This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum circuit simulation of linear optics using fermion to qubit encoding

Seungbeom Chin+ sbthesy@gmail.com International Centre for Theory of Quantum Technologies (ICTQT), University of Gdánsk, 80-308, Gdánsk, Poland Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea    Jaehee Kim+ SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea    Joonsuk Huh joonsukhuh@gmail.com Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
Abstract

This work proposes a digital quantum simulation protocol for the linear scattering process of bosons, which provides a simple extension to partially distinguishable boson cases. Our protocol is achieved by combining the boson-fermion correspondence relation and fermion to qubit encoding protocols. As a proof of concept, we designed quantum circuits for generating the Hong-Ou-Mandel dip by varying particle distinguishability. The circuits were verified with the classical and quantum simulations using the IBM Quantum and IonQ cloud services.

++footnotetext: These authors contributed equally to this work.

I Introduction

Quantum simulation imitates an evolution of one quantum system with another artificially organized quantum system, i.e., quantum simulator [1]. Digital quantum simulators with qubits can encode an arbitrary quantum system comprising various particles, such as spins, fermions, and bosons, either exactly or approximately, depending on the particle nature. Qubits can be realized with several physical systems, such as trapped ions  [2, 3], nuclear magnetic resonance [4, 5], superconducting circuits  [6, 7], quantum dots [8], and photons [9]. Therefore, we can simulate any quantum system with digital quantum simulators using proper qubit encoding protocols regardless of the physical nature of the simulator.

Among various many-particle quantum systems, bosonic systems are considered to have the significant benefit from digital quantum simulations. Knill, Laflamme and Milburn (KLM) showed that the postselected linear optics is capable of universal quantum computing  [10]. Also, boson sampling proposed by Aaronson and Arkhipov [11] is a strong candidate for demonstrating the computational superiority of quantum devices. The boson sampling problem is believed to belong to classically hard sampling problems.

Inspired by the computational power of noninteracting bosonic systems, several boson to qubit encoding (B2QE) protocols have been proposed to simulate bosonic problems with digital quantum computers [12, 13, 14, 15, 16, 17, 18]. The majority of studies discretize bosonic creation and annihilation operators directly using unary or binary qubit representations of the Fock states as qubit encoding protocols. Ref. [15] presents a method for the digital quantum simulation of linear and nonlinear optical elements. Ref. [17] simulated the beam-splitting and squeezing operators with IBMQ. The required resources, such as the numbers of qubits and gates, vary according to the encoding protocols. Ref. [18] compared the resource efficiency among encoding protocols.

In this paper, we propose an alternative many-boson digital simulation method by combining the boson-fermion correspondence analyzed by Shchesnovich [19] and fermion to qubit encoding (F2QE) protocols [20, 21]. Specifically, our protocol transforms bosonic states into fermionic states with internal degrees of freedom, which are then transformed to qubit states via a F2QE procotol (JW transformation). With our simulation model, quantum circuits with MM bundles of NN qubits can simulate the number-conserving scattering process of NN bosons in MM modes. Our protocol is summarized in Fig. 1. The most significant advantage of our protocol is that it can simulate non-ideal partially distinguishable bosons, i.e., bosons with internal degrees of freedoms, using a direct extension of qubit numbers.

Refer to caption
Figure 1: Our protocol for digital simulation of multi-boson systems. Using antisymmetrically entangled fermions as effective bosons, we can design digital quantum circuit to simulate multi-bosonic system via JW transformation.

As a proof of concept, we generate the Hong-Ou-Mandel (HOM) dip  [22] with our protocol. The HOM effect is important in optical quantum systems that provide the elementary resource for logic gates in the linear optical quantum computing systems. The formal connection between the HOM effect and the qubit-based SWAP test was discussed in Ref. [23]. To simulate HOM dip, we need a method to add an internal degree of freedom to photons. It is easily achieved in our case by increasing the qubit number twice, which shows that our protocol is suitable for simulating partially distinguishable bosons. We verified the validity of our circuit using the IBM Quantum and IonQ cloud services.

This paper is organized as follows: Section II explains our digital boson simulation protocol. After reviewing the boson-fermion transformation protocol, we show how to combine this transformation with the JW transformation for the digital bosonic simulation. In section III, we apply our model to the HOM dip experiment. We simulate the two-photon partial distinguishability with an eight-qubit-circuit. Finally, section IV concludes our present work and discusses its possible future extensions.

II Digitizing bosonic systems

In this section, we explain our B2QE protocol to simulate many-boson systems with qubits. Our protocol consists of two steps: First, we express the number-conserving bosonic systems with entangled multi-fermions with an internal degree of freedom. Second, we map the translated multi-fermionic system to a qubit system using a well-known F2QE protocol, the JW transformation [20].

II.1 Effective bosonic states of multi-fermions

We first explain how a specific form of entangled multi-fermions can effectively behave as multi-bosons. In the second quantization language, the bosonic creation and annihilation operators a^i{\hat{a}}^{\dagger}_{i} and a^i{\hat{a}}_{i} (i=1,,Mi=1,\cdots,M) obey the following commutation relations:

[a^i,a^j]=δij,[a^i,a^j]=[a^i,a^j]=0,\displaystyle[{\hat{a}}_{i},{\hat{a}}^{\dagger}_{j}]=\delta_{ij},\quad[{\hat{a}}_{i},{\hat{a}}_{j}]=[{\hat{a}}^{\dagger}_{i},{\hat{a}}^{\dagger}_{j}]=0, (1)

while the fermionic operators b^i{\hat{b}}^{\dagger}_{i} and b^i{\hat{b}}_{i} obey the anti-commutation relations:

{b^i,b^j}=δij,{b^i,b^j}={b^i,b^j}=0,\displaystyle\{{\hat{b}}_{i},{\hat{b}}^{\dagger}_{j}\}=\delta_{ij},\quad\{{\hat{b}}_{i},{\hat{b}}_{j}\}=\{{\hat{b}}^{\dagger}_{i},{\hat{b}}^{\dagger}_{j}\}=0, (2)

where {A^,B^}A^B^+B^A^\{\hat{A},\hat{B}\}\equiv\hat{A}\hat{B}+\hat{B}\hat{A}. The above relations satisfy the Pauli exclusion principle for fermions, which prohibits the superposition of two fermions in the same state. Indeed, we see that b^ib^i|vac=b^ib^i|vac=0{\hat{b}}^{\dagger}_{i}{\hat{b}}^{\dagger}_{i}|vac\rangle=-{\hat{b}}^{\dagger}_{i}{\hat{b}}^{\dagger}_{i}|vac\rangle=0 by Eq. (2), where |vac|vac\rangle is a vacuum state. On the other hand, if the fermions have internal degrees of freedom, such as spin, fermionic modes with different internal states can occupy the same spatial mode. By denoting a KK-dimensional internal degree of freedom as μ\mu (μ=0,K1\mu=0,\cdots K-1), a fermionic operator with internal degrees of freedom μ\mu is defined as b^iμ{\hat{b}}^{\dagger\mu}_{i} and b^iμ{\hat{b}}^{\mu}_{i}. The anticommutation relations for the operators are as follows:

{b^iμ,b^jν}=δijδμν,{b^iμ,b^jν}={b^iμ,b^jν}=0.\displaystyle\{{\hat{b}}^{\mu}_{i},{\hat{b}}^{\dagger\nu}_{j}\}=\delta_{ij}\delta^{\mu\nu},\quad\{{\hat{b}}^{\mu}_{i},{\hat{b}}^{\nu}_{j}\}=\{{\hat{b}}^{\dagger\mu}_{i},{\hat{b}}^{\dagger\nu}_{j}\}=0. (3)

In such a case, the fermions can condensate in the same spatial mode up to KK. We aim to employ this feature of multi-fermionic states for mimicking the Bose-Einstein condensation (BEC) with the cutoff KK. Fig. 2 explains the concept of fermionic condensation.

Refer to caption
Figure 2: MM-fermionic modes with KK internal states. Fermions can condensate in the same mode up to KK. If a fermion state is entangled in Eq. (5), we can simulate BEC with the condensation cutoff KK.

On the other hand, for the fermionic condensation to operate like the BEC, we must properly consider the fundamental differences between bosons and fermions, i.e., the exchange symmetry and antisymmetry indicated in Eqs. (1) and (2). Shchesnovich [19] showed that the interchangeability of entanglement and exchange symmetry can render entangled multi-fermions symmetric under the exchange of spatial modes. Here, we introduce the effective bosonic state of multi-fermions with the condensation limit KK in the second quantization language, which offers a more refined explanation than of the first quantization language used in Ref. [19].

Let us consider an NN-fermionic state,

b^i1μ1b^i2μ2b^iNμN|vac,\displaystyle{\hat{b}}_{i_{1}}^{\dagger\mu_{1}}{\hat{b}}_{i_{2}}^{\dagger\mu_{2}}\cdots{\hat{b}}_{i_{N}}^{\dagger\mu_{N}}|vac\rangle, (4)

(iα=1,2,,Mi_{\alpha}=1,2,\cdots,M and μα=1,2,,K\mu_{\alpha}=1,2,\cdots,K for 1αN1\leq\alpha\leq N). This state is always antisymmetric under the exchange of the total indices (μ,i)(\mu,i). However, if KNK\geq N, we can obtain a symmetric state under the spatial modes iαi_{\alpha} by suitably superposing fermionic states as follows:

1N!b^i1[μ1b^i2μ2b^iNμN]|vac\displaystyle\frac{1}{\sqrt{N!}}{\hat{b}}_{i_{1}}^{\dagger[\mu_{1}}{\hat{b}}_{i_{2}}^{\dagger\mu_{2}}\cdots{\hat{b}}_{i_{N}}^{\dagger\mu_{N}]}|vac\rangle (5)

(a square bracket [,][,] on the upper indices means that the indices are antisymmetrized. For the simplest example, b^i1[μ1b^i2μ2]b^i1μ1b^i2μ2b^i1μ2b^i2μ1{\hat{b}}_{i_{1}}^{\dagger[\mu_{1}}{\hat{b}}_{i_{2}}^{\dagger\mu_{2}]}\equiv{\hat{b}}_{i_{1}}^{\dagger\mu_{1}}{\hat{b}}_{i_{2}}^{\dagger\mu_{2}}-{\hat{b}}_{i_{1}}^{\dagger\mu_{2}}{\hat{b}}_{i_{2}}^{\dagger\mu_{1}}). Since the following relation,

b^i1[μ1b^iαμαb^iβμβb^iNμN]|vac\displaystyle{\hat{b}}_{i_{1}}^{\dagger[\mu_{1}}\cdots{\hat{b}}_{i_{\alpha}}^{\dagger\mu_{\alpha}}\cdots{\hat{b}}_{i_{\beta}}^{\dagger\mu_{\beta}}\cdots{\hat{b}}_{i_{N}}^{\dagger\mu_{N}]}|vac\rangle
=b^i1[μ1b^iβμβb^iαμαb^iNμN]|vac\displaystyle=-{\hat{b}}_{i_{1}}^{\dagger[\mu_{1}}\cdots{\hat{b}}_{i_{\beta}}^{\dagger\mu_{\beta}}\cdots{\hat{b}}_{i_{\alpha}}^{\dagger\mu_{\alpha}}\cdots{\hat{b}}_{i_{N}}^{\dagger\mu_{N}]}|vac\rangle
=b^i1[μ1b^iβμαb^iαμβb^iNμN]|vac,\displaystyle={\hat{b}}_{i_{1}}^{\dagger[\mu_{1}}\cdots{\hat{b}}_{i_{\beta}}^{\dagger\mu_{\alpha}}\cdots{\hat{b}}_{i_{\alpha}}^{\dagger\mu_{\beta}}\cdots{\hat{b}}_{i_{N}}^{\dagger\mu_{N}]}|vac\rangle, (6)

holds for any α\alpha and β\beta for 1αN1\leq\alpha\leq N and 1βN1\leq\beta\leq N, we have

1N!b^i1[μ1b^i2μ2b^iNμN]|vac\displaystyle\frac{1}{\sqrt{N!}}{\hat{b}}_{i_{1}}^{\dagger[\mu_{1}}{\hat{b}}_{i_{2}}^{\dagger\mu_{2}}\cdots{\hat{b}}_{i_{N}}^{\dagger\mu_{N}]}|vac\rangle
=1N!b^{i1[μ1b^i2μ2b^iN}μN]|vac\displaystyle=\frac{1}{\sqrt{N!}}{\hat{b}}_{\{i_{1}}^{\dagger[\mu_{1}}{\hat{b}}_{i_{2}}^{\dagger\mu_{2}}\cdots{\hat{b}}_{i_{N}\}}^{\dagger\mu_{N}]}|vac\rangle (7)

(a brace {,}\{,\} on the lower indices on the right hand side denotes that the indices are symmetrized. For the simplest example, b^{i1μ1b^i2}μ2b^i1μ1b^i2μ2+b^i2μ1b^i1μ2{\hat{b}}_{\{i_{1}}^{\dagger\mu_{1}}{\hat{b}}_{i_{2}\}}^{\dagger\mu_{2}}\equiv{\hat{b}}_{i_{1}}^{\dagger\mu_{1}}{\hat{b}}_{i_{2}}^{\dagger\mu_{2}}+{\hat{b}}_{i_{2}}^{\dagger\mu_{1}}{\hat{b}}_{i_{1}}^{\dagger\mu_{2}}). Therefore, we can consider Eq (5) to be an effective NN-boson state with the condensation limit KK.

As a simple example, when N=2N=2, Eq. (5) becomes

12(b^i1μ1b^i2μ2b^i1μ2b^i2μ1)|vac.\displaystyle\frac{1}{\sqrt{2}}\big{(}{\hat{b}}_{i_{1}}^{\dagger\mu_{1}}{\hat{b}}_{i_{2}}^{\dagger\mu_{2}}-{\hat{b}}_{i_{1}}^{\dagger\mu_{2}}{\hat{b}}_{i_{2}}^{\dagger\mu_{1}}\big{)}|vac\rangle. (8)

By exchanging the mode indices i1i_{1} and i2i_{2}, we have

12(b^i2μ1b^i1μ2b^i2μ2b^i1μ1)|vac\displaystyle\frac{1}{\sqrt{2}}\big{(}{\hat{b}}_{i_{2}}^{\dagger\mu_{1}}{\hat{b}}_{i_{1}}^{\dagger\mu_{2}}-{\hat{b}}_{i_{2}}^{\dagger\mu_{2}}{\hat{b}}_{i_{1}}^{\dagger\mu_{1}}\big{)}|vac\rangle
=12(b^i1μ2b^i2μ1+b^i1μ1b^i2μ2)|vac\displaystyle=\frac{1}{\sqrt{2}}\big{(}-{\hat{b}}_{i_{1}}^{\dagger\mu_{2}}{\hat{b}}_{i_{2}}^{\dagger\mu_{1}}+{\hat{b}}_{i_{1}}^{\dagger\mu_{1}}{\hat{b}}_{i_{2}}^{\dagger\mu_{2}}\big{)}|vac\rangle
=12(b^i1μ1b^i2μ2b^i1μ2b^i2μ1)|vac.,\displaystyle=\frac{1}{\sqrt{2}}\big{(}{\hat{b}}_{i_{1}}^{\dagger\mu_{1}}{\hat{b}}_{i_{2}}^{\dagger\mu_{2}}-{\hat{b}}_{i_{1}}^{\dagger\mu_{2}}{\hat{b}}_{i_{2}}^{\dagger\mu_{1}}\big{)}|vac\rangle., (9)

where the second line is obtained by changing the order of fermionic operators.

Since the antisymmetrical entanglement of the fermions is essential for effective bosonic states to behave like bosons, the exchange symmetry of the state must be preserved under evolutions. In other words, if we want to simulate the bosonic scattering process with fermions, the transformation operators of fermions must preserve the antisymmetrical entanglement. We observe that some transformation operators satisfy this restriction. We first consider a bosonic operator TT of the following form:

T=exp[it(j,k=1MΦjka^ja^k)],\displaystyle T=\exp\big{[}it(\sum_{j,k=1}^{M}\Phi_{jk}{\hat{a}}_{j}^{\dagger}{\hat{a}}_{k})\big{]}, (10)

where tt is the evolution time and Φjk\Phi_{jk}\in\mathbb{C}. We note that

jkΦjka^ja^k\displaystyle\sum_{jk}\Phi_{jk}{\hat{a}}_{j}^{\dagger}{\hat{a}}_{k} (11)

behaves as the Hamiltonian of the given system by setting Φjk=Φkj\Phi_{jk}=\Phi^{*}_{kj}. Then, the transformation of a^i{\hat{a}}_{i}^{\dagger} under TT is given by

Ta^iT=\displaystyle T{\hat{a}}^{\dagger}_{i}T^{\dagger}= jexp(itΦ)ija^j\displaystyle\sum_{j}\exp(it\Phi^{*})_{ij}{\hat{a}}_{j}^{\dagger}
\displaystyle\equiv juija^j,\displaystyle\sum_{j}u_{ij}{\hat{a}}_{j}^{\dagger}, (12)

where Φ\Phi is a Hermitian matrix whose elements are Φij\Phi_{ij} and juijukj=δik\sum_{j}u_{ij}u_{kj}^{*}=\delta_{ik}. In the fermionic system, the corresponding operator TfT_{f} is expressed as follows:

Tf=exp(itμj,kΦjkb^jμb^kμ),\displaystyle T_{f}=\exp(it\sum_{\mu}\sum_{j,k}\Phi_{jk}\hat{b}_{j}^{\dagger\mu}{\hat{b}}_{k}^{\mu}), (13)

which gives

Tfb^iμTf=juijb^jμ.\displaystyle T_{f}{\hat{b}}^{\dagger\mu}_{i}T_{f}^{\dagger}=\sum_{j}u_{ij}{\hat{b}}_{j}^{\dagger\mu}. (14)

Then, the state Eq. (5) evolves via TfT_{f} as follows:

|Ψf=\displaystyle|\Psi\rangle_{f}= 1N!k1,,kNu{j1k1ujN}kNb^k1[μ1b^kNμN]|vac\displaystyle\frac{1}{\sqrt{N!}}\sum_{k_{1},\cdots,k_{N}}u_{\{j_{1}}^{k_{1}}\cdots u_{j_{N}\}}^{k_{N}}{\hat{b}}^{\dagger[\mu_{1}}_{k_{1}}\cdots{\hat{b}}^{\dagger\mu_{N}]}_{k_{N}}|vac\rangle
=\displaystyle= 1N!k1,,kNu{j1{k1ujN}kN}b^{k1[μ1b^kN}μN]|vac.\displaystyle\frac{1}{\sqrt{N!}}\sum_{k_{1},\cdots,k_{N}}u_{\{j_{1}}^{\{k_{1}}\cdots u_{j_{N}\}}^{k_{N}\}}{\hat{b}}^{\dagger[\mu_{1}}_{\{k_{1}}\cdots{\hat{b}}^{\dagger\mu_{N}]}_{k_{N}\}}|vac\rangle.

The second line of the above equation shows that the transformed state is a linear combination of effective multi-boson states, which itself is an effective multi-boson state. In a more general form, we see that any number-conserving Hamiltonian looks like H=jkΦjka^ja^k+c.c.H=\sum_{jk}\Phi_{jk}{\hat{a}}_{j}^{\dagger}{\hat{a}}_{k}+\mathrm{c.c.}.

Finally, we check whether the measurement of the state Eq. (5) that evolves with Eq. (10) is effectively bosonic, i.e., the scattering probability is proportional to the absolute square of the transformation matrix permanent. Suppose first that we postselect terms without bunching, irrespective of what the internal states of the particles are. Without loss of generality, we can assume the boson number distribution vector as follows:

n=(1,1,,1N,0,,0)MN.(MN)\displaystyle{\vec{n}}=(\underbrace{1,1,\cdots,1}_{N},\underbrace{0,\cdots,0)}_{M-N}.~{}(M\geq N) (16)

Then, the scattering probability is given with a projector E=μ1μN(b^1μ1)b^NμN|vacvac|b^NμNb^1μ1E=\sum_{\mu_{1}\cdots\mu_{N}}({\hat{b}}^{\dagger\mu_{1}}_{1})\cdots{\hat{b}}_{N}^{\dagger\mu_{N}}|vac\rangle\langle vac|{\hat{b}}^{\mu_{N}}_{N}\cdots{\hat{b}}^{\mu_{1}}_{1} as follows:

P=\displaystyle P= Tr(Eρf)\displaystyle{\rm Tr}(E\rho_{f})
=\displaystyle= μ1,,μNvac|b^NμNb^1μ1|ΨΨ|fb^1μ1b^NμN|vac.\displaystyle\sum_{\mu_{1},\cdots,\mu_{N}}\langle vac|{\hat{b}}^{\mu_{N}}_{N}\cdots{\hat{b}}^{\mu_{1}}_{1}|\Psi\rangle\langle\Psi|_{f}{\hat{b}}^{\dagger\mu_{1}}_{1}\cdots{\hat{b}}_{N}^{\dagger\mu_{N}}|vac\rangle. (17)

Using the relation,

b^i1μ1b^iNμNb^k1[ν1b^kNνN]|vac\displaystyle{\hat{b}}_{i_{1}}^{\mu_{1}}\cdots{\hat{b}}_{i_{N}}^{\mu_{N}}{\hat{b}}_{k_{1}}^{\dagger[\nu_{1}}\cdots{\hat{b}}_{k_{N}}^{\dagger\nu_{N}]}|vac\rangle
=δi1{k1δiNkN}δμ1[ν1δμNνN]|vac,\displaystyle=\delta^{\{k_{1}}_{i_{1}}\cdots\delta^{k_{N}\}}_{i_{N}}\delta^{[\nu_{1}}_{\mu_{1}}\cdots\delta^{\nu_{N}]}_{\mu_{N}}|vac\rangle, (18)

we have

P|perm(u)|2,\displaystyle P\sim|{\textrm{perm}}(u)|^{2}, (19)

where uu is an N×NN\times N matrix whose entries are uiju_{ij} and perm(u){\textrm{perm}}(u) denotes the permanent of uu, as expected for a bosonic systems with TT [24, 11]. If the postselected states permit bunching, the probability becomes proportional to the permanent of the submatrix of uu as expected [25, 26, 27, 28].

II.2 Simulating multi-boson systems with qubits

Since a fermionic state of the form indicated in Eq. (5) can simulate a linear scattering of bosons, we conclude that digital quantum computers can also simulate the same system using the JW transformation. Before explaining how we actually organize quantum circuits and algorithms for such a simulation, we first review the JW transformation, which maps fermions to qubits [20].

In the JW transformation, qubit states |0|0\rangle and |1|1\rangle correspond to the empty and occupied states of fermions for a given mode, i.e., the following isomorphism should hold:

N qubit state |n=|n1,,nN(nj=0,1)\displaystyle\textrm{$N$ qubit state }|{\vec{n}}\rangle=|n_{1},\cdots,n_{N}\rangle\quad(n_{j}=0,1)
N fermionic state (b^1)n1(b^1)nN|vac.\displaystyle\quad\cong\quad\textrm{$N$ fermionic state }({\hat{b}}^{\dagger}_{1})^{n_{1}}\cdots({\hat{b}}^{\dagger}_{1})^{n_{N}}|vac\rangle. (20)

The left and right hand side denotes an NN-qubit state and an NN-fermionic state, respectively, and \cong represents that the two sides are in a correspondence relationship with each other. For this relationship to hold, there must be operators acting on the NN-qubit system that play the roles of creation and annihilation operators. Indeed, we can construct such operators by combining the Pauli operators Xj,YjX_{j},Y_{j} and ZjZ_{j} (j=1,Lj=1,\cdots L), i.e., b^j(X,Y,Z)b^j{\hat{b}}_{j}^{\dagger}(X,Y,Z)\cong{\hat{b}}_{j}^{\dagger} and b^j(X,Y,Z)b^j{\hat{b}}_{j}(X,Y,Z)\cong{\hat{b}}_{j}.

We can see that |n|{\vec{n}}\rangle and bj(X,Y,Z)b^{\dagger}_{j}(X,Y,Z) must satisfy the following conditions:

  • If nj=0n_{j}=0, then b^j|n=0{\hat{b}}_{j}|{\vec{n}}\rangle=0

  • If nj=1n_{j}=1, then b^j|n=(1)snj+1|n1,,nj1,,nL{\hat{b}}_{j}|{\vec{n}}\rangle=(-1)^{s_{\vec{n}}^{j}+1}|n_{1},\cdots,n_{j}\oplus 1,\cdots,n_{L}\rangle where snjk=1j1nks_{\vec{n}}^{j}\equiv\sum_{k=1}^{j-1}n_{k}. Note that (1)snj+1(-1)^{s_{\vec{n}}^{j}+1} comes from the anticommutation property of the creation-annihilation operators.

It can easily be verified that

b^j(X,Y,Z)(k=1j1Zk)σj,\displaystyle{\hat{b}}_{j}(X,Y,Z)\equiv(\otimes_{k=1}^{j-1}Z_{k})\otimes\sigma^{-}_{j},
b^j(X,Y,Z)(k=1j1Zk)σj+\displaystyle{\hat{b}}^{\dagger}_{j}(X,Y,Z)\equiv(\otimes_{k=1}^{j-1}Z_{k})\otimes\sigma^{+}_{j} (21)

(σ+|10|\sigma^{+}\equiv|1\rangle\langle 0| and σ|01|\sigma^{-}\equiv|0\rangle\langle 1|) satisfy the above conditions. One can also check that Eq. (II.2) satisfies the anticommutation relations, i.e., {b^j,b^k}=δjk\{{\hat{b}}_{j},{\hat{b}}_{k}^{\dagger}\}=\delta_{jk} and {b^j,b^k}={b^j,b^k}=0\{{\hat{b}}_{j}^{\dagger},{\hat{b}}_{k}^{\dagger}\}=\{{\hat{b}}_{j},{\hat{b}}_{k}\}=0. The state transformation of Eq. (II.2) and operator transformations in Eq. (II.2) define the JW transformation for the digital simulation of fermionic systems.

By combining the JW transformation and the results of Section II.1, we can see that NN bosons in MM modes can be simulated with NMNM qubits (see Fig. 3). To impose this correspondence, consider an MNMN-qubit state

|(n11,,n1N),(n21,,n2N),,\displaystyle|(n_{1}^{1},\cdots,n_{1}^{N}),(n_{2}^{1},\cdots,n_{2}^{N}),\cdots, (nM1,,nMN)\displaystyle(n_{M}^{1},\cdots,n_{M}^{N})\rangle (22)

where niμ=0,1n_{i}^{\mu}=0,1 and each bracket (ni1,ni2,,niN)(n_{i}^{1},n_{i}^{2},\cdots,n_{i}^{N}) denotes the state of a bundle of NN qubits.

If niμ=1n_{i}^{\mu}=1, then it is considered in the fermion picture that a fermion exists in the iith mode with internal state jj. Any state of this kind can be generated from |vac|000N×M|vac\rangle\cong|\underbrace{00\cdots 0}_{N\times M}\rangle with the creation operators as follows:

b^11=σ+,\displaystyle{\hat{b}}^{\dagger 1}_{1}=\sigma^{+},
b^12=Zσ+,\displaystyle{\hat{b}}^{\dagger 2}_{1}=Z\otimes\sigma^{+},
\displaystyle\quad\vdots
b^1N=ZZN1σ+,\displaystyle{\hat{b}}^{\dagger N}_{1}=\underbrace{Z\otimes\cdots\otimes Z}_{N-1}\otimes\sigma^{+},
\displaystyle\quad\vdots
b^MN=ZZNM1σ+.\displaystyle{\hat{b}}^{\dagger N}_{M}=\underbrace{Z\otimes\cdots\otimes Z}_{NM-1}\otimes\sigma^{+}. (23)
Refer to caption
Figure 3: NMNM qubits that can simulate NN bosons in MM modes. Each bundle of NN qubits behaves as a mode that can contain up to NN bosons. Using MM bundles of NN qubits, we can simulate NN-boson scattering process in MM modes.

Now we can express an effective multi-boson state described in Eq. (5), which is entangled as antisymmetric under the internal states in the qubit space. As an example, consider the case with NN bosons when all bosons from 1 to NN are in different modes with respect to each other. Using Eq. (II.1), such a state can be expressed as 1N!b^1[1b^NN]|vac\frac{1}{\sqrt{N!}}{\hat{b}}^{\dagger[1}_{1}\cdots{\hat{b}}^{\dagger N]}_{N}|vac\rangle. By defining χi=(0,,0,1ith,0,,0N)\chi_{i}=(\underbrace{0,\cdots,0,\overset{\textrm{$i$th}}{1},0,\cdots,0}_{N}) and χ0=(0,0,,0N)\chi_{0}=(\underbrace{0,0,\cdots,0}_{N}), the state can be expressed in the NMNM qubit space as follows:

1N!ρSNsgn(ρ)|χρ(1),χρ(2),,χρ(N),χ0,,χ0,\displaystyle\frac{1}{\sqrt{N!}}\sum_{\rho\in S_{N}}sgn(\rho)|\chi_{\rho(1)},\chi_{\rho(2)},\cdots,\chi_{\rho(N)},\chi_{0},\cdots,\chi_{0}\rangle, (24)

where SNS_{N} is the permutation group On the other hand, if all the bosons are in the same mode, e.g., the first mode, the state can be written as follows:

1N!b^1[1b^1N]|vac\displaystyle\frac{1}{\sqrt{N!}}{\hat{b}}^{\dagger[1}_{1}\cdots{\hat{b}}^{\dagger N]}_{1}|vac\rangle =b^11b^1N|vac\displaystyle={\hat{b}}^{\dagger 1}_{1}\cdots{\hat{b}}^{\dagger N}_{1}|vac\rangle
|(1,1,,1N),χ0,,χ0.\displaystyle\cong|(\underbrace{1,1,\cdots,1}_{N}),\chi_{0},\cdots,\chi_{0}\rangle. (25)

For the case with N=2N=2 and M=3M=3, Eq. (24) takes the following form:

12(|χ1,χ2,χ0|χ2,χ1,χ0)\displaystyle\frac{1}{\sqrt{2}}\Big{(}|\chi_{1},\chi_{2},\chi_{0}\rangle-|\chi_{2},\chi_{1},\chi_{0}\rangle\Big{)}
=12(|10,01,00|01,10,00),\displaystyle=\frac{1}{\sqrt{2}}\big{(}|10,01,00\rangle-|01,10,00\rangle\big{)}, (26)

which corresponds to the bosonic state a^1a^2|vac{\hat{a}}^{\dagger}_{1}{\hat{a}}^{\dagger}_{2}|vac\rangle, while Eq. (II.2) becomes |11,00,00|11,00,00\rangle, which corresponds to the bosonic state 12(a^1)2|vac\frac{1}{\sqrt{2}}({\hat{a}}^{\dagger}_{1})^{2}|vac\rangle.

Since Eqs. (22) and (II.2) represent a mapping from bosonic systems to qubits, we can digitally simulate multi-boson systems with the following process:

  1. 1.

    Preparation of the initial state: We first need to prepare the initial states of the form shown in Eq. (II.1), which can be achieved by adopting one of the known antisymmtrization algorithms, e.g., those in Refs. [29, 30]. On the other hand, we can find optimal algorithms for the states with small NN case-by-case.

  2. 2.

    Evolution: The unitary operations can be executed by substituting Eq. (II.2) into the Hamiltonian operator of Eq. (11).

  3. 3.

    Measurement: While the order of the excited states is unimportant, the number of excited states in each bundle is crucial because it determines the distributions of boson numbers. For example, if N=3N=3, (100)(100), (010)(010), and (001)(001), in all cases a mode has one particle with different internal state. Nevertherless, we only record that one of three qubit states in the bundle is excited. Eq. (II.1) represents such a measurement process.

III Application: Hong-Ou-Mandel dip

In this section, we use our protocol to simulate the HOM effect for N=2N=2 [22]. We first simulate ideal photon case (with no internal degree of freedom), which is then generalized to non-ideal photons with a two-dimensional internal degree of freedom. This generalization shows our protocol can simulate non-ideal bosons simply with a direct extension of qubit numbers.

III.1 HOM experiment with ideal photons

Since two qubits can represent a bosonic mode with a maximal photon number of two, our protocol needs four qubits here.

Refer to caption
(a)
Figure 4: Full circuit for HOM experiment. As seen in figures in the second line, THT_{H} given by Eq. (III.1) is further decomposed into one- or two-qubit gates. We set, for example, RXZX(Θ)=exp[iΘ(XZX)]R_{XZX}(\Theta)=\exp[i\Theta(X\otimes Z\otimes X)], where the index indicates the operator in the exponent.

Preparation.—

Using the notations given before Eq. (24), we prepare the following initial state |Ψi|\Psi\rangle_{i}:

|Ψi\displaystyle|\Psi\rangle_{i} =12(|χ1,χ2|χ2,χ1)\displaystyle=\frac{1}{\sqrt{2}}\big{(}|\chi_{1},\chi_{2}\rangle-|\chi_{2},\chi_{1}\rangle\big{)}
=12(|10,01|01,10).\displaystyle=\frac{1}{\sqrt{2}}\big{(}|10,01\rangle-|01,10\rangle\big{)}. (27)

Evolution.—

For the case of HOM scattering, we set

t=π4,Φ=(0110),\displaystyle t=\frac{\pi}{4},\qquad\Phi=\begin{pmatrix}0&1\\ 1&0\end{pmatrix}, (28)

in Eq. (10) which produces the following transformation operator THT_{H}:

THexp[iπ4(a^1a^2+a^2a^1)].\displaystyle T^{H}\equiv\exp[\frac{i\pi}{4}({\hat{a}}^{\dagger}_{1}{\hat{a}}_{2}+{\hat{a}}^{\dagger}_{2}{\hat{a}}_{1})]. (29)

In the fermion system, THT_{H} is given as follows:

TfH\displaystyle T^{H}_{f} =exp[iπ4(b^11b^21+b^21b^11+b^12b^22+b^22b^12)]\displaystyle=\exp[\frac{i\pi}{4}({\hat{b}}^{\dagger 1}_{1}{\hat{b}}^{1}_{2}+{\hat{b}}^{\dagger 1}_{2}{\hat{b}}^{1}_{1}+{\hat{b}}^{\dagger 2}_{1}{\hat{b}}^{2}_{2}+{\hat{b}}^{\dagger 2}_{2}{\hat{b}}^{2}_{1})]
=exp[iπ4(b^11b^21+b^21b^11)]exp[iπ4(b^12b^22+b^22b^12)].\displaystyle=\exp[\frac{i\pi}{4}({\hat{b}}^{\dagger 1}_{1}{\hat{b}}^{1}_{2}+{\hat{b}}^{\dagger 1}_{2}{\hat{b}}^{1}_{1})]\exp[\frac{i\pi}{4}({\hat{b}}^{\dagger 2}_{1}{\hat{b}}^{2}_{2}+{\hat{b}}^{\dagger 2}_{2}{\hat{b}}^{2}_{1})]. (30)

Using the JW transformation, we obtain

b^11b^21+b^21b^11=12(XZX+YZY)𝕀,\displaystyle{\hat{b}}^{\dagger 1}_{1}{\hat{b}}^{1}_{2}+{\hat{b}}^{\dagger 1}_{2}{\hat{b}}^{1}_{1}=\frac{1}{2}(X\otimes Z\otimes X+Y\otimes Z\otimes Y)\otimes\mathbb{I},
b^12b^22+b^22b^12=12𝕀(XZX+YZY)\displaystyle{\hat{b}}^{\dagger 2}_{1}{\hat{b}}^{2}_{2}+{\hat{b}}^{\dagger 2}_{2}{\hat{b}}^{2}_{1}=\frac{1}{2}\mathbb{I}\otimes(X\otimes Z\otimes X+Y\otimes Z\otimes Y) (31)

in the qubit system. Since XZXX\otimes Z\otimes X and YZYY\otimes Z\otimes Y commute, THT_{H} can be further decomposed follows:

TH\displaystyle T_{H}
=exp[iπ8(XZX𝕀)]exp[iπ8(YZY𝕀)]\displaystyle=\exp[\frac{i\pi}{8}(X\otimes Z\otimes X\otimes\mathbb{I})]\exp[\frac{i\pi}{8}(Y\otimes Z\otimes Y\otimes\mathbb{I})]
×exp[iπ8(𝕀XZX)]exp[iπ8(𝕀YZY)].\displaystyle\times\exp[\frac{i\pi}{8}(\mathbb{I}\otimes X\otimes Z\otimes X)]\exp[\frac{i\pi}{8}(\mathbb{I}\otimes Y\otimes Z\otimes Y)]. (32)

Note that we have not used the Trotter decomposition, because all the terms in the exponential terms commute with each other. This is true for the general linear optical transformations [15].

Measurement.—

The final state transformed by Eq. (29) is given by

|Ψf=i2(|11,00+|00,11).\displaystyle|\Psi\rangle_{f}=\frac{i}{\sqrt{2}}\big{(}|11,00\rangle+|00,11\rangle\big{)}. (33)

The interpretation of the above state is that two bosons always bunch, i.e., the HOM effect occurs.

The full circuit for the HOM digital simulation is shown in Fig. 4. We used ibmq_london on IBM Quantum and ionq_qpu on IONQ for the digital quantum simulation. The results are shown in Fig. 5.

Refer to caption
(a)
Figure 5: Quantum simulations of HOM effect with (a) IBM Quantum and (b) IonQ.

III.2 HOM dip

We will now simulate the HOM dip (see, e.g., [31] for a pedagogic review) with a two-dimensional internal degree of freedom that creates distinguishability. By denoting the internal state of bosons as ss (=0,1)(=0,1), the creation and annihilation operators are written as a^is{\hat{a}}^{\dagger}_{is} and a^is{\hat{a}}_{is} with [a^is,a^jr]=δijδsr[{\hat{a}}_{is},{\hat{a}}^{\dagger}_{jr}]=\delta_{ij}\delta_{sr}. Then, an NN-boson state a^i1s1a^i2s2a^iNsN|vac{\hat{a}}_{i_{1}s_{1}}^{\dagger}{\hat{a}}_{i_{2}s_{2}}^{\dagger}\cdots{\hat{a}}_{i_{N}s_{N}}^{\dagger}|vac\rangle (iα{1,,N}i_{\alpha}\in\{1,\cdots,N\}, sβ{0,1}s_{\beta}\in\{0,1\} for α,β{1,,N}\alpha,\beta\in\{1,\cdots,N\}) can effectively be expressed as a fermionic state as follows:

1N!b^i1s1[μ1b^i2s2μ2b^iNsNμN]|vac.\displaystyle\frac{1}{\sqrt{N!}}{\hat{b}}_{i_{1}s_{1}}^{\dagger[\mu_{1}}{\hat{b}}_{i_{2}s_{2}}^{\dagger\mu_{2}}\cdots{\hat{b}}_{i_{N}s_{N}}^{\dagger\mu_{N}]}|vac\rangle. (34)

Therefore, the general initial state for the HOM dip with two photons can be written as follows:

|Ψi=a^1|sa^2|r|vac12b^1|s[1b^2|r2]|vac,\displaystyle|\Psi\rangle_{i}={\hat{a}}^{\dagger}_{1|s\rangle}{\hat{a}}^{\dagger}_{2|r\rangle}|vac\rangle\cong\frac{1}{\sqrt{2}}{\hat{b}}_{1|s\rangle}^{\dagger[1}{\hat{b}}_{2|r\rangle}^{\dagger 2]}|vac\rangle, (35)

where |s|s\rangle and |r|r\rangle are the general internal states of the form ζ|0+ξ|1\zeta|0\rangle+\xi|1\rangle (ζ,ξ\zeta,\xi\in\mathbb{C} and |ζ|2+|ξ|2=1|\zeta|^{2}+|\xi|^{2}=1). To simulate this type of HOM dip, we need eight qubits, which are displayed in Fig. 6. Each qubit corresponds to the particle states (i,μ,s)(i,\mu,s) as indicated in the figure.

Refer to caption
Figure 6: Qubit representation of two photons in two modes with two-dimensional internal degree of freedom.

Preparation.—

Without loss of generality, we can assume the internal state of the photons as |s=|0|s\rangle=|0\rangle and |r=ζ|0+ξ|1|r\rangle=\zeta|0\rangle+\xi|1\rangle. Therefore, the initial state for partially distinguishable photons can be described as follows:

|Ψi=\displaystyle|\Psi\rangle_{i}= 12b^10[1b^2|r2]|vac\displaystyle\frac{1}{\sqrt{2}}{\hat{b}}_{10}^{\dagger[1}{\hat{b}}_{2|r\rangle}^{\dagger 2]}|vac\rangle
=\displaystyle= 12(ζb^10[1b^202]+ξb^10[1b^212])|vac\displaystyle\frac{1}{\sqrt{2}}\Big{(}\zeta{\hat{b}}_{10}^{\dagger[1}{\hat{b}}_{20}^{\dagger 2]}+\xi{\hat{b}}_{10}^{\dagger[1}{\hat{b}}_{21}^{\dagger 2]}\Big{)}|vac\rangle
=\displaystyle= 12(ζ(|1000,0010|0010,1000)\displaystyle\frac{1}{\sqrt{2}}\Big{(}\zeta(|1000,0010\rangle-|0010,1000\rangle)
+ξ(|1000,0001|0010,0100)).\displaystyle\qquad+\xi(|1000,0001\rangle-|0010,0100\rangle)\Big{)}. (36)

We can prepare this state by first creating

12(|1000,0010|0010,1000),\displaystyle\frac{1}{\sqrt{2}}\big{(}|1000,0010\rangle-|0010,1000\rangle\big{)}, (37)

and then applying the following gates:

between (2,0,1)(2,0,1) and (2,1,1)(2,1,1) and between (2,0,2)(2,0,2) and (2,1,2)(2,1,2). The above gates can be represented in a matrix form as follows:

(10000eiγcos(θ2)eiϕsin(θ2)00eiϕsin(θ2)eiγcos(θ2)00001),\displaystyle\begin{pmatrix}1&0&0&0\\ 0&e^{i\gamma}\cos(\frac{\theta}{2})&-e^{i\phi}\sin(\frac{\theta}{2})&0\\ 0&e^{-i\phi}\sin(\frac{\theta}{2})&e^{-i\gamma}\cos(\frac{\theta}{2})&0\\ 0&0&0&1\end{pmatrix}, (38)

where ζ\zeta, and ξ\xi are given with (γ,ϕ,θ)(\gamma,\phi,\theta) by

ζ=eiγcos(θ2),ξ=eiϕsin(θ2).\displaystyle\zeta=e^{i\gamma}\cos\Big{(}\frac{\theta}{2}\Big{)},\quad\xi=-e^{i\phi}\sin\Big{(}\frac{\theta}{2}\Big{)}. (39)

For two indistinguishable bosons (ideal photons), i.e., ζ=1\zeta=1, and the initial state is as follows:

|Ψiind\displaystyle|\Psi\rangle^{ind}_{i} =12b^10[1b^202]|vac\displaystyle=\frac{1}{\sqrt{2}}{\hat{b}}_{10}^{\dagger[1}{\hat{b}}_{20}^{\dagger 2]}|vac\rangle
=12(|1000,0010|0010,1000).\displaystyle=\frac{1}{\sqrt{2}}\big{(}|1000,0010\rangle-|0010,1000\rangle\big{)}. (40)

On the other hand, if two bosons are fully distinguishable, i.e., ξ=1\xi=1, the initial state can be given without loss of generality as follows:

|Ψidis\displaystyle|\Psi\rangle^{dis}_{i} =12b^10[1b^212]|vac\displaystyle=\frac{1}{\sqrt{2}}{\hat{b}}_{10}^{\dagger[1}{\hat{b}}_{21}^{\dagger 2]}|vac\rangle
=12(|1000,0001|0010,0100).\displaystyle=\frac{1}{\sqrt{2}}\big{(}|1000,0001\rangle-|0010,0100\rangle\big{)}. (41)

Evolution.—

The evolution operator with distinguishability is simply obtained by generalizing Eq. (III.1) as follows:

TH\displaystyle T_{H}
=exp[iπ4s,μ(b^1sμb^2sμ+b^2sμb^1sμ)]\displaystyle=\exp[\frac{i\pi}{4}\sum_{s,\mu}({\hat{b}}^{\dagger\mu}_{1s}{\hat{b}}^{\mu}_{2s}+{\hat{b}}^{\dagger\mu}_{2s}{\hat{b}}^{\mu}_{1s})]
=exp[iπ4(b^101b^201+b^201b^101)]exp[iπ4(b^111b^211+b^211b^111)]\displaystyle=\exp[\frac{i\pi}{4}({\hat{b}}^{\dagger 1}_{10}{\hat{b}}^{1}_{20}+{\hat{b}}^{\dagger 1}_{20}{\hat{b}}^{1}_{10})]\exp[\frac{i\pi}{4}({\hat{b}}^{\dagger 1}_{11}{\hat{b}}^{1}_{21}+{\hat{b}}^{\dagger 1}_{21}{\hat{b}}^{1}_{11})]
×exp[iπ4(b^102b^202+b^202b^102)]exp[iπ4(b^112b^212+b^212b^112)].\displaystyle\quad\times\exp[\frac{i\pi}{4}({\hat{b}}^{\dagger 2}_{10}{\hat{b}}^{2}_{20}+{\hat{b}}^{\dagger 2}_{20}{\hat{b}}^{2}_{10})]\exp[\frac{i\pi}{4}({\hat{b}}^{\dagger 2}_{11}{\hat{b}}^{2}_{21}+{\hat{b}}^{\dagger 2}_{21}{\hat{b}}^{2}_{11})]. (42)

Measurement.—

When the bosons are indistinguishable, the final state |Ψfind|\Psi\rangle^{ind}_{f} is as follows:

|Ψfind\displaystyle|\Psi\rangle^{ind}_{f} =i2(b^10[1b^102]+b^20[1b^202])|vac\displaystyle=\frac{i}{\sqrt{2}}\big{(}{\hat{b}}^{\dagger[1}_{10}{\hat{b}}^{\dagger 2]}_{10}+{\hat{b}}^{\dagger[1}_{20}{\hat{b}}^{\dagger 2]}_{20}\big{)}|vac\rangle
=i2(|1010,0000+|0000,1010),\displaystyle=\frac{i}{\sqrt{2}}(|1010,0000\rangle+|0000,1010\rangle), (43)

i.e., two particles are always in the same mode and the coincidence probability (the probability that each mode simultaneously detect particles) becomes zero.

When they are distinguishable, the final state |Ψfdis|\Psi\rangle^{dis}_{f} is given as follows:

|Ψfdis\displaystyle|\Psi\rangle^{dis}_{f}
=12(ib^10[1b^112]+b^10[1b^212]b^20[1b^112]+ib^20[1b^212])|vac\displaystyle=\frac{1}{\sqrt{2}}\big{(}i{\hat{b}}^{\dagger[1}_{10}{\hat{b}}^{\dagger 2]}_{11}+{\hat{b}}^{\dagger[1}_{10}{\hat{b}}^{\dagger 2]}_{21}-{\hat{b}}^{\dagger[1}_{20}{\hat{b}}^{\dagger 2]}_{11}+i{\hat{b}}^{\dagger[1}_{20}{\hat{b}}^{\dagger 2]}_{21}\big{)}|vac\rangle
=i2[i(|1001,0000|0110,0000)\displaystyle=\frac{i}{\sqrt{2}}\big{[}i\big{(}|1001,0000\rangle-|0110,0000\rangle\big{)}
+i(|0000,1001|0000,0110)\displaystyle\qquad~{}~{}~{}+i\big{(}|0000,1001\rangle-|0000,0110\rangle\big{)}
+(|1000,0001|0010,0100)\displaystyle\qquad~{}~{}~{}+\big{(}|1000,0001\rangle-|0010,0100\rangle\big{)}
(|0001,1000|0100,0010)],\displaystyle\qquad~{}~{}~{}-\big{(}|0001,1000\rangle-|0100,0010\rangle\big{)}\big{]}, (44)

which means that each particle can arrive at each of the two detectors with probability 0.5.

In general, the final state with an arbitrary distinguishability (|r=ζ|0+ξ|1|r\rangle=\zeta|0\rangle+\xi|1\rangle) is given by

|Ψf=\displaystyle|\Psi\rangle_{f}= iζ2(|1010,0000+|0000,1010)\displaystyle\frac{i\zeta}{\sqrt{2}}\big{(}|1010,0000\rangle+|0000,1010\rangle\big{)}
+ξ22(i(|1001,0000|0110,0000)\displaystyle+\frac{\xi}{2\sqrt{2}}\Big{(}i\big{(}|1001,0000\rangle-|0110,0000\rangle\big{)}
+(|1000,0001|0010,0100)\displaystyle\qquad~{}~{}~{}+\big{(}|1000,0001\rangle-|0010,0100\rangle\big{)}
(|0001,1000|0100,0010)\displaystyle\qquad~{}~{}~{}-\big{(}|0001,1000\rangle-|0100,0010\rangle\big{)}
+i(|0000,1001|0000,0110)).\displaystyle\qquad~{}~{}~{}+i\big{(}|0000,1001\rangle-|0000,0110\rangle\big{)}\Big{)}. (45)

We can predict that the coincidence probability for the photons varies from 0 (fully indistinguishable) to 0.50.5 (fully distinguishable).

The increase in the circuit’s width corresponds to the rise in the depth for simulating the scattering process of partially distinguishable photons, which causes a significant error in the quantum simulation. Therefore, we executed a classical simulation with qasm to show the validity of our method. Fig. 7 reveals a clear pattern of the HOM dip.

Refer to caption
Figure 7: HOM dip classical simulation graph according to variation of θ\theta from π-\pi to π\pi. The interval between angles is π/100\pi/100. All simulations were performed using Qiskit’s qasm_simulator.

IV Conclusions

We have proposed an alternative method for the digital simulation of linear-optical networks by using the property that suitably entangled fermions can effectively behave like bosons. Unlike other existing B2QE protocols, our approach provides a simple and intuitive extension of an ideal bosonic system to a non-ideal one by introducing additional internal degrees of freedom. As a proof of concept, we designed quantum circuits for generating the Hong-Ou-Mandel dip by varying particle distinguishability. We successfully executed a digital simulation using the IBM Quantum and IonQ cloud services for the ideal boson case. For the partially distinguishable boson case, we showed the validity of our scheme with a classical simulation using Qiskit’s qasm.

The obvious extension of our B2QE approach would be the non-number-conserving bosonic system simulations, such as Gaussian boson sampling [32] and molecular simulations [33]. However, confining the infinite bosonic Hilbert space to the finite qubit Hilbert space will intrinsically generate errors for the non-number-conserving bosonic problems. In future work, we will attempt to optimize the required resources and errors induced by the confinement. We also intend to develop another efficient quantum algorithm for computing the matrix permanent [34] based on our B2QE protocol. With the help of the new B2QE protocol, we envisage developing efficient qubit-based quantum algorithms for bosonic systems, e.g., the boson sampling with nonideal photons, the Bose-Hubbard model, and the spin-boson model.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-2019R1I1A1A01059964, NRF-2021M3E4A1038308, NRF-2021M3H3A1038085, NRF-2019M3E4A1079666, NRF-2021M3H3A103657312, and NRF-2022M3H3A106307411). We also acknowledge support from the Samsung Advanced Institute of Technology.

References

  • Feynman [1982] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21, 467 (1982), 1.
  • Cirac and Zoller [1995] J. I. Cirac and P. Zoller, Quantum Computations with Cold Trapped Ions, Phys. Rev. Lett. 74, 4091 (1995).
  • Monroe et al. [1995] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Demonstration of a Fundamental Quantum Logic Gate, Phys. Rev. Lett. 75, 4714 (1995).
  • Cory et al. [1997] D. G. Cory, A. F. Fahmy, and T. F. Havel, Ensemble quantum computing by NMR spectroscopy, Proc. Natl. Acad. Sci. U.S.A. 94, 1634 (1997).
  • Gershenfeld and Chuang [1997] N. A. Gershenfeld and I. L. Chuang, Bulk Spin-Resonance Quantum Computation, Science 275, 350 (1997).
  • Gambetta et al. [2017] J. M. Gambetta, J. M. Chow, and M. Steffen, Building logical qubits in a superconducting quantum computing system, Npj Quantum Inf. 3, 2 (2017)1510.04375 .
  • Devoret et al. [2004] M. H. Devoret, A. Wallraff, and J. M. Martinis, Superconducting Qubits: A Short Review, arXiv  (2004), cond-mat/0411174 .
  • Loss and DiVincenzo [1998] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57, 120 (1998)cond-mat/9701055 .
  • Kok et al. [2007] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79, 135 (2007), 29, quant-ph/0512071 .
  • Knill et al. [2001] E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409, 46 (2001), 37.
  • Aaronson and Arkhipov [2011] S. Aaronson and A. Arkhipov, The computational complexity of linear optics, in Proceedings of the forty-third annual ACM symposium on Theory of computing (2011) pp. 333–342.
  • Moylett and Turner [2018] A. E. Moylett and P. S. Turner, Quantum simulation of partially distinguishable boson sampling, Phys. Rev. A 97, 062329 (2018).
  • McArdle et al. [2019] S. McArdle, A. Mayorov, X. Shan, S. Benjamin, and X. Yuan, Digital quantum simulation of molecular vibrations, Chem. Sci. 10, 5725 (2019).
  • Sawaya and Huh [2019] N. P. Sawaya and J. Huh, Quantum algorithm for calculating molecular vibronic spectra, J. Phys. Chem. Lett. 10, 3586 (2019).
  • Sabín [2020] C. Sabín, Digital quantum simulation of linear and nonlinear optical elements, Quantum Rep. 2, 208 (2020).
  • Sawaya et al. [2020a] N. P. Sawaya, G. G. Guerreschi, and A. Holmes, On connectivity-dependent resource requirements for digital quantum simulation of d-level particles, in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE, 2020) pp. 180–190.
  • Encinar et al. [2021] P. C. Encinar, A. Agustí, and C. Sabín, Digital quantum simulation of beam splitters and squeezing with IBM quantum computers, Physical Review A 104, 052609 (2021)2104.09442 .
  • Sawaya et al. [2020b] N. P. Sawaya, T. Menke, T. H. Kyaw, S. Johri, A. Aspuru-Guzik, and G. G. Guerreschi, Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s hamiltonians, Npj Quantum Inf. 6, 1 (2020b).
  • Shchesnovich [2015] V. S. Shchesnovich, Boson-sampling with non-interacting fermions, Int. J. Quantum Inf. 13, 1550013 (2015).
  • Jordan and Wigner [1928] P. Jordan and E. P. Wigner, About the pauli exclusion principle, Z. Phys. 47, 14 (1928).
  • Bravyi and Kitaev [2002] S. B. Bravyi and A. Y. Kitaev, Fermionic quantum computation, Ann. Phys. 298, 210 (2002).
  • Hong et al. [1987] C.-K. Hong, Z.-Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett. 59, 2044 (1987).
  • Garcia-escartin and Chamorro-posada [2013] J. C. Garcia-escartin and P. Chamorro-posada, test and Hong-Ou-Mandel effect are equivalent, Phys. Rev. A 87, 052330 (2013).
  • Scheel [2004] S. Scheel, Permanents in linear optical networks, arXiv preprint quant-ph/0406127  (2004).
  • Aaronson and Hance [2012] S. Aaronson and T. Hance, Generalizing and derandomizing gurvits’s approximation algorithm for the permanent, arXiv preprint arXiv:1212.0025  (2012).
  • Yung et al. [2019] M.-H. Yung, X. Gao, and J. Huh, Universal bound on sampling bosons in linear optics and its computational implications, Natl. Sci. Rev. 6, 719 (2019).
  • Chin and Huh [2018] S. Chin and J. Huh, Generalized concurrence in boson sampling, Sci. Rep. 8, 1 (2018).
  • Chin and Huh [2019] S. Chin and J. Huh, Majorization and the time complexity of linear optical networks, J. Phys. A Math. Theor. 52, 245301 (2019).
  • Abrams and Lloyd [1997] D. S. Abrams and S. Lloyd, Simulation of many-body fermi systems on a universal quantum computer, Phys. Rev. Lett. 79, 2586 (1997).
  • Berry et al. [2018] D. W. Berry, M. Kieferová, A. Scherer, Y. R. Sanders, and R. Babbush, Improved techniques for preparing eigenstates of fermionic Hamiltonians, Npj Quantum Inf. , 22 (2018).
  • Brańczyk [2017] A. M. Brańczyk, Hong-ou-mandel interference, arXiv preprint arXiv:1711.00080  (2017).
  • Hamilton et al. [2017] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, and I. Jex, Gaussian Boson Sampling, Phys. Rev. Lett. 119, 170501 (2017).
  • Huh et al. [2015] J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, and A. Aspuru-Guzik, Boson sampling for molecular vibronic spectra, Nat. Photonics 9, 615 (2015).
  • Huh [2022] J. Huh, A fast quantum algorithm for computing matrix permanent, arXiv preprint arXiv:2205.01328  (2022).