This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quandles versus symmetric quandles for oriented links

Kanako Oshiro Department of Information and Communication Sciences, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan oshirok@sophia.ac.jp
Abstract.

Given a quandle, we can construct a symmetric quandle called the symmetric double of the quandle. We show that the (co)homology groups of a given quandle are isomorphic to those of its symmetric double. Moreover, quandle coloring numbers and quandle cocycle invariants of oriented links and oriented surface-links can be interpreted by using symmetric quandles.

Key words and phrases:
Quandle, Symmetric quandle, Oriented link
2020 Mathematics Subject Classification:
Primary 57K12; Secondary 57K18

1. Introduction

A quandle is an algebraic system independently introduced by D. Joyce [10] and S. Matveev [15] in 1982. There are several studies using quandles in knot theory. Especially quandle cocycle invariants [2] (see also [3]), introduced by J. S. Carter et al. in 2003, are very useful for studies of oriented links and oriented surface-links, refer to [8, 14, 16, 19, 20, 21, 22, 23, 24] for example. Here, we note that in order to define quandle cocycle invariants, it is essential that links or surface-links are oriented. In 2007, S. Kamada [11] (see also [13]) introduced symmetric quandle cocycle invariants for links and surface-links. In order to define symmetric quandle cocycle invariants, it is not required that links or surface-links are oriented or orientable, and therefore, this enabled us to consider quandle cocycle invariants for links or surface-links which are not necessarily oriented or orientable. There are several studies using symmetric quandle colorings and symmetric quandle cocycle invariants, see [4, 9, 12, 13, 17, 18] for example.

In this paper, we focus on a symmetric quandle which is called the symmetric double of a given quandle. We show that the (co)homology groups of a given quandle are isomorphic to those of the symmetric double of the quandle (Section 4). We also show that for a given quandle, the quandle coloring numbers and the quandle cocycle invariants of oriented (surface-)links can be interpreted by using the symmetric double of the quandle (Sections 5 and 6).

This paper is organized as follows. In Section 2, we review the definitions of quandles, quandle (co)homology groups, and link invariants using quandles. In Section 3, we review the definitions of symmetric quandles, symmetric quandle (co)homology groups, and link invariants using symmetric quandles. In Section 4, we define the symmetric double of a given quandle, and we prove that the (co)homology groups of a quandle are isomorphic to those of its symmetric double. In Section 5, we discuss oriented link invariants using quandles. Especially, we show that quandle coloring numbers, quandle homology invariants and quandle cocycle invariants for oriented links can be interpreted by using symmetric quandles. In Section 6, we summarize the same properties as shown in Section 5 for oriented surface-links.

2. Quandles and invariants for oriented links

In this section, we review the definitions of quandles, quandle (co)homology groups, link invariants using quandles.

2.1. Quandles

A quandle [10, 15], see also [6], is a set XX with a binary operation :X×XX*:X\times X\to X satisfying the following axioms.

  • (Q1)

    For any xXx\in X, xx=xx*x=x.

  • (Q2)

    For any x,yXx,y\in X, there exists a unique element zXz\in X such that zy=xz*y=x.

  • (Q3)

    For any x,y,zXx,y,z\in X, (xy)z=(xz)(yz)(x*y)*z=(x*z)*(y*z).

The unique element zz in the second axiom is denoted by xy1x*y^{-1}. For a quandle XX, when we specify the quandle operation *, we also denote by (X,)(X,*) the quandle XX.

The proof of the next lemma is straightforward, and we leave it to the reader.

Lemma 2.1.

Let (X,)(X,*) be a quandle. For any x,y,zXx,y,z\in X and ε,δ{±1}\varepsilon,\delta\in\{\pm 1\}, it holds that

(xyε)zδ=(xzδ)(yzδ)ε,(x*y^{\varepsilon})*z^{\delta}=(x*z^{\delta})*(y*z^{\delta})^{\varepsilon},

where in this paper xy+1x*y^{+1} means xyx*y.

Example 2.2.

A trivial quandle is a non-empty set SS with the trivial operation, that is, xy=xx*y=x for any x,ySx,y\in S. A trivial quandle consisting of nn elements is denoted by TnT_{n}.

Example 2.3.

The dihedral quandle of order nn for an integer n3n\geq 3 is /n\mathbb{Z}/n\mathbb{Z} with the operation xy=2yxx*y=2y-x for any x,y/nx,y\in\mathbb{Z}/n\mathbb{Z}. We denote it by RnR_{n}.

Example 2.4.

A conjugation quandle is a group GG with the operation gh=h1ghg*h=h^{-1}gh for any g,hGg,h\in G. We denote it by ConjG{\rm Conj}\,G.

2.2. Quandle (co)homology theories

Carter et al. [2] defined homology groups of quandles, which are deeply related to homology groups of racks due to Fenn et al. [7], and various versions are introduced so far, see [1, 3]. In this paper, we adopt the definition of the homology group of a quandle XX with an XX-set YY. We note that when YY is a singleton, the homology group concides with that defined in [2], and when Y=XY=X, the homology group coincides with that defined in [3].

The associated group of a quandle (X,)(X,*) is

GX=xX|xy=y1xy(x,yX),G_{X}=\langle x\in X~{}|~{}x*y=y^{-1}xy~{}(x,y\in X)\rangle,

where we note that any element of XX can be regarded as an element of GXG_{X} through the map XGX;xxX\to G_{X};x\mapsto x. An XX-set is a set YY equipped with a right action by the associated group GXG_{X}. In this paper, we use the same symbol for the operation of a given quandle XX and the action on a given XX-set YY by GXG_{X}, that is, we denote by rgr*g the image of an element rYr\in Y acted on by gGXg\in G_{X}.

Let (X,)(X,*) be a quandle and YY an XX-set. The same proof as in Lemma 2.1 works for the next lemma, and we leave it to the reader.

Lemma 2.5.

For any rYr\in Y, x,yXx,y\in X and ε,δ{±1}\varepsilon,\delta\in\{\pm 1\}, it holds that

(rxε)yδ=(ryδ)(xyδ)ε.(r*x^{\varepsilon})*y^{\delta}=(r*y^{\delta})*(x*y^{\delta})^{\varepsilon}.

Let Cn(X)YC_{n}(X)_{Y} be the free abelian group generated by (n+1)(n+1)-tuples (r,x1,,xn)Y×Xn(r,x_{1},\ldots,x_{n})\in Y\times X^{n} when nn is a positive integer, and let Cn(X)Y={0}C_{n}(X)_{Y}=\{0\} otherwise. The boundary homomorphism n:Cn(X)YCn1(X)Y\partial_{n}:C_{n}(X)_{Y}\to C_{n-1}(X)_{Y} is defined by

n(r,x1,,xn)=i=1n(1)i{(r,x1,,xi^,,xn)(rxi,x1xi,,xi1xi,xi^,xi+1,,xn)}\begin{array}[]{rl}\partial_{n}(r,x_{1},\ldots,x_{n})=&\displaystyle\sum_{i=1}^{n}(-1)^{i}\big{\{}(r,x_{1},\ldots,\hat{x_{i}},\ldots,x_{n})\\ &\ \ \ \ -(r*x_{i},x_{1}*x_{i},\ldots,x_{i-1}*x_{i},\hat{x_{i}},x_{i+1},\ldots,x_{n})\big{\}}\end{array}

for n>1n>1 and n=0\partial_{n}=0 otherwise, where xi^\hat{x_{i}} represents that xix_{i} is removed. Then C(X)Y={Cn(X)Y,n}nC_{*}(X)_{Y}=\{C_{n}(X)_{Y},\partial_{n}\}_{n\in\mathbb{Z}} is a chain complex.

Let Dn(X)YD_{n}(X)_{Y} be the subgroup of Cn(X)YC_{n}(X)_{Y} generated by the elements of

{(r,x1,,xn)Y×Xn|xi=xi+1 for some i{1,,n1}}.\{(r,x_{1},\ldots,x_{n})\in Y\times X^{n}~{}|~{}x_{i}=x_{i+1}\mbox{ for some $i\in\{1,\ldots,n-1\}$}\}.

Then D(X)Y={Dn(X)Y,n}nD_{*}(X)_{Y}=\{D_{n}(X)_{Y},\partial_{n}\}_{n\in\mathbb{Z}} is a subchain complex of C(X)YC_{*}(X)_{Y}. Let CnQ(X)Y=Cn(X)Y/Dn(X)YC_{n}^{\rm Q}(X)_{Y}=C_{n}(X)_{Y}/D_{n}(X)_{Y}, and we denote by nQ\partial_{n}^{\rm Q} the induced boundary homomorphism nQ:CnQ(X)YCn1Q(X)Y\partial_{n}^{\rm Q}:C_{n}^{\rm Q}(X)_{Y}\to C_{n-1}^{\rm Q}(X)_{Y}. The quotient chain complex CQ(X)Y={CnQ(X)Y,nQ}nC_{*}^{\rm Q}(X)_{Y}=\{C_{n}^{\rm Q}(X)_{Y},\partial_{n}^{\rm Q}\}_{n\in\mathbb{Z}} leads to the quandle homology group of XX and YY defined by HnQ(X)Y=KernQ/Imn+1QH_{n}^{\rm Q}(X)_{Y}={\rm Ker}\partial_{n}^{\rm Q}/{\rm Im}\partial_{n+1}^{\rm Q}.

For an abelian group AA, we define the chain complex CQ(X;A)Y={CnQ(X)YA,nQid}nC_{*}^{\rm Q}(X;A)_{Y}=\{C_{n}^{\rm Q}(X)_{Y}\otimes A,\partial_{n}^{\rm Q}\otimes{\rm id}\}_{n\in\mathbb{Z}}. The homology groups are denoted by HQ(X;A)YH_{*}^{\rm Q}(X;A)_{Y}. Note that when A=A=\mathbb{Z}, HQ(X;)YH_{*}^{\rm Q}(X;\mathbb{Z})_{Y} represents HQ(X)YH_{*}^{\rm Q}(X)_{Y}. We also define the cochain group CQn(X;A)YC_{\rm Q}^{n}(X;A)_{Y} and the coboundary homomorphism δQn:CQn(X;A)YCQn+1(X;A)Y\delta_{\rm Q}^{n}:C_{\rm Q}^{n}(X;A)_{Y}\to C_{\rm Q}^{n+1}(X;A)_{Y} by CQn(X;A)Y=Hom(CnQ(X)Y,A)C_{\rm Q}^{n}(X;A)_{Y}={\rm Hom}(C_{n}^{\rm Q}(X)_{Y},A) and δQn(θ)=θn+1Q\delta_{\rm Q}^{n}(\theta)=\theta\circ\partial^{\rm Q}_{n+1}, respectively. The quandle cohomology group with coefficients in AA is defined by HQn(X;A)Y=KerδQn/ImδQn1H_{\rm Q}^{n}(X;A)_{Y}={\rm Ker}\delta_{\rm Q}^{n}/{\rm Im}\delta_{\rm Q}^{n-1}. We denote by ZQn(X;A)YZ_{\rm Q}^{n}(X;A)_{Y} and BQn(X;A)YB_{\rm Q}^{n}(X;A)_{Y} the cocycle group KerδQn{\rm Ker}\delta_{\rm Q}^{n} and the coboundary group ImδQn1{\rm Im}\delta_{\rm Q}^{n-1}, respectively.

2.3. Quandle colorings

A link is a disjoint union of circles embedded in 3\mathbb{R}^{3}. Two links are said to be equivalent if there exists an orientation-preserving self-homeomorphism of 3\mathbb{R}^{3} which maps one link onto the other. A diagram of a link is its image, via a generic projection from 3\mathbb{R}^{3} to 2\mathbb{R}^{2}, equipped with the height information around the crossings. The height information of a diagram of a link is given by removing regular neighborhoods of the lower crossing points, and thus, the diagram is regarded as a disjoint union of connected compact parts. We call each connected component an arc of the diagram. The 22-dimensional space 2\mathbb{R}^{2} is separated into several connected regions by a diagram. We call each connected region a complementary region of the diagram.

Let (X,)(X,*) be a quandle. Let (D,o)(D,o) be an oriented link diagram, that is, a pair of a link diagram DD and an orientation oo of DD. In this paper, we often use normal orientations of arcs for representing the orientation oo of DD as in Figure 1, where for an arc α\alpha of DD, the pair of the orientation oo and the normal orientation nαn_{\alpha} of the arc always forms the right-handed orientation of 2\mathbb{R}^{2}.

Refer to caption
Figure 1. The orientation and the normal orientation
Refer to caption
Refer to caption
Figure 2. The conditions of quandle colorings

An XX-coloring of (D,o)(D,o) is an assignment of an element of XX to each arc satisfying the following condition.

  • Suppose that two arcs α1\alpha_{1} and α2\alpha_{2} which are under-arcs at a crossing χ\chi are labeled by x1x_{1} and x2x_{2}, respectively, and the over arc, say α3\alpha_{3}, of χ\chi is labeled by x3x_{3}. We assume that the normal orientation of α3\alpha_{3} points from α1\alpha_{1} to α2\alpha_{2}. Then x1x3=x2x_{1}*x_{3}=x_{2} holds. See the left of Figure 2.

We denote by ColX(D,o){\rm Col}_{X}(D,o) the set of XX-colorings of (D,o)(D,o). We then have the following lemma.

Lemma 2.6 (cf. [2, 3]).

Let (D,o)(D,o) and (D,o)(D^{\prime},o^{\prime}) be diagrams of oriented links. If (D,o)(D,o) and (D,o)(D^{\prime},o^{\prime}) represent the same oriented link, then there exists a one-to-one correspondence between ColX(D,o){\rm Col}_{X}(D,o) and ColX(D,o){\rm Col}_{X}(D^{\prime},o^{\prime}).

This implies that #ColX(D,o)\#{\rm Col}_{X}(D,o), that is the cardinality of ColX(D,o){\rm Col}_{X}(D,o), is an invariant for oriented links, and hence, we also denote it by #ColX(L,o)\#{\rm Col}_{X}(L,o) and call it the quandle coloring number of (L,o)(L,o) when XX is finite, where (L,o)(L,o) is an oriented link which (D,o)(D,o) represents. We note that in this paper, when a diagram (D,o)(D,o) represents an oriented link, we use the same symbol oo for the orientation of the oriented link.

Let YY be an XX-set. An XYX_{Y}-coloring of (D,o)(D,o) is an XX-coloring of (D,o)(D,o) with an assignment of an element of YY to each complementary region of DD satisfying the following condition.

  • Suppose that two complementary regions γ1\gamma_{1} and γ2\gamma_{2} are adjacent over an arc α\alpha, and γ1\gamma_{1}, γ2\gamma_{2} and α\alpha are labeled by r1r_{1}, r2r_{2} and xx, respectively. We assume that the normal orientation of α\alpha points from γ1\gamma_{1} to γ2\gamma_{2}. Then r1x=r2r_{1}*x=r_{2} holds. See the right of Figure 2.

We denote by ColXY(D,o){\rm Col}_{X_{Y}}(D,o) the set of XYX_{Y}-colorings of (D,o)(D,o). Then we have the following lemma.

Lemma 2.7 (cf. [2, 3]).

Let (D,o)(D,o) and (D,o)(D^{\prime},o^{\prime}) be diagrams of oriented links. If (D,o)(D,o) and (D,o)(D^{\prime},o^{\prime}) represent the same oriented link, then there exists a one-to-one correspondence between ColXY(D,o){\rm Col}_{X_{Y}}(D,o) and ColXY(D,o){\rm Col}_{X_{Y}}(D^{\prime},o^{\prime}).

This implies that #ColXY(D,o)\#{\rm Col}_{X_{Y}}(D,o), that is the cardinality of ColXY(D,o){\rm Col}_{X_{Y}}(D,o), is an invariant for oriented links.

2.4. Quandle cocycle invariants of oriented links

In this subsection, we review the definition of a quandle cocycle invariant of an oriented link. We remark that several variations for quandle cocycle invariants are introduced so far, see [2, 3], and we adopt the definition of a shadow quandle cocycle invariant with a quandle XX and an XX-set YY. We note that when YY is a singleton, the shadow quandle cocycle invariant coincides with the quandle cocycle invariant with XX defined in [2], and when Y=XY=X, the shadow quandle cocycle invariant coincides with that defined in [3].

Let (X,)(X,*) be a quandle and YY an XX-set. Let (D,o)(D,o) be a diagram of an oriented link (L,o)(L,o) and CC an XYX_{Y}-coloring of (D,o)(D,o). For each crossing χ\chi of DD, we extract a weight wχw_{\chi} as follows. Let α1\alpha_{1} and α2\alpha_{2} denote the under-arc and the over-arc of χ\chi, respectively, such that the normal orientation of α2\alpha_{2} points from α1\alpha_{1}, and γ\gamma the complementary region of DD around χ\chi which the normal orientations of α1\alpha_{1} and α2\alpha_{2} point from. We suppose that γ\gamma, α1\alpha_{1} and α2\alpha_{2} are labeled by rr, x1x_{1} and x2x_{2}, respectively. Then the weight of the crossing χ\chi is wχ=ε(r,x1,x2)w_{\chi}=\varepsilon(r,x_{1},x_{2}), where ε=+\varepsilon=+ if χ\chi is positive and ε=\varepsilon=- if χ\chi is negative, see Figure 3. We note that a crossing χ\chi is positive if the pair of the normal orientations of the over-arc and an under-arc of χ\chi matches the right-handed orientation of 2\mathbb{R}^{2}, and χ\chi is negative otherwise. Let WXY((D,o),C)W^{X_{Y}}((D,o),C) denote the sum of the weights of all the crossings, and then, WXY((D,o),C)W^{X_{Y}}((D,o),C) is a 22-cycle of CQ(X)YC_{*}^{\rm Q}(X)_{Y}. Define

𝒲XY(D,o)={[WXY((D,o),C)]H2Q(X)Y|CColXY(D,o)}\mathcal{W}^{X_{Y}}(D,o)=\{[W^{X_{Y}}((D,o),C)]\in H_{2}^{\rm Q}(X)_{Y}~{}|~{}C\in{\rm Col}_{X_{Y}}(D,o)\}

as a multi-set, where a multi-set is a collection of elements which may appear more than once.

Refer to caption
Figure 3. The weight of a crossing

For an abelian group AA, let θ:C2Q(X)YA\theta:C_{2}^{\rm Q}(X)_{Y}\to A be a quandle 22-cocycle. We define the multi-set ΦθXY(D)\Phi_{\theta}^{X_{Y}}(D) by

ΦθXY(D,o)={θ(WXY((D,o),C))A|CColXY(D,o)}.\Phi_{\theta}^{X_{Y}}(D,o)=\{\theta(W^{X_{Y}}((D,o),C))\in A~{}|~{}C\in{\rm Col}_{X_{Y}}(D,o)\}.
Theorem 2.8 (cf. [2, 3]).

The multi-sets 𝒲XY(D,o)\mathcal{W}^{X_{Y}}(D,o) and ΦθXY(D,o)\Phi_{\theta}^{X_{Y}}(D,o) are invariants of the link type of (D,o)(D,o).

We also denote these invariants by 𝒲XY(L,o)\mathcal{W}^{X_{Y}}(L,o) and ΦθXY(L,o)\Phi_{\theta}^{X_{Y}}(L,o), respectively, and call them the quandle homology invariant of (L,o)(L,o) by XX and YY and the quandle cocycle invariant of (L,o)(L,o) by X,YX,Y and θ\theta, respectively.

3. Symmetric quandles and invariants for unoriented links

In this section, we review the definitions of symmetric quandles, symmetric quandle (co)homology groups, link invariants using symmetric quandles. We note again that while link invariants using quandles need orientations of links, link invariants using symmetric quandles do not use orientations of links (or surface-links). This enabled us to consider quandle invariants for links (or surface-links) which are not necessarily oriented or orientable.

3.1. Symmetric quandles

A symmetric quandle [11], see also [13], is a pair (X,ρ)(X,\rho) of a quandle (X,)(X,*) and a good involution ρ\rho of XX, where an involution ρ:XX\rho:X\to X is said to be good if

(GI1) ρ(xy)=ρ(x)y\rho(x*y)=\rho(x)*y   and    (GI2) xρ(y)=xy1x*\rho(y)=x*y^{-1}

for any x,yXx,y\in X. For a symmetric quandle (X,ρ)(X,\rho), when we specify the symmetric quandle operation *, we also denote by (X,ρ,)(X,\rho,*) the symmetric quandle (X,ρ)(X,\rho).

Example 3.1.

Let XX be a trivial quandle. Any involution ρ:XX\rho:X\to X is a good involution of XX.

Example 3.2.

Let GG be a group. The inversion ρ:ConjGConjG;gg1\rho:{\rm Conj}\,G\to{\rm Conj}\,G;g\mapsto g^{-1} is a good involution of the conjugation quandle ConjG{\rm Conj}\,G.

3.2. Symmetric quandle (co)homology theories

Kamada [11], see also [13] in detail, defined (co)homology groups of symmetric quandles. In this subsection, we review the definition of a symmetric quandle homology group.

The associated group of a symmetric quandle (X,ρ,)(X,\rho,*) is

G(X,ρ)=xX|xy=y1xy(x,yX),ρ(x)=x1(xX).G_{(X,\rho)}=\langle x\in X~{}|~{}x*y=y^{-1}xy~{}(x,y\in X),~{}~{}\rho(x)=x^{-1}~{}(x\in X)\rangle.

An (X,ρ)(X,\rho)-set is a set YY equipped with a right action of the associated group G(X,ρ)G_{(X,\rho)}. In this paper, we use the same symbol for the operation of a given symmetric quandle (X,ρ)(X,\rho) and the action on a given (X,ρ)(X,\rho)-set YY by G(X,ρ)G_{(X,\rho)}, that is, we denote by rgr*g the image of an element rYr\in Y acted on by gG(X,ρ)g\in G_{(X,\rho)}.

Let (X,ρ,)(X,\rho,*) be a symmetric quandle and YY be an (X,ρ)(X,\rho)-set. The chain group Cn(X)YC_{n}(X)_{Y}, the boundary homomorphism n:Cn(X)YCn1(X)Y\partial_{n}:C_{n}(X)_{Y}\to C_{n-1}(X)_{Y}, and the subgroup Dn(X)YD_{n}(X)_{Y} of Cn(X)YC_{n}(X)_{Y} are defined as in Subsection 2.2.

Let Dn(X,ρ)YD_{n}(X,\rho)_{Y} be the subgroup of Cn(X)YC_{n}(X)_{Y} generated by the elements of

i=1n{(r,x1,,xn)+(rxi,x1xi,,xi1xi,ρ(xi),xi+1,,xn)|rY,x1,,xnX}.\begin{array}[]{l}\displaystyle\bigcup_{i=1}^{n}\Big{\{}(r,x_{1},\ldots,x_{n})+(r*x_{i},x_{1}*x_{i},\ldots,x_{i-1}*x_{i},\rho(x_{i}),x_{i+1},\ldots,x_{n})\\ \hskip 227.62204pt\Big{|}~{}r\in Y,x_{1},\ldots,x_{n}\in X\Big{\}}.\end{array}

Then D(X,ρ)Y={Dn(X,ρ)Y,n}nD_{*}(X,\rho)_{Y}=\{D_{n}(X,\rho)_{Y},\partial_{n}\}_{n\in\mathbb{Z}} is a subchain complex of C(X)YC_{*}(X)_{Y}. Let CnSQ(X,ρ)Y=Cn(X)Y/(Dn(X)Y+Dn(X,ρ)Y)C_{n}^{\rm SQ}(X,\rho)_{Y}=C_{n}(X)_{Y}/(D_{n}(X)_{Y}+D_{n}(X,\rho)_{Y}), and we denote by nSQ\partial_{n}^{\rm SQ} the induced boundary homomorphism nSQ:CnSQ(X,ρ)YCn1SQ(X,ρ)Y\partial_{n}^{\rm SQ}:C_{n}^{\rm SQ}(X,\rho)_{Y}\to C_{n-1}^{\rm SQ}(X,\rho)_{Y}. The quotient chain complex CSQ(X,ρ)Y={CnSQ(X,ρ)Y,nSQ}nC_{*}^{\rm SQ}(X,\rho)_{Y}=\{C_{n}^{\rm SQ}(X,\rho)_{Y},\partial_{n}^{\rm SQ}\}_{n\in\mathbb{Z}} leads to the symmetric quandle homology group of (X,ρ)(X,\rho) and YY defined by HnSQ(X,ρ)Y=KernSQ/Imn+1SQH_{n}^{\rm SQ}(X,\rho)_{Y}={\rm Ker}\partial_{n}^{\rm SQ}/{\rm Im}\partial_{n+1}^{\rm SQ}.

For an abelian group AA, we define the chain complex CSQ(X,ρ;A)Y={CnSQ(X,ρ)YA,nSQid}nC_{*}^{\rm SQ}(X,\rho;A)_{Y}=\{C_{n}^{\rm SQ}(X,\rho)_{Y}\otimes A,\partial_{n}^{\rm SQ}\otimes{\rm id}\}_{n\in\mathbb{Z}}. The homology groups are denoted by HSQ(X,ρ;A)YH_{*}^{\rm SQ}(X,\rho;A)_{Y}. Note that when A=A=\mathbb{Z}, HSQ(X,ρ;)YH_{*}^{\rm SQ}(X,\rho;\mathbb{Z})_{Y} represents HSQ(X,ρ)YH_{*}^{\rm SQ}(X,\rho)_{Y}. We also define the cochain group CSQn(X,ρ;A)YC_{\rm SQ}^{n}(X,\rho;A)_{Y} and the coboundary homomorphism δSQn:CSQn(X,ρ;A)YCSQn+1(X,ρ;A)Y\delta_{\rm SQ}^{n}:C_{\rm SQ}^{n}(X,\rho;A)_{Y}\to C_{\rm SQ}^{n+1}(X,\rho;A)_{Y} by CSQn(X,ρ;A)Y=Hom(CnSQ(X,ρ)Y,A)C_{\rm SQ}^{n}(X,\rho;A)_{Y}={\rm Hom}(C_{n}^{\rm SQ}(X,\rho)_{Y},A) and δSQn(θ)=θn+1SQ\delta_{\rm SQ}^{n}(\theta)=\theta\circ\partial^{\rm SQ}_{n+1}, respectively. The symmetric quandle cohomology group with coefficients in AA is defined by HSQn(X,ρ;A)Y=KerδSQn/ImδSQn1H_{\rm SQ}^{n}(X,\rho;A)_{Y}={\rm Ker}\delta_{\rm SQ}^{n}/{\rm Im}\delta_{\rm SQ}^{n-1}, and we denote by ZSQn(X,ρ;A)YZ_{\rm SQ}^{n}(X,\rho;A)_{Y} and BSQn(X,ρ;A)YB_{\rm SQ}^{n}(X,\rho;A)_{Y} the cocycle group KerδSQn{\rm Ker}\delta_{\rm SQ}^{n} and the coboundary group ImδSQn1{\rm Im}\delta_{\rm SQ}^{n-1}, respectively.

3.3. Symmetric quandle colorings

Let (X,ρ,)(X,\rho,*) be a symmetric quandle and DD an (unoriented) link diagram. A semi-arc of DD is a connected component after removing the regular neighborhoods of the crossings of DD.

An (X,ρ)(X,\rho)-coloring of DD is the equivalence class of an assignment of a normal orientation and an element of XX to each semi-arc satisfying the following conditions.

  • Suppose that two semi-arcs coming from an over-arc of DD at a crossing are labeled by x1x_{1} and x2x_{2}. If the normal orientations are coherent, then x1=x2x_{1}=x_{2}, otherwise x1=ρ(x2)x_{1}=\rho(x_{2}). See the left upper half of Figure 4.

  • Suppose that two semi-arcs α1\alpha_{1} and α2\alpha_{2} which are under-arcs at a crossing χ\chi are labeled by x1x_{1} and x2x_{2}, respectively, and suppose that one of the semi-arcs coming from the over arc, say α3\alpha_{3}, of χ\chi is labeled by x3x_{3}. We assume that the normal orientation of α3\alpha_{3} points from α1\alpha_{1} to α2\alpha_{2}. If the normal orientations of α1\alpha_{1} and α2\alpha_{2} are coherent, then x1x3=x2x_{1}*x_{3}=x_{2} holds, otherwise x1x3=ρ(x2)x_{1}*x_{3}=\rho(x_{2}) holds. See the left lower half of Figure 4.

Refer to caption
Figure 4. The coloring conditions of symmetric quandle colorings

Here the equivalence relation is generated by basic inversions which are operations of replacing the normal orientation of a semi-arc with the inverse one and the element xx, assigned to the semi-arc, with ρ(x)\rho(x), see Figure 5.

Refer to caption
Figure 5. A basic inversion

We denote by Col(X,ρ)(D){\rm Col}_{(X,\rho)}(D) the set of (X,ρ)(X,\rho)-colorings of DD. We then have the following lemma.

Lemma 3.3 ([11, 13]).

Let DD and DD^{\prime} be diagrams of (unoriented) links. If DD and DD^{\prime} represent the same link, then there exists a one-to-one correspondence between Col(X,ρ)(D){\rm Col}_{(X,\rho)}(D) and Col(X,ρ)(D){\rm Col}_{(X,\rho)}(D^{\prime}).

This implies that #Col(X,ρ)(D)\#{\rm Col}_{(X,\rho)}(D), that is the cardinality of Col(X,ρ)(D){\rm Col}_{(X,\rho)}(D), is an invariant for links, and hence, we also denote it by #Col(X,ρ)(L)\#{\rm Col}_{(X,\rho)}(L) and call it the symmetric quandle coloring number of LL when XX is finite, where LL is a link which DD represents.

Let YY be an (X,ρ)(X,\rho)-set. An (X,ρ)Y(X,\rho)_{Y}-coloring of DD is an (X,ρ)(X,\rho)-coloring of DD with an assignment of an element of YY to each complementary region of DD satisfying the following condition.

  • Suppose that two complementary regions γ1\gamma_{1} and γ2\gamma_{2} are adjacent over a semi-arc α\alpha, and γ1\gamma_{1}, γ2\gamma_{2} and α\alpha are labeled by r1r_{1}, r2r_{2} and xx, respectively. We assume that the normal orientation of α\alpha points from γ1\gamma_{1} to γ2\gamma_{2}. Then r1x=r2r_{1}*x=r_{2} holds. See the right of Figure 4.

We denote by Col(X,ρ)Y(D){\rm Col}_{(X,\rho)_{Y}}(D) the set of (X,ρ)Y(X,\rho)_{Y}-colorings of DD. Then we have the following lemma.

Lemma 3.4 ([11, 13]).

Let DD and DD^{\prime} be diagrams of (unoriented) links. If DD and DD^{\prime} represent the same link, then there exists a one-to-one correspondence between Col(X,ρ)Y(D){\rm Col}_{(X,\rho)_{Y}}(D) and Col(X,ρ)Y(D){\rm Col}_{(X,\rho)_{Y}}(D^{\prime}).

This implies that #Col(X,ρ)Y(D)\#{\rm Col}_{(X,\rho)_{Y}}(D), that is the cardinality of Col(X,ρ)Y(D){\rm Col}_{(X,\rho)_{Y}}(D), is an invariant for links.

3.4. Symmetric quandle cocycle invariants of (unoriented) links

Let (X,ρ,)(X,\rho,*) be a symmetric quandle and YY an (X,ρ)(X,\rho)-set. Let DD be a diagram of an (unoriented) link LL and CC an (X,ρ)Y(X,\rho)_{Y}-coloring of DD. For each crossing χ\chi of DD, we extract a weight wχw_{\chi} as follows. For a crossing χ\chi of DD, there are four complementary regions of DD around χ\chi. We choose one of the regions, say γ\gamma, and call it the specified region for χ\chi. Let α1\alpha_{1} and α2\alpha_{2} denote the under-semi-arc and the over-semi-arc of χ\chi, respectively, which faces the specified region γ\gamma. By basic inversions, we may assume that the normal orientations n1n_{1} and n2n_{2} of α1\alpha_{1} and α2\alpha_{2}, respectively, point from γ\gamma. Let x1x_{1}, x2x_{2} and rr be the labels of α1\alpha_{1}, α2\alpha_{2} and γ\gamma, respectively. Then the weight of the crossing χ\chi is wχ=ε(r,x1,x2)w_{\chi}=\varepsilon(r,x_{1},x_{2}), where if the pair (n1,n2)(n_{1},n_{2}) of the normal orientations n1n_{1} and n2n_{2} assigned to α1\alpha_{1} and α2\alpha_{2}, respectively, matches the right-handed orientation of 2\mathbb{R}^{2}, then ε=+\varepsilon=+, otherwise ε=\varepsilon=-, see Figure 6.

Refer to caption
Figure 6. The weight of a crossing

Let W(X,ρ)Y(D,C)W^{(X,\rho)_{Y}}(D,C) denote the sum of the weights of all the crossings, and then, W(X,ρ)Y(D,C)W^{(X,\rho)_{Y}}(D,C) is a 22-cycle of CSQ(X,ρ)YC_{*}^{\rm SQ}(X,\rho)_{Y}. Define

𝒲(X,ρ)Y(D)={[W(X,ρ)Y(D,C)]H2SQ(X,ρ)Y|CCol(X,ρ)Y(D)}\mathcal{W}^{(X,\rho)_{Y}}(D)=\{[W^{(X,\rho)_{Y}}(D,C)]\in H_{2}^{\rm SQ}(X,\rho)_{Y}~{}|~{}C\in{\rm Col}_{(X,\rho)_{Y}}(D)\}

as a multi-set.

For an abelian group AA, let θ:C2SQ(X,ρ)YA\theta:C_{2}^{\rm SQ}(X,\rho)_{Y}\to A be a symmetric quandle 22-cocycle. We define the multi-set Φθ(X,ρ)Y(D)\Phi_{\theta}^{(X,\rho)_{Y}}(D) by

Φθ(X,ρ)Y(D)={θ(W(X,ρ)Y(D,C))A|CCol(X,ρ)Y(D)}.\Phi_{\theta}^{(X,\rho)_{Y}}(D)=\{\theta(W^{(X,\rho)_{Y}}(D,C))\in A~{}|~{}C\in{\rm Col}_{(X,\rho)_{Y}}(D)\}.
Theorem 3.5 ([11, 13]).

The multi-sets 𝒲(X,ρ)Y(D)\mathcal{W}^{(X,\rho)_{Y}}(D) and Φθ(X,ρ)Y(D)\Phi_{\theta}^{(X,\rho)_{Y}}(D) are invariants of the link type of DD.

We also denote these invariants by 𝒲(X,ρ)Y(L)\mathcal{W}^{(X,\rho)_{Y}}(L) and Φθ(X,ρ)Y(L)\Phi_{\theta}^{(X,\rho)_{Y}}(L), respectively, and call them the symmetric quandle homology invariant of LL by (X,ρ)(X,\rho) and YY and the symmetric quandle cocycle invariant of LL by (X,ρ),Y(X,\rho),Y and θ\theta, respectively.

4. Quandle homology groups are interpreted as symmetric quandle homology groups

In this section, we show that for any quandle XX and any XX-set YY, the quandle homology groups of XX and YY is obtained as symmetric quandle homology groups.

4.1. The symmetric double of a quandle

Let (X,)(X,*) be a quandle. We set two copies X+1X^{+1} and X1X^{-1} of XX by

Xε={xε|xX}(ϵ{±1})X^{\varepsilon}=\{x^{\varepsilon}~{}|~{}x\in X\}~{}~{}~{}~{}~{}(\epsilon\in\{\pm 1\})

and let DX=X+1X1D_{X}=X^{+1}\sqcup X^{-1}. For xεDXx^{\varepsilon}\in D_{X}, we call ε\varepsilon the sign of xεx^{\varepsilon}. Define a binary operation :DX×DXDX\star:D_{X}\times D_{X}\to D_{X} by

xεyδ=(xyδ)ε for x,yX and ε,δ{±1}.x^{\varepsilon}\star y^{\delta}=(x*y^{\delta})^{\varepsilon}~{}~{}~{}\mbox{ for $x,y\in X$ and $\varepsilon,\delta\in\{\pm 1\}$.}
Lemma 4.1.

The set DXD_{X} is a quandle with the operation :DX×DXDX\star:D_{X}\times D_{X}\to D_{X}.

Proof.

(Q1) For any xεDXx^{\varepsilon}\in D_{X}, we have xεxε=(xxε)ε=xεx^{\varepsilon}\star x^{\varepsilon}=(x*x^{\varepsilon})^{\varepsilon}=x^{\varepsilon}. (Q2) For any xε,yδDXx^{\varepsilon},y^{\delta}\in D_{X}, we set z=xyδz=x*y^{-\delta} and ζ=ε\zeta=\varepsilon, and then we have zζyδ=(zyδ)ζ=xεz^{\zeta}\star y^{\delta}=(z*y^{\delta})^{\zeta}=x^{\varepsilon}. If we have two elements zζ,wηDXz^{\zeta},w^{\eta}\in D_{X} such that zζyδ=xεz^{\zeta}\star y^{\delta}=x^{\varepsilon} and wηyδ=xεw^{\eta}\star y^{\delta}=x^{\varepsilon}, then (zyδ)ζ=(wyδ)η(z*y^{\delta})^{\zeta}=(w*y^{\delta})^{\eta} holds, which implies ζ=η\zeta=\eta and z=wz=w. (Q3) For any xε,yδ,zζDXx^{\varepsilon},y^{\delta},z^{\zeta}\in D_{X}, by Lemma 2.1, we have (xεyδ)zζ=(xyδ)εzζ=((xyδ)zζ)ε=((xzζ)(yzζ)δ)ε=(xzζ)ε(yzζ)δ=(xεzζ)(yδzζ)(x^{\varepsilon}\star y^{\delta})\star z^{\zeta}=(x*y^{\delta})^{\varepsilon}\star z^{\zeta}=\big{(}(x*y^{\delta})*z^{\zeta}\big{)}^{\varepsilon}=\big{(}(x*z^{\zeta})*(y*z^{\zeta})^{\delta}\big{)}^{\varepsilon}=(x*z^{\zeta})^{\varepsilon}\star(y*z^{\zeta})^{\delta}=(x^{\varepsilon}\star z^{\zeta})\star(y^{\delta}\star z^{\zeta}). ∎

We call the quandle (DX,)(D_{X},\star) the double of XX.

Lemma 4.2.

The subset X+1X^{+1} (resp. X1X^{-1}) of DXD_{X} forms a subquandle of DXD_{X}. Moreover, we have X+1XX^{+1}\cong X (resp. X1XX^{-1}\cong X).

Proof.

It is easily seen that the quandle operation \star on X+1X^{+1} preserves the sign +1+1, and thus, (X+1,)(X^{+1},\star) is a subquandle of DXD_{X}. The isomorphism X+1XX^{+1}\to X is given by x+1xx^{+1}\mapsto x. ∎

Define a map ρ+:DXDX{\rho_{+\leftrightarrow-}}:D_{X}\to D_{X} by ρ(xε)=xε\rho(x^{\varepsilon})=x^{-\varepsilon}.

Lemma 4.3.

The map ρ+:DXDX{\rho_{+\leftrightarrow-}}:D_{X}\to D_{X} is a good involution of the double (DX,)(D_{X},\star) of XX.

Proof.

(GI1) For any xε,yδDXx^{\varepsilon},y^{\delta}\in D_{X}, we have ρ+(xεyδ)=ρ+((xyδ)ε)=(xyδ)ε=xεyδ=ρ+(xε)yδ{\rho_{+\leftrightarrow-}}(x^{\varepsilon}\star y^{\delta})={\rho_{+\leftrightarrow-}}((x*y^{\delta})^{\varepsilon})=(x*y^{\delta})^{-\varepsilon}=x^{-\varepsilon}\star y^{\delta}={\rho_{+\leftrightarrow-}}(x^{\varepsilon})\star y^{\delta}. (GI2) For any xε,yδDXx^{\varepsilon},y^{\delta}\in D_{X}, we have (xερ+(yδ))yδ=(xεyδ)yδ=((xyδ)yδ)ε=xε(x^{\varepsilon}\star{\rho_{+\leftrightarrow-}}(y^{\delta}))\star y^{\delta}=(x^{\varepsilon}\star y^{-\delta})\star y^{\delta}=\big{(}(x*y^{-\delta})*y^{\delta}\big{)}^{\varepsilon}=x^{\varepsilon}, and hence, xερ+(yδ)=xε(yδ)1x^{\varepsilon}\star{\rho_{+\leftrightarrow-}}(y^{\delta})=x^{\varepsilon}\star(y^{\delta})^{-1} holds. ∎

We call the symmetric quandle (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}}) the symmetric double of XX.

Example 4.4.

Let nn be an odd integer and XX the dihedral quandle RnR_{n}. The double DXD_{X} of XX is isomorphic to the dihedral quandle R2nR_{2n}, where the isomorphism ϕ:DXR2n\phi:D_{X}\to R_{2n} is defined by

ϕ(xε)={2xif ε=+1,2x+nif ε=1.\phi(x^{\varepsilon})=\left\{\begin{array}[]{ll}2x&\mbox{if $\varepsilon=+1$,}\\ 2x+n&\mbox{if $\varepsilon=-1$.}\end{array}\right.

Set ρ:R2nR2n\rho:R_{2n}\to R_{2n} by ρ(x)=x+n\rho(x)=x+n for xR2nx\in R_{2n}, where we note that this ρ\rho is a good involution of R2nR_{2n}. Then the symmetric double (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}}) of XX is isomorphic to the symmetric quandle (R2n,ρ)(R_{2n},\rho).

Let YY be an XX-set. For the associated groups GXG_{X} and G(DX,ρ+)G_{(D_{X},{\rho_{+\leftrightarrow-}})}, we define the group homomorphism π:G(DX,ρ+)GX\pi:G_{(D_{X},{\rho_{+\leftrightarrow-}})}\to G_{X} by π(xε)=xε\pi(x^{\varepsilon})=x^{\varepsilon} for xεDXx^{\varepsilon}\in D_{X}. Note that x+1x^{+1} represents xx in GXG_{X} and x1x^{-1} represents the inverse of xx in GXG_{X}. The next property can be proven by an easy verification as in Lemmas 2.1 and 2.5.

Lemma 4.5.

YY is a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-set by the right action

:Y×G(DX,ρ+)Y;(a,g)ag=aπ(g).\star:Y\times G_{(D_{X},{\rho_{+\leftrightarrow-}})}\to Y;~{}(a,g)\mapsto a\star g=a*\pi(g).
Remark 4.6.

For xεDXx^{\varepsilon}\in D_{X}, (xε)1=ρ+(xε)=xεG(DX,ρ+)(x^{\varepsilon})^{-1}={\rho_{+\leftrightarrow-}}(x^{\varepsilon})=x^{-\varepsilon}\in G_{(D_{X},{\rho_{+\leftrightarrow-}})} and (xε)+1=xεG(DX,ρ+)(x^{\varepsilon})^{+1}=x^{\varepsilon}\in G_{(D_{X},{\rho_{+\leftrightarrow-}})} hold, which imply that for xεDXx^{\varepsilon}\in D_{X} and δ{±1}\delta\in\{\pm 1\}, we may apply the multiplication (xε)δ=xεδ(x^{\varepsilon})^{\delta}=x^{\varepsilon\delta} to the signs.

4.2. The homology groups of a quandle and its symmetric double

In this subsection, we show that the homology group of a given quandle and that of the symmetric double are isomorphic. This property is very important for applying symmetric quandle cocycle invariants for oriented (or unoriented orientable) links and saying that symmetric quandle cocycle invariants are a generalization of quandle cocycle invariants.

For simplicity, in this subsection, we omit parenthesis of operations or actions such as x1x2ε2x3ε3xnεnx_{1}*x_{2}^{\varepsilon_{2}}*x_{3}^{\varepsilon_{3}}*\cdots*x_{n}^{\varepsilon_{n}} means (((x1x2ε2)x3ε3))xnεn(\cdots((x_{1}*x_{2}^{\varepsilon_{2}})*x_{3}^{\varepsilon_{3}})*\cdots)*x_{n}^{\varepsilon_{n}}, and x1x2ε2x3ε3xnεnx_{1}\star x_{2}^{\varepsilon_{2}}\star x_{3}^{\varepsilon_{3}}\star\cdots\star x_{n}^{\varepsilon_{n}} means (((x1x2ε2)x3ε3))xnεn(\cdots((x_{1}\star x_{2}^{\varepsilon_{2}})\star x_{3}^{\varepsilon_{3}})\star\cdots)\star x_{n}^{\varepsilon_{n}}.

Let (X,)(X,*) be a quandle, (DX,ρ+,)(D_{X},{\rho_{+\leftrightarrow-}},\star) the symmetric double of XX, and YY an XX-set. We note that by Lemma 4.5, YY is regarded as a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-set.

For each (r,x1ε1,,xnεn)Y×DXn(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon_{n}})\in Y\times D_{X}^{n}, apply the following process (Step 0)-(Step 2), say the canonicalization, while {δ1,,δn}{+1}\{\delta_{1},\ldots,\delta_{n}\}\not=\{+1\}.

  • (Step 0) Set the singed (n+1)(n+1)-tuple δ(s,y1δ1,,ynδn){±1}×Y×DXn\delta(s,y_{1}^{\delta_{1}},\ldots,y_{n}^{\delta_{n}})\in\{\pm 1\}\times Y\times D_{X}^{n} by (s,y1δ1,,ynδn):=(r,x1ε1,,xnεn)(s,y_{1}^{\delta_{1}},\ldots,y_{n}^{\delta_{n}}):=(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon_{n}}), δ:=+1\delta:=+1 and i:=ni:=n. Go to (Step 1).

  • (Step 1) If the iith sign δi\delta_{i} is 1-1, replace δ(s,y1δ1,,ynδn)\delta(s,y_{1}^{\delta_{1}},\ldots,y_{n}^{\delta_{n}}) with

    δ(syiδi,(y1yiδi)δ1,,(yi1yiδi)δi1,yiδi,yi+1δi+1,,ynδn),\displaystyle-\delta(s*y_{i}^{\delta_{i}},(y_{1}*y_{i}^{\delta_{i}})^{\delta_{1}},\ldots,(y_{i-1}*y_{i}^{\delta_{i}})^{\delta_{i-1}},y_{i}^{-\delta_{i}},y_{i+1}^{\delta_{i+1}},\ldots,y_{n}^{\delta_{n}}), (1)

    and then, denote by δ(s,y1δ1,,ynδn)\delta(s,y_{1}^{\delta_{1}},\ldots,y_{n}^{\delta_{n}}) the replaced signed (n+1)(n+1)-tuple (1). Go to (Step 2).

  • (Step 2) Set i:=i1i:=i-1. Go to (Step 1).

We note that applying the canonicalization should be finished once we have δ(s,y1δ1,,ynδn)\delta(s,y_{1}^{\delta_{1}},\ldots,y_{n}^{\delta_{n}}) with {δ1,,δn}={+1}\{\delta_{1},\ldots,\delta_{n}\}=\{+1\}. Then we have an element δ(s,y1+1,,yn+1){±1}×Y×(X+1)n\delta(s,y_{1}^{+1},\ldots,y_{n}^{+1})\in\{\pm 1\}\times Y\times(X^{+1})^{n}, where we note that the transformation in (Step 1) comes from the generators of the subgroup Dn(DX,ρ+)YD_{n}(D_{X},{\rho_{+\leftrightarrow-}})_{Y} of Cn(DX)YC_{n}(D_{X})_{Y}. This implies that any (n+1)(n+1)-tuple (r,x1ε1,,xnεn)(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon_{n}}) in CnSQ(DX,ρ+)YC_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y} is represented by a single term δ(s,y1+,,yn+)\delta(s,y_{1}^{+},\ldots,y_{n}^{+}), that is,

(r,x1ε1,,xnεn)=δ(s,y1+1,,yn+1)CnSQ(DX,ρ+)Y.(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon_{n}})=\delta(s,y_{1}^{+1},\ldots,y_{n}^{+1})\in C_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y}.

We call the resultant element δ(s,y1+1,,yn+1) in CnSQ(DX,ρ+)Y\delta(s,y_{1}^{+1},\ldots,y_{n}^{+1})\mbox{ in }C_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y} the canonical form of (r,x1ε1,,xnεn)(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon_{n}}).

Example 4.7.

For (r,x11,x2+1,x31)Y×DX3(r,x_{1}^{-1},x_{2}^{+1},x_{3}^{-1})\in Y\times D_{X}^{3}, we apply the canonicalization until all the signs of the last three components become +1+1. Since we have the transformations

(r,x11,x2+1,x31)(rx31,(x1x31)1,(x2x31)+1,x3+1)+((rx31)(x1x31)1,(x1x31)+1,(x2x31)+1,x3+1)=+(rx11x31,(x1x31)+1,(x2x31)+1,x3+1),\begin{array}[]{lcl}&&(r,x_{1}^{-1},x_{2}^{+1},x_{3}^{-1})\\[3.0pt] &\longrightarrow&-(r*x_{3}^{-1},(x_{1}*x_{3}^{-1})^{-1},(x_{2}*x_{3}^{-1})^{+1},x_{3}^{+1})\\[3.0pt] &\longrightarrow&+((r*x_{3}^{-1})*(x_{1}*x_{3}^{-1})^{-1},(x_{1}*x_{3}^{-1})^{+1},(x_{2}*x_{3}^{-1})^{+1},x_{3}^{+1})\\[3.0pt] &=&+(r*x_{1}^{-1}*x_{3}^{-1},(x_{1}*x_{3}^{-1})^{+1},(x_{2}*x_{3}^{-1})^{+1},x_{3}^{+1}),\end{array}

the canonical form of (r,x11,x2+1,x31)(r,x_{1}^{-1},x_{2}^{+1},x_{3}^{-1}) is +(rx11x31,(x1x31)+1,(x2x31)+1,x3+1)+(r*x_{1}^{-1}*x_{3}^{-1},(x_{1}*x_{3}^{-1})^{+1},(x_{2}*x_{3}^{-1})^{+1},x_{3}^{+1}).

Define a homomorphism TnDXX:CnSQ(DX,ρ+)YCnQ(X)YT_{n}^{{D_{X}\to X}}:C_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y}\to C_{n}^{\rm Q}(X)_{Y} by

TnDXX(r,x1ε1,,xnεn)=δ(s,y1,,yn)\displaystyle T_{n}^{D_{X}\to X}(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon_{n}})=\delta(s,y_{1},\ldots,y_{n})

for n1n\geq 1 and TnDXX=0T_{n}^{D_{X}\to X}=0 otherwise, where δ(s,y1+1,,yn+1)\delta(s,y_{1}^{+1},\ldots,y_{n}^{+1}) is the canonical form of (r,x1ε1,,xnεn)(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon_{n}}). Define a homomorphism TnXDX:CnQ(X)YCnSQ(DX,ρ+)YT_{n}^{X\to D_{X}}:C_{n}^{\rm Q}(X)_{Y}\to C_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y} by

TnXDX(r,x1,,xn)=(r,x1+1,,xn+1)T_{n}^{X\to D_{X}}(r,x_{1},\ldots,x_{n})=(r,x_{1}^{+1},\ldots,x_{n}^{+1})

for n1n\geq 1 and TnXDX=0T_{n}^{X\to D_{X}}=0 otherwise.

Lemma 4.8.

TnDXXT_{n}^{D_{X}\to X} and TnXDXT_{n}^{X\to D_{X}} are inverses of each other, and thus, they are isomorphisms.

Proof.

First, we will check the well-definedness of TnDXXT_{n}^{D_{X}\to X}. We temporarily regard this map as TnDXX:Cn(DX)YCn(X)YT_{n}^{D_{X}\to X}:C_{n}(D_{X})_{Y}\to C_{n}(X)_{Y}. We may show that for any (r,x1ε1,,xnεn)Y×DXn(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon_{n}})\in Y\times D_{X}^{n} and i{1,,n}i\in\{1,\ldots,n\},

TnDXX((r,x1ε1,,xnεn)\displaystyle T_{n}^{D_{X}\to X}\Big{(}(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon_{n}})
+(rxiεi,x1ε1xiεi,,xi1εi1xiεi,ρ(xiεi),xi+1εi+1,,xnεn))=0,\displaystyle\hskip 10.00002pt+(r\star x_{i}^{\varepsilon_{i}},x_{1}^{\varepsilon_{1}}\star x_{i}^{\varepsilon_{i}},\ldots,x_{i-1}^{\varepsilon_{i-1}}\star x_{i}^{\varepsilon_{i}},\rho(x_{i}^{\varepsilon_{i}}),x_{i+1}^{\varepsilon_{i+1}},\ldots,x_{n}^{\varepsilon_{n}})\Big{)}=0, (2)
TnDXX(r,x1ε1,,xiεi,xi+1εi+1=xiεi,,xnεn)Dn(X)Y.\displaystyle T_{n}^{D_{X}\to X}(r,x_{1}^{\varepsilon_{1}},\ldots,x_{i}^{\varepsilon_{i}},x_{i+1}^{\varepsilon_{i+1}}=x_{i}^{\varepsilon_{i}},\ldots,x_{n}^{\varepsilon_{n}})\in D_{n}(X)_{Y}. (3)

Let j1,,jj_{1},\ldots,j_{\ell} denote the elements of {i+1,,n}\{i+1,\ldots,n\} such that j1<j2<<jj_{1}<j_{2}<\cdots<j_{\ell} and εj1=εj2==εj=1\varepsilon_{j_{1}}=\varepsilon_{j_{2}}=\cdots=\varepsilon_{j_{\ell}}=-1. Assume εi=+1\varepsilon_{i}=+1. For the (n+1)(n+1)-tuple (r,x1ε1,,xi+1,,xnεn)(r,x_{1}^{\varepsilon_{1}},\ldots,x_{i}^{+1},\ldots,x_{n}^{\varepsilon_{n}}), apply the canonicalization while {δj1,,δj}{+1}\{\delta_{j_{1}},\ldots,\delta_{j_{\ell}}\}\not=\{+1\}. We note that applying the canonicalization should be finished once we have δ(s,y1δ1,,ynδn)\delta(s,y_{1}^{\delta_{1}},\ldots,y_{n}^{\delta_{n}}) with {δj1,,δj}={+1}\{\delta_{j_{1}},\ldots,\delta_{j_{\ell}}\}=\{+1\}. We then have the transformation

(r,x1ε1,,xi+1,,xnεn)(1)(t,z1ε1,,zi1εi1,zi+1,zi+1+1,,zn+1),\begin{array}[]{l}(r,x_{1}^{\varepsilon_{1}},\ldots,x_{i}^{+1},\ldots,x_{n}^{\varepsilon_{n}})\longrightarrow(-1)^{\ell}(t,z_{1}^{\varepsilon_{1}},\ldots,z_{i-1}^{\varepsilon_{i-1}},z_{i}^{+1},z_{i+1}^{+1},\ldots,z_{n}^{+1}),\end{array}

which implies that

TnDXX(r,x1ε1,,xi+1,,xnεn)=(1)TnDXX(t,z1ε1,,zi1εi1,zi+1,zi+1+1,,zn+1),\begin{array}[]{l}T_{n}^{D_{X}\to X}(r,x_{1}^{\varepsilon_{1}},\ldots,x_{i}^{+1},\ldots,x_{n}^{\varepsilon_{n}})\\[3.0pt] =(-1)^{\ell}T_{n}^{D_{X}\to X}(t,z_{1}^{\varepsilon_{1}},\ldots,z_{i-1}^{\varepsilon_{i-1}},z_{i}^{+1},z_{i+1}^{+1},\ldots,z_{n}^{+1}),\end{array}

where (1)(t,z1ε1,,zi1εi1,zi+1,zi+1+1,,zn+1)(-1)^{\ell}(t,z_{1}^{\varepsilon_{1}},\ldots,z_{i-1}^{\varepsilon_{i-1}},z_{i}^{+1},z_{i+1}^{+1},\ldots,z_{n}^{+1}) is the resultant δ(s,y1δ1,,ynδn)\delta(s,y_{1}^{\delta_{1}},\ldots,y_{n}^{\delta_{n}}) by the above canonicalization, that is, t=rxj11xj1t=r*x_{j_{1}}^{-1}*\cdots*x_{j_{\ell}}^{-1} and

zk={xkxj11xj1(1k<j1),xkxjκ+11xj1(jκk<jκ+1,κ{1,,1}),xk(jkn).z_{k}=\left\{\begin{array}[]{cl}x_{k}*x_{j_{1}}^{-1}*\cdots*x_{j_{\ell}}^{-1}&(1\leq k<j_{1}),\\ $\vdots$&\hskip 28.45274pt$\vdots$\\ x_{k}*x_{j_{\kappa+1}}^{-1}*\cdots*x_{j_{\ell}}^{-1}&(j_{\kappa}\leq k<j_{\kappa+1},\kappa\in\{1,\ldots,\ell-1\}),\\ $\vdots$&\hskip 28.45274pt$\vdots$\\ x_{k}&(j_{\ell}\leq k\leq n).\\ \end{array}\right.

For the (n+1)(n+1)-tuple (rxiεi,x1ε1xiεi,,xi1εi1xiεi,ρ(xiεi),xi+1εi+1,,xnεn)(r\star x_{i}^{\varepsilon_{i}},x_{1}^{\varepsilon_{1}}\star x_{i}^{\varepsilon_{i}},\ldots,x_{i-1}^{\varepsilon_{i-1}}\star x_{i}^{\varepsilon_{i}},\rho(x_{i}^{\varepsilon_{i}}),x_{i+1}^{\varepsilon_{i+1}},\ldots,x_{n}^{\varepsilon_{n}}), that is (rxi,(x1xi)ε1,,(xi1xi)εi1,xi1,xi+1εi+1,,xnεn)(r*x_{i},(x_{1}*x_{i})^{\varepsilon_{1}},\ldots,(x_{i-1}*x_{i})^{\varepsilon_{i-1}},x_{i}^{-1},x_{i+1}^{\varepsilon_{i+1}},\ldots,x_{n}^{\varepsilon_{n}}), apply the canonicalization while {δi,δj1,,δj}{+1}\{\delta_{i},\delta_{j_{1}},\ldots,\delta_{j_{\ell}}\}\not=\{+1\}. We note that applying the canonicalization should be finished once we have δ(s,y1δ1,,ynδn)\delta(s,y_{1}^{\delta_{1}},\ldots,y_{n}^{\delta_{n}}) with {δi,δj1,,δj}={+1}\{\delta_{i},\delta_{j_{1}},\ldots,\delta_{j_{\ell}}\}=\{+1\}. We then have the transformation

(rxi,(x1xi)ε1,,(xi1xi)εi1,xi1,xi+1εi+1,,xnεn)(1)+1(t,(z1)ε1,,(zi1)εi1,(zi)+1,(zi+1)+1,,(zn)+1),\begin{array}[]{l}(r*x_{i},(x_{1}*x_{i})^{\varepsilon_{1}},\ldots,(x_{i-1}*x_{i})^{\varepsilon_{i-1}},x_{i}^{-1},x_{i+1}^{\varepsilon_{i+1}},\ldots,x_{n}^{\varepsilon_{n}})\\[3.0pt] \longrightarrow(-1)^{\ell+1}(t^{\prime},(z_{1}^{\prime})^{\varepsilon_{1}},\ldots,(z_{i-1}^{\prime})^{\varepsilon_{i-1}},(z_{i}^{\prime})^{+1},(z_{i+1}^{\prime})^{+1},\ldots,(z_{n}^{\prime})^{+1}),\end{array}

which implies that

TnDXX(rxi,(x1xi)ε1,,(xi1xi)εi1,xi1,xi+1εi+1,,xnεn)=(1)+1TnDXX(t,(z1)ε1,,(zi1)εi1,(zi)+1,(zi+1)+1,,(zn)+1),\begin{array}[]{l}T_{n}^{D_{X}\to X}(r*x_{i},(x_{1}*x_{i})^{\varepsilon_{1}},\ldots,(x_{i-1}*x_{i})^{\varepsilon_{i-1}},x_{i}^{-1},x_{i+1}^{\varepsilon_{i+1}},\ldots,x_{n}^{\varepsilon_{n}})\\[3.0pt] =(-1)^{\ell+1}T_{n}^{D_{X}\to X}(t^{\prime},(z_{1}^{\prime})^{\varepsilon_{1}},\ldots,(z_{i-1}^{\prime})^{\varepsilon_{i-1}},(z_{i}^{\prime})^{+1},(z_{i+1}^{\prime})^{+1},\ldots,(z_{n}^{\prime})^{+1}),\end{array}

where (1)+1(t,(z1)ε1,,(zi1)εi1,(zi)+1,(zi+1)+1,,(zn)+1)(-1)^{\ell+1}(t^{\prime},(z_{1}^{\prime})^{\varepsilon_{1}},\ldots,(z_{i-1}^{\prime})^{\varepsilon_{i-1}},(z_{i}^{\prime})^{+1},(z_{i+1}^{\prime})^{+1},\ldots,(z_{n}^{\prime})^{+1}) is the resultant δ(s,y1δ1,,ynδn)\delta(s,y_{1}^{\delta_{1}},\ldots,y_{n}^{\delta_{n}}) by the above canonicalization, and by Lemmas 2.1 and 2.5, we have

t=((rxi)xj11xj1)(xixj11xj1)1=((rxi)xi1)xj11xj1=rxj11xj1=t,\begin{array}[]{ll}t^{\prime}&=((r*x_{i})*x_{j_{1}}^{-1}*\cdots*x_{j_{\ell}}^{-1})*(x_{i}*x_{j_{1}}^{-1}*\cdots*x_{j_{\ell}}^{-1})^{-1}\\[3.0pt] &=((r*x_{i})*x_{i}^{-1})*x_{j_{1}}^{-1}*\cdots*x_{j_{\ell}}^{-1}\\[3.0pt] &=r*x_{j_{1}}^{-1}*\cdots*x_{j_{\ell}}^{-1}\\[3.0pt] &=t,\end{array}
zk=((xkxi)xj11xj1)(xixj11xj1)1=((xkxi)xi1)xj11xj1=xkxj11xj1=zk\begin{array}[]{ll}z_{k}^{\prime}&=((x_{k}*x_{i})*x_{j_{1}}^{-1}*\cdots*x_{j_{\ell}}^{-1})*(x_{i}*x_{j_{1}}^{-1}*\cdots*x_{j_{\ell}}^{-1})^{-1}\\[3.0pt] &=((x_{k}*x_{i})*x_{i}^{-1})*x_{j_{1}}^{-1}*\cdots*x_{j_{\ell}}^{-1}\\[3.0pt] &=x_{k}*x_{j_{1}}^{-1}*\cdots*x_{j_{\ell}}^{-1}\\[3.0pt] &=z_{k}\end{array}

for k{1,,i1}k\in\{1,\ldots,i-1\},

(zi)+1=ρ((xixj11xj1)1)=(xixj11xj1)+1=zi+1,\begin{array}[]{ll}(z_{i}^{\prime})^{+1}&=\rho((x_{i}*x_{j_{1}}^{-1}*\cdots*x_{j_{\ell}}^{-1})^{-1})\\[3.0pt] &=(x_{i}*x_{j_{1}}^{-1}*\cdots*x_{j_{\ell}}^{-1})^{+1}\\[3.0pt] &=z_{i}^{+1},\end{array}

and zk=zkz_{k}^{\prime}=z_{k} for k{i+1,,n}k\in\{i+1,\ldots,n\}. Thus we have

TnDXX(rxi+1,x1ε1xi+1,,xi1εi1xi+1,ρ(xi+1),xi+1εi+1,,xnεn)=TnDXX(rxi,(x1xi)ε1,,(xi1xi)εi1,xi1,xi+1εi+1,,xnεn)=(1)+1TnDXX(t,(z1)ε1,,(zi1)εi1,(zi)+1,(zi+1)+1,,(zn)+1)=(1)+1TnDXX(t,z1ε1,,zi1εi1,zi+1,zi+1+1,,zn+1)=TnDXX(r,x1ε1,,xi+1,,xnεn),\begin{array}[]{l}T_{n}^{D_{X}\to X}(r\star x_{i}^{+1},x_{1}^{\varepsilon_{1}}\star x_{i}^{+1},\ldots,x_{i-1}^{\varepsilon_{i-1}}\star x_{i}^{+1},\rho(x_{i}^{+1}),x_{i+1}^{\varepsilon_{i+1}},\ldots,x_{n}^{\varepsilon_{n}})\\[3.0pt] =T_{n}^{D_{X}\to X}(r*x_{i},(x_{1}*x_{i})^{\varepsilon_{1}},\ldots,(x_{i-1}*x_{i})^{\varepsilon_{i-1}},x_{i}^{-1},x_{i+1}^{\varepsilon_{i+1}},\ldots,x_{n}^{\varepsilon_{n}})\\[3.0pt] =(-1)^{\ell+1}T_{n}^{D_{X}\to X}(t^{\prime},(z_{1}^{\prime})^{\varepsilon_{1}},\ldots,(z_{i-1}^{\prime})^{\varepsilon_{i-1}},(z_{i}^{\prime})^{+1},(z_{i+1}^{\prime})^{+1},\ldots,(z_{n}^{\prime})^{+1})\\[3.0pt] =(-1)^{\ell+1}T_{n}^{D_{X}\to X}(t,z_{1}^{\varepsilon_{1}},\ldots,z_{i-1}^{\varepsilon_{i-1}},z_{i}^{+1},z_{i+1}^{+1},\ldots,z_{n}^{+1})\\[3.0pt] =-T_{n}^{D_{X}\to X}(r,x_{1}^{\varepsilon_{1}},\ldots,x_{i}^{+1},\ldots,x_{n}^{\varepsilon_{n}}),\end{array}

and hence, the equation (2) holds. In the case that εi=1\varepsilon_{i}=-1, the equation (2) also holds, and we leave the proof to the reader. Thus for any element zDn(DX,ρ+)Yz\in D_{n}(D_{X},{\rho_{+\leftrightarrow-}})_{Y}, TnDXX(z)=0T_{n}^{D_{X}\to X}(z)=0 holds. For any (r,x1ε1,,xiεi,xi+1εi+1,,xnεn)Y×DXn(r,x_{1}^{\varepsilon_{1}},\ldots,x_{i}^{\varepsilon_{i}},x_{i+1}^{\varepsilon_{i+1}},\ldots,x_{n}^{\varepsilon_{n}})\in Y\times D_{X}^{n} such that xiεi=xi+1εi+1x_{i}^{\varepsilon_{i}}=x_{i+1}^{\varepsilon_{i+1}} for some i{1,,n1}i\in\{1,\ldots,n-1\}, the canonical form δ(s,y1+1,,yn+1){±1}×Y×DXn\delta(s,y_{1}^{+1},\ldots,y_{n}^{+1})\in\{\pm 1\}\times Y\times D_{X}^{n} of (r,x1ε1,,xiεi,xi+1εi+1,,xnεn)(r,x_{1}^{\varepsilon_{1}},\ldots,x_{i}^{\varepsilon_{i}},x_{i+1}^{\varepsilon_{i+1}},\ldots,x_{n}^{\varepsilon_{n}}) satisfies that yi+1=yi+1+1y_{i}^{+1}=y_{i+1}^{+1}, and hence, we have

TnDXX(r,x1ε1,,xiεi,xi+1εi+1=xiεi,,xnεn)=δ(s,y1+1,,yi+1,yi+1+1=yi+1,,yn+1)Dn(X)Y=δ(s,y1,,yi,yi+1=yi,,yn)Dn(X)Y,\begin{array}[]{l}T_{n}^{D_{X}\to X}(r,x_{1}^{\varepsilon_{1}},\ldots,x_{i}^{\varepsilon_{i}},x_{i+1}^{\varepsilon_{i+1}}=x_{i}^{\varepsilon_{i}},\ldots,x_{n}^{\varepsilon_{n}})\\[3.0pt] =\delta(s,y_{1}^{+1},\ldots,y_{i}^{+1},y_{i+1}^{+1}=y_{i}^{+1},\ldots,y_{n}^{+1})\in D_{n}(X)_{Y}\\[3.0pt] =\delta(s,y_{1},\ldots,y_{i},y_{i+1}=y_{i},\ldots,y_{n})\in D_{n}(X)_{Y},\end{array}

and hence, the property (3) holds. Thus for any element zDn(DX)Yz\in D_{n}(D_{X})_{Y}, TnDXX(z)Dn(X)YT_{n}^{D_{X}\to X}(z)\in D_{n}(X)_{Y} holds. As a consequence, we see that the map TnDXX:CnSQ(DX,ρ+)YCnQ(X)YT_{n}^{D_{X}\to X}:C_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y}\to C_{n}^{\rm Q}(X)_{Y} is well-defined.

We can easily check the well-definedness of TnXDXT_{n}^{X\to D_{X}} as follows. We temporarily regard this map as TnXDX:Cn(X)YCn(DX)YT_{n}^{X\to D_{X}}:C_{n}(X)_{Y}\to C_{n}(D_{X})_{Y}. For any (r,x1,,xn)Y×Xn(r,x_{1},\ldots,x_{n})\in Y\times X^{n} such that xi=xi+1x_{i}=x_{i+1} for some i{1,,n1}i\in\{1,\ldots,n-1\}, we have xi+1=xi+1+1DXx_{i}^{+1}=x_{i+1}^{+1}\in D_{X}, and hence,

TnXDX(r,x1,,xi,xi+1=xi,,xn)=(r,x1+1,,xi+1,xi+1+1=xi+1,,xn+1)Dn(DX)Y.\begin{array}[]{l}T_{n}^{X\to D_{X}}(r,x_{1},\ldots,x_{i},x_{i+1}=x_{i},\ldots,x_{n})\\[3.0pt] =(r,x_{1}^{+1},\ldots,x_{i}^{+1},x_{i+1}^{+1}=x_{i}^{+1},\ldots,x_{n}^{+1})\in D_{n}(D_{X})_{Y}.\end{array}

Thus, for any zDn(X)Yz\in D_{n}(X)_{Y}, TnXDX(z)Dn(DX)YT_{n}^{X\to D_{X}}(z)\in D_{n}(D_{X})_{Y} holds, which implies that TnXDX:CnQ(X)YCnSQ(DX,ρ+)YT_{n}^{X\to D_{X}}:C_{n}^{\rm Q}(X)_{Y}\to C_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y} is well-defined.

Finally, the property TnXDXTnDXX=idCnSQ(DX,ρ+)YT_{n}^{X\to D_{X}}\circ T_{n}^{D_{X}\to X}={\rm id}_{C_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y}} follows from

TnXDXTnDXX(r,x1ε1,,xnεn)\displaystyle T_{n}^{X\to D_{X}}\circ T_{n}^{D_{X}\to X}(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon_{n}})
=δTnXDXTnDXX(s,y1+1,,yn+1)\displaystyle=\delta T_{n}^{X\to D_{X}}\circ T_{n}^{D_{X}\to X}(s,y_{1}^{+1},\ldots,y_{n}^{+1})
=δTnXDX(s,y1,,yn)\displaystyle=\delta T_{n}^{X\to D_{X}}(s,y_{1},\ldots,y_{n})
=δ(s,y1+1,,yn+1)\displaystyle=\delta(s,y_{1}^{+1},\ldots,y_{n}^{+1})
=(r,x1ε1,,xnεn),\displaystyle=(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon_{n}}),

where δ(s,y1+1,,yn+1)\delta(s,y_{1}^{+1},\ldots,y_{n}^{+1}) is the canonical form of (r,x1ε1,,xnεn)(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon_{n}}). The property TnDXXTnXDX=idCnQ(X)YT_{n}^{D_{X}\to X}\circ T_{n}^{X\to D_{X}}={\rm id}_{C_{n}^{\rm Q}(X)_{Y}} follows from

TnDXXTnXDX(r,x1,,xn)\displaystyle T_{n}^{D_{X}\to X}\circ T_{n}^{X\to D_{X}}(r,x_{1},\ldots,x_{n})
=TnDXX(r,x1+1,,xn+1)\displaystyle=T_{n}^{D_{X}\to X}(r,x_{1}^{+1},\ldots,x_{n}^{+1})
=(r,x1,,xn).\displaystyle=(r,x_{1},\ldots,x_{n}).

This completes the proof. ∎

Remark 4.9.

As shown in above, any (n+1)(n+1)-tuple (r,x1ε1,,xnε)CnSQ(DX,ρ+)Y(r,x_{1}^{\varepsilon_{1}},\ldots,x_{n}^{\varepsilon})\in C_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y} is represented by a single term δ(s,y1+1,,yn+1)\delta(s,y_{1}^{+1},\ldots,y_{n}^{+1}), which implies that CnSQ(DX,ρ+)YC_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y} is generated by the elements of Y×(X+1)nY\times(X^{+1})^{n}. Therefore, the isomorphism TnDXXT_{n}^{D_{X}\to X} is, in other words, defined by

TnDXX(r,x1+1,,xn+1)=(r,x1,,xn).T_{n}^{D_{X}\to X}(r,x_{1}^{+1},\ldots,x_{n}^{+1})=(r,x_{1},\ldots,x_{n}).
Lemma 4.10.

TDXX={TnDXX}nT_{*}^{D_{X}\to X}=\{T_{n}^{D_{X}\to X}\}_{n\in\mathbb{Z}} and TXDX={TnXDX}nT_{*}^{X\to D_{X}}=\{T_{n}^{X\to D_{X}}\}_{n\in\mathbb{Z}} are chain maps, and therefore by Lemma 4.8, they are isomorphisms between the chain complexes CQ(X)YC_{*}^{\rm Q}(X)_{Y} and CSQ(DX,ρ+)YC_{*}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y}.

Proof.

For any (r,x1+1,,xn+1)CnSQ(DX,ρ+)Y(r,x_{1}^{+1},\ldots,x_{n}^{+1})\in C_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y},

Tn1DXXnSQ(r,x1+1,,xn+1)=Tn1DXX(i=1n(1)i{(r,x1+1,,xi1+1,xi+1+1,,xn+1)(rxi,(x1xi)+1,,(xi1xi)+1,xi+1+1,,xn+1)})=i=1n(1)i{(r,x1,,xi1,xi+1,,xn)(rxi,x1xi,,xi1xi,xi+1,,xn)}=nQ(r,x1,,xn)=nQTnDXX(r,x1+1,,xn+1).\begin{array}[]{l}T_{n-1}^{D_{X}\to X}\circ\partial_{n}^{\rm SQ}(r,x_{1}^{+1},\ldots,x_{n}^{+1})\\ =T_{n-1}^{D_{X}\to X}\Big{(}\displaystyle\sum_{i=1}^{n}(-1)^{i}\Big{\{}(r,x_{1}^{+1},\ldots,x_{i-1}^{+1},x_{i+1}^{+1},\ldots,x_{n}^{+1})\\ \hskip 56.9055pt-(r*x_{i},(x_{1}*x_{i})^{+1},\ldots,(x_{i-1}*x_{i})^{+1},x_{i+1}^{+1},\ldots,x_{n}^{+1})\Big{\}}\Big{)}\\ =\displaystyle\sum_{i=1}^{n}(-1)^{i}\Big{\{}(r,x_{1},\ldots,x_{i-1},x_{i+1},\ldots,x_{n})\\ \hskip 56.9055pt-(r*x_{i},x_{1}*x_{i},\ldots,x_{i-1}*x_{i},x_{i+1},\ldots,x_{n})\Big{\}}\\ =\partial^{\rm Q}_{n}(r,x_{1},\ldots,x_{n})=\partial^{\rm Q}_{n}\circ T_{n}^{D_{X}\to X}(r,x_{1}^{+1},\ldots,x_{n}^{+1}).\end{array}

Thus TDXXT_{*}^{D_{X}\to X} is a chain map from CSQ(DX,ρ+)YC_{*}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y} to CQ(X)YC_{*}^{\rm Q}(X)_{Y}.

Since TnXDXT_{n}^{X\to D_{X}} is the inverse homomorphism of TnDXXT_{n}^{D_{X}\to X} for any nn\in\mathbb{Z},

nSQTnXDX\displaystyle\partial_{n}^{\rm SQ}\circ T_{n}^{X\to D_{X}} =Tn1XDXTn1DXXnSQTnXDX\displaystyle=T_{n-1}^{X\to D_{X}}\circ T_{n-1}^{D_{X}\to X}\circ\partial_{n}^{\rm SQ}\circ T_{n}^{X\to D_{X}}
=Tn1XDXnQTnDXXTnXDX\displaystyle=T_{n-1}^{X\to D_{X}}\circ\partial^{\rm Q}_{n}\circ T_{n}^{D_{X}\to X}\circ T_{n}^{X\to D_{X}}
=Tn1XDXnQ,\displaystyle=T_{n-1}^{X\to D_{X}}\circ\partial^{\rm Q}_{n},

which implies that TXDXT_{*}^{X\to D_{X}} is a chain map from CQ(X)YC_{*}^{\rm Q}(X)_{Y} to CSQ(DX,ρ+)YC_{*}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y}. ∎

Let AA be an abelian group. We have the following property.

Theorem 4.11.

For any nn\in\mathbb{Z}, we have

(1)HnQ(X;A)YHnSQ(DX,ρ+;A)Y(1)~{}~{}~{}H_{n}^{\rm Q}(X;A)_{Y}\cong H_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}};A)_{Y}

and

(2)HQn(X;A)YHSQn(DX,ρ+;A)Y.(2)~{}~{}~{}H^{n}_{\rm Q}(X;A)_{Y}\cong H^{n}_{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}};A)_{Y}.
Proof.

(1) By Lemma 4.10, since TDXXT_{*}^{D_{X}\to X} is an isomorphism from CSQ(DX,ρ+)YC_{*}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y} to CQ(X)YC_{*}^{\rm Q}(X)_{Y}, TnDXXT_{n}^{D_{X}\to X} induces the isomorphism

(TnDXX):HnSQ(DX,ρ+)YHnQ(X)Y;(TnDXX)([z])=[TnDXX(z)],\displaystyle(T_{n}^{D_{X}\to X})^{*}:H_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y}\to H_{n}^{\rm Q}(X)_{Y};(T_{n}^{D_{X}\to X})^{*}([z])=[T_{n}^{D_{X}\to X}(z)],

where the inverse homomorphism is

(TnXDX):HnQ(X)YHnSQ(DX,ρ+)Y;(TnXDX)([z])=[TnXDX(z)].\displaystyle(T_{n}^{X\to D_{X}})^{*}:H_{n}^{\rm Q}(X)_{Y}\to H_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y};(T_{n}^{X\to D_{X}})^{*}([z])=[T_{n}^{X\to D_{X}}(z)].

Similarly, since we have the isomorphism TDXXid={TnDXXid}nT_{*}^{D_{X}\to X}\otimes{\rm id}=\{T_{n}^{D_{X}\to X}\otimes{\rm id}\}_{n\in\mathbb{Z}} from CSQ(DX,ρ+;A)YC_{*}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}};A)_{Y} to CQ(X;A)YC_{*}^{\rm Q}(X;A)_{Y}, we have the induced isomorphism

(TnDXXid):HnSQ(DX,ρ+;A)YHnQ(X;A)Y.\displaystyle(T_{n}^{D_{X}\to X}\otimes{\rm id})^{*}:H_{n}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}};A)_{Y}\to H_{n}^{\rm Q}(X;A)_{Y}.

(2) By Lemma 4.10, since TDXXT_{*}^{D_{X}\to X} is an isomorphism from CSQ(DX,ρ+)YC_{*}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y} to CQ(X)YC_{*}^{\rm Q}(X)_{Y}, TnDXXT_{n}^{D_{X}\to X} induces the isomorphism

(TXDXn):HQn(X;A)YHSQn(DX,ρ+;A)Y;[θQ][θQTnDXX],(T^{n}_{X\to D_{X}})^{*}:H^{n}_{\rm Q}(X;A)_{Y}\to H^{n}_{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}};A)_{Y};[\theta^{\rm Q}]\mapsto[\theta^{\rm Q}\circ T_{n}^{D_{X}\to X}],

the inverse homomorphism is

((TXDXn))1:HSQn(DX,ρ+;A)YHQn(X;A)Y;[θSQ][θSQTnXDX].((T^{n}_{X\to D_{X}})^{*})^{-1}:H^{n}_{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}};A)_{Y}\to H^{n}_{\rm Q}(X;A)_{Y};[\theta^{\rm SQ}]\mapsto[\theta^{\rm SQ}\circ T_{n}^{X\to D_{X}}].

Corollary 4.12.

Let θQ:CnQ(X)YA\theta^{\rm Q}:C^{\rm Q}_{n}(X)_{Y}\to A and θSQ:CnSQ(DX,ρ+)YA\theta^{\rm SQ}:C^{\rm SQ}_{n}(D_{X},{\rho_{+\leftrightarrow-}})_{Y}\to A be homomorphisms such that

θQTnDXX=θSQ.\displaystyle\theta^{\rm Q}\circ T_{n}^{D_{X}\to X}=\theta^{\rm SQ}.

Then θQ\theta^{\rm Q} is an nn-cocycle if and only if θSQ\theta^{\rm SQ} is an nn-cocycle, that is,

θQZQn(X;A)YθSQZSQn(DX,ρ+;A)Y.\theta^{\rm Q}\in Z^{n}_{\rm Q}(X;A)_{Y}~{}~{}\Longleftrightarrow~{}~{}\theta^{\rm SQ}\in Z^{n}_{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}};A)_{Y}.

5. Invariants for oriented (or unoriented) links using quandles can be interpreted by using symmetric quandles

In this section, we discuss oriented link invariants using quandles. Especially, we show that quandle coloring numbers, quandle homology invariants and quandle cocycle invariants for oriented links can be interpreted by using symmetric quandles.

5.1. An interpretation of quandle coloring numbers by using symmetric quandle colorings

Let XX be a quandle and (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}}) the symmetric double of XX.

By performing a finite number of basic inversions, we can see that any (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring CC of a diagram DD of an unoriented link is uniquely represented by an assignment of a normal orientation and an element of X+1X^{+1} to each semi-arc of DD, see Figure 7. We call the assignment the canonical form of CC (or of (D,C)(D,C)).

Refer to caption
Figure 7. The canonical form of a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring

Let DD be a diagram of an unoriented link and CC a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring of DD. For a semi-arc α\alpha of DD and the normal orientation nαn_{\alpha} assigned to α\alpha for the canonical form of CC, we set the orientation oαo_{\alpha} of α\alpha so that the pair (oα,nα)(o_{\alpha},n_{\alpha}) matches the right-handed orientation of 2\mathbb{R}^{2}. Since for the canonical form of a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring of DD, any two semi-arcs of DD coming from the same component of LL have the coherent normal orientations, the above orientations oαo_{\alpha} for the semi-arcs of DD induce an orientation oo of DD, see the upper half of Figure 8.

Refer to caption
Figure 8. The map T(D,[C]ori)(D,o)T_{(D,[C]_{\rm ori})\to(D,o)}

We call the orientation of DD the orientation induced by the canonical form of (D,C)(D,C) and the diagram (D,o)(D,o) the oriented diagram induced by the canonical form of (D,C)(D,C). Let CC and CC^{\prime} be (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-colorings of DD. We say that CC and CC^{\prime} are orientation equivalent (CoriC)(C\sim_{\rm ori}C^{\prime}) if the orientation induced by the canonical form of (D,C)(D,C) coincides with that of (D,C)(D,C^{\prime}). We denote by [C]ori[C]_{\rm ori} the orientation equivalence class of a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring CC.

In this paper, ori(D){\rm ori}(D) means the set of orientations of DD. The transformation map from (D,C)(D,C) to (D,o)(D,o) is the map

T(D,C)(D,o):{D}×Col(DX,ρ+)(D){D}×ori(D);\displaystyle T_{(D,C)\to(D,o)}:\{D\}\times{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})}(D)\to\{D\}\times{\rm ori}(D);
(D,C)the oriented diagram (D,o) induced by the canonical form of (D,C),\displaystyle(D,C)\mapsto\mbox{the oriented diagram $(D,o)$ induced by the canonical form of $(D,C)$},

and this induces the transformation map from (D,[C]ori)(D,[C]_{\rm ori}) to (D,o)(D,o):

T(D,[C]ori)(D,o):{D}×Col(DX,ρ+)(D)/ori{D}×ori(D);\displaystyle T_{(D,[C]_{\rm ori})\to(D,o)}:\{D\}\times{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})}(D)/\sim_{\rm ori}\to\{D\}\times{\rm ori}(D);
(D,[C]ori)the oriented diagram (D,o) induced by the canonical form of (D,C),\displaystyle(D,[C]_{\rm ori})\mapsto\mbox{the oriented diagram $(D,o)$ induced by the canonical form of $(D,C)$},

see the lower half of Figure 8. We then have the following property.

Lemma 5.1.

T(D,[C]ori)(D,o)T_{(D,[C]_{\rm ori})\to(D,o)} is bijective.

Proof.

The injectivity is clear, and hence, we show the surjectivity. Let oori(D)o\in{\rm ori}(D) and xXx\in X. For each semi-arc α\alpha of (D,o)(D,o), we assign the element x+1DXx^{+1}\in D_{X} and the normal orientation nαn_{\alpha} to α\alpha so that the pair (o,nα)(o,n_{\alpha}) matches the right-handed orientation of 2\mathbb{R}^{2}. Then we can see that the assignment is the canonical form of a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring of DD and the equivalence class [C]ori[C]_{\rm ori} of the (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring CC satisfies that T(D,[C]ori)(D,o)(D,[C]ori)=(D,o)T_{(D,[C]_{\rm ori})\to(D,o)}(D,[C]_{\rm ori})=(D,o). ∎

Any (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-colored diagram (D,C)(D,C) uniquely induces an oriented, XX-colored diagram ((D,o),C¯)((D,o),\bar{C}) by setting on DD the orientation induced by the canonical form of (D,C)(D,C) and replacing, for the canonical form of CC, the assigned element x+1X+1x^{+1}\in X^{+1} of each (semi-)arc with xXx\in X, see the upper half of Figure 9.

Refer to caption
Figure 9. The map T(D,C)((D,o),C)T_{(D,C)\to((D,o),C)}

We call such ((D,o),C¯)((D,o),\bar{C}) the oriented, XX-colored diagram induced by the canonical form of (D,C)(D,C). The transformation map from (D,C)(D,C) to ((D,o),C)((D,o),C) is the map

T(D,C)((D,o),C):{D}×Col(DX,ρ+)(D)oori(D){(D,o)}×ColX(D,o);\displaystyle T_{(D,C)\to((D,o),C)}:\{D\}\times{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})}(D)\to\bigcup_{o\in{\rm ori}(D)}\{(D,o)\}\times{\rm Col}_{X}(D,o);
(D,C) the oriented, X-colored diagram induced by the canonical form of (D,C),\displaystyle(D,C)\mapsto\mbox{ the oriented, $X$-colored diagram induced by the canonical form of $(D,C)$,}

see the lower half of Figure 9.

Lemma 5.2.

T(D,C)((D,o),C)T_{(D,C)\to((D,o),C)} is bijective.

Proof.

Any oriented, XX-colored diagram ((D,o),C¯)((D,o),\bar{C}) uniquely induces a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-colored diagram (D,C)(D,C) as follows. For each arc α\alpha of (D,o)(D,o), replace the orientation oo for α\alpha with the normal orientations nαn_{\alpha} of the semi-arcs included in α\alpha such that (o,nα)(o,n_{\alpha}) matches the right-handed orientation of 2\mathbb{R}^{2} and replace the assigned element xXx\in X of α\alpha for C¯\bar{C} with x+1X+1x^{+1}\in X^{+1} for the semi-arcs included in α\alpha. Lemma 4.2 shows that the replaced assignment CC of the unoriented diagram DD represents a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring of DD. Thus we have the inverse map of T(D,C)((D,o),C)T_{(D,C)\to((D,o),C)}:

T((D,o),C)(D,C):oori(D){(D,o)}×ColX(D,o){D}×Col(DX,ρ+)(D);\displaystyle T_{((D,o),C)\to(D,C)}:\bigcup_{o\in{\rm ori}(D)}\{(D,o)\}\times{\rm Col}_{X}(D,o)\to\{D\}\times{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})}(D);
((D,o),C)(D,C¯) defined as above.\displaystyle((D,o),C)\mapsto(D,\bar{C})\mbox{ defined as above}.

The next theorem implies that quandle coloring numbers for oriented links can be interpreted by using symmetric quandle colorings.

Theorem 5.3.

Let (D,o)(D,o) be a diagram of an oriented link and take [C]oriCol(DX,ρ+)(D)/ori[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})}(D)/\sim_{\rm ori} such that (D,o)=T(D,[C]ori)(D,o)(D,[C]ori)(D,o)=T_{(D,[C]_{\rm ori})\to(D,o)}(D,[C]_{\rm ori}). Then there exists a one-to-one correspondence between the sets ColX(D,o){\rm Col}_{X}(D,o) and [C]ori[C]_{\rm ori}, and thus, we have

#ColX(D,o)=#[C]ori.\#{\rm Col}_{X}(D,o)=\#[C]_{\rm ori}.
Proof.

By the definition of the bijective translation map T(D,C)((D,o),C)T_{(D,C)\to((D,o),C)}, we have the restriction

T(D,C)((D,o),C)|{D}×[C]ori:{D}×[C]ori{(D,o)}×ColX(D,o),\displaystyle T_{(D,C)\to((D,o),C)}|_{\{D\}\times[C]_{\rm ori}}:\{D\}\times[C]_{\rm ori}\to\{(D,o)\}\times{\rm Col}_{X}(D,o),

which is bijective. Clearly this map gives a one-to-one correspondence between ColX(D,o){\rm Col}_{X}(D,o) and [C]ori[C]_{\rm ori}. ∎

For an unoriented link LL, by considering all the orientations of LL and taking #ColX(D,o)\#{\rm Col}_{X}(D,o) for each orientation oo, we can define an invariant of LL. More precisely, for a diagram DD of LL, the multi-set

{#ColX(D,o)|oori(D)}\{\#{\rm Col}_{X}(D,o)~{}|~{}o\in{\rm ori}(D)\}

is an invariant of LL. The next property implies that quandle coloring numbers for unoriented links can be also interpreted by using symmetric quandle colorings.

Corollary 5.4.

Let DD be a diagram of an unoriented link. As multi-sets, we have

{#ColX(D,o)|oori(D)}={#[C]ori|[C]oriCol(DX,ρ+)(D)/ori}.\{\#{\rm Col}_{X}(D,o)~{}|~{}o\in{\rm ori}(D)\}=\{\#[C]_{\rm ori}~{}|~{}[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})}(D)/\sim_{\rm ori}\}.

5.2. An interpretation of quandle coloring numbers by using symmetric quandle colorings II

In this subsection, we will see that the properties shown in Subsection 5.1 are extended to the cases of XYX_{Y}-colorings and (DX,ρ+)Y(D_{X},{\rho_{+\leftrightarrow-}})_{Y}-colorings. Note that for simplicity, we use the same notation and names as in Subsection 5.1.

Let XX be a quandle, (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}}) the symmetric double of XX, and YY an XX-set. By Lemma 4.5, we can also regard YY as a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-set. Each XYX_{Y}-coloring CC of an oriented diagram (D,o)(D,o) is also regarded as the XX-coloring, say also CC, of (D,o)(D,o) by forgetting the assignment by YY. Similarly, for each (DX,ρ+)Y(D_{X},{\rho_{+\leftrightarrow-}})_{Y}-coloring CC of an unoriented diagram DD is also regarded as the (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring, say also CC, of DD by forgetting the assignment by YY. Hence, the canonical form of a (DX,ρ+)Y(D_{X},{\rho_{+\leftrightarrow-}})_{Y}-coloring CC (or of a (DX,ρ+)Y(D_{X},{\rho_{+\leftrightarrow-}})_{Y}-colored diagram (D,C)(D,C)) is defined by the assignment which is the canonical form of the (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring CC when we forget the assignment by YY. Moreover, as in the case of Subsection 5.1, a (DX,ρ+)Y(D_{X},{\rho_{+\leftrightarrow-}})_{Y}-colored diagram (D,C)(D,C) induces an orientation oo (resp. an oriented diagram (D,o)(D,o)) by considering the orientation (resp. the oriented diagram) induced by the canonical form of (D,C)(D,C).

Let DD be a diagram of an unoriented link. Let CC and CC^{\prime} be (DX,ρ+)Y(D_{X},{\rho_{+\leftrightarrow-}})_{Y}-colorings of the diagram DD. We say that CC and CC^{\prime} are orientation equivalent (CoriC)(C\sim_{\rm ori}C^{\prime}) if the orientation induced by the canonical form of (D,C)(D,C) coincides with that of (D,C)(D,C^{\prime}). We denote by [C]ori[C]_{\rm ori} the orientation equivalence class of a (DX,ρ+)Y(D_{X},{\rho_{+\leftrightarrow-}})_{Y}-coloring CC.

The transformation map from (D,C)(D,C) to (D,o)(D,o) is the map

T(D,C)(D,o):{D}×Col(DX,ρ+)Y(D){D}×ori(D);\displaystyle T_{(D,C)\to(D,o)}:\{D\}\times{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)\to\{D\}\times{\rm ori}(D);
(D,C)the oriented diagram (D,o) induced by the canonical form of (D,C),\displaystyle(D,C)\mapsto\mbox{the oriented diagram $(D,o)$ induced by the canonical form of $(D,C)$},

and this induces the transformation map from (D,[C]ori)(D,[C]_{\rm ori}) to (D,o)(D,o):

T(D,[C]ori)(D,o):{D}×Col(DX,ρ+)Y(D)/ori{D}×ori(D);\displaystyle T_{(D,[C]_{\rm ori})\to(D,o)}:\{D\}\times{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori}\to\{D\}\times{\rm ori}(D);
(D,[C]ori)the oriented diagram (D,o) induced by the canonical form of (D,C),\displaystyle(D,[C]_{\rm ori})\mapsto\mbox{the oriented diagram $(D,o)$ induced by the canonical form of $(D,C)$},

see Figure 10.

Refer to caption
Figure 10. The map T(D,[C]ori)(D,o)T_{(D,[C]_{\rm ori})\to(D,o)}

We then have the following property.

Lemma 5.5.

T(D,[C]ori)(D,o)T_{(D,[C]_{\rm ori})\to(D,o)} is bijective.

Any (DX,ρ+)Y(D_{X},{\rho_{+\leftrightarrow-}})_{Y}-colored diagram (D,C)(D,C) uniquely induces an oriented, XYX_{Y}-colored diagram ((D,o),C¯)((D,o),\bar{C}) by setting on DD the orientation induced by the canonical form of (D,C)(D,C), replacing, for the canonical form of CC, the assigned element x+1X+1x^{+1}\in X^{+1} of each (semi-)arc with xXx\in X, and leaving the assignment by YY as it is, see Figure 11.

Refer to caption
Figure 11. The map T(D,C)((D,o),C)T_{(D,C)\to((D,o),C)}

We call such ((D,o),C¯)((D,o),\bar{C}) the oriented, XYX_{Y}-colored diagram induced by the canonical form of (D,C)(D,C). The transformation map from (D,C)(D,C) to ((D,o),C)((D,o),C) is the map

T(D,C)((D,o),C):{D}×Col(DX,ρ+)Y(D)oori(D){(D,o)}×ColXY(D,o);\displaystyle T_{(D,C)\to((D,o),C)}:\{D\}\times{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)\to\bigcup_{o\in{\rm ori}(D)}\{(D,o)\}\times{\rm Col}_{X_{Y}}(D,o);
(D,C) the oriented, XY-colored diagram induced by the canonical form of (D,C),\displaystyle(D,C)\mapsto\mbox{ the oriented, $X_{Y}$-colored diagram induced by the canonical form of $(D,C)$,}

see Figure 11.

Lemma 5.6.

T(D,C)((D,o),C)T_{(D,C)\to((D,o),C)} is bijective.

We have the following theorem.

Theorem 5.7.

Let (D,o)(D,o) be a diagram of an oriented link and take [C]oriCol(DX,ρ+)Y(D)/ori[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori} such that (D,o)=T(D,[C]ori)(D,o)(D,[C]ori)(D,o)=T_{(D,[C]_{\rm ori})\to(D,o)}(D,[C]_{\rm ori}). Then there exists a one-to-one correspondence between ColXY(D,o){\rm Col}_{X_{Y}}(D,o) and [C]ori[C]_{\rm ori}, and thus, we have

#ColXY(D,o)=#[C]ori.\#{\rm Col}_{X_{Y}}(D,o)=\#[C]_{\rm ori}.
Proof.

As in the proof of Theorem 5.3, the bijection is given by the restriction of the translation map T(D,C)((D,o),C)T_{(D,C)\to((D,o),C)}

T(D,C)((D,o),C)|{D}×[C]ori:{D}×[C]ori{(D,o)}×ColXY(D,o).\displaystyle T_{(D,C)\to((D,o),C)}|_{\{D\}\times[C]_{\rm ori}}:\{D\}\times[C]_{\rm ori}\to\{(D,o)\}\times{\rm Col}_{X_{Y}}(D,o).

5.3. An interpretation of quandle cocycle invariants by using symmetric quandle cocycle invariants

Let XX be a quandle, (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}}) the symmetric double of XX, and YY an XX-set. We note again that by Lemma 4.5, we can also regard YY as a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-set.

For a diagram DD of an unoriented link and [C]oriCol(DX,ρ+)Y(D)/ori[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori}, we denote by 𝒲(DX,ρ+)Y(D,[C]ori)\mathcal{W}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori}) the multi-set

{[W(DX,ρ+)Y(D,C)]H2SQ(DX,ρ+)Y|C[C]ori},\{[W^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,C)]\in H_{2}^{\rm SQ}(D_{X},{\rho_{+\leftrightarrow-}})_{Y}~{}|~{}C\in[C]_{\rm ori}\},

where for a (DX,ρ+)Y(D_{X},{\rho_{+\leftrightarrow-}})_{Y}-colored diagram (D,C)(D,C), we denote by W(DX,ρ+)Y(D,C)W^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,C) the sum of the weights of all the crossings as in Subsection 3.4, and note that 𝒲(DX,ρ+)Y(D,[C]ori)𝒲(DX,ρ+)Y(D)\mathcal{W}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori})\subset\mathcal{W}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D). The next theorem shows that the quandle homology invariant 𝒲XY(L,o)\mathcal{W}^{X_{Y}}(L,o) of an oriented link (L,o)(L,o) can be also interpreted by using symmetric quandles.

Theorem 5.8.

Let (D,o)(D,o) is a diagram of an oriented link and take [C]oriCol(DX,ρ+)Y(D)/ori[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori} such that (D,o)=T(D,[C]ori)(D,o)(D,[C]ori)(D,o)=T_{(D,[C]_{\rm ori})\to(D,o)}(D,[C]_{\rm ori}). Then as multi-sets, we have

(T2DXX)(𝒲(DX,ρ+)Y(D,[C]ori))=𝒲XY(D,o).(T_{2}^{D_{X}\to X})^{*}\big{(}\mathcal{W}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori})\big{)}=\mathcal{W}^{X_{Y}}(D,o).
Proof.

Note that as mentioned in the proof of Theorem 5.7, the restriction

T(D,C)((D,o),C)|{D}×[C]ori:{D}×[C]ori{(D,o)}×ColXY(D,o)\displaystyle T_{(D,C)\to((D,o),C)}|_{\{D\}\times[C]_{\rm ori}}:\{D\}\times[C]_{\rm ori}\to\{(D,o)\}\times{\rm Col}_{X_{Y}}(D,o)

is a bijection.

For C[C]oriC\in[C]_{\rm ori}, let C¯ColXY(D,o)\bar{C}\in{\rm Col}_{X_{Y}}(D,o) such that T(D,C)((D,o),C)(D,C)=((D,o),C¯)T_{(D,C)\to((D,o),C)}(D,C)=((D,o),\bar{C}). Since C¯\bar{C} is obtained from CC by giving on DD the orientation induced by the canonical form of (D,C)(D,C), replacing, for the canonical form of CC, the assigned element x+1X+1x^{+1}\in X^{+1} of each (semi-)arc with xXx\in X, and leaving the assignment by YY as it is, when we have a weight wχ=ε(r,x1+1,x2+1)w_{\chi}=\varepsilon(r,x_{1}^{+1},x_{2}^{+1}) for a crossing χ\chi of (D,C)(D,C), we have the weight w¯χ=ε(r,x1,x2)\bar{w}_{\chi}=\varepsilon(r,x_{1},x_{2}) for the same crossing χ\chi of ((D,o),C¯)((D,o),\bar{C}), see Figure 12. This implies that T2DXX(W(DX,ρ+)Y(D,C))=WXY((D,o),C¯)T_{2}^{D_{X}\to X}(W^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,C))=W^{X_{Y}}((D,o),\bar{C}), and moreover, (T2DXX)([W(DX,ρ+)Y(D,C)])=[WXY((D,o),C¯)](T_{2}^{D_{X}\to X})^{*}([W^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,C)])=[W^{X_{Y}}((D,o),\bar{C})], and thus, we have (T2DXX)(𝒲(DX,ρ+)Y(D,[C]ori))=𝒲XY(D,o)(T_{2}^{D_{X}\to X})^{*}(\mathcal{W}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori}))=\mathcal{W}^{X_{Y}}(D,o).

Refer to caption
Figure 12. The weight of a crossing

For an unoriented link LL, by considering all the orientations of LL and taking the quandle homology invariant 𝒲XY(L,o)\mathcal{W}^{X_{Y}}(L,o) for each orientation oo, we can define an invariant of LL. More precisely, for a diagram DD of LL, the multi-set

{𝒲XY(D,o)|oori(D)}\{\mathcal{W}^{X_{Y}}(D,o)~{}|~{}o\in{\rm ori}(D)\}

is an invariant of LL. The next property implies that the quandle homology invariants of an unoriented link LL can be also interpreted by using symmetric quandles.

Corollary 5.9.

Let DD be a diagram of an unoriented link. As multi-sets, we have

{𝒲XY(D,o)|oori(D)}={(T2DXX)(𝒲(DX,ρ+)Y(D,[C]ori))|[C]oriCol(DX,ρ+)Y(D)/ori}.\begin{array}[]{l}\{\mathcal{W}^{X_{Y}}(D,o)~{}|~{}o\in{\rm ori}(D)\}\\[3.0pt] =\{(T_{2}^{D_{X}\to X})^{*}(\mathcal{W}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori}))~{}|~{}[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori}\}.\end{array}

Let AA be an abelian group. Let θQ:C2Q(X)YA\theta^{\rm Q}:C^{\rm Q}_{2}(X)_{Y}\to A and θSQ:C2SQ(DX,ρ+)YA\theta^{\rm SQ}:C^{\rm SQ}_{2}(D_{X},{\rho_{+\leftrightarrow-}})_{Y}\to A be a quandle 22-cocycle and a symmetric quandle 22-cocycle, respectively, such that θQT2DXX=θSQ\theta^{\rm Q}\circ T_{2}^{D_{X}\to X}=\theta^{\rm SQ}.

For a diagram DD of an unoriented link and [C]oriCol(DX,ρ+)Y(D)/ori[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori}, we denote by ΦθSQ(DX,ρ+)Y(D,[C]ori){\Phi}_{\theta^{\rm SQ}}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori}) the multi-set

{θSQ(W(DX,ρ+)Y(D,C))A|C[C]ori}.\{\theta^{\rm SQ}(W^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,C))\in A~{}|~{}C\in[C]_{\rm ori}\}.

We note that ΦθSQ(DX,ρ+)Y(D,[C]ori)ΦθSQ(DX,ρ+)Y(D){\Phi}_{\theta^{\rm SQ}}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori})\subset{\Phi}_{\theta^{\rm SQ}}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D).

The next theorem shows that the quandle cocycle invariant ΦθQXY(L,o)\Phi_{\theta^{\rm Q}}^{X_{Y}}(L,o) of an oriented link (L,o)(L,o) can be also interpreted by using symmetric quandles.

Theorem 5.10.

Let (D,o)(D,o) be a diagram of an oriented link and take [C]oriCol(DX,ρ+)Y(D)/ori[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori} such that (D,o)=T(D,[C]ori)(D,o)(D,[C]ori)(D,o)=T_{(D,[C]_{\rm ori})\to(D,o)}(D,[C]_{\rm ori}). As multi-sets, we have

ΦθQXY(D,o)=ΦθSQ(DX,ρ+)Y(D,[C]ori).\Phi_{\theta^{\rm Q}}^{X_{Y}}(D,o)={\Phi}_{\theta^{\rm SQ}}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori}).
Proof.

Note again that as mentioned in the proof of Theorem 5.7, the restriction

T(D,C)((D,o),C)|{D}×[C]ori:{D}×[C]ori{(D,o)}×ColXY(D,o)\displaystyle T_{(D,C)\to((D,o),C)}|_{\{D\}\times[C]_{\rm ori}}:\{D\}\times[C]_{\rm ori}\to\{(D,o)\}\times{\rm Col}_{X_{Y}}(D,o)

is a bijection.

For C[C]oriC\in[C]_{\rm ori}, let C¯ColXY(D,o)\bar{C}\in{\rm Col}_{X_{Y}}(D,o) such that T(D,C)((D,o),C)(D,C)=((D,o),C¯)T_{(D,C)\to((D,o),C)}(D,C)=((D,o),\bar{C}). Since we have T2DXX(W(DX,ρ+)Y(D,C))=WXY((D,o),C¯)T_{2}^{D_{X}\to X}(W^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,C))=W^{X_{Y}}((D,o),\bar{C}) as mentioned in the proof of Theorem 5.8, it holds that

ΦθSQ(DX,ρ+)Y(D,[C]ori)\displaystyle{\Phi}_{\theta^{\rm SQ}}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori}) ={θSQ(W(DX,ρ+)Y(D,C))A|C[C]ori}\displaystyle=\{\theta^{\rm SQ}(W^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,C))\in A~{}|~{}C\in[C]_{\rm ori}\}
={θQT2DXX(W(DX,ρ+)Y(D,C))A|C[C]ori}\displaystyle=\{\theta^{\rm Q}\circ T_{2}^{D_{X}\to X}(W^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,C))\in A~{}|~{}C\in[C]_{\rm ori}\}
={θQ(WXY((D,o),C¯))A|C¯ColXY(D,o)}\displaystyle=\{\theta^{\rm Q}(W^{X_{Y}}((D,o),\bar{C}))\in A~{}|~{}\bar{C}\in{\rm Col}_{X_{Y}}(D,o)\}
=ΦθQXY(D,o).\displaystyle=\Phi_{\theta^{\rm Q}}^{X_{Y}}(D,o).

For an unoriented link LL, by considering all the orientations of LL and taking the quandle cocycle invariant ΦθXY(D,o)\Phi_{\theta}^{X_{Y}}(D,o) for each orientation oo, we can define an invariant of LL. More precisely, for an diagram DD of LL, the multi-set

{ΦθXY(D,o)|oori(D)}\{\Phi_{\theta}^{X_{Y}}(D,o)~{}|~{}o\in{\rm ori}(D)\}

is an invariant of LL. The next property implies that the quandle cocycle invariants of an unoriented link LL can be also interpreted by using symmetric quandles.

Corollary 5.11.

Let DD be a diagram of an unoriented link. As multi-sets, we have

{ΦθQXY(D,o)|oori(D)}\displaystyle\{\Phi_{\theta^{\rm Q}}^{X_{Y}}(D,o)~{}|~{}o\in{\rm ori}(D)\}
={ΦθSQ(DX,ρ+)Y(D,[C]ori)|[C]oriCol(DX,ρ+)Y(D)/ori}.\displaystyle=\{{\Phi}_{\theta^{\rm SQ}}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori})~{}|~{}[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori}\}.
Remark 5.12.

As a consequence of the results of this section, it is no exaggeration to say that symmetric quandles are also useful for oriented links, and symmetric quandles are not less than quandles in the case of considering coloring numbers and cocycle invariants for oriented links.

6. Invariants for surface-links using quandles and symmetric quandles

For oriented (or orientable, unoriented) surface-links, we have the same properties, that is, quandle coloring numbers, quandle homology invariants and quandle cocycle invariants are interpreted by using symmetric doubles of quandles. In this section, we summarize our results for surface-links.

6.1. Surface-links

A (orientable) surface-link is a disjoint union of orientable closed surfaces locally-flatly embedded in 4\mathbb{R}^{4}. Two surface-links are said to be equivalent if there exists an orientation-preserving self-homeomorphism of 4\mathbb{R}^{4} which maps one surface-link onto the other. A diagram of a surface-link is its image, via a generic projection from 4\mathbb{R}^{4} to 3\mathbb{R}^{3}, equipped with the height information around the double point curves. The height information is given by removing the regular neighborhoods of the lower double points. Then a diagram is regarded as a disjoint union of connected compact surfaces, each of which is called a sheet. A connected component after removing the regular neighborhoods of all double points from the diagram is called a semi-sheet. The 33-dimensional space 3\mathbb{R}^{3} is separated into several connected regions by a diagram. We call each connected region a complementary region of the diagram. Refer to [2, 3, 5, 13] for more details. For an oriented surface-link diagram (D,o)(D,o), we often use a normal orientation nsn_{s} for a sheet ss to represent the orientation o=(o1,o2)o=(o_{1},o_{2}) such that the triple (o1,o2,ns)(o_{1},o_{2},n_{s}) matches the right-handed orientation of 3\mathbb{R}^{3}, see Figure 13.

Refer to caption
Figure 13. The orientation and the normal orientation

6.2. Coloring numbers using quandles and symmetric quandles for oriented surface-links

An XX-coloring of an oriented surface-link diagram (D,o)(D,o) for a given quandle (X,)(X,*) is defined as an assignment of an element of XX to each sheet satisfying the condition depicted in the left of Figure 14 around double point curves. We denote by ColX(D,o){\rm Col}_{X}(D,o) the set of XX-colorings of (D,o)(D,o). An XYX_{Y}-coloring of an oriented surface-link diagram (D,o)(D,o) for a given quandle (X,)(X,*) and a given XX-set YY is an XX-coloring of (D,o)(D,o) with an assignment of an element of YY to each complementary region of DD satisfying the condition depicted in the right of Figure 14 around semi-sheets. We denote by ColXY(D,o){\rm Col}_{X_{Y}}(D,o) the set of XYX_{Y}-colorings of (D,o)(D,o). Refer to [2, 3] for more details.

Refer to caption
Figure 14. The conditions of colorings

An (X,ρ)(X,\rho)-coloring of a surface-link diagram DD for a given symmetric quandle (X,ρ,)(X,\rho,*) is defined as an equivalence class of an assignment of an element of XX and a normal orientation to each semi-sheet satisfying the conditions depicted in Figures 14 and 15 around double point curves, where the equivalence relation is generated by basic inversions depicted in Figure 16. We denote by Col(X,ρ)(D){\rm Col}_{(X,\rho)}(D) the set of (X,ρ)(X,\rho)-colorings of DD. An (X,ρ)Y(X,\rho)_{Y}-coloring of a surface-link diagram DD for a given symmetric quandle (X,ρ,)(X,\rho,*) and a given (X,ρ)(X,\rho)-set YY is an (X,ρ)(X,\rho)-coloring of DD with an assignment of an element of YY to each complementary region of DD satisfying the condition depicted in the right of Figure 14 around semi-sheets. We denote by Col(X,ρ)Y(D){\rm Col}_{(X,\rho)_{Y}}(D) the set of (X,ρ)Y(X,\rho)_{Y}-colorings of DD. Refer to [13] for more details.

Refer to caption
Figure 15. The conditions of colorings
Refer to caption
Figure 16. A basic inversion

Let XX be a quandle and (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}}) the symmetric double of XX. As in the case of links, by performing basic inversions, any (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring CC of a diagram DD of an unoriented surface-link is uniquely represented by an assignment of a normal orientation and an element of X+1X^{+1} to each semi-sheet of DD. We call the assignment the canonical form of CC.

Let DD be a diagram of an unoriented surface-link and CC a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring of DD. For a semi-sheet ss of DD and the normal orientation nsn_{s} assigned to ss for the canonical form of CC, we set the orientation (o1,o2)(o_{1},o_{2}) of ss so that the triple (o1,o2,ns)(o_{1},o_{2},n_{s}) matches the right-handed orientation of 3\mathbb{R}^{3}, see Figure 13. Such orientations (o1,o2)(o_{1},o_{2}) determine an orientation o=(o1,o2)o=(o_{1},o_{2}) of DD, and we call the orientation the orientation induced by the canonical form of (D,C)(D,C) and the oriented diagram (D,o)(D,o) the oriented diagram induced by the canonical form of (D,C)(D,C). Let CC and CC^{\prime} be (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-colorings of DD. We say that CC and CC^{\prime} are orientation equivalent (CoriC)(C\sim_{\rm ori}C^{\prime}) if the orientation induced by the canonical form of (D,C)(D,C) coincides with that of (D,C)(D,C^{\prime}). We denote by [C]ori[C]_{\rm ori} the orientation equivalence class of a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-coloring CC. The transformation map from (D,[C]ori)(D,[C]_{\rm ori}) to (D,o)(D,o) is the map

T(D,[C]ori)(D,o):{D}×Col(DX,ρ+)(D)/ori{D}×ori(D);\displaystyle T_{(D,[C]_{\rm ori})\to(D,o)}:\{D\}\times{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})}(D)/\sim_{\rm ori}\to\{D\}\times{\rm ori}(D);
(D,[C]ori)the oriented diagram (D,o) induced by the canonical form of (D,C).\displaystyle(D,[C]_{\rm ori})\mapsto\mbox{the oriented diagram $(D,o)$ induced by the canonical form of $(D,C)$}.

The next theorem implies that quandle coloring numbers for oriented surface-links are interpreted by using symmetric quandle colorings.

Theorem 6.1.

Let (D,o)(D,o) be a diagram of an oriented surface-link and take [C]oriCol(DX,ρ+)(D)/ori[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})}(D)/\sim_{\rm ori} such that (D,o)=T(D,[C]ori)(D,o)(D,[C]ori)(D,o)=T_{(D,[C]_{\rm ori})\to(D,o)}(D,[C]_{\rm ori}). Then there exists a one-to-one correspondence between ColX(D,o){\rm Col}_{X}(D,o) and [C]ori[C]_{\rm ori}, and thus, we have

#ColX(D,o)=#[C]ori.\#{\rm Col}_{X}(D,o)=\#[C]_{\rm ori}.

The next corollary implies that the quandle coloring numbers of an (orientable, unoriented) surface-link FF can be also interpreted by using symmetric quandles.

Corollary 6.2.

Let DD be a diagram of an unoriented surface-link. As multi-sets, we have

{#ColX(D,o)|oori(D)}={#[C]ori|[C]oriCol(DX,ρ+)(D)/ori}.\{\#{\rm Col}_{X}(D,o)~{}|~{}o\in{\rm ori}(D)\}=\{\#[C]_{\rm ori}~{}|~{}[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})}(D)/\sim_{\rm ori}\}.

Similarly we have the following transformation map from (D,[C]ori)(D,[C]_{\rm ori}) to (D,o)(D,o).

T(D,[C]ori)(D,o):{D}×Col(DX,ρ+)Y(D)/ori{D}×ori(D);\displaystyle T_{(D,[C]_{\rm ori})\to(D,o)}:\{D\}\times{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori}\to\{D\}\times{\rm ori}(D);
(D,[C]ori)the oriented diagram (D,o) induced by the canonical form of (D,C),\displaystyle(D,[C]_{\rm ori})\mapsto\mbox{the oriented diagram $(D,o)$ induced by the canonical form of $(D,C)$},

where we use the same symbol T(D,[C]ori)(D,o)T_{(D,[C]_{\rm ori})\to(D,o)} for simplicity. We have the following theorem.

Theorem 6.3.

Let (D,o)(D,o) be a diagram of an oriented surface-link and take [C]oriCol(DX,ρ+)Y(D)/ori[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori} such that (D,o)=T(D,[C]ori)(D,o)(D,[C]ori)(D,o)=T_{(D,[C]_{\rm ori})\to(D,o)}(D,[C]_{\rm ori}). Then there exists a one-to-one correspondence between ColXY(D,o){\rm Col}_{X_{Y}}(D,o) and [C]ori[C]_{\rm ori}, and thus, we have

#ColXY(D,o)=#[C]ori.\#{\rm Col}_{X_{Y}}(D,o)=\#[C]_{\rm ori}.
Remark 6.4.

Theorem 6.1, Corollary 6.2 and Theorem 6.3 are analogous to Theorem 5.3, Corollary 5.4 and Theorem 5.7, respectively.

6.3. Cocycle invariants using quandles and symmetric quandles for oriented surface-links

The quandle homology invariant 𝒲XY(F,o)\mathcal{W}^{X_{Y}}(F,o) of an oriented surface-link (F,o)(F,o) for a quandle XX and an XX-set YY is defined by taking the sum of the weights of triple points for each XYX_{Y}-coloring, and collecting the weight sums for all the XYX_{Y}-colorings, refer to [2, 3] for more details, where the weight of a triple point is obtained as depicted in Figure 17. The symmetric quandle homology invariant 𝒲(X,ρ)Y(F)\mathcal{W}^{(X,\rho)_{Y}}(F) of an (unoriented) surface-link FF for a symmetric quandle (X,ρ)(X,\rho) and an (X,ρ)(X,\rho)-set YY is also defined by taking the sum of the weights of triple points for each (X,ρ)Y(X,\rho)_{Y}-coloring, and collecting the weight sums for all the (X,ρ)Y(X,\rho)_{Y}-colorings, refer to [13] for more details, where the weight of a triple point is obtained as depicted in Figure 17.

Refer to caption
Figure 17. The weight of a triple point

The quandle cocycle invariant ΦθXY(F,o)\Phi^{X_{Y}}_{\theta}(F,o) of an oriented surface-link (F,o)(F,o) for a quandle XX, an XX-set YY and a quandle 33-cocycle θ\theta is defined by taking the sum of the weights of triple points for each XYX_{Y}-coloring, and setting the multi-set of the images, by θ\theta, of the weight sums for all the XYX_{Y}-colorings, refer to [2, 3]. The symmetric quandle cocycle invariant Φθ(X,ρ)Y(F)\Phi^{(X,\rho)_{Y}}_{\theta}(F) of an (unoriented) surface-link FF for a symmetric quandle (X,ρ)(X,\rho), an (X,ρ)(X,\rho)-set YY and a symmetric quandle 33-cocycle θ\theta is also defined by taking the sum of the weights of triple points for each (X,ρ)Y(X,\rho)_{Y}-coloring, and setting the multi-set of the images, by θ\theta, of the weight sums for all the (X,ρ)Y(X,\rho)_{Y}-colorings, refer to [13].

Let XX be a quandle, (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}}) the symmetric double of XX, and YY an XX-set. By Lemma 4.5, we can also regard YY as a (DX,ρ+)(D_{X},{\rho_{+\leftrightarrow-}})-set. We have the next theorem, which shows that the quandle homology invariant 𝒲XY(F,o)\mathcal{W}^{X_{Y}}(F,o) of an oriented surface-link (F,o)(F,o) can be interpreted by using symmetric quandles.

Theorem 6.5.

Let (D,o)(D,o) is a diagram of an oriented surface-link and take [C]oriCol(DX,ρ+)Y(D)/ori[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori} such that (D,o)=T(D,[C]ori)(D,o)(D,[C]ori)(D,o)=T_{(D,[C]_{\rm ori})\to(D,o)}(D,[C]_{\rm ori}). Then as multi-sets, we have

(T3DXX)(𝒲(DX,ρ+)Y(D,[C]ori))=𝒲XY(D,o).(T_{3}^{D_{X}\to X})^{*}\big{(}\mathcal{W}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori})\big{)}=\mathcal{W}^{X_{Y}}(D,o).

The next corollary shows that the quandle homology invariant 𝒲XY(F)\mathcal{W}^{X_{Y}}(F) of an (orientable, unoriented) surface-link FF can be also interpreted by using symmetric quandles.

Corollary 6.6.

Let DD be a diagram of an unoriented surface-link. As multi-sets, we have

{𝒲XY(D,o)|oori(D)}={(T3DXX)(𝒲(DX,ρ+)Y(D,[C]ori))|[C]oriCol(DX,ρ+)Y(D)/ori}.\begin{array}[]{l}\{\mathcal{W}^{X_{Y}}(D,o)~{}|~{}o\in{\rm ori}(D)\}\\[3.0pt] =\{(T_{3}^{D_{X}\to X})^{*}(\mathcal{W}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori}))~{}|~{}[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori}\}.\end{array}

Let AA be an abelian group. Let θQ:C3Q(X)YA\theta^{\rm Q}:C^{\rm Q}_{3}(X)_{Y}\to A and θSQ:C3SQ(DX,ρ+)YA\theta^{\rm SQ}:C^{\rm SQ}_{3}(D_{X},{\rho_{+\leftrightarrow-}})_{Y}\to A be a quandle 33-cocycle and a symmetric quandle 33-cocycle, respectively, such that θQT3DXX=θSQ\theta^{\rm Q}\circ T_{3}^{D_{X}\to X}=\theta^{\rm SQ}. The next theorem shows that the quandle cocycle invariant ΦθQXY(F,o)\Phi_{\theta^{\rm Q}}^{X_{Y}}(F,o) of an oriented surface-link (F,o)(F,o) can be also interpreted by using symmetric quandles.

Theorem 6.7.

Let (D,o)(D,o) is a diagram of an oriented surface-link and take [C]oriCol(DX,ρ+)Y(D)/ori[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori} such that (D,o)=T(D,[C]ori)(D,o)(D,[C]ori)(D,o)=T_{(D,[C]_{\rm ori})\to(D,o)}(D,[C]_{\rm ori}). As multi-sets, we have

ΦθQXY(D,o)=ΦθSQ(DX,ρ+)Y(D,[C]ori).\Phi_{\theta^{\rm Q}}^{X_{Y}}(D,o)={\Phi}_{\theta^{\rm SQ}}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori}).

The next corollary shows that the quandle cocycle invariant ΦθQXY(F)\Phi_{\theta^{\rm Q}}^{X_{Y}}(F) of an (orientable, unoriented) surface-link FF can be also interpreted by using symmetric quandles.

Corollary 6.8.

Let DD be a diagram of an unoriented surface-link. As multi-sets, we have

{ΦθQXY(D,o)|oori(D)}\displaystyle\{\Phi_{\theta^{\rm Q}}^{X_{Y}}(D,o)~{}|~{}o\in{\rm ori}(D)\}
={ΦθSQ(DX,ρ+)Y(D,[C]ori)|[C]oriCol(DX,ρ+)Y(D)/ori}.\displaystyle=\{{\Phi}_{\theta^{\rm SQ}}^{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D,[C]_{\rm ori})~{}|~{}[C]_{\rm ori}\in{\rm Col}_{(D_{X},{\rho_{+\leftrightarrow-}})_{Y}}(D)/\sim_{\rm ori}\}.
Remark 6.9.

Theorem 6.5, Corollary 6.6, Theorem 6.7 and Corollary 6.8 are analogous to Theorem 5.8, Corollary 5.9, Theorem 5.10 and Corollary 5.11, respectively.

Remark 6.10.

As a consequence of the results of this section, it is no exaggeration to say that symmetric quandles are also useful for oriented surface-links, and symmetric quandles are not less than quandles in the case of considering coloring numbers and cocycle invariants for oriented surface-links.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 16K17600.

References

  • [1] J. S. Carter, M. Elhamdadi, M. Gran~\tilde{\rm n}a, and M. Saito, Cocycle knot invariants from quandle modules and generalized quandle homology, Osaka J. Math., 42, (2005), 499–541.
  • [2] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc., 355, (2003), 3947–3989.
  • [3] J. S. Carter, S. Kamada, and M. Saito, Surfaces in 44-space, Encyclopaedia of Mathematical Sciences 142, (2004), Low-Dimensional Topology, III. Springer-Verlag, Berlin, xiv+213+213 pp.
  • [4] J. S. Carter, K. Oshiro, and M. Saito, Symmetric extensions of dihedral quandles and triple points of non-orientable surfaces, Topology Appl., 157, (2010), 857–869.
  • [5] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs 55, (1998), American Mathematical Society, Providence, RI.
  • [6] R. Fenn and C. Rourke, Racks and links in codimension two, J. Knot Theory Ramifications, 1, (1992), 343–406.
  • [7] R. Fenn, C. Rourke, and B. Sanderson,and Trunks and classifying spaces, Appl. Categ. Structures, 3, (1995), 321–356.
  • [8] M. Iwakiri, The lower bound of the ww-indices of surface-links via quandle cocycle invariants, Trans. Amer. Math. Soc., 362, (2010), 1189–1210.
  • [9] Y. Jang and K. Oshiro, Symmetric quandle colorings for spatial graphs and handlebody-links, J. Knot Theory Ramifications, 21, (2012), 1250050, 16 pp.
  • [10] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Alg., 23, (1982), 37–65.
  • [11] S. Kamada, Quandles with good involutions, their homologies and knot invariants, Intelligence of low dimensional topology 2006, 101–108, Ser. Knots Everything, 40, (2007), World Sci. Publ., Hackensack, NJ.
  • [12] S. Kamada, Quandles and symmetric quandles for higher dimensional knots, Knots in Poland III. Part III, 145–158, Banach Center Publ., 103, (2014), Polish Acad. Sci. Inst. Math., Warsaw.
  • [13] S. Kamada and K. Oshiro, Homology groups of symmetric quandles and cocycle invariants of links and surface-links, Trans. Amer. Math. Soc., 362, (2010), 5501–5527.
  • [14] K. Kawamura, K. Oshiro, and K. Tanaka, Independence of Roseman moves including triple points, Algebr. Geom. Topol., 16, (2016), 2443–2458.
  • [15] S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.), 119 (161), (1982), 78–88.
  • [16] T. Nosaka, Homotopical interpretation of link invariants from finite quandles, Topology Appl., 193, (2015), 1–30.
  • [17] K. Oshiro, Triple point numbers of surface-links and symmetric quandle cocycle invariants, Algebr. Geom. Topol., 10, (2010), 853–865.
  • [18] K. Oshiro, Homology groups of trivial quandles with good involutions and triple linking numbers of surface-links, J. Knot Theory Ramifications, 20, (2011), 595–608.
  • [19] K. Oshiro and S. Satoh, 77-colored 22-knot diagram with six colors, Hiroshima Math. J., 44, (2014), 63–74.
  • [20] K. Oshiro and K. Tanaka, On rack colorings for surface-knot diagrams without branch points, Topology Appl., 196, (2015), 921–93.
  • [21] S. Satoh, Sheet numbers and cocycle invariants of surface-knots, Intelligence of low dimensional topology 2006, 287–291, Ser. Knots Everything, 40, (2007), World Sci. Publ., Hackensack, NJ.
  • [22] S. Satoh, The length of a 33-cocycle of the 55-dihedral quandle, Algebr. Geom. Topol., 16, (2016), 3325–3359.
  • [23] S. Satoh and A. Shima, The 22-twist-spun trefoil has the triple point number four, Trans. Amer. Math. Soc., 356, (2004), 1007–1024.
  • [24] K. Tanaka, Inequivalent surface-knots with the same knot quandle, Topology Appl., 154, (2007), 2757–2763.