This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum cluster algebra structures on quantum Grassmannians
and their quantum Schubert cells: the finite-type cases

Jan E. Grabowski222Email: jan.grabowski@maths.ox.ac.uk. Website: http://people.maths.ox.ac.uk/~grabowsk/
Mathematical Institute, University of Oxford,
24-29 St. Giles’, Oxford, OX1 3LB, United Kingdom
   Stéphane Launois333Email: S.Launois@kent.ac.uk. Website: http://www.kent.ac.uk/ims/personal/sl261/
School of Mathematics, Statistics and Actuarial Science, University of Kent,
Canterbury, CT2 7NF, United Kingdom
(22nd December 2009)
Abstract

We exhibit quantum cluster algebra structures on quantum Grassmannians 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)] and their quantum Schubert cells, as well as on 𝕂q[Gr(3,6)]\mathbb{K}_{q}[\mathrm{Gr}(3,6)], 𝕂q[Gr(3,7)]\mathbb{K}_{q}[\mathrm{Gr}(3,7)] and 𝕂q[Gr(3,8)]\mathbb{K}_{q}[\mathrm{Gr}(3,8)]. These cases are precisely those where the quantum cluster algebra is of finite type and the structures we describe quantize those found by Scott for the classical situation.

Keywords: quantum cluster algebra, quantum Grassmannian, quantum Schubert cell
Mathematics Subject Classification (2000): 20G42 (Primary), 16W35, 17B37

1 Introduction

Because of their wide range of connections with other areas of Mathematics, cluster algebras have been extensively studied in the recent years and many well-known algebras have been shown to have a cluster algebra structure. For instance, Scott ([17]) proved that the homogeneous coordinate ring of the Grassmannian Gr(k,n)\mathrm{Gr}(k,n) provides an example of a cluster algebra. Among these examples, only a few are of finite type (i.e. have only finitely many cluster variables): [Gr(2,n)]\mathbb{C}[\mathrm{Gr}(2,n)] which is of type An3A_{n-3}, [Gr(3,6)]\mathbb{C}[\mathrm{Gr}(3,6)] which is of type D4D_{4}, [Gr(3,7)]\mathbb{C}[\mathrm{Gr}(3,7)] which is of type E6E_{6} and [Gr(3,8)]\mathbb{C}[\mathrm{Gr}(3,8)] which is of type E8E_{8}. Scott’s result was then generalised by Geiß, Leclerc and Schröer ([8]) who have shown that the multi-homogeneous coordinate rings of partial flag varieties and their associated unipotent radicals have a cluster algebra structure.

On the contrary, very few examples of quantum cluster algebras are known. Quantum cluster algebras were introduced and studied by Berenstein and Zelevinsky in [2]. In particular, in this paper they conjecture that the quantized coordinate ring of a double Bruhat cell is a quantum cluster algebra. To the best of our knowledge this conjecture remains unproven, whereas the classical counterpart of this conjecture was proved by Berenstein, Fomin and Zelevinsky in [1].

In [10], the first named author proved that the quantum Grassmannian 𝕂q[Gr(2,5)]\mathbb{K}_{q}[\mathrm{Gr}(2,5)] is a quantum cluster algebra of type A2A_{2}. In the present paper, we extend this example and show that the quantized coordinate rings 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)] for n3n\geq 3 are quantum cluster algebras of type An3A_{n-3} (Section 3.1). By computer-aided calculation, we also show that 𝕂q[Gr(3,6)]\mathbb{K}_{q}[\mathrm{Gr}(3,6)], 𝕂q[Gr(3,7)]\mathbb{K}_{q}[\mathrm{Gr}(3,7)] and 𝕂q[Gr(3,8)]\mathbb{K}_{q}[\mathrm{Gr}(3,8)] are quantum cluster algebras of type D4D_{4}, E6E_{6} and E8E_{8} respectively (Section 3.2).

From this, we have also obtained quantum cluster algebra structures on the quantum Schubert cells of the k=2k=2 Grassmannians (Section 4). The quantum Schubert cell associated to the partition (t,s)(t,s) (where tst\geq s and t,sn2t,s\leq n-2) is of quantum cluster algebra type As1A_{s-1}, independent of tt.

We view these results as a step towards achieving the goal of quantizing the work of Geiß, Leclerc and Schröer ([8]).

In order to prove these results, we proceed as follows. First, in each case, we define an appropriate quantum initial seed. Roughly speaking, a quantum initial seed is formed of two components: a quiver and a matrix. The quiver is easy to define in our cases: we define it in identical fashion to the classical case. In particular, it will always be mutation-equivalent to a Dynkin quiver (since we are only considering the Grassmannians Gr(2,n)\mathrm{Gr}(2,n) for n4n\geq 4 and Gr(3,n)\mathrm{Gr}(3,n) for n{6,7,8}n\in\{6,7,8\}), so that the quantum cluster algebra associated is of finite type. The matrix is also easy to define: it encodes the quasi-commutation relations between the elements of the quantum initial seed. One of the main difficulties here is to check that this matrix satisfies a certain compatibility condition with the quiver. Once we know that this compatibility condition is satisfied, we then identify explicitly all the quantum cluster variables (there are only finitely many of them), and prove our main results.

Acknowledgements

The first named author would like to acknowledge the provision of facilities by Keble College and the Mathematical Institute in Oxford. The research of the second named author was supported by a Marie Curie European Reintegration Grant within the 7th7^{\text{th}} European Community Framework Programme.

2 Recollections on cluster algebras and their quantum analogues

2.1 Cluster algebras

We will recall briefly the definition of a cluster algebra of geometric type ([6]) and describe in detail only the “no coefficients” case. We start with an initial seed (y¯,B)(\underline{y},B), consisting of a tuple of generators (called a cluster) for the cluster algebra and an exchange matrix B=(bij)B=(b_{ij}) with integral entries. (A cluster is not a complete set of generators, but a subset of such a set.) More seeds are obtained via mutation of the initial seed. Matrix mutation μk\mu_{k} is involutive and given by the rule

(μk(B))ij={bijifi=korj=kbij+|bik|bkj+bik|bkj|2otherwise.(\mu_{k}(B))_{ij}=\begin{cases}-b_{ij}&\text{if}\ i=k\ \text{or}\ j=k\\ b_{ij}+\frac{|b_{ik}|b_{kj}+b_{ik}|b_{kj}|}{2}&\text{otherwise.}\end{cases}

For example,

(010101010)\displaystyle\begin{pmatrix}0&1&0\\ -1&0&1\\ 0&-1&0\end{pmatrix} μ1(010101010)\displaystyle\stackrel{{\scriptstyle\mu_{1}}}{{\longrightarrow}}\begin{pmatrix}0&-1&0\\ 1&0&1\\ 0&-1&0\end{pmatrix} (010101010)\displaystyle\begin{pmatrix}0&1&0\\ -1&0&1\\ 0&-1&0\end{pmatrix} μ2(011101110).\displaystyle\stackrel{{\scriptstyle\mu_{2}}}{{\longrightarrow}}\begin{pmatrix}0&-1&1\\ 1&0&-1\\ -1&1&0\end{pmatrix}.

If (y¯=(y1,,yd),B)(\underline{y}=(y_{1},\ldots,y_{d}),B) is the initial seed then the mutated seed in direction kk is given by (μk(y¯)=(y1,,yk,,yd),μk(B))(\mu_{k}(\underline{y})=(y_{1},\ldots,y_{k}^{\ast},\ldots,y_{d}),\mu_{k}(B)), where the new generator yky_{k}^{\ast} is determined by the exchange relation

ykyk=bik>0yibik+bik<0yibik.y_{k}y_{k}^{\ast}=\prod_{b_{ik}>0}y_{i}^{b_{ik}}+\prod_{b_{ik}<0}y_{i}^{-b_{ik}}.

The alternative quiver description converts BB to a quiver by the rule that a strictly positive entry bijb_{ij} determines a weighted arrow ibijji\stackrel{{\scriptstyle b_{ij}}}{{\to}}j and a strictly negative one a weighted arrow in the opposite direction. (Thus BB is what is sometimes termed an incidence matrix for the quiver; the adjacency matrix is the matrix obtained from the incidence matrix by replacing bijb_{ij} by max{0,bij}\max\{0,b_{ij}\}.) Then matrix mutation defines the operation of quiver mutation, for example

1\textstyle{{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}2\textstyle{{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}3\textstyle{{3}} μ1123\displaystyle\stackrel{{\scriptstyle\mu_{1}}}{{\longrightarrow}}\raisebox{15.00002pt}[0.0pt][20.00003pt]{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 3.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{}}$}}}}}}}{\hbox{\kern 4.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{1}}$}}}}}}}{\hbox{\kern 15.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{}}$}}}}}}}{\hbox{\kern-1.0pt\raise-6.34721pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{}}$}}}}}}}{\hbox{\kern 7.0pt\raise-6.34721pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{}}$}}}}}}}{\hbox{\kern 15.0pt\raise-6.34721pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{}}$}}}}}}}{\hbox{\kern-3.5pt\raise-12.69443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 12.5pt\raise-12.69443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 5.79541pt\raise-3.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 7.0pt\raise-12.69443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{}}$}}}}}}}{\hbox{\kern 12.5pt\raise-12.69443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{3}}$}}}}}}}\ignorespaces}}}}\ignorespaces} 1\textstyle{{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}2\textstyle{{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}3\textstyle{{3}} μ2123\displaystyle\stackrel{{\scriptstyle\mu_{2}}}{{\longrightarrow}}\raisebox{15.00002pt}[0.0pt][20.00003pt]{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 3.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{}}$}}}}}}}{\hbox{\kern 4.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 12.89041pt\raise-7.74998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 15.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{}}$}}}}}}}{\hbox{\kern-1.0pt\raise-6.34721pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{}}$}}}}}}}{\hbox{\kern 7.0pt\raise-6.34721pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{}}$}}}}}}}{\hbox{\kern 15.0pt\raise-6.34721pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{}}$}}}}}}}{\hbox{\kern-3.5pt\raise-12.69443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 5.79541pt\raise-3.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 7.0pt\raise-12.69443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{}}$}}}}}}}{\hbox{\kern 12.5pt\raise-12.69443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 1.0pt\raise-2.5pt\hbox{$\textstyle{{3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 3.50002pt\raise-12.69443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces}

We say an algebra 𝒜\mathcal{A} is a cluster algebra or admits a cluster algebra structure if the set of all cluster variables (i.e. the union of all the clusters) is a generating set for 𝒜\mathcal{A}. A cluster algebra is of finite type (as all our examples will be) if the quiver of BB lies in the same mutation equivalence class as an orientation of a finite-type Dynkin diagram and the type of the cluster algebra is the type of this diagram.

The “with coefficients” version includes additional generators present in every cluster that are never mutated but monomials in them also appear as coefficients in the exchange relations. In the quiver approach, these correspond to “frozen” vertices, indicated by drawing a box around the vertex. We will refer to the elements of clusters that are not coefficients as mutable cluster variables. We will indicate the mutable variables in a cluster by boldface type. If the cluster algebra under consideration is of finite type XnX_{n}, there is a bijection between the set of all mutable cluster variables (from all clusters) and the almost positive roots of the root system of type XnX_{n}. (The almost positive roots are the positive roots together with the negative simple roots.)

2.2 Quantum cluster algebras

Berenstein and Zelevinsky ([2]) have given a definition of a quantum cluster algebra. These algebras are now non-commutative but not so far from being commutative. Each quantum seed includes an additional piece of data, an integral skew-symmetric matrix L=(lij)L=(l_{ij}) describing quasi-commutation relations between the variables in the cluster. Quasi-commuting means ab=qlabbaab=q^{l_{ab}}ba, also written in qq-commutator notation as [a,b]qlab=0[a,b]_{q^{l_{ab}}}=0.

There is also a mutation rule for these quasi-commutation matrices and a modified exchange relation that involves further coefficients that are powers of qq derived from BB and LL, which we describe now. Given a quantum cluster y¯=(X1,,Xr)\underline{y}=(X_{1},\ldots,X_{r}), exchange matrix BB and quasi-commutation matrix LL, the exchange relation for mutation in the direction kk is given by

Xk=M(𝒆¯k+bik>0bik𝒆¯i)+M(𝒆¯kbik<0bik𝒆¯i)X_{k}^{\prime}=M(-\underline{\boldsymbol{e}}_{k}+\sum_{b_{ik}>0}b_{ik}\underline{\boldsymbol{e}}_{i})+M(-\underline{\boldsymbol{e}}_{k}-\sum_{b_{ik}<0}b_{ik}\underline{\boldsymbol{e}}_{i})

where the vector 𝒆¯ir\underline{\boldsymbol{e}}_{i}\in\mathbb{C}^{r} (rr being the number of rows of BB) is the iith standard basis vector and

M(a1,,ar)=q12i<jaiajljiX1a1Xrar.M(a_{1},\dotsc,a_{r})=q^{\frac{1}{2}\sum_{i<j}a_{i}a_{j}l_{ji}}X_{1}^{a_{1}}\dotsm X_{r}^{a_{r}}.

By construction, the integers aia_{i} are all non-negative except for ak=1a_{k}=-1. The monomial MM (as we have defined it here) is related to the concept of a toric frame, also introduced in [2]. The latter is a technical device used to make the general definition of a quantum cluster algebra. For our examples, where we start with a known algebra and want to exhibit a quantum cluster algebra structure on this, it will suffice to think of MM simply as a rule determining the exchange monomials.

We note that the presence of the “12\frac{1}{2}” factor in the definition of MM suggests that if we wanted to work over fields other than \mathbb{C}, we may need to extend scalars by introducing a square root of qq. In fact this will not be necessary in all examples but it would be required in some.

The natural requirement that all mutated clusters also quasi-commute leads to a compatibility condition between BB and LL, namely that BTLB^{T}L consists of two blocks, one diagonal with positive integer diagonal entries and one zero. (However, these blocks need not be contiguous, depending on the ordering of the row and column labels.) We will denote by 0m,n0_{m,n} the m×nm\times n zero matrix and by ImI_{m} the m×mm\times m identity matrix. Block matrices will be written in the usual way, e.g. (ABC)(A\ B\ C) or (ABCD)\left(\begin{smallmatrix}A&B\\ C&D\end{smallmatrix}\right).

Importantly, Berenstein and Zelevinsky show that the exchange graph (whose vertices are the clusters and edges are mutations) remains unchanged in the quantum setting. That is, the matrix LL does not influence the exchange graph. It follows that quantum cluster algebras are classified by Dynkin types in exactly the same way as the classical cluster algebras.

Other previously-known examples of quantum cluster algebras include quantum symmetric algebras (of rank 0) and conjecturally quantum double Bruhat cells ([2]).

3 Quantum Grassmannians

Throughout, \mathbb{C} denotes the field of complex numbers and 𝕂\mathbb{K} is a field. Moreover we assume that q𝕂q\in\mathbb{K} is a non-zero element such that q1/2q^{1/2} exists in 𝕂\mathbb{K}. Let CC be an l×ll\times l generalized Cartan matrix with columns indexed by a set II. Let (H,Π,Π)(H,\Pi,\Pi^{\vee}) be a minimal realization of CC, where H2|I|rank(C)H\cong\mathbb{C}^{2\left|I\right|-\text{rank}(C)}, Π={αiiI}H\Pi=\{\alpha_{i}\mid i\in I\}\subset H^{*} (the simple roots) and Π={hiiI}H\Pi^{\vee}=\{h_{i}\mid i\in I\}\subset H (the simple coroots). Then we say 𝒞=(C,I,H,Π,Π)\mathcal{C}=(C,I,H,\Pi,\Pi^{\vee}) is a root datum associated to CC. (Lusztig ([15]) has a more general definition of a root datum but this one will suffice for our purposes.)

If G=G(𝒞)G=G(\mathcal{C}) is a connected semisimple complex algebraic group associated to 𝒞\mathcal{C}, GG has a (standard) parabolic subgroup PJP_{J} associated to any choice of subset JIJ\subseteq I. From this we can form G/PJG/P_{J}, a partial flag variety; the choice J=J=\emptyset gives G/P=G/BG/P_{\emptyset}=G/B, the full flag variety. We set D=IJD=I\setminus J.

The partial flag variety G/PJG/P_{J} is a projective variety, via the well-known Plücker embedding G/PJdD(L(ωd))G/P_{J}\hookrightarrow\prod_{d\in D}\mathbb{P}(L(\omega_{d})). (Here, L(λ)L(\lambda) is the irreducible GG-module corresponding to a dominant integral weight λ\lambda and {ωi}iI\{\omega_{i}\}_{i\in I} are the fundamental weights.) Via the Plücker embedding, we may form the corresponding D\mathbb{N}^{D}-graded multi-homogeneous coordinate algebra [G/PJ]=λDL(λ)\mathbb{C}[G/P_{J}]=\bigoplus_{\lambda\in\mathbb{N}^{D}}L(\lambda)^{*}.

The coordinate ring [G]\mathbb{C}[G] has a quantum analogue, 𝕂q[G]\mathbb{K}_{q}[G] (see for example [4], where this algebra is denoted 𝒪q(G)\mathcal{O}_{q}(G)). Via this quantized coordinate ring, we can define a quantization of 𝕂[G/PJ]\mathbb{K}[G/P_{J}], 𝕂q[G/PJ]\mathbb{K}_{q}[G/P_{J}].

The case we consider is that of the partial flag variety obtained from G=G(An)=SLn+1()G=G(A_{n})=SL_{n+1}(\mathbb{C}) and J=I{k}J=I\setminus\{k\}, namely G/PJ=Gr(k,n)G/P_{J}=\mathrm{Gr}(k,n), the Grassmannian of kk-dimensional subspaces in n\mathbb{C}^{n}. In this case, the quantized coordinate ring 𝕂q[Gr(k,n)]\mathbb{K}_{q}[\mathrm{Gr}(k,n)] is the subalgebra of the quantum matrix algebra 𝕂q[M(k,n)]\mathbb{K}_{q}[M(k,n)] generated by the quantum Plücker coordinates.

We recall that the quantum matrix algebra 𝕂q[M(k,n)]\mathbb{K}_{q}[\mathrm{M}(k,n)] is the 𝕂\mathbb{K}-algebra generated by the set {Xij1ik, 1jn}\{X_{ij}\mid 1\leq i\leq k,\ 1\leq j\leq n\} subject to the quantum 2×22\times 2 matrix relations on each 2×22\times 2 submatrix of

(X11X12X1nXk1Xk2Xkn),\begin{pmatrix}X_{11}&X_{12}&\cdots&X_{1n}\\ \vdots&\vdots&\ddots&\vdots\\ X_{k1}&X_{k2}&\cdots&X_{kn}\end{pmatrix},

where the quantum 2×22\times 2 matrix relations on (abcd)\left(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix}\right) are

ab\displaystyle ab =qba\displaystyle=qba ac\displaystyle ac =qca\displaystyle=qca bc\displaystyle bc =cb\displaystyle=cb
bd\displaystyle bd =qdb\displaystyle=qdb cd\displaystyle cd =qdc\displaystyle=qdc adda\displaystyle ad-da =(qq1)bc.\displaystyle=(q-q^{-1})bc.

The quantized coordinate ring 𝕂q[Gr(k,n)]\mathbb{K}_{q}[\mathrm{Gr}(k,n)] is the subalgebra of the quantum matrix algebra 𝕂q[M(k,n)]\mathbb{K}_{q}[\mathrm{M}(k,n)] generated by the quantum Plücker coordinates. In other words, 𝕂q[Gr(k,n)]\mathbb{K}_{q}[\mathrm{Gr}(k,n)] is the subalgebra of 𝕂q[M(k,n)]\mathbb{K}_{q}[\mathrm{M}(k,n)] generated by the k×kk\times k quantum minors of 𝕂q[M(k,n)]\mathbb{K}_{q}[\mathrm{M}(k,n)].

Recall that the k×kk\times k quantum minor ΔqI\Delta_{q}^{I} associated to the kk-subset I={i1<i2<<ik}I=\{i_{1}<i_{2}<\cdots<i_{k}\} of {1,,n}\{1,\dots,n\} is defined to be

ΔqI=defσSk(q)l(σ)X1iσ(1)Xkiσ(k)\Delta_{q}^{I}\stackrel{{\scriptstyle\scriptscriptstyle{\mathrm{def}}}}{{=}}\sum_{\sigma\in S_{k}}(-q)^{l(\sigma)}X_{1i_{\sigma(1)}}\cdots X_{k\mspace{0.5mu}i_{\sigma(k)}}

where SkS_{k} is the symmetric group of degree kk and ll is the usual length function on this. (In fact we are considering the quantum minor Δ{1,,k}I\Delta_{\{1,\ldots,k\}}^{I} but since we are working in 𝕂q[M(k,n)]\mathbb{K}_{q}[\mathrm{M}(k,n)] there is no other choice for the row-minor subset and so we omit it. Quantum minors of smaller degree can be defined in the obvious way but we will not need these.) For example, when k=2k=2, the quantum minor Δqij\Delta_{q}^{ij} for i<ji<j is equal to X1iX2jqX1jX2iX_{1i}X_{2j}-qX_{1j}X_{2i}.

Then we denote by 𝒫q\mathcal{P}_{q} the set of all quantum Plücker coordinates, that is

𝒫q={ΔqII{1,,n},|I|=k}.\mathcal{P}_{q}=\{\Delta_{q}^{I}\mid I\subseteq\{1,\ldots,n\},\lvert I\rvert=k\}.

This is a generating set of 𝕂q[Gr(k,n)]\mathbb{K}_{q}[\mathrm{Gr}(k,n)].

3.1 The quantum Grassmannians 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)]

The first case we consider is that of the partial flag variety obtained from G=G(An)=SLn+1()G=G(A_{n})=SL_{n+1}(\mathbb{C}) and J=I{2}J=I\setminus\{2\}, namely G/PJ=Gr(2,n)G/P_{J}=\mathrm{Gr}(2,n), the Grassmannian of 2-dimensional subspaces in n\mathbb{C}^{n}. We give an initial quantum seed for a quantum cluster algebra structure on 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)]. For the initial quantum cluster we choose

y¯~=(Δq1n,𝚫𝒒𝟏(𝒏𝟏),𝚫𝒒𝟏(𝒏𝟐),,𝚫𝒒𝟏𝟒,𝚫𝒒𝟏𝟑,Δq12,Δq23,Δq34,,Δq(n2)(n1),Δq(n1)n).\underline{\tilde{y}}=(\Delta_{q}^{1n},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1(\mathitbf{n}-1)}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1(\mathitbf{n}-2)}},\ldots,\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{14}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{13}},\Delta_{q}^{12},\Delta_{q}^{23},\Delta_{q}^{34},\ldots,\Delta_{q}^{(n-2)(n-1)},\Delta_{q}^{(n-1)n}).

As described in [14] and [16], two quantum Plücker coordinates Δqij\Delta_{q}^{ij} and Δqkl\Delta_{q}^{kl} quasi-commute when {i,j}\{i,j\} and {k,l}\{k,l\} are weakly separated, meaning—in this particular case—that the corresponding diagonals of a regular nn-gon do not cross. (The power of qq appearing in the corresponding quasi-commutation relation is also combinatorially determined.) So, the above cluster is a set of quasi-commuting variables: the corresponding diagonals of the nn-gon are seen to be the nn edges (in bijection with the coefficients) and n3n-3 non-crossing diagonals, (1,i)(1,i) for 3in13\leq i\leq n-1. That is, this cluster corresponds to a triangulation of the nn-gon, as in the classical case (see e.g. [7]).

It is well known that 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)] is a noetherian domain, and so admits a skew-field of fractions that we denote by q\mathcal{F}_{q}. Moreover the elements of the initial quantum cluster y¯~\underline{\tilde{y}} generate q\mathcal{F}_{q} (as a skew-field). In what follows, all computations take place in q\mathcal{F}_{q}. We now return to the quantum initial seed.

The corresponding quantum exchange matrix BB is equal to that for the well-known cluster algebra structure on [Gr(2,n)]\mathbb{C}[\mathrm{Gr}(2,n)] ([17]) and, along with its quiver Γ(B)\Gamma(B), is as follows. The matrix BB has one row for each entry of y¯~\underline{\tilde{y}} (in that order) and has columns indexed by the mutable cluster variables, i.e. (𝚫𝒒𝟏(𝒏𝟏),𝚫𝒒𝟏(𝒏𝟐),,𝚫𝒒𝟏𝟑)(\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1(\mathitbf{n}-1)}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1(\mathitbf{n}-2)}},\ldots,\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{13}}). For brevity, we use just the minor label, which we will write [ij][ij], rather than Δqij\Delta_{q}^{ij}. We describe the column of BB indexed by 𝚫𝒒𝟏𝒌\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1\mathitbf{k}}} (3kn13\leq k\leq n-1):

B[1i][1k]\displaystyle B_{[1i][1k]} ={0forik+21fori=k+10fori=k1fori=k10forik2\displaystyle=\begin{cases}0&\text{for}\ i\geq k+2\\ -1&\text{for}\ i=k+1\\ 0&\text{for}\ i=k\\ 1&\text{for}\ i=k-1\\ 0&\text{for}\ i\leq k-2\end{cases} B[j(j+1)][1k]\displaystyle B_{[j(j+1)][1k]} ={0forjk21forj=k11forj=k0forjk+1\displaystyle=\begin{cases}0&\text{for}\ j\leq k-2\\ -1&\text{for}\ j=k-1\\ 1&\text{for}\ j=k\\ 0&\text{for}\ j\geq k+1\end{cases}

where 2in2\leq i\leq n and 2jn12\leq j\leq n-1. For example, for n=8n=8 we have

B=[17][16][15][14][13][18]( 10000) [17]𝟎𝟏𝟎𝟎𝟎[16]𝟏𝟎𝟏𝟎𝟎[15]𝟎𝟏𝟎𝟏𝟎[14]𝟎𝟎𝟏𝟎𝟏[13]𝟎𝟎𝟎𝟏𝟎[12]00001[23]00001[34]00011[45]00110[56]01100[67]11000[78]10000B=\bordermatrix{&\scriptstyle{[17]}&\scriptstyle{[16]}&\scriptstyle{[15]}&\scriptstyle{[14]}&\scriptstyle{[13]}\cr\scriptstyle{[18]}&-1&0&0&0&0\cr\scriptstyle{[17]}&\mathbf{0}&\mathbf{-1}&\mathbf{0}&\mathbf{0}&\mathbf{0}\cr\scriptstyle{[16]}&\mathbf{1}&\mathbf{0}&\mathbf{-1}&\mathbf{0}&\mathbf{0}\cr\scriptstyle{[15]}&\mathbf{0}&\mathbf{1}&\mathbf{0}&\mathbf{-1}&\mathbf{0}\cr\scriptstyle{[14]}&\mathbf{0}&\mathbf{0}&\mathbf{1}&\mathbf{0}&\mathbf{-1}\cr\scriptstyle{[13]}&\mathbf{0}&\mathbf{0}&\mathbf{0}&\mathbf{1}&\mathbf{0}\cr\scriptstyle{[12]}&0&0&0&0&1\cr\scriptstyle{[23]}&0&0&0&0&-1\cr\scriptstyle{[34]}&0&0&0&-1&1\cr\scriptstyle{[45]}&0&0&-1&1&0\cr\scriptstyle{[56]}&0&-1&1&0&0\cr\scriptstyle{[67]}&-1&1&0&0&0\cr\scriptstyle{[78]}&1&0&0&0&0}

We note that BB has a natural block structure, as the submatrix on the row set {[1n],,[12]}\{[1n],\ldots,[12]\} and that on the row set {[23],,[(n1)n]}\{[23],\ldots,[(n-1)n]\}.

The corresponding quiver (for n=8n=8), firstly with minor labels and secondly with diagonals of an octagon, is

12131415161718233445566778

We see that for any nn this quantum cluster algebra is of type An3A_{n-3}, since the subquiver on the vertices {𝟏𝟑,,𝟏(𝒏𝟏)}\{\mathbf{13},\ldots,\mathbf{1(\mathitbf{n}-1)}\} is an orientation of the Dynkin diagram of this type.

The quasi-commutation matrix LL has four blocks, corresponding to the two blocks of BB:

L[1i][1k]\displaystyle L_{[1i][1k]} ={1forik+10fori=k1forik1\displaystyle=\begin{cases}-1&\text{for}\ i\geq k+1\\ 0&\text{for}\ i=k\\ 1&\text{for}\ i\leq k-1\end{cases} L[1i][l(l+1)]\displaystyle L_{[1i][l(l+1)]} ={0foril+21fori=lorl+12foril1\displaystyle=\begin{cases}0&\text{for}\ i\geq l+2\\ 1&\text{for}\ i=l\ \text{or}\ l+1\\ 2&\text{for}\ i\leq l-1\end{cases}
L[j(j+1)][1k]\displaystyle L_{[j(j+1)][1k]} ={0forjk21forj=k1ork2forjk+1\displaystyle=\begin{cases}0&\text{for}\ j\leq k-2\\ -1&\text{for}\ j=k-1\ \text{or}\ k\\ -2&\text{for}\ j\geq k+1\end{cases} L[j(j+1)][l(l+1)]\displaystyle L_{[j(j+1)][l(l+1)]} ={2forjl21forj=l10forj=l1forj=l+12forjl+2\displaystyle=\begin{cases}2&\text{for}\ j\leq l-2\\ 1&\text{for}\ j=l-1\\ 0&\text{for}\ j=l\\ -1&\text{for}\ j=l+1\\ -2&\text{for}\ j\geq l+2\end{cases}

for 2i,kn2\leq i,k\leq n and 1j,ln11\leq j,l\leq n-1. These values may be verified easily, using the well-known quasi-commutation relations for quantum minors (see, for example, [16]). For n=8n=8, this matrix is

L=[18][17][16][15][14][13][12][23][34][45][56][67][78][18]( 0111111000001) [17]1𝟎𝟏𝟏𝟏𝟏1000011[16]1𝟏𝟎𝟏𝟏𝟏1000112[15]1𝟏𝟏𝟎𝟏𝟏1001122[14]1𝟏𝟏𝟏𝟎𝟏1011222[13]1𝟏𝟏𝟏𝟏𝟎1112222[12]1111110122222[23]0000011012222[34]0000112101222[45]0001122210122[56]0011222221012[67]0112222222101[78]1122222222210L=\bordermatrix{&\scriptstyle{[18]}&\scriptstyle{[17]}&\scriptstyle{[16]}&\scriptstyle{[15]}&\scriptstyle{[14]}&\scriptstyle{[13]}&\scriptstyle{[12]}&\scriptstyle{[23]}&\scriptstyle{[34]}&\scriptstyle{[45]}&\scriptstyle{[56]}&\scriptstyle{[67]}&\scriptstyle{[78]}\cr\scriptstyle{[18]}&0&-1&-1&-1&-1&-1&-1&0&0&0&0&0&1\cr\scriptstyle{[17]}&1&\mathbf{0}&\mathbf{-1}&\mathbf{-1}&\mathbf{-1}&\mathbf{-1}&-1&0&0&0&0&1&1\cr\scriptstyle{[16]}&1&\mathbf{1}&\mathbf{0}&\mathbf{-1}&\mathbf{-1}&\mathbf{-1}&-1&0&0&0&1&1&2\cr\scriptstyle{[15]}&1&\mathbf{1}&\mathbf{1}&\mathbf{0}&\mathbf{-1}&\mathbf{-1}&-1&0&0&1&1&2&2\cr\scriptstyle{[14]}&1&\mathbf{1}&\mathbf{1}&\mathbf{1}&\mathbf{0}&\mathbf{-1}&-1&0&1&1&2&2&2\cr\scriptstyle{[13]}&1&\mathbf{1}&\mathbf{1}&\mathbf{1}&\mathbf{1}&\mathbf{0}&-1&1&1&2&2&2&2\cr\scriptstyle{[12]}&1&1&1&1&1&1&0&1&2&2&2&2&2\cr\scriptstyle{[23]}&0&0&0&0&0&-1&-1&0&1&2&2&2&2\cr\scriptstyle{[34]}&0&0&0&0&-1&-1&-2&-1&0&1&2&2&2\cr\scriptstyle{[45]}&0&0&0&-1&-1&-2&-2&-2&-1&0&1&2&2\cr\scriptstyle{[56]}&0&0&-1&-1&-2&-2&-2&-2&-2&-1&0&1&2\cr\scriptstyle{[67]}&0&-1&-1&-2&-2&-2&-2&-2&-2&-2&-1&0&1\cr\scriptstyle{[78]}&-1&-1&-2&-2&-2&-2&-2&-2&-2&-2&-2&-1&0}

We do not give here a picture of the quiver Γ(L)\Gamma(L), as it is rather unwieldy and does not give any additional information.

We claim that BB and LL are compatible.

Proposition 1.

BTL=(0n3,1 2In3 0n3,n1)B^{T}L=(0_{n-3,1}\ 2I_{n-3}\ 0_{n-3,n-1}).

Proof:.

We separate the proof into two calculations, corresponding to the two blocks of BB:

Block 1:

Claim: (BTL)[1a][1b]=2δab(B^{T}L)_{[1a][1b]}=2\delta_{ab} for n1a3n-1\geq a\geq 3 and nb2n\geq b\geq 2.

(BTL)[1a][1b]\displaystyle(B^{T}L)_{[1a][1b]} =\displaystyle= [1r]=[1n][12]B[1r][1a]L[1r][1b]+[r(r+1)]=[23][(n1)n]B[r(r+1)][1a]L[r(r+1)][1b]\displaystyle\sum_{[1r]=[1n]}^{[12]}B_{[1r][1a]}L_{[1r][1b]}+\sum_{[r(r+1)]=[23]}^{[(n-1)n]}B_{[r(r+1)][1a]}L_{[r(r+1)][1b]}
=()\displaystyle\stackrel{{\scriptstyle(\star)}}{{=}} (B[1(a+1)][1a]L[1(a+1)][1b]+B[1(a1)][1a]L[1(a1)][1b])\displaystyle(B_{[1(a+1)][1a]}L_{[1(a+1)][1b]}+B_{[1(a-1)][1a]}L_{[1(a-1)][1b]})
+(B[(a1)a][1a]L[(a1)a][1b]+B[a(a+1)][1a]L[a(a+1)][1b])\displaystyle\qquad+(B_{[(a-1)a][1a]}L_{[(a-1)a][1b]}+B_{[a(a+1)][1a]}L_{[a(a+1)][1b]})
=\displaystyle= (1)L[1(a+1)][1b]+L[1(a1)][1b]+(1)L[(a1)a][1b]+L[a(a+1)][1b]\displaystyle(-1)L_{[1(a+1)][1b]}+L_{[1(a-1)][1b]}+(-1)L_{[(a-1)a][1b]}+L_{[a(a+1)][1b]}
=\displaystyle= {(1)(1)+(1)+(1)(2)+(2)ifab+2(1)(1)+(0)+(1)(1)+(2)ifa=b+1(1)(1)+(1)+(1)(1)+(1)ifa=b(1)(0)+(1)+(1)(0)+(1)ifa=b1(1)(1)+(1)+(1)(0)+(0)ifab2\displaystyle\begin{cases}(-1)(-1)+(-1)+(-1)(-2)+(-2)&\text{if}\ a\geq b+2\\ (-1)(-1)+(0)+(-1)(-1)+(-2)&\text{if}\ a=b+1\\ (-1)(-1)+(1)+(-1)(-1)+(-1)&\text{if}\ a=b\\ (-1)(0)+(1)+(-1)(0)+(-1)&\text{if}\ a=b-1\\ (-1)(1)+(1)+(-1)(0)+(0)&\text{if}\ a\leq b-2\end{cases}
=\displaystyle= {0ifab+20ifa=b+12ifa=b0ifa=b10ifab2\displaystyle\begin{cases}0&\text{if}\ a\geq b+2\\ 0&\text{if}\ a=b+1\\ 2&\text{if}\ a=b\\ 0&\text{if}\ a=b-1\\ 0&\text{if}\ a\leq b-2\end{cases}
=\displaystyle= 2δab\displaystyle 2\delta_{ab}

where equality ()(\star) holds since all other BB-entries are zero.

Block 2:

Claim: (BTL)[1a][c(c+1)]=0(B^{T}L)_{[1a][c(c+1)]}=0 for n1a3n-1\geq a\geq 3 and 2cn12\leq c\leq n-1.

(BTL)[1a][c(c+1)]\displaystyle(B^{T}L)_{[1a][c(c+1)]} =\displaystyle= [1r]=[1n][12]B[1r][1a]L[1r][c(c+1)]+[r(r+1)]=[23][(n1)n]B[r(r+1)][1a]L[r(r+1)][c(c+1)]\displaystyle\sum_{[1r]=[1n]}^{[12]}B_{[1r][1a]}L_{[1r][c(c+1)]}+\sum_{[r(r+1)]=[23]}^{[(n-1)n]}B_{[r(r+1)][1a]}L_{[r(r+1)][c(c+1)]}
=\displaystyle= (1)L[1(a+1)][c(c+1)]+L[1(a1)][c(c+1)]\displaystyle(-1)L_{[1(a+1)][c(c+1)]}+L_{[1(a-1)][c(c+1)]}
+(1)L[(a1)a][c(c+1)]+L[a(a+1)][c(c+1)]\displaystyle\qquad+(-1)L_{[(a-1)a][c(c+1)]}+L_{[a(a+1)][c(c+1)]}
=\displaystyle= {(1)(0)+(0)+(1)(2)+(2)ifac+3(1)(0)+(1)+(1)(1)+(2)ifa=c+2(1)(0)+(1)+(1)(0)+(1)ifa=c+1(1)(1)+(2)+(1)(1)+(0)ifa=c(1)(1)+(2)+(1)(2)+(1)ifa=c1(1)(2)+(2)+(1)(2)+(2)ifac2\displaystyle\begin{cases}(-1)(0)+(0)+(-1)(-2)+(-2)&\text{if}\ a\geq c+3\\ (-1)(0)+(1)+(-1)(-1)+(-2)&\text{if}\ a=c+2\\ (-1)(0)+(1)+(-1)(0)+(-1)&\text{if}\ a=c+1\\ (-1)(1)+(2)+(-1)(1)+(0)&\text{if}\ a=c\\ (-1)(1)+(2)+(-1)(2)+(1)&\text{if}\ a=c-1\\ (-1)(2)+(2)+(-1)(2)+(2)&\text{if}\ a\leq c-2\end{cases}
=\displaystyle= 0\displaystyle 0

Hence BTLB^{T}L has the stated form. ∎

In order to show that 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)] is a quantum cluster algebra, we must demonstrate that iterated mutation produces cluster variables that are in this algebra (rather than requiring any localisation) and that every generator occurs in some cluster. We will do this inductively.

Proposition 2.

Let 3α<βn13\leq\alpha<\beta\leq n-1. After the sequence of mutations111We index the mutations by the same labels as the elements they mutate, rather than by position in the cluster, for ease of identification of the result of mutation. The compromise with this choice is that the label differs as more mutations are performed: the mutation label is that by which the element in that position was known before that mutation. We will compose right to left, so that μ[1i]μ[1(i+1)]\mu_{[1i]}\circ\mu_{[1(i+1)]} will mean perform μ[1(i+1)]\mu_{[1(i+1)]} (replacing 𝚫𝐪𝟏(𝐢+𝟏)\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1(\mathitbf{i}+1)}} by 𝚫𝐪𝐢(𝐢+𝟐)\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{\mathitbf{i}(\mathitbf{i}+2)}}) then μ[1i]\mu_{[1i]}. (So the [1(i+1)][1(i+1)]-position in the cluster, to the left of [1i][1i], is in fact filled by 𝚫𝐪𝐢(𝐢+𝟐)\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{\mathitbf{i}(\mathitbf{i}+2)}} but we do not write μ[i(i+2)]\mu_{[i(i+2)]} for μ[1(i+1)]\mu_{[1(i+1)]} unless we mean to mutate 𝚫𝐪𝐢(𝐢+𝟐)\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{\mathitbf{i}(\mathitbf{i}+2)}}. μ[1(α+1)]μ[1(α+2)]μ[1(β1)]\mu_{[1(\alpha+1)]}\circ\mu_{[1(\alpha+2)]}\circ\cdots\circ\mu_{[1(\beta-1)]}, the cluster obtained contains the mutable variables

(𝚫𝒒𝟏(𝒏𝟏),,𝚫𝒒𝟏𝜷,𝚫𝒒(𝜷𝟐)𝜷,𝚫𝒒(𝜷𝟑)𝜷,,𝚫𝒒𝜶𝜷,𝚫𝒒𝟏𝜶,𝚫𝒒𝟏(𝜶𝟏),,𝚫𝒒𝟏𝟑).(\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1(\mathitbf{n}-1)}},\ldots,\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1\boldsymbol{\beta}}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\beta}-2)\boldsymbol{\beta}}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\beta}-3)\boldsymbol{\beta}}},\ldots,\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{\boldsymbol{\alpha}\boldsymbol{\beta}}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1\boldsymbol{\alpha}}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1(\boldsymbol{\alpha}-1)}},\ldots,\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{13}}).

Furthermore, the exchange matrix BB of this cluster has only the following non-zero entries in its [1α][1\alpha]-column: B[αβ][1α]=B[1(α1)][1α]=1B_{[\alpha\beta][1\alpha]}=B_{[1(\alpha-1)][1\alpha]}=1 and B[1β][1α]=B[(α1)α][1α]=1B_{[1\beta][1\alpha]}=B_{[(\alpha-1)\alpha][1\alpha]}=-1.

Proof:.

We work by induction on α\alpha and compute the mutation μ[1α]\mu_{[1\alpha]} applied to the cluster and exchange matrix in the statement above. This mutation exchanges 𝚫𝒒𝟏𝜶\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1\boldsymbol{\alpha}}} for some new element XX which is determined by the quantum exchange relation. This relation is determined by the non-zero entries of BB stated above and so is

X\displaystyle X =\displaystyle= M[(α+1)β][αβ][1α][1(α1)][1(α2)]( 01110)\displaystyle M\mskip-3.0mu\mskip-3.0mu\mskip-3.0mu\bordermatrix{&\scriptscriptstyle{\cdots}&\scriptscriptstyle{[(\alpha+1)\beta]}&\scriptscriptstyle{[\alpha\beta]}&\scriptscriptstyle{[1\alpha]}&\scriptscriptstyle{[1(\alpha-1)]}&\scriptscriptstyle{[1(\alpha-2)]}&\scriptscriptstyle{\cdots}&\cr&\cdots&0&1&-1&1&0&\cdots}
+M[1β][1α][(α1)α]( 010010010)\displaystyle+M\mskip-3.0mu\mskip-3.0mu\mskip-3.0mu\bordermatrix{&&&\scriptscriptstyle{[1\beta]}&&&&\scriptscriptstyle{[1\alpha]}&&&&\scriptscriptstyle{[(\alpha-1)\alpha]}&&\cr&\,\cdots&0&1&0&\cdots&0&-1&0&\cdots&0&1&0&\cdots}
=\displaystyle= qr𝚫𝒒𝜶𝜷(𝚫𝒒𝟏𝜶)1𝚫𝒒𝟏(𝜶𝟏)+qs𝚫𝒒𝟏𝜷(𝚫𝒒𝟏𝜶)1𝚫𝒒(𝜶𝟏)𝜶\displaystyle q^{r}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{\boldsymbol{\alpha}\boldsymbol{\beta}}}(\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1\boldsymbol{\alpha}}})^{-1}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1(\boldsymbol{\alpha}-1)}}+q^{s}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1\boldsymbol{\beta}}}(\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1\boldsymbol{\alpha}}})^{-1}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\alpha}-1)\boldsymbol{\alpha}}}

where rr and ss are integers to be calculated from BB and the quasi-commutation matrix. The coefficient associated to the monomial M(a1,,ar)M(a_{1},\ldots,a_{r}) is 12i<jaiajLji\frac{1}{2}\sum_{i<j}a_{i}a_{j}L_{ji}, with LjiL_{ji} the (j,i)(j,i)-entry of the quasi-commutation matrix LL. Hence the integers rr and ss have the following values:

r\displaystyle r =12(1(1)L[1α][αβ]+11L[1(α1)][1α]+(1)1L[1(α1)][1α])\displaystyle=\textstyle{\frac{1}{2}}(1\cdot(-1)\cdot L_{[1\alpha][\alpha\beta]}+1\cdot 1\cdot L_{[1(\alpha-1)][1\alpha]}+(-1)\cdot 1\cdot L_{[1(\alpha-1)][1\alpha]})
=12(12+1)\displaystyle=\textstyle{\frac{1}{2}}(1-2+1)
=0\displaystyle=0
and
s\displaystyle s =12(1(1)L[1α][1β]+11L[(α1)α][1β]+(1)1L[(α1)α][1α])\displaystyle=\textstyle{\frac{1}{2}}(1\cdot(-1)\cdot L_{[1\alpha][1\beta]}+1\cdot 1\cdot L_{[(\alpha-1)\alpha][1\beta]}+(-1)\cdot 1\cdot L_{[(\alpha-1)\alpha][1\alpha]})
=12(1+01)\displaystyle=\textstyle{\frac{1}{2}}(1+0-1)
=0.\displaystyle=0.

Substituting these and applying quasi-commutation relations to move the (𝚫𝒒𝟏𝜶)1(\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1\boldsymbol{\alpha}}})^{-1} terms to the left before re-arranging, we obtain the following equality involving XX:

𝚫𝒒𝟏𝜶X=q1𝚫𝒒𝟏(𝜶𝟏)𝚫𝒒𝜶𝜷+q𝚫𝒒𝟏𝜷𝚫𝒒(𝜶𝟏)𝜶.\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1\boldsymbol{\alpha}}}X=q^{-1}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1(\boldsymbol{\alpha}-1)}}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{\boldsymbol{\alpha}\boldsymbol{\beta}}}+q\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1\boldsymbol{\beta}}}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\alpha}-1)\boldsymbol{\alpha}}}.

But the right-hand side of this equation is equal in 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)] to 𝚫𝒒𝟏𝜶𝚫𝒒(𝜶𝟏)𝜷\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{1\boldsymbol{\alpha}}}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\alpha}-1)\boldsymbol{\beta}}}, by the quantum Plücker relations (see for instance [11]). Hence we deduce that X=𝚫𝒒(𝜶𝟏)𝜷X=\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\alpha}-1)\boldsymbol{\beta}}}.

It remains to show that applying the mutation μ[1α]\mu_{[1\alpha]} to BB gives a matrix BB^{\prime} whose [1(α1)][1(\alpha-1)]-column has the correct entries. To calculate this, the only information we need is that contained in the [1α][1\alpha]-row from column [1α][1\alpha] onwards, the [1α][1\alpha]-column of BB and the [1(α1)][1(\alpha-1)]-column of BB. The non-zero entries in this partial row and these columns are

  1. (a)

    [1α][1\alpha]-row: B[1α][1(α1)]=1B_{[1\alpha][1(\alpha-1)]}=-1,

  2. (b)

    [1α][1\alpha]-column: B[αβ][1α]=B[1(α1)][1α]=1B_{[\alpha\beta][1\alpha]}=B_{[1(\alpha-1)][1\alpha]}=1, B[1β][1α]=B[(α1)α][1α]=1B_{[1\beta][1\alpha]}=B_{[(\alpha-1)\alpha][1\alpha]}=-1,

  3. (c)

    [1(α1)][1(\alpha-1)]-column: B[1(α2)][1(α1)]=B[(α1)α][1(α1)]=1B_{[1(\alpha-2)][1(\alpha-1)]}=B_{[(\alpha-1)\alpha][1(\alpha-1)]}=1, B[1α][1(α1)]=B[(α2)(α1)][1(α1)]=1B_{[1\alpha][1(\alpha-1)]}=B_{[(\alpha-2)(\alpha-1)][1(\alpha-1)]}=-1.

The first and last of these are the same as for the initial exchange matrix, as our mutation sequence has only affected the exchange matrix at and to the left of the [1α][1\alpha]-column. The middle of these is exactly the claim on the form of the exchange matrix in the inductive hypothesis.

Recall that the formula for the matrix mutation μk\mu_{k} applied to a matrix BB is

(μk(B))ij={Bijifi=korj=kBij+|Bik|Bkj+Bik|Bkj|2otherwise(\mu_{k}(B))_{ij}=\begin{cases}-B_{ij}&\text{if}\ i=k\ \text{or}\ j=k\\ B_{ij}+\frac{|B_{ik}|B_{kj}+B_{ik}|B_{kj}|}{2}&\text{otherwise}\end{cases}

As a result, in BB^{\prime} entries in [1(α1)][1(\alpha-1)]-column will certainly not change whenever the [1α][1\alpha]-column in BB has a zero, except for in the [1α][1\alpha]-row, whose sign is changed. (If BikB_{ik} and BkjB_{kj} have equal magnitude but opposite signs then BijB_{ij} will also not change.) Thus it suffices to make the following set of calculations:

(1) B[1β][1(α1)]\displaystyle B^{\prime}_{[1\beta][1(\alpha-1)]} =B[1β][1(α1)]+|B[1β][1α]|B[1α][1(α1)]+B[1β][1α]|B[1α][1(α1)]|2\displaystyle=B_{[1\beta][1(\alpha-1)]}+\frac{|B_{[1\beta][1\alpha]}|B_{[1\alpha][1(\alpha-1)]}+B_{[1\beta][1\alpha]}|B_{[1\alpha][1(\alpha-1)]}|}{2}
=0+|1|(1)+(1)|1|2\displaystyle=0+\frac{|-1|(-1)+(-1)|-1|}{2}
=1\displaystyle=-1
(2) B[αβ][1(α1)]\displaystyle B^{\prime}_{[\alpha\beta][1(\alpha-1)]} =0+|1|(1)+(1)|1|2\displaystyle=0+\frac{|1|(-1)+(1)|-1|}{2}
=0\displaystyle=0
(3) B[(α1)β][1(α1)]\displaystyle B^{\prime}_{[(\alpha-1)\beta][1(\alpha-1)]} =B[1α][1(α1)]\displaystyle=-B_{[1\alpha][1(\alpha-1)]}
=1\displaystyle=1
(This row in BB^{\prime}, the [(α1)β][(\alpha-1)\beta]-row, replaces the [1α][1\alpha]-row in BB; it is the latter’s negative, by the mutation rule.)
(4) B[1(α1)][1(α1)]\displaystyle B^{\prime}_{[1(\alpha-1)][1(\alpha-1)]} =0+|1|(1)+(1)|1|2\displaystyle=0+\frac{|1|(-1)+(1)|-1|}{2}
=0\displaystyle=0
(5) B[1(α2)][1(α1)]\displaystyle B^{\prime}_{[1(\alpha-2)][1(\alpha-1)]} =1+|0|(1)+(0)|1|2\displaystyle=1+\frac{|0|(-1)+(0)|-1|}{2}
=1\displaystyle=1
(This entry and the one following are unchanged in BB^{\prime} because there was a 0 in the adjacent [1α][1\alpha]-column, but are included here explicitly for completeness, as they are non-zero entries in the [1(α1)][1(\alpha-1)]-column on BB^{\prime}.)
(6) B[(α2)(α1)][1(α1)]\displaystyle B^{\prime}_{[(\alpha-2)(\alpha-1)][1(\alpha-1)]} =1+|0|(1)+(0)|1|2\displaystyle=-1+\frac{|0|(-1)+(0)|-1|}{2}
=1\displaystyle=-1
(7) B[(α1)(α)][1(α1)]\displaystyle B^{\prime}_{[(\alpha-1)(\alpha)][1(\alpha-1)]} =1+|1|(1)+(1)|1|2\displaystyle=1+\frac{|-1|(-1)+(-1)|-1|}{2}
=0\displaystyle=0

From these, we see that the [1(α1)][1(\alpha-1)]-column of BB^{\prime} has only four non-zero entries and these are B[(α1)β][1(α1)]=B[1(α2)][1(α1)]=1B^{\prime}_{[(\alpha-1)\beta][1(\alpha-1)]}=B^{\prime}_{[1(\alpha-2)][1(\alpha-1)]}=1 and B[1β][1(α1)]=B[(α2)(α1)][1(α1)]=1B^{\prime}_{[1\beta][1(\alpha-1)]}=B^{\prime}_{[(\alpha-2)(\alpha-1)][1(\alpha-1)]}=-1. These are exactly as claimed for BB in the statement of this proposition, except with α1\alpha-1 instead of α\alpha, i.e. the inductive hypothesis for the exchange matrix has been verified. ∎

We can now complete the proof of our claim.

Theorem 3.

The quantum Grassmannian 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)] is a quantum cluster algebra of type An3A_{n-3}.

Proof:.

It follows immediately from the previous proposition that every generator of 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)] occurs in some cluster and can be obtained by a finite sequence of mutations from our given initial seed. Furthermore, the general theory of (quantum) cluster algebras of type AA tells us that a cluster algebra of type AlA_{l} has precisely l(l+1)2+l=l2+3l2\frac{l(l+1)}{2}+l=\frac{l^{2}+3l}{2} mutable cluster variables (as this is the number of almost positive roots in this type). For l=n3l=n-3, this number is (n3)(n2)2+(n3)=n23n2\frac{(n-3)(n-2)}{2}+(n-3)=\frac{n^{2}-3n}{2}. Hence since |𝒫q|n=(n1)n2n=n23n2|\mathcal{P}_{q}|-n=\frac{(n-1)n}{2}-n=\frac{n^{2}-3n}{2} also, the set of all mutable cluster variables must be equal to the set 𝒫q{Δq12,,Δq(n1)n,Δq1n}\mathcal{P}_{q}\setminus\{\Delta_{q}^{12},\ldots,\Delta_{q}^{(n-1)n},\Delta_{q}^{1n}\}, since the latter is contained in the former by the proposition.

In other words, taking all cluster variables (mutable ones and coefficients) together gives us exactly the set 𝒫q\mathcal{P}_{q} of quantum Plücker coordinates. From this we deduce that every cluster variable is a genuine quantum minor (i.e. no localisation is required) and hence the subalgebra generated by all cluster variables is exactly 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)], which is therefore a quantum cluster algebra. ∎

Remark 4.

This proof uses in a critical way the fact that the quantum cluster algebra structure we have found is of finite type, and this argument will not extend to infinite types.

Remark 5.

Although we have assumed that q1/2q^{1/2} exists in 𝕂\mathbb{K}, it turns out that this assumption is not needed. Indeed, it follows from the proof of Theorem 3 that the powers of qq that appear in the (quantum) mutation are all integral numbers.

We reproduce in Figure 1 the diagram in [5] showing the exchange graph in the case n=5n=5, with clusters identified with triangulations of a pentagon in the manner described previously. The top vertex corresponds to the initial cluster described here, whose mutable variables are the quantum minors 𝚫𝒒𝟏𝟒\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{14}} and 𝚫𝒒𝟏𝟑\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{13}}: we number the pentagon’s vertices starting with 1 at the top and increasing clockwise.

Figure 1: Exchange graph for cluster algebra structure on [Gr(2,5)]\mathbb{C}[\mathrm{Gr}(2,5)] and its quantum analogue.

3.2 The quantum Grassmannians 𝕂q[Gr(3,n)]\mathbb{K}_{q}[\mathrm{Gr}(3,n)], n=6,7,8n=6,7,8

We now consider the remaining quantum Grassmannians that should have finite type as quantum cluster algebras, namely 𝕂q[Gr(3,n)]\mathbb{K}_{q}[\mathrm{Gr}(3,n)] for n=6,7,8n=6,7,8. For these examples, we give an initial quantum seed and a list of the quantum cluster variables obtained by certain mutations of this. This list will be a list of all the quantum cluster variables (some of which are not quantum minors, as happens classically) and will be the quantum analogue of the corresponding table among Tables 1-4 in [17].

3.2.1 𝕂q[Gr(3,6)]\mathbb{K}_{q}[\mathrm{Gr}(3,6)]

For our initial quantum cluster we choose

y¯~=(𝚫𝒒𝟏𝟒𝟓,𝚫𝒒𝟏𝟑𝟒,𝚫𝒒𝟏𝟐𝟓,𝚫𝒒𝟏𝟐𝟒,Δq123,Δq234,Δq345,Δq456,Δq156,Δq126).\tilde{\underline{y}}=(\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{145}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{134}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{125}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{124}},\Delta_{q}^{123},\Delta_{q}^{234},\Delta_{q}^{345},\Delta_{q}^{456},\Delta_{q}^{156},\Delta_{q}^{126}).

As above, the coefficients correspond to kk-tuples of adjacent vertices of an nn-gon—i.e. tuples of vertices of a hexagon, wrapping round and taking Δq156\Delta_{q}^{156} for {5,6,1}\{5,6,1\} and so on. The exchange matrix for this cluster is most compactly described by its associated quiver. This is as follows, with minor labels and with hexagons.

𝟏𝟒𝟓\mathbf{145}𝟏𝟐𝟓\mathbf{125}𝟏𝟑𝟒\mathbf{134}𝟏𝟐𝟒\mathbf{124}156126123456345234

This quiver is mutation-equivalent to the Dynkin diagram of type D4D_{4}. The quasi-commutation matrix associated to y¯~\tilde{\underline{y}} is

L=[145][134][125][124][123][234][345][456][156][126][145]( 𝟎𝟏𝟏𝟏201110) [134]𝟏𝟎𝟎𝟏111220[125]𝟏𝟎𝟎𝟏102211[136]𝟏𝟏𝟏𝟎112221[124]2111012321[234]0101101210[345]1122210101[456]1222321012[156]1212210101[126]0011101210.L=\bordermatrix{&\scriptstyle{[145]}&\scriptstyle{[134]}&\scriptstyle{[125]}&\scriptstyle{[124]}&\scriptstyle{[123]}&\scriptstyle{[234]}&\scriptstyle{[345]}&\scriptstyle{[456]}&\scriptstyle{[156]}&\scriptstyle{[126]}\cr\scriptstyle{[145]}&\mathbf{0}&\mathbf{-1}&\mathbf{-1}&\mathbf{-1}&-2&0&1&1&1&0\cr\scriptstyle{[134]}&\mathbf{1}&\mathbf{0}&\mathbf{0}&\mathbf{-1}&-1&1&1&2&2&0\cr\scriptstyle{[125]}&\mathbf{1}&\mathbf{0}&\mathbf{0}&\mathbf{-1}&-1&0&2&2&1&1\cr\scriptstyle{[136]}&\mathbf{1}&\mathbf{1}&\mathbf{1}&\mathbf{0}&-1&1&2&2&2&1\cr\scriptstyle{[124]}&2&1&1&1&0&1&2&3&2&1\cr\scriptstyle{[234]}&0&-1&0&-1&-1&0&1&2&1&0\cr\scriptstyle{[345]}&-1&-1&-2&-2&-2&-1&0&1&0&-1\cr\scriptstyle{[456]}&-1&-2&-2&-2&-3&-2&-1&0&-1&-2\cr\scriptstyle{[156]}&-1&-2&-1&-2&-2&-1&0&1&0&-1\cr\scriptstyle{[126]}&0&0&-1&-1&-1&0&1&2&1&0\cr}.

These quasi-commutation relations may be derived from the formula in [16] and it is straightforward to verify that BTLB^{T}L has the block form (2I4 04,6)(2I_{4}\ 0_{4,6}) and hence BB and LL are compatible.

The complete list of mutable quantum cluster variables is then obtained by repeated mutation, to give the list in Table 1. This was obtained with assistance from the computer program Magma ([3]).

Mutation Quantum cluster variable obtained Almost-positive root
Δq145\Delta_{q}^{145} [1,0,0,0][-1,0,0,0]
Δq134\Delta_{q}^{134} [0,1,0,1][0,1,0,1]
Δq125\Delta_{q}^{125} [0,1,1,0][0,1,1,0]
Δq124\Delta_{q}^{124} [0,1,1,1][0,1,1,1]
μ1\mu_{1} Xq123456=defq3/2(Δq356Δq124qΔq456Δq123)X_{q}^{123456}\stackrel{{\scriptstyle\scriptscriptstyle{\mathrm{def}}}}{{=}}q^{3/2}(\Delta_{q}^{356}\Delta_{q}^{124}-q\Delta_{q}^{456}\Delta_{q}^{123}) [1,2,1,1][1,2,1,1]
μ2\mu_{2} Δq245\Delta_{q}^{245} [0,0,1,0][0,0,1,0]
μ3\mu_{3} Δq146\Delta_{q}^{146} [0,0,0,1][0,0,0,1]
μ4\mu_{4} Δq135\Delta_{q}^{135} [0,1,0,0][0,1,0,0]
μ2μ1\mu_{2}\circ\mu_{1} Δq256\Delta_{q}^{256} [1,1,1,0][1,1,1,0]
μ3μ1\mu_{3}\circ\mu_{1} Δq346\Delta_{q}^{346} [1,1,0,1][1,1,0,1]
μ4μ1\mu_{4}\circ\mu_{1} Δq356\Delta_{q}^{356} [1,1,0,0][1,1,0,0]
μ4μ2\mu_{4}\circ\mu_{2} Δq235\Delta_{q}^{235} [0,0,0,1][0,0,0,-1]
μ4μ3\mu_{4}\circ\mu_{3} Δq136\Delta_{q}^{136} [0,0,1,0][0,0,-1,0]
μ2μ1μ3\mu_{2}\circ\mu_{1}\circ\mu_{3} Δq246\Delta_{q}^{246} [1,1,1,1][1,1,1,1]
μ4μ3μ2\mu_{4}\circ\mu_{3}\circ\mu_{2} Yq123456=defq1/2(Δq236Δq145q2Δq456Δq123)Y_{q}^{123456}\stackrel{{\scriptstyle\scriptscriptstyle{\mathrm{def}}}}{{=}}q^{1/2}(\Delta_{q}^{236}\Delta_{q}^{145}-q^{2}\Delta_{q}^{456}\Delta_{q}^{123}) [0,1,0,0][0,-1,0,0]
μ4μ2μ1μ3\mu_{4}\circ\mu_{2}\circ\mu_{1}\circ\mu_{3} Δq236\Delta_{q}^{236} [1,0,0,0][1,0,0,0]
Table 1: Mutable quantum cluster variables for 𝕂q[Gr(3,6)]\mathbb{K}_{q}[\mathrm{Gr}(3,6)]

We see that Table 1 contains 16 mutable quantum cluster variables, 14 of which are quantum minors which taken together with the 6 coefficients yield the whole set of quantum Plücker coordinates generating 𝕂q[Gr(3,6)]\mathbb{K}_{q}[\mathrm{Gr}(3,6)]. Hence 𝕂q[Gr(3,6)]\mathbb{K}_{q}[\mathrm{Gr}(3,6)] is a quantum cluster algebra of type D4D_{4}.

Remark 6.

The elements Xq123456X_{q}^{123456} and Yq123456Y_{q}^{123456} are quantum analogues of the quadratic regular functions described by Scott in [17, Theorem 6]. There X123456=defΔ134Δ256Δ156Δ234X^{123456}\stackrel{{\scriptstyle\scriptscriptstyle{\mathrm{def}}}}{{=}}\Delta^{134}\Delta^{256}-\Delta^{156}\Delta^{234}, whereas we have set Xq123456=q3/2(Δq356Δq124qΔq456Δq123)X_{q}^{123456}=q^{3/2}(\Delta_{q}^{356}\Delta_{q}^{124}-q\Delta_{q}^{456}\Delta_{q}^{123}). In fact,

q1/2Δq134Δq256q3/2Δq156Δq234=q3/2Δq356Δq124q5/2Δq456Δq123=Xq123456;q^{-1/2}\Delta_{q}^{134}\Delta_{q}^{256}-q^{3/2}\Delta_{q}^{156}\Delta_{q}^{234}=q^{3/2}\Delta_{q}^{356}\Delta_{q}^{124}-q^{5/2}\Delta_{q}^{456}\Delta_{q}^{123}=X_{q}^{123456};

there will typically be several different choices of expression for each quantum cluster variable.

Remark 7.

The almost-positive root bijection is not obtained directly from our choice of initial quantum cluster. One must in fact choose a quantum cluster whose associated exchange quiver is the Dynkin graph determining the type with an orientation such that every mutable vertex is either a source or a sink. Then according to the general theory of (quantum) cluster algebras, the bijection arises by associating negative simple roots to the initial mutable cluster variables and the positive roots correspond to variables obtained by mutation in the natural way. We have used the same bijection as Scott ([17]), which arises from the cluster having exchange quiver as follows.

𝒀\mathitbf{Y}136145235123126156456345234
Remark 8.

We note that in contrast to the situation for 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)], we cannot drop the requirement for there to be a square root of qq in 𝕂\mathbb{K}, as it appears in the definitions of the cluster variables Yq123456Y_{q}^{123456} and Xq123456X_{q}^{123456}.

3.2.2 𝕂q[Gr(3,7)]\mathbb{K}_{q}[\mathrm{Gr}(3,7)]

By analogy with the previous example, we choose for our initial cluster

y¯~=(𝚫𝒒𝟏𝟓𝟔,𝚫𝒒𝟏𝟒𝟓,𝚫𝒒𝟏𝟑𝟒,𝚫𝒒𝟏𝟐𝟔,𝚫𝒒𝟏𝟐𝟓,𝚫𝒒𝟏𝟐𝟒,Δq123,Δq234,Δq345,Δq456,Δq567,Δq167,Δq127).\tilde{\underline{y}}=(\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{156}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{145}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{134}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{126}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{125}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{124}},\Delta_{q}^{123},\Delta_{q}^{234},\Delta_{q}^{345},\Delta_{q}^{456},\Delta_{q}^{567},\Delta_{q}^{167},\Delta_{q}^{127}).

The coefficients correspond to triples of adjacent vertices of a heptagon and the exchange matrix is as determined its associated quiver, which is as follows.

𝟏𝟓𝟔\mathbf{156}𝟏𝟐𝟔\mathbf{126}𝟏𝟒𝟓\mathbf{145}𝟏𝟐𝟓\mathbf{125}𝟏𝟑𝟒\mathbf{134}𝟏𝟐𝟒\mathbf{124}123127167567456345234

This quiver is mutation-equivalent to the Dynkin diagram of type E6E_{6}. We omit the corresponding quasi-commutation matrix, which can be recovered easily, and simply note that the compatibility calculation gives the matrix (2I6 06,7)(2I_{6}\ 0_{6,7}).

We will also not give the full list of quantum cluster variables. By computer-aided calculation, we have verified that the set of quantum cluster variables in this example consists of all quantum Plücker coordinates together with the following 14 additional elements. Let {a,b,c,d,e,f}\{a,b,c,d,e,f\} be a subset of {1,,7}\{1,\ldots,7\} written in increasing order. Define

Xqabcdef\displaystyle X_{q}^{abcdef} =defq3/2(ΔqcefΔqabdqΔqdefΔqabc)\displaystyle\stackrel{{\scriptstyle\scriptscriptstyle{\mathrm{def}}}}{{=}}q^{3/2}(\Delta_{q}^{cef}\Delta_{q}^{abd}-q\Delta_{q}^{def}\Delta_{q}^{abc})
and
Yqabcdef\displaystyle Y_{q}^{abcdef} =defq1/2(ΔqbcfΔqadeq2ΔqdefΔqabc).\displaystyle\stackrel{{\scriptstyle\scriptscriptstyle{\mathrm{def}}}}{{=}}q^{1/2}(\Delta_{q}^{bcf}\Delta_{q}^{ade}-q^{2}\Delta_{q}^{def}\Delta_{q}^{abc}).

Again, these are quantizations of the quadratic regular functions described by Scott in the classical case. (Also, if one takes {a,b,c,d,e,f}={1,,6}\{a,b,c,d,e,f\}=\{1,\ldots,6\} one obtains the functions described for n=6n=6 above.)

We again conclude that provided qq has a square root in 𝕂\mathbb{K}, the quantum Grassmannian 𝕂q[Gr(3,7)]\mathbb{K}_{q}[\mathrm{Gr}(3,7)] is a quantum cluster algebra of type E6E_{6}.

3.2.3 𝕂q[Gr(3,8)]\mathbb{K}_{q}[\mathrm{Gr}(3,8)]

The choice of initial cluster in the same family as those above should now be clear. That is, we take

y¯~=(𝚫𝒒𝟏𝟔𝟕,𝚫𝒒𝟏𝟓𝟔,𝚫𝒒𝟏𝟒𝟓,𝚫𝒒𝟏𝟑𝟒,𝚫𝒒𝟏𝟐𝟕,𝚫𝒒𝟏𝟐𝟔,𝚫𝒒𝟏𝟐𝟓,𝚫𝒒𝟏𝟐𝟒,Δq123,Δq234,Δq345,Δq456,Δq567,Δq678,Δq178,Δq128).\tilde{\underline{y}}=(\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{167}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{156}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{145}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{134}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{127}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{126}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{125}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{124}},\\ \Delta_{q}^{123},\Delta_{q}^{234},\Delta_{q}^{345},\Delta_{q}^{456},\Delta_{q}^{567},\Delta_{q}^{678},\Delta_{q}^{178},\Delta_{q}^{128}).

The coefficients correspond to triples of adjacent vertices of an octagon and the exchange matrix is as determined its associated quiver, which is as follows.

𝟏𝟔𝟕\mathbf{167}𝟏𝟐𝟕\mathbf{127}𝟏𝟓𝟔\mathbf{156}𝟏𝟐𝟔\mathbf{126}𝟏𝟒𝟓\mathbf{145}𝟏𝟐𝟓\mathbf{125}𝟏𝟑𝟒\mathbf{134}𝟏𝟐𝟒\mathbf{124}123128167678567456345234

This quiver is mutation-equivalent to the Dynkin diagram of type E8E_{8}. We again omit the corresponding quasi-commutation matrix; the compatibility calculation gives the matrix (2I8 08,8)(2I_{8}\ 0_{8,8}). (Note that if we considered the analogous cluster for n=9n=9, we would have more mutable cluster variables than coefficients. This is related to the fact that [Gr(3,9)]\mathbb{C}[\mathrm{Gr}(3,9)] is of infinite type.)

We will again not give the full list of quantum cluster variables. By computer-aided calculation, we have verified that the set of quantum cluster variables in this example consists of

  • all quantum Plücker coordinates;

  • the 56 elements XqabcdefX_{q}^{abcdef} and YqabcdefY_{q}^{abcdef} defined as above, where {a,b,c,d,e,f}\{a,b,c,d,e,f\} is now a subset of {1,,8}\{1,\ldots,8\} written in increasing order; and

  • 24 quantizations of cubic regular functions, Aq(i)A_{q}(i) (1i81\leq i\leq 8) and Bq(i,j)B_{q}(i,j) (1i81\leq i\leq 8, 0j10\leq j\leq 1), listed in Table 2.

Aq(1)=q1Δq134Δq258Δq167qΔq134Δq678Δq125qΔq158Δq234Δq167Aq(2)=q1Δq245Δq136Δq278qΔq245Δq178Δq236q1Δq126Δq345Δq278Aq(3)=qΔq356Δq247Δq138qΔq356Δq128Δq347qΔq237Δq456Δq138Aq(4)=q3Δq467Δq358Δq124qΔq467Δq123Δq458q3Δq348Δq567Δq124Aq(5)=q3Δq578Δq146Δq235q3Δq578Δq234Δq156qΔq145Δq678Δq235Aq(6)=qΔq168Δq257Δq346qΔq168Δq345Δq267qΔq256Δq178Δq346Aq(7)=q1Δq127Δq368Δq457q1Δq127Δq456Δq378qΔq367Δq128Δq457Aq(8)=q1Δq238Δq147Δq568qΔq238Δq567Δq148qΔq478Δq123Δq568Bq(1,0)=Δq258Δq134Δq267q2Δq258Δq167Δq234q3Δq128Δq234Δq567Bq(2,0)=q2Δq136Δq245Δq378Δq136Δq278Δq345q5Δq123Δq345Δq678Bq(3,0)=Δq247Δq356Δq148Δq247Δq138Δq456q3Δq234Δq456Δq178Bq(4,0)=q2Δq358Δq467Δq125Δq358Δq124Δq567q1Δq345Δq567Δq128Bq(5,0)=Δq146Δq578Δq236q2Δq146Δq235Δq678qΔq456Δq678Δq123Bq(6,0)=Δq257Δq168Δq347Δq257Δq346Δq178qΔq567Δq178Δq234Bq(7,0)=Δq368Δq127Δq458q2Δq368Δq457Δq128qΔq678Δq128Δq345Bq(8,0)=Δq147Δq238Δq156q2Δq147Δq568Δq123q1Δq178Δq123Δq456Bq(1,1)=Δq258Δq167Δq348q2Δq258Δq134Δq678qΔq128Δq678Δq345Bq(2,1)=Δq136Δq278Δq145q2Δq136Δq245Δq178q1Δq123Δq178Δq456Bq(3,1)=Δq247Δq138Δq256Δq247Δq356Δq128q1Δq234Δq128Δq567Bq(4,1)=Δq358Δq124Δq367q2Δq358Δq467Δq123q1Δq345Δq123Δq678Bq(5,1)=q2Δq146Δq235Δq478Δq146Δq578Δq234qΔq456Δq234Δq178Bq(6,1)=Δq257Δq346Δq158Δq257Δq168Δq345q3Δq567Δq345Δq128Bq(7,1)=q2Δq368Δq457Δq126Δq368Δq127Δq456q5Δq678Δq456Δq123Bq(8,1)=Δq147Δq568Δq237q2Δq147Δq238Δq567q3Δq178Δq567Δq234\begin{array}[]{r@{\,=\,}l@{\,}l@{\,-\,}l@{\,}l@{\,-\,}l@{\,}l}A_{q}(1)&q^{-1}&\Delta_{q}^{134}\Delta_{q}^{258}\Delta_{q}^{167}&q&\Delta_{q}^{134}\Delta_{q}^{678}\Delta_{q}^{125}&q&\Delta_{q}^{158}\Delta_{q}^{234}\Delta_{q}^{167}\\ A_{q}(2)&q^{-1}&\Delta_{q}^{245}\Delta_{q}^{136}\Delta_{q}^{278}&q&\Delta_{q}^{245}\Delta_{q}^{178}\Delta_{q}^{236}&q^{-1}&\Delta_{q}^{126}\Delta_{q}^{345}\Delta_{q}^{278}\\ A_{q}(3)&q&\Delta_{q}^{356}\Delta_{q}^{247}\Delta_{q}^{138}&q&\Delta_{q}^{356}\Delta_{q}^{128}\Delta_{q}^{347}&q&\Delta_{q}^{237}\Delta_{q}^{456}\Delta_{q}^{138}\\ A_{q}(4)&q^{3}&\Delta_{q}^{467}\Delta_{q}^{358}\Delta_{q}^{124}&q&\Delta_{q}^{467}\Delta_{q}^{123}\Delta_{q}^{458}&q^{3}&\Delta_{q}^{348}\Delta_{q}^{567}\Delta_{q}^{124}\\ A_{q}(5)&q^{3}&\Delta_{q}^{578}\Delta_{q}^{146}\Delta_{q}^{235}&q^{3}&\Delta_{q}^{578}\Delta_{q}^{234}\Delta_{q}^{156}&q&\Delta_{q}^{145}\Delta_{q}^{678}\Delta_{q}^{235}\\ A_{q}(6)&q&\Delta_{q}^{168}\Delta_{q}^{257}\Delta_{q}^{346}&q&\Delta_{q}^{168}\Delta_{q}^{345}\Delta_{q}^{267}&q&\Delta_{q}^{256}\Delta_{q}^{178}\Delta_{q}^{346}\\ A_{q}(7)&q^{-1}&\Delta_{q}^{127}\Delta_{q}^{368}\Delta_{q}^{457}&q^{-1}&\Delta_{q}^{127}\Delta_{q}^{456}\Delta_{q}^{378}&q&\Delta_{q}^{367}\Delta_{q}^{128}\Delta_{q}^{457}\\ A_{q}(8)&q^{-1}&\Delta_{q}^{238}\Delta_{q}^{147}\Delta_{q}^{568}&q&\Delta_{q}^{238}\Delta_{q}^{567}\Delta_{q}^{148}&q&\Delta_{q}^{478}\Delta_{q}^{123}\Delta_{q}^{568}\\[20.00003pt] B_{q}(1,0)&&\Delta_{q}^{258}\Delta_{q}^{134}\Delta_{q}^{267}&q^{2}&\Delta_{q}^{258}\Delta_{q}^{167}\Delta_{q}^{234}&q^{-3}&\Delta_{q}^{128}\Delta_{q}^{234}\Delta_{q}^{567}\\ B_{q}(2,0)&q^{-2}&\Delta_{q}^{136}\Delta_{q}^{245}\Delta_{q}^{378}&&\Delta_{q}^{136}\Delta_{q}^{278}\Delta_{q}^{345}&q^{-5}&\Delta_{q}^{123}\Delta_{q}^{345}\Delta_{q}^{678}\\ B_{q}(3,0)&&\Delta_{q}^{247}\Delta_{q}^{356}\Delta_{q}^{148}&&\Delta_{q}^{247}\Delta_{q}^{138}\Delta_{q}^{456}&q^{-3}&\Delta_{q}^{234}\Delta_{q}^{456}\Delta_{q}^{178}\\ B_{q}(4,0)&q^{2}&\Delta_{q}^{358}\Delta_{q}^{467}\Delta_{q}^{125}&&\Delta_{q}^{358}\Delta_{q}^{124}\Delta_{q}^{567}&q^{-1}&\Delta_{q}^{345}\Delta_{q}^{567}\Delta_{q}^{128}\\ B_{q}(5,0)&&\Delta_{q}^{146}\Delta_{q}^{578}\Delta_{q}^{236}&q^{-2}&\Delta_{q}^{146}\Delta_{q}^{235}\Delta_{q}^{678}&q&\Delta_{q}^{456}\Delta_{q}^{678}\Delta_{q}^{123}\\ B_{q}(6,0)&&\Delta_{q}^{257}\Delta_{q}^{168}\Delta_{q}^{347}&&\Delta_{q}^{257}\Delta_{q}^{346}\Delta_{q}^{178}&q&\Delta_{q}^{567}\Delta_{q}^{178}\Delta_{q}^{234}\\ B_{q}(7,0)&&\Delta_{q}^{368}\Delta_{q}^{127}\Delta_{q}^{458}&q^{2}&\Delta_{q}^{368}\Delta_{q}^{457}\Delta_{q}^{128}&q&\Delta_{q}^{678}\Delta_{q}^{128}\Delta_{q}^{345}\\ B_{q}(8,0)&&\Delta_{q}^{147}\Delta_{q}^{238}\Delta_{q}^{156}&q^{2}&\Delta_{q}^{147}\Delta_{q}^{568}\Delta_{q}^{123}&q^{-1}&\Delta_{q}^{178}\Delta_{q}^{123}\Delta_{q}^{456}\\[20.00003pt] B_{q}(1,1)&&\Delta_{q}^{258}\Delta_{q}^{167}\Delta_{q}^{348}&q^{-2}&\Delta_{q}^{258}\Delta_{q}^{134}\Delta_{q}^{678}&q&\Delta_{q}^{128}\Delta_{q}^{678}\Delta_{q}^{345}\\ B_{q}(2,1)&&\Delta_{q}^{136}\Delta_{q}^{278}\Delta_{q}^{145}&q^{-2}&\Delta_{q}^{136}\Delta_{q}^{245}\Delta_{q}^{178}&q^{-1}&\Delta_{q}^{123}\Delta_{q}^{178}\Delta_{q}^{456}\\ B_{q}(3,1)&&\Delta_{q}^{247}\Delta_{q}^{138}\Delta_{q}^{256}&&\Delta_{q}^{247}\Delta_{q}^{356}\Delta_{q}^{128}&q^{-1}&\Delta_{q}^{234}\Delta_{q}^{128}\Delta_{q}^{567}\\ B_{q}(4,1)&&\Delta_{q}^{358}\Delta_{q}^{124}\Delta_{q}^{367}&q^{2}&\Delta_{q}^{358}\Delta_{q}^{467}\Delta_{q}^{123}&q^{-1}&\Delta_{q}^{345}\Delta_{q}^{123}\Delta_{q}^{678}\\ B_{q}(5,1)&q^{-2}&\Delta_{q}^{146}\Delta_{q}^{235}\Delta_{q}^{478}&&\Delta_{q}^{146}\Delta_{q}^{578}\Delta_{q}^{234}&q&\Delta_{q}^{456}\Delta_{q}^{234}\Delta_{q}^{178}\\ B_{q}(6,1)&&\Delta_{q}^{257}\Delta_{q}^{346}\Delta_{q}^{158}&&\Delta_{q}^{257}\Delta_{q}^{168}\Delta_{q}^{345}&q^{3}&\Delta_{q}^{567}\Delta_{q}^{345}\Delta_{q}^{128}\\ B_{q}(7,1)&q^{2}&\Delta_{q}^{368}\Delta_{q}^{457}\Delta_{q}^{126}&&\Delta_{q}^{368}\Delta_{q}^{127}\Delta_{q}^{456}&q^{5}&\Delta_{q}^{678}\Delta_{q}^{456}\Delta_{q}^{123}\\ B_{q}(8,1)&&\Delta_{q}^{147}\Delta_{q}^{568}\Delta_{q}^{237}&q^{-2}&\Delta_{q}^{147}\Delta_{q}^{238}\Delta_{q}^{567}&q^{3}&\Delta_{q}^{178}\Delta_{q}^{567}\Delta_{q}^{234}\end{array}
Table 2: The quantizations of cubic regular functions occurring as quantum cluster variables for 𝕂q[Gr(3,8)]\mathbb{K}_{q}[\mathrm{Gr}(3,8)]

We conclude that 𝕂q[Gr(3,8)]\mathbb{K}_{q}[\mathrm{Gr}(3,8)] is a quantum cluster algebra of type E8E_{8}, provided that qq has a square root in 𝕂\mathbb{K}.

We have observed a quantum analogue of the action of the dihedral group D2nD_{2n} on the affine cone X(k,n)X(k,n) of the Grassmannian. In the case of [Gr(3,8)]\mathbb{C}[\mathrm{Gr}(3,8)], Scott ([17]) notes that from knowledge of two cubic regular functions AA and BB, one may obtain the remaining twenty-two cubic functions that are also cluster variables by applying to their indices the permutations ρ=(1 8 7 6 5 4 3 2)\rho=(1\,8\,7\,6\,5\,4\,3\,2) and σ=(2 8)(3 7)(4 6)\sigma=(2\,8)(3\,7)(4\,6). This gives two families: eight cluster variables AρrA^{\rho^{r}}, 0r70\leq r\leq 7 and sixteen cluster variables BσrρsB^{\sigma^{r}\rho^{s}}, 0r10\leq r\leq 1, 0s70\leq s\leq 7 (AA is invariant under σ\sigma).

As noted in [12], index-cycling is not an automorphism of the quantum Grassmannian but there is a cocycle twist that replaces it. From the explicit calculations we have observed that one passes from the quantum cluster variable Aq(i)A_{q}(i) to Aq(i+1)A_{q}(i+1) (respectively, Bq(i,0)B_{q}(i,0) to Bq(i+1,0)B_{q}(i+1,0) and Bq(i,1)B_{q}(i,1) to Bq(i+1,1)B_{q}(i+1,1)) precisely by means of this cocycle twist up to powers of qq. (The twist raises indices, thus corresponds to ρ1\rho^{-1}.)

We would then also expect a quantum version of σ\sigma to take us between Bq(i,0)B_{q}(i,0) and Bq(i,1)B_{q}(i,1). It is perhaps not surprising that we have been able to find an expression for Bq(1,1)B_{q}(1,1) with quantum minor indices being those of Bq(1,0)B_{q}(1,0) under the action of σ\sigma, but with only this one expression to work with we cannot yet conclude that there is a suitable cocycle to quantize σ\sigma. Since the dihedral action exists classically for all Grassmannians, it ought to be possible to see its quantum analogue in other cases than just 𝕂q[Gr(3,8)]\mathbb{K}_{q}[\mathrm{Gr}(3,8)] and so this remains a topic for further investigation.

4 Quantum Schubert cells

In [13], motivated by the classical setting, the notion of quantum Schubert cells in the quantum Grassmannian was defined via noncommutative dehomogenisation as follows. First recall that the standard order on the set of quantum Plücker coordinates of 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)] is defined by

ΔqijΔqkl when ik and jl.\Delta_{q}^{ij}\leq\Delta_{q}^{kl}\mbox{ when }i\leq k\mbox{ and }j\leq l.

Fix a quantum Plücker coordinate δ\delta of 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)]. The quantum Schubert ideal IδI_{\delta} corresponding to δ\delta is the two-sided ideal of 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)] generated by the quantum Plücker coordinates γ\gamma with γδ\gamma\ngeq\delta. In the quantum Schubert variety 𝕂q[Gr(2,n)]/Iδ\mathbb{K}_{q}[\mathrm{Gr}(2,n)]/I_{\delta}, the image δ¯\overline{\delta} of δ\delta in this factor algebra is normal and regular, so that one can form the localisation

Sδ=def𝕂q[Gr(2,n)]Iδ[δ¯1].S_{\delta}\stackrel{{\scriptstyle\scriptscriptstyle{\mathrm{def}}}}{{=}}\frac{\mathbb{K}_{q}[\mathrm{Gr}(2,n)]}{I_{\delta}}\left[\overline{\delta}^{-1}\right].

Now observe that 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)] is graded in a natural way with all quantum Plücker coordinates in degree 1. As IδI_{\delta} and δ\delta are homogeneous, SδS_{\delta} is a \mathbb{Z}-graded algebra. Then the quantum Schubert cell S0(δ)S^{0}(\delta) associated to δ\delta is the degree 0 part of SδS_{\delta} [13, Definition 4.1].

It was proved in [13] that this algebra can be identified to a subalgebra of 𝕂q1[M(2,n2)]\mathbb{K}_{q^{-1}}[\mathrm{M}(2,n-2)]. Set δ=Δqkl\delta=\Delta_{q}^{kl}. Then [13, Theorem 4.7] shows that S0(δ)S^{0}(\delta) is isomorphic to the subalgebra of 𝕂q1[M(2,n2)]\mathbb{K}_{q^{-1}}[\mathrm{M}(2,n-2)] generated by X1jX_{1j} with 1jn1k1\leq j\leq n-1-k and X2jX_{2j} with 1jnl1\leq j\leq n-l. We refer the reader to [13] for more details.

Of course, we can interchange qq and q1q^{-1}, so that it is natural to refer to the subalgebra of 𝕂q[M(2,n2)]\mathbb{K}_{q}[\mathrm{M}(2,n-2)] generated by X1jX_{1j} with 1jt1\leq j\leq t and X2jX_{2j} with 1js1\leq j\leq s as the quantum Schubert cell of the Grassmannian Gr(2,n)\mathrm{Gr}(2,n) associated to the partition (t,s)(t,s), where tst\geq s and s,tn2s,t\leq n-2. Our aim is to prove that this algebra is a quantum cluster algebra.

First, we state our chosen initial seed for the quantum cluster algebra structure. For our initial quantum cluster we choose

y¯=(X1t,X1(t1),,X1s,𝑿𝟏(𝒔𝟏),𝑿𝟏(𝒔𝟐),,𝑿𝟏𝟏,𝑿𝟐𝟏,𝚫𝒒𝟏𝟐,𝚫𝒒𝟐𝟑,,𝚫𝒒(𝒔𝟏)𝒔).\underline{y}=(X_{1t},X_{1(t-1)},\ldots,X_{1s},\mathitbf{X}_{\mathbf{1(\mathitbf{s}-1)}},\mathitbf{X}_{\mathbf{1(\mathitbf{s}-2)}},\ldots,\mathitbf{X}_{\mathbf{11}},X_{21},\Delta_{q}^{12},\Delta_{q}^{23},\ldots,\Delta_{q}^{(s-1)s}).

So, we have s1s-1 mutable cluster variables and t+1t+1 coefficients (and a cluster containing s+ts+t variables in total).

We will retain a similar notation to the Grassmannian case, except that rows and columns corresponding to XijX_{ij} will be indicated by parenthesis (ij)(ij) and those to minors by brackets [ij][ij], as before. The initial exchange matrix BB is given by

B(1i)(1k)\displaystyle B_{(1i)(1k)} ={0forik+21fori=k+10fori=k1fori=k10forik2\displaystyle=\begin{cases}0&\text{for}\ i\geq k+2\\ -1&\text{for}\ i=k+1\\ 0&\text{for}\ i=k\\ 1&\text{for}\ i=k-1\\ 0&\text{for}\ i\leq k-2\end{cases} B[j(j+1)](1k)\displaystyle B_{[j(j+1)](1k)} ={0forjk21forj=k11forj=k0forjk+1\displaystyle=\begin{cases}0&\text{for}\ j\leq k-2\\ -1&\text{for}\ j=k-1\\ 1&\text{for}\ j=k\\ 0&\text{for}\ j\geq k+1\end{cases}
B(21)(1k)\displaystyle B_{(21)(1k)} ={0fork21fork=1\displaystyle=\begin{cases}0&\text{for}\ k\geq 2\\ -1&\text{for}\ k=1\end{cases}

where ti1t\geq i\geq 1, 1js11\leq j\leq s-1 and s1k1s-1\geq k\geq 1. For example, for n9n\geq 9, t=7t=7 and s=6s=6 we have

B=(15)(14)(13)(12)(11)(17)( 00000) (16)10000(15)𝟎𝟏𝟎𝟎𝟎(14)𝟏𝟎𝟏𝟎𝟎(13)𝟎𝟏𝟎𝟏𝟎(12)𝟎𝟎𝟏𝟎𝟏(11)𝟎𝟎𝟎𝟏𝟎(21)00001[12]00011[23]00110[34]01100[45]11000[56]10000B=\bordermatrix{&\scriptstyle{(15)}&\scriptstyle{(14)}&\scriptstyle{(13)}&\scriptstyle{(12)}&\scriptstyle{(11)}\cr\scriptstyle{(17)}&0&0&0&0&0\cr\scriptstyle{(16)}&-1&0&0&0&0\cr\scriptstyle{(15)}&\mathbf{0}&\mathbf{-1}&\mathbf{0}&\mathbf{0}&\mathbf{0}\cr\scriptstyle{(14)}&\mathbf{1}&\mathbf{0}&\mathbf{-1}&\mathbf{0}&\mathbf{0}\cr\scriptstyle{(13)}&\mathbf{0}&\mathbf{1}&\mathbf{0}&\mathbf{-1}&\mathbf{0}\cr\scriptstyle{(12)}&\mathbf{0}&\mathbf{0}&\mathbf{1}&\mathbf{0}&\mathbf{-1}\cr\scriptstyle{(11)}&\mathbf{0}&\mathbf{0}&\mathbf{0}&\mathbf{1}&\mathbf{0}\cr\scriptstyle{(21)}&0&0&0&0&-1\cr\scriptstyle{[12]}&0&0&0&-1&1\cr\scriptstyle{[23]}&0&0&-1&1&0\cr\scriptstyle{[34]}&0&-1&1&0&0\cr\scriptstyle{[45]}&-1&1&0&0&0\cr\scriptstyle{[56]}&1&0&0&0&0}

We note that BB has a natural three-block structure, as a zero block 0ts,s10_{t-s,s-1} on the row set {(1t),,(1(s+1))}\{(1t),\ldots,(1(s+1))\} and two blocks on the row sets {(1s),,(11)}\{(1s),\ldots,(11)\} and {(21),[12],,[(s1)s]}\{(21),[12],\ldots,[(s-1)s]\}.

The corresponding quiver for n9n\geq 9, t=7t=7 and s=6s=6 is

(11)(12)(13)(14)(15)(16)(17)(21)[12][23][34][45][56]

We see that for any nn and partition (t,s)(t,s) this quantum cluster algebra is of type As1A_{s-1} (independent of tt), since the subquiver on the vertices {(𝟏𝟏),,(𝟏(𝒔𝟏))}\{\mathbf{(11)},\ldots,\mathbf{(1(\mathitbf{s}-1))}\} is an orientation of the Dynkin diagram of this type.

The quasi-commutation matrix LL is as follows:

L(1i)(1k)\displaystyle L_{(1i)(1k)} ={1forik+10fori=k1forik1\displaystyle=\begin{cases}-1&\text{for}\ i\geq k+1\\ 0&\text{for}\ i=k\\ 1&\text{for}\ i\leq k-1\end{cases} L(1i)(21)\displaystyle L_{(1i)(21)} ={0fori21fori=1\displaystyle=\begin{cases}0&\text{for}\ i\geq 2\\ 1&\text{for}\ i=1\end{cases}
L(1i)[l(l+1)]\displaystyle L_{(1i)[l(l+1)]} ={1foril+20fori=lorl+11foril1\displaystyle=\begin{cases}-1&\text{for}\ i\geq l+2\\ 0&\text{for}\ i=l\ \text{or}\ l+1\\ 1&\text{for}\ i\leq l-1\end{cases} L(21)(1k)\displaystyle L_{(21)(1k)} ={0fork21fork=1\displaystyle=\begin{cases}0&\text{for}\ k\geq 2\\ -1&\text{for}\ k=1\end{cases}
L(21)(21)\displaystyle L_{(21)(21)} =0\displaystyle=0 L(21)[l(l+1)]\displaystyle L_{(21)[l(l+1)]} ={0forl=11forl2\displaystyle=\begin{cases}0&\text{for}\ l=1\\ 1&\text{for}\ l\geq 2\end{cases}
L[j(j+1)](1k)\displaystyle L_{[j(j+1)](1k)} ={1forjk20forj=k1ork1forjk+1\displaystyle=\begin{cases}1&\text{for}\ j\leq k-2\\ 0&\text{for}\ j=k-1\ \text{or}\ k\\ -1&\text{for}\ j\geq k+1\end{cases} L[j(j+1)](21)\displaystyle L_{[j(j+1)](21)} ={0forj=11forj2\displaystyle=\begin{cases}0&\text{for}\ j=1\\ -1&\text{for}\ j\geq 2\end{cases}
L[j(j+1)][l(l+1)]\displaystyle L_{[j(j+1)][l(l+1)]} ={2forjl21forj=l10forj=l1forj=l+12forjl+2\displaystyle=\begin{cases}2&\text{for}\ j\leq l-2\\ 1&\text{for}\ j=l-1\\ 0&\text{for}\ j=l\\ -1&\text{for}\ j=l+1\\ -2&\text{for}\ j\geq l+2\end{cases}

for ti,k1t\geq i,k\geq 1 and 1j,ls11\leq j,l\leq s-1. These values may be verified easily, using the well-known quasi-commutation relations in quantum matrices. For n9n\geq 9 and the partition (7,6)(7,6), this matrix is

L=(17)(16)(15)(14)(13)(12)(11)(21)[12][23][34][45][56](17)( 0111111011111) (16)1011111011110(15)11𝟎𝟏𝟏𝟏𝟏011100(14)11𝟏𝟎𝟏𝟏𝟏011001(13)11𝟏𝟏𝟎𝟏𝟏010011(12)11𝟏𝟏𝟏𝟎𝟏000111(11)11𝟏𝟏𝟏𝟏𝟎101111(21)0000001001111[12]1111100001222[23]1111001110122[34]1110011121012[45]1100111122101[56]1001111122210L=\bordermatrix{&\scriptstyle{(17)}&\scriptstyle{(16)}&\scriptstyle{(15)}&\scriptstyle{(14)}&\scriptstyle{(13)}&\scriptstyle{(12)}&\scriptstyle{(11)}&\scriptstyle{(21)}&\scriptstyle{[12]}&\scriptstyle{[23]}&\scriptstyle{[34]}&\scriptstyle{[45]}&\scriptstyle{[56]}\cr\scriptstyle{(17)}&0&-1&-1&-1&-1&-1&-1&0&-1&-1&-1&-1&-1\cr\scriptstyle{(16)}&1&0&-1&-1&-1&-1&-1&0&-1&-1&-1&-1&0\cr\scriptstyle{(15)}&1&1&\mathbf{0}&\mathbf{-1}&\mathbf{-1}&\mathbf{-1}&\mathbf{-1}&0&-1&-1&-1&0&0\cr\scriptstyle{(14)}&1&1&\mathbf{1}&\mathbf{0}&\mathbf{-1}&\mathbf{-1}&\mathbf{-1}&0&-1&-1&0&0&1\cr\scriptstyle{(13)}&1&1&\mathbf{1}&\mathbf{1}&\mathbf{0}&\mathbf{-1}&\mathbf{-1}&0&-1&0&0&1&1\cr\scriptstyle{(12)}&1&1&\mathbf{1}&\mathbf{1}&\mathbf{1}&\mathbf{0}&\mathbf{-1}&0&0&0&1&1&1\cr\scriptstyle{(11)}&1&1&\mathbf{1}&\mathbf{1}&\mathbf{1}&\mathbf{1}&\mathbf{0}&1&0&1&1&1&1\cr\scriptstyle{(21)}&0&0&0&0&0&0&-1&0&0&1&1&1&1\cr\scriptstyle{[12]}&1&1&1&1&1&0&0&0&0&1&2&2&2\cr\scriptstyle{[23]}&1&1&1&1&0&0&-1&-1&-1&0&1&2&2\cr\scriptstyle{[34]}&1&1&1&0&0&-1&-1&-1&-2&-1&0&1&2\cr\scriptstyle{[45]}&1&1&0&0&-1&-1&-1&-1&-2&-2&-1&0&1\cr\scriptstyle{[56]}&1&0&0&-1&-1&-1&-1&-1&-2&-2&-2&-1&0}

We claim that BB and LL are compatible.

Proposition 9.

BTL=(0s1,ts+1 2Is1 0s1,s)B^{T}L=(0_{s-1,t-s+1}\ 2I_{s-1}\ 0_{s-1,s})

Proof:.

This follows from a similar set of calculations to those in the proof of Proposition 1. ∎

To show that the quantum Schubert cells are quantum cluster algebras, we use a similar strategy to the Grassmannian case. Firstly, we note that we can reduce to considering the case t=st=s. For if t>st>s, we have additional coefficients X1t,,X1(s+1)X_{1t},\ldots,X_{1(s+1)} but the corresponding rows of the exchange matrix BB are all zero and so these extra coefficients never appear in exchange relations. Secondly, we can further reduce to the case t=s=n2t=s=n-2 (i.e. the big cell), else we may as well consider a smaller nn.

So, taking t=s=n2t=s=n-2, we are considering the initial quantum cluster

y¯=(X1(n2),𝑿𝟏(𝒏𝟑),𝑿𝟏(𝒏𝟒),,𝑿𝟏𝟏,𝑿𝟐𝟏,𝚫𝒒𝟏𝟐,𝚫𝒒𝟐𝟑,,𝚫𝒒(𝒏𝟑)(𝒏𝟐)).\underline{y}=(X_{1(n-2)},\mathitbf{X}_{\mathbf{1(\mathitbf{n}-3)}},\mathitbf{X}_{\mathbf{1(\mathitbf{n}-4)}},\ldots,\mathitbf{X}_{\mathbf{11}},X_{21},\Delta_{q}^{12},\Delta_{q}^{23},\ldots,\Delta_{q}^{(n-3)(n-2)}).

We remark that the exchange matrix BB for this cluster is equal to that for the initial seed of 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)] with the row labelled [12][12] deleted. This is not surprising, as 𝕂q[Gr(2,n)][(Δq12)1]\mathbb{K}_{q}[\mathrm{Gr}(2,n)][(\Delta_{q}^{12})^{-1}] is isomorphic to a skew-Laurent extension of the form 𝕂q[M(2,n2)][y±;σ]\mathbb{K}_{q}[\mathrm{M}(2,n-2)][y^{\pm};\sigma] by [11, Corollary 4.4]. (The reader is referred to [11] for more details on this isomorphism.)

We break the proof into two parts. In the first, we show that we can obtain all remaining matrix entries by repeated mutation starting from 𝑿𝟏𝟏\mathitbf{X}_{\mathbf{11}} and in the second we obtain the remaining minors.

Proposition 10.

Let 1rn31\leq r\leq n-3. After the sequence of mutations μ(1r)μ(1(r1))μ(11)\mu_{(1r)}\circ\mu_{(1(r-1))}\circ\cdots\circ\mu_{(11)}, the cluster obtained contains the mutable variables

(𝑿𝟏(𝒏𝟑),,𝑿𝟏(𝒓+𝟏),𝑿𝟐(𝒓+𝟏),𝑿𝟐𝒓,,𝑿𝟐𝟐).(\mathitbf{X}_{\mathbf{1(\mathitbf{n}-3)}},\ldots,\mathitbf{X}_{\mathbf{1(\mathitbf{r}+1)}},\mathitbf{X}_{\mathbf{2(\mathitbf{r}+1)}},\mathitbf{X}_{\mathbf{2\mathitbf{r}}},\ldots,\mathitbf{X}_{\mathbf{22}}).

Furthermore, the exchange matrix BB of this cluster has only the following non-zero entries in its (1(r+1))(1(r+1))-column: B(1(r+2))(1(r+1))=B(2(r+1))(1(r+1))=1B_{(1(r+2))(1(r+1))}=B_{(2(r+1))(1(r+1))}=-1 and B[(r+1)(r+2)](1(r+1))=1B_{[(r+1)(r+2)](1(r+1))}=1.

Proof:.

We work by induction on rr and compute the mutation μ(1(r+1))\mu_{(1(r+1))} applied to the cluster and exchange matrix in the statement above. This mutation exchanges 𝑿(𝟏(𝒓+𝟏))\mathitbf{X}_{\mathbf{(1(\mathitbf{r}+1))}} for some new element XX which is determined by the quantum exchange relation. This relation is determined by the non-zero entries of BB stated above and so is

X\displaystyle X =\displaystyle= M(1(r+1))[(r+1)(r+2)]( 010010)\displaystyle M\mskip-3.0mu\mskip-3.0mu\mskip-3.0mu\bordermatrix{&&&\scriptscriptstyle{(1(r+1))}&&&&\scriptscriptstyle{[(r+1)(r+2)]}&&\ \cr&\cdots&0&-1&0&\cdots&0&1&0&\cdots}
+M(1(r+2))(1(r+1))(2(r+1))( 0110010)\displaystyle+M\mskip-3.0mu\mskip-3.0mu\mskip-3.0mu\bordermatrix{&&&\scriptscriptstyle{(1(r+2))}&\scriptscriptstyle{(1(r+1))}&&&&\scriptscriptstyle{(2(r+1))}&&\cr&\cdots&0&1&-1&0&\cdots&0&1&0&\cdots}
=\displaystyle= qα𝑿𝟏(𝒓+𝟏)𝟏𝚫𝒒(𝒓+𝟏)(𝒓+𝟐)+𝒒β𝑿𝟏(𝒓+𝟐)𝑿𝟏(𝒓+𝟏)𝟏𝑿𝟐(𝒓+𝟏)\displaystyle q^{\alpha}\mathitbf{X}_{\mathbf{1(\mathitbf{r}+1)}}^{-1}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\mathitbf{r}+1)(\mathitbf{r}+2)}}+q^{\beta}\mathitbf{X}_{\mathbf{1(\mathitbf{r}+2)}}\mathitbf{X}_{\mathbf{1(\mathitbf{r}+1)}}^{-1}\mathitbf{X}_{\mathbf{2(\mathitbf{r}+1)}}

where α\alpha and β\beta are integers to be calculated from BB and the quasi-commutation matrix. These integers have the following values:

α\displaystyle\alpha =12((1)(1)L[(r+1)(r+2)](1(r+1)))=12(0)=0\displaystyle=\textstyle{\frac{1}{2}}((-1)\cdot(1)\cdot L_{[(r+1)(r+2)](1(r+1))})=\textstyle{\frac{1}{2}}(0)=0
and
β\displaystyle\beta =12(1(1)L(1(r+1))(1(r+2))+11L(2(r+1)(1(r+2))+(1)1L(2(r+1))(1(r+1)))\displaystyle=\textstyle{\frac{1}{2}}(1\cdot(-1)\cdot L_{(1(r+1))(1(r+2))}+1\cdot 1\cdot L_{(2(r+1)(1(r+2))}+(-1)\cdot 1\cdot L_{(2(r+1))(1(r+1))})
=12(1+0+1)\displaystyle=\textstyle{\frac{1}{2}}(-1+0+1)
=0\displaystyle=0

(remembering that the XijX_{ij} satisfy the quantum matrix relations). Substituting these and applying quasi-commutation relations to move the 𝑿𝟏(𝒓+𝟏)𝟏\mathitbf{X}_{\mathbf{1(\mathitbf{r}+1)}}^{-1} terms to the left before re-arranging, we obtain the following equality involving XX:

𝑿𝟏(𝒓+𝟏)𝑿=𝚫𝒒(𝒓+𝟏)(𝒓+𝟐)+𝒒𝑿𝟏(𝒓+𝟐)𝑿𝟐(𝒓+𝟏).\mathitbf{X}_{\mathbf{1(\mathitbf{r}+1)}}X=\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\mathitbf{r}+1)(\mathitbf{r}+2)}}+q\mathitbf{X}_{\mathbf{1(\mathitbf{r}+2)}}\mathitbf{X}_{\mathbf{2(\mathitbf{r}+1)}}.

But the right-hand side of this equation is equal to 𝑿𝟏(𝒓+𝟏)𝑿𝟐(𝒓+𝟐)\mathitbf{X}_{\mathbf{1(\mathitbf{r}+1)}}\mathitbf{X}_{\mathbf{2(\mathitbf{r}+2)}} and hence we deduce that X=𝑿𝟐(𝒓+𝟐)X=\mathitbf{X}_{\mathbf{2(\mathitbf{r}+2)}} as expected.

It remains to verify the form of the (1(r+2))(1(r+2)) column of the exchange matrix BB^{\prime} after doing μ(1(r+1))\mu_{(1(r+1))}. Prior to this mutation, the (1(r+2))(1(r+2)) column has zero entries except in rows (1(r+3))(1(r+3)) and [(r+1)(r+2)][(r+1)(r+2)] where it is 1-1 and in rows (2(r+2))(2(r+2)) and [(r+2)(r+3)][(r+2)(r+3)] where it is 11. (The (2(r+2))(2(r+2)) label replaces (1(r+1))(1(r+1)).) The (2(r+1))(2(r+1))-column is the (1(r+1))(1(r+1))-column with signs changed and it is the unchanged one that we need to do the mutation: this has a 1-1 in rows (1(r+2))(1(r+2)) and (2(r+1))(2(r+1)) and a 11 in row [(r+1)(r+2)][(r+1)(r+2)]. Therefore, after mutation, the (1(r+2))(1(r+2))-column is zero except possibly in the following entries:

  1. (i)

    1-1 in row (1(r+3))(1(r+3)), unchanged since there is a 0 in the (1(r+1))(1(r+1))-column

  2. (ii)

    0 in row (1(r+2))(1(r+2)), unchanged since the (1(r+1))(1(r+1))-row and column values are 11 and 1-1 respectively

  3. (iii)

    1-1 in row (2(r+2))(2(r+2)), changed from 11 by the sign change in the mutation row

  4. (iv)

    0 in row (2(r+1))(2(r+1)), unchanged since the (1(r+1))(1(r+1))-row and column values are 11 and 1-1 respectively

  5. (v)

    0 in row [(r+1)(r+2)][(r+1)(r+2)], changed from 1-1 since the (1(r+1))(1(r+1))-row and column values are both 11

  6. (vi)

    11 in row [(r+2)(r+3)][(r+2)(r+3)], unchanged since there is a 0 in the (1(r+1))(1(r+1))-column

In summary, the non-zero entries in column (1(r+2))(1(r+2)) are B(1(r+3))(1(r+2))=B(2(r+2))(1(r+2))=1B^{\prime}_{(1(r+3))(1(r+2))}=B^{\prime}_{(2(r+2))(1(r+2))}=-1 and B[(r+2)(r+3)](1(r+2))=1B^{\prime}_{[(r+2)(r+3)](1(r+2))}=1, verifying the inductive claim. ∎

Next, we state and prove the corresponding result on the minors.

Proposition 11.

Let 2α<βn32\leq\alpha<\beta\leq n-3. After the sequence of mutations μ(1β)μ(1(β1))μ(1α)\mu_{(1\beta)}\circ\mu_{(1(\beta-1))}\circ\cdots\circ\mu_{(1\alpha)}, the cluster obtained contains the mutable variables

(𝑿𝟏(𝒏𝟑),,𝑿𝟏(𝜷+𝟏),𝚫𝒒(𝜶𝟏)(𝜷+𝟏),𝚫𝒒(𝜶𝟏)𝜷,,𝚫𝒒(𝜶𝟏)(𝜶+𝟏),𝑿𝟏(𝜶𝟏),,𝑿𝟏𝟏).(\mathitbf{X}_{\mathbf{1(\mathitbf{n}-3)}},\ldots,\mathitbf{X}_{\mathbf{1(\boldsymbol{\beta}+1)}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\alpha}-1)(\boldsymbol{\beta}+1)}},\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\alpha}-1)\boldsymbol{\beta}}},\ldots,\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\alpha}-1)(\boldsymbol{\alpha}+1)}},\mathitbf{X}_{\mathbf{1(\boldsymbol{\alpha}-1)}},\ldots,\mathitbf{X}_{\mathbf{11}}).

Furthermore, the exchange matrix BB of this cluster has only the following non-zero entries in its (1(β+1))(1(\beta+1))-column: B(1(β+2))(1(β+1))=B[(α1)(β+1)](1(β+1))=1B_{(1(\beta+2))(1(\beta+1))}=B_{[(\alpha-1)(\beta+1)](1(\beta+1))}=-1 and B(1(α1))(1(β+1))=B[(β+1)(β+2)](1(β+1))=1B_{(1(\alpha-1))(1(\beta+1))}=B_{[(\beta+1)(\beta+2)](1(\beta+1))}=1.

Proof:.

We work by induction on β\beta and compute the mutation μ(1(β+1))\mu_{(1(\beta+1))} applied to the cluster and exchange matrix in the statement above. This mutation exchanges 𝑿(𝟏(𝜷+𝟏))\mathitbf{X}_{\mathbf{(1(\boldsymbol{\beta}+1))}} for some new element XX which is determined by the quantum exchange relation. This relation is determined by the non-zero entries of BB stated above and so is

X\displaystyle X =\displaystyle= M(1(β+1))(1(α1))[(β+1)(β+2)]( 010010010)\displaystyle M\mskip-3.0mu\mskip-3.0mu\mskip-3.0mu\bordermatrix{&&&\scriptscriptstyle{(1(\beta+1))}&&&&\scriptscriptstyle{(1(\alpha-1))}&&&&\scriptscriptstyle{[(\beta+1)(\beta+2)]}&&\ \cr&\cdots&0&-1&0&\cdots&0&1&0&\cdots&0&1&0&\cdots}
+M(1(β+2))(1(β+1))[(α1)(β+1)]( 01110)\displaystyle+M\mskip-3.0mu\mskip-3.0mu\mskip-3.0mu\bordermatrix{&&&\scriptscriptstyle{(1(\beta+2))}&\scriptscriptstyle{(1(\beta+1))}&\scriptscriptstyle{[(\alpha-1)(\beta+1)]}&&\cr&\cdots&0&1&-1&1&0&\cdots}
=\displaystyle= qr𝑿𝟏(𝜷+𝟏)𝟏𝑿𝟏(𝜶𝟏)𝚫𝒒(𝜷+𝟏)(𝜷+𝟐)+𝒒𝒔𝑿𝟏(𝜷+𝟐)𝑿𝟏(𝜷+𝟏)𝟏𝚫𝒒(𝜶𝟏)(𝜷+𝟏)\displaystyle q^{r}\mathitbf{X}_{\mathbf{1(\boldsymbol{\beta}+1)}}^{-1}\mathitbf{X}_{\mathbf{1(\boldsymbol{\alpha}-1)}}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\beta}+1)(\boldsymbol{\beta}+2)}}+q^{s}\mathitbf{X}_{\mathbf{1(\boldsymbol{\beta}+2)}}\mathitbf{X}_{\mathbf{1(\boldsymbol{\beta}+1)}}^{-1}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\alpha}-1)(\boldsymbol{\beta}+1)}}

where rr and ss are integers to be calculated from BB and the quasi-commutation matrix. These integers have the following values:

r\displaystyle r =12((1)1L(1(α1))(1(β+1))+(1)1L[(β+1)(β+2)](1(β+1))+11L[(β+1)(β+2)](1(α1)))\displaystyle=\textstyle{\frac{1}{2}}((-1)\cdot 1\cdot L_{(1(\alpha-1))(1(\beta+1))}+(-1)\cdot 1\cdot L_{[(\beta+1)(\beta+2)](1(\beta+1))}+1\cdot 1\cdot L_{[(\beta+1)(\beta+2)](1(\alpha-1))})
=12(1+01)\displaystyle=\textstyle{\frac{1}{2}}(-1+0-1)
=1\displaystyle=-1
and
s\displaystyle s =12(1(1)L(1(β+1))(1(β+2))+11L[(α1)(β+1)](1(β+2))+(1)1L[(α1)(β+1)](1(β+1)))\displaystyle=\textstyle{\frac{1}{2}}(1\cdot(-1)\cdot L_{(1(\beta+1))(1(\beta+2))}+1\cdot 1\cdot L_{[(\alpha-1)(\beta+1)](1(\beta+2))}+(-1)\cdot 1\cdot L_{[(\alpha-1)(\beta+1)](1(\beta+1))})
=12(1+1+0)\displaystyle=\textstyle{\frac{1}{2}}(-1+1+0)
=0\displaystyle=0

(remembering that the XijX_{ij} satisfy the quantum matrix relations and quasi-commutation relations involving minors can be calculated from these).

Substituting these and applying quasi-commutation relations to move the 𝑿𝟏(𝜷+𝟏)𝟏\mathitbf{X}_{\mathbf{1(\boldsymbol{\beta}+1)}}^{-1} terms to the left before re-arranging, we obtain the following equality involving XX:

𝑿𝟏(𝜷+𝟏)𝑿=𝒒𝟏𝑿𝟏(𝜶𝟏)𝚫𝒒(𝜷+𝟏)(𝜷+𝟐)+𝒒𝑿𝟏(𝜷+𝟐)𝚫𝒒(𝜶𝟏)(𝜷+𝟏).\mathitbf{X}_{\mathbf{1(\boldsymbol{\beta}+1)}}X=q^{-1}\mathitbf{X}_{\mathbf{1(\boldsymbol{\alpha}-1)}}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\beta}+1)(\boldsymbol{\beta}+2)}}+q\mathitbf{X}_{\mathbf{1(\boldsymbol{\beta}+2)}}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\alpha}-1)(\boldsymbol{\beta}+1)}}.

But the right-hand side of this equation is equal to 𝑿𝟏(𝜷+𝟏)𝚫𝒒(𝜶𝟏)(𝜷+𝟐)\mathitbf{X}_{\mathbf{1(\boldsymbol{\beta}+1)}}\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\alpha}-1)(\boldsymbol{\beta}+2)}} by the qq-Laplace relations (see for instance [9, Lemma A.4]) and hence we deduce that X=𝚫𝒒(𝜶𝟏)(𝜷+𝟐)X=\mathbf{\Delta}_{\mathitbf{q}}^{\mathbf{(\boldsymbol{\alpha}-1)(\boldsymbol{\beta}+2)}} as expected.

It remains to verify the form of the (1(β+2))(1(\beta+2)) column of the exchange matrix BB^{\prime} after doing μ(1(β+1))\mu_{(1(\beta+1))}. Prior to this mutation, the (1(β+2))(1(\beta+2)) column has zero entries except in rows (1(β+3))(1(\beta+3)) and [(α1)(β+1)][(\alpha-1)(\beta+1)] where it is 1-1 and in rows (1(α1))(1(\alpha-1)) and [(β+1)(β+2)][(\beta+1)(\beta+2)] where it is 11, by the inductive hypothesis. (The [(α1)(β+1)][(\alpha-1)(\beta+1)] label replaces (1(β+1))(1(\beta+1)).) The [(α1)(β+1)][(\alpha-1)(\beta+1)]-column is the (1(β+1))(1(\beta+1))-column with signs changed and it is the unchanged one that we need to do the mutation: this has a 1-1 in rows (1(β+2))(1(\beta+2)) and [β(β+1)][\beta(\beta+1)] and a 11 in rows (1β)(1\beta) and [(β+1)(β+2)][(\beta+1)(\beta+2)]. Therefore, after mutation, the (1(β+2))(1(\beta+2))-column is zero except possibly in the following entries:

  1. (i)

    1-1 in row (1(β+3))(1(\beta+3)), unchanged since there is a 0 in the (1(β+1))(1(\beta+1))-column

  2. (ii)

    0 in row (1(β+2))(1(\beta+2)), unchanged since the (1(β+1))(1(\beta+1))-row and column values are 11 and 1-1 respectively

  3. (iii)

    1-1 in row [(α1)(β+2)][(\alpha-1)(\beta+2)], changed from 11 by the sign change in the mutation row

  4. (iv)

    0 in row [(α1)(β+1)][(\alpha-1)(\beta+1)], unchanged since the (1(β+1))(1(\beta+1))-row and column values are 11 and 1-1 respectively

  5. (v)

    11 in row (1(α1))(1(\alpha-1)), changed from 0 since the (1(β+1))(1(\beta+1))-row and column values are both 11

  6. (vi)

    0 in row [(β+1)(β+2)][(\beta+1)(\beta+2)], changed from 11 since the (1(β+1))(1(\beta+1))-row and column values are both 11

  7. (vii)

    11 in row [(β+2)(β+3)][(\beta+2)(\beta+3)], unchanged since there is a 0 in the (1(β+1))(1(\beta+1))-column

That is, the non-zero entries in column (1(β+2))(1(\beta+2)) are B(1(β+3))(1(β+2))=B[(α1)(β+2)](1(β+2))=1B^{\prime}_{(1(\beta+3))(1(\beta+2))}=B^{\prime}_{[(\alpha-1)(\beta+2)](1(\beta+2))}=-1 and B(1(α1))(1(β+2))=B[(β+2)(β+3)](1(β+2))=1B^{\prime}_{(1(\alpha-1))(1(\beta+2))}=B^{\prime}_{[(\beta+2)(\beta+3)](1(\beta+2))}=1, verifying the inductive claim. ∎

We can now complete the proof of our claim.

Theorem 12.

The quantum Schubert cell of the Grassmannian Gr(2,n)\mathrm{Gr}(2,n) associated to the partition (t,s)(t,s), where tst\geq s and t,sn2t,s\leq n-2, is a quantum cluster algebra of type As1A_{s-1}.

Proof:.

We recall from above that we were able to reduce to the case t=s=n2t=s=n-2. It follows from the previous propositions that every generator occurs in some cluster and can be obtained by a finite sequence of mutations from our given initial seed. Furthermore, the general theory of (quantum) cluster algebras of type AA tells us that a cluster algebra of type AlA_{l} has precisely l(l+1)2+l=l2+3l2\frac{l(l+1)}{2}+l=\frac{l^{2}+3l}{2} mutable cluster variables (as this is the number of almost positive roots in this type). For l=s1=n3l=s-1=n-3, this number is (n3)(n2)2+(n3)=n23n2\frac{(n-3)(n-2)}{2}+(n-3)=\frac{n^{2}-3n}{2}.

Now, the number of matrix entries and minors are 2(n2)2(n-2) and (n3)(n2)2\frac{(n-3)(n-2)}{2} respectively and our stated cluster algebra structure has n1n-1 coefficients. Since 2n4+(n3)(n2)2(n1)=n23n22n-4+\frac{(n-3)(n-2)}{2}-(n-1)=\frac{n^{2}-3n}{2}, we deduce that the set of all mutable cluster variables must be equal to the set of matrix entries and minors minus the coefficients, since the latter is contained in the former by the propositions.

In other words, taking all cluster variables (mutable ones and coefficients) together gives us exactly the set of all matrix entries and minors. From this we deduce that every cluster variable is a genuine matrix entry or minor (i.e. no localisation is required) and hence the subalgebra generated by all cluster variables is exactly the whole quantum Schubert cell, which is therefore a quantum cluster algebra. ∎

Remark 13.

As for the quantum Grassmannian 𝕂q[Gr(2,n)]\mathbb{K}_{q}[\mathrm{Gr}(2,n)] (see Remark 5), the hypothesis that q1/2q^{1/2} exists in 𝕂\mathbb{K} can be removed.

References

  • [1] Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1–52.
  • [2] Arkady Berenstein and Andrei Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005), no. 2, 405–455.
  • [3] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, Computational algebra and number theory (London, 1993).
  • [4] Ken A. Brown and Ken R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002.
  • [5] Sergey Fomin and Nathan Reading, Root systems and generalized associahedra, Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 63–131.
  • [6] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529 (electronic).
  • [7]   , Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63–121.
  • [8] Christof Geiß, Bernard Leclerc, and Jan Schröer, Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 3, 825–876.
  • [9] K. R. Goodearl and T. H. Lenagan, Prime ideals invariant under winding automorphisms in quantum matrices, Internat. J. Math. 13 (2002), no. 5, 497–532.
  • [10] Jan E. Grabowski, Examples of quantum cluster algebra structures associated to partial flag varieties, preprint, posted at arXiv:0907.4922.
  • [11] Ann Kelly, Tom H Lenagan, and Laurent Rigal, Ring theoretic properties of quantum grassmannians, J. Algebra Appl. 3 (2004), no. 1, 9–30.
  • [12] Stéphane Launois and Tom H Lenagan, Twisting the quantum grassmannian, preprint, posted at arXiv:0910.0208.
  • [13] Stéphane Launois, Tom H Lenagan, and Laurent Rigal, Prime ideals in the quantum grassmannian, Selecta Math. (N.S.) 13 (2008), no. 4, 697–725.
  • [14] Bernard Leclerc and Andrei Zelevinsky, Quasicommuting families of quantum Plücker coordinates, Kirillov’s seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, vol. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 85–108.
  • [15] George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston Inc., Boston, MA, 1993.
  • [16] Josh Scott, Quasi-commuting families of quantum minors, J. Algebra 290 (2005), no. 1, 204–220.
  • [17] Joshua S. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. (3) 92 (2006), no. 2, 345–380.