This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

qq-Moment Estimates for the Singular pp-Laplace Equation and Applications

Samuel Drapeau Shanghai Jiao Tong University, China Academy of Financial Research (SAIF) and School of Mathematical Sciences, Shanghai, China sdrapeau@saif.sjtu.edu.cn http://www.samuel-drapeau.info  and  Liming Yin Shanghai Jiao Tong University, School of Mathematical Sciences, Shanghai, China gacktkaga@sjtu.edu.cn
(Date: February 16, 2025)
Abstract.

We provide qq-moment estimates on annuli for weak solutions of the singular pp-Laplace equation where pp and qq are conjugates. We derive qq-uniform integrability for some critical parameter range. As a application, we derive a mass conservation as well as a weak convergence result for a larger critical parameter range. Concerning the latter point, we further provide a rate of convergence of order tq1t^{q-1} of the solution in the qq-Wasserstein distance.
Keywords: Singular pp-Laplace Equation; Moment Estimates; Mass Conservation; Convergence Rate in Wasserstein Distance.

National Science Foundation of China, Grants Numbers: 11971310 and 11671257 are gratefully acknowledged.

1. Introduction

We consider the Cauchy problem for the parabolic pp-Laplace equation posed in the whole Euclidean space N\mathbb{R}^{N}

{tu=div(|u|p2u),u(0)=μ,\begin{cases}\displaystyle\partial_{t}u=\mathrm{div}(|\nabla u|^{p-2}\nabla u),\\ u(0)=\mu,\end{cases} (1.1)

with a positive Radon measure μ\mu as initial data and pc<p<2p_{c}<p<2 where the critical value pcp_{c} is defined as

pc:=2NN+1.p_{c}:=\frac{2N}{N+1}.

Solutions are understood in the weak sense on the whole space and finite time horizon ST:=N×(0,T]S_{T}:=\mathbb{R}^{N}\times(0,T] where N2N\geq 2.

For 1<p<21<p<2, such Cauchy problem is know as the fast diffusion or singular equation. Existence and uniqueness and regularity of weak solutions with various conditions for initial data are studied by Di Benedetto and Herrero [6], Junning [10], Chen and Di Benedetto [5]. For further insights about parabolic pp-Laplace equation, we refer to [3, 15]. While for a Dirac measure δ0\delta_{0} as initial data, this Cauchy problem does not admit a positive solution for any 1<ppc1<p\leq p_{c}, see [10], it is known that for pc<p<2p_{c}<p<2, there exists a fundamental solution called Barenblatt source-type solution, see [15].

In the context of optimal matching problem, Ambrosio et al. [1] draw a link between 22-Wasserstein distance and Poisson equation through linearization of Monge-Ampère equation and regularize empirical measures with heat semigroup. They suggest that such a linearization for the qq-Wasserstein distance leads to pp-Laplacian where pp and qq are conjugates. Such an approach has been used in a different context by Evans and Gangbo [7].

Based on these ideas, it seems natural to regularize empirical measures with pp-Laplacian semigroup. And further, to connect the Cauchy problem (1.1) to flows in the qq-Wasserstein space, as done in Kell [12]. A key point in this connection concerns the behavior of qq-moment of weak solutions u(x,t)u(x,t) of Cauchy problem (1.1), namely,

N|x|qu(x,t)𝑑x.\int_{\mathbb{R}^{N}}|x|^{q}u(x,t)dx.

For the degenerate case where p>2p>2, that is, 1<q<21<q<2, such qq-moments are easily estimated, at least for initial data with finite mass and compact support, due to the finite propagation property, see [11]. However, for the singular case pc<p<2p_{c}<p<2, solutions diffuse everywhere even with a Dirac measure as initial data. Hence, the focus on the parameter range pc<p<2p_{c}<p<2.

Following similar methods as in [6, 10], our main result are the following qq-moment estimate for weak solutions of (1.1) on annuli

sup0<τtr|x|R|x|qu(x,τ)𝑑xC12r|x|2R|x|q𝑑μ+Ct12p(rp(N)(p1)(2p)+Rp(N)(p1)(2p)).\sup_{0<\tau\leq t}\int_{r\leq|x|\leq R}\left|x\right|^{q}u(x,\tau)dx\leq C\int_{\frac{1}{2}r\leq|x|\leq 2R}|x|^{q}d\mu\\ +Ct^{\frac{1}{2-p}}\left(r^{-\frac{p(N)}{(p-1)(2-p)}}+R^{-\frac{p(N)}{(p-1)(2-p)}}\right). (1.2)

for any pc<p<2p_{c}<p<2, where CC is a constant depending only on NN and pp and p(N)p(N) is the polynomial

p(N):=(N+2)p2(3N+3)p+2N.p(N)\colon=(N+2)p^{2}-(3N+3)p+2N.

This estimate shows in particular that with a finite qq-moment Radon measure as initial data, there exists a weak solution which has uniformly bounded qq-moments on all compact time interval for any pN<p<2p_{N}<p<2, where the critical value pc<pN<2p_{c}<p_{N}<2 is the largest root of the polynomial p(N)p(N). This critical range (pN,2)(p_{N},2) is sharp in the sense that the Barenblatt source-type solution has finite qq-moment if and only if pN<p<2p_{N}<p<2.

As applications, we show that for such a weak solution with a finite qq-moment Radon measure as initial data, the mass conservation as well as weak convergence at t=0t=0 holds for any pc<p<2p_{c}<p<2. Finally, we obtain a qq-Wasserstein convergence rate for weak solutions uu with a finite qq-moment Radon measure μ\mu as initial data for any pN<p<2p_{N}<p<2, namely,

Wqq(μ,u(x,t)dx)Ctq1,W^{q}_{q}(\mu,u(x,t)dx)\leq Ct^{q-1}, (1.3)

where CC is a constant depending only on NN, pp, μ\mu and TT. In particular, when pp converges to 22, the convergence rate coincides with the well-known heat flow case in [1].

To the best of our knowledge, there does not exists qq-moment estimates for singular pp-Laplacian equation. However, similar results in terms of mass conservation and connection to qq-Wasserstein space has been done. The mass conservation of singular parabolic pp-Laplace equation for pc<p<2p_{c}<p<2 is proved by Fino et al. [8] for any weak solution where the initial data are Radon measures with compact support. Our result only requires finite qq-moment instead of compact support for initial data, but for any weak solution constructed through mollification. As for the connection to the flow in the qq-Wasserstein space, the work of Kell [12] is the closest to the present one. There, the author shows that a smooth solution of Cauchy problem (1.1) solves a generalized gradient flow problem of Rényi entropy functional in the qq-Wasserstein space based on gradient flow and functional analysis methods. The author further provides a condition for the mass conservation of the flow with an integrable function as initial data for 3/2<p<3/2<p<\infty in a general metric space. In contrast, our qq-moment estimate (1.2) is a local estimate based on pure PDE and analysis method, and, while holding for N\mathbb{R}^{N}, our result shows that mass conservation holds for a different range pc<p<2p_{c}<p<2.

The paper is organized as follows: in Section 2, we introduce notations and definitions and auxiliary Lemmas as well as the critical parameters pcp_{c}, p(N)p(N) and pNp_{N}. Section 3, is dedicated to the main theorem for the local qq-moment estimate (1.2). Section 4 addresses the mass conservation and the weak convergence. Finally, in Section 5 we prove the Wasserstein convergence rate.

2. Notation and preliminary results

On N\mathbb{R}^{N} equipped with the Euclidean norm |||\cdot|, we denote by Bρ(x)={y:|yx|ρ}B_{\rho}(x)=\{y\colon|y-x|\leq\rho\} the closed ball centered at xx with radius ρ\rho, and set Bρ:=Bρ(0)B_{\rho}:=B_{\rho}(0). We denote by ArR={x:r|x|R}A_{r}^{R}=\{x\colon r\leq|x|\leq R\} be the closed annulus centered at 0 with radius rr and RR. Let further ΩN\Omega\subseteq\mathbb{R}^{N} be a measurable set. For 1p1\leq p\leq\infty, we denote by Lp(Ω)L^{p}\left(\Omega\right) the space of pp-integrable functions with respect to the Lebesgue measure and set Lp(N)=LpL^{p}(\mathbb{R}^{N})=L^{p}. We denote by W1,p(Ω)W^{1,p}(\Omega) the space of first-order Sobolev space and set W1,p(N)=W1,pW^{1,p}(\mathbb{R}^{N})=W^{1,p}. For a function uu in W1,p(Ω)W^{1,p}(\Omega), we denote by u\nabla u the weak derivative of uu. For T>0T>0 and ST=N×(0,T]S_{T}=\mathbb{R}^{N}\times(0,T], we denote by Lloc(ST)L^{\infty}_{\mathrm{loc}}(S_{T}) the space of functions which belong to L(K×[s,t])L^{\infty}(K\times[s,t]) for all intervals [s,t](0,T][s,t]\subset(0,T] and compact subsets KK of N\mathbb{R}^{N}. For X=Lp(Ω)X=L^{p}(\Omega) or X=W1,p(Ω)X=W^{1,p}(\Omega), we denote by C([0,T];X),C((0,T);X)C([0,T];X),C((0,T);X) and Lp(0,T;X)L^{p}(0,T;X) in a Bochner sense. We further denote by +\mathcal{M}^{+} the set of positive Radon measures on N\mathbb{R}^{N}.

Definition 2.1.

We say that a measurable function u:STu:S_{T}\to\mathbb{R} is a weak solution of the Cauchy problem (1.1) with L1L^{1}-initial data, that is

u0=μL1,u_{0}=\mu\in L^{1}, (2.1)

if for every bounded open set ΩN\Omega\subset\mathbb{R}^{N}, it holds

{uC((0,T);L1(Ω))Lp1(0,T;W1,p1(Ω))Lloc(ST),|u|Lloc(ST),\begin{cases}\displaystyle u\in C\left((0,T);L^{1}\left(\Omega\right)\right)\cap L^{p-1}\left(0,T;W^{1,p-1}\left(\Omega\right)\right)\cap L^{\infty}_{loc}\left(S_{T}\right),\\ |\nabla u|\in L^{\infty}_{loc}\left(S_{T}\right),\end{cases} (2.2)

and for all 0<s<t<T0<s<t<T and ϕC1(N×[0,T])\phi\in C^{1}(\mathbb{R}^{N}\times[0,T]) such that supp(ϕ(,τ))Bρ\mathrm{supp}(\phi(\cdot,\tau))\subset B_{\rho} for all τ[0,T]\tau\in[0,T] for some ρ>0\rho>0,

𝔹ρ(ϕu)(x,t)𝑑x+stBρ(utϕ+|u|p2uϕ)𝑑x𝑑τ=Bρ(ϕu)(x,s)𝑑x,\int_{\mathbb{B_{\rho}}}(\phi u)(x,t)dx+\int_{s}^{t}\int_{B_{\rho}}\left(-u\partial_{t}\phi+|\nabla u|^{p-2}\nabla u\cdot\nabla\phi\right)dxd\tau=\int_{B_{\rho}}(\phi u)(x,s)dx, (2.3)

and for all R>0R>0,

limτ0BR|u(x,t)u0(x)|𝑑x=0.\lim_{\tau\searrow 0}\int_{B_{R}}\left|u(x,t)-u_{0}(x)\right|dx=0. (2.4)

The measurable function u:STNu:S_{T}\to\mathbb{R}^{N} is a weak solution of the Cauchy problem (1.1) with positive Radon measure as initial data, that is,

u0=μ+,u_{0}=\mu\in\mathcal{M}^{+}, (2.5)

if condition (2.4) is replaced by

limτ0Nψ(x)u(x,τ)𝑑x=Nψ(x)μ(dx)\lim_{\tau\searrow 0}\int_{\mathbb{R}^{N}}\psi(x)u(x,\tau)dx=\int_{\mathbb{R}^{N}}\psi(x)\mu(dx) (2.6)

for all ψCc(N)\psi\in C_{c}(\mathbb{R}^{N}).

For the existence and uniqueness of weak solution of (1.1) with initial data u0u_{0} in L1L^{1}, we refer readers to [6]. In particular, if the initial data u0u_{0} is in Cc(N)C^{\infty}_{c}(\mathbb{R}^{N}), then the weak solution uu is unique and satisfies that uC([0,T];L1(N))u\in C([0,T];L^{1}(\mathbb{R}^{N})), tuL2(0,T;L2(N))\partial_{t}u\in L^{2}(0,T;L^{2}(\mathbb{R}^{N})) and |u|Lp(0,T;Lp(N))|\nabla u|\in L^{p}(0,T;L^{p}(\mathbb{R}^{N})) and uL(ST)u\in L^{\infty}(S_{T}). In this case, the condition (2.3) is equivalent to the following condition:

N(ϕu)(x,t)𝑑x+0tN(uτϕ+|u|p2uϕ)𝑑x𝑑τ=Nϕ(x,0)u0𝑑x.\int_{\mathbb{R}^{N}}(\phi u)(x,t)dx+\int_{0}^{t}\int_{\mathbb{R}^{N}}\left(-u\partial_{\tau}\phi+|\nabla u|^{p-2}\nabla u\cdot\nabla\phi\right)dxd\tau=\int_{\mathbb{R}^{N}}\phi(x,0)u_{0}dx. (2.7)

Furthermore, uu is locally α\alpha-Hölder continuous on ΩTε:=Ω×[ε,T]\Omega^{\varepsilon}_{T}:=\Omega\times[\varepsilon,T] for all bounded subsets ΩN\Omega\subset\mathbb{R}^{N} and ε>0\varepsilon>0, with α(0,1)\alpha\in(0,1) depending only on N,pN,p and supremum norm u,ΩTε\|u\|_{\infty,\Omega^{\varepsilon}_{T}} on ΩTε\Omega^{\varepsilon}_{T}, see [5]. Moreover, if initial data u00u_{0}\geq 0, then the weak solution u(x,t)0u(x,t)\geq 0 for all (x,t)ST(x,t)\in S_{T}.

For the existence of weak solution of (1.1) with a positive Radon measure as initial data, we refer readers to [10, Theorem 1] and [6, Theorem III.8.1]. However, to our knowledge, in this case the uniqueness of weak solution is unknown and depends on the choice of the definition of the solution (viscosity, entropy, distributional, etc.).

Recall that a sequence (μn)(\mu_{n}) of positive Radon measures converges vaguely, or weakly, to μ\mu in +\mathcal{M}^{+} if Nϕ𝑑μnRNϕ𝑑μ\int_{\mathbb{R}^{N}}\phi d\mu_{n}\to\int_{R^{N}}\phi d\mu for every ϕ\phi in Cc(NC_{c}(\mathbb{R}^{N}, or for every ϕ\phi in Cb(N)C_{b}(\mathbb{R}^{N}), respectively.

We briefly recall two important Lemmas for the proofs that are formulated in our notations.

Lemma 2.2.

(A priori estimate, Junning [10]). Let k=N(p2)+pk=N(p-2)+p and uu be the weak solution of (1.1) with u0Cc(N)u_{0}\in C^{\infty}_{c}(\mathbb{R}^{N}) as initial data. Then there exists C1:=C1(N,p)C_{1}:=C_{1}(N,p) such that for all R>0R>0, it holds

sup0<τtBR|u(x,τ)|𝑑xC1B2R|u0|𝑑x+C1Rk2pt12p,\sup_{0<\tau\leq t}\int_{B_{R}}\left|u(x,\tau)\right|dx\leq C_{1}\int_{B_{2R}}\left|u_{0}\right|dx+C_{1}R^{-\frac{k}{2-p}}t^{\frac{1}{2-p}}, (2.8)

and for any R0R_{0}, there exists C2:=C2(N,p,R0)C_{2}:=C_{2}(N,p,R_{0}) such that for all R>R0R>R_{0}, it holds

supxBR|u(x,t)|C2(tNk(B4R|u0|𝑑x)pk+Rp2pt12p).\sup_{x\in B_{R}}\left|u(x,t)\right|\leq C_{2}\left(t^{-\frac{N}{k}}\left(\int_{B_{4R}}|u_{0}|dx\right)^{\frac{p}{k}}+R^{-\frac{p}{2-p}}t^{\frac{1}{2-p}}\right). (2.9)
Lemma 2.3.

([9, Lemma 3.1]) Let f:[r0,r1][0,)f\colon[r_{0},r_{1}]\to[0,\infty) be a bounded function with 0r0<r10\leq r_{0}<r_{1}. Suppose that for any σ,σ\sigma,\sigma^{\prime} with r0σ<σr1r_{0}\leq\sigma<\sigma^{\prime}\leq r_{1}, we have

f(σ)[A(σσ)a+B]+θf(σ),f(\sigma)\leq\left[A\left(\sigma^{\prime}-\sigma\right)^{-a}+B\right]+\theta f\left(\sigma^{\prime}\right),

where A,B,a,θA,B,a,\theta are nonnegative constants with 0θ<10\leq\theta<1. Then for any λ,λ\lambda,\lambda^{\prime} with r0λ<λr1r_{0}\leq\lambda<\lambda^{\prime}\leq r_{1}, it holds

f(λ)C(a,θ)[A(λλ)a+B],f(\lambda)\leq C\left(a,\theta\right)\left[A\left(\lambda^{\prime}-\lambda\right)^{-a}+B\right],

for some positive constant C(a,θ)C(a,\theta) depending only on aa and θ\theta.

Finally, recall the following critical values

pc:=2NN+1,p(N):=(N+2)p2(3N+3)p+2N,pN:=largest root of p(N).\begin{split}p_{c}&:=\frac{2N}{N+1},\\ p(N)&:=(N+2)p^{2}-(3N+3)p+2N,\\ p_{N}&:=\text{largest root of }p(N).\end{split} (2.10)

Note that since N2N\geq 2, it holds

43pc<pN<2.\frac{4}{3}\leq p_{c}<p_{N}<2.

3. Moments estimates

In this section, we derive qq-moment estimates for a weak solution of (1.1) with finite positive Radon measure as initial data. We denote by qq the Hölder conjugate number of pp, that is, 1p+1q=1\frac{1}{p}+\frac{1}{q}=1, and denote by kk the constant N(p2)+pN(p-2)+p. Given a μ+\mu\in\mathcal{M}^{+}, we say that μ\mu has finite qq-moment if N|x|q𝑑μ<\int_{\mathbb{R}^{N}}|x|^{q}d\mu<\infty. We begin to state our main result in this section.

Theorem 3.1.

(qq-moment estimates.) Let pc<p<2p_{c}<p<2 and μ\mu be in +\mathcal{M}^{+}. Then for any 0<r<R0<r<R and 0<tT0<t\leq T, there exists a weak solution uu of (1.1) with μ\mu as initial data satisfying

sup0<τtr|x|R|x|qu(x,τ)𝑑xC12r|x|2R|x|q𝑑μ+Ct12p(rp(N)(p1)(2p)+Rp(N)(p1)(2p)),\sup_{0<\tau\leq t}\int_{r\leq|x|\leq R}\left|x\right|^{q}u(x,\tau)dx\leq C\int_{\frac{1}{2}r\leq|x|\leq 2R}|x|^{q}d\mu\\ +Ct^{\frac{1}{2-p}}\left(r^{-\frac{p(N)}{(p-1)(2-p)}}+R^{-\frac{p(N)}{(p-1)(2-p)}}\right), (3.1)

for some constant C:=C(N,p)C:=C(N,p) depending only on NN and pp. Furthermore, if μ\mu in +\mathcal{M}^{+} has finite total mass and finite qq-moment, and p(N)>0p(N)>0, then for any 0<tT0<t\leq T, the family {u(x,τ)dx:0τt}\{u(x,\tau)dx\colon 0\leq\tau\leq t\} has uniformly bounded qq-moment on [0,t][0,t] and that

limrsup0<τt|x|r|x|qu(x,τ)𝑑x=0.\lim_{r\rightarrow\infty}\sup_{0<\tau\leq t}\int_{|x|\geq r}|x|^{q}u(x,\tau)dx=0. (3.2)
Remark 3.2.

Let {Xτ:0τt}\{X_{\tau}\colon 0\leq\tau\leq t\} be a family of N\mathbb{R}^{N}-valued random variables such that the law of XτX_{\tau} is u(x,τ)dxu(x,\tau)dx. Then equality (3.2) is equivalent to say that {|Xτ|q:0τt}\{|X_{\tau}|^{q}\colon 0\leq\tau\leq t\} is uniformly integrable for any 0<tT0<t\leq T.

Remark 3.3.

Note that (pN,2)(p_{N},2) is a sharp range for pp in the following sense: let UU be the Barenblatt source-type solution, that is,

U(x,t)=tNkF(t1kx),U(x,t)=t^{-\frac{N}{k}}F(t^{-\frac{1}{k}}x), (3.3)

where F(ξ)=(C+γ|ξ|pp1)p1p2F(\xi)=(C+\gamma|\xi|^{\frac{p}{p-1}})^{\frac{p-1}{p-2}} for γ=(p1)k/(p(2p))\gamma=(p-1)k/(p(2-p)) and some positive constant CC. It is well-known that ww is a weak solution of (1.1) with initial data μ=Mδ0\mu=M\delta_{0} where M=w(t)L1M=\|w(t)\|_{L^{1}}. Computations show that UU has finite qq-moment if and only if pN<p<2p_{N}<p<2.

To show Theorem 3.1, we first establish the following auxiliary lemma.

Lemma 3.4.

Let p(pc,2)p\in(p_{c},2) and ξCc1(N)\xi\in C^{1}_{c}(\mathbb{R}^{N}) be a smooth function such that supp(ξ)Ω\mathrm{supp}(\xi)\subset\Omega for some bounded domain Ω\Omega. Let uu be the positive weak solution of (1.1) with initial data u0Cc(N),u00u_{0}\in C^{\infty}_{c}(\mathbb{R}^{N}),u_{0}\geq 0. Then there exists a positive constant C:=C(N,p)C:=C(N,p) such that for any ε>0\varepsilon>0,

0tΩξpτβq|u|p(u+ε)αq𝑑x𝑑τC0tΩτβq(u+ε)pαq|ξ|p𝑑x𝑑τ+CΩtβq(u+ε)2αqξp𝑑x,\int_{0}^{t}\int_{\Omega}\xi^{p}\tau^{\beta q}|\nabla u|^{p}(u+\varepsilon)^{-\alpha q}dxd\tau\leq C\int_{0}^{t}\int_{\Omega}\tau^{\beta q}(u+\varepsilon)^{p-\alpha q}|\nabla\xi|^{p}dxd\tau\\ +C\int_{\Omega}t^{\beta q}(u+\varepsilon)^{2-\alpha q}\xi^{p}dx,

where β=α/2\beta=\alpha/2 and α=1/p\alpha=1/p if p>1/(p1)p>1/(p-1) and α=p1\alpha=p-1 if p1/(p1)p\leq 1/(p-1).

Proof.

Let ε>0\varepsilon>0 be fixed and uε=u+εu_{\varepsilon}=u+\varepsilon and ψ(x,τ)=τβquε1αqξp\psi(x,\tau)=\tau^{\beta q}u_{\varepsilon}^{1-\alpha q}\xi^{p}. Note that uε1αpu_{\varepsilon}^{1-\alpha p} is bounded since 1<1αp<0-1<1-\alpha p<0.

On the one hand, by the regularity of uu on (0,T)(0,T) it follows that

τ(τβquε2αqξp)=(2αq)ψτu+βqτβq1uε2αqξp(2αq)ψτu.\partial_{\tau}\left(\tau^{\beta q}u_{\varepsilon}^{2-\alpha q}\xi^{p}\right)=\left(2-\alpha q\right)\psi\partial_{\tau}u+\beta q\tau^{\beta q-1}u_{\varepsilon}^{2-\alpha q}\xi^{p}\geq\left(2-\alpha q\right)\psi\partial_{\tau}u.

Since 0<2αq<10<2-\alpha q<1, with τu\partial_{\tau}u in L2(0,T;L2(N))L^{2}(0,T;L^{2}(\mathbb{R}^{N})) and uu in C([0,T];L1(N))C([0,T];L^{1}(\mathbb{R}^{N})) and boundedness of ψ\psi, we can integrate over Ω×(0,t)\Omega\times(0,t) on both sides and get

0tΩψτudxdτ12αqΩtβquε2αq(x,t)ξp𝑑x.\int_{0}^{t}\int_{\Omega}\psi\partial_{\tau}udxd\tau\leq\frac{1}{2-\alpha q}\int_{\Omega}t^{\beta q}u_{\varepsilon}^{2-\alpha q}(x,t)\xi^{p}dx. (3.4)

By the regularity of uu it follows that

|u|p2uψ=pξp1|u|p2τβquε1αquξ(αq1)|u|pξpτβquεαq.|\nabla u|^{p-2}\nabla u\nabla\psi=p\xi^{p-1}|\nabla u|^{p-2}\tau^{\beta q}u_{\varepsilon}^{1-\alpha q}\nabla u\nabla\xi-\left(\alpha q-1\right)|\nabla u|^{p}\xi^{p}\tau^{\beta q}u_{\varepsilon}^{-\alpha q}. (3.5)

For the first term on the right hand side of (3.5), applying Young’s inequality abε|a|q+ε1q1|b|pa\cdot b\leq\varepsilon|a|^{q}+\varepsilon^{-\frac{1}{q-1}}|b|^{p} for ε=(αq1)/(2p)\varepsilon=(\alpha q-1)/(2p) and

a=ξp1|u|p2τβuεαuandb=τβ(q1)uε1α(q1)ξ.a=\xi^{p-1}|\nabla u|^{p-2}\tau^{\beta}u_{\varepsilon}^{-\alpha}\nabla u\quad\text{and}\quad b=\tau^{\beta(q-1)}u_{\varepsilon}^{1-\alpha(q-1)}\nabla\xi.

Equation (3.5) yields

|u|p2uψ12(αq1)ξp|u|pτβquεαq+p(2pαq1)1q1τβquεpαq|ξ|p.|\nabla u|^{p-2}\nabla u\nabla\psi\leq-\frac{1}{2}\left(\alpha q-1\right)\xi^{p}|\nabla u|^{p}\tau^{\beta q}u_{\varepsilon}^{-\alpha q}\\ +p\left(\frac{2p}{\alpha q-1}\right)^{\frac{1}{q-1}}\tau^{\beta q}u_{\varepsilon}^{p-\alpha q}|\nabla\xi|^{p}. (3.6)

Since |u||\nabla u| is in Lp(0,T;Lp(N))L^{p}(0,T;L^{p}(\mathbb{R}^{N})) and uεαqu_{\varepsilon}^{-\alpha q} is bounded and 0<pαq<10<p-\alpha q<1, it follows that

0tΩξp|u|pτβquεαq𝑑x𝑑τ<and0tΩτβquεpαq|ξ|p𝑑x𝑑τ<.\int_{0}^{t}\int_{\Omega}\xi^{p}|\nabla u|^{p}\tau^{\beta q}u_{\varepsilon}^{-\alpha q}dxd\tau<\infty\quad\text{and}\quad\int_{0}^{t}\int_{\Omega}\tau^{\beta q}u_{\varepsilon}^{p-\alpha q}|\nabla\xi|^{p}dxd\tau<\infty.

Hence, integrating (3.6) over Ω×(0,t)\Omega\times(0,t) yields

0tΩ|u|p2uψdxdτ12(αq1)0tΩξp|u|pτβquεαq𝑑x𝑑τ+p(2pαq1)1q10tΩτβquεpαq|ξ|p𝑑x𝑑τ.\int_{0}^{t}\int_{\Omega}|\nabla u|^{p-2}\nabla u\nabla\psi dxd\tau\leq-\frac{1}{2}\left(\alpha q-1\right)\int_{0}^{t}\int_{\Omega}\xi^{p}|\nabla u|^{p}\tau^{\beta q}u_{\varepsilon}^{-\alpha q}dxd\tau\\ +p\left(\frac{2p}{\alpha q-1}\right)^{\frac{1}{q-1}}\int_{0}^{t}\int_{\Omega}\tau^{\beta q}u_{\varepsilon}^{p-\alpha q}|\nabla\xi|^{p}dxd\tau. (3.7)

On the other hand, multiplying (1.1) by ψ\psi and integrating by part, it follows that

0tΩψτudxdτ+0tΩ|u|p2uψdxdτ=0.\int_{0}^{t}\int_{\Omega}\psi\partial_{\tau}udxd\tau+\int_{0}^{t}\int_{\Omega}|\nabla u|^{p-2}\nabla u\nabla\psi dxd\tau=0.

Hence, adding (3.4) and (3.7) together yields

0tΩξp|u|pτβquεαq𝑑x𝑑τ(2pαq1)p0tΩτβquεpαq|ξ|p𝑑x𝑑τ+2(αq1)(2αq)Ωtβquε2αq(x,t)ξp𝑑x𝑑τ.\int_{0}^{t}\int_{\Omega}\xi^{p}|\nabla u|^{p}\tau^{\beta q}u_{\varepsilon}^{-\alpha q}dxd\tau\leq\left(\frac{2p}{\alpha q-1}\right)^{p}\int_{0}^{t}\int_{\Omega}\tau^{\beta q}u_{\varepsilon}^{p-\alpha q}|\nabla\xi|^{p}dxd\tau\\ +\frac{2}{\left(\alpha q-1\right)\left(2-\alpha q\right)}\int_{\Omega}t^{\beta q}u_{\varepsilon}^{2-\alpha q}(x,t)\xi^{p}dxd\tau.

Taking

C(N,p)=max{(2pαq1)p,2(αq1)(2αq)}C(N,p)=\max\left\{\left(\frac{2p}{\alpha q-1}\right)^{-p},\frac{2}{\left(\alpha q-1\right)\left(2-\alpha q\right)}\right\}

yields the result. ∎

We address now the proof of Theorem 3.1. In the following proof, we denote by CC a generic positive constant depending only on pp and NN.

Proof of Theorem 3.1.

In a first step, we show inequality (3.1) in the case where uu is the positive weak solution of (1.1) with initial data u0u_{0} in Cc(N)C^{\infty}_{c}(\mathbb{R}^{N}) and u00u_{0}\geq 0. Let R>r>0R>r>0 and 1σ<σ21\leq\sigma<\sigma^{\prime}\leq 2. Let Aσ,AσA_{\sigma},A_{\sigma^{\prime}} denote closed annulus Ar/σRσA_{r/\sigma}^{R\sigma} and Ar/σRσA_{r/\sigma^{\prime}}^{R\sigma^{\prime}} respectively. Let ξ\xi be a smooth cut-off function such that ξ=1\xi=1 in AσA_{\sigma} and ξ=0\xi=0 in AσcA^{c}_{\sigma^{\prime}} and |ξ|σσ(σσ)r|\nabla\xi|\leq\frac{\sigma^{\prime}\sigma}{(\sigma^{\prime}-\sigma)r} in Ar:=Ar/σr/σA^{r}:=A_{r/\sigma^{\prime}}^{r/\sigma} and |ξ|1(σσ)R|\nabla\xi|\leq\frac{1}{(\sigma^{\prime}-\sigma)R} in AR:=ARσRσA^{R}:=A_{R\sigma}^{R\sigma^{\prime}}. Let ϕ(x,τ)=|x|qξpχ[0,T](τ)\phi(x,\tau)=|x|^{q}\xi^{p}\chi_{[0,T]}(\tau) be the test function where χ[0,T]\chi_{[0,T]} is indicator function. Then for any 0<tT0<t\leq T, by (2.7), it follows that

Aσ|x|qu(x,t)𝑑xAσ|x|qu0𝑑x+p0tAσ|u|p1ξp1|x|q|ξ|𝑑x𝑑τ+q0tAσ|u|p1ξp|x|1p1𝑑x𝑑τ.\int_{A_{\sigma}}|x|^{q}u(x,t)dx\leq\int_{A_{\sigma^{\prime}}}|x|^{q}u_{0}dx+p\int_{0}^{t}\int_{A_{\sigma^{\prime}}}|\nabla u|^{p-1}\xi^{p-1}|x|^{q}|\nabla\xi|dxd\tau\\ +q\int_{0}^{t}\int_{A_{\sigma^{\prime}}}|\nabla u|^{p-1}\xi^{p}|x|^{\frac{1}{p-1}}dxd\tau. (3.8)

For the second term on the right hand side of (3.8), since |ξ|=0|\nabla\xi|=0 in AσA_{\sigma} and |ξ|σσ(σσ)r|\nabla\xi|\leq\frac{\sigma^{\prime}\sigma}{(\sigma^{\prime}-\sigma)r} and |ξ|1(σσ)R|\nabla\xi|\leq\frac{1}{(\sigma^{\prime}-\sigma)R} in ArA^{r} and ARA^{R} respectively, and note that σ,σ2\sigma,\sigma^{\prime}\leq 2, it follows that

0tAσ|u|p1ξp1|x|q|ξ|𝑑x𝑑τ=0tArAR|u|p1ξp1|x|1p1(|x||ξ|)𝑑x𝑑τ4σσ0tAσ|u|p1ξp1|x|1p1𝑑x𝑑τ.\int_{0}^{t}\int_{A_{\sigma^{\prime}}}|\nabla u|^{p-1}\xi^{p-1}|x|^{q}|\nabla\xi|dxd\tau=\int_{0}^{t}\int_{A^{r}\cup A^{R}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}\left(|x||\nabla\xi|\right)dxd\tau\\ \leq\frac{4}{\sigma^{\prime}-\sigma}\int_{0}^{t}\int_{A_{\sigma^{\prime}}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau. (3.9)

Plugging (3.9) into (3.8) and use the fact that ξpξp1\xi^{p}\leq\xi^{p-1} and 11/(σσ)1\leq 1/(\sigma^{\prime}-\sigma) yields

Aσ|x|qu(x,t)𝑑xAσ|x|qu0𝑑x+Cσσ0tAσ|u|p1ξp1|x|1p1𝑑x𝑑τ.\int_{A_{\sigma}}|x|^{q}u(x,t)dx\leq\int_{A_{\sigma^{\prime}}}|x|^{q}u_{0}dx+\frac{C}{\sigma^{\prime}-\sigma}\int_{0}^{t}\int_{A_{\sigma^{\prime}}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau. (3.10)

Let uε:=u+εu_{\varepsilon}:=u+\varepsilon for ε>0\varepsilon>0. We consider the second term on the right hand side of (3.10) for different cases of pp:

  1. Case 1:

    If p>1/(p1)p>1/(p-1), then by Hölder’s inequality, it follows that

    0tAσ|u|p1ξp1|x|1p1𝑑x𝑑τ(0tAστβq|u|pξpuεαq𝑑x𝑑τ)1q(0tAστβp|x|quεαp𝑑x𝑑τ)1p,\int_{0}^{t}\int_{A_{\sigma^{\prime}}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\\ \leq\left(\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{\beta q}|\nabla u|^{p}\xi^{p}u_{\varepsilon}^{-\alpha q}dxd\tau\right)^{\frac{1}{q}}\left(\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{-\beta p}|x|^{q}u_{\varepsilon}^{\alpha p}dxd\tau\right)^{\frac{1}{p}}, (3.11)

    where α=1/p\alpha=1/p and β=1/(2p)\beta=1/(2p).

    For the first term on the right hand of (3.11), by Lemma 3.4 and upper bounds of |ξ||\nabla\xi| in ArA^{r} and ARA^{R}, it follows that

    0tAστβq|u|pξpuεαq𝑑x𝑑τC[(σσ)r]p0tArτβquεpαq𝑑x𝑑τ+C[(σσ)R]p0tARτβquεpαq𝑑x𝑑τ+CAσtβquε2αq𝑑x.\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{\beta q}|\nabla u|^{p}\xi^{p}u_{\varepsilon}^{-\alpha q}dxd\tau\leq\frac{C}{[(\sigma^{\prime}-\sigma)r]^{p}}\int_{0}^{t}\int_{A^{r}}\tau^{\beta q}u_{\varepsilon}^{p-\alpha q}dxd\tau\\ +\frac{C}{[(\sigma^{\prime}-\sigma)R]^{p}}\int_{0}^{t}\int_{A^{R}}\tau^{\beta q}u_{\varepsilon}^{p-\alpha q}dxd\tau+C\int_{A_{\sigma^{\prime}}}t^{\beta q}u_{\varepsilon}^{2-\alpha q}dx. (3.12)

    For the first term on the right hand side of (3.12), since 0<p1/(p1)<10<p-1/(p-1)<1, Hölder’s inequality yields

    0tArτq2puεp1p1𝑑x𝑑τ=0tAr(τp2|x|q(p1p1))(|x|qτ12uε)p1p1𝑑x𝑑τ(0tArτp2(qp)|x|qqp(p1p1)𝑑x𝑑τ)1p+1p1(0tArτ12|x|quε𝑑x𝑑τ)p1p1Ctqq2prN(qp)q(p1p1)(sup0<τtAσ|x|quε𝑑x)p1p1.\int_{0}^{t}\int_{A^{r}}\tau^{\frac{q}{2p}}u_{\varepsilon}^{p-\frac{1}{p-1}}dxd\tau=\int_{0}^{t}\int_{A^{r}}\left(\tau^{\frac{p}{2}}|x|^{-q\left(p-\frac{1}{p-1}\right)}\right)\left(|x|^{q}\tau^{-\frac{1}{2}}u_{\varepsilon}\right)^{p-\frac{1}{p-1}}dxd\tau\\ \leq\left(\int_{0}^{t}\int_{A^{r}}\tau^{\frac{p}{2(q-p)}}|x|^{-\frac{q}{q-p}\left(p-\frac{1}{p-1}\right)}dxd\tau\right)^{1-p+\frac{1}{p-1}}\left(\int_{0}^{t}\int_{A^{r}}\tau^{-\frac{1}{2}}|x|^{q}u_{\varepsilon}dxd\tau\right)^{p-\frac{1}{p-1}}\\ \leq Ct^{q-\frac{q}{2p}}r^{N(q-p)-q\left(p-\frac{1}{p-1}\right)}\left(\sup_{0<\tau\leq t}\int_{A_{\sigma^{\prime}}}|x|^{q}u_{\varepsilon}dx\right)^{p-\frac{1}{p-1}}. (3.13)

    The second term on the right hand side of (3.12) is the same as the first term, replacing rr by RR. As for the third term on the right hand side of (3.12), Hölder’s inequality yields

    Aσtq2puε21p1𝑑xtq2p(Aσ|x|p(2p3)(p1)(2p)𝑑x)1p11(Aσ|x|quε𝑑x)21p1Ctq2p(max{rp(N)(p1)(2p),Rp(N)(p1)(2p)})2pp1(sup0<τtAσ|x|quε𝑑x)2p3p1.\int_{A_{\sigma^{\prime}}}t^{\frac{q}{2p}}u_{\varepsilon}^{2-\frac{1}{p-1}}dx\leq t^{\frac{q}{2p}}\left(\int_{A_{\sigma^{\prime}}}|x|^{-\frac{p(2p-3)}{(p-1)(2-p)}}dx\right)^{\frac{1}{p-1}-1}\left(\int_{A_{\sigma^{\prime}}}|x|^{q}u_{\varepsilon}dx\right)^{2-\frac{1}{p-1}}\\ \leq Ct^{\frac{q}{2p}}\left(\max\left\{r^{-\frac{p(N)}{(p-1)(2-p)}},R^{-\frac{p(N)}{(p-1)(2-p)}}\right\}\right)^{\frac{2-p}{p-1}}\left(\sup_{0<\tau\leq t}\int_{A_{\sigma^{\prime}}}|x|^{q}u_{\varepsilon}dx\right)^{\frac{2p-3}{p-1}}. (3.14)

    We now turn to the second term on right hand side of (3.11) for which holds

    (0tAστ12|x|quε𝑑x𝑑τ)1pCt12p(sup0<τtAσ|x|quε𝑑x)1p.\left(\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{-\frac{1}{2}}|x|^{q}u_{\varepsilon}dxd\tau\right)^{\frac{1}{p}}\leq Ct^{\frac{1}{2p}}\left(\sup_{0<\tau\leq t}\int_{A_{\sigma^{\prime}}}|x|^{q}u_{\varepsilon}dx\right)^{\frac{1}{p}}. (3.15)

    Plugging (3.13), (3.14) into (3.12), and then applying inequality (a+b)1/qa1/q+b1/q(a+b)^{1/q}\leq a^{1/q}+b^{1/q} for a,b>0a,b>0 to (3.12), and plugging it into (3.11) together with (3.15) and taking ε0\varepsilon\searrow 0, it follows that

    Cσσ0tAσ|u|p1ξp1|x|1p1𝑑x𝑑τC(σσ)pt(r1k(p1p1)+R1k(p1p1))Mq(σ)p1+C(σσ)1t1p(max{rp(N)(p1)(2p),Rp(N)(p1)(2p)})2ppMq(σ)2(p1)p,\frac{C}{\sigma^{\prime}-\sigma}\int_{0}^{t}\int_{A_{\sigma^{\prime}}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\\ \leq C(\sigma^{\prime}-\sigma)^{-p}t\left(r^{1-k-\left(p-\frac{1}{p-1}\right)}+R^{1-k-\left(p-\frac{1}{p-1}\right)}\right)M_{q}(\sigma^{\prime})^{p-1}\\ +C(\sigma^{\prime}-\sigma)^{-1}t^{\frac{1}{p}}\left(\max\left\{r^{-\frac{p(N)}{(p-1)(2-p)}},R^{-\frac{p(N)}{(p-1)(2-p)}}\right\}\right)^{\frac{2-p}{p}}M_{q}(\sigma^{\prime})^{\frac{2(p-1)}{p}}, (3.16)

    where Mq(σ)=sup0<τtAσ|x|qu𝑑xM_{q}(\sigma^{\prime})=\sup_{0<\tau\leq t}\int_{A_{\sigma^{\prime}}}|x|^{q}udx. Applying Young’s inequaliy abεb1/(p1)+Cεa1/(2p)ab\leq\varepsilon b^{1/(p-1)}+C_{\varepsilon}a^{1/(2-p)} and abεbp/(2p2)+Cεap/(2p)ab\leq\varepsilon b^{p/(2p-2)}+C_{\varepsilon}a^{p/(2-p)} to the first and second terms of the right hand side of (3.16), respectively, whereby ε=1/4\varepsilon=1/4, and using identity 1kp+1/(p1)=p(N)/(p1)1-k-p+1/(p-1)=-p(N)/(p-1), it follows that

    Cσσ0tAσ|u|p1ξp1|x|1p1𝑑x𝑑τ12sup0<τtAσ|x|qu𝑑x+C(σσ)p2pt12p(rp(N)(p1)(2p)+Rp(N)(p1)(2p)).\frac{C}{\sigma^{\prime}-\sigma}\int_{0}^{t}\int_{A_{\sigma^{\prime}}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\leq\frac{1}{2}\sup_{0<\tau\leq t}\int_{A_{\sigma^{\prime}}}|x|^{q}udx\\ +C(\sigma^{\prime}-\sigma)^{-\frac{p}{2-p}}t^{\frac{1}{2-p}}\left(r^{-\frac{p(N)}{(p-1)(2-p)}}+R^{-\frac{p(N)}{(p-1)(2-p)}}\right). (3.17)
  2. Case 2:

    If p1/(p1)p\leq 1/(p-1), by Hölder’s inequality, it follows that

    0tAσ|u|p1ξp1|x|1p1𝑑x𝑑τ(0tAστβq|u|puεαqξp|x|(1p1p)q𝑑x𝑑τ)1q(0tAστβp|x|p2uεαp𝑑x𝑑τ)1p,\int_{0}^{t}\int_{A_{\sigma^{\prime}}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\\ \leq\left(\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{\beta q}|\nabla u|^{p}u_{\varepsilon}^{-\alpha q}\xi^{p}|x|^{\left(\frac{1}{p-1}-p\right)q}dxd\tau\right)^{\frac{1}{q}}\left(\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{-\beta p}|x|^{p^{2}}u_{\varepsilon}^{\alpha p}dxd\tau\right)^{\frac{1}{p}}, (3.18)

    where α=p1\alpha=p-1 and β=(p1)/2\beta=(p-1)/2.

    For the first term on the right hand side of (3.18), taking ξ~=ξ|x|(1/(p1)p)/(p1)\tilde{\xi}=\xi|x|^{(1/(p-1)-p)/(p-1)} and applying Lemma 3.4, yields

    0tAστβq|u|puεαq(ξ|x|(1p1p)1p1)p𝑑x𝑑τC0tAστβquεpαq|ξ~|p𝑑x𝑑τ+CAσtβquε2αqξ~p𝑑x.\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{\beta q}|\nabla u|^{p}u_{\varepsilon}^{-\alpha q}\left(\xi|x|^{\left(\frac{1}{p-1}-p\right)\frac{1}{p-1}}\right)^{p}dxd\tau\leq C\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{\beta q}u_{\varepsilon}^{p-\alpha q}|\nabla\tilde{\xi}|^{p}dxd\tau\\ +C\int_{A_{\sigma^{\prime}}}t^{\beta q}u_{\varepsilon}^{2-\alpha q}\tilde{\xi}^{p}dx. (3.19)

    For the first term on the right hand side of (3.19), note that we have

    ξ~=|x|(1p1p)1p1ξ+ξ(1p1p)1p1|x|(1p1p)1p12x.\nabla\tilde{\xi}=|x|^{\left(\frac{1}{p-1}-p\right)\frac{1}{p-1}}\nabla\xi+\xi\left(\frac{1}{p-1}-p\right)\frac{1}{p-1}|x|^{\left(\frac{1}{p-1}-p\right)\frac{1}{p-1}-2}x.

    Hence, applying inequality |a+b|p2p1(|a|p+|b|p)|a+b|^{p}\leq 2^{p-1}(|a|^{p}+|b|^{p}) and upper bounds of |ξ||\nabla\xi| in ArA^{r} and ARA^{R} and |ξ|1|\xi|\leq 1, it follows that

    0tAστp2|ξ~|p𝑑x𝑑τCtp2+1{Aσ|x|(1p1p)q|ξ|p+|x|(1p1p)qpdx}Ctp2+1(σσ)p(rpAr|x|(1p1p)q𝑑x+RpAR|x|(1p1p)q𝑑x)+Ctp2+1Aσ|x|(1p1p)qp𝑑xCtp2+1(σσ)p(rN+(1p1p)qp+RN+(1p1p)qp)+Ctp2+1max{rN+(1p1p)qp,RN+(1p1p)qp}.\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{\frac{p}{2}}|\nabla\tilde{\xi}|^{p}dxd\tau\leq Ct^{\frac{p}{2}+1}\left\{\int_{A_{\sigma^{\prime}}}|x|^{\left(\frac{1}{p-1}-p\right)q}|\nabla\xi|^{p}+|x|^{\left(\frac{1}{p-1}-p\right)q-p}dx\right\}\\ \leq Ct^{\frac{p}{2}+1}\left(\sigma^{\prime}-\sigma\right)^{-p}\left(r^{-p}\int_{A^{r}}|x|^{\left(\frac{1}{p-1}-p\right)q}dx+R^{-p}\int_{A^{R}}|x|^{\left(\frac{1}{p-1}-p\right)q}dx\right)\\ +Ct^{\frac{p}{2}+1}\int_{A_{\sigma^{\prime}}}|x|^{\left(\frac{1}{p-1}-p\right)q-p}dx\\ \leq Ct^{\frac{p}{2}+1}\left(\sigma^{\prime}-\sigma\right)^{-p}\left(r^{N+\left(\frac{1}{p-1}-p\right)q-p}+R^{N+\left(\frac{1}{p-1}-p\right)q-p}\right)\\ +Ct^{\frac{p}{2}+1}\max\left\{r^{N+\left(\frac{1}{p-1}-p\right)q-p},R^{N+\left(\frac{1}{p-1}-p\right)q-p}\right\}. (3.20)

    By the fact that N+(1/(p1)p)qp0N+(1/(p-1)-p)q-p\geq 0 when N2N\geq 2 and rRr\leq R and 1(σσ)p1\leq(\sigma^{\prime}-\sigma)^{-p}, it follows from (3.20) that

    0tAστp2|ξ~|p𝑑x𝑑τCtp2+1(σσ)pRN+(1p1p)qp.\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{\frac{p}{2}}|\nabla\tilde{\xi}|^{p}dxd\tau\leq Ct^{\frac{p}{2}+1}\left(\sigma^{\prime}-\sigma\right)^{-p}R^{N+\left(\frac{1}{p-1}-p\right)q-p}. (3.21)

    As for the second term on the right hand side of (3.19), note that |ξ~|p|x|(1/(p1)p)q|\tilde{\xi}|^{p}\leq|x|^{(1/(p-1)-p)q}, which by Hölder’s inequality yields

    Aσtp2uε2pξ~p𝑑xtp2(Aσ|x|(1p1p)q(2p)quε2p|x|(2p)q𝑑x)tp2(Aσ|x|(1p12)qp1𝑑x)p1(Aσ|x|quε𝑑x)2pCtp2max{rN+p(32p)(p1)3,RN+p(32p)(p1)3}p1(sup0<τtAσ|x|quεdx)2p.\int_{A_{\sigma^{\prime}}}t^{\frac{p}{2}}u_{\varepsilon}^{2-p}\tilde{\xi}^{p}dx\leq t^{\frac{p}{2}}\left(\int_{A_{\sigma^{\prime}}}|x|^{\left(\frac{1}{p-1}-p\right)q-(2-p)q}u_{\varepsilon}^{2-p}|x|^{(2-p)q}dx\right)\\ \leq t^{\frac{p}{2}}\left(\int_{A_{\sigma^{\prime}}}|x|^{\left(\frac{1}{p-1}-2\right)\frac{q}{p-1}}dx\right)^{p-1}\left(\int_{A_{\sigma^{\prime}}}|x|^{q}u_{\varepsilon}dx\right)^{2-p}\\ \leq Ct^{\frac{p}{2}}\max\left\{r^{N+\frac{p(3-2p)}{(p-1)^{3}}},R^{N+\frac{p(3-2p)}{(p-1)^{3}}}\right\}^{p-1}\left(\sup_{0<\tau\leq t}\int_{A_{\sigma^{\prime}}}|x|^{q}u_{\varepsilon}dx\right)^{2-p}. (3.22)

    Note that if p3/2p\leq 3/2, it is obvious that N+p(32p)/(p1)30N+p(3-2p)/(p-1)^{3}\geq 0. If p>3/2p>3/2, since N2N\geq 2, then it holds that

    N(p1)3+p(32p)22(p1)2+p(32p)=p2+p+10.N(p-1)^{3}+p(3-2p)\geq\frac{2}{2}(p-1)^{2}+p(3-2p)=-p^{2}+p+1\geq 0.

    Taking ε0\varepsilon\searrow 0 on the right hand side of (3.22), yields

    Aσtp2uε2pξ~p𝑑xCtp2R(N+p(32p)(p1)3)(p1)Mq(σ)2p.\int_{A_{\sigma^{\prime}}}t^{\frac{p}{2}}u_{\varepsilon}^{2-p}\tilde{\xi}^{p}dx\leq Ct^{\frac{p}{2}}R^{\left(N+\frac{p(3-2p)}{(p-1)^{3}}\right)(p-1)}M_{q}(\sigma^{\prime})^{2-p}. (3.23)

    Plugging (3.21) and (3.23) into (3.19) and applying inequality (a+b)1/qa1/q+b1/q(a+b)^{1/q}\leq a^{1/q}+b^{1/q} yields

    (0tAστβq|u|puεαqξp|x|(1p1p)q𝑑x𝑑τ)1qCtp+22q(σσ)1pRNq+1p1ppq+Ctp2qR(N+p(32p)(p1)3)(p1)qMq(σ)2pq.\left(\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{\beta q}|\nabla u|^{p}u_{\varepsilon}^{-\alpha q}\xi^{p}|x|^{\left(\frac{1}{p-1}-p\right)q}dxd\tau\right)^{\frac{1}{q}}\\ \leq Ct^{\frac{p+2}{2q}}\left(\sigma^{\prime}-\sigma\right)^{1-p}R^{\frac{N}{q}+\frac{1}{p-1}-p-\frac{p}{q}}+Ct^{\frac{p}{2q}}R^{\left(N+\frac{p(3-2p)}{(p-1)^{3}}\right)\frac{(p-1)}{q}}M_{q}(\sigma^{\prime})^{\frac{2-p}{q}}. (3.24)

    As for the second term on the right hand side of (3.18), Hölder’s inequality and then letting ε0\varepsilon\searrow 0, yields

    (0tAστp(p1)2|x|p2uεp(p1)𝑑x𝑑τ)1p{(0tAσ𝑑x𝑑τ)1p2+p(0tAστ12|x|quε𝑑x𝑑x)p2p}1pCt1pp12RN(p2+p+1)pMq(σ)p1.\left(\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{-\frac{p(p-1)}{2}}|x|^{p^{2}}u_{\varepsilon}^{p(p-1)}dxd\tau\right)^{\frac{1}{p}}\\ \leq\left\{\left(\int_{0}^{t}\int_{A_{\sigma^{\prime}}}dxd\tau\right)^{1-p^{2}+p}\left(\int_{0}^{t}\int_{A_{\sigma^{\prime}}}\tau^{-\frac{1}{2}}|x|^{q}u_{\varepsilon}dxdx\right)^{p^{2}-p}\right\}^{\frac{1}{p}}\\ \leq Ct^{\frac{1}{p}-\frac{p-1}{2}}R^{\frac{N(-p^{2}+p+1)}{p}}M_{q}(\sigma^{\prime})^{p-1}. (3.25)

    Plugging (3.24) and (3.25) into (3.18), it follows that

    Cσσ0tAσ|u|p1ξp1|x|1p1𝑑x𝑑τC(σσ)ptRN(2p)p(2p3)p1Mq(σ)p1+C(σσ)1t1pRN(2p)p+32pp1Mq(σ)2(p1)p.\frac{C}{\sigma^{\prime}-\sigma}\int_{0}^{t}\int_{A_{\sigma^{\prime}}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\leq C\left(\sigma^{\prime}-\sigma\right)^{-p}tR^{N(2-p)-\frac{p(2p-3)}{p-1}}M_{q}(\sigma^{\prime})^{p-1}\\ +C\left(\sigma^{\prime}-\sigma\right)^{-1}t^{\frac{1}{p}}R^{\frac{N(2-p)}{p}+\frac{3-2p}{p-1}}M_{q}(\sigma^{\prime})^{\frac{2(p-1)}{p}}. (3.26)

    Applying Young’s inequality abεb1/(p1)+Cεa1/(2p)ab\leq\varepsilon b^{1/(p-1)}+C_{\varepsilon}a^{1/(2-p)} as well as abεbp/(2p2)+Cεap/(2p)ab\leq\varepsilon b^{p/(2p-2)}+C_{\varepsilon}a^{p/(2-p)} to the first and second terms on the right hand side of (3.26) respectively, where ε=1/4\varepsilon=1/4, it follows that

    Cσσ0tAσ|u|p1ξp1|x|1p1𝑑x𝑑τ12sup0<τtAσ|x|qu𝑑x+C(σσ)p2pt12pRp(N)(p1)(2p).\frac{C}{\sigma^{\prime}-\sigma}\int_{0}^{t}\int_{A_{\sigma^{\prime}}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\leq\frac{1}{2}\sup_{0<\tau\leq t}\int_{A_{\sigma^{\prime}}}|x|^{q}udx\\ +C\left(\sigma^{\prime}-\sigma\right)^{\frac{p}{2-p}}t^{\frac{1}{2-p}}R^{-\frac{p(N)}{(p-1)(2-p)}}. (3.27)

Together with (3.17) and (3.27), we deduce from (3.10) that

Aσ|x|qu(x,t)𝑑xAσ|x|qu0𝑑x+12sup0<τtAσ|x|qu𝑑x+C(σσ)p2pt12p(rp(N)(p1)(2p)+Rp(N)(p1)(2p)).\int_{A_{\sigma}}|x|^{q}u(x,t)dx\leq\int_{A_{\sigma^{\prime}}}|x|^{q}u_{0}dx+\frac{1}{2}\sup_{0<\tau\leq t}\int_{A_{\sigma^{\prime}}}|x|^{q}udx\\ +C\left(\sigma^{\prime}-\sigma\right)^{-\frac{p}{2-p}}t^{\frac{1}{2-p}}\left(r^{-\frac{p(N)}{(p-1)(2-p)}}+R^{-\frac{p(N)}{(p-1)(2-p)}}\right). (3.28)

Inequality (3.28) holds by replacing tt by any τ\tau in (0,t](0,t] implying that

sup0<τtAσ|x|qu𝑑xAσ|x|qu0𝑑x+12sup0<τtAσ|x|qu𝑑x+C(σσ)p2pt12p(rp(N)(p1)(2p)+Rp(N)(p1)(2p)).\sup_{0<\tau\leq t}\int_{A_{\sigma}}|x|^{q}udx\leq\int_{A_{\sigma^{\prime}}}|x|^{q}u_{0}dx+\frac{1}{2}\sup_{0<\tau\leq t}\int_{A_{\sigma^{\prime}}}|x|^{q}udx\\ +C\left(\sigma^{\prime}-\sigma\right)^{-\frac{p}{2-p}}t^{\frac{1}{2-p}}\left(r^{-\frac{p(N)}{(p-1)(2-p)}}+R^{-\frac{p(N)}{(p-1)(2-p)}}\right). (3.29)

By Lemma 2.2, it holds that

supσ[1,2]Mq(σ)(2R)qsup0<τtB2Ru𝑑xC(2R)q(B2Ru0𝑑x+Rk2pt12p)<.\sup_{\sigma\in[1,2]}M_{q}(\sigma)\leq(2R)^{q}\sup_{0<\tau\leq t}\int_{B_{2R}}udx\leq C(2R)^{q}\left(\int_{B_{2R}}u_{0}dx+R^{-\frac{k}{2-p}}t^{\frac{1}{2-p}}\right)<\infty.

Hence Mq(σ)M_{q}(\sigma) has bounded value on σ[1,2]\sigma\in[1,2]. Applying Lemma 2.3 for λ=1\lambda=1 and λ=2\lambda^{\prime}=2, it follows that

sup0<τtr|x|R|x|qu𝑑xC12r|x|2R|x|qu0𝑑x+Ct12p(rp(N)(p1)(2p)+Rp(N)(p1)(2p),)\sup_{0<\tau\leq t}\int_{r\leq|x|\leq R}|x|^{q}udx\leq C\int_{\frac{1}{2}r\leq|x|\leq 2R}|x|^{q}u_{0}dx\\ +Ct^{\frac{1}{2-p}}\left(r^{-\frac{p(N)}{(p-1)(2-p)}}+R^{-\frac{p(N)}{(p-1)(2-p)}},\right) (3.30)

for some C:=C(N,p)C:=C(N,p). Thus we prove inequality (3.1) for the case where the initial data u0u_{0} is in Cc(N)C^{\infty}_{c}(\mathbb{R}^{N}).

Let us finally address the inequality (3.1) in the general case where μ+\mu\in\mathcal{M}^{+} is taken as initial data. Let mCc(N)m\in C^{\infty}_{c}(\mathbb{R}^{N}) be a mollifier function with supp(m)B1,m0\mathrm{supp}(m)\subset B_{1},m\geq 0 and Nm𝑑x=1\int_{\mathbb{R}^{N}}mdx=1 and mn(x)=nNm(nx)m_{n}(x)=n^{N}m(nx). Let ξnCc(N)\xi_{n}\in C^{\infty}_{c}(\mathbb{R}^{N}) be a smooth cut-off function such that ξn=1\xi_{n}=1 in BnB_{n} and ξ=0\xi=0 in B2ncB^{c}_{2n}. Let u0nCc(N)u_{0n}\in C^{\infty}_{c}(\mathbb{R}^{N}) be defined as follows:

u0n(x)=ξn(x)(mnμ)(x)=ξn(x)Nmn(xy)𝑑μ(y).u_{0n}(x)=\xi_{n}(x)\left(m_{n}*\mu\right)(x)=\xi_{n}(x)\int_{\mathbb{R}^{N}}m_{n}(x-y)d\mu(y).

Obviously, u0n0u_{0n}\geq 0. Moreover, for any ρ>0\rho>0, since supp(mn(x))B1/n(x)\mathrm{supp}(m_{n}(x-\cdot))\subset B_{1/n}(x), it follows that

Bρu0n𝑑xyBρ+1/nB1/n(y)Bρmn(xy)𝑑x𝑑μ(y)μ(Bρ+1).\int_{B_{\rho}}u_{0n}dx\leq\int_{y\in B_{\rho+1/n}}\int_{B_{1/n}(y)\cap B_{\rho}}m_{n}(x-y)dxd\mu(y)\leq\mu(B_{\rho+1}). (3.31)

Furthermore, for any ϕCc(N)\phi\in C^{\infty}_{c}(\mathbb{R}^{N}), take nn large enough such that supp(ϕ)1Bn\mathrm{supp}(\phi)_{1}\subset B_{n}, where supp(ϕ)1:={x:d(x,supp(ϕ))1}\mathrm{supp}(\phi)_{1}:=\{x\colon d(x,\mathrm{supp}(\phi))\leq 1\}. Then it follows that

Nϕu0n𝑑x=supp(ϕ)1B1/n(y)ξn(x)ϕ(x)mn(xy)𝑑x𝑑μ(y)=supp(ϕ)1(ϕm~n)(y)𝑑μ(y),\int_{\mathbb{R}^{N}}\phi u_{0n}dx=\int_{\mathrm{supp}(\phi)_{1}}\int_{B_{1/n}(y)}\xi_{n}(x)\phi(x)m_{n}(x-y)dxd\mu(y)=\int_{\mathrm{supp}(\phi)_{1}}(\phi*\tilde{m}_{n})(y)d\mu(y),

where m~n(x)=mn(x)\tilde{m}_{n}(x)=m_{n}(-x). By the uniform convergence of ϕm~n\phi*\tilde{m}_{n} to ϕ\phi on compact sets, see [4, Proposition 4.21], it follows that

limnNϕu0n𝑑x=Nϕ𝑑μ.\lim_{n\rightarrow\infty}\int_{\mathbb{R}^{N}}\phi u_{0n}dx=\int_{\mathbb{R}^{N}}\phi d\mu. (3.32)

Let unu_{n} be the unique positive weak solution of (1.1) and (2.1) with initial data u0nu_{0n} for n1n\geq 1. Then by inequality (2.9) of Lemma 2.2 and (3.31), it follows that (un)n(u_{n})_{n} is locally equibounded in STS_{T}, that is, for any ε>0\varepsilon>0 and bounded domain ΩN\Omega\subset\mathbb{R}^{N}, (un)n(u_{n})_{n} is equibounded in Ωε:=Ω×[ε,T]\Omega_{\varepsilon}:=\Omega\times[\varepsilon,T]. Then by [5, Theorem 1], it follows that (un)n(u_{n})_{n} is uniformly equicontinuous in Ωε\Omega_{\varepsilon} for all ε>0\varepsilon>0 and all bounded domains ΩN\Omega\subset\mathbb{R}^{N}. By diagonalization procedure, we can find a subsequence of (un)(u_{n}), which is relabelled by nn, such that

un,unu,uuniformly on every compact subset of ST,u_{n},\nabla u_{n}\rightarrow u,\nabla u\quad\text{uniformly on every compact subset of }S_{T}, (3.33)

and uu is a positive weak solution of (1.1) and (2.5) with initial data μ\mu, see [6, Theorem III.8.1].

Now for any R>r>0R>r>0 and 0<tT0<t\leq T, by inequality (3.30), it follows that for any τ(0,t]\tau\in(0,t],

r|x|R|x|qun(x,τ)𝑑xC12r|x|2R|x|qu0n𝑑x+Ct12p(rp(N)(p1)(2p)+Rp(N)(p1)(2p)).\int_{r\leq|x|\leq R}|x|^{q}u_{n}(x,\tau)dx\leq C\int_{\frac{1}{2}r\leq|x|\leq 2R}|x|^{q}u_{0n}dx\\ +Ct^{\frac{1}{2-p}}\left(r^{-\frac{p(N)}{(p-1)(2-p)}}+R^{-\frac{p(N)}{(p-1)(2-p)}}\right). (3.34)

For the left hand side of (3.34), by dominated convergence and (3.33), it follows that

limnr|x|R|x|qun(x,τ)𝑑x=r|x|R|x|qu(x,τ)𝑑x.\lim_{n\rightarrow\infty}\int_{r\leq|x|\leq R}|x|^{q}u_{n}(x,\tau)dx=\int_{r\leq|x|\leq R}|x|^{q}u(x,\tau)dx. (3.35)

For the first term on the right hand side of (3.34), let ε>0\varepsilon>0 and ϕCc(N)\phi\in C_{c}(\mathbb{R}^{N}) such that ϕ=|x|q\phi=|x|^{q} on {12r|x|2R}\{\frac{1}{2}r\leq|x|\leq 2R\} and ϕ=0\phi=0 on {12rε|x|2R+ε}c\{\frac{1}{2}r-\varepsilon\leq|x|\leq 2R+\varepsilon\}^{c}. Then taking nn\rightarrow\infty and by (3.32), it follows that

lim supn12r|x|2R|x|qu0n𝑑xNϕ𝑑μ12rε|x|2R+ε|x|q𝑑μ.\limsup_{n\rightarrow\infty}\int_{\frac{1}{2}r\leq|x|\leq 2R}|x|^{q}u_{0n}dx\leq\int_{\mathbb{R}^{N}}\phi d\mu\leq\int_{\frac{1}{2}r-\varepsilon\leq|x|\leq 2R+\varepsilon}|x|^{q}d\mu. (3.36)

For ε0\varepsilon\searrow 0 together with (3.35) and (3.36), it follows that for any τ(0,t]\tau\in(0,t],

r|x|R|x|qu(x,τ)𝑑xC12r|x|2R|x|q𝑑μ+Ct12p(rp(N)(p1)(2p)+Rp(N)(p1)(2p)).\int_{r\leq|x|\leq R}|x|^{q}u(x,\tau)dx\leq C\int_{\frac{1}{2}r\leq|x|\leq 2R}|x|^{q}d\mu\\ +Ct^{\frac{1}{2-p}}\left(r^{-\frac{p(N)}{(p-1)(2-p)}}+R^{-\frac{p(N)}{(p-1)(2-p)}}\right).

Taking the supremum over τ(0,t]\tau\in(0,t] on the left hand side yields the desired result.

We are left to show uniform boundedness of qq-moment and inequality (3.2). Assume that μ\mu is in +\mathcal{M}^{+} with finite total mass and finite qq-moment, and p(pc,2)p\in(p_{c},2) is such that p(N)>0p(N)>0. By inequality (2.8) in Lemma 2.2 and similar arguments, see also [10, Theorem 1], it follows that for any t(0,T]t\in(0,T] and r>0r>0,

sup0<τtBru(x,τ)𝑑xCB2r𝑑μ+Crk2pt12p.\sup_{0<\tau\leq t}\int_{B_{r}}u(x,\tau)dx\leq C\int_{B_{2r}}d\mu+Cr^{-\frac{k}{2-p}}t^{\frac{1}{2-p}}. (3.37)

Taking r=1r=1 and together with (3.1), it follows that for any R>1R>1

sup0<τtBR|x|qu(x,τ)𝑑xsup0<τt|x|<1|x|qu(x,τ)𝑑x+sup0<τt1|x|R|x|qu(x,τ)𝑑xC12|x|2R|x|q𝑑μ+C|x|2𝑑μ+Ct12p(1+Rp(N)(p1)(2p)).\sup_{0<\tau\leq t}\int_{B_{R}}|x|^{q}u(x,\tau)dx\leq\sup_{0<\tau\leq t}\int_{|x|<1}|x|^{q}u(x,\tau)dx+\sup_{0<\tau\leq t}\int_{1\leq|x|\leq R}|x|^{q}u(x,\tau)dx\\ \leq C\int_{\frac{1}{2}\leq|x|\leq 2R}|x|^{q}d\mu+C\int_{|x|\leq 2}d\mu+Ct^{\frac{1}{2-p}}\left(1+R^{-\frac{p(N)}{(p-1)(2-p)}}\right).

Since p(N)>0p(N)>0, taking RR\rightarrow\infty and it follows that

sup0<τtN|x|qu(x,τ)𝑑xC|x|12|x|q𝑑μ+C|x|2𝑑μ+Ct12p.\sup_{0<\tau\leq t}\int_{\mathbb{R}^{N}}|x|^{q}u(x,\tau)dx\leq C\int_{|x|\geq\frac{1}{2}}|x|^{q}d\mu+C\int_{|x|\leq 2}d\mu+Ct^{\frac{1}{2-p}}.

From this we obtain that {μτ=u(x,τ)dx:τ[0,t]}\{\mu_{\tau}=u(x,\tau)dx\colon\tau\in[0,t]\} has uniformly bounded qq-moment for any t>0t>0. For inequality (3.2), taking R0R\rightarrow 0 for both side of (3.1) and it follows that

sup0<τt|x|r|x|qu(x,τ)𝑑xC|x|12r|x|q𝑑μ+Ct12prp(N)(p1)(2p).\sup_{0<\tau\leq t}\int_{|x|\geq r}|x|^{q}u(x,\tau)dx\leq C\int_{|x|\geq\frac{1}{2}r}|x|^{q}d\mu+Ct^{\frac{1}{2-p}}r^{-\frac{p(N)}{(p-1)(2-p)}}.

Since μ\mu has finite qq-moment, taking rr\rightarrow\infty and it follows that

limrsup0<τt|x|r|x|qu(x,τ)𝑑x=0.\lim_{r\rightarrow\infty}\sup_{0<\tau\leq t}\int_{|x|\geq r}|x|^{q}u(x,\tau)dx=0.

4. Mass conservation and weak convergence

In [8], the authors show that mass conservation of any positive weak solution of (1.1) and (2.5) with initial data μ\mu in f+\mathcal{M}^{+}_{f} with compact support. In this section, we will show that the weak solution constructed in Theorem 3.1 with initial data μ\mu in +\mathcal{M}^{+} with finite total mass and finite qq-moment, preserves mass. As a by-product, measure μt:=u(x,t)dx\mu_{t}:=u(x,t)dx converges to μ\mu weakly.

Theorem 4.1 (Mass Conservation).

Let p(pc,2)p\in(p_{c},2) and μ\mu be a positive finite Radon measure in N\mathbb{R}^{N} and uu is the positive weak solution in Theorem 3.1. If μ\mu has qq-finite moment, then uu preserves mass, that is,

Nu(x,t)𝑑x=N𝑑μ,for all0<tT.\int_{\mathbb{R}^{N}}u(x,t)dx=\int_{\mathbb{R}^{N}}d\mu,\quad\text{for all}\quad 0<t\leq T. (4.1)
Corollary 4.2 (Weak Convergence).

Let μ\mu be a positive finite Radon measure in N\mathbb{R}^{N} with finite qq-moment and uu be the positive weak solution in Theorem 3.1. Then the measure μt:=u(x,t)dx\mu_{t}:=u(x,t)dx converges weakly to the initial data μ\mu as tt goes to 0.

We start with a lemma providing gradient estimate of the weak solution of (1.1) with respect to qq-moment of smooth and compact-supported initial data on the annulus.

Lemma 4.3.

Let uu be the positive weak solution of (1.1) with initial data u0u_{0} in Cc(N)C^{\infty}_{c}(\mathbb{R}^{N}) and u00u_{0}\geq 0. Then there exists a positive constant C:=C(N,p)C:=C(N,p) such that for any 0<tT0<t\leq T and R>r>0R>r>0, it holds that

0tr|x|R|u|p1𝑑x𝑑τCt1pr1p1(rp(N)p(p1)+Rp(N)p(p1))(Mq(u0,Ar/44R))2(p1)p+Ct12pr1p1(r2p(N)p(2p)+R2p(N)p(2p))(rp(N)p(p1)+Rp(N)p(p1)),\int_{0}^{t}\int_{r\leq|x|\leq R}|\nabla u|^{p-1}dxd\tau\\ \leq Ct^{\frac{1}{p}}r^{-\frac{1}{p-1}}\left(r^{-\frac{p(N)}{p(p-1)}}+R^{-\frac{p(N)}{p(p-1)}}\right)\left(M_{q}\left(u_{0},A_{r/4}^{4R}\right)\right)^{\frac{2(p-1)}{p}}\\ +Ct^{\frac{1}{2-p}}r^{-\frac{1}{p-1}}\left(r^{-\frac{2p(N)}{p(2-p)}}+R^{-\frac{2p(N)}{p(2-p)}}\right)\left(r^{-\frac{p(N)}{p(p-1)}}+R^{-\frac{p(N)}{p(p-1)}}\right), (4.2)

where Mq(u0,A):=A|x|qu0𝑑xM_{q}(u_{0},A):=\int_{A}|x|^{q}u_{0}dx.

Proof.

Let R>r>0R>r>0 and denote by AσA_{\sigma} the annulus Ar/σRσA_{r/\sigma}^{R\sigma} for σ1\sigma\geq 1. Let ξ\xi be a smooth cut-off functions such that ξ=1\xi=1 on A1A_{1} and ξ=0\xi=0 on A2cA^{c}_{2}, and |ξ|2r1|\nabla\xi|\leq 2r^{-1} on Ar/2rA_{r/2}^{r} and |ξ|R1|\nabla\xi|\leq R^{-1} on AR2RA_{R}^{2R}. Since |x|r|x|\geq r on A1A_{1}, it follows that

0tA1|u|p1𝑑x𝑑τr1p10tA2|u|p1ξp1|x|1p1𝑑x𝑑τ.\int_{0}^{t}\int_{A_{1}}|\nabla u|^{p-1}dxd\tau\leq r^{-\frac{1}{p-1}}\int_{0}^{t}\int_{A_{2}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau. (4.3)

We consider the right hand side of (4.3) for different cases of pp:

  1. Case 1:

    If p>1/(p1)p>1/(p-1), then by inequality (3.16) in which we choose σ=1\sigma=1 and σ=2\sigma^{\prime}=2, it follows that

    0tA2|u|p1ξp1|x|1p1𝑑x𝑑τCt(r1kp+1p1+R1kp+1p1)Mq(2)p1+Ct1p(max{rp(N)(p1)(2p),Rp(N)(p1)(2p)})2ppMq(2)2(p1)p,\int_{0}^{t}\int_{A_{2}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\leq Ct\left(r^{1-k-p+\frac{1}{p-1}}+R^{1-k-p+\frac{1}{p-1}}\right)M_{q}(2)^{p-1}\\ +Ct^{\frac{1}{p}}\left(\max\left\{r^{-\frac{p(N)}{(p-1)(2-p)}},R^{-\frac{p(N)}{(p-1)(2-p)}}\right\}\right)^{\frac{2-p}{p}}M_{q}(2)^{\frac{2(p-1)}{p}}, (4.4)

    where Mq(2)=sup0<τtA2|x|qu𝑑xM_{q}(2)=\sup_{0<\tau\leq t}\int_{A_{2}}|x|^{q}udx. Since that (p1)2(p1)p(p-1)\leq\frac{2(p-1)}{p}, applying Young’s inequality aba22p+b2pab\leq a^{\frac{2}{2-p}}+b^{\frac{2}{p}} to the first term on the right hand of (4.4), yields

    tr1kp+1p1Mq(2)p1\displaystyle tr^{1-k-p+\frac{1}{p-1}}M_{q}(2)^{p-1} =(t12r1kp+1p1+p(N)2(p1))(t12rp(N)2(p1)Mq(2)p1)\displaystyle=\left(t^{\frac{1}{2}}r^{1-k-p+\frac{1}{p-1}+\frac{p(N)}{2(p-1)}}\right)\left(t^{\frac{1}{2}}r^{-\frac{p(N)}{2(p-1)}}M_{q}(2)^{p-1}\right)
    t12prp(N)(p1)(2p)+t1prp(N)p(p1)Mq(2)2(p1)p,\displaystyle\leq t^{\frac{1}{2-p}}r^{-\frac{p(N)}{(p-1)(2-p)}}+t^{\frac{1}{p}}r^{-\frac{p(N)}{p(p-1)}}M_{q}(2)^{\frac{2(p-1)}{p}},

    which plugged into (4.4) yields

    0tA2|u|p1ξp1|x|1p1𝑑x𝑑τCt12p(rp(N)(p1)(2p)+Rp(N)(p1)(2p))+Ct1p(rp(N)p(p1)+Rp(N)p(p1))Mq(2)2(p1)p.\int_{0}^{t}\int_{A_{2}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\leq Ct^{\frac{1}{2-p}}\left(r^{-\frac{p(N)}{(p-1)(2-p)}}+R^{-\frac{p(N)}{(p-1)(2-p)}}\right)\\ +Ct^{\frac{1}{p}}\left(r^{-\frac{p(N)}{p(p-1)}}+R^{-\frac{p(N)}{p(p-1)}}\right)M_{q}(2)^{\frac{2(p-1)}{p}}. (4.5)
  2. Case 2:

    If p1/(p1)p\leq 1/(p-1), then by inequality (3.26) in which we choose σ=1\sigma=1 and σ=2\sigma^{\prime}=2, it follows that

    0tA2|u|p1ξp1|x|1p1𝑑x𝑑τCtRp(N)p1Mq(2)p1+Ct1pRp(N)p(p1)Mq(2)2(p1)p.\int_{0}^{t}\int_{A_{2}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\\ \leq CtR^{-\frac{p(N)}{p-1}}M_{q}(2)^{p-1}+Ct^{\frac{1}{p}}R^{-\frac{p(N)}{p(p-1)}}M_{q}(2)^{\frac{2(p-1)}{p}}. (4.6)

    Applying the same Young’s inequality as in the previous step to the first term on the right hand side, yields

    tRp(N)p1Mq(2)p1\displaystyle tR^{-\frac{p(N)}{p-1}}M_{q}(2)^{p-1} =(t12Rp(N)2(p1))(t12Rp(N)2(p1)Mq(2)p1)\displaystyle=\left(t^{\frac{1}{2}}R^{-\frac{p(N)}{2(p-1)}}\right)\left(t^{\frac{1}{2}}R^{-\frac{p(N)}{2(p-1)}}M_{q}(2)^{p-1}\right)
    t12pRp(N)(p1)(2p)+t1pRp(N)p(p1)Mq(2)2(p1)p,\displaystyle\leq t^{\frac{1}{2-p}}R^{-\frac{p(N)}{(p-1)(2-p)}}+t^{\frac{1}{p}}R^{-\frac{p(N)}{p(p-1)}}M_{q}(2)^{\frac{2(p-1)}{p}},

    which plugged into (4.6), implies

    0tA2|u|p1ξp1|x|1p1𝑑x𝑑τCt12pRp(N)(p1)(2p)+Ct1pRp(N)p(p1)Mq(2)2(p1)p.\int_{0}^{t}\int_{A_{2}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\leq Ct^{\frac{1}{2-p}}R^{-\frac{p(N)}{(p-1)(2-p)}}+Ct^{\frac{1}{p}}R^{-\frac{p(N)}{p(p-1)}}M_{q}(2)^{\frac{2(p-1)}{p}}. (4.7)

Hence, from (4.5) and (4.7), we obtain that for any p(pc,2)p\in(p_{c},2), it holds that

0tA2|u|p1ξp1|x|1p1𝑑x𝑑τCt12p(rp(N)(p1)(2p)+Rp(N)(p1)(2p))+Ct1p(rp(N)p(p1)+Rp(N)p(p1))Mq(2)2(p1)p.\int_{0}^{t}\int_{A_{2}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\leq Ct^{\frac{1}{2-p}}\left(r^{-\frac{p(N)}{(p-1)(2-p)}}+R^{-\frac{p(N)}{(p-1)(2-p)}}\right)\\ +Ct^{\frac{1}{p}}\left(r^{-\frac{p(N)}{p(p-1)}}+R^{-\frac{p(N)}{p(p-1)}}\right)M_{q}(2)^{\frac{2(p-1)}{p}}. (4.8)

Let α1=p(N)/[(p1)(2p)]\alpha_{1}=-p(N)/[(p-1)(2-p)] and α2=p(N)/[p(p1)]\alpha_{2}=-p(N)/[p(p-1)] and α3=2p(N)/[p(2p)]\alpha_{3}=-2p(N)/[p(2-p)] and denote by FiF_{i} the terms rαi+Rαir^{\alpha_{i}}+R^{\alpha_{i}} for i=1,2,3i=1,2,3. By applying inequality (3.1) in Theorem 3.1 to Mq(2)M_{q}(2) and inequality (a+b)γaγ+bγ(a+b)^{\gamma}\leq a^{\gamma}+b^{\gamma} for γ=2(p1)/p\gamma=2(p-1)/p, it follows that

0tA2|u|p1ξp1|x|1p1𝑑x𝑑τCt12pF1+Ct1pF2(A4|x|qu0𝑑x+t12pF1)2(p1)pCt12p(F1+F2(F1)2(p1)p)+Ct1pF2(A4|x|qu0𝑑x)2(p1)p.\int_{0}^{t}\int_{A_{2}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\leq Ct^{\frac{1}{2-p}}F_{1}+Ct^{\frac{1}{p}}F_{2}\left(\int_{A_{4}}|x|^{q}u_{0}dx+t^{\frac{1}{2-p}}F_{1}\right)^{\frac{2(p-1)}{p}}\\ \leq Ct^{\frac{1}{2-p}}\left(F_{1}+F_{2}\left(F_{1}\right)^{\frac{2(p-1)}{p}}\right)+Ct^{\frac{1}{p}}F_{2}\left(\int_{A_{4}}|x|^{q}u_{0}dx\right)^{\frac{2(p-1)}{p}}. (4.9)

By using inequality (a+b)γaγ+bγ(a+b)^{\gamma}\leq a^{\gamma}+b^{\gamma} for γ=(2p)/p\gamma=(2-p)/p and γ=2(p1)/p\gamma=2(p-1)/p respectively, we have (F1)(2p)/pF2(F_{1})^{(2-p)/p}\leq F_{2} and (F1)2(p1)/pF3(F_{1})^{2(p-1)/p}\leq F_{3}. Then for the first two terms on the right hand side in (4.9), it follows that

F1+F2(F1)2(p1)p=(F1)2pp+2(p1)p+F2(F1)2(p1)p2F2F3.F_{1}+F_{2}\left(F_{1}\right)^{\frac{2(p-1)}{p}}=\left(F_{1}\right)^{\frac{2-p}{p}+\frac{2(p-1)}{p}}+F_{2}\left(F_{1}\right)^{\frac{2(p-1)}{p}}\leq 2F_{2}F_{3}.

Plugging it into (4.9), we obtain

0tA2|u|p1ξp1|x|1p1𝑑x𝑑τCt12pF2F3+Ct1pF2(A4|x|qu0𝑑x)2(p1)p.\int_{0}^{t}\int_{A_{2}}|\nabla u|^{p-1}\xi^{p-1}|x|^{\frac{1}{p-1}}dxd\tau\leq Ct^{\frac{1}{2-p}}F_{2}F_{3}+Ct^{\frac{1}{p}}F_{2}\left(\int_{A_{4}}|x|^{q}u_{0}dx\right)^{\frac{2(p-1)}{p}}.

which together with (4.3) yields the result. ∎

Proof of Theorem 4.1.

Let μ+\mu\in\mathcal{M}^{+} with finite total mass be fixed and (u0n)(u_{0n}) be the sequence of CcC^{\infty}_{c} functions constructed in the proof of Theorem 3.1, and unu_{n} be the positive weak solution of (1.1) with u0nu_{0n} as initial data, and uu be the positive weak solution constructed in the proof of Theorem 3.1. Let ρ>0\rho>0 and ξ\xi be a smooth cut-off function such that ξ=1\xi=1 on BρB_{\rho} and ξ=0\xi=0 on B2ρcB^{c}_{2\rho} and |ξ|ρ1|\nabla\xi|\leq\rho^{-1} on Aρ2ρA_{\rho}^{2\rho}. By using ϕ(x,τ)=ξ(x)χ[0,T](τ)\phi(x,\tau)=\xi(x)\chi_{[0,T]}(\tau) as the test function in (2.7), it follows that for any 0<tT0<t\leq T and n1n\geq 1,

|B2ρξ(x)un(x,t)𝑑xB2ρξ(x)u0n(x)𝑑x|0tB2ρ|un|p1|ξ|𝑑x𝑑τρ10tρ|x|2ρ|un|p1𝑑x𝑑τ.\left|\int_{B_{2\rho}}\xi(x)u_{n}(x,t)dx-\int_{B_{2\rho}}\xi(x)u_{0n}(x)dx\right|\leq\int_{0}^{t}\int_{B_{2\rho}}|\nabla u_{n}|^{p-1}|\nabla\xi|dxd\tau\\ \leq\rho^{-1}\int_{0}^{t}\int_{\rho\leq|x|\leq 2\rho}|\nabla u_{n}|^{p-1}dxd\tau. (4.10)

By Lemma 4.3 with r=ρr=\rho and R=2ρR=2\rho, it follows that

|B2ρξ(x)un(x,t)𝑑xB2ρξ(x)u0n(x)𝑑x|Ct1pρ11p1p(N)p(p1){14ρ|x|8ρ|x|qu0n𝑑x}2(p1)p+Ct12pρ11p12p(N)p(2p)p(N)p(p1).\left|\int_{B_{2\rho}}\xi(x)u_{n}(x,t)dx-\int_{B_{2\rho}}\xi(x)u_{0n}(x)dx\right|\leq\\ Ct^{\frac{1}{p}}\rho^{-1-\frac{1}{p-1}-\frac{p(N)}{p(p-1)}}\left\{\int_{\frac{1}{4}\rho\leq|x|\leq 8\rho}|x|^{q}u_{0n}dx\right\}^{\frac{2(p-1)}{p}}+Ct^{\frac{1}{2-p}}\rho^{-1-\frac{1}{p-1}-\frac{2p(N)}{p(2-p)}-\frac{p(N)}{p(p-1)}}. (4.11)

By (3.33) in the proof of Theorem 3.1, it holds that unu_{n} converges to uu, up to a subsequence, uniformly on each compact subset of STS_{T}. Together with equality (3.32), taking nn\rightarrow\infty on both side of (4.11) and it follows that

|B2ρξ(x)u(x,t)𝑑xB2ρξ(x)𝑑μ|Ct1pρ11p1p(N)p(p1){14ρ|x|8ρ|x|q𝑑μ}2(p1)p+Ct12pρ11p12p(N)p(2p)p(N)p(p1).\left|\int_{B_{2\rho}}\xi(x)u(x,t)dx-\int_{B_{2\rho}}\xi(x)d\mu\right|\leq Ct^{\frac{1}{p}}\rho^{-1-\frac{1}{p-1}-\frac{p(N)}{p(p-1)}}\left\{\int_{\frac{1}{4}\rho\leq|x|\leq 8\rho}|x|^{q}d\mu\right\}^{\frac{2(p-1)}{p}}\\ +Ct^{\frac{1}{2-p}}\rho^{-1-\frac{1}{p-1}-\frac{2p(N)}{p(2-p)}-\frac{p(N)}{p(p-1)}}. (4.12)

For the left hand side of (4.12), by letting rr\rightarrow\infty on both side of (3.37) in the proof of Theorem 3.1, it follows that Nu(x,t)𝑑x<\int_{\mathbb{R}^{N}}u(x,t)dx<\infty. Together with |ξ(x)u(x,t)|u(x,t)|\xi(x)u(x,t)|\leq u(x,t), by dominated convergence theorem, it follows that

limρ|B2ρξ(x)u(x,t)𝑑xB2ρξ(x)𝑑μ|=|Nu(x,t)𝑑xμ(N)|.\lim_{\rho\rightarrow\infty}\left|\int_{B_{2\rho}}\xi(x)u(x,t)dx-\int_{B_{2\rho}}\xi(x)d\mu\right|=\left|\int_{\mathbb{R}^{N}}u(x,t)dx-\mu(\mathbb{R}^{N})\right|. (4.13)

For the right hand side of (4.12), it is easy to check that for p(pc,2)p\in(p_{c},2),

11p1p(N)p(p1)=(N+3)p2Np<0,\displaystyle-1-\frac{1}{p-1}-\frac{p(N)}{p(p-1)}=-\frac{(N+3)p-2N}{p}<0,
11p12p(N)p(2p)p(N)p(p1)=(N+1)p2N2p<0.\displaystyle-1-\frac{1}{p-1}-\frac{2p(N)}{p(2-p)}-\frac{p(N)}{p(p-1)}=-\frac{(N+1)p-2N}{2-p}<0.

Since μ\mu has finite qq-moment, the term on the right hand side of (4.12) converges to 0 as ρ\rho\rightarrow\infty. So we obtain that for any 0<tT0<t\leq T,

Nu(x,t)𝑑x=μ(N).\int_{\mathbb{R}^{N}}u(x,t)dx=\mu(\mathbb{R}^{N}).

Proof of Corollary 4.2.

By Theorem 3.1 and definition of weak solution of (1.1) and (2.5), it follows that measure μt=u(x,t)dx\mu_{t}=u(x,t)dx converges vaguely to initial data μ\mu. Since μt(N)=μ(N)\mu_{t}(\mathbb{R}^{N})=\mu(\mathbb{R}^{N}) for all 0<t<T0<t<T, by the classical result(for example, [13, Theorem 13.16], it follows that μt\mu_{t} converges to μ\mu weakly as tt goes to 0. ∎

5. Convergence rate of Wasserstein distance

We address now the convergence rate of the constructed weak solution u(t,)dxu(t,\cdot)dx to μ\mu in the qq-Wasserstein distance. We recall that the qq-Wasserstein distance Wq(μ,ν)W_{q}(\mu,\nu) between finite Borel measures μ,ν\mu,\nu in N\mathbb{R}^{N} with equal mass is defined as

Wqq(μ,ν)=min{N×N|xy|q𝑑π(x,y):πΠ(μ,ν)},W^{q}_{q}(\mu,\nu)=\min\left\{\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}|x-y|^{q}d\pi(x,y)\colon\pi\in\Pi(\mu,\nu)\right\}, (5.1)

where Π(μ,ν)\Pi(\mu,\nu) is the family of all Borel measures on N×N\mathbb{R}^{N}\times\mathbb{R}^{N} having μ\mu and ν\nu as their first and second marginal measures respectively.

Theorem 5.1.

Let μ\mu be a finite Radon measure on N\mathbb{R}^{N} and uu be the weak solution of (1.1) constructed in Theorem 3.1 with μ\mu as initial data. If p(pN,2)p\in(p_{N},2) and μ\mu has finite qq-moment, then there exist constant C:=C(N,p,μ,T)C:=C(N,p,\mu,T) such that for all t[0,T]t\in[0,T],

Wqq(μt,μ)Ctq1.W^{q}_{q}(\mu_{t},\mu)\leq Ct^{q-1}. (5.2)

To address the proof of Theorem 5.1, we first establish an auxiliary lemma, prove the theorem in the case where the initial data is in Cc(NC^{\infty}_{c}(\mathbb{R}^{N}), and then show the general case by an approximation procedure. The key ingredients of the proof are to use Brenier-Benamou formulation for qq-Wasserstein distance and write the parabolic pp-Laplace equation as a law of mass conservation tu=div(𝐯u)\partial_{t}u=\mathrm{div}(\mathbf{v}u) where 𝐯=|u|p2(u)/u\mathbf{v}=|\nabla u|^{p-2}(-\nabla u)/u.

Lemma 5.2.

Let p(pN,2)p\in(p_{N},2) and uu be the positive weak solution of Cauchy problem (1.1) with u0Cc(N)u_{0}\in C_{c}^{\infty}(\mathbb{R}^{N}) and u00u_{0}\geq 0 as initial data. Then for any t>0t>0, it holds that

0tN|u|pu1p1𝑑x𝑑τC(|x|2u0𝑑x)21p1+C(|x|1/2|x|qu0𝑑x)21p1+Ct2p3(p1)(2p)\int_{0}^{t}\int_{\mathbb{R}^{N}}|\nabla u|^{p}u^{-\frac{1}{p-1}}dxd\tau\leq C\left(\int_{|x|\leq 2}u_{0}dx\right)^{2-\frac{1}{p-1}}+C\left(\int_{|x|\geq 1/2}|x|^{q}u_{0}dx\right)^{2-\frac{1}{p-1}}\\ +Ct^{\frac{2p-3}{(p-1)(2-p)}} (5.3)

for some C:=C(N,p)C:=C(N,p).

Proof.

Let ε>0\varepsilon>0 and R>0R>0. Let ξ\xi be a smooth cut-off function such that ξ=1\xi=1 on BRB_{R} and ξ=0\xi=0 on B2RcB^{c}_{2R} and |ξ|R1|\nabla\xi|\leq R^{-1} on AR2RA_{R}^{2R}. Let uε:=u+εu_{\varepsilon}:=u+\varepsilon and u0ε:=u0+εu_{0\varepsilon}:=u_{0}+\varepsilon and ψ:=uε11/(p1)ξ\psi:=u_{\varepsilon}^{1-1/(p-1)}\xi. Multiplying ψ\psi on (1.1) and integrating it over B2R×[0,t]B_{2R}\times[0,t], by integral by part and similar argument in Lemma 3.4, it follows that

0tB2R|u|puε1p1ξ𝑑x𝑑τ\displaystyle\int_{0}^{t}\int_{B_{2R}}|\nabla u|^{p}u_{\varepsilon}^{-\frac{1}{p-1}}\xi dxd\tau C0tB2Ruεp1p1|ξ|p𝑑x𝑑τ\displaystyle\leq C\int_{0}^{t}\int_{B_{2R}}u_{\varepsilon}^{p-\frac{1}{p-1}}|\nabla\xi|^{p}dxd\tau
+C(B2Ruε21p1ξ𝑑xB2Ru0ε21p1ξ𝑑x)\displaystyle\quad\quad+C\left(\int_{B_{2R}}u_{\varepsilon}^{2-\frac{1}{p-1}}\xi dx-\int_{B_{2R}}u_{0\varepsilon}^{2-\frac{1}{p-1}}\xi dx\right)
C0tB2Ruεp1p1|ξ|p𝑑x𝑑τ+CB2Ruε21p1𝑑x\displaystyle\leq C\int_{0}^{t}\int_{B_{2R}}u_{\varepsilon}^{p-\frac{1}{p-1}}|\nabla\xi|^{p}dxd\tau+C\int_{B_{2R}}u_{\varepsilon}^{2-\frac{1}{p-1}}dx (5.4)

Note that p(pN,2)p\in(p_{N},2) implies that p1/(p1)>1p-1/(p-1)>1. Hence, for the first term on the right hand side of (5), by using the similar argument as in the proof of Theorem 3.1, it follows that

0tB2Ruεp1p1|ξ|p𝑑x𝑑τ\displaystyle\int_{0}^{t}\int_{B_{2R}}u_{\varepsilon}^{p-\frac{1}{p-1}}|\nabla\xi|^{p}dxd\tau Rp0tAR2R|x|q(p1p1)|x|q(p1p1)uεp1p1𝑑x𝑑τ\displaystyle\leq R^{-p}\int_{0}^{t}\int_{A_{R}^{2R}}|x|^{-q\left(p-\frac{1}{p-1}\right)}|x|^{q\left(p-\frac{1}{p-1}\right)}u_{\varepsilon}^{p-\frac{1}{p-1}}dxd\tau
CtRq(1kp+1p1)(sup0<τtAR2R|x|quε𝑑x)p1p1.\displaystyle\leq CtR^{q\left(1-k-p+\frac{1}{p-1}\right)}\left(\sup_{0<\tau\leq t}\int_{A_{R}^{2R}}|x|^{q}u_{\varepsilon}dx\right)^{p-\frac{1}{p-1}}. (5.5)

As for the second term on the right hand side of (5), we take ϕ1(x)=1{|x|<1}+|x|q(21/(p1))1A12R\phi_{1}(x)=1_{\{|x|<1\}}+|x|^{q(2-1/(p-1))}1_{A_{1}^{2R}} and ϕ2(x)=1{|x|<1}+|x|q(21/(p1))1A12R\phi_{2}(x)=1_{\{|x|<1\}}+|x|^{-q(2-1/(p-1))}1_{A_{1}^{2R}}. By Hölder’s inequality and (a+b)γaγ+bγ(a+b)^{\gamma}\leq a^{\gamma}+b^{\gamma} for γ=21/(p1)\gamma=2-1/(p-1), it follows that

B2Ruε21p1𝑑x\displaystyle\int_{B_{2R}}u_{\varepsilon}^{2-\frac{1}{p-1}}dx (B2Rϕ2p12p𝑑x)1p11(B2Rϕ1p12p3uε𝑑x)21p1\displaystyle\leq\left(\int_{B_{2R}}\phi_{2}^{\frac{p-1}{2-p}}dx\right)^{\frac{1}{p-1}-1}\left(\int_{B_{2R}}\phi_{1}^{\frac{p-1}{2p-3}}u_{\varepsilon}dx\right)^{2-\frac{1}{p-1}}
C(B1uε𝑑x)21p1+C(A12R|x|quε𝑑x)21p1.\displaystyle\leq C\left(\int_{B_{1}}u_{\varepsilon}dx\right)^{2-\frac{1}{p-1}}+C\left(\int_{A_{1}^{2R}}|x|^{q}u_{\varepsilon}dx\right)^{2-\frac{1}{p-1}}. (5.6)

Plugging (5) and (5) into (5), taking ε0\varepsilon\rightarrow 0 and using monotone convergence theorem as well as identity 1kp+1/(p1)=p(N)/(p1)1-k-p+1/(p-1)=-p(N)/(p-1) yields

0tB2R|u|pu1p1ξ𝑑x𝑑τ\displaystyle\int_{0}^{t}\int_{B_{2R}}|\nabla u|^{p}u^{-\frac{1}{p-1}}\xi dxd\tau CtRp(N)qp1(Mq(t,Ar2R))p1p1+C(M0(t,B1))21p1\displaystyle\leq CtR^{-\frac{p(N)q}{p-1}}\left(M_{q}(t,A_{r}^{2R})\right)^{p-\frac{1}{p-1}}+C\left(M_{0}(t,B_{1})\right)^{2-\frac{1}{p-1}}
+C(Mq(t,A12R))21p1,\displaystyle+C\left(M_{q}(t,A_{1}^{2R})\right)^{2-\frac{1}{p-1}}, (5.7)

where Mq(t,A):=sup0<τtA|x|qu(x,τ)𝑑xM_{q}(t,A):=\sup_{0<\tau\leq t}\int_{A}|x|^{q}u(x,\tau)dx. Using Inequality (3.1) from Theorem 3.1 and (2.8) from 2.2 in the right hand side of (5), it follows that

0tBR|u|pu1p1𝑑x𝑑τ0tB2R|u|pu1p1ξ𝑑x𝑑τC(M0(0,B2))21p1+CtRp(N)qp1(Mq(0,AR/24R))p1p1+C(Mq(0,A1/24R)dx)21p1+Ct2p3(p1)(2p)(1+Rp(N)(p1)(2p)),\int_{0}^{t}\int_{B_{R}}|\nabla u|^{p}u^{-\frac{1}{p-1}}dxd\tau\leq\int_{0}^{t}\int_{B_{2R}}|\nabla u|^{p}u^{-\frac{1}{p-1}}\xi dxd\tau\\ \leq C\left(M_{0}(0,B_{2})\right)^{2-\frac{1}{p-1}}+CtR^{-\frac{p(N)q}{p-1}}\left(M_{q}(0,A_{R/2}^{4R})\right)^{p-\frac{1}{p-1}}\\ +C\left(M_{q}(0,A_{1/2}^{4R})dx\right)^{2-\frac{1}{p-1}}+Ct^{\frac{2p-3}{(p-1)(2-p)}}\left(1+R^{-\frac{p(N)}{(p-1)(2-p)}}\right), (5.8)

where Mq(0,A):=A|x|qu0𝑑xM_{q}(0,A):=\int_{A}|x|^{q}u_{0}dx. Since p(N)>0p(N)>0, taking RR\rightarrow\infty on both side of (5.8), monotone convergence theorem and qq-finite moment of u0u_{0} yields the result. ∎

Proof of Theorem 5.1.

We first show that inequality (5.2) holds in the case where u(x,τ)u(x,\tau) is the positive weak solution of (1.1) with u0u_{0} in Cc(N)C^{\infty}_{c}(\mathbb{R}^{N}) and u00u_{0}\geq 0 as initial data. Let μ=u0dx\mu=u_{0}dx and μt=u(x,t)dx\mu_{t}=u(x,t)dx. By Benamou-Brenier formulation for qq-Wasserstein, see [14, Theorem 5.28] and [2], it follows that

Wqq(μ,μt)=inf{01N|vτ|qρτdxdτ:τρτ+div(ρτvτ)=0,ρ0=u0,ρ1=u(t)}.W^{q}_{q}(\mu,\mu_{t})=\inf\left\{\int_{0}^{1}\int_{\mathbb{R}^{N}}|v_{\tau}|^{q}\rho_{\tau}dxd\tau\colon\partial_{\tau}\rho_{\tau}+\mathrm{div}(\rho_{\tau}v_{\tau})=0,\rho_{0}=u_{0},\rho_{1}=u(t)\right\}.

Rescaling as ρ~(x,τ)=ρ(x,t1τ)\tilde{\rho}(x,\tau)=\rho(x,t^{-1}\tau) and v~(x,τ)=t1v(x,t1τ)\tilde{v}(x,\tau)=t^{-1}v(x,t^{-1}\tau) and changing variable yields

Wqq(μ,μt)=inf{tq10tN|v~τ|qρ~τdxdτ:τρ~τ+div(ρ~τv~τ)=0,ρ~0=u0,ρ~t=u(t)}.W^{q}_{q}(\mu,\mu_{t})=\\ \inf\left\{t^{q-1}\int_{0}^{t}\int_{\mathbb{R}^{N}}|\tilde{v}_{\tau}|^{q}\tilde{\rho}_{\tau}dxd\tau\colon\partial_{\tau}\tilde{\rho}_{\tau}+\mathrm{div}(\tilde{\rho}_{\tau}\tilde{v}_{\tau})=0,\tilde{\rho}_{0}=u_{0},\tilde{\rho}_{t}=u(t)\right\}.

Note that by the property of singular pp-Laplace equation, u(x,τ)>0u(x,\tau)>0 for all τ(0,t]\tau\in(0,t]. So choosing v~:=|u|p2uu\tilde{v}:=-|\nabla u|^{p-2}\frac{\nabla u}{u} and ρ~=u\tilde{\rho}=u for τ(0,t]\tau\in(0,t], it follows that

Wqq(μ,μt)tq10tN|u|pu1p1𝑑x𝑑τ.W^{q}_{q}(\mu,\mu_{t})\leq t^{q-1}\int_{0}^{t}\int_{\mathbb{R}^{N}}|\nabla u|^{p}u^{-\frac{1}{p-1}}dxd\tau. (5.9)

By Lemma 5.2, the inequality (5.2) follows.

We are left to show that inequality (5.2) holds in the case where uu is the positive weak solution of the Cauchy problem (1.1) with finite Radon measure with finite qq-moment μ\mu as initial data, constructed in the proof of Theorem 3.1. Let (u0n)=((mnμ)ξn)(u_{0n})=((m_{n}*\mu)\xi_{n}) be the sequence of smooth initial data in Cc(N)C^{\infty}_{c}(\mathbb{R}^{N}) defined in the proof of Theorem 3.1 and unu_{n} be the corresponding positive weak solution, and (unk)k,(u0nk)(u_{n_{k}})_{k},(u_{0n_{k}}) be the subsequence of (un),(u0n)(u_{n}),(u_{0n}) such that unku_{nk} and unk\nabla u_{nk} converges to uu and u\nabla u uniformly on all compact subset of STS_{T}. Let ε>0\varepsilon>0 be fixed. For Wq(μ,μt)W_{q}(\mu,\mu_{t}), by triangle inequality, it follows that

21qWqq(μ,μt)Wqq(μ,μ0nk)+Wqq(μ0nk,μtnk)+Wqq(μtnkdx,μt),2^{1-q}W^{q}_{q}(\mu,\mu_{t})\leq W^{q}_{q}(\mu,\mu^{0n_{k}})+W^{q}_{q}(\mu^{0n_{k}},\mu^{n_{k}}_{t})+W^{q}_{q}(\mu^{n_{k}}_{t}dx,\mu_{t}), (5.10)

where dμ0n=u0ndxd\mu^{0n}=u_{0n}dx and dμtn=un(x,t)dxd\mu^{n}_{t}=u_{n}(x,t)dx.

As for the first term on the right hand side of (5.10), we claim that μ0n\mu^{0n} converges to μ\mu weakly and that supn|x|R|x|pu0n𝑑x0\sup_{n}\int_{|x|\geq R}|x|^{p}u_{0n}dx\rightarrow 0 as RR\rightarrow\infty. Indeed, for all nn\in\mathbb{N} and R>0R>0, by construction of unu_{n} and Fubini’s theorem, it follows that

|x|R|x|qu0n𝑑x\displaystyle\int_{|x|\geq R}|x|^{q}u_{0n}dx =|x|R|x|qξn(x)yB1/n(x)mn(xy)𝑑μ(y)𝑑x\displaystyle=\int_{|x|\geq R}|x|^{q}\xi_{n}(x)\int_{y\in B_{1/n}(x)}m_{n}(x-y)d\mu(y)dx
=|y|(R1)+xB1/n(y)mn(xy)ξn(x)|xy+y|q𝑑x𝑑μ(y)\displaystyle=\int_{|y|\geq(R-1)^{+}}\int_{x\in B_{1/n}(y)}m_{n}(x-y)\xi_{n}(x)|x-y+y|^{q}dxd\mu(y)
2q1|y|(R1)+|y|q𝑑μ(y)+2q1nq|y|(R1)+𝑑μ(y).\displaystyle\leq 2^{q-1}\int_{|y|\geq(R-1)^{+}}|y|^{q}d\mu(y)+2^{q-1}n^{-q}\int_{|y|\geq(R-1)^{+}}d\mu(y). (5.11)

Hence, supn|x|R|x|qu0n𝑑x0\sup_{n}\int_{|x|\geq R}|x|^{q}u_{0n}dx\rightarrow 0 as RR\rightarrow\infty. Choose R>0R>0 large enough such that supn|x|R|x|qu0n𝑑x<ε\sup_{n}\int_{|x|\geq R}|x|^{q}u_{0n}dx<\varepsilon and μ(BRc)<ε\mu(B^{c}_{R})<\varepsilon and let ξ\xi in Cc(N)C_{c}(\mathbb{R}^{N}) such that ξ=1\xi=1 on BRB_{R} and ξ=0\xi=0 on B2RcB^{c}_{2R}. Since μ0n\mu_{0n} converges to μ\mu vaguely by (3.32), choose nn large enough such that

|Nu0n𝑑xμ(N)||Nξu0n𝑑xNξ𝑑μ|+|x|Ru0n𝑑x+μ(BRc)3ε.\left|\int_{\mathbb{R}^{N}}u_{0n}dx-\mu(\mathbb{R}^{N})\right|\leq\left|\int_{\mathbb{R}^{N}}\xi u_{0n}dx-\int_{\mathbb{R}^{N}}\xi d\mu\right|+\int_{|x|\geq R}u_{0n}dx+\mu(B^{c}_{R})\leq 3\varepsilon. (5.12)

Hence, Nu0n𝑑xμ(N)\int_{\mathbb{R}^{N}}u_{0n}dx\rightarrow\mu(\mathbb{R}^{N}) as nn\rightarrow\infty. By classical result [13, Theorem 13.16], u0ndxu_{0n}dx converges to μ\mu weakly. Together with (5), by [16, Theorem 7.12], it follows that Wq(μ0n,μ)0W_{q}(\mu^{0n},\mu)\rightarrow 0 as nn\rightarrow\infty.

For the third term on the right hand side of (5.10), we claim that μtnk\mu^{n_{k}}_{t} converges to μt\mu_{t} weakly and that supk|x|R|x|punk𝑑x0\sup_{k}\int_{|x|\geq R}|x|^{p}u_{n_{k}}dx\rightarrow 0 as RR\rightarrow\infty. Indeed, by inequality (3.1) of Theorem 3.1, it follows that

supk|x|R|x|qunk(x,t)𝑑xCsupk|x|R/2|x|qu0nk𝑑x+Ct12pRp(N)(p1)(2p).\sup_{k}\int_{|x|\geq R}|x|^{q}u_{n_{k}}(x,t)dx\leq C\sup_{k}\int_{|x|\geq R/2}|x|^{q}u_{0n_{k}}dx+Ct^{\frac{1}{2-p}}R^{-\frac{p(N)}{(p-1)(2-p)}}. (5.13)

Applied to (5), it follows that supk|x|R|x|qunk𝑑x0\sup_{k}\int_{|x|\geq R}|x|^{q}u_{n_{k}}dx\rightarrow 0 as RR\rightarrow\infty. Furthermore, using inequality (5.13) as well as (3.2), choose R>0R>0 large enough such that supk|x|R|x|qunk(x,t)𝑑x<ε\sup_{k}\int_{|x|\geq R}|x|^{q}u_{n_{k}}(x,t)dx<\varepsilon and |x|R|x|qu(x,t)𝑑x<ε\int_{|x|\geq R}|x|^{q}u(x,t)dx<\varepsilon. Then since unku_{n_{k}} converges to uu uniformly on all compact subsets on STS_{T}, choose kk\in\mathbb{N} large enough, such that

|Nunk(x,t)𝑑xNu(x,t)𝑑x||BRunk(x,t)𝑑xBRu(x,t)𝑑x|+|x|R|x|qunk(x,t)𝑑x+|x|R|x|qu(x,t)𝑑x3ε.\left|\int_{\mathbb{R}^{N}}u_{n_{k}}(x,t)dx-\int_{\mathbb{R}^{N}}u(x,t)dx\right|\leq\left|\int_{B_{R}}u_{n_{k}}(x,t)dx-\int_{B_{R}}u(x,t)dx\right|\\ +\int_{|x|\geq R}|x|^{q}u_{n_{k}}(x,t)dx+\int_{|x|\geq R}|x|^{q}u(x,t)dx\leq 3\varepsilon.

By the same argument as previously, it follows that Wq(μtnk,μt)0W_{q}(\mu^{n_{k}}_{t},\mu_{t})\rightarrow 0 as kk\rightarrow\infty.

As for the second term on the right hand side of (5.10), by result from the first step for smooth initial data and inequality (5), it follows that for any t[0,T]t\in[0,T] it holds

Wqq(μ0nk,μtnk)C(N,p){(B2u0nk𝑑x)21p1+(|x|1/2|x|qu0nk𝑑x)21p1+T2p3(p1)(2p)}tq1C(N,p){(μ(N))21p1+(N|x|q𝑑μ)21p1+T2p3(p1)(2p)}tq1.W^{q}_{q}(\mu^{0n_{k}},\mu^{n_{k}}_{t})\\ \leq C(N,p)\left\{\left(\int_{B_{2}}u_{0n_{k}}dx\right)^{2-\frac{1}{p-1}}+\left(\int_{|x|\geq 1/2}|x|^{q}u_{0n_{k}}dx\right)^{2-\frac{1}{p-1}}+T^{\frac{2p-3}{(p-1)(2-p)}}\right\}t^{q-1}\\ \leq C(N,p)\left\{\left(\mu(\mathbb{R}^{N})\right)^{2-\frac{1}{p-1}}+\left(\int_{\mathbb{R}^{N}}|x|^{q}d\mu\right)^{2-\frac{1}{p-1}}+T^{\frac{2p-3}{(p-1)(2-p)}}\right\}t^{q-1}. (5.14)

Thus, taking kk\rightarrow\infty on both side of (5.10) and together with inequality (5.14), the result follows. ∎

References

  • Ambrosio et al. [2019] Luigi Ambrosio, Federico Stra, and Dario Trevisan. A pde approach to a 2-dimensional matching problem. Probability Theory and Related Fields, 173(1):433–477, 2019.
  • Benamou and Brenier [2000] Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the monge-kantorovich mass transfer problem. Numerische Mathematik, 84(3):375–393, 2000.
  • Benedetto [1993] Emmanuele Di Benedetto. Degenerate Parabolic Equations. Universitext. Springer, 1993.
  • Brezis [2010] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer-Verlag New York, 2010.
  • Chen and Di Benedetto [1988] Ya-Zhe Chen and Emmanuele Di Benedetto. On the local behavior of solutions of singular parabolic equations. Archive for Rational Mechanics and Analysis, 103(4):319–345, 1988.
  • Di Benedetto and Herrero [1990] Emmanuele Di Benedetto and Miguel A. Herrero. Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy-problem when 1<p<21<p<2. Archive for Rational Mechanics and Analysis, 111(3):225–290, 1990.
  • Evans and Gangbo [1999] Lawrence C Evans and Wilfrid Gangbo. Differential equations methods for the Monge-Kantorovich mass transfer problem. Number 653. American Mathematical Soc., 1999.
  • Fino et al. [2014] Ahmad Z. Fino, Fatma Gamze Düzgün, and Vincenzo Vespri. Conservation of the mass for solutions to a class of singular parabolic equations. Kodai Math. J., 37(3):519–531, 10 2014.
  • Giaquinta [1983] Mariano Giaquinta. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies 105. Princeton University Press, 1983.
  • Junning [1995] Zhao Junning. The cauchy problem for ut=div(|u|p2u)u_{t}=\mathrm{div}(|\nabla u|^{p-2}\nabla u) when 2n/(n+1)<p<22n/(n+1)<p<2. Nonlinear Analysis: Theory, Methods & Applications, 24(5):615 – 630, 1995.
  • Kamin and Vázquez [1988] Shoshana Kamin and Juan Luis Vázquez. Fundamental solutions and asymptotic behaviour for the pp-laplacian equation. Revista matemática iberoamericana, 4(2):339–354, 1988.
  • Kell [2016] Martin Kell. q-Heat flow and the gradient flow of the renyi entropy in the p-wasserstein space. Journal of Functional Analysis, 271(8):2045–2089, 2016.
  • Klenke [2014] Achim Klenke. Probability Theory: a Comprehensive Course. Universitext. Springer-Verlag London, 2nd ed. edition, 2014.
  • Santambrogio [2015] Filippo Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling. Progress in nonlinear differential equations and their applications 67. Birkhäuser, 1st ed. edition, 2015.
  • Vázquez [2006] Juan Luis Vázquez. Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, USA, 2006.
  • Villani [2003] Cedric Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics 58. American Mathematical Society, 2003.