This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum complementarity from a measurement-based perspective

Shan Huang National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China Institute for Brain Sciences and Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China    Wen-Bo Liu National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China    Yundu Zhao National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China Institute for Brain Sciences and Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China    Hua-Lei Yin hlyin@nju.edu.cn National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China    Zeng-Bing Chen zbchen@nju.edu.cn National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China    Shengjun Wu sjwu@nju.edu.cn National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China Institute for Brain Sciences and Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract

One of the most remarkable features of quantum physics is that attributes of quantum objects, such as the wave-like and particle-like behaviors of single photons, can be complementary in the sense that they are equally real but cannot be observed simultaneously. Quantum measurements, serving as windows providing views into the abstract edifice of quantum theory, are basic tools for manifesting the intrinsic behaviors of quantum objects. However, quantitative formulation of complementarity that highlights its manifestations in sophisticated measurements remains elusive. Here we develop a general framework for demonstrating quantum complementarity in the form of information exclusion relations (IERs), which incorporates the wave-particle duality relations as particular examples. Moreover, we explore the applications of our theory in entanglement witnessing and elucidate that our IERs lead to an extended form of entropic uncertainty relations, providing intriguing insights into the connection between quantum complementarity and the preparation uncertainty.

I Introduction

Quantum mechanics imposes fundamental limits on an observer’s information gain in complementary measurements. In the light of Bohr’s complementarity principle [1], quantum systems possess mutually exclusive properties that are equally real, and a measurement to reveal one property would inevitably preclude all the complementary ones. Characterizing this subtle relationship between measurement strategy and information gain is significant for the sophisticated manipulation of quantum measurements in various tasks, from demonstrating genuine nonclassical features of quantum objects to general quantum information processing.

Wootters and Zurek [2] proposed the first quantitative statement of complementarity relation by taking an information-theoretical perspective into the competitive tradeoff between the wave-like and particle-like behaviors of single photons. This kind of wave-particle duality relations (WPDRs) are currently expressed in a concise inequality form [3, 4, 5, 6] for photons within the Mach-Zehnder interferometer (MZI; see Fig. 3). For example, Jaeger et al [4] and Englert [6] obtained the duality relation 𝒱2+𝒟21\mathcal{V}^{2}+\mathcal{D}^{2}\leq 1 between fringe visibility (wave property) 𝒱\mathcal{V} and path distinguishability (particle property) 𝒟\mathcal{D}. It is thus obvious that better which-way information implies less wave information, and vice versa.

Heisenberg’s uncertainty principle [7] is another fundamental concept in quantum mechanics which captures similar underlying physics of complementarity. It states that outcomes of specific measurements, e.g., position and momentum of a single particle, cannot be predicted with certainty simultaneously. Modern formulations of the uncertainty principle typically use entropic uncertainty measures [8, 9] due to their operational significance and the widespread applications [10] of entropic uncertainty relations (EURs), e.g., in the security analysis of quantum protocols [11, 12, 13].

The connections and contrasts between uncertainty and complementarity have been intensively debated [14, 15, 16, 17, 18, 19, 20]. It has been wondered whether novel complementarity relations can be derived directly from the well-studied and already-proven EURs. Particularly, Coles et al [20] proved that several WPDRs in the two-way interferometer can be equivalently reformulated as EURs for complementary observables. Thus two fundamental concepts of quantum mechanics are unified in this simple case.

Nevertheless, entropy is a natural measure of lack of information regarding only observation-independent properties and becomes conceptually inadequate [21] for quantum properties which are contextual and do not exist prior to measurements [22, 23]. To avoid this dilemma, Brukner and Zeilinger proposed an operationally invariant information measure of quantum systems [24]. It is naturally aligned with the concept of complementarity as being elegantly defined as the sum of individual measures of information gain over a complete set of mutually unbiased bases (CMUBs) [25, 26, 27, 28]—complementary bases—independent of particular choices of CMUBs and invariant under unitary time evolution. These intriguing properties inspired a series of insightful investigations [29, 30, 31, 32, 33, 34, 35, 36], including quantum state estimation [29, 30] and uncertainty relations for MUBs [34, 35].

In this paper, we adopt the operationally invariant information measure [24] and develop a general framework for characterizing quantum complementarity beyond WPDRs, in terms of basic limits on one’s ability to gain information about quantum systems through complementary measurement setups, i.e., information exclusion relations (IERs). We emphasize that when considering generalized measurements, identifying certainty of outcome statistics with information gain or visibility of physical property faces conceptual challenge—an outcome predictable with 100% certainty not necessarily reflects the complete information of the measured system. In contrast to IERs [37, 38, 39, 40, 41] that utilize entropic mutual information or deriving complementarity relations from EURs [20], our theory applies to generalized measurements and well captures the complete information of quantum systems as conserved quantities comprised of complementary pieces, highlighting the interplay between different pieces of information and their complementary nature.

This paper is structured as follows. In Sec. II, we introduce some preliminary notations. In Sec. III, we propose a measure of information gain in individual measurements while formalizing the concept of complementary information. In Sec. IV, we proceed to establish IERs which restrict one’s weighted sum of information gains over multiple measurements, with and without quantum memory respectively. In Sec. V, we show how our IERs lead to tight WPDRs. In Sec. VI, we discuss practical applications of our IERs. Finally, we briefly conclude this work in Sec. VII.

II Preliminary

On a dd-dimensional Hilbert space d\mathcal{H}_{d}, each generalized measurement, i.e., positive-operator-valued measure (POVM), is a collection of positive semi-definite operators (called effects) ={Mi}\mathcal{M}=\{M_{i}\} that sum up to the identity operator: Mi0M_{i}\geq 0 and iMi=𝟙d\sum_{i}M_{i}=\mathbbm{1}_{d}. In particular, the measurement of a nondegenerate observable is described by rank-1 projectors onto its eigenvectors, i.e., rank-1 projective measurement. When a quantum state ρ\rho is measured, the outcome probabilities are given by Born’s rule, pi=tr(Miρ)p_{i}=tr(M_{i}\rho).

The Choi-Jamiołkowski isomorphism [42] allows us to represent each operator OO on d\mathcal{H}_{d} as a vector |O\ket{O} of the product space d2\mathcal{H}_{d}^{\otimes 2}:

|O\displaystyle\ket{O} =dO𝟙d|ψd=i,j=1dOi,j|i|j,\displaystyle=\sqrt{d}\cdot O\otimes\mathbbm{1}_{d}\ket{\psi_{d}}=\sum_{i,j=1}^{d}O_{i,j}\ket{i}\otimes\ket{j}^{*}, (1)
O\displaystyle O =dtr2(|Oψd|),\displaystyle=\sqrt{d}\cdot tr_{2}\left(|O\rangle\langle\psi_{d}|\right),

where |ψd=1di=1d|i|i\ket{\psi_{d}}=\frac{1}{\sqrt{d}}\sum_{i=1}^{d}\ket{i}\otimes\ket{i}^{*} is the maximally entangled isotropic state and tr2()tr_{2}(\cdot) denotes the partial trace over the second space. A useful property of Eq. (1) that will be exploited is that O1|O2=tr(O1+O2)\braket{O_{1}|O_{2}}=tr(O_{1}^{+}O_{2}) holds for any two operators O1O_{1} and O2O_{2} on d\mathcal{H}_{d}.

III Measure of information gain

In the light of Kochen-Specker’s theorem [22] (see also Ref. [23]), it is impossible to assign a definite noncontextual value to every quantum observable. During a measurement, all that an observer has is the probabilistic occurrence of one outcome (labeled contextual value 1), which simultaneously negates the occurrence of other outcomes (labeled contextual values 0). The information content of quantum systems is thus reflected in the statistics of these contextual binary strings.

Consider an experimental setup to perform the measurement ={Mi}\mathcal{M}=\{M_{i}\} on individual copies of a quantum state that is unknown to the experimenter. Each time the iith outcome occurs, the experimenter gets a squared deviation (1tr(Mi)/d)2(1-tr(M_{i})/d)^{2} from the expectation tr(Mi)/dtr(M_{i})/d for the completely mixed state—least information state—or gets (0tr(Mi)/d)2(0-tr(M_{i})/d)^{2} otherwise. After repeating the experiments large enough NN times, the total squared deviation is Di2=N[pi(1tr(Mi)/d)2+(1pi)(tr(Mi)/d)2]D_{i}^{2}=N[p_{i}(1-tr(M_{i})/d)^{2}+(1-p_{i})(tr(M_{i})/d)^{2}], which consists of two contributions Di2=Δi2+Bi2D_{i}^{2}=\Delta_{i}^{2}+B_{i}^{2}. Wherein Δi2=N[pi(1pi)]\Delta_{i}^{2}=N[p_{i}(1-p_{i})] is the total uncertainty (variance), which determines the width 2Δi/N2\Delta_{i}/N of the confidence interval [pi1NΔi,pi+1NΔi][p_{i}-\frac{1}{N}\Delta_{i},p_{i}+\frac{1}{N}\Delta_{i}] for estimating the outcome probabilities {pi}\{p_{i}\}.

What truly discriminates the measured state from the completely mixed state, on the other hand, is the total squared bias Bi2=N(pitr(Mi)/d)2B_{i}^{2}=N(p_{i}-tr(M_{i})/d)^{2}. We suggest the measure of information gain on the state ρ\rho in each individual trial of the measurement ={Mi}\mathcal{M}=\{M_{i}\} to be the sum of mean squared bias over all outcomes

G()ρ\displaystyle G(\mathcal{M})_{\rho} =i(pitr(Mi)/d)2=:ρ|G^()|ρ.\displaystyle=\sum_{i}\big{(}p_{i}-tr(M_{i})/d\big{)}^{2}=:\braket{\rho|\hat{G}(\mathcal{M})|\rho}. (2)

In the above, we leverage the isomorphism (1) to define the view operator of a measurement \mathcal{M} as

G^()=i|M~iM~i|\displaystyle\hat{G}(\mathcal{M})=\sum_{i}|\tilde{M}_{i}\rangle\langle\tilde{M}_{i}| (3)

where M~i=Mi1dtr(Mi)𝟙d\tilde{M}_{i}=M_{i}-\frac{1}{d}tr(M_{i})\mathbbm{1}_{d} is traceless, or equivalently, |M~i=|Mi|ψdψd|Mi\ket{\tilde{M}_{i}}=\ket{M_{i}}-|\psi_{d}\rangle\langle\psi_{d}|M_{i}\rangle is orthogonal to |ψd\ket{\psi_{d}}. View operators are positive semi-definite, G^0\hat{G}\geq 0 on the (d21)(d^{2}-1)-dimensional subspace ψd\mathcal{H}_{\perp\psi_{d}} of d2\mathcal{H}_{d}^{\otimes 2} orthogonal to |ψd\ket{\psi_{d}}, and vanish for trivial POVMs whose effects are all proportional to the identity, Mi=1dtr(Mi)𝟙dM_{i}=\frac{1}{d}tr(M_{i})\mathbbm{1}_{d}.

Refer to caption
Figure 1: Illustration of the information complementarity, where the vector |ρ~\ket{\tilde{\rho}} encodes the complete information content of the state ρ\rho. For a two-outcome measurement ={Mi}i=01\mathcal{M}=\{M_{i}\}_{i=0}^{1}, the vectors {|M~i}\{\ket{\tilde{M}_{i}}\} span a 2-dimensional space (colored horizontal plane), on which the view operator G^()\hat{G}(\mathcal{M}) is a bijective transform. While the horizontal component |ρ~H\ket{\tilde{\rho}_{H}} of |ρ~\ket{\tilde{\rho}} can be reconstructed from the vector |ρ~\ket{\tilde{\rho}_{\mathcal{M}}} encoding the outcome statistics, its vertical component |ρ~V\ket{\tilde{\rho}_{V}} contains only information complementary to what is accessible through \mathcal{M}.

Now we are able to formalize our idea of complementary information. Let ρ~=ρ𝟙d/d\tilde{\rho}=\rho-\mathbbm{1}_{d}/d, observe that the outcome probabilities of a measurement \mathcal{M} on the state ρ\rho are encoded in the expansion coefficients of the vector |ρ~=G^()|ρ=G^()|ρ~=i(pitr(Mi)/d)|M~i\ket{\tilde{\rho}_{\mathcal{M}}}=\hat{G}(\mathcal{M})\cdot\ket{\rho}=\hat{G}(\mathcal{M})\cdot\ket{\tilde{\rho}}=\sum_{i}(p_{i}-\text{tr}(M_{i})/d)\ket{\tilde{M}_{i}} under the basis {|M~i}\{\ket{\tilde{M}_{i}}\}. The vector |ρ~\ket{\tilde{\rho}_{\mathcal{M}}} encodes the complete information of ρ\rho if |ρ~\ket{\tilde{\rho}} lies in the subspace of ψd\mathcal{H}_{\perp\psi_{d}} on which the view operator G^()\hat{G}(\mathcal{M}) is invertible, whereas if |ρ~\ket{\tilde{\rho}} is orthogonal to that space, |ρ~\ket{\tilde{\rho}_{\mathcal{M}}} vanishes and \mathcal{M} cannot be employed to distinguish ρ\rho from the completely mixed state (see Fig. 1 for an illustration of the geometric relations between the above vectors). In the sense above, two nontrivial measurements 1\mathcal{M}_{1} and 2\mathcal{M}_{2} satisfying

G^(1)G^(2)=0\displaystyle\hat{G}(\mathcal{M}_{1})\cdot\hat{G}(\mathcal{M}_{2})=0 (4)

are complementary since, if the complete information of ρ\rho is accessible through 1\mathcal{M}_{1}, then no information gain is accessible through 2\mathcal{M}_{2}, and vice versa. We prove in Appendix. A that measurements in mutually unbiased bases (MUBs) [25, 26, 27, 28] are complementary.

It is worth mentioning that the combined view operator G^=θG^(θ)\hat{G}=\sum_{\theta}\hat{G}(\mathcal{M}_{\theta}) associated with a set of POVMs ={Mθ}\mathscr{M}=\{M_{\theta}\} on d\mathcal{H}_{d} can be positive definite (invertible) on ψd\mathcal{H}_{\perp\psi_{d}}. In this case, no POVM can be complementary to all POVMs of \mathscr{M} simultaneously. This means that \mathscr{M} is informationally-complete and G^\hat{G} offers a complete view to all dd-dimensional quantum states. Utilizing the isomorphism (1), arbitrary unknown state ρ\rho can then be reconstructed from the vector G^|ρ~=|ρ~\hat{G}\ket{\tilde{\rho}}=\ket{\tilde{\rho}_{\mathscr{M}}} encoding the outcome statistics as follows

ρ=dtr2(G^1|ρ~ψd|)+𝟙d/d.\displaystyle\rho=\sqrt{d}\cdot tr_{2}(\hat{G}^{-1}|\tilde{\rho}_{\mathscr{M}}\rangle\langle\psi_{d}|)+\mathbbm{1}_{d}/d. (5)

For further readings on the topic of state estimation, we recommend Refs. [43, 44].

Interestingly, the combined view operator associated with CMUBs of d\mathcal{H}_{d}, i.e., d+1d+1 mutually unbiased bases (MUBs) [25, 26, 27, 28], is simply the identity operator 𝟙ψd=𝟙d𝟙d|ψdψd|\mathbbm{1}_{\perp\psi_{d}}=\mathbbm{1}_{d}\otimes\mathbbm{1}_{d}-|\psi_{d}\rangle\langle\psi_{d}| on ψd\mathcal{H}_{\perp\psi_{d}} (see Appendix. A). Thus the operationally invariant measure [24] of complete information content contained in quantum states can be restateted in our language as

Icom(ρ)=ρ|𝟙ψd|ρ=tr(ρ2)1/d.\displaystyle I_{\rm com}(\rho)=\braket{\rho|\mathbbm{1}_{\perp\psi_{d}}|\rho}=tr(\rho^{2})-1/d. (6)

This measure naturally coincides with Bohr’s idea [1] that only the totality of complementary properties together exhausts the complete information of objects.

IV Information exclusion relations

To formulate quantum complementarity into information exclusion relations, next we focus on the measurement scenarios where distinct measurements on individual copies of a quantum system are selected with biased (non-uniform) probabilities.

IV.1 Local information exclusion relations

Theorem 1. For a set of measurements {θ}\{\mathcal{M}_{\theta}\} with selection probabilities {wθ}\{w_{\theta}\}, the average information gain on the state ρ\rho satisfies

θwθG(θ)ρ=ρ|g^|ρg^Icom(ρ),\displaystyle\sum_{\theta}w_{\theta}G(\mathcal{M}_{\theta})_{\rho}=\braket{\rho|\hat{g}|\rho}\leq\big{\lVert}\hat{g}\big{\rVert}\cdot I_{\rm com}(\rho), (7)

where g^=θwθG^(θ)\hat{g}=\sum_{\theta}w_{\theta}\hat{G}(\mathcal{M}_{\theta}) is the average view operator and \lVert\cdot\rVert denotes the operator norm, i.e., the largest eigenvalue of an operator.

Proof. According to Eqs. (1, 3), for any density operator ρ\rho on d\mathcal{H}_{d} there is ψd|ρρ|ψd=1/d\braket{\psi_{d}|\rho\rangle\langle\rho|\psi_{d}}=1/d, ρ|ρ=tr(ρ2)\braket{\rho|\rho}=tr(\rho^{2}) and ρ|M~iθ|=pi|θtr(Mi|θ)/d\braket{\rho|\tilde{M}_{i}{\theta}|=}p_{i|\theta}-tr(M_{i|\theta})/d. Hence we have i,θwθ(pi|θtr(Mi|θ)/d)2=ρ|g^|ρg^ρ|𝟙ψd|ρ=g^(tr(ρ2)1/d)\sum_{i,\theta}w_{\theta}\left(p_{i|\theta}-tr(M_{i|\theta})/d\right)^{2}=\braket{\rho|\hat{g}|\rho}\leq\lVert\hat{g}\rVert\cdot\braket{\rho|\mathbbm{1}_{\perp\psi_{d}}|\rho}=\lVert\hat{g}\rVert\cdot(tr(\rho^{2})-1/d).

Theorem 1 limits an observer’s weighted average information gain over multiple measurements to be less than a proportion g^\rVert\hat{g}\rVert of the complete information content (6) contained in quantum states. We show in Appendix. A that 1Θg^1\frac{1}{\Theta}\leq\rVert\hat{g}\rVert\leq 1 for a number Θ\Theta of rank-1 projective measurements. To be more precise, for nondegenerate observables with one or more common eigenstates we have g^=1\rVert\hat{g}\rVert=1 and the rightmost side of Eq. (7) is achieved by density operators whose eigenvectors corresponding to positive eigenvalues form a subset of the common eigenstates of observables, which means that no state-independent information exclusion exists. On the other hand, we have g^=maxθ{wθ}1\rVert\hat{g}\rVert=\max_{\theta}\{w_{\theta}\}\leq 1 for MUBs. Particularly, for random measurements in one of Θ\Theta MUBs, w1==wΘ=1Θw_{1}=\cdots=w_{\Theta}=\frac{1}{\Theta}, thereby g^=1Θ\rVert\hat{g}\rVert=\frac{1}{\Theta}. We therefore see that the average information gain is rather limited with an increasing number of MUBs.

Example. For random measurements on a qubit in one of two bases {|i1}\{\ket{i_{1}}\} and {|j2}\{\ket{j_{2}}\}, Eq. (7) gives ρ|g^|ρcmaxIcom(ρ)\braket{\rho|\hat{g}|\rho}\leq c_{\rm max}\cdot I_{\rm com}(\rho). Here, cmax=maxi,j{|i1|j2|2}c_{\rm max}=\max_{i,j}\{\lvert\braket{i_{1}|j_{2}}\rvert^{2}\} is the maximal overlap between bases and in this simple example 1/2cmax11/2\leq c_{\rm max}\leq 1. By definition, cmax=1/2c_{\rm max}=1/2 holds for MUBs, while for compatible bases cmax=1c_{\rm max}=1.

We remark that for those measurement strategies with which the associated view operator g^𝟙ψd\hat{g}\propto\mathbbm{1}_{\perp\psi_{d}}, the rightmost side of Eq. (7) can be achieved by any density operator on d\mathcal{H}_{d}. Typical examples include random measurements in CMUBs, random selection of measurements from a complete set of mutually unbiased measurements [45] and other design-structured POVMs [46, 47, 48, 49, 50, 51] (see Appendix. A for details).

IV.2 Information exclusion relations with memory

We move on to investigate the basic limits on an observer’s information with respect to measurements on a distant quantum system, given access to another system (called memory). To illustrate, let us consider the guessing game [12] involving two participants, Alice and Bob. As depicted in Fig. 2a, in the beginning, Bob prepares a bipartite system in the state ρAB\rho_{AB}, and sends subsystem A to Alice. Upon receiving subsystem A, Alice chooses a measurement according to the value θ\theta of a random variable drawn from the probability distribution {wθ}\{w_{\theta}\}, and announces her choice to Bob. Bob’s win condition is to guess the final state on Alice’s side correctly.

Refer to caption
Figure 2: (a) Sketch of the proposal. (b) When Alice chooses to measure a qubit in one of three orthogonal directions, Bob’s total lack of information (uncertainty) about Alice’s measurement outcomes is negative linearly related to the recoverable entanglement fidelity Fpg(A|B)F^{\rm pg}(A|B) of the initial state, which is time-invariant if there exits no information exchange with environments or between subsystems A and B.

To quantify Bob’s lack of information about system A while possessing a memory system B, we define the conditional linear entropy as below

SL(A|B)=1dFpg(A|B).\displaystyle S_{L}(A|B)=1-d\cdot F^{\rm pg}(A|B). (8)

Here, Fpg(A|B)=1dtr{[(𝟙AρB1/4)ρAB(𝟙AρB1/4)]2}F^{\rm pg}(A|B)=\frac{1}{d}tr\big{\{}\big{[}\big{(}\mathbbm{1}_{A}\otimes\rho_{B}^{-1/4}\big{)}\rho_{AB}\big{(}\mathbbm{1}_{A}\otimes\rho_{B}^{-1/4}\big{)}\big{]}^{2}\big{\}} is the recoverable entanglement fidelity with which ρAB\rho_{AB} can be transformed into a maximally entangled state through the pretty good recovery operation on system B [52, 53], and dd denotes the dimension of system A. In the case of a product state ρAB=ρAρB\rho_{AB}=\rho_{A}\otimes\rho_{B}, system B offers no side information about system A and Eq. (8) reduces to the linearized entropy SL(ρA)=1tr(ρA2)S_{L}(\rho_{A})=1-tr(\rho_{A}^{2}), i.e., the complement of the information content (6) contained in the state ρA\rho_{A}. More generally, according to the data-processing inequality [54, 55] we have SL(A|B)SL(ρA)S_{L}(A|B)\leq S_{L}(\rho_{A}), thereby a memory helps to reduce Bob’s ignorance. Further, ρAB\rho_{AB} is necessarily entangled if SL(A|B)<SL(ρB)0S_{L}(A|B)<S_{L}(\sqrt{\rho_{B}})\equiv 0, since one’s ignorance about the overall system in a separable state does not increase with the removal of any its local subsystem [56, 57].

For brevity, we will focus on rank-1 projective measurements. Bob has no direct access to system A once it is sent to Alice, his understanding of the overall system when Alice chooses the θ\thetath measurement is described by the classical-quantum state

ρθB=i|ii|trA[(Mi|θ𝟙B)ρAB],\displaystyle\rho_{\mathcal{M}_{\theta}B}=\sum_{i}|i\rangle\langle i|\otimes tr_{A}\left[(M_{i|\theta}\otimes\mathbbm{1}_{B})\rho_{AB}\right], (9)

where Mi|θM_{i|\theta} denotes the iith effect of the θ\thetath POVM θ\mathcal{M}_{\theta} and {|ii|}\{|i\rangle\langle i|\} are the measurement outcomes stored in a classical register. Then, the conditional linearized entropy (8) evaluated on the classical-quantum state (9), denoted SL(θ|B)=1dFpg(θ|B)S_{L}(\mathcal{M}_{\theta}|B)=1-d\cdot F^{\rm pg}(\mathcal{M}_{\theta}|B), measures Bob’s ignorance about Alice’s measurement outcomes. Indeed, Fpg(θ|B)F^{\rm pg}(\mathcal{M}_{\theta}|B) is now precisely the probability for Bob to correctly guess Alice’s measurement outcome by performing the pretty good measurement on system B [58, 59].

Theorem 2. Suppose ρAB\rho_{AB} describes a bipartite system and {θ}\{\mathcal{M}_{\theta}\} are rank-1 projective measurements on system A with selection probabilities {wθ}\{w_{\theta}\}. The average conditional linearized entropy is bounded below by

θwθ\displaystyle\sum_{\theta}w_{\theta} SL(θ|B)(1g^)[1Fpg(A|B)].\displaystyle S_{L}(\mathcal{M}_{\theta}|B)\geq(1-\lVert\hat{g}\rVert)\cdot\big{[}1-F^{\rm pg}(A|B)\big{]}. (10)

We prove in Appendix. B a result that is valid for more general measurements. Like the memoryless IER (7), Eq. (10) becomes an equality saturated by arbitrary bipartite state if the equality g^=g^𝟙ψd\hat{g}=\lVert\hat{g}\rVert\cdot\mathbbm{1}_{\perp\psi_{d}} holds. Consequently, in the absence of information exchange with environments or between systems A and B, Bob’s total information with respect to measurements on system A in CMUBs, as well as other design-structured measurements [46, 47, 48, 49, 50, 51], is time-invariant.

Impressively, the r.h.s. of Eq. (10) is a product of two independent terms controlled by Alice and Bob respectively. The first term, 1g^=:𝒳1-\lVert\hat{g}\rVert=:\mathcal{X}, is a state-independent signature of information exclusion and Alice is free to manipulate it through her measurement strategy. It varies in the range 𝒳[0,11Θ]\mathcal{X}\in[0,1-\frac{1}{\Theta}] when the number of observables under consideration is Θ\Theta. To keep her measurement outcomes secret, Alice should avoid measuring observables that share a common eigenstate (𝒳=0\mathcal{X}=0), as Bob can completely eliminate his uncertainty by preparing system A precisely in that eigenstate. In contrast, Bob’s uncertainty will be maximized if Alice randomly selects one of Θ\Theta MUBs (𝒳=11Θ\mathcal{X}=1-\frac{1}{\Theta}). The special case when Alice chooses to measure the Pauli observables of a qubit is illustrated in Fig. 2b. We need to mention here that a set of Θ\Theta MUBs may not exist for sufficiently large Θ\Theta, and numerical methods can be utilized to maximize the exclusivity in such cases.

On the other hand, the second term decreases monotonically with the recoverable entanglement fidelity Fpg(A|B)F^{\rm pg}(A|B) of the initial state ρAB\rho_{AB}. Bob’s pretty good guessing probability [58, 59] Fpg(θ|B)F^{\rm pg}(\mathcal{M}_{\theta}|B) would be less than 1 whenever Fpg(A|B)<1F^{\rm pg}(A|B)<1. However, he can prepare an appropriate entangled state such that this fidelity enables him to guess the outcomes of measurements on system A with high probability. Indeed, it is well known that maximally entangled states provide perfect side information. For example, two systems in the state |ψd=1di=0d1|iA|iB\ket{\psi_{d}}=\frac{1}{\sqrt{d}}\sum_{i=0}^{d-1}\ket{i}_{A}\otimes\ket{i}^{*}_{B} are perfectly correlated with no local information content at all, Icom(ρB)=Icom(ρA)=0I_{\rm com}(\rho_{B})=I_{\rm com}(\rho_{A})=0, whereas the joint information content Icom(ρAB)=11/d2I_{\rm com}(\rho_{AB})=1-1/d^{2} is maximal. This leads to Fpg(A|B)=1F^{\rm pg}(A|B)=1, namely, the correlation between A and B is strong enough to completely remove Bob’s uncertainty. Just as is mentioned in Refs. [24, 21], the information content of a maximally entangled state is “exhausted in defining the joint properties” and “none is left for individual systems”.

V Origin of tight WPDR𝐬{\bf s}

Refer to caption
Figure 3: Mach-Zehnder interferometer. An input photon is directed into two paths by an asymmetric beam splitter (BS1) and then is recombined on a 50:50 beam splitter (BS2) to trigger two detectors (D). Modulating the phase shift ϕ[0,2π]\phi\in[0,2\pi] in the upper path, the phenomenon that the probability of click in each detector oscillates periodically reflects the interference pattern of path amplitudes, which is a signature of wave property. When BS2 is removed, the photon behaves particle-like such that the local phase shift in path no longer affects the detection probability.

We argue that the tight WPDRs are particular examples of the IERs (7) and (10) for complementary observables. To see this, let us consider two complementary setups of the Mach-Zehnder interferometer depicted in Fig. 3: (i) the second beam splitter is removed to gain the path information of single photons inside the interferometer (let σp\sigma^{\rm p} denote the associated path observable with binary outcomes “+1+1” and “1-1”, corresponding to clicks in detectors D0D_{0} and D1D_{1} respectively ); (ii) BS2 is inserted in and the phase shift ϕ\phi is adjustable to reveal wave properties of photons (let σϕw\sigma_{\phi}^{\rm w} denote the associated wave observable with binary outcomes “±1\pm 1”). It takes some calculation (see Appendix. C) to see that Eq. (7) leads to the equality

G(σϕw)ρ\displaystyle G(\sigma_{\phi}^{\rm w})_{\rho} +G(σϕw)ρ=cos(ϕϕ)σϕwσϕw+\displaystyle+G(\sigma_{\phi^{\prime}}^{\rm w})_{\rho}=\cos(\phi^{\prime}-\phi)\langle\sigma_{\phi}^{\rm w}\rangle\langle\sigma_{\phi^{\prime}}^{\rm w}\rangle+
[Icom(ρ)G(σp)ρ]sin2(ϕϕ),\displaystyle[I_{\rm com}(\rho)-G(\sigma^{\rm p})_{\rho}]\sin^{2}(\phi^{\prime}-\phi), (11)

where σ=tr(σρ)\braket{\sigma}=tr(\sigma\rho) denotes the average of observable σ\sigma, and G(σp)ρ=12σp2G(\sigma^{\rm p})_{\rho}=\frac{1}{2}\braket{\sigma^{\rm p}}^{2} and G(σϕw)ρ=12σϕw2G(\sigma_{\phi}^{\rm w})_{\rho}=\frac{1}{2}\braket{\sigma_{\phi}^{\rm w}}^{2} are the respective information gains (2) for measuring the path and wave observables in the qubit ρ\rho.

Refer to caption
Figure 4: Interference pattern of information amplitude. (a) In the double-slit experiment, filtering out the component containing path information from photon’s density operator, the remaining components lead to a fringe with 100% contrast on the screen. The intensity varies periodically at different locations, corresponding to the intensity oscillation in the MZI as the phase shift ϕ\phi varies. (b) The information gains on single photons in the MZI when two complementary wave observables (ϕϕ=π/2\phi^{\prime}-\phi=\pi/2) are measured constitute the complete description of the wave-like behavior. The fringe visibility is given by the diameter of the gray circle.

Observe that the information gain regarding an individual wave observable oscillates as the phase shift ϕ\phi varies, Eq. (11) essentially depicts an interference pattern of the wave information. To make it clearer, let ϕ\vec{\phi} and ϕ\vec{\phi^{\prime}} be two real unit vectors at an angle of ϕϕ\phi^{\prime}-\phi. Eq. (11) can then be restated as

|σϕwϕ+eiπσϕwϕ|2\displaystyle\big{|}\langle\sigma_{\phi}^{\rm w}\rangle\vec{\phi}+e^{i\pi}\langle\sigma_{\phi^{\prime}}^{\rm w}\rangle\vec{\phi^{\prime}}\big{|}^{2}
=\displaystyle= 2[Icom(ρ)G(σp)ρ]sin2(ϕϕ).\displaystyle 2[I_{\rm com}(\rho)-G(\sigma^{\rm p})_{\rho}]\sin^{2}(\phi^{\prime}-\phi). (12)

It is interesting to note that the average values of wave observables behave like the “amplitudes of wave information” and interfere with each other, see Fig. 4a. Notably, the average interference intensity =Icom(ρ)G(σp)ρ\mathcal{I}=I_{\rm com}(\rho)-G(\sigma^{\rm p})_{\rho} on the r.h.s. of Eq. (12) disappears if the photon exhibits particle property only—the complete information content of ρ\rho is accessible through measuring the path observable or, formally, Icom(ρ)=G(σp)ρI_{\rm com}(\rho)=G(\sigma^{\rm p})_{\rho}. In this view, =G(σϕw)ρ+G(σϕ+π/2w)ρ\mathcal{I}=G(\sigma_{\phi}^{\rm w})_{\rho}+G(\sigma_{\phi+\pi/2}^{\rm w})_{\rho} (see the case ϕϕ=±π2\phi^{\prime}-\phi=\pm\frac{\pi}{2} in the preceding equation) emerges as a measure of wave property which can be determined by measuring two complementary wave observables.

Conventionally, the wave property is frequently quantified by the fringe visibility [3, 4, 5, 6]

𝒱=maxϕ|pϕ0pϕ1|,\displaystyle\mathcal{V}=\max\limits_{\phi}\big{|}p^{0}_{\phi}-p^{1}_{\phi}\big{|}, (13)

where pϕip_{\phi}^{i} is the probability that the iith detector clicks when the observable σϕw\sigma^{\rm w}_{\phi} is measured. We remark here that the average interference intensity is precisely half of the fringe visibility squared, i.e., 𝒱=maxϕ|σϕw|=/2\mathcal{V}=\max_{\phi}|\braket{\sigma^{\rm w}_{\phi}}|=\sqrt{\mathcal{I}/2} (see also Fig. 4b for an illustration). Combined with the squared path distinguishability 𝒟2=σp2=2G(σp)ρ\mathcal{D}^{2}=\braket{\sigma^{\rm p}}^{2}=2G(\sigma^{\rm p})_{\rho}, we then arrive at the WPDR 𝒱2+𝒟2=2tr(ρ2)1\mathcal{V}^{2}+\mathcal{D}^{2}=2tr(\rho^{2})-1 [60]. We therefore see that the WPDR originates from the IER [G(σϕw)ρ+G(σϕ+π/2w)ρ]+G(σp)ρ=Icom(ρ)\big{[}G(\sigma_{\phi}^{\rm w})_{\rho}+G(\sigma_{\phi+\pi/2}^{\rm w})_{\rho}\big{]}+G(\sigma^{\rm p})_{\rho}=I_{\rm com}(\rho) for three complementary observables, including the path observable and two wave observables with phase difference satisfying ϕϕ=±π/2\phi^{\prime}-\phi=\pm\pi/2.

Theorem 1 applies also to the quantum delayed-choice experiment [61], where complementary properties of photons are measured in a single experimental setup. As shown in Fig. 5, the presence of BS2 is controlled by an ancilla qubit, the value of which determines whether to reveal the wave property or particle property. In this case, Eq. (7) limits an observer’s weighted average information gain about three complementary observables, with (unnormalized) weights w1=cos2βw_{1}=\cos^{2}\beta for the path observable and w2=w3=sin2βw_{2}=w_{3}=\sin^{2}\beta for the wave observables. Therefore, the true nature of complementarity does not prohibit the observation of complementary properties in a single measurement setup, but necessarily restricts one’s simultaneous information gain about them.

Refer to caption
Figure 5: Delayed choice experiment controlled by an ancilla qubit (red line) in the state cosβ|0+sinβ|1\cos\beta\ket{0}+\sin\beta\ket{1}. The second beam splitter in the two-way interferometer is now equivalently represented by the Hadamard gate H: H|0(|0+|1)/2\rm H\ket{0}\rightarrow(\ket{0}+\ket{1})/\sqrt{2} and H|1(|0|1)/2\rm H\ket{1}\rightarrow(\ket{0}-\ket{1})/\sqrt{2}, while the first beam splitter, which can be asymmetric, is represented by a real unitary U: U|0cosα|0+sinα|1\rm U\ket{0}\rightarrow\cos\alpha\ket{0}+\sin\alpha\ket{1} and U|1sinα|0cosα|1\rm U\ket{1}\rightarrow\sin\alpha\ket{0}-\cos\alpha\ket{1}.

Another interesting issue concerns the WPDRs when an observer has side information about single photons in the Mach-Zehnder interferometer, but without direct access to them. Let us consider two photons in the bipartite state ρAB\rho_{AB}. As a measure of information about photon A conditioned on photon B, we turn to the complement of the conditional linearized entropy (8) below

I(A|B)=dFpg(A|B)1/d.\displaystyle I(A|B)=d\cdot F^{\rm pg}(A|B)-1/d. (14)

This is non-negative and reduces to the complete information of the reduced state ρA\rho_{A}, I(A|B)=Icom(ρA)I(A|B)=I_{\rm com}(\rho_{A}) when ρAB=ρAρB\rho_{AB}=\rho_{A}\otimes\rho_{B} is a product state.

We derive in Appendix. C the following generalization of Eq. (12),

tr[(ρϕB+eiπρϕB)2]\displaystyle tr[(\vec{\rho}_{\phi B}+e^{i\pi}\vec{\rho}_{\phi^{\prime}B})^{2}]
=\displaystyle= 2[I(A|B)I(σp|B)]sin2(ϕϕ).\displaystyle 2[I(A|B)-I(\sigma^{\rm p}|B)]\sin^{2}(\phi-\phi^{\prime}). (15)

Here, ρϕB=trA[(ρB1/4ρABρB1/4)(σϕw𝟙B)]ϕ\vec{\rho}_{\phi B}=tr_{A}\big{[}(\rho_{B}^{-1/4}\rho_{AB}\rho_{B}^{-1/4})(\sigma_{\phi}^{\rm w}\otimes\mathbbm{1}_{B})\big{]}\ \vec{\phi} is the “amplitude of conditional information” which connects to the conditional information I(σϕw|B)I(\sigma_{\phi}^{\rm w}|B) through its squared modulus tr(ρϕB 2)=2I(σϕw|B)tr(\vec{\rho}_{\phi B}^{\ 2})=2I(\sigma_{\phi}^{\rm w}|B).

Equation (15) manifests the interference pattern of conditional information amplitude, with the r.h.s. of it being the interference intensity. Combining the average intensity (wave property) I(A|B)I(σp|B)=I(σϕw|B)+I(σϕ+π/2w|B)I(A|B)-I(\sigma^{\rm p}|B)=I(\sigma_{\phi}^{\rm w}|B)+I(\sigma^{\rm w}_{\phi+\pi/2}|B) with the conditional which-way information (particle property) I(σp|B)I(\sigma^{\rm p}|B), we then obtain the WPDR [I(σϕw|B)+I(σϕ+π/2w|B)]+I(σp|B)=I(A|B)\big{[}I(\sigma_{\phi}^{\rm w}|B)+I(\sigma_{\phi+\pi/2}^{\rm w}|B)\big{]}+I(\sigma^{\rm p}|B)=I(A|B). Again, we see that a tight WPDR saturated by all bipartite systems with dimension dA=2d_{A}=2 arises from an IER for three complementary observables, wherein two complementary wave observables constitute the complete description of wave property.

VI Discussions

Our theory for characterizing information complementarity from a measurement-based perspective enables us to analyze the behaviors of quantum systems through their manifestations in versatile measurement setups, without delving into the exhaustive calculations with quantum state parameters. As two examples, we explore the implications of our IERs (7, 10) for entanglement detection and EURs respectively.

VI.1 Entanglement detection

Quantum correlation tends to suppress the local information content contained in individual subsystems. For example, a pair of maximally entangled qubits possess only joint properties in the sense that each single qubit is in the completely mixed state. We introduce the correlation measure J(ρAB)=i,θwθ|tr(Ji|θρAB)|J(\rho_{AB})=\sum_{i,\theta}w_{\theta}|tr(J_{i|\theta}\cdot\rho_{AB})| for local measurements {θAθB}\{\mathcal{M}^{A}_{\theta}\otimes\mathcal{M}^{B}_{\theta}\} on individual copies of the bipartite state ρAB\rho_{\rm AB}, where Mi|θM_{i|\theta} denotes the iith effect of the θ\thetath measurement and Ji|θ=(Mi|θA1dAtr(Mi|θA)𝟙A)(Mi|θB1dBtr(Mi|θB)𝟙B)J_{i|\theta}=(M^{A}_{i|\theta}-\frac{1}{d_{A}}tr(M^{A}_{i|\theta})\mathbbm{1}_{A})\otimes(M^{B}_{i|\theta}-\frac{1}{d_{B}}tr(M^{B}_{i|\theta})\mathbbm{1}_{B}) are the correlation detection operators. We show in Appendix. D the following.

Theorem 3. For any bipartite separate state ρAB\rho_{AB}, it holds that

J(ρAB)LALB,\displaystyle J(\rho_{AB})\leq\sqrt{L_{A}\cdot L_{B}}, (16)

where L=g^(11/d)L=\lVert\hat{g}\rVert(1-1/d) is the state-independent upper bound on local information gain given by Eq. (7).

Refer to caption
Figure 6: Numerical comparison of the critical value of η\eta for the state (17) to be entangled (denoted η\eta^{*}) and that to violate Eq. (16) under four different choices of three local observables, with equal weights and optimized weights respectively (denoted ηequ\eta_{\rm equ} and ηopt\eta_{\rm opt}). The three local observables considered here are σyσy,σzσz\sigma_{y}\otimes\sigma_{y},\sigma_{z}\otimes\sigma_{z} and (a) σxσx\sigma_{x}\otimes\sigma_{x}. (b) σzσx\sigma_{z}\otimes\sigma_{x}. (c) (12σz+32σx)(12σz+32σx)(\frac{1}{2}\sigma_{z}+\frac{\sqrt{3}}{2}\sigma_{x})\otimes(\frac{1}{2}\sigma_{z}+\frac{\sqrt{3}}{2}\sigma_{x}). (d) σzσz\sigma_{z}\otimes\sigma_{z}.

Consequently, a violation of Eq. (16) necessarily indicates the presence of entanglement. As a concrete example, we can apply Eq. (16) to the mixture of a pure two-qubit state |ψ(β)=cosβ|00+sinβ|11(π4βπ4)\ket{\psi(\beta)}=\cos\beta\ket{00}+\sin\beta\ket{11}\ (-\frac{\pi}{4}\leq\beta\leq\frac{\pi}{4}) and white noise:

ρη,β=η|ψ(β)ψ(β)|+(1η)𝟙4/4,(0η1).\displaystyle\rho_{\eta,\beta}=\eta|\psi(\beta)\rangle\langle\psi(\beta)|+(1-\eta)\mathbbm{1}_{4}/4,\ (0\leq\eta\leq 1). (17)

Note that the noiseless state |ψ(β)\ket{\psi(\beta)} is entangled as long as β0\beta\neq 0. Now the question is how much noise it can resist from being separable, i.e., the critical value η\eta^{*} of η\eta below which ρη,β\rho_{\eta,\beta} ceases to be entangled. In Fig. 6, we present numerical results regarding the critical values ηequ\eta_{\rm equ} and ηopt\eta_{\rm opt} for the state (17) to violate Eq. (16), under measurements with equal weights and optimized weights respectively. As depicted, three complementary observables with equal weights are enough to detect all the entanglement (ηequ=ηopt=η)(\eta_{\rm equ}=\eta_{\rm opt}=\eta^{*}). For more general observables ηoptηequ\eta_{\rm opt}\leq\eta_{\rm equ}, an optimization over the weights {wθ}\{w_{\theta}\} yields better performance.

VI.2 Implications for EURs

Entropic uncertainty relations (EURs) that take into account information leakage from a memory system play a crucial role in various aspects of quantum information processing [10], particularly in the security analysis of quantum protocols [12]. However, existing EURs [10] are thus far limited since they are restricted to providing lower bounds on simply entropy sums. On a conceptual level, there is no reason to assign equal weights, instead of biased weights, to different measurements. Based on Theorem 2, we have the following lower bounds on the weighted sum of entropies over multiple measurements (see the proof in Appendix, E).

Theorem 4. Suppose ρAB\rho_{AB} describes a bipartite system and {θ}\{\mathcal{M}_{\theta}\} are rank-1 projective measurements to be performed on system A with selection probabilities {wθ}\{w_{\theta}\}. The smooth minimum entropy evaluated on the state (9) satisfies θwθHminε(θ|B)qminε\sum_{\theta}w_{\theta}H_{\rm min}^{\varepsilon}(\mathcal{M}_{\theta}|B)\geq q_{\rm min}^{\varepsilon}, where

qminε=log[g^+Fpg(A|B)(1g^)]log2ε2.\displaystyle q_{\rm min}^{\varepsilon}=-\log\big{[}\lVert\hat{g}\rVert+F^{\rm pg}(A|B)(1-\lVert\hat{g}\rVert)\big{]}-\log\frac{2}{\varepsilon^{2}}. (18)

The conditional smooth minimum entropy [62] (see also Ref. [10]) is a fundamental tool for the security analysis of quantum protocols. In quantum cryptographic protocols where an eavesdropper aims to know an experimenter’s measurement outcomes by probing a memory system, the weighted EURs we introduced provide guidance for adjusting the probabilities of selecting distinct measurements to minimize potential information leakage. It is conceivable that equal selection probabilities are not optimal for biased measurements. Optimized selection probabilities are thus crucial for elaborating the measurement strategies to enhance security and achieve stronger levels of protection. Importantly, this optimization does not require additional quantum costs and can be easily done on a classical computer.

VII Conclusion

In summary, we have developed a general approach to formulate the complementarity principle quantitatively in terms of basic limits on one’s ability to gain information on quantum systems under versatile measurement setups, with and without memory respectively. Our framework sheds new light on the interpretation of wave-particle duality for single photons in the two-way interferometry experiments from an information-theoretical perspective. Extending this interpretation to multi-path interferometers presents an intriguing avenue for future investigation. Moreover, our IERs have direct applications in certifying genuine quantum features of physical systems, such as entanglement detection based on local measurement outcomes. An extended form of EURs can also be derived from our IERs, which could offer practical advantages in various quantum information processing.

Acknowledgements.
This work is supported by the National Natural Science Foundation of China (Grants No. 12175104 and No. 12274223), the Innovation Program for Quantum Science and Technology (2021ZD0301701), the Natural Science Foundation of Jiangsu Province (No. BK20211145), the Fundamental Research Funds for the Central Universities (No. 020414380182), the Key Research and Development Program of Nanjing Jiangbei New Area (No. ZDYD20210101), the Program for Innovative Talents and Entrepreneurs in Jiangsu (No. JSSCRC2021484), and the Program of Song Shan Laboratory (Included in the management of Major Science and Technology Program of Henan Province) (No. 221100210800-02).

Appendix A View operator and properties

Consider a set of POVMs {Mi|θ}\{M_{i|\theta}\} assigned with weights {wθ}\{w_{\theta}\} (wθ0,θwθ=1)(w_{\theta}\geq 0,\ \sum_{\theta}w_{\theta}=1). We define the associated average view operator to be

g^=i,θwθG^(θ)=i,θwθ|M~i|θM~i|θ|,\displaystyle\hat{g}=\sum_{i,\theta}w_{\theta}\hat{G}(\mathcal{M}_{\theta})=\sum_{i,\theta}w_{\theta}|\tilde{M}_{i|\theta}\rangle\langle\tilde{M}_{i|\theta}|, (19)

where M~i|θ=Mi|θ1dtr(Mi|θ)𝟙d\tilde{M}_{i|\theta}=M_{i|\theta}-\frac{1}{d}tr(M_{i|\theta})\mathbbm{1}_{d} is traceless, or equivalently, |M~i|θ=|Mi|θ|ψdψd|Mi|θ\ket{\tilde{M}_{i|\theta}}=\ket{M_{i|\theta}}-|\psi_{d}\rangle\langle\psi_{d}|M_{i|\theta}\rangle is orthogonal to |ψd\ket{\psi_{d}}. View operators are positive semi-definite, G^0\hat{G}\geq 0 on the (d21)(d^{2}-1)-dimensional subspace ψd\mathcal{H}_{\perp\psi_{d}} of d2\mathcal{H}_{d}^{\otimes 2} orthogonal to |ψd\ket{\psi_{d}}, and vanish for trivial POVMs whose effects satisfy Mi|θ=1dtr(Mi|θ)𝟙dM_{i|\theta}=\frac{1}{d}tr(M_{i|\theta})\mathbbm{1}_{d}.

The matrix representation of g^\hat{g} under an orthonormal basis {|a}\{\ket{a}\} of ψd\mathcal{H}_{\perp\psi_{d}} takes the form

ga,a=\displaystyle g_{a,a^{\prime}}= i,θwθa|M~i|θM~i|θ|a=(RR+)a,a.\displaystyle\sum_{i,\theta}w_{\theta}\langle a|\tilde{M}_{i|\theta}\rangle\langle\tilde{M}_{i|{\theta}}|a^{\prime}\rangle=(RR^{+})_{a,a^{\prime}}. (20)

Here, the matrix elements of RR are given by Ra,b(i,θ)=wθa|M~i|θR_{a,b(i,\theta)}=\sqrt{w_{\theta}}\langle a|\tilde{M}_{i|\theta}\rangle, with bb being a bijection from the labels {(i,θ)}\{(i,\theta)\} of POVM effects to the labels {a}\{a\} of the basis vectors {|a}\{\ket{a}\}. Note that the positive eigenvalues of g=RR+g=RR^{+} are identical to those of the Gram matrix for the vectors {wθ|M~i|θ}\{\sqrt{w_{\theta}}\ket{\tilde{M}_{i|\theta}}\}, that is, g¯=R+R\bar{g}=R^{+}R. To obtain eigenvalues of a view operator g^\hat{g}, it will be enough to deal with the Gram matrix g¯\bar{g}, whose elements are g¯b(i,θ),b(j,θ)=wθwθM~i|θ|M~j|θ\bar{g}_{b(i,\theta),b(j,\theta^{\prime})}=\sqrt{w_{\theta}w_{\theta^{\prime}}}\langle\tilde{M}_{i|\theta}|\tilde{M}_{j|{\theta^{\prime}}}\rangle.

Claim 1. POVMs that form a design structure are mutually complementary.

Claim 2. The combined view operator associated with a complete set of design-structured POVMs is proportional to the identity operator on HψdH_{\perp\psi_{d}}.

Claim 3. The average view operator of a set of MUBs with weights {wθ}\{w_{\theta}\} satisfies g^=maxθ{wθ}\lVert\hat{g}\rVert=\max_{\theta}\{w_{\theta}\}.

Proof. Design-structured measurements include complete sets of mutually unbiased measurements (MUMs) [45], general symmetric-informationally-complete POVMs [49, 50, 51], POVMs from equiangular tight frames [48] and POVMs from general quantum designs [46, 47]. Without loss of generality, we prove the above claims for MUMs. MUMs [45] are dd-outcome POVMs satisfying tr(Mi|θ)=1tr(M_{i|\theta})=1, tr(Mi|θMj|θ)=1dtr(M_{i|\theta}M_{j|\theta^{\prime}})=\frac{1}{d}, and tr(Mi|θMj|θ)=κδij+1κd1(1δij)tr(M_{i|\theta}M_{j|\theta})=\kappa\delta_{ij}+\frac{1-\kappa}{d-1}(1-\delta_{ij}) for all i,j=0,,d1i,j=0,\cdots,d-1 and θθ\theta\neq\theta^{\prime}. Here κ(1d,1]\kappa\in(\frac{1}{d},1] is called the efficiency parameter, wherein κ=1\kappa=1 corresponds to projective measurements in MUBs [25, 26, 27, 28].

Consider the view operator G^mum=θG^(θ)\hat{G}_{\rm mum}=\sum_{\theta}\hat{G}(\mathcal{M}_{\theta}) associated with a set of MUMs [45] on d\mathcal{H}_{d}, according to Eq. (20) the corresponding Gram matrix G¯\bar{G} is given as

G¯b(i,θ),b(j,θ)=M~iθ|M~j|θ|=tr(Mi|θMj|θ)1d\displaystyle\bar{G}_{b(i,\theta),b(j,\theta^{\prime})}=\braket{\tilde{M}_{i}{\theta}|\tilde{M}_{j|{\theta^{\prime}}}|=}tr(M_{i|\theta}M_{j|{\theta^{\prime}}})-\frac{1}{d}
=\displaystyle= δθθ[κd1d1δij+1κdd(d1)].\displaystyle\delta_{\theta\theta^{\prime}}\Big{[}\frac{\kappa d-1}{d-1}\delta_{ij}+\frac{1-\kappa d}{d(d-1)}\Big{]}. (21)

According to Eq. (21), obviously two MUMs are complementary since G^(θ)G^(θ)=0\hat{G}(\mathcal{M}_{\theta})\cdot\hat{G}(\mathcal{M}_{\theta^{\prime}})=0 whenever θθ\theta\neq\theta^{\prime}. Next, let us focus on the d×dd\times d submatrix

G¯b(i,1),b(j,1)=κd1d1𝟙dκd1d(d1)Q,\displaystyle\bar{G}_{b(i,1),b(j,1)}=\frac{\kappa d-1}{d-1}\mathbbm{1}_{d}-\frac{\kappa d-1}{d(d-1)}Q, (22)

where QQ denotes the matrix satisfying Qi,j=1Q_{i,j}=1 for all i,j=0,,d1i,j=0,\cdots,d-1. This submatrix (22) has d1d-1 identical nonzero eigenvalues (κd1)/(d1)(\kappa d-1)/(d-1), thus the view operator of a complete set of d+1d+1 MUMs (CMUMs) has (d+1)(d1)=d21(d+1)(d-1)=d^{2}-1 identical nonzero eigenvalues. In other words, G^cmum=κd1d1𝟙ψd\hat{G}_{\rm cmum}=\frac{\kappa d-1}{d-1}\mathbbm{1}_{\perp\psi_{d}}, with 𝟙ψd=𝟙d×d|ψdψd|\mathbbm{1}_{\perp\psi_{d}}=\mathbbm{1}_{d\times d}-|\psi_{d}\rangle\langle\psi_{d}| being the identity operator on the (d21)(d^{2}-1)-dimensional space HψdH_{\perp\psi_{d}}. Claim 3 follows from the fact that MUBs (i.e., MUMs with efficient parameter κ=1\kappa=1) are complementary, thus g^=maxθ{wθG^(θ)}=maxθ{wθ}\lVert\hat{g}\rVert=\max_{\theta}\{w_{\theta}\lVert\hat{G}(\mathcal{M}_{\theta})\rVert\}=\max_{\theta}\{w_{\theta}\}.

Claim 4. For arbitrary dd-outcome POVMs ={Mi}\mathcal{M}=\{M_{i}\} on d\mathcal{H}_{d} that consists of equal-trace effects (ETE-POVMs), i.e., tr(M0)==tr(Md1)tr(M_{0})=\cdots=tr(M_{d-1}), we have G^()1\lVert\hat{G}(\mathcal{M})\rVert\leq 1.

Claim 5. For any set of dd-outcome ETE-POVMs {Mθ}\{M_{\theta}\} on d\mathcal{H}_{d}, g^=θwθG^(θ)θwθG^(θ)1\lVert\hat{g}\rVert=\Big{\lVert}\sum_{\theta}w_{\theta}\hat{G}(\mathcal{M}_{\theta})\Big{\rVert}\leq\sum_{\theta}w_{\theta}\left\lVert\hat{G}(\mathcal{M}_{\theta})\right\rVert\leq 1.

Claim 6. For a number Θ\Theta of dd-outcome ETE-POVMs {Mθ}\{M_{\theta}\} on d\mathcal{H}_{d} with equal weights, g^=1ΘθG^(θ)=1\lVert\hat{g}\rVert=\frac{1}{\Theta}\lVert\sum_{\theta}\hat{G}(\mathcal{M}_{\theta})\rVert=1 iff the overlap matrix WW, defined as Wb(i,θ),b(j,θ)=tr(Mi|θMj|θ)W_{b(i,\theta),b(j,\theta^{\prime})}=tr(M_{i|\theta}M_{j|{\theta^{\prime}}}), is reducible.

Proof. Consider the Gram matrix G¯i,j=M~i|M~j=tr(MiMj)1d\bar{G}_{i,j}=\langle\tilde{M}_{i}|\tilde{M}_{j}\rangle=tr(M_{i}M_{j})-\frac{1}{d}. We can rewrite it as G¯=WQ/d\bar{G}=W-Q/d, where Wi,j=tr(MiMj)W_{i,j}=tr(M_{i}M_{j}) is referred to as the overlap matrix, and Qi,j=1Q_{i,j}=1 for all i,ji,j. Note WW is doubly stochastic, i.e., iWi,j=jWi,j=1\sum_{i}W_{i,j}=\sum_{j}W_{i,j}=1, its first eigenvalue (arranged in descending order) must be λ1(W)=1\lambda_{1}(W)=1. Moreover, the corresponding eigenvector v1=(1,,1)Tv_{1}=(1,\cdots,1)^{\rm T} is also an eigenvector of QQ which corresponds to the unique nonzero eigenvalue dd of QQ. Immediately G¯v1=0\bar{G}\cdot v_{1}=0, and G^()=G¯=λ2(W)λ1(W)=1\lVert\hat{G}(\mathcal{E})\rVert=\lVert\bar{G}\rVert=\lambda_{2}(W)\leq\lambda_{1}(W)=1. Claim 5 follows directly from Claim 4. Further, considering that the matrix 1ΘW\frac{1}{\Theta}W is doubly stochastic, according to Theorem 3.1 of Ref. [63] we have λ2(1ΘW)=1\lambda_{2}(\frac{1}{\Theta}W)=1 iff WW is reducible.

Appendix B Proof of Theorem 2

Let {Mi|θ}\{M_{i|\theta}\} be a set of generalized measurements such that the POVM effects of each measurement are equal-trace, i.e., tr(M0|θ)==tr(Mlθ1|θ)=d/lθtr(M_{0|\theta})=\cdots=tr(M_{l_{\theta}-1|\theta})=d/l_{\theta}, where lθl_{\theta} denotes the number of effects in the θ\thetath POVM. After Alice performed the θ\thetath measurement on system A, Bob’s understanding of the overall system is then described by the classical-quantum state

ρθB=i=0lθ1|ii|(Ki|θ𝟙B)ρAB(Ki|θ+𝟙B).\displaystyle\rho_{\mathcal{M}_{\theta}B}=\sum_{i=0}^{l_{\theta}-1}|i\rangle\langle i|\otimes(K_{i|\theta}\otimes\mathbbm{1}_{B})\rho_{AB}(K_{i|\theta}^{+}\otimes\mathbbm{1}_{B}). (23)

Here, {Ki|θ}\{K_{i|\theta}\} are the Kraus operators [64] which satisfy Ki|θ+Ki|θ=Mi|θK_{i|\theta}^{+}K_{i|\theta}=M_{i|\theta} by definition.

To prove Theorem 2, we only need to show the operator

Γ^AB=g^𝟙AρB1/2+(θwθlθ1dg^)ρ¯AB\displaystyle\hat{\Gamma}_{AB}=\lVert\hat{g}\rVert\mathbbm{1}_{A}\otimes\rho_{B}^{1/2}+\Big{(}\sum_{\theta}\frac{w_{\theta}}{l_{\theta}}-\frac{1}{d}\lVert\hat{g}\rVert\Big{)}\bar{\rho}_{AB}-
θ,i,x,x\displaystyle\sum_{\theta,i,x,x^{\prime}} wθKi|θ+|xAx|Ki|θx|Ki|θρ¯ABKi|θ+|xAA\displaystyle w_{\theta}K_{i|\theta}^{+}|x\rangle_{A}\langle x^{\prime}|K_{i|\theta}\otimes{}_{A}\langle x|K_{i|\theta}\bar{\rho}_{AB}K_{i|\theta}^{+}|x^{\prime}\rangle_{A} (24)

is positive semi-definite on the space AB\mathcal{H}_{A}\otimes\mathcal{H}_{B}, where {|x}x=0d1\{\ket{x}\}_{x=0}^{d-1} is an orthonormal basis of A\mathcal{H}_{A} and ρ¯AB=(𝟙AρB1/4)ρAB(𝟙AρB1/4)\bar{\rho}_{AB}=\big{(}\mathbbm{1}_{A}\otimes\rho_{B}^{-1/4}\big{)}\rho_{AB}\big{(}\mathbbm{1}_{A}\otimes\rho_{B}^{-1/4}\big{)}. Notice that the measurement-induced local transformation ρABρθB\rho_{AB}\rightarrow\rho_{\mathcal{M}_{\theta}B} commutes with the map ρABρ¯AB\rho_{AB}\rightarrow\bar{\rho}_{AB}, from Γ^AB0\hat{\Gamma}_{AB}\geq 0 we have

tr(Γ^ABρ¯AB)=g^+(θwθ/lθg^/d)tr(ρ¯AB2)\displaystyle tr(\hat{\Gamma}_{AB}\bar{\rho}_{AB})=\lVert\hat{g}\rVert+\Big{(}\sum_{\theta}w_{\theta}/l_{\theta}-\lVert\hat{g}\rVert/d\Big{)}tr(\bar{\rho}_{AB}^{2})
\displaystyle\geq i,θwθtr[Ki|θρ¯ABKi|θ+Ki|θρ¯ABKi|θ+]\displaystyle\sum_{i,\theta}w_{\theta}tr\left[K_{i|\theta}\bar{\rho}_{AB}K_{i|\theta}^{+}K_{i|\theta}\bar{\rho}_{AB}K_{i|\theta}^{+}\right]
=\displaystyle= θwθtr(ρ¯θB2),\displaystyle\sum_{\theta}w_{\theta}\cdot tr(\bar{\rho}_{\mathcal{M}_{\theta}B}^{2}), (25)

where ρ¯θB=(𝟙AρB1/4)ρθB(𝟙AρB1/4)\bar{\rho}_{\mathcal{M}_{\theta}B}=(\mathbbm{1}_{A}\otimes\rho_{B}^{-1/4})\rho_{\mathcal{M}_{\theta}B}(\mathbbm{1}_{A}\otimes\rho_{B}^{-1/4}). This leads us to

θwθ\displaystyle\sum_{\theta}w_{\theta} SL(θ|B)1g^\displaystyle S_{L}(\mathcal{M}_{\theta}|B)\geq 1-\lVert\hat{g}\rVert
\displaystyle- (θwθ/lθg^/d)[1SL(A|B)].\displaystyle\big{(}\sum_{\theta}w_{\theta}/l_{\theta}-\lVert\hat{g}\rVert/d\big{)}\big{[}1-S_{L}(A|B)\big{]}. (26)

In the case of rank-1 projective measurements, l1==lΘl_{1}=\cdots=l_{\Theta} are equal to the dimension dd of system A. With Eq. (26) Theorem 2 is already obvious.

Next, we proceed to show Γ^0\hat{\Gamma}\geq 0. Observe the operator below is positive semi-definite

Ω^=g^(𝟙d2|ψdψd|)g^=g^𝟙d2\displaystyle\hat{\Omega}=\lVert\hat{g}\rVert\cdot(\mathbbm{1}_{d}^{\otimes 2}-|\psi_{d}\rangle\langle\psi_{d}|)-\hat{g}=\lVert\hat{g}\rVert\cdot\mathbbm{1}_{d}^{\otimes 2} (27)
\displaystyle- i,θwθ|Mi|θMi|θ|+(θwθd/lθg^)|ψdψd|0,\displaystyle\sum_{i,\theta}w_{\theta}|M_{i|\theta}\rangle\langle M_{i|\theta}|+(\sum_{\theta}w_{\theta}d/l_{\theta}-\lVert\hat{g}\rVert)|\psi_{d}\rangle\langle\psi_{d}|\geq 0,

and, accordingly, so does its partial transpose over the second space

Ω^T2=g^𝟙d2\displaystyle\hat{\Omega}^{T_{2}}=\lVert\hat{g}\rVert\cdot\mathbbm{1}_{d}^{\otimes 2} i,θwθ(|Mi|θMi|θ|)T2\displaystyle-\sum_{i,\theta}w_{\theta}(|M_{i|\theta}\rangle\langle M_{i|\theta}|)^{T_{2}}\hskip 28.45274pt
+\displaystyle+ (θwθd/lθg^)F^0.\displaystyle(\sum_{\theta}w_{\theta}d/l_{\theta}-\lVert\hat{g}\rVert)\hat{F}\geq 0. (28)

In the above

F^=(|ψdψd|)T2=1di,j=0d1|ij||ji|,\displaystyle\hat{F}=(|\psi_{d}\rangle\langle\psi_{d}|)^{T_{2}}=\frac{1}{d}\sum_{i,j=0}^{d-1}|i\rangle\langle j|\otimes|j\rangle\langle i|, (29)

and

(|Mi|θMi|θ|)T2\displaystyle(|M_{i|\theta}\rangle\langle M_{i|\theta}|)^{T_{2}}
=\displaystyle= d(Ki|θ+Ki|θ𝟙d|ψdψd|Ki|θ+Ki|θ𝟙d)T2\displaystyle d(K^{+}_{i|\theta}K_{i|\theta}\otimes\mathbbm{1}_{d}|\psi_{d}\rangle\langle\psi_{d}|K^{+}_{i|\theta}K_{i|\theta}\otimes\mathbbm{1}_{d})^{T_{2}} (30)
=\displaystyle= x,xKi|θ+|xx|Ki|θy,y(Ki|θ)xy|yy|(Ki|θ+)yx.\displaystyle\sum_{x,x^{\prime}}K_{i|\theta}^{+}|x\rangle\langle x^{\prime}|K_{i|\theta}\otimes\sum_{y,y^{\prime}}(K_{i|\theta})_{xy}|y^{\prime}\rangle\langle y|(K^{+}_{i|\theta})_{y^{\prime}x^{\prime}}.

Let Ω^AC\hat{\Omega}_{AC} be the operator Ω^\hat{\Omega} when defined on the space AC\mathcal{H}_{A}\otimes\mathcal{H}_{C}. Similarly, ρCB\rho_{CB} and ρAB\rho_{AB} denote the same density operator ρ\rho but defined on different spaces. Then, with TCT_{C} denoting to the partial transpose over the space C\mathcal{H}_{C}, it can be checked that

Γ^AB=trC(Ω^ACTCρ¯CB).\displaystyle\hat{\Gamma}_{AB}=tr_{C}(\hat{\Omega}_{AC}^{T_{C}}\bar{\rho}_{CB}). (31)

As a positive semi-definite Hermitian operator, Ω^\hat{\Omega} can be written as the sum of (unnormalized) rank-1 projectors Ω^=x|πxπx|\hat{\Omega}=\sum_{x}|\pi_{x}\rangle\langle\pi_{x}|, thereby

Γ^AB=xtrC[(|πxACπx|)TCρ¯CB]\displaystyle\hat{\Gamma}_{AB}=\sum_{x}tr_{C}\Big{[}(|\pi_{x}\rangle_{AC}\langle\pi_{x}|)^{T_{C}}\bar{\rho}_{CB}\Big{]}
=\displaystyle= xtrC[ρ¯CB(|πxAC)TC(πx|)TCACρ¯CB]\displaystyle\sum_{x}tr_{C}\Big{[}\sqrt{\bar{\rho}_{CB}}(|\pi_{x}\rangle_{AC})^{T_{C}}({}_{AC}\langle\pi_{x}|)^{T_{C}}\sqrt{\bar{\rho}_{CB}}\Big{]} (32)
=\displaystyle= xtrC(Πx+Πx),\displaystyle\sum_{x}tr_{C}\big{(}\Pi_{x}^{+}\Pi_{x}\big{)},

where Πx=ρ¯CB(|πxAC)TC\Pi_{x}=\sqrt{\bar{\rho}_{CB}}(|\pi_{x}\rangle_{AC})^{T_{C}}. Considering that Πx+Πx0\Pi_{x}^{+}\Pi_{x}\geq 0 are positive semi-definite operators on the space ABC\mathcal{H}_{A}\otimes\mathcal{H}_{B}\otimes\mathcal{H}_{C}, immediately we have Γ^AB0\hat{\Gamma}_{AB}\geq 0. This completes the proof of Theorem 2.

For design-structured measurements, the corresponding combined view operators are proportional to 𝟙ψd=𝟙d2|ψdψd|\mathbbm{1}_{\perp\psi_{d}}=\mathbbm{1}_{d}^{\otimes 2}-|\psi_{d}\rangle\langle\psi_{d}|, then Ω^=Γ^AB=0\hat{\Omega}=\hat{\Gamma}_{AB}=0 and Eq. (25) becomes an equality saturated by arbitrary state ρAB\rho_{AB} on AC\mathcal{H}_{A}\otimes\mathcal{H}_{C}.

Appendix C Interference pattern of information amplitude

We denote by {|iϕ}i=0,1\{\ket{i_{\phi}}\}_{i=0,1} the measurement basis with respect to the experimental setup where BS2 of the two-way interferometer (see Fig. 3) is inserted in and the phase shift is ϕ\phi. Then, the associated view operator is

G^ϕw=i=0,1|iϕiϕ||iϕiϕ||ψ2ψ2|\displaystyle\hat{G}_{\phi}^{\rm w}=\sum_{i=0,1}|i_{\phi}\rangle\langle i_{\phi}|\otimes|i_{\phi}\rangle^{*}\langle i_{\phi}|-|\psi_{2}\rangle\langle\psi_{2}| (33)
=\displaystyle= 12i,j=0,1(1)i+j|iϕjϕ||iϕjϕ|=12|σϕwσϕw|,\displaystyle\frac{1}{2}\sum_{i,j=0,1}(-1)^{i+j}|i_{\phi}\rangle\langle j_{\phi}|\otimes|i_{\phi}\rangle^{*}\langle j_{\phi}|=\frac{1}{2}|\sigma_{\phi}^{\rm w}\rangle\langle\sigma_{\phi}^{\rm w}|,

where |σϕw=|0ϕ|0ϕ|1ϕ|1ϕ\ket{\sigma^{\rm w}_{\phi}}=|0_{\phi}\rangle\otimes|0_{\phi}\rangle^{*}-|1_{\phi}\rangle\otimes|1_{\phi}\rangle^{*} is the vector representation of the wave observable σϕw=|0ϕ0ϕ||1ϕ1ϕ|\sigma^{\rm w}_{\phi}=|0_{\phi}\rangle\langle 0_{\phi}|-|1_{\phi}\rangle\langle 1_{\phi}| given by the isomorphism (1). Similarly, the view operator associated with the path observable σp\sigma^{\rm p} is given as G^p=12|σpσp|\hat{G}^{\rm p}=\frac{1}{2}|\sigma^{\rm p}\rangle\langle\sigma^{\rm p}|.

Recall that the path observable is complementary to wave observables and, consequently, the view operators {G^p,G^ϕw,G^ϕ+π2w}\{\hat{G}^{\rm p},\hat{G}^{\rm w}_{\phi},\hat{G}^{\rm w}_{\phi+\frac{\pi}{2}}\} are mutually orthogonal and satisfy

G^p+G^ϕw+G^ϕ+π2w𝟙ψ2.\displaystyle\hat{G}^{\rm p}+\hat{G}^{\rm w}_{\phi}+\hat{G}^{\rm w}_{\phi+\frac{\pi}{2}}\equiv\mathbbm{1}_{\perp\psi_{2}}. (34)

Moreover, for arbitrary two wave observables σϕw\sigma_{\phi^{\prime}}^{\rm w} and σϕw\sigma_{\phi}^{\rm w}, it can be easily checked that

|σϕw=cos(ϕϕ)|σϕw+sin(ϕϕ)|σϕ+π2w.\displaystyle\ket{\sigma_{\phi^{\prime}}^{\rm w}}=\cos(\phi^{\prime}-\phi)\ket{\sigma_{\phi}^{\rm w}}+\sin(\phi^{\prime}-\phi)\ket{\sigma_{\phi+\frac{\pi}{2}}^{\rm w}}. (35)

This leads us to

sin2(ϕϕ)G^ϕ+π2w=sin(ϕϕ)2|σϕ+π2wσϕ+π2w|\displaystyle\sin^{2}(\phi^{\prime}-\phi)\hat{G}_{\phi+\frac{\pi}{2}}^{\rm w}=\sin(\phi^{\prime}-\phi)^{2}|\sigma_{\phi+\frac{\pi}{2}}^{\rm w}\rangle\langle\sigma_{\phi+\frac{\pi}{2}}^{\rm w}|
=\displaystyle= G^ϕw+G^ϕwG^ϕwG^ϕwG^ϕwG^ϕwG^ϕwG^ϕw.\displaystyle\hat{G}_{\phi^{\prime}}^{\rm w}+\hat{G}_{\phi}^{\rm w}\hat{G}_{\phi^{\prime}}^{\rm w}\hat{G}_{\phi}^{\rm w}-\hat{G}_{\phi}^{\rm w}\hat{G}_{\phi^{\prime}}^{\rm w}-\hat{G}_{\phi^{\prime}}^{\rm w}\hat{G}_{\phi}^{\rm w}. (36)

Combining equations (36) and (34) we have for any qubit density operator ρ\rho

sin2(ϕϕ)ρ|G^p+G^ϕw+G^ϕ+π2w|ρ\displaystyle\sin^{2}(\phi^{\prime}-\phi)\braket{\rho|\hat{G}^{\rm p}+\hat{G}_{\phi}^{\rm w}+\hat{G}_{\phi+\frac{\pi}{2}}^{\rm w}|\rho}
=\displaystyle= sin2(ϕϕ)[G(σp)ρ+G(σϕw)ρ]+G(σϕw)ρ\displaystyle\sin^{2}(\phi^{\prime}-\phi)[G(\sigma^{\rm p})_{\rho}+G(\sigma^{\rm w}_{\phi})_{\rho}]+G(\sigma_{\phi^{\prime}}^{\rm w})_{\rho}
+cos2(ϕϕ)G(σϕw)ρcos(ϕϕ)σϕwσϕw\displaystyle+\cos^{2}(\phi^{\prime}-\phi)G(\sigma_{\phi}^{\rm w})_{\rho}-\cos(\phi^{\prime}-\phi)\braket{\sigma_{\phi}^{\rm w}}\braket{\sigma_{\phi^{\prime}}^{\rm w}}
=\displaystyle= sin2(ϕϕ)ρ|𝟙ψ2|ρ=sin2(ϕϕ)Icom(ρ),\displaystyle\sin^{2}(\phi^{\prime}-\phi)\braket{\rho|\mathbbm{1}_{\perp\psi_{2}}|\rho}=\sin^{2}(\phi^{\prime}-\phi)I_{\rm com}(\rho), (37)

which completes the proof of Eq. (11).

To derive the interference pattern of the “amplitude of conditional information” as given in Eq. (15), let us consider the equality

Δ^AC=\displaystyle\hat{\Delta}_{AC}= G^ϕw+G^ϕwG^ϕwG^ϕwG^ϕwG^ϕw\displaystyle\hat{G}^{\rm w}_{\phi}+\hat{G}_{\phi^{\prime}}^{\rm w}-\hat{G}_{\phi}^{\rm w}\hat{G}_{\phi^{\prime}}^{\rm w}-\hat{G}_{\phi^{\prime}}^{\rm w}\hat{G}_{\phi}^{\rm w}
=\displaystyle= sin2(ϕϕ)[𝟙ψ2G^p].\displaystyle\sin^{2}(\phi^{\prime}-\phi)[\mathbbm{1}_{\perp\psi_{2}}-\hat{G}^{\rm p}]. (38)

From the proof of Theorem 2 we have

trABC(ρ¯ABΔ^ACTCρ¯CB)=sin2(ϕϕ)[1tr(ρ¯σpB2)]\displaystyle tr_{ABC}(\bar{\rho}_{AB}\hat{\Delta}_{AC}^{T_{C}}\bar{\rho}_{CB})=\sin^{2}(\phi^{\prime}-\phi)[1-tr(\bar{\rho}_{\sigma^{\rm p}B}^{2})]
=\displaystyle= tr(ρ¯σϕwB2)+tr(ρ¯σϕwB2)tr(ρ¯AB2)T(ϕϕ),\displaystyle tr(\bar{\rho}_{\sigma^{\rm w}_{\phi}B}^{2})+tr(\bar{\rho}_{\sigma^{\rm w}_{\phi^{\prime}}B}^{2})-tr(\bar{\rho}_{AB}^{2})-T(\phi^{\prime}-\phi), (39)

where ρσB\rho_{\sigma B} denotes the classical-quantum state (23) after measuring the observable σ\sigma and

T(ϕϕ)=2trABC[ρ¯CBρ¯AB(G^ϕwG^ϕw)ACTC]=2cos(ϕϕ)trABC[ρ¯CBρ¯AB(|σϕwσϕw|)ACTC]\displaystyle T(\phi^{\prime}-\phi)=2\ tr_{ABC}\big{[}\bar{\rho}_{CB}\bar{\rho}_{AB}(\hat{G}_{\phi}^{\rm w}\hat{G}_{\phi^{\prime}}^{\rm w})^{T_{C}}_{AC}\big{]}=2\cos(\phi^{\prime}-\phi)tr_{ABC}\big{[}\bar{\rho}_{CB}\bar{\rho}_{AB}(|\sigma_{\phi}^{\rm w}\rangle\langle\sigma_{\phi^{\prime}}^{\rm w}|)^{T_{C}}_{AC}\big{]}
=\displaystyle= cos(ϕϕ)i,j=0,1(1)i+jtrABC[ρ¯AB|iϕAjϕ||jϕCiϕ|ρ¯CB]\displaystyle\cos(\phi^{\prime}-\phi)\sum_{i,j=0,1}(-1)^{i+j}\cdot tr_{ABC}\ \big{[}\bar{\rho}_{AB}|i_{\phi}\rangle_{A}\langle j_{\phi^{\prime}}|\otimes|j_{\phi^{\prime}}\rangle_{C}\langle i_{\phi}|\bar{\rho}_{CB}\big{]}
=\displaystyle= cos(ϕϕ)i,j=0,1(1)i+jtrB[jϕ|ρ¯AB|iϕAAiϕ|ρ¯AB|jϕA]\displaystyle\cos(\phi^{\prime}-\phi)\sum_{i,j=0,1}(-1)^{i+j}\cdot tr_{B}\big{[}{}_{A}\langle j_{\phi^{\prime}}|\bar{\rho}_{AB}|i_{\phi}\rangle_{A}\langle i_{\phi}|\bar{\rho}_{AB}|j_{\phi^{\prime}}\rangle_{A}\big{]}
=\displaystyle= cos(ϕϕ)trAB(σϕwρ¯ABσϕwρ¯AB)\displaystyle\cos(\phi^{\prime}-\phi)tr_{AB}(\sigma_{\phi^{\prime}}^{\rm w}\bar{\rho}_{AB}\sigma_{\phi}^{\rm w}\bar{\rho}_{AB})
=\displaystyle= cos(ϕϕ)trB[trA(ρ¯ABσϕw𝟙B)trA(ρ¯ABσϕw𝟙B)]cos2(ϕϕ)[tr(ρ¯AB2)1].\displaystyle\cos(\phi^{\prime}-\phi)tr_{B}[tr_{A}(\bar{\rho}_{AB}\sigma_{\phi}^{\rm w}\otimes\mathbbm{1}_{B})tr_{A}(\bar{\rho}_{AB}\sigma_{\phi^{\prime}}^{\rm w}\otimes\mathbbm{1}_{B})]-\cos^{2}(\phi^{\prime}-\phi)[tr(\bar{\rho}^{2}_{AB})-1]. (40)

Observe Eq. (39) can be rewritten as

tr(ρ¯σϕwB2)1/2+tr(ρ¯σϕwB2)1/2cos(ϕϕ)trB[trA(ρ¯ABσϕw𝟙B)trA(ρ¯ABσϕw𝟙B)]\displaystyle tr(\bar{\rho}_{\sigma^{\rm w}_{\phi}B}^{2})-1/2+tr(\bar{\rho}_{\sigma^{\rm w}_{\phi^{\prime}}B}^{2})-1/2-\cos(\phi^{\prime}-\phi)tr_{B}[tr_{A}(\bar{\rho}_{AB}\sigma^{\rm w}_{\phi}\otimes\mathbbm{1}_{B})tr_{A}(\bar{\rho}_{AB}\sigma_{\phi^{\prime}}^{\rm w}\otimes\mathbbm{1}_{B})]
=\displaystyle= sin2(ϕϕ)[tr(ρ¯AB2)tr(ρ¯σpB2)].\displaystyle\sin^{2}(\phi^{\prime}-\phi)[tr(\bar{\rho}_{AB}^{2})-tr(\bar{\rho}_{\sigma^{\rm p}B}^{2})]. (41)

Let ρϕB=ρ¯ϕBϕ=trA(ρ¯ABσϕw𝟙B)ϕ\vec{\rho}_{\phi B}=\bar{\rho}_{\phi B}\ \vec{\phi}=tr_{A}(\bar{\rho}_{AB}\sigma_{\phi}^{\rm w}\otimes\mathbbm{1}_{B})\ \vec{\phi}, apprently tr(ρϕB 2)=tr(ρ¯ϕB 2)=2tr(ρ¯σϕB 2)1=2I(σϕw|B)tr(\vec{\rho}_{\phi B}^{\ 2})=tr(\bar{\rho}_{\phi B}^{\ 2})=2tr(\bar{\rho}_{\sigma_{\phi}B}^{\ 2})-1=2I(\sigma_{\phi}^{\rm w}|B). Eq. (41) thus completes the proof of Eq. (15).

Appendix D Proof of Theorem 3

This proof is inspired by the works [65, 66] on entanglement detection with MUMs [45]. By definition any bipartite separable state can be written as a linear combination of product states in the form ρAB=kpkρAkρBk\rho_{AB}=\sum_{k}p_{k}\rho_{A_{k}}\otimes\rho_{B_{k}} (pk>0,kpk=1)(p_{k}>0,\ \sum_{k}p_{k}=1). For a product state ρAρB\rho_{A}\otimes\rho_{B}, obviously tr(Ji|θρAρB)=[pi|θA1dAtr(Mi|θA)][pi|θB1dBtr(Mi|θB)]tr(J_{i|\theta}\rho_{A}\otimes\rho_{B})=\big{[}p^{A}_{i|\theta}-\frac{1}{d_{A}}tr(M^{A}_{i|\theta})\big{]}\cdot\big{[}p^{B}_{i|\theta}-\frac{1}{d_{B}}tr(M^{B}_{i|\theta})\big{]}. Then we have

J(ρAρB)=i,θwθ|pi|θAtr(Mi|θA)1dA|wθ|pi|θBtr(Mi|θB)1dB|\displaystyle J(\rho_{A}\otimes\rho_{B})=\sum_{i,\theta}\sqrt{w_{\theta}}\left|p^{A}_{i|\theta}-tr(M^{A}_{i|\theta})\frac{1}{d_{A}}\right|\cdot\sqrt{w_{\theta}}\left|p^{B}_{i|\theta}-tr(M^{B}_{i|\theta})\frac{1}{d_{B}}\right|
\displaystyle\leq [i,θwθ(pi|θAtr(Mi|θA)/dA)2]1/2×[i,θwθ(pi|θBtr(Mi|θB)/dB)2]1/2\displaystyle\Big{[}\sum_{i,\theta}w_{\theta}\big{(}p^{A}_{i|\theta}-tr(M^{A}_{i|\theta})/d_{A}\big{)}^{2}\Big{]}^{1/2}\times\Big{[}\sum_{i,\theta}w_{\theta}\big{(}p^{B}_{i|\theta}-tr(M^{B}_{i|\theta})/d_{B}\big{)}^{2}\Big{]}^{1/2}
\displaystyle\leq g^AIcom(ρA)g^BIcom(ρB)LALB,\displaystyle\sqrt{\lVert\hat{g}_{A}\rVert I_{\rm com}(\rho_{A})\cdot\lVert\hat{g}_{B}\rVert I_{\rm com}(\rho_{B})}\leq\sqrt{L_{A}\cdot L_{B}},

with LA=g^A(11/dA)L_{A}=\lVert\hat{g}_{A}\rVert(1-1/d_{A}) and LB=g^B(11/dB)L_{B}=\lVert\hat{g}_{B}\rVert(1-1/d_{B}) being state-independent upper bounds on local information gains, and the first inequality above exploits the Cauchy–Schwarz inequality. Therefore, for bipartite separable states there must be J(ρAB)=i,θwθ|tr(Ji|θkpkρAkρBk)|kpki,θwθ|tr(Ji|θρAkρBk)|=kpkJ(ρAkρBk)kpkLALB=LALBJ(\rho_{AB})=\sum_{i,\theta}w_{\theta}|tr(J_{i|\theta}\cdot\sum_{k}p_{k}\rho_{A_{k}}\otimes\rho_{B_{k}})|\leq\sum_{k}p_{k}\sum_{i,\theta}w_{\theta}|tr(J_{i|\theta}\cdot\rho_{A_{k}}\otimes\rho_{B_{k}})|=\sum_{k}p_{k}J(\rho_{A_{k}}\otimes\rho_{B_{k}})\leq\sum_{k}p_{k}\sqrt{L_{A}\cdot L_{B}}=\sqrt{L_{A}\cdot L_{B}}.

Appendix E Proof of Theorem 4

Observe that in the case of rank-1 projective measurements Eq. (25) becomes

g^+(1g^)Fpg(A|B)θwθtr(ρ¯θB2).\displaystyle\lVert\hat{g}\rVert+(1-\lVert\hat{g}\rVert)F^{\rm pg}(A|B)\geq\sum_{\theta}w_{\theta}\cdot tr(\bar{\rho}_{\mathcal{M}_{\theta}B}^{2}). (42)

Considering that Hminε(θ|B)log[tr(ρ¯θB2)]log2ε2H_{\rm min}^{\varepsilon}(\mathcal{M}_{\theta}|B)\geq-\log[tr(\bar{\rho}_{\mathcal{M}_{\theta}B}^{2})]-\log\frac{2}{\varepsilon^{2}} (see Lemma 19 of Ref. [67] and Theorem 7 of Ref. [68]), immediately

θwθHminε(θ|B)log[θwθtr(ρ¯θB2]log2ε2log[g^+(1g^)Fpg(A|B)]log2ε2.\displaystyle\sum_{\theta}w_{\theta}H_{\rm min}^{\varepsilon}(\mathcal{M}_{\theta}|B)\geq-\log\Big{[}\sum_{\theta}w_{\theta}\ tr(\bar{\rho}_{\mathcal{M}_{\theta}B}^{2}\Big{]}-\log\frac{2}{\varepsilon^{2}}\geq-\log\big{[}\lVert\hat{g}\rVert+(1-\lVert\hat{g}\rVert)F^{\rm pg}(A|B)\big{]}-\log\frac{2}{\varepsilon^{2}}. (43)

References

  • Bohr [1928] N. Bohr, The quantum postulate and the recent development of atomic theory, Vol. 3 (Printed in Great Britain by R. & R. Clarke, Limited, 1928).
  • Wootters and Zurek [1979] W. K. Wootters and W. H. Zurek, Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr’s principle, Phys. Rev. D 19, 473 (1979).
  • Greenberger and Yasin [1988] D. M. Greenberger and A. Yasin, Simultaneous wave and particle knowledge in a neutron interferometer, Phys. Lett. A 128, 391 (1988).
  • Jaeger et al. [1993] G. Jaeger, M. A. Horne, and A. Shimony, Complementarity of one-particle and two-particle interference, Phys. Rev. A 48, 1023 (1993).
  • Jaeger et al. [1995] G. Jaeger, A. Shimony, and L. Vaidman, Two interferometric complementarities, Phys. Rev. A 51, 54 (1995).
  • Englert [1996] B.-G. Englert, Fringe visibility and which-way information: An inequality, Phys. Rev. Lett. 77, 2154 (1996).
  • Heisenberg [1927] W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift für Physik 43, 172 (1927).
  • Deutsch [1983] D. Deutsch, Uncertainty in quantum measurements, Phys. Rev. Lett. 50, 631 (1983).
  • Maassen and Uffink [1988] H. Maassen and J. B. M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60, 1103 (1988).
  • Coles et al. [2017] P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, Entropic uncertainty relations and their applications, Rev. Modern Phys. 89, 015002 (2017).
  • Cerf et al. [2002] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88, 127902 (2002).
  • Berta et al. [2010] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, The uncertainty principle in the presence of quantum memory, Nat. Phys. 6, 659 (2010).
  • Tomamichel and Renner [2011] M. Tomamichel and R. Renner, Uncertainty relation for smooth entropies, Phys. Rev. Lett. 106, 110506 (2011).
  • Storey et al. [1994] P. Storey, S. Tan, M. Collett, and D. Walls, Path detection and the uncertainty principle, Nature 367, 626 (1994).
  • Storey et al. [1995] E. P. Storey, S. M. Tan, M. J. Collett, and D. F. Walls, Complementarity and uncertainty, Nature 375, 368 (1995).
  • Englert et al. [1995] B.-G. Englert, M. O. Scully, and H. Walther, Complementarity and uncertainty, Nature 375, 367 (1995).
  • Wiseman and Harrison [1995] H. Wiseman and F. Harrison, Uncertainty over complementarity?, Nature 377, 584 (1995).
  • Busch and Shilladay [2006] P. Busch and C. Shilladay, Complementarity and uncertainty in Mach–Zehnder interferometry and beyond, Phys. Rep. 435, 1 (2006).
  • Liu et al. [2012] H.-Y. Liu, J.-H. Huang, J.-R. Gao, M. S. Zubairy, and S.-Y. Zhu, Relation between wave-particle duality and quantum uncertainty, Phys. Rev. A 85, 022106 (2012).
  • Coles et al. [2014] P. J. Coles, J. Kaniewski, and S. Wehner, Equivalence of wave–particle duality to entropic uncertainty, Nat. Commun. 5, 5814 (2014).
  • Brukner and Zeilinger [2001] Č. Brukner and A. Zeilinger, Conceptual inadequacy of the Shannon information in quantum measurements, Phys. Rev. A 63, 022113 (2001).
  • Kochen [1967] S. Kochen, The problem of hidden variales in quantum mechanics, J. Math. Mech. 17, 59 (1967).
  • Mermin [1990] N. D. Mermin, Simple unified form for the major no-hidden-variables theorems, Phys. Rev. Lett. 65, 3373 (1990).
  • Brukner and Zeilinger [1999] Č. Brukner and A. Zeilinger, Operationally invariant information in quantum measurements, Phys. Rev. Lett. 83, 3354 (1999).
  • Ivonovic [1981] I. Ivonovic, Geometrical description of quantal state determination, J. Phys. A: Math. Gen. 14, 3241 (1981).
  • Wootters and Fields [1989] W. K. Wootters and B. D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Physics 191, 363 (1989).
  • Klappenecker and Rötteler [2004] A. Klappenecker and M. Rötteler, in Lect. Notes Comp. Sci., Vol. 2948 (Springer, 2004) pp. 137–144.
  • Pittenger and Rubin [2004] A. O. Pittenger and M. H. Rubin, Mutually unbiased bases, generalized spin matrices and separability, Linear Algebr. Appl. 390, 255 (2004).
  • Řeháček and Hradil [2002] J. Řeháček and Z. Hradil, Invariant information and quantum state estimation, Phys. Rev. Lett. 88, 130401 (2002).
  • Lee et al. [2003] J. Lee, M. S. Kim, and Č. Brukner, Operationally invariant measure of the distance between quantum states by complementary measurements, Phys. Rev. Lett. 91, 087902 (2003).
  • Lee and Kim [2000] J. Lee and M. Kim, Entanglement teleportation via Werner states, Phys. Rev. Lett. 84, 4236 (2000).
  • Giovannetti et al. [2004] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit, Science 306, 1330 (2004).
  • Kofler and Zeilinger [2010] J. Kofler and A. Zeilinger, Quantum information and randomness, Eur. Rev. 18, 469 (2010).
  • Wang et al. [2019] H. Wang, Z. Ma, S. Wu, W. Zheng, Z. Cao, Z. Chen, Z. Li, S.-M. Fei, X. Peng, V. Vedral, and J. Du, Uncertainty equality with quantum memory and its experimental verification, npj Quantum Inf. 5, 1 (2019).
  • Ding et al. [2020] Z.-Y. Ding, H. Yang, H. Yuan, D. Wang, J. Yang, and L. Ye, Experimental investigation of linear-entropy-based uncertainty relations in all-optical systems, Phys. Rev. A 101, 022116 (2020).
  • Brukner et al. [2005] Č. Brukner, M. Aspelmeyer, and A. Zeilinger, Complementarity and information in “delayed-choice for entanglement swapping”, Found.Phys. 35, 1909 (2005).
  • Hall [1995] M. J. W. Hall, Information exclusion principle for complementary observables, Phys. Rev. Lett. 74, 3307 (1995).
  • Hall [1997] M. J. W. Hall, Quantum information and correlation bounds, Phys. Rev. A 55, 100 (1997).
  • Coles and Piani [2014] P. J. Coles and M. Piani, Improved entropic uncertainty relations and information exclusion relations, Phys. Rev. A 89, 022112 (2014).
  • Berta et al. [2014a] M. Berta, J. M. Renes, and M. M. Wilde, Identifying the information gain of a quantum measurement, IEEE Trans. Inf. Theory 60, 7987 (2014a).
  • Zhang et al. [2015] J. Zhang, Y. Zhang, and C.-S. Yu, Entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory, Sci. Rep. 5, 11701 (2015).
  • Jamiołkowski [1972] A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness of operators, Rep. Math. Phys. 3, 275 (1972).
  • D’Ariano and Lo Presti [2001] G. M. D’Ariano and P. Lo Presti, Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation, Phys. Rev. Lett. 86, 4195 (2001).
  • D’Ariano et al. [2004] G. M. D’Ariano, P. Perinotti, and M. Sacchi, Informationally complete measurements and group representation, J. Opt. B: Quantum Semiclassical Opt. 6, S487 (2004).
  • Kalev and Gour [2014] A. Kalev and G. Gour, Mutually unbiased measurements in finite dimensions, New J. Phys. 16, 053038 (2014).
  • Ketterer and Gühne [2020] A. Ketterer and O. Gühne, Entropic uncertainty relations from quantum designs, Phys. Rev. Research 2, 023130 (2020).
  • Rastegin [2020] A. E. Rastegin, Rényi formulation of uncertainty relations for POVMs assigned to a quantum design, J. Phys. A: Math. Theor. 53, 405301 (2020).
  • Rastegin [2023] A. E. Rastegin, Entropic uncertainty relations from equiangular tight frames and their applications, Proc. R. Soc. A 479, 20220546 (2023).
  • Renes et al. [2004] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, Symmetric informationally complete quantum measurements, J. Math. Phys. 45, 2171 (2004).
  • Gour and Kalev [2014] G. Gour and A. Kalev, Construction of all general symmetric informationally complete measurements, J. Phys. A: Math. Theor. 47, 335302 (2014).
  • Yoshida and Kimura [2022] M. Yoshida and G. Kimura, Construction of general symmetric-informationally-complete–positive-operator-valued measures by using a complete orthogonal basis, Phys. Rev. A 106, 022408 (2022).
  • Berta et al. [2014b] M. Berta, P. J. Coles, and S. Wehner, Entanglement-assisted guessing of complementary measurement outcomes, Phys. Rev. A 90, 062127 (2014b).
  • Barnum and Knill [2002] H. Barnum and E. Knill, Reversing quantum dynamics with near-optimal quantum and classical fidelity, J. Math. Phys. 43, 2097 (2002).
  • Müller-Lennert et al. [2013] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, On quantum Rényi entropies: A new generalization and some properties, J. Math. Phys. 54 (2013).
  • Tomamichel et al. [2014] M. Tomamichel, M. Berta, and M. Hayashi, Relating different quantum generalizations of the conditional Rényi entropy, J. Math. Phys. 55 (2014).
  • Horodecki and Horodecki [1996] R. Horodecki and M. Horodecki, Information-theoretic aspects of inseparability of mixed states, Phys. Rev. A 54, 1838 (1996).
  • Horodecki et al. [1996] R. Horodecki, P. Horodecki, and M. Horodecki, Quantum α\alpha-entropy inequalities: independent condition for local realism?, Phys. Lett. A 210, 377 (1996).
  • Hausladen and Wootters [1994] P. Hausladen and W. K. Wootters, A ‘pretty good’ measurement for distinguishing quantum states, J. Modern Optics 41, 2385 (1994).
  • Buhrman et al. [2008] H. Buhrman, M. Christandl, P. Hayden, H.-K. Lo, and S. Wehner, Possibility, impossibility, and cheat sensitivity of quantum-bit string commitment, Phys. Rev. A 78, 022316 (2008).
  • Qian and Agarwal [2020] X.-F. Qian and G. S. Agarwal, Quantum duality: A source point of view, Phys. Rev. Research 2, 012031 (2020).
  • Ionicioiu and Terno [2011] R. Ionicioiu and D. R. Terno, Proposal for a quantum delayed-choice experiment, Phys. Rev. Lett. 107, 230406 (2011).
  • Renner [2008] R. Renner, Security of quantum key distribution, Int. J. Quantum Inf. 6, 1 (2008).
  • Fiedler [1972] M. Fiedler, Bounds for eigenvalues of doubly stochastic matrices, Linear Algebra Appl 5, 299 (1972).
  • Kraus et al. [1983] K. Kraus, A. Böhm, J. D. Dollard, and W. Wootters, States, Effects, and Operations Fundamental Notions of Quantum Theory: Lectures in Mathematical Physics at the University of Texas at Austin (Springer, 1983).
  • Chen et al. [2014] B. Chen, T. Ma, and S.-M. Fei, Entanglement detection using mutually unbiased measurements, Phys. Rev. A 89, 064302 (2014).
  • Rastegin [2015] A. E. Rastegin, On uncertainty relations and entanglement detection with mutually unbiased measurements, Open Syst. Inf. Dyn. 22, 1550005 (2015).
  • Dupuis et al. [2014] F. Dupuis, O. Fawzi, and S. Wehner, Entanglement sampling and applications, IEEE Trans. Inf. Theory 61, 1093 (2014).
  • Tomamichel et al. [2009] M. Tomamichel, R. Colbeck, and R. Renner, A fully quantum asymptotic equipartition property, IEEE Trans. Inf. Theory 55, 5840 (2009).