by (3,m1,m2,m3)(3,m_{1},m_{2},m_{3})) in the tree of castling transforms with respect to the seed prehomogeneous vector space (G×GL(1),ρΛ1,V(3)V(1))(G\times GL(1),\rho\otimes\Lambda_{1},V(3)\otimes V(1)), the triple of integers (m1,m2,m3)(m_{1},m_{2},m_{3}) satisfies the relation m12+m22+m32=3m1m2m3m_{1}^{2}+m_{2}^{2}+m_{3}^{2}=3m_{1}m_{2}m_{3}. Namely, (m1,m2,m3)(m_{1},m_{2},m_{3}) is a Markov triple.

Proof..

For 4-simple prehomogeneous vector space (3,1,2,5)(3,1,2,5), the triplet of integers (1,2,5)(1,2,5) satisfies the relation 12+22+52=30=3×1×2×51^{2}+2^{2}+5^{2}=30=3\times 1\times 2\times 5. For 4-simple prehomogeneous vector space (3,m1,m2,m3)(3,m_{1},m_{2},m_{3}) (max{m1,m2}m3\mathrm{max}\{m_{1},m_{2}\}\leq m_{3}) in the tree of castling transforms with respect to the seed prehomogeneous vector space (G×GL(1),ρΛ1V(3)V(1))(G\times GL(1),\rho\otimes\Lambda_{1}V(3)\otimes V(1)), by castling transform, we get two 4-simple prehomogeneous vector spaces : (3,m2,m3,3m2m3m1),(3,m1,m3,3m1m3m2)(3,m_{2},m_{3},3m_{2}m_{3}-m_{1}),(3,m_{1},m_{3},3m_{1}m_{3}-m_{2}) , here we put m:=3m2m3m1,m′′:=3m1m3m2m^{\prime}:=3m_{2}m_{3}-m_{1},m^{\prime\prime}:=3m_{1}m_{3}-m_{2}. Then , if (m1,m2,m3)(m_{1},m_{2},m_{3}) satisfies a relation m12+m22+m32=3m1m2m3m_{1}^{2}+m_{2}^{2}+m_{3}^{2}=3m_{1}m_{2}m_{3}, then (m2,m3,m)(m_{2},m_{3},m^{\prime}) and (m1,m3,m′′)(m_{1},m_{3},m^{\prime\prime}) also satisfy the relation m22+m32+m2=3m2m3mm_{2}^{2}+m_{3}^{2}+{m^{\prime}}^{2}=3m_{2}m_{3}m^{\prime}, m12+m32+m′′2=3m1m3m′′m_{1}^{2}+m_{3}^{2}+{m^{\prime\prime}}^{2}=3m_{1}m_{3}m^{\prime\prime}. In fact, m22+m32+m2m_{2}^{2}+m_{3}^{2}+{m^{\prime}}^{2} =m22m32+(3m2m3m1)2=m_{2}^{2}m_{3}^{2}+(3m_{2}m_{3}-m_{1})^{2} =m22m32+9m22m32+m126m1m2m3==m_{2}^{2}m_{3}^{2}+9m_{2}^{2}m_{3}^{2}+m_{1}^{2}-6m_{1}m_{2}m_{3}= (m12m22+m32)+9m22m326m1m2m3(m_{1}^{2}m_{2}^{2}+m_{3}^{2})+9m_{2}^{2}m_{3}^{2}-6m_{1}m_{2}m_{3} =3m1m2m3+9m22m326m1m2m3=3m2m3(3m2m3m1)=3m_{1}m_{2}m_{3}+9m_{2}^{2}m_{3}^{2}-6m_{1}m_{2}m_{3}=3m_{2}m_{3}(3m_{2}m_{3}-m_{1}) =3m2m3m=3m_{2}m_{3}m^{\prime}. This (m1,m2,m3)(m_{1},m_{2},m_{3}) is a Markov triple. ∎

3.3 Prehomogeneous vector spaces parametrized by a positive fraction smaller than 1

From the view point of classification of prehomogeneous , the following application is interesting.

Theorem 3.4.

We can make a prehomogeneous vector space of Markov type from any positive reduced fraction smaller than or equal to one. Conversely, any prehomogeneous vector space of Markov type comes from a reduced fraction smaller than or equal to 1.

Proof..

Form the one to one correspondence between Farey triple (rs,r+rs+s,rs)(\frac{r}{s},\frac{r+r^{\prime}}{s+s^{\prime}},\frac{r^{\prime}}{s^{\prime}}) in Farey tree and Christoffel abab-word (w(rs),w(rs)w(rs),w(rs))(w(\frac{r}{s}),w(\frac{r}{s})w(\frac{r^{\prime}}{s^{\prime}}),w(\frac{r^{\prime}}{s^{\prime}})) in tree of Christoffel abab-word in Figure 2 ( cf. [1]). Moreover there exists one to one correspondence between Markov triples and Christoffel abab-words by Theorem 2.1. Thus we obtain the correspondence between triples in Farey tree and Markov triples. Since any positive fraction which is smaller than 1 or equal to 1 appear in second-entry in Farey triple in Farey tree and theorem 3.3, we have the correspondence between the set of positive fraction smaller than or equal to one and the set of prehomogeneous vector spaces of the form (3,m1,m2,m3)=(G×GL(m1)×GL(m2)×GL(m3),ρΛ1Λ1Λ1,V(3)V(m1)V(m2)V(m3))(3,m_{1},m_{2},m_{3})=(G\times GL(m_{1})\times GL(m_{2})\times GL(m_{3}),\rho\otimes\Lambda_{1}\otimes\Lambda_{1}\otimes\Lambda_{1},V(3)\otimes V(m_{1})\otimes V(m_{2})\otimes V(m_{3})). ∎

Here we introduce an example. A continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on.

Example 3.5.

We take a reduced fraction 813{8\over{13}}. Since 813=11+11+11+11+11+1={8\over{13}}=\displaystyle{\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}}}}= [0;1,1,1,1,1+1]=[0;1,1,1,1,1,1][0;1,1,1,1,1+1]=[0;1,1,1,1,1,1], 813{8\over{13}} has neighbours [0;1,1,1,1]=35[0;1,1,1,1]={3\over 5}, [0;1,1,1,1,1]=58[0;1,1,1,1,1]={5\over 8}. Therefore 813=3558{8\over{13}}={3\over 5}\sharp{5\over 8}, where \sharp means the Farey sum. Similarly, 35=1223{3\over 5}={1\over 2}\sharp{2\over 3}, 58=3523=122323{5\over 8}={3\over 5}\sharp{2\over 3}={1\over 2}\sharp{2\over 3}\sharp{2\over 3}. Here we know, that a reduced fraction 1p{1\over p} (resp. p1p{{p-1}\over p}) corresponds to Christoffel abab-word ap1ba^{p-1}b (resp. abp1ab^{p-1}). Therefore 35{3\over 5}, 58{5\over 8} , 813{8\over{13}} corresponds to abab-word abab2abab^{2}, abab2ab2abab^{2}ab^{2}, abab2abab2ab2abab^{2}abab^{2}ab^{2} respectively. Substituting matrices A=(2111),B=(5221)A=\left(\begin{array}[]{cc}2&1\\ 1&1\end{array}\right),B=\left(\begin{array}[]{cc}5&2\\ 2&1\end{array}\right) to words a,ba,b, then we have associated matrices C[35]:=ABAB2=(1045433613254),C[58]:=ABAB2AB2=(90927376665326622071),C[813]:=ABAB2ABAB2AB2=(118082927489281056926783528701388)C[{3\over 5}]:=ABAB^{2}=\left(\begin{array}[]{cc}1045&433\\ 613&254\end{array}\right),C[{5\over 8}]:=ABAB^{2}AB^{2}=\left(\begin{array}[]{cc}90927&37666\\ 53266&22071\end{array}\right),C[{8\over{13}}]:=ABAB^{2}ABAB^{2}AB^{2}=\left(\begin{array}[]{cc}118082927&48928105\\ \vskip 6.0pt plus 2.0pt minus 2.0pt\cr 69267835&28701388\end{array}\right). We have a Markov triple (433,37666,48928105)(433,37666,48928105) ( in fact 4332+376662+489281052=3×433×37666×48928105433^{2}+37666^{2}+48928105^{2}=3\times 433\times 37666\times 48928105). Hence we have a prehomogeneous vector space (SO(3)×GL(433)×GL(37666)×GL(48928105),V(3)V(433)V(37666)V(48928105))(SO(3)\times GL(433)\times GL(37666)\times GL(48928105),V(3)\otimes V(433)\otimes V(37666)\otimes V(48928105)) as a castling transform of a seed prehomogeneous vector space (SO(3)×GL(1),V(3)V(1))(SO(3)\times GL(1),V(3)\otimes V(1)).

3.4 Generalized cases

In this subsection, we generalize the three-dimensional prehomogeneous vector spaces we have dealt with so far to the t-dimensional prehomogeneous vector spaces. If we start from a prehomogeneous vector space with tt-dimensional representation space V(t)V(t) , namely, (GL(1)×G,Λ1ρ,V(1)V(t))(GL(1)\times G,\Lambda_{1}\otimes\rho,V(1)\otimes V(t)), we have the following tree in Figure 4. of sequences of polynomials.

Refer to caption
Figure 4:

where

f2(t)=t2t1f_{2}(t)=t^{2}-t-1,

f3(t)=t42t3+t1f_{3}(t)=t^{4}-2t^{3}+t-1,

f4(t)=t73t6+t5+2t4+t3t2t1f_{4}(t)=t^{7}-3t^{6}+t^{5}+2t^{4}+t^{3}-t^{2}-t-1,

f5(t)=t146t13+11t122t119t104t9+10t8+7t72t67t53t4+t3+2t2+t1f_{5}(t)={t}^{14}-6\,{t}^{13}+11\,{t}^{12}-2\,{t}^{11}-9\,{t}^{10}-4\,{t}^{9}+10\,{t}^{8}+7\,{t}^{7}-2\,{t}^{6}-7\,{t}^{5}-3\,{t}^{4}+{t}^{3}+2\,{t}^{2}+t-1,

f6(t)=t2812t27+58t26136t25+127t24+56t23126t22158t21+229t20+196t19158t18314t17+34t16+294t15+146t14142t13213t1226t11+116t10+90t99t845t723t6+5t5+9t4+3t3t2t1f_{6}(t)={t}^{28}-12\,{t}^{27}+58\,{t}^{26}-136\,{t}^{25}+127\,{t}^{24}+56\,{t}^{23}-126\,{t}^{22}-158\,{t}^{21}+229\,{t}^{20}+196\,{t}^{19}-158\,{t}^{18}-314\,{t}^{17}+34\,{t}^{16}+294\,{t}^{15}+146\,{t}^{14}-142\,{t}^{13}-213\,{t}^{12}-26\,{t}^{11}+116\,{t}^{10}+90\,{t}^{9}-9\,{t}^{8}-45\,{t}^{7}-23\,{t}^{6}+5\,{t}^{5}+9\,{t}^{4}+3\,{t}^{3}-{t}^{2}-t-1,

f3a(t)=t52t4+2t+1,t52t4t2+2t+1f_{3a}(t)=t^{5}-2t^{4}+2t+1,t^{5}-2t^{4}-t^{2}+2t+1,

f2a(1)(t)=t62t52t4+4t3t2t1f_{2a}^{(1)}(t)=t^{6}-2t^{5}-2t^{4}+4t^{3}-t^{2}-t-1,

(f2a(1))a(t)=t93t8t7+8t6t56t42t3+3t2+3t1(f_{2a}^{(1)})_{a}(t)=t^{9}-3t^{8}-t^{7}+8t^{6}-t^{5}-6t^{4}-2t^{3}+3t^{2}+3t-1,

(f2a(1))b(t)=t103t92t8+11t7t612t5+2t4+3t2+1(f_{2a}^{(1)})_{b}(t)=t^{10}-3t^{9}-2t^{8}+11t^{7}-t^{6}-12t^{5}+2t^{4}+3t^{2}+1,

f2a(2)(t)=t124t11+16t910t822t7+15t6+14t55t46t3+t1f_{2a}^{(2)}(t)=t^{12}-4t^{11}+16t^{9}-10t^{8}-22t^{7}+15t^{6}+14t^{5}-5t^{4}-6t^{3}+t-1,

f3aa(t)=t4t33t2+2t+1f_{3aa}(t)=t^{4}-t^{3}-3t^{2}+2t+1,

This tree is very complicated. We can recognize this tree of Castling transform from a seed prehomogeneous vector space (G×GL(1),ρΛ1,V(t)V(1))(G\times GL(1),\rho\otimes\Lambda_{1},V(t)\otimes V(1)) as following some ways. On this tree, there exist the following two kinds of operations:

CTup:(t,f1(t),,fl(t))(t,f1(t),,fl(t),ti=1lfi(t)1)CT_{up}:(t,f_{1}(t),\dots,f_{l}(t))\mapsto(t,f_{1}(t),\dots,f_{l}(t),t\prod_{i=1}^{l}f_{i}(t)-1)

(This operation corresponds to \leftarrow in Figure 4).

CTflati:(t,f1(t),,fi1,fi(t),fi+1(t),,fr(t))CT_{flat_{i}}:(t,f_{1}(t),\dots,f_{i-1},f_{i}(t),f_{i+1}(t),\dots,f_{r}(t))

(t,f1(t),,fi1,tj=1,jirfj(t)fi(t),fi+1(t),,fr(t))\mapsto(t,f_{1}(t),\dots,f_{i-1},t\prod_{j=1,j\neq i}^{r}f_{j}(t)-f_{i}(t),f_{i+1}(t),\dots,f_{r}(t))

(This operation corresponds to \rightarrow in Figure 4).

We call the tree in Figure 4 tt-castling tree.

3.5 Castling Markov tree of tt-castling tree

In the tree in Figure 4, we choose ”4-simple-subtree” as follows:

Starting from

(t,fa(t),fab(t),fb(t)):=(t,t2t1,t1),(t,f_{a}(t),f_{ab}(t),f_{b}(t)):=(t,t^{2}-t-1,t-1),

we consider subtree of the form

(t,fw(a,b)(t),fw(a,b)w(a,b)(t),fw(a,b)(t))(t,f_{w(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)}(t),f_{w^{\prime}(a,b)}(t))

that is parametrized by Christoffel abab-word w(a,b),w(a,b)w(a,b),w(a,b),w(a,b)w^{\prime}(a,b), w(a,b)w(a,b).

CTflatb(t,fa(t),fab(t),fb(t))=(t,fa(t),fab(t),tfa(t)fab(t)fb(t))CT_{flat_{b}}(t,f_{a}(t),f_{ab}(t),f_{b}(t))=(t,f_{a}(t),f_{ab}(t),tf_{a}(t)f_{ab}(t)-f_{b}(t)) and we put

fa2b(t):=tfa(t)fab(t)fb(t)f_{a^{2}b}(t):=tf_{a}(t)f_{ab}(t)-f_{b}(t)

and we get a triplet (fa(t),fa2b(t),fab(t))(f_{a}(t),f_{a^{2}b}(t),f_{ab}(t)) that is parametrized by triple of Christoffel abab-word (a,a2b,ab)(a,a^{2}b,ab).

CTflata(t,fa(t),fab(t),fb(t))=(t,tfab(t)fb(t)fa(t),fab(t),fb(t))CT_{flat_{a}}(t,f_{a}(t),f_{ab}(t),f_{b}(t))=(t,tf_{ab}(t)f_{b}(t)-f_{a}(t),f_{ab}(t),f_{b}(t))

and we put

fab2(t):=tfa(t)fab(t)fb(t)f_{ab^{2}}(t):=tf_{a}(t)f_{ab}(t)-f_{b}(t)

and we get a triplet (fa(t),fab2(t),fab(t))(f_{a}(t),f_{ab^{2}}(t),f_{ab}(t)) that is parametrized by triple of Christoffel abab-word (ab,ab2,b)(ab,ab^{2},b). In general, we get

(fw(a,b)(t),fw(a,b)2w(a,b)(t),fw(a,b)w(a,b)(t))(f_{w(a,b)}(t),f_{w(a,b)^{2}w^{\prime}(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)}(t))

and

(fw(a,b)w(a,b)(t),fw(a,b)w(a,b)2(t),fw(a,b)(t))(f_{w(a,b)w^{\prime}(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)^{2}}(t),f_{w^{\prime}(a,b)}(t))

as follows:

CTflatw(a,b)(t,fw(a,b)(t),fw(a,b)w(a,b)(t),fw(a,b)(t))CT_{flat_{w^{\prime}(a,b)}}(t,f_{w(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)}(t),f_{w^{\prime}(a,b)}(t))

=(t,fw(a,b)(t),fw(a,b)w(a,b)(t),tfw(a,b)(t)fw(a,b)w(a,b)(t)fw(a,b)(t))=(t,f_{w(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)}(t),tf_{w(a,b)}(t)f_{w(a,b)w^{\prime}(a,b)}(t)-f_{w^{\prime}(a,b)}(t))

and we put fw(a,b)2w(a,b)(t)=tfw(a,b)(t)fw(a,b)w(a,b)(t)fw(a,b)(t)f_{w(a,b)^{2}w^{\prime}(a,b)}(t)=tf_{w(a,b)}(t)f_{w(a,b)w^{\prime}(a,b)}(t)-f_{w^{\prime}(a,b)}(t) and get a triple

(fw(a,b)(t),fw(a,b)2w(a,b)(t),fw(a,b)w(a,b)(t)).(f_{w(a,b)}(t),f_{w(a,b)^{2}w^{\prime}(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)}(t)).

CTflatw(a,b)(t,fw(a,b)(t),fw(a,b)w(a,b)(t),fw(a,b)(t))=(t,tfw(a,b)(t)fw(a,b)w(a,b)(t)fw(a,b)(t),fw(a,b)w(a,b)(t),CT_{flat_{w(a,b)}}(t,f_{w(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)}(t),f_{w^{\prime}(a,b)}(t))=(t,tf_{w(a,b)}(t)f_{w(a,b)w^{\prime}(a,b)}(t)-f_{w^{\prime}(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)}(t), fw(a,b)(t))f_{w^{\prime}(a,b)}(t))

and we put fw(a,b)w(a,b)2(t)=tfw(a,b)w(a,b)(t)fw(a,b)(t)fw(a,b)(t)f_{w(a,b)w^{\prime}(a,b)^{2}}(t)=tf_{w(a,b)w^{\prime}(a,b)}(t)f_{w^{\prime}(a,b)}(t)-f_{w(a,b)}(t) and get a triple

(fw(a,b)w(a,b)(t),fw(a,b)w(a,b)2(t),fw(a,b)(t)).(f_{w(a,b)w^{\prime}(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)^{2}}(t),f_{w^{\prime}(a,b)}(t)).

Thus we have a class {(fw(a,b)(t),fw(a,b)w(a,b)(t),fw(a,b)(t))}(w(a,b),w(a,b)w(a,b),w(a,b))is a triple of Christoffel words\{(f_{w(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)}(t),f_{w^{\prime}(a,b)}(t))\}_{(w(a,b),w(a,b)w^{\prime}(a,b),w^{\prime}(a,b))\textrm{is a triple of Christoffel words}} and tree Figure 5 of them.

Refer to caption
Figure 5:

If we substitute t=3t=3, we have the tree of Markov triples. Here we call these polynomials castling-Markov polynomials and call subtree

{(fw(a,b)(t),fw(a,b)w(a,b)(t),fw(a,b)(t))}(w(a,b),w(a,b)w(a,b),w(a,b))is a triple of Christoffel words\{(f_{w(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)}(t),f_{w^{\prime}(a,b)}(t))\}_{(w(a,b),w(a,b)w^{\prime}(a,b),w^{\prime}(a,b))\textrm{is a triple of Christoffel words}} Castling Markov tree. In specially, subtree of subsequence {fanb(t)}\{f_{a^{n}b}(t)\} satisfies the following recurrence relation:

fan+2b(t)=tfan+1b(t)fanb(t).f_{a^{n+2}b}(t)=tf_{a^{n+1}b}(t)-f_{a^{n}b}(t). (3.1)

Furthermore we have the following theorem.

Theorem 3.6.

For a Christoffel abab-word triple (w,ww,w)(w,ww^{\prime},w^{\prime}) where wwww^{\prime} means a word that connects ww^{\prime} after ww, let (fw(t),fww(t),fw(t))(f_{w}(t),f_{ww^{\prime}}(t),f_{w^{\prime}}(t)) be triplet of castling Markov polynomials corresponding to (w,ww,w)(w,ww^{\prime},w^{\prime}). Then (fw(t),fww(t),fw(t))(f_{w}(t),f_{ww^{\prime}}(t),f_{w^{\prime}}(t)) is a solution of modified Markov equation

x2+y2+z2+(t3)=txyz.x^{2}+y^{2}+z^{2}+(t-3)=txyz. (3.2)
Proof..

For a tt-deformation (at,bt,ct):=(fw(a,b)(t),fw(a,b)w(a,b)(t),fw(a,b))(a_{t},b_{t},c_{t}):=(f_{w(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)}(t),f_{w^{\prime}(a,b)}) of a Markov triple (a,b,c)=(Trw(A,B)/3,Trw(A,B)w(A,B)/3,Trw(A,B)/3)(a,b,c)=(\mathrm{Tr}w(A,B)/3,\mathrm{Tr}w(A,B)w^{\prime}(A,B)/3,\mathrm{Tr}w^{\prime}(A,B)/3), let two triples that come from (at,bt,ct)(a_{t},b_{t},c_{t}) via castling transforms:

{(at,c~t,bt)=(fw(a,b)(t),fw(a,b)2w(a,b)(t),fw(a,b)w(a,b)(t))=(at,tatbtct,bt)(bt,a~t,ct)=(fw(a,b)w(a,b)(t),fw(a,b)w(a,b)2(t),fw(a,b)(t))=(bt,tbtctat,ct)\left\{\begin{array}[]{l}(a_{t},\tilde{c}_{t},b_{t})=(f_{w(a,b)}(t),f_{w(a,b)^{2}w^{\prime}(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)}(t))=(a_{t},ta_{t}b_{t}-c_{t},b_{t})\\ (b_{t},\tilde{a}_{t},c_{t})=(f_{w(a,b)w^{\prime}(a,b)}(t),f_{w(a,b)w^{\prime}(a,b)^{2}}(t),f_{{w^{\prime}(a,b)}(t)})=(b_{t},tb_{t}c_{t}-a_{t},c_{t})\end{array}\right. (3.3)

Then, since at2+bt2+ct2+(t3)a_{t}^{2}+b_{t}^{2}+c_{t}^{2}+(t-3) =tatbtct=ta_{t}b_{t}c_{t},

at2+c~t2+bt2+(t3)a_{t}^{2}+\tilde{c}_{t}^{2}+b^{2}_{t}+(t-3) =at2+(tatbtct)2+(t3)=t2at2bt2tatbtct=a_{t}^{2}+(ta_{t}b_{t}-c_{t})^{2}+(t-3)=t^{2}a_{t}^{2}b_{t}^{2}-ta_{t}b_{t}c_{t} =tat(tatbtct)bt=ta_{t}(ta_{t}b_{t}-c_{t})b_{t} =tatc~tbt=ta_{t}\tilde{c}_{t}b_{t},

bt2+a~t2+ct2+(t3)b_{t}^{2}+\tilde{a}_{t}^{2}+c^{2}_{t}+(t-3) =bt2+(tbtctat)2+(t3)=b_{t}^{2}+(tb_{t}c_{t}-a_{t})^{2}+(t-3) =t2bt2ct2tatbtct=bt(tbtctat)ct=t^{2}b_{t}^{2}c_{t}^{2}-ta_{t}b_{t}c_{t}=b_{t}(tb_{t}c_{t}-a_{t})c_{t} =tbta~tct=tb_{t}\tilde{a}_{t}c_{t}. Therefore (at,c~t,bt)(a_{t},\tilde{c}_{t},b_{t}) and (bt,a~t,ct)(b_{t},\tilde{a}_{t},c_{t}) are also solutions of tt-Markov equation x2+y2+z2+(t3)=txyzx^{2}+y^{2}+z^{2}+(t-3)=txyz.

3.6 Chebyshev polynomials and castling Markov polynomials

The Chebyshev polynomials of the first kind are defined by the recurrence relation T0(x)=1,T1(x)=x,Tn+1(x)=2xTn(x)Tn1(x)T_{0}(x)=1,T_{1}(x)=x,T_{n+1}(x)=2xT_{n}(x)-T_{n-1}(x). The Chebyshev polynomials of the second kind are defined by the recurrence relation U0(x)=1,U1(x)=2x,Un+1(x)=2xUn(x)Un1(x)U_{0}(x)=1,U_{1}(x)=2x,U_{n+1}(x)=2xU_{n}(x)-U_{n-1}(x). Modified Chebyshev polynomials of the first (resp. second) kind are defined by tn(x):=2Tn(x2)t_{n}(x):=2T_{n}({x\over 2}) (resp. un(x):=Un(x2)).u_{n}(x):=U_{n}({x\over 2})). From the property of Chebyshev polynomials, We obtain the following result.

Proposition 3.7.

Here if we put Sn(t):=fan1b(t)S_{n}(t):=f_{a^{n-1}b}(t) and S0(t):=1,S1(t)=t1S_{0}(t):=1,S_{1}(t)=t-1, we obtain the following:

(1)

Sn(t)=1t24[(t1){(t+t242)n(tt242)n}{(t+t242)n1(tt242)n1}]\begin{array}[]{cc}S_{n}(t)=\displaystyle{{1\over{\sqrt{t^{2}-4}}}}&\biggl{[}\displaystyle{(t-1)\left\{\left({{t+\sqrt{t^{2}-4}}\over 2}\right)^{n}-\left({{t-\sqrt{t^{2}-4}}\over 2}\right)^{n}\right\}}\\ &\displaystyle{-\left\{\left({{t+\sqrt{t^{2}-4}}\over 2}\right)^{n-1}-\left({{t-\sqrt{t^{2}-4}}\over 2}\right)^{n-1}\right\}}\biggr{]}\end{array} (3.4)

(2)

Sn(t)=tun(t)un1(t),S_{n}(t)=tu_{n}(t)-u_{n-1}(t), (3.5)

where un(t)u_{n}(t) is a Chebyshev polynomial of second type.

(3)

Sn(t):=det(t11001t1010t1001t)(n1)S_{n}(t):=\det\left(\begin{array}[]{ccccc}t-1&1&0&\cdots&0\\ 1&t&1&&\vdots\\ 0&1&\ddots&\ddots&0\\ \vdots&\ddots&\ddots&t&1\\ 0&\cdots&0&1&t\end{array}\right)~{}~{}(n\geq 1) (3.6)

Furthermore we see the following property on the sub-sequences {fabn(t)}\{f_{ab^{n}}(t)\}.

Remark 3.8.

fabn(t)f_{ab^{n}}(t) can be written by modified Chebyshev polynomials of first and second kind as follows:

fabn(t)=(12)tn(t2t)+(12)(t2t2)un1(t2t)=Tn(12t(t1))+(12)(t2t2)Un1(12t(t1)).f_{ab^{n}}(t)=({1\over 2})t_{n}(t^{2}-t)+({1\over 2})(t^{2}-t-2)u_{n-1}(t^{2}-t)=T_{n}({1\over 2}t(t-1))+({1\over 2})(t^{2}-t-2)U_{n-1}({1\over 2}t(t-1)). (3.7)

If we put

{pn(t)=12tn(t2t)+12(t2t2)un1(t2t)qn(t)=12tn(t2t)+12(t2t+2)un1(t2t)\left\{\begin{array}[]{c}p_{n}(t)={1\over 2}t_{n}(t^{2}-t)+{1\over 2}(t^{2}-t-2)u_{n-1}(t^{2}-t)\\ q_{n}(t)={1\over 2}t_{n}(t^{2}-t)+{1\over 2}(t^{2}-t+2)u_{n-1}(t^{2}-t)\end{array}\right. (3.8)

from properties of modified Chebyshev polynomials, we obtain

{tn+2(t)tn(t)=(t44)un(t)un+2(t)un(t)=tn+2(t).\left\{\begin{array}[]{c}t_{n+2}(t)-t_{n}(t)=(t^{4}-4)u_{n}(t)\\ u_{n+2}(t)-u_{n}(t)=t_{n+2}(t)\end{array}\right.. (3.9)

Thus

{pn+2(t)pn(t)=(t2t2)qn+1(t)qn+2(t)qn(t)=(t2t+2)pn+1(t)\left\{\begin{array}[]{c}p_{n+2}(t)-p_{n}(t)=(t^{2}-t-2)q_{n+1}(t)\\ q_{n+2}(t)-q_{n}(t)=(t^{2}-t+2)p_{n+1}(t)\end{array}\right. (3.10)

hold.

For fan1b(t)=un+1(t)un(t)f_{a^{n-1}b}(t)=u_{n+1}(t)-u_{n}(t), fanb(t)fan1b(t)=tn+1(t)f_{a^{n}b}(t)-f_{a^{n-1}b}(t)=t_{n+1}(t). If we put gn(t)=tn+1(t)tn(t)g_{n}(t)=t_{n+1}(t)-t_{n}(t), we have the following relation : gn+2(t)gn(t)=(t44)(un1(t)un2(t))=(t24)fan3b(t)g_{n+2}(t)-g_{n}(t)=(t^{4}-4)(u_{n-1}(t)-u_{n-2}(t))=(t^{2}-4)f_{a^{n-3}b}(t).

6.4. Continued fraction of polynomials and castling Markov polynomials

We observe that castling-Markov polynomials are related to continued fraction of polynomials. For example,

fa3ba3ba2b(t)fa3ba3ba3ba2b(t)\displaystyle{\frac{f_{a^{3}ba^{3}ba^{2}b}(t)}{f_{a^{3}ba^{3}ba^{3}ba^{2}b}(t)}}

=1t5t43t3+2t2+t+1(t5t43t3+2t2+t)+1(t3t22t+1)=\displaystyle{\frac{1}{{t}^{5}-{t}^{4}-3\,{t}^{3}+2\,{t}^{2}+t+\frac{1}{-({t}^{5}-{t}^{4}-3\,{t}^{3}+2\,{t}^{2}+t)+\frac{1}{-({t}^{3}-{t}^{2}-2\,t+1)}}}}

=[0,t5t43t3+2t2+t,t5+t4+3t32t2t,t5t43t3+2t2+t,t3+t2+2t1],=[0,{t}^{5}-{t}^{4}-3\,{t}^{3}+2\,{t}^{2}+t,-{t}^{5}+{t}^{4}+3\,{t}^{3}-2\,{t}^{2}-t,{t}^{5}-{t}^{4}-3\,{t}^{3}+2\,{t}^{2}+t,-{t}^{3}+{t}^{2}+2\,t-1],

=[0;tfa3b(t),tfa3b(t),tfa3b(t),fa2b(t)]=[0;tf_{a^{3}b}(t),-tf_{a^{3}b}(t),tf_{a^{3}b}(t),-f_{a^{2}b}(t)]

fa2ba2bab(t)fa2ba2baba2bab(t)=[0;tfa2b(t),tfa2bab(t),t,t,fb(t)],\displaystyle{\frac{f_{a^{2}ba^{2}bab}(t)}{f_{a^{2}ba^{2}baba^{2}bab}(t)}=[0;tf_{a^{2}b}(t),-tf_{a^{2}bab}(t),t,-t,f_{b}(t)]},

fa2ba2baba2bab(t)fa2baba2ba2baba2bab(t)=[0;tfa2bab(t),tfa2b(t),tfa2bab(t),t,t,fb(t)],\displaystyle{\frac{f_{a^{2}ba^{2}baba^{2}bab}(t)}{f_{a^{2}baba^{2}ba^{2}baba^{2}bab}(t)}=[0;tf_{a^{2}bab}(t),-tf_{a^{2}b}(t),tf_{a^{2}bab}(t),-t,t,-f_{b}(t)]},

fa2babab(t)fa2baba2babab(t)=[0;tfa2bab(t),tfa2bab(t),t,fb(t)],\displaystyle{\frac{f_{a^{2}babab}(t)}{f_{a2baba2babab}(t)}=[0;tf_{a^{2}bab}(t),-tf_{a^{2}bab}(t),-t,f_{b}(t)]},

fa2baba2babab(t)fa2baba2baba2babab(t)=[0;tfa2bab(t),tfa2bab(t),tfa2bab(t),t,fb(t)],\displaystyle{\frac{f_{a^{2}baba^{2}babab}(t)}{f_{a2baba2baba2babab}(t)}=[0;tf_{a^{2}bab}(t),-tf_{a^{2}bab}(t),tf_{a^{2}bab}(t),t,-f_{b}(t)]},

fababab2(t)fababab2abab2(t)=[0;tfabab2(t),tfabab2(t),fab(t),fab(t)],\displaystyle{\frac{f_{ababab^{2}}(t)}{f_{ababab^{2}abab^{2}}(t)}=[0;tf_{abab^{2}}(t),-tf_{abab^{2}}(t),f_{ab}(t),-f_{ab}(t)]},

fababab2abab2(t)fababab2abab2abab2(t)=[0;tfabab2(t),tfabab2(t),tfabab2(t),fab(t),fab(t)],\displaystyle{\frac{f_{ababab^{2}abab^{2}}(t)}{f_{ababab^{2}abab^{2}abab^{2}}(t)}=[0;tf_{abab^{2}}(t),-tf_{abab^{2}}(t),tf_{abab^{2}}(t),-f_{ab}(t),f_{ab}(t)]},

fabab2abab2ab2(t)fabab2abab2abab2ab2(t)=[0;tfabab2(t),tfabab2(t),tfb(t),fab(t)],fab2ab3(t)fab2ab3ab3(t)=[0;tfab3(t),tfab3(t),fa2b(t),fb(t)],fab2ab3ab3(t)fab2ab3ab3ab3(t)=[0;tfab2(t),tfab2(t),tfab2(t),fab2(t),fa2b(t),fb(t)],fab4(t)fab3ab4(t)=[0;tfab3(t),fab2(t),fab(t),fab2(t)].\begin{array}[]{l}\displaystyle{\frac{f_{abab^{2}abab^{2}ab^{2}}(t)}{f_{abab^{2}abab^{2}abab^{2}ab^{2}}(t)}=[0;tf_{abab^{2}}(t),-tf_{abab^{2}}(t),tf_{b}(t),-f_{ab}(t)]},\\ \displaystyle{\frac{f_{ab^{2}ab^{3}}(t)}{f_{ab^{2}ab^{3}ab^{3}}(t)}=[0;tf_{ab^{3}}(t),-tf_{ab^{3}}(t),f_{a^{2}b}(t),-f_{b}(t)]},\\ \displaystyle{\frac{f_{ab^{2}ab^{3}ab^{3}}(t)}{f_{ab^{2}ab^{3}ab^{3}ab^{3}}(t)}=[0;tf_{ab^{2}}(t),-tf_{ab^{2}}(t),tf_{ab^{2}}(t),-f_{ab^{2}}(t),-f_{a^{2}b}(t),f_{b}(t)]},\\ \displaystyle{\frac{f_{ab^{4}}(t)}{f_{ab^{3}ab^{4}}(t)}=[0;tf_{ab^{3}}(t),-f_{ab^{2}}(t),-f_{ab}(t),f_{ab^{2}}(t)]}.\end{array}

4 A relation between qq-deformations and tt-deformations

In this section, we introduce a relation between qq-deformation of Markov triples and tt-deformation of ones. limq1hw(a,b)(q)=13Tr(w(A,B))=limt3fw(t)\mathrm{lim}_{q\mapsto 1}h_{w(a,b)}(q)=\frac{1}{3}\mathrm{Tr}(w(A,B))=\mathrm{lim}_{t\mapsto 3}f_{w}(t) where 13Tr(w(A,B))\frac{1}{3}\mathrm{Tr}(w(A,B)) is a Markov number corresponding to Christoffel abab-word w(a,b)w(a,b). Here we list up qq-deformations and tt-deformations as follows:

(i) List of qq-deformations {hw(a,b)(q)}q\{h_{w(a,b)}(q)\}_{q}

ha(q)=1q,h_{a}(q)=\frac{1}{q},

hb(q)=q2(q2+1)h_{b}(q)=q^{-2}(q^{2}+1)

hab(q)=q3(q4+q3+q2+q+1),h_{ab}(q)=q^{-3}({q}^{4}+{q}^{3}+{q}^{2}+q+1),

ha2b(q)=q4(q6+2q5+2q4+3q3+2q2+2q+1)h_{a^{2}b}(q)=q^{-4}({q}^{6}+2\,{q}^{5}+2\,{q}^{4}+3\,{q}^{3}+2\,{q}^{2}+2\,q+1)

hab2(q)=q5(q8+2q7+4q6+5q5+5q4+5q3+4q2+2q+1)h_{ab^{2}}(q)=q^{-5}({q}^{8}+2\,{q}^{7}+4\,{q}^{6}+5\,{q}^{5}+5\,{q}^{4}+5\,{q}^{3}+4\,{q}^{2}+2\,q+1)

ha3b(q)=q5(q8+3q7+4q6+6q5+6q4+6q3+4q2+3q+1),h_{a^{3}b}(q)=q^{-5}({q}^{8}+3\,{q}^{7}+4\,{q}^{6}+6\,{q}^{5}+6\,{q}^{4}+6\,{q}^{3}+4\,{q}^{2}+3\,q+1),

ha2bab(q)=q7(q12+4q11+9q10+16q9+23q8+29q7+30q6+29q5+23q4+16q3+9q2+4q+1),h_{a^{2}bab}(q)=q^{-7}({q}^{12}+4\,{q}^{11}+9\,{q}^{10}+16\,{q}^{9}+23\,{q}^{8}+29\,{q}^{7}+30\,{q}^{6}+29\,{q}^{5}+23\,{q}^{4}+16\,{q}^{3}+9\,{q}^{2}+4\,q+1),

habab2(q)=q8(q14+4q13+11q12+22q11+36q10+50q9+60q8+65q7+60q6+50q5+36q4+22q3+11q2+4q+1),h_{abab^{2}}(q)=q^{-8}({q}^{14}+4\,{q}^{13}+11\,{q}^{12}+22\,{q}^{11}+36\,{q}^{10}+50\,{q}^{9}+60\,{q}^{8}+65\,{q}^{7}+60\,{q}^{6}+50\,{q}^{5}+36\,{q}^{4}+22\,{q}^{3}+11\,{q}^{2}+4\,q+1),

hab3(q)=q7(q12+3q11+8q10+14q9+20q8+25q7+27q6+25q5+20q4+14q3+8q2+3q+1),h_{ab^{3}}(q)=q^{-7}({q}^{12}+3\,{q}^{11}+8\,{q}^{10}+14\,{q}^{9}+20\,{q}^{8}+25\,{q}^{7}+27\,{q}^{6}+25\,{q}^{5}+20\,{q}^{4}+14\,{q}^{3}+8\,{q}^{2}+3\,q+1),

ha4b(q)=q9(q16+4q15+13q14+29q13+53q12+82q11+110q10+131q9+139q8+131q7+110q6+82q5+53q4+29q3+13q2+4q+1),h_{a^{4}b}(q)=q^{-9}({q}^{16}+4\,{q}^{15}+13\,{q}^{14}+29\,{q}^{13}+53\,{q}^{12}+82\,{q}^{11}+110\,{q}^{10}+131\,{q}^{9}+139\,{q}^{8}+131\,{q}^{7}+110\,{q}^{6}+82\,{q}^{5}+53\,{q}^{4}+29\,{q}^{3}+13\,{q}^{2}+4\,q+1),

ha3ba2b(q)=q9(q16+6q15+18q14+40q13+72q12+110q11+148q10+175q9+185q8+175q7+148q6+110q5+72q4+40q3+18q2+6q+1),h_{a^{3}ba^{2}b}(q)=q^{-9}({q}^{16}+6\,{q}^{15}+18\,{q}^{14}+40\,{q}^{13}+72\,{q}^{12}+110\,{q}^{11}+148\,{q}^{10}+175\,{q}^{9}+185\,{q}^{8}+175\,{q}^{7}+148\,{q}^{6}+110\,{q}^{5}+72\,{q}^{4}+40\,{q}^{3}+18\,{q}^{2}+6\,q+1),

ha2ba2bab(q)=q11(q20+7q19+26q18+70q17+151q16+276q15+440q14+623q13+793q12+914q11+959q10+914q9+793q8+623q7+440q6+276q5+151q4+70q3+26q2+7q+1),h_{a^{2}ba^{2}bab}(q)=q^{-11}({q}^{20}+7\,{q}^{19}+26\,{q}^{18}+70\,{q}^{17}+151\,{q}^{16}+276\,{q}^{15}+440\,{q}^{14}+623\,{q}^{13}+793\,{q}^{12}+914\,{q}^{11}+959\,{q}^{10}+914\,{q}^{9}+793\,{q}^{8}+623\,{q}^{7}+440\,{q}^{6}+276\,{q}^{5}+151\,{q}^{4}+70\,{q}^{3}+26\,{q}^{2}+7\,q+1),

ha2babab(q)=q10(q18+6q17+20q16+49q15+97q14+164q13+240q12+313q11+366q10+385q9+366q8+313q7+240q6+164q5+97q4+49q3+20q2+6q+1),h_{a^{2}babab}(q)=q^{-10}({q}^{18}+6\,{q}^{17}+20\,{q}^{16}+49\,{q}^{15}+97\,{q}^{14}+164\,{q}^{13}+240\,{q}^{12}+313\,{q}^{11}+366\,{q}^{10}+385\,{q}^{9}+366\,{q}^{8}+313\,{q}^{7}+240\,{q}^{6}+164\,{q}^{5}+97\,{q}^{4}+49\,{q}^{3}+20\,{q}^{2}+6\,q+1),

hababab2(q)=q11(q20+6q19+22q18+59q17+128q16+235q15+375q14+533q13+679q12+784q11+822q10+784q9+679q8+533q7+375q6+235q5+128q4+59q3+22q2+6q+1),h_{ababab^{2}}(q)=q^{-11}({q}^{20}+6\,{q}^{19}+22\,{q}^{18}+59\,{q}^{17}+128\,{q}^{16}+235\,{q}^{15}+375\,{q}^{14}+533\,{q}^{13}+679\,{q}^{12}+784\,{q}^{11}+822\,{q}^{10}+784\,{q}^{9}+679\,{q}^{8}+533\,{q}^{7}+375\,{q}^{6}+235\,{q}^{5}+128\,{q}^{4}+59\,{q}^{3}+22\,{q}^{2}+6\,q+1),

habab2ab2(q)=q13(q24+7q23+30q22+94q21+237q20+504q19+932q18+1531q17+2264q16+3045q15+3746q14+4236q13+4412q12+4236q11+3746q10+3045q9+2264q8+1531q7+932q6+504q5+237q4+94q3+30q2+7q+1),h_{abab^{2}ab^{2}}(q)=q^{-13}({q}^{24}+7\,{q}^{23}+30\,{q}^{22}+94\,{q}^{21}+237\,{q}^{20}+504\,{q}^{19}+932\,{q}^{18}+1531\,{q}^{17}+2264\,{q}^{16}+3045\,{q}^{15}+3746\,{q}^{14}+4236\,{q}^{13}+4412\,{q}^{12}+4236\,{q}^{11}+3746\,{q}^{10}+3045\,{q}^{9}+2264\,{q}^{8}+1531\,{q}^{7}+932\,{q}^{6}+504\,{q}^{5}+237\,{q}^{4}+94\,{q}^{3}+30\,{q}^{2}+7\,q+1),

hab2ab3(q)=q12(q22+6q21+24q20+70q19+165q18+328q17+567q16+870q15+1201q14+1504q13+1717q12+1795q11+1717q10+1504q9+1201q8+870q7+567q6+328q5+165q4+70q3+24q2+6q+1),h_{ab^{2}ab^{3}}(q)=q^{-12}({q}^{22}+6\,{q}^{21}+24\,{q}^{20}+70\,{q}^{19}+165\,{q}^{18}+328\,{q}^{17}+567\,{q}^{16}+870\,{q}^{15}+1201\,{q}^{14}+1504\,{q}^{13}+1717\,{q}^{12}+1795\,{q}^{11}+1717\,{q}^{10}+1504\,{q}^{9}+1201\,{q}^{8}+870\,{q}^{7}+567\,{q}^{6}+328\,{q}^{5}+165\,{q}^{4}+70\,{q}^{3}+24\,{q}^{2}+6\,q+1),

hab4(q)=q9(q16+4q15+13q14+29q13+53q12+82q11+110q10+131q9+139q8+131q7+110q6+82q5+53q4+29q3+13q2+4q+1),h_{ab^{4}}(q)=q^{-9}({q}^{16}+4\,{q}^{15}+13\,{q}^{14}+29\,{q}^{13}+53\,{q}^{12}+82\,{q}^{11}+110\,{q}^{10}+131\,{q}^{9}+139\,{q}^{8}+131\,{q}^{7}+110\,{q}^{6}+82\,{q}^{5}+53\,{q}^{4}+29\,{q}^{3}+13\,{q}^{2}+4\,q+1),

(ii) List of tt-deformations {fw(a,b)(t)}t\{f_{w(a,b)}(t)\}_{t}

fa(t)=1,fb(t)=t1,fab(t)=t2t1,fa2b(t)=t3t22t+1,fab2(t)=t42t3+t1,fa3b(t)=t4t33t2+2t+1,fa2bab(t)=t62t52t4+4t3+t2t1,fabab2(t)=t73t6+t5+3t42t3+1,fab3(t)=t63t5+2t4+t33t2+2t+1,fa4b(t)=t5t44t3+3t2+3t1,fa3ba2b(t)=t82t74t6+8t5+4t48t3+t1,fa2ba2bab(t)=t103t92t8+11t7t612t5+2t4+4t3+1,fa2babab(t)=t93t8t7+8t6t56t42t3+3t2+3t1,fababab2(t)=t104t9+3t8+5t76t6t5+t4+3t3t22t+1,fabab2ab2(t)=t125t11+7t10+2t912t8+8t7+2t64t5+1,fab2ab3(t)=t115t10+8t92t89t7+13t64t56t4+5t3t22t+1,fab4(t)=t84t7+5t6t55t4+7t3t22t+1,\begin{array}[]{l}f_{a}(t)=1,\\ f_{b}(t)=t-1,\\ f_{ab}(t)=t^{2}-t-1,\\ f_{a^{2}b}(t)=t^{3}-t^{2}-2t+1,\\ f_{ab^{2}}(t)=t^{4}-2t^{3}+t-1,\\ f_{a^{3}b}(t)=t^{4}-t^{3}-3t^{2}+2t+1,\\ f_{a^{2}bab}(t)=t^{6}-2t^{5}-2t^{4}+4t^{3}+t^{2}-t-1,\\ f_{abab^{2}}(t)=t^{7}-3t^{6}+t^{5}+3t^{4}-2t^{3}+1,\\ f_{ab^{3}}(t)=t^{6}-3t^{5}+2t^{4}+t^{3}-3t^{2}+2t+1,\\ f_{a^{4}b}(t)=t^{5}-t^{4}-4t^{3}+3t^{2}+3t-1,\\ f_{a^{3}ba^{2}b}(t)=t^{8}-2t^{7}-4t^{6}+8t^{5}+4t^{4}-8t^{3}+t-1,\\ f_{a^{2}ba^{2}bab}(t)=t^{10}-3t^{9}-2t^{8}+11t^{7}-t^{6}-12t^{5}+2t^{4}+4t^{3}+1,\\ f_{a^{2}babab}(t)=t^{9}-3t^{8}-t^{7}+8t^{6}-t^{5}-6t^{4}-2t^{3}+3t^{2}+3t-1,\\ f_{ababab^{2}}(t)=t^{10}-4t^{9}+3t^{8}+5t^{7}-6t^{6}-t^{5}+t^{4}+3t^{3}-t^{2}-2t+1,\\ f_{abab^{2}ab^{2}}(t)=t^{12}-5t^{11}+7t^{10}+2t^{9}-12t^{8}+8t^{7}+2t^{6}-4t^{5}+1,\\ f_{ab^{2}ab^{3}}(t)=t^{11}-5t^{10}+8t^{9}-2t^{8}-9t^{7}+13t^{6}-4t^{5}-6t^{4}+5t^{3}-t^{2}-2t+1,\\ f_{ab^{4}}(t)=t^{8}-4t^{7}+5t^{6}-t^{5}-5t^{4}+7t^{3}-t^{2}-2t+1,\end{array}

Theorem 4.1.

(i)For Christoffel abab-word ww, let fw(t)f_{w}(t) be tt-deformation of Markov number corresponding to ww and hw(q)h_{w}(q) be qq-deformation of Markov number corresponding to ww.

Then the following relation holds:

fw([3]q/q)=qhw(q).f_{w}([3]_{q}/q)=qh_{w}(q). (4.1)

(ii) A set of qq-deformations and a set of tt-deformations have a one to one correspondence.

Proof..

(i) From Theorem 2.5 and the construction of (fw(t),fww(t),fw(t))(f_{w}(t),f_{ww^{\prime}}(t),f_{w^{\prime}}(t)) and (hw(q),hww(q),hw(q))(h_{w}(q),h_{ww^{\prime}}(q),h_{w^{\prime}}(q)), we obtain f([q1[3]q)=qhw(q)f([q^{-1}[3]_{q})=qh_{w}(q).

(ii)Let (x,y,z)=(fw(t),fww(t),fw(t)(x,y,z)=(f_{w}(t),f_{ww^{\prime}}(t),f_{w^{\prime}}(t) be a solution of x2+y2+z2+(t3)=txyz.x^{2}+y^{2}+z^{2}+(t-3)=txyz. Then put t=q1[3]qt=q^{-1}[3]_{q} and deform the equation as follows: x2+y2+z2+[3]q3qq=q1[3]qxyz(x,y,z)=(qx~,qy~,qz~),(qx~)2+(qy~)2+(qz~)2=q1[3]q(qx~)(qy~)(qz~)q2{x~2+y~2+z~2}=q2[3]qx~y~z~x~2+y~2+z~2=[3]qx~y~z~.x^{2}+y^{2}+z^{2}+\frac{[3]_{q}-3q}{q}=q^{-1}[3]_{q}xyz\Leftrightarrow(x,y,z)=(q\tilde{x},q\tilde{y},q\tilde{z}),~{}~{}(q\tilde{x})^{2}+(q\tilde{y})^{2}+(q\tilde{z})^{2}=q^{-1}[3]_{q}(q\tilde{x})(q\tilde{y})(q\tilde{z})\Leftrightarrow q^{2}\{\tilde{x}^{2}+\tilde{y}^{2}+\tilde{z}^{2}\}=q^{2}[3]_{q}\tilde{x}\tilde{y}\tilde{z}\Leftrightarrow\tilde{x}^{2}+\tilde{y}^{2}+\tilde{z}^{2}=[3]_{q}\tilde{x}\tilde{y}\tilde{z}. Here from (i) fw(q1[3]q)=qhw(q)f_{w}(q^{-1}[3]_{q})=qh_{w}(q), we have

(qhw(q))2+(qhww(q))2+(qhw(q))2+(1q)2q3=q1[3]q(qhw(q))(qhww(q))(qhw(q)).(qh_{w}(q))^{2}+(qh_{ww^{\prime}}(q))^{2}+(qh_{w^{\prime}}(q))^{2}+\frac{(1-q)^{2}}{q^{3}}=q^{-1}[3]_{q}(qh_{w}(q))(qh_{ww^{\prime}}(q))(qh_{w^{\prime}}(q)).

This means that (x,y,z)=(hw(q),hww(q),hw(q))(x,y,z)=(h_{w}(q),h_{ww^{\prime}}(q),h_{w^{\prime}}(q)) is a solution of x2+y2+z2+(1q)2q3=[3]qxyzx^{2}+y^{2}+z^{2}+\frac{(1-q)^{2}}{q^{3}}=[3]_{q}xyz.

On the other hand, let (x,y,z)=(hw(q),hww(q),hw(q))(x,y,z)=(h_{w}(q),h_{ww^{\prime}}(q),h_{w^{\prime}}(q)) be a solution of x2+y2+z2+(1q)2q3=[3]qxyz.x^{2}+y^{2}+z^{2}+\frac{(1-q)^{2}}{q^{3}}=[3]_{q}xyz. Since (q1)2q3=q1[3]q3q2\frac{(q-1)^{2}}{q^{3}}=\frac{q^{-1}[3]_{q}-3}{q^{2}} and (i) fw(q1[3]q)=qhw(q)f_{w}(q^{-1}[3]_{q})=qh_{w}(q),

(qhw(q))2+(qhww(q))2+(qhw(q))2+(q1[3]q3)=q1[3]q(qhw(q))(qhww(q))(qhw(q))(qh_{w}(q))^{2}+(qh_{ww^{\prime}}(q))^{2}+(qh_{w^{\prime}}(q))^{2}+(q^{-1}[3]_{q}-3)=q^{-1}[3]_{q}(qh_{w}(q))(qh_{ww^{\prime}}(q))(qh_{w^{\prime}}(q))

\Leftrightarrow

fw(t)2+fww(t)2+fw(t)2+(t3)=tfw(t)fww(t)fw(t).f_{w}(t)^{2}+f_{ww^{\prime}}(t)^{2}+f_{w^{\prime}}(t)^{2}+(t-3)=tf_{w}(t)f_{ww^{\prime}}(t)f_{w^{\prime}}(t).

This means that (x,y,z)=(fw(t),fww(t),fw(t))(x,y,z)=(f_{w}(t),f_{ww^{\prime}}(t),f_{w^{\prime}}(t)) is a solution of x2+y2+z2+(t3)=txyzx^{2}+y^{2}+z^{2}+(t-3)=txyz. ∎

Example 4.2.

(i)fa2b(q1[3]q)=q3[3]q3q2[3]q22q1[3]q+1f_{a^{2}b}(q^{-1}[3]_{q})=q^{-3}[3]_{q}^{3}-q^{-2}[3]_{q}^{2}-2q^{-1}[3]_{q}+1

=q3{q6+2q5+2q4+3q3+2q2+2q+1}=q^{-3}\{q^{6}+2q^{5}+2q^{4}+3q^{3}+2q^{2}+2q+1\}

=qha2b(q)=qh_{a^{2}b}(q)

(ii)qha2bab(q)=q6(q12+4q11+9q10+16q9+23q8+29q7+30q6+29q5+23q4+16q3+9q2+4q+1)qh_{a^{2}bab}(q)=q^{-6}(q^{12}+4q^{11}+9q^{10}+16q^{9}+23q^{8}+29q^{7}+30q^{6}+29q^{5}+23q^{4}+16q^{3}+9q^{2}+4q+1)

=(q1[3]q)62(q1[3]q)52(q1[3]q)4+4(q1[3]q)3+(q1[3]q)2(q1[3]q)1=(q^{-1}[3]_{q})^{6}-2(q^{-1}[3]_{q})^{5}-2(q^{-1}[3]_{q})^{4}+4(q^{-1}[3]_{q})^{3}+(q^{-1}[3]_{q})^{2}-(q^{-1}[3]_{q})-1

=t62t52t4+4t3+t2t1=t^{6}-2t^{5}-2t^{4}+4t^{3}+t^{2}-t-1

=fa2bab(t).=f_{a^{2}bab}(t).

Problem

(1) In classical theory, a Markov triple gives the best approximation of a quadratic irrational to rational. Can qq-deformations also say something about qq-quadratic irrational number?

(2) There is a relation between qq-deformations and tt-deformations, then is there a deep relation between quantum topology , analytic number theory and prehomogeneous vector spaces?

References

  • [1] M .Aigner, Markov’s theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, Cham, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2
  • [2] E. Bombieri, Continued fractions and the Markoff tree. Expositiones Mathematicae 25(3) (2007), 187–213.
  • [3] H. Cohn, Minimal geodesics on Fricke’s torus-covering. In: Proceedings of the Conference on Riemann Surfaces and Related Topics (Stony Brook, 1978, I. Kra and B. Maskit, eds.), Ann. Math. Studies 97, Princeton Univ. Press (1981),
  • [4] H. Cohn, Markoff forms and primitive words. Mathematische Annalen 196 (1972), 8–22.
  • [5] S. Morier-Genoud and V. Ovsienko, qq-Deformed rationals and qq-continued fractions, Forum Math. Sigma 8 (2020), e13, 55 pp.
  • [6] M.Sato and T.Kimura A classification of irreducible prehomogeneous vector spaces and their relative invariants.Nagoya Math. J. 65 (1977), 1 - 155.
  • [7] T.Kimura, Introduction to prehomogeneous vector spaces. American Mathematical Society, Providence, RI, 2003. xxii+288 pp. ISBN: 0-8218-2767-7.