This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum Many-body Scars through the Lens of Correlation Matrix

Zhiyuan Yao yaozy@lzu.edu.cn Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou Center for Theoretical Physics, and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China    Pengfei Zhang Department of Physics, Fudan University and State Key Laboratory of Surface Physics, Shanghai, 200438, China Shanghai Qi Zhi Institute, AI Tower, Xuhui District, Shanghai 200232, China Hefei National Laboratory, Hefei 230088, China
(August 31, 2025)
Abstract

Quantum many-body scars (QMBS)—rare eigenstates that evade thermalization—are typically characterized by their low entanglement entropies compared to surrounding thermal eigenstates. However, due to finite-size effects in systems accessible via exact diagonalization, this measure can be ambiguous. To address this limitation, we propose using the correlation matrix spectrum as an alternative probe to identify QMBS. In cases of exact QMBS with either known analytic expressions or can be captured by various frameworks of QMBS, we find the dimensionality of the null space of the correlation matrix—an integer value, and thus immune to finite-size effects—can qualitatively isolate QMBS. Beyond serving as a diagnostic tool, the correlation matrix method enables easy manipulation of the QMBS subspace. For approximate QMBS, such as those in the PXP model, we observe that the correlation matrix spectrum features numerous approximate zero eigenvalues, distinguishing these states. We demonstrate the effectiveness and utility of this method with several paradigmatic QMBS examples.

Introduction. With rapid advances in preparing and manipulating quantum states across various artificial quantum platforms, there has been growing interest in understanding how a generic isolated quantum system thermalizes after a quench [1, 2, 3, 4, 5, 6]. The universal thermalization imposes stringent constraints on the eigenstates of generic interacting quantum systems, and a widely accepted framework is the eigenstate thermalization hypothesis (ETH), which posits that locally an eigenstate encodes the information of a thermal ensemble [7, 8, 9, 10, 11]. Except for systems that are integral [12, 13, 14] or with emergent integrability such as the many-body localized systems [15, 16, 5], the validity of ETH has been confirmed in numerous numerical studies [17, 3]. Moreover, it was believed that the ETH applies in the strong sense that it holds for every eigenstate with finite energy density [18].

However, the ETH has recently been challenged by persistent oscillations of local observables after a quench in a Rydberg atom chain [19]. Shortly after, it is shown that the ETH in the effective PXP model is valid only in the weak sense: it breaks down for a measure-zero subset of eigenstates [20, 21]. These special outliers, drawing analogy to single-particle phenomena [22], were dubbed quantum many-body scars (QMBS), or simply scar states. This discovery sparked intense ongoing research, significantly expanding our understanding of QMBS [23, 24, 25]. For example, Shiraishi and Mori have constructed a framework to embed a target space spanned by scar states in a nonintegrable model [26]. Families of Hamiltonians hosting QMBS with closed analytic expressions and equidistant energy separation have also been constructed from symmetry and quasisymmetry perspectives [27, 28, 29, 30, 31, 32]. In parallel, in the spirit of η\eta-paring states in the Hubbard model [33, 34], the Mark–Lin–Motrunich (MLM) framework [35] and the equivalent spectrum generating algebra (SGA) formalism [36] have provided unified explanations of scar states discovered across different models [37, 38, 39, 40, 41, 42, 43].

However, due to the varying principles underlying those constructions, a unified framework for QMBS is still lacking [24]. As a result, the origin of QMBS in specific models is often addressed on a case-by-case basis. Moreover, theoretical analysis can often become quite involved, making it difficult to identify potential connections between different frameworks. For example, it is unclear whether the second family of QMBS in the spin-1 XY model can be captured by existing formalisms [41, 44]. Additionally, controlling the scar subspace is often challenging. On the numerical side, the entanglement entropy is commonly used to identify QMBS due to their characteristic low-entanglement nature [45]. However, because of the limited system sizes accessible via exact diagonalization, finite-size effects can make it difficult to reliably distinguish QMBS using this approach.

In this Letter, we show that these problems can be well addressed using the correlation matrix spectrum as a tool for characterizing and diagnosing QMBS. For exact QMBS, including those not captured by previous formalisms, we find the dimensionality of the kernel of the correlation matrix—being an integer and immune to finite-size effects— differs from that of thermal eigenstates. This number thus provides a sharp qualitative probe of QMBS, superior to the quantitative probe of entanglement entropy. For approximate QMBS, such as those in the PXP model, the distinct feature of numerous approximate zero eigenvalues in the correlation matrix spectrum also allow us to single out QMBS from thermal eigenstates.

Correlation Matrix. Our work is primarily motivated by the information perspective of the ETH. According to this hypothesis, the diagonal matrix element of a local observable, O^\hat{O}, with respect to a thermal eigenstate |n\ket{n} approaches the thermal ensemble average as the system size increases [8, 9, 3]

n|O^|n1ZTreβH^O^,\matrixelement{n}{\hat{O}}{n}\rightarrow\frac{1}{Z}\mathrm{Tr}\,e^{-\beta\hat{H}}\hat{O}\,, (1)

where Z=TreβH^Z=\mathrm{Tr}\,e^{-\beta\hat{H}} is the partition function and β\beta represents the inverse temperature (with kB=1k_{B}=1). This implies that a thermal eigenstate encodes sufficient information to infer the underlying Hamiltonian, consistent with the fact that a wavefunction has exponentially many components, while a local Hamiltonian has only extensively many parameters. In other words, one might not able to reconstruct the Hamiltonian from a low-entangled QMBS. These ideas are solidified by using the correlation matrix, originally introduced in [46], as an operational tool for reconstructing the underlying local Hamiltonian from a single eigenstate. Let |ψ\ket{\psi} be a wave function, and let 𝒱\mathcal{V} denote a real vector space of Hermitian operators spanned a set of operator basis {L^i}\{\hat{L}_{i}\} that acts on |ψ\ket{\psi}. For an arbitrary Hermitian operator O^=iwiL^i𝒱\hat{O}=\sum_{i}w_{i}\hat{L}_{i}\in\mathcal{V}, we have the the following inequality

ψ|O^2|ψ(ψ|O^|ψ)2=ψ|ψ0,\langle\psi|\hat{O}^{2}|\psi\rangle-\big{(}\langle\psi|\hat{O}|\psi\rangle\big{)}^{2}=\langle\psi_{\perp}|\psi_{\perp}\rangle\geq 0\,, (2)

where O^|ψ=ξ|ψ+|ψ\hat{O}\ket{\psi}=\xi\ket{\psi}+\ket{\psi_{\perp}}, and |ψ\ket{\psi_{\perp}} is orthogonal to |ψ\ket{\psi}, i.e., ψ|ψ=0\langle\psi|\psi_{\perp}\rangle=0. This inequality can be casted into a quadratic form

𝐰T𝐌𝐰0,\mathbf{w}^{T}\cdot\mathbf{M}\cdot\mathbf{w}\geq 0\,, (3)

where 𝐰(w1,w2,)T\mathbf{w}\equiv(w_{1},w_{2},\cdots)^{T} is a vector of coefficients, and 𝐌\mathbf{M} is the real symmetric correlation matrix defined as

Mij=12ψ|(L^iL^j+L^jL^i)|ψψ|L^i|ψψ|L^j|ψ.M_{ij}=\dfrac{1}{2}\matrixelement{\psi}{(\hat{L}_{i}\hat{L}_{j}+\hat{L}_{j}\hat{L}_{i})}{\psi}-\matrixelement{\psi}{\hat{L}_{i}}{\psi}\!\!\matrixelement{\psi}{\hat{L}_{j}}{\psi}\,. (4)

The correlation matrix 𝐌\mathbf{M} is positive semidefinite, and equality in the quadratic form is attained only when 𝐰\mathbf{w} belongs to its null space, 𝐰Ker(𝐌)\mathbf{w}\in\mathrm{Ker}(\mathbf{M}). In this case, the corresponding O^\hat{O} is referred to as an eigenoperator of |ψ\ket{\psi}, meaning O^|ψ=ξ|ψ\hat{O}\ket{\psi}=\xi\ket{\psi}. Let N0dim(Ker(𝐌))N_{0}\equiv\mathrm{dim}(\mathrm{Ker}(\mathbf{M})) denote the dimensionality of the null space of 𝐌\mathbf{M}. We can then construct N0N_{0} linear-independent eigenoperators of |ψ\ket{\psi}. If the original Hamiltonian belongs to the chosen operator space 𝒱\mathcal{V}, then the uniqueness of Hamiltonian reconstruction from thermal eigenstates is equivalent to N0=1N_{0}=1 [46]. We shall see below exact QMBS are characterized by a often much larger N0N_{0}.

Exact QMBS. A paradigmatic model that hosts exact QMBS is the one-dimensional Affleck–Kennedy–Lieb–Tasaki (AKLT) Hamiltonian

H^0=i[12𝐒^i𝐒^i+1+16(𝐒^i𝐒^i+1)2+𝕀^3],\hat{H}_{0}=\sum_{i}\left[\frac{1}{2}\hat{\mathbf{S}}_{i}\cdot\hat{\mathbf{S}}_{i+1}+\frac{1}{6}(\hat{\mathbf{S}}_{i}\cdot\hat{\mathbf{S}}_{i+1})^{2}+\frac{\hat{\mathbb{I}}}{3}\right]\,, (5)

where 𝐒^i\hat{\mathbf{S}}_{i} is the spin-1 operator at site ii, and 𝕀^\hat{\mathbb{I}} is the identity operator [47, 37, 38]. The known series of QMBS |𝒮2n\ket{\mathcal{S}_{2n}} have eigenenergies of En=2nE_{n}=2n and are captured by the SGA formalism. Their explicit form is given by

|𝒮2n=(Q^+)n|G,n=0,1,,\ket{\mathcal{S}_{2n}}=(\hat{Q}^{+})^{n}\ket{G}\,,\quad n=0,1,\cdots\,, (6)

where |G\ket{G} is the ground state of the AKLT model and Q^+=i=1L(1)i(S^i+)2\hat{Q}^{+}=\sum_{i=1}^{L}(-1)^{i}(\hat{S}_{i}^{+})^{2} with S^i+\hat{S}_{i}^{+} being the spin-1 raising operator at site ii [36, 35]. Interestingly, this scar tower {|𝒮2n}\{\ket{\mathcal{S}_{2n}}\} is stable against certain disorder perturbations: they persist as eigenstates of the following disordered Hamiltonian H^=H^0+H^dis\hat{H}=\hat{H}_{0}+\hat{H}_{\text{dis}},

H^=H^0+n,m,m[ξm,mn(|J2,mJ2,m|)n,n+1+h.c.],\hat{H}=\hat{H}_{0}+\sum_{n,m,m^{\prime}}\left[\xi_{m,m^{\prime}}^{n}(\outerproduct{J_{2,m}}{J_{2,m^{\prime}}})_{n,n+1}+\text{h.c.}\right]\,, (7)

where nn indexes lattice sites, mm and mm^{\prime} are restricted to take 2,1,0-2,-1,0 in the summation, ξm,mn\xi_{m,m^{\prime}}^{n} are arbitrary complex numbers, and |Jj,m\ket{J_{j,m}} inside the parenthesis is the total spin jj, total magnetization mm state of two spins at sites nn and n+1n+1 [35].

To show that the number of correlation matrix zeros N0N_{0} can distinguish scar states from thermal eigenstates, we start with simple range-2 local basis L^i\hat{L}_{i}. Just like Pauli matrices for spin-1/21/2 systems, we can use the standard generators of the SU(3) group, the eight Gell-Mann matrices λa(a=1,2,,8)\lambda_{a}(a=1,2,\cdots,8), together with the identity matrix λ0\lambda_{0} to define the operator bases L^i\hat{L}_{i},

L^i=(λaλb)n,n+1,\hat{L}_{i}=\left(\lambda_{a}\otimes\lambda_{b}\right)_{n,n+1}\,, (8)

where n=1,2,,Ln=1,2,\cdots,L labels the lattice sites (L+1L+1 is identified as 11) and L^i\hat{L}_{i} acts nontrivially only on sites nn and n+1n+1. Here a=0,1,,8a=0,1,\cdots,8 and b=1,2,,8b=1,2,\cdots,8 so that we include all single-site and two-site operators but exclude the trivial identity operator, which makes the correlation matrix MM of dimension 72L×72L72L\times 72L. Since we can linearly combine L^i\hat{L}_{i} to construct the Hamiltonian (7), we have N01N_{0}\geq 1 for every eigenstate. As illustrated in Fig. 1, eigenstates with energies En=0,2,,LE_{n}=0,2,\cdots,L indeed exist and are numerically check to correspond to SGA scar states |𝒮2n\ket{\mathcal{S}_{2n}}. Additionally, other scar states with anomalously low bipartite entanglement entropies are observed. On the side of correlation matrix spectrum, all thermal eigenstates unanimously have N0=1N_{0}=1, meaning the original Hamiltonian can be reconstructed from a single thermal eigenstate [46]. In contrast, all the scar states exhibit larger values of N0N_{0}, making the correlation matrix zeros a reliable qualitative probe for scar states. This stands in contrast to the quantitative probe of entanglement entropy, which is prone to finite-size effects.

Furthermore, analytical results otherwise difficult to derive can be obtained. Further analysis shows that, at least for L=6,8,,16L=6,8,\cdots,16, the minimal number of N0N_{0} of SGA scar states satisfies N0(min)=9L+3N_{0}^{(\text{min})}=9L+3. This number has to be compared with the known 9L+29L+2 Hermitian eigenoperators of the SGA scar state: the Hamiltonian H^0\hat{H}_{0}; the total magnetization S^z=iS^iz\hat{S}^{z}=\sum_{i}\hat{S}_{i}^{z}; 9L9L Hermitian disorder terms in H^dis\hat{H}_{\text{dis}}. This means there is an additional linearly independent range-2 operator, denoted as A^\hat{A}, that is the eigenoperator of all SGA scar states. Thus, the most general range-2 Hamiltonian hosting the SGA scar states is H^+ξA^\hat{H}+\xi\hat{A} where ξ\xi is an arbitrary real number. The explicit form of A^\hat{A} is given by

A^=n(1)nA^n,\hat{A}=\sum_{n}(-1)^{n}\hat{A}_{n}\,, (9)

where A^n\hat{A}_{n} in matrix representation reads

A^n=\displaystyle\hat{A}_{n}= a=18ca(λaλa)n,n+1+2(λ1λ6+16)n,n+1\displaystyle\sum_{a=1}^{8}c_{a}\left(\lambda_{a}\otimes\lambda_{a}\right)_{n,n+1}+2\left(\lambda_{1}\otimes\lambda_{6}+1\leftrightarrow 6\right)_{n,n+1}
+2(λ2λ7+27)n,n+1\displaystyle+2\left(\lambda_{2}\otimes\lambda_{7}+2\leftrightarrow 7\right)_{n,n+1}
+43(λ3λ8+38)n,n+1.\displaystyle+\frac{4}{\sqrt{3}}\left(\lambda_{3}\otimes\lambda_{8}+3\leftrightarrow 8\right)_{n,n+1}\,. (10)

with cn=(11/3,11/3,5,1,1,53/3,53/3,7)c_{n}=(-11/3,-11/3,-5,1,1,53/3,53/3,7) accurate to machine precision. We have also tested that for even system sizes ranging from L=6L=6 to L=16L=16, the constructed operator A^\hat{A} annihilates all the SGA scars in the AKLT model. Although the prime numbers appearing in cnc_{n} suggest the difficulty of deriving this result analytically, it can be easily obtained by analyzing the null space of the correlation matrix numerically. For the additional scar states, we have successfully obtained their analytical expressions as well 111The theoretical analysis is quite involved, and the detailed study in left in Appendix A.. In short, these states are highly excited states of the AKLT Hamiltonian H^0\hat{H}_{0} that are preserved under inclusion of the disorder term H^dis\hat{H}_{\text{dis}}.

Refer to caption
Figure 1: Plot showing the bipartite entanglement entropies of the eigenstates of the disordered AKLT Hamiltonian (7) against their eigenenergies. Thermal eigenstates are represented by green circles, all uniformly having N0=1N_{0}=1. Scar states are highlighted with stars, and their corresponding N0N_{0} values are color-coded according to the color bar.

Scar Embedding and Compatibility. In addition to providing a qualitative diagnosis of scar states, the correlation matrix framework enables flexible manipulation of the scar state subspace and offers insight into its internal structure. Let 𝒜|ψ\mathcal{A}_{\ket{\psi}} denote the eigenoperator space of |ψ\ket{\psi}, which is the operator space spanned by {A^=iwiL^i}\{\hat{A}=\sum_{i}w_{i}\hat{L}_{i}\}, where 𝐰\mathbf{w} is the null eigenvector of the correlation matrix 𝐌\mathbf{M} constructed from |ψ\ket{\psi}. Given two eigenstates |ψ\ket{\psi} and |ϕ\ket{\phi} of a Hamiltonian H^\hat{H}, if 𝒜|ψ𝒜|ϕ\mathcal{A}_{\ket{\psi}}\subset\mathcal{A}_{\ket{\phi}}, then we can always select an operator A^𝒜|ϕ\hat{A}\notin\mathcal{A}_{\ket{\phi}} from 𝒜|ϕ\mathcal{A}_{\ket{\phi}} and add it to the original Hamiltonian to construct a new Hamiltonian,

H^=H^+A^,\hat{H}^{\prime}=\hat{H}+\hat{A}\,, (11)

of which |ϕ\ket{\phi} but not |ψ\ket{\psi} remains an eigenstate. To illustrate this, we use the disordered AKLT model (7) as an example. Scar states in this model include the ferromagnetic state |F=|1111\ket{F}=\ket{11\cdots 11} where mi1m_{i}\equiv 1, the single-magnon state,

|1k=neikn|11n1011Ln,\ket{1_{k}}=\sum_{n}e^{ikn}\big{|}\underbrace{1\cdots 1}_{n-1}0\underbrace{1\cdots 1}_{L-n}\big{\rangle}\,, (12)

where n=0,1,,L1n=0,1,\cdots,L-1 in the summation and k=2πm/Lk=2\pi m/L (m=0,1,,L1m=0,1,\cdots,L-1) is the quasimomentum, and several other families such as the SGA tower 222Refer to Appendix A for details.. A detailed analysis of the eigenoperator spaces reveals that,

𝒜|1k𝒜|F,k\mathcal{A}_{\ket{1_{k}}}\subset\mathcal{A}_{\ket{F}}\,,\quad\forall\,k (13)

and that 𝒜|1k\mathcal{A}_{\ket{1_{k}}} is not a subset of the eigenoperator space of any other scar. Moreover, although the dimension of 𝒜|1k\mathcal{A}_{\ket{1_{k}}} is the same for all kk, their individual eigenoperator spaces are different. This means that we can construct a Hamiltonian to retain any given |1k\ket{1_{k}} and |F\ket{F} as the only scar states. We can also add terms to make |F\ket{F} the unique scar state. However, for Hamiltonian with with on-site and nearest-neighbor interactions, if |1k\ket{1_{k}} is a scar state, |F\ket{F} is necessarily an eigenstate. As shown in Fig. 2, we can construct a Hamiltonian H^=H^+iξiA^i\hat{H}^{\prime}=\hat{H}+\sum_{i}\xi_{i}\hat{A}_{i} where A^i𝒜|1π\hat{A}_{i}\in\mathcal{A}_{\ket{1_{\pi}}} and ξi\xi_{i} are random numbers to embed scar space 𝒮=span{|1π,|F}\mathcal{S}=\operatorname{span}\{\ket{1_{\pi}},\ket{F}\} spanned by |1π\ket{1_{\pi}} and |F\ket{F}. Similarly, since the eigenoperator space 𝒜|G\mathcal{A}_{\ket{G}} is not a subset of any other scar, we can construct a Hamiltonian with |G\ket{G} as the only scar state 333Refer to Appendix B for an in-depth analysis of the scar eigenoperator spaces and scar embedding examples..

Refer to caption
Figure 2: Plot of bipartite entanglement entropies against eigenenergies of a Hamiltonian H^\hat{H}^{\prime} that embeds the |1k=π\ket{1_{k=\pi}} and |F\ket{F} states as the only scar states. The scar states are represented by stars, with their colors corresponding to the values of N0N_{0} as indicated by the color bar.

Unification and Generality. Our method of using correlation matrix zeros N0N_{0} to probe exact QMBS unifies many mathematical frameworks. To illustrate the generality of our approach, we consider three prominent examples: the Shiraishi–Mori framework, the non-Abelian Lie algebra construction, and the SGA formalism. In the Shiraishi–Mori formalism [26], the scarring Hamiltonian takes the following form

H^=iP^ih^iP^i+H^,\hat{H}=\sum_{i}\hat{P}_{i}\hat{h}_{i}\hat{P}_{i}+\hat{H}^{\prime}\,, (14)

where P^i\hat{P}_{i} are a set of local projectors that annihilate the scar subspace 𝒮\mathcal{S}, h^i\hat{h}_{i} are some local Hermitian operators, and H^\hat{H}^{\prime} is some Hamiltonian that satisfies [P^i,H^]𝒮=0[\hat{P}_{i},\hat{H}^{\prime}]\mathcal{S}=0. It follows that for any scar state |ψ𝒮\ket{\psi}\in\mathcal{S}, the projector P^i\hat{P}_{i} is an eigenoperator of |ψ\ket{\psi} and each P^i\hat{P}_{i} contributes a zero eigenvector to the correlation matrix 𝐌\mathbf{M} for appropriate large operator space 𝒱\mathcal{V}. This means that for any scar state N0NpN_{0}\geq N_{p} where NpN_{p} is the number of projectors P^i\hat{P}_{i}, which distinguish it from thermal eigenstates. Similarly, in the “tunnels to towers” construction [32], the scarring Hamiltonian take the following form

H^=H^sym+H^SG+H^A,\hat{H}=\hat{H}_{\text{sym}}+\hat{H}_{\text{SG}}+\hat{H}_{\text{A}}\,, (15)

where H^sys\hat{H}_{\text{sys}} is a Hamiltonian with non-Abelian symmetry to endow the spectrum with a degenerate subspace, H^SG\hat{H}_{\text{SG}} consists of a linear combination of generators in the Cartan subalgebra to lift the degeneracy, and a final Hamiltonian H^A\hat{H}_{\text{A}} that annihilates a targeted subspace 𝒮\mathcal{S} is needed to break symmetries and promote 𝒮\mathcal{S} to a scar subspace. In this case, H^A\hat{H}_{\text{A}} is also an eigenoperator for the scar states, making it detectable via the correlation matrix approach.

To demonstrate that our method also captures QMBS in the SGA formalism [36], it is convenient to use the equivalent Mark–Lin–Motrunich (MLM) framework [35]

([H^,Q^+]ϵQ^+)𝒮=0,\left([\hat{H},\hat{Q}^{+}]-\epsilon\hat{Q}^{+}\right)\mathcal{S}=0\,, (16)

where 𝒮\mathcal{S} is the scar subspace, H^\hat{H} is the Hamiltonian, and Q^+\hat{Q}^{+} is the ladder operator that repeatedly acts on a reference eigenstate |ψ0\ket{\psi_{0}} to generates the whole scar tower {|ψn(Q^+)n|ψ0}\{\ket{\psi_{n}}\equiv(\hat{Q}^{+})^{n}\ket{\psi_{0}}\}. Therefore, as long as H^\hat{H} and Q^+\hat{Q}^{+} are sum of local operators with maximum range kk, the left hand, denoted as A^\hat{A}, of (16) is of sum of local operators. Although A^\hat{A} is in general not Hermitian, this can be easily remedied by choose the operator basis {L^i}\{\hat{L}_{i}\} to be non-Hermitian and subsequently modify the form of correlation matrix MM as

Mij=ψ|L^iL^j|ψψ|L^i|ψψ|L^j|ψ.M_{ij}=\bra{\psi}\hat{L}_{i}^{\dagger}\hat{L}_{j}\ket{\psi}-\bra{\psi}\hat{L}_{i}^{\dagger}\ket{\psi}\bra{\psi}\hat{L}_{j}\ket{\psi}\,. (17)

The correlation matrix MM is then a positive semidefinite Hermitian matrix and annihilator A^\hat{A} is also one-to-one correspondence with the null eigenvector of 𝐌\mathbf{M}. In fact, as demonstrated in the disordered AKLT model, even using a Hermitian operator basis with a real symmetric 𝐌\mathbf{M} is often sufficient in detecting scar states.

Approximate QMBS. For several paradigmatic exact QMBS we have tested 444Refer to Appendix C for extra examples of QMBS in the spin-1 XY model which also includes references [54]. , all scar states distinguish themselves from thermal eigenstates by having a much larger N0N_{0}. However, for approximate scars with neither known analytic expressions nor can be captured by previous mathematical formalisms, the single number N0N_{0} may be inadequate. A prime example of this is the well-known PXP model, described by the following Hamiltonian [20, 21]

H^=iP^i1X^iP^i+1,\hat{H}=\sum_{i}\hat{P}_{i-1}\hat{X}_{i}\hat{P}_{i+1}\,, (18)

where P^i=(1Z^i)/2\hat{P}_{i}=(1-\hat{Z}_{i})/2 is the projection operator at site ii, and X^i\hat{X}_{i} and Z^i\hat{Z}_{i} are standard Pauli operators. Except for special eigenstates in the middle of the spectrum, the analytic expressions of QMBS are, in general, unavailable [52]. In our correlation matrix study, we choose the matrix representation of range-kk operator basis L^i\hat{L}_{i} acting on lattice sites n+1,n+2,,n+kn+1,n+2,\cdots,n+k as

L^i=(σa1σa2σak)n,\hat{L}_{i}=(\sigma_{a_{1}}\otimes\sigma_{a_{2}}\cdots\otimes\sigma_{a_{k}})_{n}\,, (19)

where σaj\sigma_{a_{j}} denotes identity and three Pauli matrices (X,Y,Z)(X,Y,Z) for aj=0a_{j}=0 and aj=1,2,3a_{j}=1,2,3, respectively. As before, a1a_{1} is restricted to 1,2,31,2,3 while other aia_{i} take 0,1,2,30,1,2,3. This ensures that our operator basis excludes trivial identity operators but includes all nontrivial local operators up to range kk. We employ periodic boundary conditions in our study. As shown in Fig. 3(b), the scar state (colored black) has the same N0N_{0} as those of thermal eigenstates, which is associated with the Rydberg blockade condition. However, the correlation matrix spectrum reveals marked differences between the scar states and the thermal states. To quantify these differences, we introduce the following measure analogous to the role of entanglement entropy in quantifying quantum entanglement

nc=eλi1Ni=1Neλi,n_{c}=\langle e^{-\lambda_{i}}\rangle\equiv\frac{1}{N}\sum_{i=1}^{N}e^{-\lambda_{i}}\,, (20)

to characterize the correlation matrix spectrum, where the summation over λi\lambda_{i} is restricted to nonzero values and NN is the total number of nonzero λi\lambda_{i}. As can be seen from Fig. 3(c), the introduced quantity ncn_{c} effectively distinguishes scar states from thermal eigenstates. Moreover, ncn_{c} is less sensitive to finite-size effects compared to entanglement entropy, making it a more reliable probe.

Refer to caption
Figure 3: (a) Bipartite von Neumann entanglement entropy SvS_{v} of eigenstates plotted against the eigenenergies of the PXP model for L=20L=20 in the (k,I)=(0,1)(k,I)=(0,1) sector, where kk is the lattice momentum and II is the parity quantum number. The QMBS are marked with blue circles with annotated numbers below designating the eigenstate index nn as eigenenergy increases. (b) Correlation matrix spectra for the scar state n=102n=102 (black dots) and the surrounding thermal eigenstates (colored dots). (c) Plot of nc-n_{c} against the eigenenergies of the PXP model for L=20L=20 and (k,I)=(0,1)(k,I)=(0,1). The blue circles and annotated text have the same meaning as in panel (a).

Summary. We have introduced a new method to detect quantum many-body scars (QMBS) using the correlation matrix spectrum. For exact QMBS, we demonstrate that the integer N0N_{0}, the number of zero eigenvalues, can qualitatively distinguish scar states from thermal eigenstates. In this regard, N0N_{0} functions similarly to how symmetry and topological numbers are used to classify phases of matter. Our method not only unifies many previous framework of QMBS, similar to the recent commutant algebra formalism [53] which we learned after the main idea is developed, but also is quite accessible and flexible. It enables the straightforward derivation of otherwise obscure analytic results, manipulation of the scar subspace, and insights into its internal constraints. For approximate QMBS where N0N_{0} may fall short, one can introduce quantities such as ncn_{c} to characterize scar states, leveraging the presence of multiple approximate zero eigenvalues in the spectrum. Given the versatility of the correlation matrix approach, we anticipate that its applications will extend beyond the study of QMBS.

Acknowledgments. We thank Hui Zhai, Lei Pan, and Shang Liu for numerous useful discussions. We also thank Shang Liu for carefully reading our manuscript and valuable feedback. We acknowledge support by NSFC Grant No. 12304288 (Z. Y.), No. 12247101 (Z. Y.), and No. 12374477 (P. Z.).

.1 Appendix A: The Nature of Additional QMBS in the Disordered AKLT Model

As discussed in the main text, we discovered additional QMBS in the disordered AKLT model, H^=H^0+H^dis\hat{H}=\hat{H}_{0}+\hat{H}_{\text{dis}}, beyond the known SGA scar states. For convenience, we shall reproduce the Hamiltonian here,

H^=H^0+nm,m[ξm,mn(|J2,mJ2,m|)n,n+1+h.c.]\hat{H}=\hat{H}_{0}+\sum_{n}\sum_{m,m^{\prime}}\left[\xi_{m,m^{\prime}}^{n}(\outerproduct{J_{2,m}}{J_{2,m^{\prime}}})_{n,n+1}+h.c.\right] (21)

where H^0\hat{H}_{0} is the standard AKLT Hamiltonian, the summation over mm and mm^{\prime} is restricted to m,m=2,1,0m,m^{\prime}=-2,-1,0, and ξm,mn\xi_{m,m^{\prime}}^{n} are arbitrary complex numbers. Given that a series of low-entanglement eigenstates beyond the ground state have been recently identified [37], we hypothesize that some of these states remain eigenstates with the addition of the disordered term H^dis\hat{H}_{\text{dis}}. In the following, we demonstrate that this is indeed the case. To facilitate this analysis, we first introduce the Schwinger boson representation. Since we are dealing with S=1S=1 spins, the Schwinger boson creation (annihilation) operators a^i\hat{a}_{i}^{\dagger} (a^i\hat{a}_{i}) and b^\hat{b}^{\dagger} (b^i\hat{b}_{i}) at site ii satisfy the following constraint,

a^ia^i+b^ib^i=2,i.\hat{a}_{i}^{\dagger}\hat{a}_{i}+\hat{b}_{i}^{\dagger}\hat{b}_{i}=2\,,\quad\forall\,i\,. (22)

The local basis |mi\ket{m}_{i} (m=1,0,1m=-1,0,1) are then obtained by acting on the vacuum state of no bosons |0\ket{0} with Schwinger boson creation operators

|1i=(ai)22|0,|0i=aibi|0,|1i=(bi)22|0.\ket{1}_{i}=\frac{(a^{\dagger}_{i})^{2}}{\sqrt{2}}\ket{0}\,,\enspace\ket{0}_{i}=a^{\dagger}_{i}b^{\dagger}_{i}\ket{0}\,,\enspace\ket{-1}_{i}=\frac{(b^{\dagger}_{i})^{2}}{\sqrt{2}}\ket{0}\,. (23)

For assist theoretical analysis, we introduce some graphical notations: a labeled circle represents a local site, an up arrow for aa^{\dagger}, a down arrow for b^\hat{b}^{\dagger}, and an right line with middle arrow connecting sites nn and n+1n+1, , for the singlet operator c^n,n+1a^nbn+1bna^n+1\hat{c}_{n,n+1}\equiv\hat{a}_{n}^{\dagger}b_{n+1}^{\dagger}-b_{n}^{\dagger}\hat{a}_{n+1}^{\dagger}. The state is then obtained by acting the operators on the boson vacuum state |0\ket{0}. For example, according to (23), the state represented by the following figure

|ψ=nn+1=a^n(a^nbn+1bna^n+1)a^n+1|0\ket{\psi}=\leavevmode\hbox to51.18pt{\vbox to35.24pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-25.49931pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {}{{}}{} {}{}{}\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@lineto{44.9554pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{35.27728pt}{0.0pt}\pgfsys@lineto{33.27728pt}{2.0pt}\pgfsys@lineto{39.27728pt}{0.0pt}\pgfsys@lineto{33.27728pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.17038pt}{0.0pt}\pgfsys@curveto{23.17038pt}{1.32549pt}{22.09587pt}{2.4pt}{20.77039pt}{2.4pt}\pgfsys@curveto{19.4449pt}{2.4pt}{18.37039pt}{1.32549pt}{18.37039pt}{0.0pt}\pgfsys@curveto{18.37039pt}{-1.32549pt}{19.4449pt}{-2.4pt}{20.77039pt}{-2.4pt}\pgfsys@curveto{22.09587pt}{-2.4pt}{23.17038pt}{-1.32549pt}{23.17038pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{20.77039pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.77039pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{29.99919pt}{0.0pt}\pgfsys@curveto{29.99919pt}{1.32549pt}{28.92468pt}{2.4pt}{27.5992pt}{2.4pt}\pgfsys@curveto{26.27371pt}{2.4pt}{25.1992pt}{1.32549pt}{25.1992pt}{0.0pt}\pgfsys@curveto{25.1992pt}{-1.32549pt}{26.27371pt}{-2.4pt}{27.5992pt}{-2.4pt}\pgfsys@curveto{28.92468pt}{-2.4pt}{29.99919pt}{-1.32549pt}{29.99919pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.5992pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@moveto{32.72092pt}{0.0pt}\pgfsys@curveto{32.72092pt}{4.71431pt}{28.89932pt}{8.5359pt}{24.18501pt}{8.5359pt}\pgfsys@curveto{19.4707pt}{8.5359pt}{15.64911pt}{4.71431pt}{15.64911pt}{0.0pt}\pgfsys@curveto{15.64911pt}{-4.71431pt}{19.4707pt}{-8.5359pt}{24.18501pt}{-8.5359pt}\pgfsys@curveto{28.89932pt}{-8.5359pt}{32.72092pt}{-4.71431pt}{32.72092pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{47.3554pt}{0.0pt}\pgfsys@curveto{47.3554pt}{1.32549pt}{46.28088pt}{2.4pt}{44.9554pt}{2.4pt}\pgfsys@curveto{43.62991pt}{2.4pt}{42.5554pt}{1.32549pt}{42.5554pt}{0.0pt}\pgfsys@curveto{42.5554pt}{-1.32549pt}{43.62991pt}{-2.4pt}{44.9554pt}{-2.4pt}\pgfsys@curveto{46.28088pt}{-2.4pt}{47.3554pt}{-1.32549pt}{47.3554pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{44.9554pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.9554pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{54.18422pt}{0.0pt}\pgfsys@curveto{54.18422pt}{1.32549pt}{53.10971pt}{2.4pt}{51.78423pt}{2.4pt}\pgfsys@curveto{50.45874pt}{2.4pt}{49.38423pt}{1.32549pt}{49.38423pt}{0.0pt}\pgfsys@curveto{49.38423pt}{-1.32549pt}{50.45874pt}{-2.4pt}{51.78423pt}{-2.4pt}\pgfsys@curveto{53.10971pt}{-2.4pt}{54.18422pt}{-1.32549pt}{54.18422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.78423pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@moveto{56.9055pt}{0.0pt}\pgfsys@curveto{56.9055pt}{4.71431pt}{53.08391pt}{8.5359pt}{48.3696pt}{8.5359pt}\pgfsys@curveto{43.65529pt}{8.5359pt}{39.8337pt}{4.71431pt}{39.8337pt}{0.0pt}\pgfsys@curveto{39.8337pt}{-4.71431pt}{43.65529pt}{-8.5359pt}{48.3696pt}{-8.5359pt}\pgfsys@curveto{53.08391pt}{-8.5359pt}{56.9055pt}{-4.71431pt}{56.9055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{23.77039pt}{0.0pt}\pgfsys@curveto{23.77039pt}{1.65688pt}{22.42726pt}{3.0pt}{20.77039pt}{3.0pt}\pgfsys@curveto{19.11351pt}{3.0pt}{17.77039pt}{1.65688pt}{17.77039pt}{0.0pt}\pgfsys@curveto{17.77039pt}{-1.65688pt}{19.11351pt}{-3.0pt}{20.77039pt}{-3.0pt}\pgfsys@curveto{22.42726pt}{-3.0pt}{23.77039pt}{-1.65688pt}{23.77039pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{20.77039pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.77039pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope \pgfsys@setdash{}{0.0pt}\pgfsys@miterjoin{} {} {} {} \pgfsys@moveto{4.90002pt}{0.0pt}\pgfsys@lineto{0.96866pt}{1.46375pt}\pgfsys@lineto{2.11247pt}{0.0pt}\pgfsys@lineto{0.96866pt}{-1.46375pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@endscope}} }{}{}{{}}\pgfsys@moveto{20.77039pt}{-4.0pt}\pgfsys@lineto{20.77039pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{20.77039pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{54.78423pt}{0.0pt}\pgfsys@curveto{54.78423pt}{1.65688pt}{53.4411pt}{3.0pt}{51.78423pt}{3.0pt}\pgfsys@curveto{50.12735pt}{3.0pt}{48.78423pt}{1.65688pt}{48.78423pt}{0.0pt}\pgfsys@curveto{48.78423pt}{-1.65688pt}{50.12735pt}{-3.0pt}{51.78423pt}{-3.0pt}\pgfsys@curveto{53.4411pt}{-3.0pt}{54.78423pt}{-1.65688pt}{54.78423pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.78423pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{51.78423pt}{-4.0pt}\pgfsys@lineto{51.78423pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{51.78423pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}{}{}}{{{}}{{}}}{}{{}}{} {{}{}{}}{{{}}{{}}}{}{{}}{}{}{}{}{{}}{} }, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.3951pt}{-21.40797pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$n$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.44783pt}{-21.333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$n+1$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}=\hat{a}_{n}^{\dagger}\left(\hat{a}_{n}^{\dagger}b_{n+1}^{\dagger}-b_{n}^{\dagger}\hat{a}_{n+1}^{\dagger}\right)\hat{a}_{n+1}^{\dagger}\ket{0}

in the spin basis reads

|ψ=2(|10n,n+1|01n,n+1).\ket{\psi}=\sqrt{2}\left(\ket{10}_{n,n+1}-\ket{01}_{n,n+1}\right)\,. (24)

And the ground state |G\ket{G} of the standard AKLT Hamiltonian H^0\hat{H}_{0} can be represented as

|G=\ket{G}=\leavevmode\hbox to10.83pt{\vbox to15.67pt{\pgfpicture\makeatletter\hbox{\quad\lower-7.83301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.08337pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\cdots\!\!$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\leavevmode\hbox to122.5pt{\vbox to19.47pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-9.7359pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {}{{}}{} {}{}{}\pgfsys@moveto{3.41418pt}{0.0pt}\pgfsys@lineto{20.77039pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{11.09227pt}{0.0pt}\pgfsys@lineto{9.09227pt}{2.0pt}\pgfsys@lineto{15.09227pt}{0.0pt}\pgfsys@lineto{9.09227pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {}{{}}{} {}{}{}\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@lineto{44.9554pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{35.27728pt}{0.0pt}\pgfsys@lineto{33.27728pt}{2.0pt}\pgfsys@lineto{39.27728pt}{0.0pt}\pgfsys@lineto{33.27728pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {}{{}}{} {}{}{}\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@lineto{69.13998pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{59.46208pt}{0.0pt}\pgfsys@lineto{57.46208pt}{2.0pt}\pgfsys@lineto{63.46208pt}{0.0pt}\pgfsys@lineto{57.46208pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {}{{}}{} {}{}{}\pgfsys@moveto{75.96881pt}{0.0pt}\pgfsys@lineto{93.32501pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{83.6469pt}{0.0pt}\pgfsys@lineto{81.6469pt}{2.0pt}\pgfsys@lineto{87.6469pt}{0.0pt}\pgfsys@lineto{81.6469pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {}{{}}{} {}{}{}\pgfsys@moveto{100.15382pt}{0.0pt}\pgfsys@lineto{117.51003pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{107.83191pt}{0.0pt}\pgfsys@lineto{105.83191pt}{2.0pt}\pgfsys@lineto{111.83191pt}{0.0pt}\pgfsys@lineto{105.83191pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.17038pt}{0.0pt}\pgfsys@curveto{23.17038pt}{1.32549pt}{22.09587pt}{2.4pt}{20.77039pt}{2.4pt}\pgfsys@curveto{19.4449pt}{2.4pt}{18.37039pt}{1.32549pt}{18.37039pt}{0.0pt}\pgfsys@curveto{18.37039pt}{-1.32549pt}{19.4449pt}{-2.4pt}{20.77039pt}{-2.4pt}\pgfsys@curveto{22.09587pt}{-2.4pt}{23.17038pt}{-1.32549pt}{23.17038pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{20.77039pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.77039pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{29.99919pt}{0.0pt}\pgfsys@curveto{29.99919pt}{1.32549pt}{28.92468pt}{2.4pt}{27.5992pt}{2.4pt}\pgfsys@curveto{26.27371pt}{2.4pt}{25.1992pt}{1.32549pt}{25.1992pt}{0.0pt}\pgfsys@curveto{25.1992pt}{-1.32549pt}{26.27371pt}{-2.4pt}{27.5992pt}{-2.4pt}\pgfsys@curveto{28.92468pt}{-2.4pt}{29.99919pt}{-1.32549pt}{29.99919pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.5992pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@moveto{32.72092pt}{0.0pt}\pgfsys@curveto{32.72092pt}{4.71431pt}{28.89932pt}{8.5359pt}{24.18501pt}{8.5359pt}\pgfsys@curveto{19.4707pt}{8.5359pt}{15.64911pt}{4.71431pt}{15.64911pt}{0.0pt}\pgfsys@curveto{15.64911pt}{-4.71431pt}{19.4707pt}{-8.5359pt}{24.18501pt}{-8.5359pt}\pgfsys@curveto{28.89932pt}{-8.5359pt}{32.72092pt}{-4.71431pt}{32.72092pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{47.3554pt}{0.0pt}\pgfsys@curveto{47.3554pt}{1.32549pt}{46.28088pt}{2.4pt}{44.9554pt}{2.4pt}\pgfsys@curveto{43.62991pt}{2.4pt}{42.5554pt}{1.32549pt}{42.5554pt}{0.0pt}\pgfsys@curveto{42.5554pt}{-1.32549pt}{43.62991pt}{-2.4pt}{44.9554pt}{-2.4pt}\pgfsys@curveto{46.28088pt}{-2.4pt}{47.3554pt}{-1.32549pt}{47.3554pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{44.9554pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.9554pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{54.18422pt}{0.0pt}\pgfsys@curveto{54.18422pt}{1.32549pt}{53.10971pt}{2.4pt}{51.78423pt}{2.4pt}\pgfsys@curveto{50.45874pt}{2.4pt}{49.38423pt}{1.32549pt}{49.38423pt}{0.0pt}\pgfsys@curveto{49.38423pt}{-1.32549pt}{50.45874pt}{-2.4pt}{51.78423pt}{-2.4pt}\pgfsys@curveto{53.10971pt}{-2.4pt}{54.18422pt}{-1.32549pt}{54.18422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.78423pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@moveto{56.9055pt}{0.0pt}\pgfsys@curveto{56.9055pt}{4.71431pt}{53.08391pt}{8.5359pt}{48.3696pt}{8.5359pt}\pgfsys@curveto{43.65529pt}{8.5359pt}{39.8337pt}{4.71431pt}{39.8337pt}{0.0pt}\pgfsys@curveto{39.8337pt}{-4.71431pt}{43.65529pt}{-8.5359pt}{48.3696pt}{-8.5359pt}\pgfsys@curveto{53.08391pt}{-8.5359pt}{56.9055pt}{-4.71431pt}{56.9055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{71.53998pt}{0.0pt}\pgfsys@curveto{71.53998pt}{1.32549pt}{70.46547pt}{2.4pt}{69.13998pt}{2.4pt}\pgfsys@curveto{67.8145pt}{2.4pt}{66.73999pt}{1.32549pt}{66.73999pt}{0.0pt}\pgfsys@curveto{66.73999pt}{-1.32549pt}{67.8145pt}{-2.4pt}{69.13998pt}{-2.4pt}\pgfsys@curveto{70.46547pt}{-2.4pt}{71.53998pt}{-1.32549pt}{71.53998pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{69.13998pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.13998pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{78.3688pt}{0.0pt}\pgfsys@curveto{78.3688pt}{1.32549pt}{77.2943pt}{2.4pt}{75.96881pt}{2.4pt}\pgfsys@curveto{74.64333pt}{2.4pt}{73.56882pt}{1.32549pt}{73.56882pt}{0.0pt}\pgfsys@curveto{73.56882pt}{-1.32549pt}{74.64333pt}{-2.4pt}{75.96881pt}{-2.4pt}\pgfsys@curveto{77.2943pt}{-2.4pt}{78.3688pt}{-1.32549pt}{78.3688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{75.96881pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.96881pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{72.55461pt}{0.0pt}\pgfsys@moveto{81.09052pt}{0.0pt}\pgfsys@curveto{81.09052pt}{4.71431pt}{77.26892pt}{8.5359pt}{72.55461pt}{8.5359pt}\pgfsys@curveto{67.8403pt}{8.5359pt}{64.0187pt}{4.71431pt}{64.0187pt}{0.0pt}\pgfsys@curveto{64.0187pt}{-4.71431pt}{67.8403pt}{-8.5359pt}{72.55461pt}{-8.5359pt}\pgfsys@curveto{77.26892pt}{-8.5359pt}{81.09052pt}{-4.71431pt}{81.09052pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{72.55461pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{95.725pt}{0.0pt}\pgfsys@curveto{95.725pt}{1.32549pt}{94.6505pt}{2.4pt}{93.32501pt}{2.4pt}\pgfsys@curveto{91.99953pt}{2.4pt}{90.92502pt}{1.32549pt}{90.92502pt}{0.0pt}\pgfsys@curveto{90.92502pt}{-1.32549pt}{91.99953pt}{-2.4pt}{93.32501pt}{-2.4pt}\pgfsys@curveto{94.6505pt}{-2.4pt}{95.725pt}{-1.32549pt}{95.725pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{93.32501pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{93.32501pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{102.55382pt}{0.0pt}\pgfsys@curveto{102.55382pt}{1.32549pt}{101.47931pt}{2.4pt}{100.15382pt}{2.4pt}\pgfsys@curveto{98.82834pt}{2.4pt}{97.75383pt}{1.32549pt}{97.75383pt}{0.0pt}\pgfsys@curveto{97.75383pt}{-1.32549pt}{98.82834pt}{-2.4pt}{100.15382pt}{-2.4pt}\pgfsys@curveto{101.47931pt}{-2.4pt}{102.55382pt}{-1.32549pt}{102.55382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{100.15382pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.15382pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{96.7392pt}{0.0pt}\pgfsys@moveto{105.2751pt}{0.0pt}\pgfsys@curveto{105.2751pt}{4.71431pt}{101.4535pt}{8.5359pt}{96.7392pt}{8.5359pt}\pgfsys@curveto{92.02489pt}{8.5359pt}{88.2033pt}{4.71431pt}{88.2033pt}{0.0pt}\pgfsys@curveto{88.2033pt}{-4.71431pt}{92.02489pt}{-8.5359pt}{96.7392pt}{-8.5359pt}\pgfsys@curveto{101.4535pt}{-8.5359pt}{105.2751pt}{-4.71431pt}{105.2751pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{96.7392pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}{}{}}{{{}}{{}}}{}{{}}{} {{}{}{}}{{{}}{{}}}{}{{}}{}{}{}{}{{}}{} }, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\leavevmode\hbox to10.83pt{\vbox to15.67pt{\pgfpicture\makeatletter\hbox{\quad\lower-7.83301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.08337pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\!\!\cdots$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}} (25)

With these notations in place, we now proceed to demonstrate that certain low-entangled eigenstates are annihilated by the disordered term H^dis\hat{H}_{\text{dis}}, meaning they remain eigenstates of the disordered AKLT Hamiltonian.

The ferromagnetic state

The fully polarized ferromagnetic state |F=|1111\ket{F}=\ket{11\cdots 11} is an eigenstate of the Hamiltonian H^\hat{H} with eigenenergy E=LE=L, as H^0|F=L|F\hat{H}_{0}\ket{F}=L\ket{F}, and |F\ket{F} is annihilated by the disordered term. The action of (S^n+)2(\hat{S}_{n}^{+})^{2} on the ground state |G\ket{G} can be illustrated as

|Mn=n1nn+1\ket{M_{n}}=\leavevmode\hbox to10.83pt{\vbox to15.67pt{\pgfpicture\makeatletter\hbox{\quad\lower-7.83301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.08337pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\cdots\!\!$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\leavevmode\hbox to98.31pt{\vbox to35.88pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-26.14378pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {}{{}}{} {}{}{}\pgfsys@moveto{3.41418pt}{0.0pt}\pgfsys@lineto{20.77039pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{11.09227pt}{0.0pt}\pgfsys@lineto{9.09227pt}{2.0pt}\pgfsys@lineto{15.09227pt}{0.0pt}\pgfsys@lineto{9.09227pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {}{{}}{} {}{}{}\pgfsys@moveto{75.96881pt}{0.0pt}\pgfsys@lineto{93.32501pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{83.6469pt}{0.0pt}\pgfsys@lineto{81.6469pt}{2.0pt}\pgfsys@lineto{87.6469pt}{0.0pt}\pgfsys@lineto{81.6469pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.17038pt}{0.0pt}\pgfsys@curveto{23.17038pt}{1.32549pt}{22.09587pt}{2.4pt}{20.77039pt}{2.4pt}\pgfsys@curveto{19.4449pt}{2.4pt}{18.37039pt}{1.32549pt}{18.37039pt}{0.0pt}\pgfsys@curveto{18.37039pt}{-1.32549pt}{19.4449pt}{-2.4pt}{20.77039pt}{-2.4pt}\pgfsys@curveto{22.09587pt}{-2.4pt}{23.17038pt}{-1.32549pt}{23.17038pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{20.77039pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.77039pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{29.99919pt}{0.0pt}\pgfsys@curveto{29.99919pt}{1.32549pt}{28.92468pt}{2.4pt}{27.5992pt}{2.4pt}\pgfsys@curveto{26.27371pt}{2.4pt}{25.1992pt}{1.32549pt}{25.1992pt}{0.0pt}\pgfsys@curveto{25.1992pt}{-1.32549pt}{26.27371pt}{-2.4pt}{27.5992pt}{-2.4pt}\pgfsys@curveto{28.92468pt}{-2.4pt}{29.99919pt}{-1.32549pt}{29.99919pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.5992pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@moveto{32.72092pt}{0.0pt}\pgfsys@curveto{32.72092pt}{4.71431pt}{28.89932pt}{8.5359pt}{24.18501pt}{8.5359pt}\pgfsys@curveto{19.4707pt}{8.5359pt}{15.64911pt}{4.71431pt}{15.64911pt}{0.0pt}\pgfsys@curveto{15.64911pt}{-4.71431pt}{19.4707pt}{-8.5359pt}{24.18501pt}{-8.5359pt}\pgfsys@curveto{28.89932pt}{-8.5359pt}{32.72092pt}{-4.71431pt}{32.72092pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{47.3554pt}{0.0pt}\pgfsys@curveto{47.3554pt}{1.32549pt}{46.28088pt}{2.4pt}{44.9554pt}{2.4pt}\pgfsys@curveto{43.62991pt}{2.4pt}{42.5554pt}{1.32549pt}{42.5554pt}{0.0pt}\pgfsys@curveto{42.5554pt}{-1.32549pt}{43.62991pt}{-2.4pt}{44.9554pt}{-2.4pt}\pgfsys@curveto{46.28088pt}{-2.4pt}{47.3554pt}{-1.32549pt}{47.3554pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{44.9554pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.9554pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{54.18422pt}{0.0pt}\pgfsys@curveto{54.18422pt}{1.32549pt}{53.10971pt}{2.4pt}{51.78423pt}{2.4pt}\pgfsys@curveto{50.45874pt}{2.4pt}{49.38423pt}{1.32549pt}{49.38423pt}{0.0pt}\pgfsys@curveto{49.38423pt}{-1.32549pt}{50.45874pt}{-2.4pt}{51.78423pt}{-2.4pt}\pgfsys@curveto{53.10971pt}{-2.4pt}{54.18422pt}{-1.32549pt}{54.18422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.78423pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@moveto{56.9055pt}{0.0pt}\pgfsys@curveto{56.9055pt}{4.71431pt}{53.08391pt}{8.5359pt}{48.3696pt}{8.5359pt}\pgfsys@curveto{43.65529pt}{8.5359pt}{39.8337pt}{4.71431pt}{39.8337pt}{0.0pt}\pgfsys@curveto{39.8337pt}{-4.71431pt}{43.65529pt}{-8.5359pt}{48.3696pt}{-8.5359pt}\pgfsys@curveto{53.08391pt}{-8.5359pt}{56.9055pt}{-4.71431pt}{56.9055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{71.53998pt}{0.0pt}\pgfsys@curveto{71.53998pt}{1.32549pt}{70.46547pt}{2.4pt}{69.13998pt}{2.4pt}\pgfsys@curveto{67.8145pt}{2.4pt}{66.73999pt}{1.32549pt}{66.73999pt}{0.0pt}\pgfsys@curveto{66.73999pt}{-1.32549pt}{67.8145pt}{-2.4pt}{69.13998pt}{-2.4pt}\pgfsys@curveto{70.46547pt}{-2.4pt}{71.53998pt}{-1.32549pt}{71.53998pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{69.13998pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.13998pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{78.3688pt}{0.0pt}\pgfsys@curveto{78.3688pt}{1.32549pt}{77.2943pt}{2.4pt}{75.96881pt}{2.4pt}\pgfsys@curveto{74.64333pt}{2.4pt}{73.56882pt}{1.32549pt}{73.56882pt}{0.0pt}\pgfsys@curveto{73.56882pt}{-1.32549pt}{74.64333pt}{-2.4pt}{75.96881pt}{-2.4pt}\pgfsys@curveto{77.2943pt}{-2.4pt}{78.3688pt}{-1.32549pt}{78.3688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{75.96881pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.96881pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{72.55461pt}{0.0pt}\pgfsys@moveto{81.09052pt}{0.0pt}\pgfsys@curveto{81.09052pt}{4.71431pt}{77.26892pt}{8.5359pt}{72.55461pt}{8.5359pt}\pgfsys@curveto{67.8403pt}{8.5359pt}{64.0187pt}{4.71431pt}{64.0187pt}{0.0pt}\pgfsys@curveto{64.0187pt}{-4.71431pt}{67.8403pt}{-8.5359pt}{72.55461pt}{-8.5359pt}\pgfsys@curveto{77.26892pt}{-8.5359pt}{81.09052pt}{-4.71431pt}{81.09052pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{72.55461pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{47.9554pt}{0.0pt}\pgfsys@curveto{47.9554pt}{1.65688pt}{46.61227pt}{3.0pt}{44.9554pt}{3.0pt}\pgfsys@curveto{43.29852pt}{3.0pt}{41.9554pt}{1.65688pt}{41.9554pt}{0.0pt}\pgfsys@curveto{41.9554pt}{-1.65688pt}{43.29852pt}{-3.0pt}{44.9554pt}{-3.0pt}\pgfsys@curveto{46.61227pt}{-3.0pt}{47.9554pt}{-1.65688pt}{47.9554pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{44.9554pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.9554pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{44.9554pt}{-4.0pt}\pgfsys@lineto{44.9554pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{44.9554pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{72.13998pt}{0.0pt}\pgfsys@curveto{72.13998pt}{1.65688pt}{70.79686pt}{3.0pt}{69.13998pt}{3.0pt}\pgfsys@curveto{67.48311pt}{3.0pt}{66.13998pt}{1.65688pt}{66.13998pt}{0.0pt}\pgfsys@curveto{66.13998pt}{-1.65688pt}{67.48311pt}{-3.0pt}{69.13998pt}{-3.0pt}\pgfsys@curveto{70.79686pt}{-3.0pt}{72.13998pt}{-1.65688pt}{72.13998pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{69.13998pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.13998pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{69.13998pt}{-4.0pt}\pgfsys@lineto{69.13998pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{69.13998pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{30.5992pt}{0.0pt}\pgfsys@curveto{30.5992pt}{1.65688pt}{29.25607pt}{3.0pt}{27.5992pt}{3.0pt}\pgfsys@curveto{25.94232pt}{3.0pt}{24.5992pt}{1.65688pt}{24.5992pt}{0.0pt}\pgfsys@curveto{24.5992pt}{-1.65688pt}{25.94232pt}{-3.0pt}{27.5992pt}{-3.0pt}\pgfsys@curveto{29.25607pt}{-3.0pt}{30.5992pt}{-1.65688pt}{30.5992pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.5992pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{27.5992pt}{-4.0pt}\pgfsys@lineto{27.5992pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{27.5992pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{54.78423pt}{0.0pt}\pgfsys@curveto{54.78423pt}{1.65688pt}{53.4411pt}{3.0pt}{51.78423pt}{3.0pt}\pgfsys@curveto{50.12735pt}{3.0pt}{48.78423pt}{1.65688pt}{48.78423pt}{0.0pt}\pgfsys@curveto{48.78423pt}{-1.65688pt}{50.12735pt}{-3.0pt}{51.78423pt}{-3.0pt}\pgfsys@curveto{53.4411pt}{-3.0pt}{54.78423pt}{-1.65688pt}{54.78423pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.78423pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{51.78423pt}{-4.0pt}\pgfsys@lineto{51.78423pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{51.78423pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}{}{}}{{{}}{{}}}{}{{}}{} {{}{}{}}{{{}}{{}}}{}{{}}{}{}{}{}{{}}{} }, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.795pt}{-21.97743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n-1$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{45.36842pt}{-21.83855pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{60.94237pt}{-21.97745pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n+1$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\leavevmode\hbox to10.83pt{\vbox to15.67pt{\pgfpicture\makeatletter\hbox{\quad\lower-7.83301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.08337pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\!\!\cdots$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}} (26)

and thus (Sn+)2(Sn+1+)2|G=0(S_{n}^{+})^{2}(S_{n+1}^{+})^{2}\ket{G}=0. The highest SGA scar state, |𝒮L\ket{\mathcal{S}_{L}}, corresponds to |F\ket{F} when L/2L/2 is even, but does not exist when L/2L/2 is odd. Therefore, as long as LL is even, we have a series of scar states with energies E=0,2,,LE=0,2,\cdots,L, and we shall ascribe |F\ket{F} as part of SGA scar family for convenience.

Single-magnon state |1k\ket{1_{k}}

The single-magnon state |1k\ket{1_{k}} defined below (normalization which are unimportant are omitted from below)

|1kneikn|n\ket{1_{k}}\equiv\sum_{n}e^{ikn}\ket{n} (27)

where k=2πm/Lk=2\pi m/L with m=0,1,,L1m=0,1,\cdots,L-1 is the lattice momentum, and |n\ket{n} in the spin basis reads

|n=|11n1011Ln.\ket{n}=\big{|}\underbrace{1\cdots 1}_{n-1}0\underbrace{1\cdots 1}_{L-n}\big{\rangle}\,. (28)

This state is known to be the eigenstate of the AKLT Hamiltonian H^0\hat{H}_{0}. Since H^0\hat{H}_{0} is a sum of projectors H^0=nP^n,n+1(2)\hat{H}_{0}=\sum_{n}\hat{P}^{(2)}_{n,n+1}, where P^n,n+1(2)\hat{P}^{(2)}_{n,n+1} projects onto the total spin J=2J=2 state between neighboring sites, it follows that,

H^0|n=(L1)|n+12(|n1+|n+1)\hat{H}_{0}\ket{n}=(L-1)\ket{n}+\frac{1}{2}\left(\ket{n-1}+\ket{n+1}\right) (29)

where we have used P^(2)|11=|11\hat{P}^{(2)}\ket{11}=\ket{11} and P^(2)|01=P^(2)|10=12(|10+|01)\hat{P}^{(2)}\ket{01}=\hat{P}^{(2)}\ket{10}=\frac{1}{2}\left(\ket{10}+\ket{01}\right), with subscripts n,n+1n,n+1 suppressed for clarity. Equation (29) describes a single-particle hopping model, making |1k\ket{1_{k}} an eigenstates of H^0\hat{H}_{0}. Furthermore, since the total JzJ_{z} any neighboring spins is either one or two, |n\ket{n} is annihilated by disorder terms, |J2,mJ2,m|\ket{J_{2,m}}\bra{J_{2,m^{\prime}}} for m,m=2,1,0m,m^{\prime}=-2,-1,0. Therefore, |1k\ket{1_{k}} also remains an eigenstate of the disordered AKLT Hamiltonian H^\hat{H}. The eigenenergy of |1k\ket{1_{k}} is Ek=(L1)+coskE_{k}=(L-1)+\cos k. Alongside the SGA scars, which have eigenenergies E=0,2,,LE=0,2,\cdots,L, these states account for all scar states except for the degenerate ones at E=L2E=L-2.

|2n\ket{2_{n}} state

The |2n\ket{2_{n}} state with n=0,1,3,4,n=0,1,3,4,\cdots

|2n=m=1L(1)m|m,m+n,\ket{2_{n}}=\sum_{m=1}^{L}(-1)^{m}\ket{m,m+n}\,, (30)

is another family of low-entangled eigenstates of the AKLT Hamiltonian H^0\hat{H}_{0}. The maximum nn is L/2L/2 for even L/2L/2 and L/21L/2-1 for odd L/2L/2. Here the two-dimer basis |m,m+n\ket{m,m+n} graphically reads (configurations at irrelevant sites suppressed)

|m,m\displaystyle\ket{m,m} =m1mm+1m+2,\displaystyle=\leavevmode\hbox to106.2pt{\vbox to35.24pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-25.49931pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {}{{}}{} {}{}{}\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@lineto{69.13998pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{59.46208pt}{0.0pt}\pgfsys@lineto{57.46208pt}{2.0pt}\pgfsys@lineto{63.46208pt}{0.0pt}\pgfsys@lineto{57.46208pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.17038pt}{0.0pt}\pgfsys@curveto{23.17038pt}{1.32549pt}{22.09587pt}{2.4pt}{20.77039pt}{2.4pt}\pgfsys@curveto{19.4449pt}{2.4pt}{18.37039pt}{1.32549pt}{18.37039pt}{0.0pt}\pgfsys@curveto{18.37039pt}{-1.32549pt}{19.4449pt}{-2.4pt}{20.77039pt}{-2.4pt}\pgfsys@curveto{22.09587pt}{-2.4pt}{23.17038pt}{-1.32549pt}{23.17038pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{20.77039pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.77039pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{29.99919pt}{0.0pt}\pgfsys@curveto{29.99919pt}{1.32549pt}{28.92468pt}{2.4pt}{27.5992pt}{2.4pt}\pgfsys@curveto{26.27371pt}{2.4pt}{25.1992pt}{1.32549pt}{25.1992pt}{0.0pt}\pgfsys@curveto{25.1992pt}{-1.32549pt}{26.27371pt}{-2.4pt}{27.5992pt}{-2.4pt}\pgfsys@curveto{28.92468pt}{-2.4pt}{29.99919pt}{-1.32549pt}{29.99919pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.5992pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@moveto{32.72092pt}{0.0pt}\pgfsys@curveto{32.72092pt}{4.71431pt}{28.89932pt}{8.5359pt}{24.18501pt}{8.5359pt}\pgfsys@curveto{19.4707pt}{8.5359pt}{15.64911pt}{4.71431pt}{15.64911pt}{0.0pt}\pgfsys@curveto{15.64911pt}{-4.71431pt}{19.4707pt}{-8.5359pt}{24.18501pt}{-8.5359pt}\pgfsys@curveto{28.89932pt}{-8.5359pt}{32.72092pt}{-4.71431pt}{32.72092pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{47.3554pt}{0.0pt}\pgfsys@curveto{47.3554pt}{1.32549pt}{46.28088pt}{2.4pt}{44.9554pt}{2.4pt}\pgfsys@curveto{43.62991pt}{2.4pt}{42.5554pt}{1.32549pt}{42.5554pt}{0.0pt}\pgfsys@curveto{42.5554pt}{-1.32549pt}{43.62991pt}{-2.4pt}{44.9554pt}{-2.4pt}\pgfsys@curveto{46.28088pt}{-2.4pt}{47.3554pt}{-1.32549pt}{47.3554pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{44.9554pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.9554pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{54.18422pt}{0.0pt}\pgfsys@curveto{54.18422pt}{1.32549pt}{53.10971pt}{2.4pt}{51.78423pt}{2.4pt}\pgfsys@curveto{50.45874pt}{2.4pt}{49.38423pt}{1.32549pt}{49.38423pt}{0.0pt}\pgfsys@curveto{49.38423pt}{-1.32549pt}{50.45874pt}{-2.4pt}{51.78423pt}{-2.4pt}\pgfsys@curveto{53.10971pt}{-2.4pt}{54.18422pt}{-1.32549pt}{54.18422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.78423pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@moveto{56.9055pt}{0.0pt}\pgfsys@curveto{56.9055pt}{4.71431pt}{53.08391pt}{8.5359pt}{48.3696pt}{8.5359pt}\pgfsys@curveto{43.65529pt}{8.5359pt}{39.8337pt}{4.71431pt}{39.8337pt}{0.0pt}\pgfsys@curveto{39.8337pt}{-4.71431pt}{43.65529pt}{-8.5359pt}{48.3696pt}{-8.5359pt}\pgfsys@curveto{53.08391pt}{-8.5359pt}{56.9055pt}{-4.71431pt}{56.9055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{71.53998pt}{0.0pt}\pgfsys@curveto{71.53998pt}{1.32549pt}{70.46547pt}{2.4pt}{69.13998pt}{2.4pt}\pgfsys@curveto{67.8145pt}{2.4pt}{66.73999pt}{1.32549pt}{66.73999pt}{0.0pt}\pgfsys@curveto{66.73999pt}{-1.32549pt}{67.8145pt}{-2.4pt}{69.13998pt}{-2.4pt}\pgfsys@curveto{70.46547pt}{-2.4pt}{71.53998pt}{-1.32549pt}{71.53998pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{69.13998pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.13998pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{78.3688pt}{0.0pt}\pgfsys@curveto{78.3688pt}{1.32549pt}{77.2943pt}{2.4pt}{75.96881pt}{2.4pt}\pgfsys@curveto{74.64333pt}{2.4pt}{73.56882pt}{1.32549pt}{73.56882pt}{0.0pt}\pgfsys@curveto{73.56882pt}{-1.32549pt}{74.64333pt}{-2.4pt}{75.96881pt}{-2.4pt}\pgfsys@curveto{77.2943pt}{-2.4pt}{78.3688pt}{-1.32549pt}{78.3688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{75.96881pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.96881pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{72.55461pt}{0.0pt}\pgfsys@moveto{81.09052pt}{0.0pt}\pgfsys@curveto{81.09052pt}{4.71431pt}{77.26892pt}{8.5359pt}{72.55461pt}{8.5359pt}\pgfsys@curveto{67.8403pt}{8.5359pt}{64.0187pt}{4.71431pt}{64.0187pt}{0.0pt}\pgfsys@curveto{64.0187pt}{-4.71431pt}{67.8403pt}{-8.5359pt}{72.55461pt}{-8.5359pt}\pgfsys@curveto{77.26892pt}{-8.5359pt}{81.09052pt}{-4.71431pt}{81.09052pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{72.55461pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{95.725pt}{0.0pt}\pgfsys@curveto{95.725pt}{1.32549pt}{94.6505pt}{2.4pt}{93.32501pt}{2.4pt}\pgfsys@curveto{91.99953pt}{2.4pt}{90.92502pt}{1.32549pt}{90.92502pt}{0.0pt}\pgfsys@curveto{90.92502pt}{-1.32549pt}{91.99953pt}{-2.4pt}{93.32501pt}{-2.4pt}\pgfsys@curveto{94.6505pt}{-2.4pt}{95.725pt}{-1.32549pt}{95.725pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{93.32501pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{93.32501pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{102.55382pt}{0.0pt}\pgfsys@curveto{102.55382pt}{1.32549pt}{101.47931pt}{2.4pt}{100.15382pt}{2.4pt}\pgfsys@curveto{98.82834pt}{2.4pt}{97.75383pt}{1.32549pt}{97.75383pt}{0.0pt}\pgfsys@curveto{97.75383pt}{-1.32549pt}{98.82834pt}{-2.4pt}{100.15382pt}{-2.4pt}\pgfsys@curveto{101.47931pt}{-2.4pt}{102.55382pt}{-1.32549pt}{102.55382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{100.15382pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.15382pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{96.7392pt}{0.0pt}\pgfsys@moveto{105.2751pt}{0.0pt}\pgfsys@curveto{105.2751pt}{4.71431pt}{101.4535pt}{8.5359pt}{96.7392pt}{8.5359pt}\pgfsys@curveto{92.02489pt}{8.5359pt}{88.2033pt}{4.71431pt}{88.2033pt}{0.0pt}\pgfsys@curveto{88.2033pt}{-4.71431pt}{92.02489pt}{-8.5359pt}{96.7392pt}{-8.5359pt}\pgfsys@curveto{101.4535pt}{-8.5359pt}{105.2751pt}{-4.71431pt}{105.2751pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{96.7392pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{23.77039pt}{0.0pt}\pgfsys@curveto{23.77039pt}{1.65688pt}{22.42726pt}{3.0pt}{20.77039pt}{3.0pt}\pgfsys@curveto{19.11351pt}{3.0pt}{17.77039pt}{1.65688pt}{17.77039pt}{0.0pt}\pgfsys@curveto{17.77039pt}{-1.65688pt}{19.11351pt}{-3.0pt}{20.77039pt}{-3.0pt}\pgfsys@curveto{22.42726pt}{-3.0pt}{23.77039pt}{-1.65688pt}{23.77039pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{20.77039pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.77039pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{20.77039pt}{-4.0pt}\pgfsys@lineto{20.77039pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{20.77039pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{96.32501pt}{0.0pt}\pgfsys@curveto{96.32501pt}{1.65688pt}{94.98189pt}{3.0pt}{93.32501pt}{3.0pt}\pgfsys@curveto{91.66814pt}{3.0pt}{90.32501pt}{1.65688pt}{90.32501pt}{0.0pt}\pgfsys@curveto{90.32501pt}{-1.65688pt}{91.66814pt}{-3.0pt}{93.32501pt}{-3.0pt}\pgfsys@curveto{94.98189pt}{-3.0pt}{96.32501pt}{-1.65688pt}{96.32501pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{93.32501pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{93.32501pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{93.32501pt}{-4.0pt}\pgfsys@lineto{93.32501pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{93.32501pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{30.5992pt}{0.0pt}\pgfsys@curveto{30.5992pt}{1.65688pt}{29.25607pt}{3.0pt}{27.5992pt}{3.0pt}\pgfsys@curveto{25.94232pt}{3.0pt}{24.5992pt}{1.65688pt}{24.5992pt}{0.0pt}\pgfsys@curveto{24.5992pt}{-1.65688pt}{25.94232pt}{-3.0pt}{27.5992pt}{-3.0pt}\pgfsys@curveto{29.25607pt}{-3.0pt}{30.5992pt}{-1.65688pt}{30.5992pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.5992pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{27.5992pt}{-4.0pt}\pgfsys@lineto{27.5992pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{27.5992pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{103.15382pt}{0.0pt}\pgfsys@curveto{103.15382pt}{1.65688pt}{101.8107pt}{3.0pt}{100.15382pt}{3.0pt}\pgfsys@curveto{98.49695pt}{3.0pt}{97.15382pt}{1.65688pt}{97.15382pt}{0.0pt}\pgfsys@curveto{97.15382pt}{-1.65688pt}{98.49695pt}{-3.0pt}{100.15382pt}{-3.0pt}\pgfsys@curveto{101.8107pt}{-3.0pt}{103.15382pt}{-1.65688pt}{103.15382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{100.15382pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.15382pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{100.15382pt}{-4.0pt}\pgfsys@lineto{100.15382pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{100.15382pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}{}{}}{{{}}{{}}}{}{{}}{} {{}{}{}}{{{}}{{}}}{}{{}}{}{}{}{}{{}}{} }, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.03407pt}{-21.333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$m-1$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.29497pt}{-21.40797pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$m$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{60.34813pt}{-21.333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$m+1$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{79.90775pt}{-21.333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$\quad m+2$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{{}{}}{{}} {}{}{}{{{}}{{}}{{}}} {{{}}{{}}{{}}} {{}}{}{{}}{}{}{}{}\pgfsys@moveto{44.9554pt}{2.59999pt}\pgfsys@curveto{55.42937pt}{8.64713pt}{65.49484pt}{8.64713pt}{75.96881pt}{2.59999pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}{}}{{}{}}{{}{}}{{}{}{}{}{{}}{}{{}}}{{}{}{}{}{{}}{}{{}}}{{}{}{}{}{{}}{}{{}}}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}{}}{{}{}{}{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{59.46208pt}{7.13531pt}\pgfsys@lineto{57.46208pt}{9.13531pt}\pgfsys@lineto{63.46208pt}{7.13531pt}\pgfsys@lineto{57.46208pt}{5.13531pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}{}}{{}{}{}{}{{}}{}{{}}}{{}{}{}{}{{}}{}{{}}}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}{}}{{}{}{}{}{{}}{}{{}} {{{}}} }{{}{}}{{}{}}{{}{}{}{}{{}}{}{{}} {{{}}} } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\,, (31)
|m,m+1\displaystyle\ket{m,m+1} =mm+1m+2,\displaystyle=\leavevmode\hbox to122.21pt{\vbox to35.24pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-25.49931pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {}{{}}{} {}{}{}\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@lineto{69.13998pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{59.46208pt}{0.0pt}\pgfsys@lineto{57.46208pt}{2.0pt}\pgfsys@lineto{63.46208pt}{0.0pt}\pgfsys@lineto{57.46208pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {}{{}}{} {}{}{}\pgfsys@moveto{75.96881pt}{0.0pt}\pgfsys@lineto{93.32501pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{83.6469pt}{0.0pt}\pgfsys@lineto{81.6469pt}{2.0pt}\pgfsys@lineto{87.6469pt}{0.0pt}\pgfsys@lineto{81.6469pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.17038pt}{0.0pt}\pgfsys@curveto{23.17038pt}{1.32549pt}{22.09587pt}{2.4pt}{20.77039pt}{2.4pt}\pgfsys@curveto{19.4449pt}{2.4pt}{18.37039pt}{1.32549pt}{18.37039pt}{0.0pt}\pgfsys@curveto{18.37039pt}{-1.32549pt}{19.4449pt}{-2.4pt}{20.77039pt}{-2.4pt}\pgfsys@curveto{22.09587pt}{-2.4pt}{23.17038pt}{-1.32549pt}{23.17038pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{20.77039pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.77039pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{29.99919pt}{0.0pt}\pgfsys@curveto{29.99919pt}{1.32549pt}{28.92468pt}{2.4pt}{27.5992pt}{2.4pt}\pgfsys@curveto{26.27371pt}{2.4pt}{25.1992pt}{1.32549pt}{25.1992pt}{0.0pt}\pgfsys@curveto{25.1992pt}{-1.32549pt}{26.27371pt}{-2.4pt}{27.5992pt}{-2.4pt}\pgfsys@curveto{28.92468pt}{-2.4pt}{29.99919pt}{-1.32549pt}{29.99919pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.5992pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@moveto{32.72092pt}{0.0pt}\pgfsys@curveto{32.72092pt}{4.71431pt}{28.89932pt}{8.5359pt}{24.18501pt}{8.5359pt}\pgfsys@curveto{19.4707pt}{8.5359pt}{15.64911pt}{4.71431pt}{15.64911pt}{0.0pt}\pgfsys@curveto{15.64911pt}{-4.71431pt}{19.4707pt}{-8.5359pt}{24.18501pt}{-8.5359pt}\pgfsys@curveto{28.89932pt}{-8.5359pt}{32.72092pt}{-4.71431pt}{32.72092pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{47.3554pt}{0.0pt}\pgfsys@curveto{47.3554pt}{1.32549pt}{46.28088pt}{2.4pt}{44.9554pt}{2.4pt}\pgfsys@curveto{43.62991pt}{2.4pt}{42.5554pt}{1.32549pt}{42.5554pt}{0.0pt}\pgfsys@curveto{42.5554pt}{-1.32549pt}{43.62991pt}{-2.4pt}{44.9554pt}{-2.4pt}\pgfsys@curveto{46.28088pt}{-2.4pt}{47.3554pt}{-1.32549pt}{47.3554pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{44.9554pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.9554pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{54.18422pt}{0.0pt}\pgfsys@curveto{54.18422pt}{1.32549pt}{53.10971pt}{2.4pt}{51.78423pt}{2.4pt}\pgfsys@curveto{50.45874pt}{2.4pt}{49.38423pt}{1.32549pt}{49.38423pt}{0.0pt}\pgfsys@curveto{49.38423pt}{-1.32549pt}{50.45874pt}{-2.4pt}{51.78423pt}{-2.4pt}\pgfsys@curveto{53.10971pt}{-2.4pt}{54.18422pt}{-1.32549pt}{54.18422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.78423pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@moveto{56.9055pt}{0.0pt}\pgfsys@curveto{56.9055pt}{4.71431pt}{53.08391pt}{8.5359pt}{48.3696pt}{8.5359pt}\pgfsys@curveto{43.65529pt}{8.5359pt}{39.8337pt}{4.71431pt}{39.8337pt}{0.0pt}\pgfsys@curveto{39.8337pt}{-4.71431pt}{43.65529pt}{-8.5359pt}{48.3696pt}{-8.5359pt}\pgfsys@curveto{53.08391pt}{-8.5359pt}{56.9055pt}{-4.71431pt}{56.9055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{71.53998pt}{0.0pt}\pgfsys@curveto{71.53998pt}{1.32549pt}{70.46547pt}{2.4pt}{69.13998pt}{2.4pt}\pgfsys@curveto{67.8145pt}{2.4pt}{66.73999pt}{1.32549pt}{66.73999pt}{0.0pt}\pgfsys@curveto{66.73999pt}{-1.32549pt}{67.8145pt}{-2.4pt}{69.13998pt}{-2.4pt}\pgfsys@curveto{70.46547pt}{-2.4pt}{71.53998pt}{-1.32549pt}{71.53998pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{69.13998pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.13998pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{78.3688pt}{0.0pt}\pgfsys@curveto{78.3688pt}{1.32549pt}{77.2943pt}{2.4pt}{75.96881pt}{2.4pt}\pgfsys@curveto{74.64333pt}{2.4pt}{73.56882pt}{1.32549pt}{73.56882pt}{0.0pt}\pgfsys@curveto{73.56882pt}{-1.32549pt}{74.64333pt}{-2.4pt}{75.96881pt}{-2.4pt}\pgfsys@curveto{77.2943pt}{-2.4pt}{78.3688pt}{-1.32549pt}{78.3688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{75.96881pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.96881pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{72.55461pt}{0.0pt}\pgfsys@moveto{81.09052pt}{0.0pt}\pgfsys@curveto{81.09052pt}{4.71431pt}{77.26892pt}{8.5359pt}{72.55461pt}{8.5359pt}\pgfsys@curveto{67.8403pt}{8.5359pt}{64.0187pt}{4.71431pt}{64.0187pt}{0.0pt}\pgfsys@curveto{64.0187pt}{-4.71431pt}{67.8403pt}{-8.5359pt}{72.55461pt}{-8.5359pt}\pgfsys@curveto{77.26892pt}{-8.5359pt}{81.09052pt}{-4.71431pt}{81.09052pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{72.55461pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{95.725pt}{0.0pt}\pgfsys@curveto{95.725pt}{1.32549pt}{94.6505pt}{2.4pt}{93.32501pt}{2.4pt}\pgfsys@curveto{91.99953pt}{2.4pt}{90.92502pt}{1.32549pt}{90.92502pt}{0.0pt}\pgfsys@curveto{90.92502pt}{-1.32549pt}{91.99953pt}{-2.4pt}{93.32501pt}{-2.4pt}\pgfsys@curveto{94.6505pt}{-2.4pt}{95.725pt}{-1.32549pt}{95.725pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{93.32501pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{93.32501pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{102.55382pt}{0.0pt}\pgfsys@curveto{102.55382pt}{1.32549pt}{101.47931pt}{2.4pt}{100.15382pt}{2.4pt}\pgfsys@curveto{98.82834pt}{2.4pt}{97.75383pt}{1.32549pt}{97.75383pt}{0.0pt}\pgfsys@curveto{97.75383pt}{-1.32549pt}{98.82834pt}{-2.4pt}{100.15382pt}{-2.4pt}\pgfsys@curveto{101.47931pt}{-2.4pt}{102.55382pt}{-1.32549pt}{102.55382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{100.15382pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.15382pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{96.7392pt}{0.0pt}\pgfsys@moveto{105.2751pt}{0.0pt}\pgfsys@curveto{105.2751pt}{4.71431pt}{101.4535pt}{8.5359pt}{96.7392pt}{8.5359pt}\pgfsys@curveto{92.02489pt}{8.5359pt}{88.2033pt}{4.71431pt}{88.2033pt}{0.0pt}\pgfsys@curveto{88.2033pt}{-4.71431pt}{92.02489pt}{-8.5359pt}{96.7392pt}{-8.5359pt}\pgfsys@curveto{101.4535pt}{-8.5359pt}{105.2751pt}{-4.71431pt}{105.2751pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{96.7392pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{119.91002pt}{0.0pt}\pgfsys@curveto{119.91002pt}{1.32549pt}{118.83551pt}{2.4pt}{117.51003pt}{2.4pt}\pgfsys@curveto{116.18454pt}{2.4pt}{115.11003pt}{1.32549pt}{115.11003pt}{0.0pt}\pgfsys@curveto{115.11003pt}{-1.32549pt}{116.18454pt}{-2.4pt}{117.51003pt}{-2.4pt}\pgfsys@curveto{118.83551pt}{-2.4pt}{119.91002pt}{-1.32549pt}{119.91002pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{117.51003pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{117.51003pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{126.7384pt}{0.0pt}\pgfsys@curveto{126.7384pt}{1.32549pt}{125.6639pt}{2.4pt}{124.33841pt}{2.4pt}\pgfsys@curveto{123.01292pt}{2.4pt}{121.93842pt}{1.32549pt}{121.93842pt}{0.0pt}\pgfsys@curveto{121.93842pt}{-1.32549pt}{123.01292pt}{-2.4pt}{124.33841pt}{-2.4pt}\pgfsys@curveto{125.6639pt}{-2.4pt}{126.7384pt}{-1.32549pt}{126.7384pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{124.33841pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{124.33841pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{120.92422pt}{0.0pt}\pgfsys@moveto{129.46013pt}{0.0pt}\pgfsys@curveto{129.46013pt}{4.71431pt}{125.63853pt}{8.5359pt}{120.92422pt}{8.5359pt}\pgfsys@curveto{116.20992pt}{8.5359pt}{112.38832pt}{4.71431pt}{112.38832pt}{0.0pt}\pgfsys@curveto{112.38832pt}{-4.71431pt}{116.20992pt}{-8.5359pt}{120.92422pt}{-8.5359pt}\pgfsys@curveto{125.63853pt}{-8.5359pt}{129.46013pt}{-4.71431pt}{129.46013pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{120.92422pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{23.77039pt}{0.0pt}\pgfsys@curveto{23.77039pt}{1.65688pt}{22.42726pt}{3.0pt}{20.77039pt}{3.0pt}\pgfsys@curveto{19.11351pt}{3.0pt}{17.77039pt}{1.65688pt}{17.77039pt}{0.0pt}\pgfsys@curveto{17.77039pt}{-1.65688pt}{19.11351pt}{-3.0pt}{20.77039pt}{-3.0pt}\pgfsys@curveto{22.42726pt}{-3.0pt}{23.77039pt}{-1.65688pt}{23.77039pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{20.77039pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.77039pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{20.77039pt}{-4.0pt}\pgfsys@lineto{20.77039pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{20.77039pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{47.9554pt}{0.0pt}\pgfsys@curveto{47.9554pt}{1.65688pt}{46.61227pt}{3.0pt}{44.9554pt}{3.0pt}\pgfsys@curveto{43.29852pt}{3.0pt}{41.9554pt}{1.65688pt}{41.9554pt}{0.0pt}\pgfsys@curveto{41.9554pt}{-1.65688pt}{43.29852pt}{-3.0pt}{44.9554pt}{-3.0pt}\pgfsys@curveto{46.61227pt}{-3.0pt}{47.9554pt}{-1.65688pt}{47.9554pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{44.9554pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.9554pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{44.9554pt}{-4.0pt}\pgfsys@lineto{44.9554pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{44.9554pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{120.51003pt}{0.0pt}\pgfsys@curveto{120.51003pt}{1.65688pt}{119.1669pt}{3.0pt}{117.51003pt}{3.0pt}\pgfsys@curveto{115.85315pt}{3.0pt}{114.51003pt}{1.65688pt}{114.51003pt}{0.0pt}\pgfsys@curveto{114.51003pt}{-1.65688pt}{115.85315pt}{-3.0pt}{117.51003pt}{-3.0pt}\pgfsys@curveto{119.1669pt}{-3.0pt}{120.51003pt}{-1.65688pt}{120.51003pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{117.51003pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{117.51003pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{117.51003pt}{-4.0pt}\pgfsys@lineto{117.51003pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{117.51003pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{30.5992pt}{0.0pt}\pgfsys@curveto{30.5992pt}{1.65688pt}{29.25607pt}{3.0pt}{27.5992pt}{3.0pt}\pgfsys@curveto{25.94232pt}{3.0pt}{24.5992pt}{1.65688pt}{24.5992pt}{0.0pt}\pgfsys@curveto{24.5992pt}{-1.65688pt}{25.94232pt}{-3.0pt}{27.5992pt}{-3.0pt}\pgfsys@curveto{29.25607pt}{-3.0pt}{30.5992pt}{-1.65688pt}{30.5992pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.5992pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{27.5992pt}{-4.0pt}\pgfsys@lineto{27.5992pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{27.5992pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{103.15382pt}{0.0pt}\pgfsys@curveto{103.15382pt}{1.65688pt}{101.8107pt}{3.0pt}{100.15382pt}{3.0pt}\pgfsys@curveto{98.49695pt}{3.0pt}{97.15382pt}{1.65688pt}{97.15382pt}{0.0pt}\pgfsys@curveto{97.15382pt}{-1.65688pt}{98.49695pt}{-3.0pt}{100.15382pt}{-3.0pt}\pgfsys@curveto{101.8107pt}{-3.0pt}{103.15382pt}{-1.65688pt}{103.15382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{100.15382pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.15382pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{100.15382pt}{-4.0pt}\pgfsys@lineto{100.15382pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{100.15382pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{127.33841pt}{0.0pt}\pgfsys@curveto{127.33841pt}{1.65688pt}{125.99529pt}{3.0pt}{124.33841pt}{3.0pt}\pgfsys@curveto{122.68153pt}{3.0pt}{121.33841pt}{1.65688pt}{121.33841pt}{0.0pt}\pgfsys@curveto{121.33841pt}{-1.65688pt}{122.68153pt}{-3.0pt}{124.33841pt}{-3.0pt}\pgfsys@curveto{125.99529pt}{-3.0pt}{127.33841pt}{-1.65688pt}{127.33841pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{124.33841pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{124.33841pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{124.33841pt}{-4.0pt}\pgfsys@lineto{124.33841pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{124.33841pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}{}{}}{{{}}{{}}}{}{{}}{} {{}{}{}}{{{}}{{}}}{}{{}}{}{}{}{}{{}}{} }, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.29497pt}{-21.40797pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$m$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{63.12584pt}{-21.333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$m\!+\!1$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{87.31042pt}{-21.333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$m\!+\!2$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\,, (32)

for n=0n=0 and n=1n=1, and for n3n\geq 3

mm+1m+n.\leavevmode\hbox to194.77pt{\vbox to35.24pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-25.49931pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {}{{}}{} {}{}{}\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@lineto{69.13998pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{59.46208pt}{0.0pt}\pgfsys@lineto{57.46208pt}{2.0pt}\pgfsys@lineto{63.46208pt}{0.0pt}\pgfsys@lineto{57.46208pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {}{{}}{} {}{}{}\pgfsys@moveto{148.52342pt}{0.0pt}\pgfsys@lineto{165.87962pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{156.2015pt}{0.0pt}\pgfsys@lineto{154.2015pt}{2.0pt}\pgfsys@lineto{160.2015pt}{0.0pt}\pgfsys@lineto{154.2015pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.17038pt}{0.0pt}\pgfsys@curveto{23.17038pt}{1.32549pt}{22.09587pt}{2.4pt}{20.77039pt}{2.4pt}\pgfsys@curveto{19.4449pt}{2.4pt}{18.37039pt}{1.32549pt}{18.37039pt}{0.0pt}\pgfsys@curveto{18.37039pt}{-1.32549pt}{19.4449pt}{-2.4pt}{20.77039pt}{-2.4pt}\pgfsys@curveto{22.09587pt}{-2.4pt}{23.17038pt}{-1.32549pt}{23.17038pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{20.77039pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.77039pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{29.99919pt}{0.0pt}\pgfsys@curveto{29.99919pt}{1.32549pt}{28.92468pt}{2.4pt}{27.5992pt}{2.4pt}\pgfsys@curveto{26.27371pt}{2.4pt}{25.1992pt}{1.32549pt}{25.1992pt}{0.0pt}\pgfsys@curveto{25.1992pt}{-1.32549pt}{26.27371pt}{-2.4pt}{27.5992pt}{-2.4pt}\pgfsys@curveto{28.92468pt}{-2.4pt}{29.99919pt}{-1.32549pt}{29.99919pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.5992pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@moveto{32.72092pt}{0.0pt}\pgfsys@curveto{32.72092pt}{4.71431pt}{28.89932pt}{8.5359pt}{24.18501pt}{8.5359pt}\pgfsys@curveto{19.4707pt}{8.5359pt}{15.64911pt}{4.71431pt}{15.64911pt}{0.0pt}\pgfsys@curveto{15.64911pt}{-4.71431pt}{19.4707pt}{-8.5359pt}{24.18501pt}{-8.5359pt}\pgfsys@curveto{28.89932pt}{-8.5359pt}{32.72092pt}{-4.71431pt}{32.72092pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{47.3554pt}{0.0pt}\pgfsys@curveto{47.3554pt}{1.32549pt}{46.28088pt}{2.4pt}{44.9554pt}{2.4pt}\pgfsys@curveto{43.62991pt}{2.4pt}{42.5554pt}{1.32549pt}{42.5554pt}{0.0pt}\pgfsys@curveto{42.5554pt}{-1.32549pt}{43.62991pt}{-2.4pt}{44.9554pt}{-2.4pt}\pgfsys@curveto{46.28088pt}{-2.4pt}{47.3554pt}{-1.32549pt}{47.3554pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{44.9554pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.9554pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{54.18422pt}{0.0pt}\pgfsys@curveto{54.18422pt}{1.32549pt}{53.10971pt}{2.4pt}{51.78423pt}{2.4pt}\pgfsys@curveto{50.45874pt}{2.4pt}{49.38423pt}{1.32549pt}{49.38423pt}{0.0pt}\pgfsys@curveto{49.38423pt}{-1.32549pt}{50.45874pt}{-2.4pt}{51.78423pt}{-2.4pt}\pgfsys@curveto{53.10971pt}{-2.4pt}{54.18422pt}{-1.32549pt}{54.18422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.78423pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@moveto{56.9055pt}{0.0pt}\pgfsys@curveto{56.9055pt}{4.71431pt}{53.08391pt}{8.5359pt}{48.3696pt}{8.5359pt}\pgfsys@curveto{43.65529pt}{8.5359pt}{39.8337pt}{4.71431pt}{39.8337pt}{0.0pt}\pgfsys@curveto{39.8337pt}{-4.71431pt}{43.65529pt}{-8.5359pt}{48.3696pt}{-8.5359pt}\pgfsys@curveto{53.08391pt}{-8.5359pt}{56.9055pt}{-4.71431pt}{56.9055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{71.53998pt}{0.0pt}\pgfsys@curveto{71.53998pt}{1.32549pt}{70.46547pt}{2.4pt}{69.13998pt}{2.4pt}\pgfsys@curveto{67.8145pt}{2.4pt}{66.73999pt}{1.32549pt}{66.73999pt}{0.0pt}\pgfsys@curveto{66.73999pt}{-1.32549pt}{67.8145pt}{-2.4pt}{69.13998pt}{-2.4pt}\pgfsys@curveto{70.46547pt}{-2.4pt}{71.53998pt}{-1.32549pt}{71.53998pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{69.13998pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.13998pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{78.3688pt}{0.0pt}\pgfsys@curveto{78.3688pt}{1.32549pt}{77.2943pt}{2.4pt}{75.96881pt}{2.4pt}\pgfsys@curveto{74.64333pt}{2.4pt}{73.56882pt}{1.32549pt}{73.56882pt}{0.0pt}\pgfsys@curveto{73.56882pt}{-1.32549pt}{74.64333pt}{-2.4pt}{75.96881pt}{-2.4pt}\pgfsys@curveto{77.2943pt}{-2.4pt}{78.3688pt}{-1.32549pt}{78.3688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{75.96881pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.96881pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{72.55461pt}{0.0pt}\pgfsys@moveto{81.09052pt}{0.0pt}\pgfsys@curveto{81.09052pt}{4.71431pt}{77.26892pt}{8.5359pt}{72.55461pt}{8.5359pt}\pgfsys@curveto{67.8403pt}{8.5359pt}{64.0187pt}{4.71431pt}{64.0187pt}{0.0pt}\pgfsys@curveto{64.0187pt}{-4.71431pt}{67.8403pt}{-8.5359pt}{72.55461pt}{-8.5359pt}\pgfsys@curveto{77.26892pt}{-8.5359pt}{81.09052pt}{-4.71431pt}{81.09052pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{72.55461pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{95.725pt}{0.0pt}\pgfsys@curveto{95.725pt}{1.32549pt}{94.6505pt}{2.4pt}{93.32501pt}{2.4pt}\pgfsys@curveto{91.99953pt}{2.4pt}{90.92502pt}{1.32549pt}{90.92502pt}{0.0pt}\pgfsys@curveto{90.92502pt}{-1.32549pt}{91.99953pt}{-2.4pt}{93.32501pt}{-2.4pt}\pgfsys@curveto{94.6505pt}{-2.4pt}{95.725pt}{-1.32549pt}{95.725pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{93.32501pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{93.32501pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{102.55382pt}{0.0pt}\pgfsys@curveto{102.55382pt}{1.32549pt}{101.47931pt}{2.4pt}{100.15382pt}{2.4pt}\pgfsys@curveto{98.82834pt}{2.4pt}{97.75383pt}{1.32549pt}{97.75383pt}{0.0pt}\pgfsys@curveto{97.75383pt}{-1.32549pt}{98.82834pt}{-2.4pt}{100.15382pt}{-2.4pt}\pgfsys@curveto{101.47931pt}{-2.4pt}{102.55382pt}{-1.32549pt}{102.55382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{100.15382pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.15382pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{96.7392pt}{0.0pt}\pgfsys@moveto{105.2751pt}{0.0pt}\pgfsys@curveto{105.2751pt}{4.71431pt}{101.4535pt}{8.5359pt}{96.7392pt}{8.5359pt}\pgfsys@curveto{92.02489pt}{8.5359pt}{88.2033pt}{4.71431pt}{88.2033pt}{0.0pt}\pgfsys@curveto{88.2033pt}{-4.71431pt}{92.02489pt}{-8.5359pt}{96.7392pt}{-8.5359pt}\pgfsys@curveto{101.4535pt}{-8.5359pt}{105.2751pt}{-4.71431pt}{105.2751pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{96.7392pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{119.91002pt}{0.0pt}\pgfsys@curveto{119.91002pt}{1.32549pt}{118.83551pt}{2.4pt}{117.51003pt}{2.4pt}\pgfsys@curveto{116.18454pt}{2.4pt}{115.11003pt}{1.32549pt}{115.11003pt}{0.0pt}\pgfsys@curveto{115.11003pt}{-1.32549pt}{116.18454pt}{-2.4pt}{117.51003pt}{-2.4pt}\pgfsys@curveto{118.83551pt}{-2.4pt}{119.91002pt}{-1.32549pt}{119.91002pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{117.51003pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{117.51003pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{126.7384pt}{0.0pt}\pgfsys@curveto{126.7384pt}{1.32549pt}{125.6639pt}{2.4pt}{124.33841pt}{2.4pt}\pgfsys@curveto{123.01292pt}{2.4pt}{121.93842pt}{1.32549pt}{121.93842pt}{0.0pt}\pgfsys@curveto{121.93842pt}{-1.32549pt}{123.01292pt}{-2.4pt}{124.33841pt}{-2.4pt}\pgfsys@curveto{125.6639pt}{-2.4pt}{126.7384pt}{-1.32549pt}{126.7384pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{124.33841pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{124.33841pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{120.92422pt}{0.0pt}\pgfsys@moveto{129.46013pt}{0.0pt}\pgfsys@curveto{129.46013pt}{4.71431pt}{125.63853pt}{8.5359pt}{120.92422pt}{8.5359pt}\pgfsys@curveto{116.20992pt}{8.5359pt}{112.38832pt}{4.71431pt}{112.38832pt}{0.0pt}\pgfsys@curveto{112.38832pt}{-4.71431pt}{116.20992pt}{-8.5359pt}{120.92422pt}{-8.5359pt}\pgfsys@curveto{125.63853pt}{-8.5359pt}{129.46013pt}{-4.71431pt}{129.46013pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{120.92422pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{144.0946pt}{0.0pt}\pgfsys@curveto{144.0946pt}{1.32549pt}{143.0201pt}{2.4pt}{141.69461pt}{2.4pt}\pgfsys@curveto{140.36913pt}{2.4pt}{139.29462pt}{1.32549pt}{139.29462pt}{0.0pt}\pgfsys@curveto{139.29462pt}{-1.32549pt}{140.36913pt}{-2.4pt}{141.69461pt}{-2.4pt}\pgfsys@curveto{143.0201pt}{-2.4pt}{144.0946pt}{-1.32549pt}{144.0946pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{141.69461pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{141.69461pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{150.92342pt}{0.0pt}\pgfsys@curveto{150.92342pt}{1.32549pt}{149.8489pt}{2.4pt}{148.52342pt}{2.4pt}\pgfsys@curveto{147.19794pt}{2.4pt}{146.12343pt}{1.32549pt}{146.12343pt}{0.0pt}\pgfsys@curveto{146.12343pt}{-1.32549pt}{147.19794pt}{-2.4pt}{148.52342pt}{-2.4pt}\pgfsys@curveto{149.8489pt}{-2.4pt}{150.92342pt}{-1.32549pt}{150.92342pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{148.52342pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{148.52342pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{145.10924pt}{0.0pt}\pgfsys@moveto{153.64514pt}{0.0pt}\pgfsys@curveto{153.64514pt}{4.71431pt}{149.82355pt}{8.5359pt}{145.10924pt}{8.5359pt}\pgfsys@curveto{140.39493pt}{8.5359pt}{136.57333pt}{4.71431pt}{136.57333pt}{0.0pt}\pgfsys@curveto{136.57333pt}{-4.71431pt}{140.39493pt}{-8.5359pt}{145.10924pt}{-8.5359pt}\pgfsys@curveto{149.82355pt}{-8.5359pt}{153.64514pt}{-4.71431pt}{153.64514pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{145.10924pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{168.27962pt}{0.0pt}\pgfsys@curveto{168.27962pt}{1.32549pt}{167.20511pt}{2.4pt}{165.87962pt}{2.4pt}\pgfsys@curveto{164.55414pt}{2.4pt}{163.47963pt}{1.32549pt}{163.47963pt}{0.0pt}\pgfsys@curveto{163.47963pt}{-1.32549pt}{164.55414pt}{-2.4pt}{165.87962pt}{-2.4pt}\pgfsys@curveto{167.20511pt}{-2.4pt}{168.27962pt}{-1.32549pt}{168.27962pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{165.87962pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{165.87962pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{175.10844pt}{0.0pt}\pgfsys@curveto{175.10844pt}{1.32549pt}{174.03394pt}{2.4pt}{172.70845pt}{2.4pt}\pgfsys@curveto{171.38297pt}{2.4pt}{170.30846pt}{1.32549pt}{170.30846pt}{0.0pt}\pgfsys@curveto{170.30846pt}{-1.32549pt}{171.38297pt}{-2.4pt}{172.70845pt}{-2.4pt}\pgfsys@curveto{174.03394pt}{-2.4pt}{175.10844pt}{-1.32549pt}{175.10844pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{172.70845pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{172.70845pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{169.29382pt}{0.0pt}\pgfsys@moveto{177.82973pt}{0.0pt}\pgfsys@curveto{177.82973pt}{4.71431pt}{174.00813pt}{8.5359pt}{169.29382pt}{8.5359pt}\pgfsys@curveto{164.57951pt}{8.5359pt}{160.75792pt}{4.71431pt}{160.75792pt}{0.0pt}\pgfsys@curveto{160.75792pt}{-4.71431pt}{164.57951pt}{-8.5359pt}{169.29382pt}{-8.5359pt}\pgfsys@curveto{174.00813pt}{-8.5359pt}{177.82973pt}{-4.71431pt}{177.82973pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{169.29382pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{192.4642pt}{0.0pt}\pgfsys@curveto{192.4642pt}{1.32549pt}{191.3897pt}{2.4pt}{190.06421pt}{2.4pt}\pgfsys@curveto{188.73872pt}{2.4pt}{187.66422pt}{1.32549pt}{187.66422pt}{0.0pt}\pgfsys@curveto{187.66422pt}{-1.32549pt}{188.73872pt}{-2.4pt}{190.06421pt}{-2.4pt}\pgfsys@curveto{191.3897pt}{-2.4pt}{192.4642pt}{-1.32549pt}{192.4642pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{190.06421pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{190.06421pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{199.29303pt}{0.0pt}\pgfsys@curveto{199.29303pt}{1.32549pt}{198.21852pt}{2.4pt}{196.89304pt}{2.4pt}\pgfsys@curveto{195.56755pt}{2.4pt}{194.49304pt}{1.32549pt}{194.49304pt}{0.0pt}\pgfsys@curveto{194.49304pt}{-1.32549pt}{195.56755pt}{-2.4pt}{196.89304pt}{-2.4pt}\pgfsys@curveto{198.21852pt}{-2.4pt}{199.29303pt}{-1.32549pt}{199.29303pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{196.89304pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{196.89304pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{193.47884pt}{0.0pt}\pgfsys@moveto{202.01474pt}{0.0pt}\pgfsys@curveto{202.01474pt}{4.71431pt}{198.19315pt}{8.5359pt}{193.47884pt}{8.5359pt}\pgfsys@curveto{188.76453pt}{8.5359pt}{184.94293pt}{4.71431pt}{184.94293pt}{0.0pt}\pgfsys@curveto{184.94293pt}{-4.71431pt}{188.76453pt}{-8.5359pt}{193.47884pt}{-8.5359pt}\pgfsys@curveto{198.19315pt}{-8.5359pt}{202.01474pt}{-4.71431pt}{202.01474pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{193.47884pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{23.77039pt}{0.0pt}\pgfsys@curveto{23.77039pt}{1.65688pt}{22.42726pt}{3.0pt}{20.77039pt}{3.0pt}\pgfsys@curveto{19.11351pt}{3.0pt}{17.77039pt}{1.65688pt}{17.77039pt}{0.0pt}\pgfsys@curveto{17.77039pt}{-1.65688pt}{19.11351pt}{-3.0pt}{20.77039pt}{-3.0pt}\pgfsys@curveto{22.42726pt}{-3.0pt}{23.77039pt}{-1.65688pt}{23.77039pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{20.77039pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.77039pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{20.77039pt}{-4.0pt}\pgfsys@lineto{20.77039pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{20.77039pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{47.9554pt}{0.0pt}\pgfsys@curveto{47.9554pt}{1.65688pt}{46.61227pt}{3.0pt}{44.9554pt}{3.0pt}\pgfsys@curveto{43.29852pt}{3.0pt}{41.9554pt}{1.65688pt}{41.9554pt}{0.0pt}\pgfsys@curveto{41.9554pt}{-1.65688pt}{43.29852pt}{-3.0pt}{44.9554pt}{-3.0pt}\pgfsys@curveto{46.61227pt}{-3.0pt}{47.9554pt}{-1.65688pt}{47.9554pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{44.9554pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.9554pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{44.9554pt}{-4.0pt}\pgfsys@lineto{44.9554pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{44.9554pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{96.32501pt}{0.0pt}\pgfsys@curveto{96.32501pt}{1.65688pt}{94.98189pt}{3.0pt}{93.32501pt}{3.0pt}\pgfsys@curveto{91.66814pt}{3.0pt}{90.32501pt}{1.65688pt}{90.32501pt}{0.0pt}\pgfsys@curveto{90.32501pt}{-1.65688pt}{91.66814pt}{-3.0pt}{93.32501pt}{-3.0pt}\pgfsys@curveto{94.98189pt}{-3.0pt}{96.32501pt}{-1.65688pt}{96.32501pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{93.32501pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{93.32501pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{93.32501pt}{-4.0pt}\pgfsys@lineto{93.32501pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{93.32501pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{120.51003pt}{0.0pt}\pgfsys@curveto{120.51003pt}{1.65688pt}{119.1669pt}{3.0pt}{117.51003pt}{3.0pt}\pgfsys@curveto{115.85315pt}{3.0pt}{114.51003pt}{1.65688pt}{114.51003pt}{0.0pt}\pgfsys@curveto{114.51003pt}{-1.65688pt}{115.85315pt}{-3.0pt}{117.51003pt}{-3.0pt}\pgfsys@curveto{119.1669pt}{-3.0pt}{120.51003pt}{-1.65688pt}{120.51003pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{117.51003pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{117.51003pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{117.51003pt}{-4.0pt}\pgfsys@lineto{117.51003pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{117.51003pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{144.69461pt}{0.0pt}\pgfsys@curveto{144.69461pt}{1.65688pt}{143.35149pt}{3.0pt}{141.69461pt}{3.0pt}\pgfsys@curveto{140.03773pt}{3.0pt}{138.69461pt}{1.65688pt}{138.69461pt}{0.0pt}\pgfsys@curveto{138.69461pt}{-1.65688pt}{140.03773pt}{-3.0pt}{141.69461pt}{-3.0pt}\pgfsys@curveto{143.35149pt}{-3.0pt}{144.69461pt}{-1.65688pt}{144.69461pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{141.69461pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{141.69461pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{141.69461pt}{-4.0pt}\pgfsys@lineto{141.69461pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{141.69461pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{193.06421pt}{0.0pt}\pgfsys@curveto{193.06421pt}{1.65688pt}{191.72108pt}{3.0pt}{190.06421pt}{3.0pt}\pgfsys@curveto{188.40733pt}{3.0pt}{187.06421pt}{1.65688pt}{187.06421pt}{0.0pt}\pgfsys@curveto{187.06421pt}{-1.65688pt}{188.40733pt}{-3.0pt}{190.06421pt}{-3.0pt}\pgfsys@curveto{191.72108pt}{-3.0pt}{193.06421pt}{-1.65688pt}{193.06421pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{190.06421pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{190.06421pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{190.06421pt}{-4.0pt}\pgfsys@lineto{190.06421pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{190.06421pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{30.5992pt}{0.0pt}\pgfsys@curveto{30.5992pt}{1.65688pt}{29.25607pt}{3.0pt}{27.5992pt}{3.0pt}\pgfsys@curveto{25.94232pt}{3.0pt}{24.5992pt}{1.65688pt}{24.5992pt}{0.0pt}\pgfsys@curveto{24.5992pt}{-1.65688pt}{25.94232pt}{-3.0pt}{27.5992pt}{-3.0pt}\pgfsys@curveto{29.25607pt}{-3.0pt}{30.5992pt}{-1.65688pt}{30.5992pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.5992pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{27.5992pt}{-4.0pt}\pgfsys@lineto{27.5992pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{27.5992pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{78.96881pt}{0.0pt}\pgfsys@curveto{78.96881pt}{1.65688pt}{77.62569pt}{3.0pt}{75.96881pt}{3.0pt}\pgfsys@curveto{74.31194pt}{3.0pt}{72.96881pt}{1.65688pt}{72.96881pt}{0.0pt}\pgfsys@curveto{72.96881pt}{-1.65688pt}{74.31194pt}{-3.0pt}{75.96881pt}{-3.0pt}\pgfsys@curveto{77.62569pt}{-3.0pt}{78.96881pt}{-1.65688pt}{78.96881pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{75.96881pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.96881pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{75.96881pt}{-4.0pt}\pgfsys@lineto{75.96881pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{75.96881pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{103.15382pt}{0.0pt}\pgfsys@curveto{103.15382pt}{1.65688pt}{101.8107pt}{3.0pt}{100.15382pt}{3.0pt}\pgfsys@curveto{98.49695pt}{3.0pt}{97.15382pt}{1.65688pt}{97.15382pt}{0.0pt}\pgfsys@curveto{97.15382pt}{-1.65688pt}{98.49695pt}{-3.0pt}{100.15382pt}{-3.0pt}\pgfsys@curveto{101.8107pt}{-3.0pt}{103.15382pt}{-1.65688pt}{103.15382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{100.15382pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.15382pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{100.15382pt}{-4.0pt}\pgfsys@lineto{100.15382pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{100.15382pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{127.33841pt}{0.0pt}\pgfsys@curveto{127.33841pt}{1.65688pt}{125.99529pt}{3.0pt}{124.33841pt}{3.0pt}\pgfsys@curveto{122.68153pt}{3.0pt}{121.33841pt}{1.65688pt}{121.33841pt}{0.0pt}\pgfsys@curveto{121.33841pt}{-1.65688pt}{122.68153pt}{-3.0pt}{124.33841pt}{-3.0pt}\pgfsys@curveto{125.99529pt}{-3.0pt}{127.33841pt}{-1.65688pt}{127.33841pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{124.33841pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{124.33841pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{124.33841pt}{-4.0pt}\pgfsys@lineto{124.33841pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{124.33841pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{175.70845pt}{0.0pt}\pgfsys@curveto{175.70845pt}{1.65688pt}{174.36533pt}{3.0pt}{172.70845pt}{3.0pt}\pgfsys@curveto{171.05157pt}{3.0pt}{169.70845pt}{1.65688pt}{169.70845pt}{0.0pt}\pgfsys@curveto{169.70845pt}{-1.65688pt}{171.05157pt}{-3.0pt}{172.70845pt}{-3.0pt}\pgfsys@curveto{174.36533pt}{-3.0pt}{175.70845pt}{-1.65688pt}{175.70845pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{172.70845pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{172.70845pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{172.70845pt}{-4.0pt}\pgfsys@lineto{172.70845pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{172.70845pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{199.89304pt}{0.0pt}\pgfsys@curveto{199.89304pt}{1.65688pt}{198.54991pt}{3.0pt}{196.89304pt}{3.0pt}\pgfsys@curveto{195.23616pt}{3.0pt}{193.89304pt}{1.65688pt}{193.89304pt}{0.0pt}\pgfsys@curveto{193.89304pt}{-1.65688pt}{195.23616pt}{-3.0pt}{196.89304pt}{-3.0pt}\pgfsys@curveto{198.54991pt}{-3.0pt}{199.89304pt}{-1.65688pt}{199.89304pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{196.89304pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{196.89304pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{196.89304pt}{-4.0pt}\pgfsys@lineto{196.89304pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{196.89304pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}{}{}}{{{}}{{}}}{}{{}}{} {{}{}{}}{{{}}{{}}}{}{{}}{}{}{}{}{{}}{} }, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.29497pt}{-21.40797pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$m$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{60.34813pt}{-21.333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$m+1$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{132.42532pt}{-20.86632pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$m+n$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\,. (33)

From this Schwinger boson representation, it is evident that |2n\ket{2_{n}} with n3n\geq 3 remains the eigenstate of H^\hat{H}. This is because the minimum JzJ_{z} for any pair of neighboring sites is one, and therefore |2n\ket{2_{n}} is annihilated by the disorder term H^dis\hat{H}_{\text{dis}}. The building block of |2n=1=m(1)m|m,m+1\ket{2_{n=1}}=\sum_{m}(-1)^{m}\ket{m,m+1} is given by

12|m,m+1=12mm+1m+2\displaystyle\frac{1}{\sqrt{2}}\ket{m,m+1}=\frac{1}{\sqrt{2}}\leavevmode\hbox to122.21pt{\vbox to35.24pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-25.49931pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {}{{}}{} {}{}{}\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@lineto{69.13998pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{59.46208pt}{0.0pt}\pgfsys@lineto{57.46208pt}{2.0pt}\pgfsys@lineto{63.46208pt}{0.0pt}\pgfsys@lineto{57.46208pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {}{{}}{} {}{}{}\pgfsys@moveto{75.96881pt}{0.0pt}\pgfsys@lineto{93.32501pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } { {{}{}}{{}}{} {}{} {{}{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@moveto{83.6469pt}{0.0pt}\pgfsys@lineto{81.6469pt}{2.0pt}\pgfsys@lineto{87.6469pt}{0.0pt}\pgfsys@lineto{81.6469pt}{-2.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope }\pgfsys@invoke{ }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{ }\pgfsys@endscope} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{23.17038pt}{0.0pt}\pgfsys@curveto{23.17038pt}{1.32549pt}{22.09587pt}{2.4pt}{20.77039pt}{2.4pt}\pgfsys@curveto{19.4449pt}{2.4pt}{18.37039pt}{1.32549pt}{18.37039pt}{0.0pt}\pgfsys@curveto{18.37039pt}{-1.32549pt}{19.4449pt}{-2.4pt}{20.77039pt}{-2.4pt}\pgfsys@curveto{22.09587pt}{-2.4pt}{23.17038pt}{-1.32549pt}{23.17038pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{20.77039pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.77039pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{29.99919pt}{0.0pt}\pgfsys@curveto{29.99919pt}{1.32549pt}{28.92468pt}{2.4pt}{27.5992pt}{2.4pt}\pgfsys@curveto{26.27371pt}{2.4pt}{25.1992pt}{1.32549pt}{25.1992pt}{0.0pt}\pgfsys@curveto{25.1992pt}{-1.32549pt}{26.27371pt}{-2.4pt}{27.5992pt}{-2.4pt}\pgfsys@curveto{28.92468pt}{-2.4pt}{29.99919pt}{-1.32549pt}{29.99919pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.5992pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@moveto{32.72092pt}{0.0pt}\pgfsys@curveto{32.72092pt}{4.71431pt}{28.89932pt}{8.5359pt}{24.18501pt}{8.5359pt}\pgfsys@curveto{19.4707pt}{8.5359pt}{15.64911pt}{4.71431pt}{15.64911pt}{0.0pt}\pgfsys@curveto{15.64911pt}{-4.71431pt}{19.4707pt}{-8.5359pt}{24.18501pt}{-8.5359pt}\pgfsys@curveto{28.89932pt}{-8.5359pt}{32.72092pt}{-4.71431pt}{32.72092pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{47.3554pt}{0.0pt}\pgfsys@curveto{47.3554pt}{1.32549pt}{46.28088pt}{2.4pt}{44.9554pt}{2.4pt}\pgfsys@curveto{43.62991pt}{2.4pt}{42.5554pt}{1.32549pt}{42.5554pt}{0.0pt}\pgfsys@curveto{42.5554pt}{-1.32549pt}{43.62991pt}{-2.4pt}{44.9554pt}{-2.4pt}\pgfsys@curveto{46.28088pt}{-2.4pt}{47.3554pt}{-1.32549pt}{47.3554pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{44.9554pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.9554pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{54.18422pt}{0.0pt}\pgfsys@curveto{54.18422pt}{1.32549pt}{53.10971pt}{2.4pt}{51.78423pt}{2.4pt}\pgfsys@curveto{50.45874pt}{2.4pt}{49.38423pt}{1.32549pt}{49.38423pt}{0.0pt}\pgfsys@curveto{49.38423pt}{-1.32549pt}{50.45874pt}{-2.4pt}{51.78423pt}{-2.4pt}\pgfsys@curveto{53.10971pt}{-2.4pt}{54.18422pt}{-1.32549pt}{54.18422pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.78423pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.78423pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@moveto{56.9055pt}{0.0pt}\pgfsys@curveto{56.9055pt}{4.71431pt}{53.08391pt}{8.5359pt}{48.3696pt}{8.5359pt}\pgfsys@curveto{43.65529pt}{8.5359pt}{39.8337pt}{4.71431pt}{39.8337pt}{0.0pt}\pgfsys@curveto{39.8337pt}{-4.71431pt}{43.65529pt}{-8.5359pt}{48.3696pt}{-8.5359pt}\pgfsys@curveto{53.08391pt}{-8.5359pt}{56.9055pt}{-4.71431pt}{56.9055pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{48.3696pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{71.53998pt}{0.0pt}\pgfsys@curveto{71.53998pt}{1.32549pt}{70.46547pt}{2.4pt}{69.13998pt}{2.4pt}\pgfsys@curveto{67.8145pt}{2.4pt}{66.73999pt}{1.32549pt}{66.73999pt}{0.0pt}\pgfsys@curveto{66.73999pt}{-1.32549pt}{67.8145pt}{-2.4pt}{69.13998pt}{-2.4pt}\pgfsys@curveto{70.46547pt}{-2.4pt}{71.53998pt}{-1.32549pt}{71.53998pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{69.13998pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.13998pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{78.3688pt}{0.0pt}\pgfsys@curveto{78.3688pt}{1.32549pt}{77.2943pt}{2.4pt}{75.96881pt}{2.4pt}\pgfsys@curveto{74.64333pt}{2.4pt}{73.56882pt}{1.32549pt}{73.56882pt}{0.0pt}\pgfsys@curveto{73.56882pt}{-1.32549pt}{74.64333pt}{-2.4pt}{75.96881pt}{-2.4pt}\pgfsys@curveto{77.2943pt}{-2.4pt}{78.3688pt}{-1.32549pt}{78.3688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{75.96881pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.96881pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{72.55461pt}{0.0pt}\pgfsys@moveto{81.09052pt}{0.0pt}\pgfsys@curveto{81.09052pt}{4.71431pt}{77.26892pt}{8.5359pt}{72.55461pt}{8.5359pt}\pgfsys@curveto{67.8403pt}{8.5359pt}{64.0187pt}{4.71431pt}{64.0187pt}{0.0pt}\pgfsys@curveto{64.0187pt}{-4.71431pt}{67.8403pt}{-8.5359pt}{72.55461pt}{-8.5359pt}\pgfsys@curveto{77.26892pt}{-8.5359pt}{81.09052pt}{-4.71431pt}{81.09052pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{72.55461pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{95.725pt}{0.0pt}\pgfsys@curveto{95.725pt}{1.32549pt}{94.6505pt}{2.4pt}{93.32501pt}{2.4pt}\pgfsys@curveto{91.99953pt}{2.4pt}{90.92502pt}{1.32549pt}{90.92502pt}{0.0pt}\pgfsys@curveto{90.92502pt}{-1.32549pt}{91.99953pt}{-2.4pt}{93.32501pt}{-2.4pt}\pgfsys@curveto{94.6505pt}{-2.4pt}{95.725pt}{-1.32549pt}{95.725pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{93.32501pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{93.32501pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{102.55382pt}{0.0pt}\pgfsys@curveto{102.55382pt}{1.32549pt}{101.47931pt}{2.4pt}{100.15382pt}{2.4pt}\pgfsys@curveto{98.82834pt}{2.4pt}{97.75383pt}{1.32549pt}{97.75383pt}{0.0pt}\pgfsys@curveto{97.75383pt}{-1.32549pt}{98.82834pt}{-2.4pt}{100.15382pt}{-2.4pt}\pgfsys@curveto{101.47931pt}{-2.4pt}{102.55382pt}{-1.32549pt}{102.55382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{100.15382pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.15382pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{96.7392pt}{0.0pt}\pgfsys@moveto{105.2751pt}{0.0pt}\pgfsys@curveto{105.2751pt}{4.71431pt}{101.4535pt}{8.5359pt}{96.7392pt}{8.5359pt}\pgfsys@curveto{92.02489pt}{8.5359pt}{88.2033pt}{4.71431pt}{88.2033pt}{0.0pt}\pgfsys@curveto{88.2033pt}{-4.71431pt}{92.02489pt}{-8.5359pt}{96.7392pt}{-8.5359pt}\pgfsys@curveto{101.4535pt}{-8.5359pt}{105.2751pt}{-4.71431pt}{105.2751pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{96.7392pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{119.91002pt}{0.0pt}\pgfsys@curveto{119.91002pt}{1.32549pt}{118.83551pt}{2.4pt}{117.51003pt}{2.4pt}\pgfsys@curveto{116.18454pt}{2.4pt}{115.11003pt}{1.32549pt}{115.11003pt}{0.0pt}\pgfsys@curveto{115.11003pt}{-1.32549pt}{116.18454pt}{-2.4pt}{117.51003pt}{-2.4pt}\pgfsys@curveto{118.83551pt}{-2.4pt}{119.91002pt}{-1.32549pt}{119.91002pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{117.51003pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{117.51003pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{126.7384pt}{0.0pt}\pgfsys@curveto{126.7384pt}{1.32549pt}{125.6639pt}{2.4pt}{124.33841pt}{2.4pt}\pgfsys@curveto{123.01292pt}{2.4pt}{121.93842pt}{1.32549pt}{121.93842pt}{0.0pt}\pgfsys@curveto{121.93842pt}{-1.32549pt}{123.01292pt}{-2.4pt}{124.33841pt}{-2.4pt}\pgfsys@curveto{125.6639pt}{-2.4pt}{126.7384pt}{-1.32549pt}{126.7384pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{124.33841pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{124.33841pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{120.92422pt}{0.0pt}\pgfsys@moveto{129.46013pt}{0.0pt}\pgfsys@curveto{129.46013pt}{4.71431pt}{125.63853pt}{8.5359pt}{120.92422pt}{8.5359pt}\pgfsys@curveto{116.20992pt}{8.5359pt}{112.38832pt}{4.71431pt}{112.38832pt}{0.0pt}\pgfsys@curveto{112.38832pt}{-4.71431pt}{116.20992pt}{-8.5359pt}{120.92422pt}{-8.5359pt}\pgfsys@curveto{125.63853pt}{-8.5359pt}{129.46013pt}{-4.71431pt}{129.46013pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{120.92422pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{23.77039pt}{0.0pt}\pgfsys@curveto{23.77039pt}{1.65688pt}{22.42726pt}{3.0pt}{20.77039pt}{3.0pt}\pgfsys@curveto{19.11351pt}{3.0pt}{17.77039pt}{1.65688pt}{17.77039pt}{0.0pt}\pgfsys@curveto{17.77039pt}{-1.65688pt}{19.11351pt}{-3.0pt}{20.77039pt}{-3.0pt}\pgfsys@curveto{22.42726pt}{-3.0pt}{23.77039pt}{-1.65688pt}{23.77039pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{20.77039pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.77039pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{20.77039pt}{-4.0pt}\pgfsys@lineto{20.77039pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{20.77039pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{47.9554pt}{0.0pt}\pgfsys@curveto{47.9554pt}{1.65688pt}{46.61227pt}{3.0pt}{44.9554pt}{3.0pt}\pgfsys@curveto{43.29852pt}{3.0pt}{41.9554pt}{1.65688pt}{41.9554pt}{0.0pt}\pgfsys@curveto{41.9554pt}{-1.65688pt}{43.29852pt}{-3.0pt}{44.9554pt}{-3.0pt}\pgfsys@curveto{46.61227pt}{-3.0pt}{47.9554pt}{-1.65688pt}{47.9554pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{44.9554pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.9554pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{44.9554pt}{-4.0pt}\pgfsys@lineto{44.9554pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{44.9554pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{120.51003pt}{0.0pt}\pgfsys@curveto{120.51003pt}{1.65688pt}{119.1669pt}{3.0pt}{117.51003pt}{3.0pt}\pgfsys@curveto{115.85315pt}{3.0pt}{114.51003pt}{1.65688pt}{114.51003pt}{0.0pt}\pgfsys@curveto{114.51003pt}{-1.65688pt}{115.85315pt}{-3.0pt}{117.51003pt}{-3.0pt}\pgfsys@curveto{119.1669pt}{-3.0pt}{120.51003pt}{-1.65688pt}{120.51003pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{117.51003pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{117.51003pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{117.51003pt}{-4.0pt}\pgfsys@lineto{117.51003pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{117.51003pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{30.5992pt}{0.0pt}\pgfsys@curveto{30.5992pt}{1.65688pt}{29.25607pt}{3.0pt}{27.5992pt}{3.0pt}\pgfsys@curveto{25.94232pt}{3.0pt}{24.5992pt}{1.65688pt}{24.5992pt}{0.0pt}\pgfsys@curveto{24.5992pt}{-1.65688pt}{25.94232pt}{-3.0pt}{27.5992pt}{-3.0pt}\pgfsys@curveto{29.25607pt}{-3.0pt}{30.5992pt}{-1.65688pt}{30.5992pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{27.5992pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.5992pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{27.5992pt}{-4.0pt}\pgfsys@lineto{27.5992pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{27.5992pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{103.15382pt}{0.0pt}\pgfsys@curveto{103.15382pt}{1.65688pt}{101.8107pt}{3.0pt}{100.15382pt}{3.0pt}\pgfsys@curveto{98.49695pt}{3.0pt}{97.15382pt}{1.65688pt}{97.15382pt}{0.0pt}\pgfsys@curveto{97.15382pt}{-1.65688pt}{98.49695pt}{-3.0pt}{100.15382pt}{-3.0pt}\pgfsys@curveto{101.8107pt}{-3.0pt}{103.15382pt}{-1.65688pt}{103.15382pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{100.15382pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.15382pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{100.15382pt}{-4.0pt}\pgfsys@lineto{100.15382pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{100.15382pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@moveto{127.33841pt}{0.0pt}\pgfsys@curveto{127.33841pt}{1.65688pt}{125.99529pt}{3.0pt}{124.33841pt}{3.0pt}\pgfsys@curveto{122.68153pt}{3.0pt}{121.33841pt}{1.65688pt}{121.33841pt}{0.0pt}\pgfsys@curveto{121.33841pt}{-1.65688pt}{122.68153pt}{-3.0pt}{124.33841pt}{-3.0pt}\pgfsys@curveto{125.99529pt}{-3.0pt}{127.33841pt}{-1.65688pt}{127.33841pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{124.33841pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{124.33841pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}} \hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ } {{}}{ {{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{124.33841pt}{-4.0pt}\pgfsys@lineto{124.33841pt}{2.26245pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{124.33841pt}{0.29997pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}{}{}}{{{}}{{}}}{}{{}}{} {{}{}{}}{{{}}{{}}}{}{{}}{}{}{}{}{{}}{} }, \pgfsys@invoke{ }\pgfsys@endscope\pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.29497pt}{-21.40797pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$m$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{63.12584pt}{-21.333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$m\!+\!1$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{87.31042pt}{-21.333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$m\!+\!2$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}
=\displaystyle= |110012|1,1,1,1,1|10101+|10011,\displaystyle\ket{11001}-2\ket{1,1,-1,1,1}-\ket{10101}+\ket{10011}\,, (34)

where irrelevant site configurations have been omitted for clarity, and the first and the last term cancel upon (1)m(-1)^{m} summation. In the local spin basis representation, when considering the action of H^dis\hat{H}_{\text{dis}} on |m,m+1\ket{m,m+1}, only the bonds (m,m+1)(m,m+1) and (m+1,m+2)(m+1,m+2) are relevant. For the bond (m,m+1)(m,m+1), we have

|002|1,1=3|J0,02|J1,0,\ket{00}-2\ket{1,-1}=-\sqrt{3}\ket{J_{0,0}}-\sqrt{2}\ket{J_{1,0}}\,, (35)

and for the bond (m+1,m+2)(m+1,m+2), we have

|002|1,1=3|J0,0+2|J1,0.\ket{00}-2\ket{-1,1}=-\sqrt{3}\ket{J_{0,0}}+\sqrt{2}\ket{J_{1,0}}\,. (36)

Neither of these bonds contains components of |J2,m,m=2,1,0\ket{J_{2,m^{\prime}}},m^{\prime}=-2,-1,0. Hence |2n=1\ket{2_{n=1}} is annihilated by the disorder term H^dis\hat{H}_{\text{dis}}, and |2n=1\ket{2_{n=1}} remains an eigenstate of H^\hat{H}. However, the |n,n\ket{n,n} state in local spin basis reads

|m,m=\displaystyle\ket{m,m}= m1m-1mmm+1m+1m+2m+2
=\displaystyle= 2(|1,1,1,1+|1,1,1,1|1001)\displaystyle 2\left(\ket{1,1,-1,1}+\ket{1,-1,1,1}-\ket{1001}\right) (37)

and |00\ket{00} in |1001\ket{1001} can not be annihilated by |J2,m′′J2,m=0|\outerproduct{J_{2,m^{\prime\prime}}}{J_{2,m^{\prime}=0}}, meaning |2n=0\ket{2_{n=0}} ceases to be an eigenstate of the disordered AKLT model.

|2k\ket{2_{k}} state

One can also superpose |m,m+n\ket{m,m+n} to form the following |2k\ket{2_{k}} eigenstate of the AKLT Hamiltonian

|2k=m=0L/21ei(k+π)mneikn|n,n+2m+1,\ket{2_{k}}=\sum_{m=0}^{L/2-1}{e^{i(k+\pi)m}\sum_{n}{e^{ikn}\ket{n,n+2m+1}}}\,, (38)

where the lattice momentum kk has to satisfy eikL/2=1e^{ikL/2}=-1 for even L/2L/2 and eikL/2=1e^{ikL/2}=1 for odd L/2L/2. The total number of |2k\ket{2_{k}} states is therefore L/2L/2. Given that |n,n+1\ket{n,n+1} and |n,n+m\ket{n,n+m} with m3m\geq 3 are all annihilated by the disorder term H^dis\hat{H}_{\text{dis}} as discussed previously, all these |2k\ket{2_{k}} states remain eigenstates of H^\hat{H}. Nevertheless, not all these |2k\ket{2_{k}} states are linearly independent with previously discussed scar states, in particular we have the following relation [37]

|𝒮L2={|2k=0if L/2 is odd;m=0L/21(1)m|2n=2m+1if L/2 is even.\ket{\mathcal{S}_{L-2}}=\begin{cases}\ket{2_{k=0}}&\text{if $L/2$ is odd}\,;\\[6.0pt] \sum\limits_{m=0}^{L/2-1}{(-1)^{m}\ket{2_{n=2m+1}}}&\text{if $L/2$ is even}\,.\end{cases} (39)

J^|1π\hat{J}^{-}\ket{1_{\pi}} state

The previously discussed states, |F\ket{F}, |1k\ket{1_{k}}, |2n\ket{2_{n}}, and |2k\ket{2_{k}}, are all highest weight states within families of eigenstates of the AKLT Hamiltonian H^0\hat{H}_{0}. By acting on these states with the global spin ladder operator J^nS^n\hat{J}^{-}\equiv\sum_{n}\hat{S}_{n}^{-}, one generates additional eigenstates of H^0\hat{H}_{0} with reduced total magnetization. Given the relations |10|01=2|J1,1\ket{10}-\ket{01}=\sqrt{2}\ket{J_{1,1}} and |11=|J2,2\ket{11}=\ket{J_{2,2}}, any neighboring spins of state J^|1π\hat{J}^{-}\ket{1_{\pi}} only contain components of |J2,1\ket{J_{2,1}} and |J1,0\ket{J_{1,0}}. Consequently, this state is annihilated by the disorder term, H^dis\hat{H}_{\text{dis}}. Therefore, J^|1π\hat{J}^{-}\ket{1_{\pi}} remains an eigenstate of the disordered AKLT Hamiltonian H^\hat{H}.

J^|1d\hat{J}^{-}\ket{1_{d}} state

The previously discussed states account all but one scar state in the disordered AKLT model. To reveal the nature of the missing one, it is easier to start with the following state

|1d\displaystyle\ket{1_{d}} =n(1)n(Sn)2|F\displaystyle=\sum_{n}(-1)^{n}(S_{n}^{-})^{2}\ket{F}
=2n(1)n|1,,1n1,1,1,,1Ln.\displaystyle=2\sum_{n}(-1)^{n}\big{|}\underbrace{1,\cdots,1}_{n-1},-1,\underbrace{1,\cdots,1}_{L-n}\big{\rangle}\,. (40)

This state is an eigenstate of H^0\hat{H}_{0} as |1,1|1,1=2|J1,0\ket{1,-1}-\ket{-1,1}=\sqrt{2}\ket{J_{1,0}} does not contain component of |J2,m\ket{J_{2,m}}. However, |1d\ket{1_{d}} is linearly dependent with previously discussed scar states, and the missing scar state is actually J^|1d\hat{J}^{-}\ket{1_{d}}. To demonstrate this, it suffices to show that

J2,m|J^|1d=0,for m’=-2,-1,0\bra{J_{2,m^{\prime}}}\hat{J}^{-}\ket{1_{d}}=0\,,\quad\text{for {\hbox{m'=-2,-1,0}}} (41)

which would imply that J^|1d\hat{J}^{-}\ket{1_{d}} is annihilated by the disorder part H^dis\hat{H}_{\text{dis}}. We can rewrite this relation as follows (for m=2,1,0m^{\prime}=-2,-1,0),

J2,m|J|1d=(1d|J^+|J2,m)δm,1,\displaystyle\bra{J_{2,m^{\prime}}}J^{-}\ket{1_{d}}=\left(\bra{1_{d}}\hat{J}^{+}\ket{J_{2,m^{\prime}}}\right)^{*}\delta_{m^{\prime},-1}\,,

where the δm,1\delta_{m^{\prime},-1} factor arises because the j=2j=2 components of neighboring spins in |1d\ket{1_{d}} only contain |J2,0\ket{J_{2,0}} and |J2,2\ket{J_{2,2}}. Moreover, the combination |1,1|1,1=2|J1,0\ket{1,-1}-\ket{-1,1}=\sqrt{2}\ket{J_{1,0}} does not contain a |J2,0\ket{J_{2,0}} component, proving that J2,m|J^|1d=0\bra{J_{2,m^{\prime}}}\hat{J}^{-}\ket{1_{d}}=0 for m=2,1,0m^{\prime}=-2,-1,0. Thus, J^|1d\hat{J}^{-}\ket{1_{d}} is annihilated by the disorder term and is an eigenstate of the disordered AKLT Hamiltonian H^\hat{H}. From this, it is also evident why (J^)2|1d(\hat{J}^{-})^{2}\ket{1_{d}} is not an eigenstate: J^2,m=0|(J)2\big{\langle}\hat{J}_{2,m^{\prime}=0}\big{|}(J^{-})^{2} has overlap with |1,1=|J2,2\ket{1,1}=\ket{J_{2,2}} in |1d\ket{1_{d}}.

This concludes our discussion of all the numerically identified scar states in the disordered AKLT model. To summarize, the scar states are as follows:

  • L/2+1L/2+1 SGA scar states |𝒮2n\ket{\mathcal{S}_{2n}}, where we include the ferromagnetic state |F\ket{F} in this tower for odd L/2L/2;

  • |1k\ket{1_{k}} with a total number LL;

  • |2n\ket{2_{n}} with n=1,3,4,,L/2n=1,3,4,\cdots,L/2 if L/2L/2 is even and n=1,3,4,,L/21n=1,3,4,\cdots,L/2-1 if L/2L/2 is odd;

  • |2k\ket{2_{k}} with a total number L/2L/2;

  • Two additional states: J^|1k=π\hat{J}^{-}\ket{1_{k=\pi}} and J^|1d\hat{J}^{-}\ket{1_{d}}, where |1d=n(1)n\ket{1_{d}}=\sum_{n}(-1)^{n}.

Since |𝒮L2\ket{\mathcal{S}_{L-2}} is linearly dependent with |2n\ket{2_{n}} and |2k\ket{2_{k}}, the total number of scars state is 5L/2+15L/2+1 if L/2L/2 is even, and 5L/25L/2 if L/2L/2 is odd. This has been confirmed numerically for L=6,8,10L=6,8,10.

.2 Appendix B: Scar Eigenoperator Spaces in Disordered AKLT Model

In this section, we provide further details on the eigenoperator spaces of QMBS in the disordered AKLT model (21). As mentioned in the main text, the minimal N0N_{0} of the SGA scars is 9L+39L+3. Specifically, for tested system sizes ranging from L=6L=6 to L=16L=16, the correlation matrices of the scar states |𝒮2,|𝒮4,,|𝒮L4\ket{\mathcal{S}_{2}},\ket{\mathcal{S}_{4}},\cdots,\ket{\mathcal{S}_{L-4}} have a common null space of dimension 9L+39L+3. Moreover, this space is a proper subset of the intersection of null spaces of the other SGA scars, |𝒮0,|𝒮L2,|𝒮L\ket{\mathcal{S}_{0}},\ket{\mathcal{S}_{L-2}},\ket{\mathcal{S}_{L}}, which is of dimension 9L+49L+4. This means that there exists an eigenoperator A^\hat{A} that can be added to the Hamiltonian to destroy the middle SGA scars |𝒮2,|𝒮4,,|𝒮L4\ket{\mathcal{S}_{2}},\ket{\mathcal{S}_{4}},\cdots,\ket{\mathcal{S}_{L-4}}. This operator A^\hat{A} is a sum of local operators

A^=n(1)n(L2)/2A^n,n+1,\hat{A}=\sum_{n}(-1)^{n(L-2)/2}\hat{A}_{n,n+1}\,, (42)

and the expression of A^n,n+1\hat{A}_{n,n+1} depends on whether L/2L/2 is even or odd. Omitting the subscript (n,n+1)(n,n+1) for simplicity, we have

A^n,n+1=λ1λ2+λ7λ6λ2λ1λ6λ7,\hat{A}_{n,n+1}=\lambda_{1}\otimes\lambda_{2}+\lambda_{7}\otimes\lambda_{6}-\lambda_{2}\otimes\lambda_{1}-\lambda_{6}\otimes\lambda_{7}\,, (43)

for odd L/2L/2, and

A^n,n+1=\displaystyle\hat{A}_{n,n+1}=\; 32(|J0,0J2,0|+h.c.)7|J1,1J1,1|\displaystyle 3\sqrt{2}\big{(}\outerproduct{J_{0,0}}{J_{2,0}}+\text{h.c.}\big{)}-7\outerproduct{J_{1,-1}}{J_{1,-1}}
+3|J1,0J1,0|+4|J1,1J1,1|+11|J2,1J2,1|\displaystyle+3\outerproduct{J_{1,0}}{J_{1,0}}+4\outerproduct{J_{1,1}}{J_{1,1}}+11\outerproduct{J_{2,1}}{J_{2,1}}
11|J2,2J2,2|.\displaystyle-11\outerproduct{J_{2,2}}{J_{2,2}}\,. (44)

for even L/2L/2. Although we have used |m1m2\ket{m_{1}m_{2}} and |Jj,m\ket{J_{j,m}} to make the expression as simple as possible, the final expressions remain cumbersome and difficult to interpret. Conversely, these intricate expressions demonstrate the strength and flexibility of our method. As shown in Fig. 4, the middle SGA scars |𝒮2,|𝒮4,,|𝒮L4\ket{\mathcal{S}_{2}},\ket{\mathcal{S}_{4}},\cdots,\ket{\mathcal{S}_{L-4}} are indeed destroyed when cA^c\hat{A} (c0c\neq 0) is added to the original Hamiltonian.

Refer to caption
Figure 4: Plot of bipartite entanglement entropies against the eigenenergies of the Hamiltonian H^=H^+cA^\hat{H}^{\prime}=\hat{H}+c\hat{A} for L=8L=8, where H^\hat{H} is the disordered AKLT Hamiltonian and cc is a real coefficient. As before eigenstates with N0=1N_{0}=1 are plotted as green circles, and scar states with N0>1N_{0}>1 are drawn as stars, color-coded by their values according to the color bar.

The ferromagnetic state |F\ket{F}, owing to its simplicity, has the largest eigenoperator space dimension. On the other hand, the ground state of the AKLT Hamiltonian, |G|𝒮0\ket{G}\equiv\ket{\mathcal{S}_{0}}, is unique in that its null space is not a subset of any other scar states, including the ferromagnetic state. This implies that we can construct a Hamiltonian H^\hat{H}^{\prime} of the form

H^=H^+iciA^i,\hat{H}^{\prime}=\hat{H}+\sum_{i}c_{i}\hat{A}_{i}\,, (45)

where cic_{i} are random real numbers and A^i\hat{A}_{i} are eigenoperators |G\ket{G} that embeds |G\ket{G} as the only scar state. As shown in Fig. 5, such embedding Hamiltonian successfully isolates |G\ket{G} as the only scar state.

Refer to caption
Figure 5: Plot of eigenenergies against the bipartite entanglement entropies for the embedding Hamiltonian with system size L=8L=8. Thermal eigenstates with N0N_{0} are represented as green circles, while scar states with N0>1N_{0}>1 are shown as stars, color-coded by their values according to the color bar. We end up with a single scar state, the AKLT ground state |G\ket{G}, with N0=208N_{0}=208 for the embedding Hamiltonian (45).

.3 Appendix C: Exact Scars in the Spin-1 XY Model

We next apply our method to the one-dimensional spin-1 XY model whose Hamiltonian is given by

H^=\displaystyle\hat{H}= ij(S^ixS^jx+S^iyS^jy)+hiS^iz+Di(S^iz)2\displaystyle\sum_{\langle ij\rangle}\left(\hat{S}_{i}^{x}\hat{S}_{j}^{x}+\hat{S}_{i}^{y}\hat{S}_{j}^{y}\right)+h\sum_{i}\hat{S}_{i}^{z}+D\sum_{i}(\hat{S}_{i}^{z})^{2}
+J3i(S^i+S^i+3+h.c.),\displaystyle+J_{3}\sum_{i}(\hat{S}_{i}^{+}\hat{S}_{i+3}^{-}+\text{h.c.})\,, (46)

where S^iα\hat{S}_{i}^{\alpha} (α=x,y,z\alpha=x,y,z) are spin-1 operators at site ii, ij\langle ij\rangle denote nearest neighbors, hh is the external magnetic field strength, and DD is the anisotropy parameter. The last term, which couples spins at sites ii and i+3i+3, is included to break a nonlocal SU(2) symmetry under open boundary conditions (OBC) [54]. We shall first focus on OBC, where the scar states |𝒮n\ket{\mathcal{S}_{n}} admit the following analytic expression,

|𝒮n=𝒩n(J^+)n|.\ket{\mathcal{S}_{n}}=\mathcal{N}_{n}(\hat{J}^{+})^{n}\ket{\Downarrow}\,. (47)

Here n=0,1,,Ln=0,1,\cdots,L, |=i|mi=1\ket{\Downarrow}=\otimes_{i}\ket{m_{i}=-1} is the fully polarized down state, J^+=12i(1)i(S^i+)2\hat{J}^{+}=\frac{1}{2}\sum_{i}(-1)^{i}(\hat{S}_{i}^{+})^{2} where S^i+=S^ix+iS^iy\hat{S}_{i}^{+}=\hat{S}_{i}^{x}+i\hat{S}_{i}^{y} is the ladder operator at site ii. The normalization factor 𝒩n\mathcal{N}_{n} is not essential for our discussion. Under OBC, the system exhibits both spatial reflection symmetry and spin inversion symmetry in the zero total magnetization sector, and we shall perform computation in symmetry-resolved sectors. The operator basis L^i=(λaλb)n,n+1\hat{L}_{i}=\left(\lambda_{a}\otimes\lambda_{b}\right)_{n,n+1} is chosen to be the same as that of the spin-1 AKLT model. Since the last term of the Hamiltonian (46) does not belong the operator space 𝒱\mathcal{V}, the Hamiltonian will not manifest itself as a null vector of the correlation matrix. As shown in Fig. 6, all thermal eigenstates have correlation matrix zero N0=1N_{0}=1, which corresponds to the eigenoperator of total magnetization operator M^z=iS^iz\hat{M}_{z}=\sum_{i}\hat{S}_{i}^{z}. In contrast, the scar state |𝒮L/2\ket{\mathcal{S}_{L/2}} has a significantly larger N0=354N_{0}=354.

Refer to caption
Figure 6: Plot of bipartite entanglement entropies against the eigenenergies of the spin-1 XY model in the total magnetization Mz=0M_{z}=0 and both spatial reflection and spin inversion antisymmetric sector for system size L=10L=10, h=1.0h=1.0, D=0.1D=0.1, and J3=0.1J_{3}=0.1. Eigenstates with the correlation matrix zero N0=1N_{0}=1 is marked as green circles. The scar state with N0=354N_{0}=354 is circled red.
Refer to caption
Figure 7: Plot of bipartite entanglement entropies of eigenstates against the eigenenergies for the spin-1 XY model (49) with system size L=12L=12, g=0.2g=0.2, and h=1.0h=1.0. The symmetry sector corresponds to total magnetization Mz=0M_{z}=0, lattice momentum k=0k=0, and both spatial reflection and spin inversion symmetric.

For periodic boundary conditions with D=0D=0, the model admits another family of scar states [41]

|𝒮ni1i2in\displaystyle\ket{\mathcal{S}_{n}^{\prime}}\propto\sum_{i_{1}\neq i_{2}\neq\cdots\neq i_{n}} (1)i1++in(Si1+Si1+1+)\displaystyle(-1)^{i_{1}+\cdots+i_{n}}\left(S_{i_{1}}^{+}S_{i_{1}+1}^{+}\right)
(Si2+Si2+1+)(Sin+Sin+1+)|.\displaystyle\left(S_{i_{2}}^{+}S_{i_{2}+1}^{+}\right)\cdots\left(S_{i_{n}}^{+}S_{i_{n}+1}^{+}\right)\ket{\Downarrow}\,. (48)

However, due to a twisted SU(2) symmetry in even magnetization sectors, we study the following modified Hamiltonian

H^=\displaystyle\hat{H}= ij(S^ixS^jx+S^iyS^jy)+hiS^iz\displaystyle\sum_{\langle ij\rangle}\left(\hat{S}_{i}^{x}\hat{S}_{j}^{x}+\hat{S}_{i}^{y}\hat{S}_{j}^{y}\right)+h\sum_{i}\hat{S}_{i}^{z}
+gi[(S^i+)2(S^i+1)2+h.c.],\displaystyle+g\sum_{i}\left[(\hat{S}_{i}^{+})^{2}(\hat{S}_{i+1}^{-})^{2}+\text{h.c.}\right]\,, (49)

where the last term serves to break integrability [44]. This system preserves several symmetries: conservation of total magnetization MzM_{z}, lattice translation, spacial reflection, and spin inversion (which maps |mi\ket{m_{i}} to |mi\ket{-m_{i}} at site ii). For our analysis, we focus on the Mz=0M_{z}=0, lattice momentum k=0k=0, and both spatial reflection and spin inversion symmetric sector. The operator basis L^i=(λaλb)n,n+1\hat{L}_{i}=\left(\lambda_{a}\otimes\lambda_{b}\right)_{n,n+1} is chosen to be the same as the disordered AKLT model. As seen in Fig. 7, the thermal eigenstates uniformly have N0=2N_{0}=2, corresponding to the original Hamiltonian and the total magnetization operator M^ziS^iz\hat{M}_{z}\equiv\sum_{i}\hat{S}_{i}^{z}. The scar state |𝒮L/2|\mathcal{S}^{\prime}_{L/2}\rangle is distinguished by having a much larger N0=54N_{0}=54. Although this scar state can be identified by its low entanglement entropy, the correlation matrix zero N0N_{0} provides a qualitative probe rather than a quantitative one. Additionally, finite-size effects make it challenging to conclude whether the points circled in orange are scar states or not.

Refer to caption
Figure 8: Plot of bipartite entanglement entropies of eigenstates against eigenenergies for the spin-1 XY model (49) with system size L=16L=16. The parameters g,hg,h and the symmetry sector is the same as that in Fig. 7.

After refining our algorithm, we successfully extended the entanglement entropy spectrum calculation to system size L=16L=16. As can be seen from Fig. 8, only the E=0E=0 state (circled red) has anomalously low entanglement entropy compared to those of surrounding thermal eigenstates, which reinforces our confidence that the points circled in orange in Fig. 7 are not QMBS.

References

  • Nandkishore and Huse [2015] R. Nandkishore and D. A. Huse, Many-Body Localization and Thermalization in Quantum Statistical Mechanics, Annu. Rev. Condens. Matter Phys. 6, 15 (2015).
  • Borgonovi et al. [2016] F. Borgonovi, F. Izrailev, L. Santos, and V. Zelevinsky, Quantum chaos and thermalization in isolated systems of interacting particles, Phys. Rep. 626, 1 (2016).
  • D’Alessio et al. [2016] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65, 239 (2016).
  • Mori et al. [2018] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, Thermalization and prethermalization in isolated quantum systems: A theoretical overview, J. Phys. B: At. Mol. Opt. Phys. 51, 112001 (2018).
  • Abanin et al. [2019] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium: Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91, 021001 (2019).
  • Ueda [2020] M. Ueda, Quantum equilibration, thermalization and prethermalization in ultracold atoms, Nat. Rev. Phys. 2, 669 (2020).
  • Deutsch [1991] J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
  • Srednicki [1994] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
  • Srednicki [1999] M. Srednicki, The approach to thermal equilibrium in quantized chaotic systems, J. Phys. A: Math. Gen. 32, 1163 (1999).
  • Dunjko and Olshanii [2012] V. Dunjko and M. Olshanii, Thermalization from the Perspective of Eigenstate Thermalization Hypothesis, in Annual Review of Cold Atoms and Molecules, Annual Review of Cold Atoms and Molecules, Vol. 1 (World Scientific, Singapore, 2012) pp. 443–471.
  • Deutsch [2018] J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81, 082001 (2018).
  • Franchini [2017] F. Franchini, An Introduction to Integrable Techniques for One-Dimensional Quantum Systems (Springer, Cham, 2017).
  • Rigol et al. [2007] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons, Phys. Rev. Lett. 98, 050405 (2007).
  • Vidmar and Rigol [2016] L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. Stat. Mech. 2016, 064007 (2016).
  • Gornyi et al. [2005] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting Electrons in Disordered Wires: Anderson Localization and Low-TT Transport, Phys. Rev. Lett. 95, 206603 (2005).
  • Basko et al. [2006] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Ann. Phys. 321, 1126 (2006).
  • Rigol et al. [2008] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
  • Kim et al. [2014] H. Kim, T. N. Ikeda, and D. A. Huse, Testing whether all eigenstates obey the eigenstate thermalization hypothesis, Phys. Rev. E 90, 052105 (2014).
  • Bernien et al. [2017] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator, Nature 551, 579 (2017).
  • Turner et al. [2018a] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, Weak ergodicity breaking from quantum many-body scars, Nat. Phys. 14, 745 (2018a).
  • Turner et al. [2018b] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations, Phys. Rev. B 98, 155134 (2018b).
  • Heller [1984] E. J. Heller, Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits, Phys. Rev. Lett. 53, 1515 (1984).
  • Serbyn et al. [2021] M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nat. Phys. 17, 675 (2021).
  • Moudgalya et al. [2022] S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and Hilbert space fragmentation: A review of exact results, Rep. Prog. Phys. 85, 086501 (2022).
  • Chandran et al. [2023] A. Chandran, T. Iadecola, V. Khemani, and R. Moessner, Quantum Many-Body Scars: A Quasiparticle Perspective, Annu. Rev. Condens. Matter Phys. 14, 443 (2023).
  • Shiraishi and Mori [2017] N. Shiraishi and T. Mori, Systematic Construction of Counterexamples to the Eigenstate Thermalization Hypothesis, Phys. Rev. Lett. 119, 030601 (2017).
  • Pakrouski et al. [2020] K. Pakrouski, P. N. Pallegar, F. K. Popov, and I. R. Klebanov, Many-Body Scars as a Group Invariant Sector of Hilbert Space, Phys. Rev. Lett. 125, 230602 (2020).
  • Pakrouski et al. [2021] K. Pakrouski, P. N. Pallegar, F. K. Popov, and I. R. Klebanov, Group theoretic approach to many-body scar states in fermionic lattice models, Phys. Rev. Res. 3, 043156 (2021).
  • Sun et al. [2023] Z. Sun, F. K. Popov, I. R. Klebanov, and K. Pakrouski, Majorana scars as group singlets, Phys. Rev. Res. 5, 043208 (2023).
  • Ren et al. [2021] J. Ren, C. Liang, and C. Fang, Quasisymmetry Groups and Many-Body Scar Dynamics, Phys. Rev. Lett. 126, 120604 (2021).
  • Ren et al. [2022] J. Ren, C. Liang, and C. Fang, Deformed symmetry structures and quantum many-body scar subspaces, Phys. Rev. Research 4, 013155 (2022).
  • O’Dea et al. [2020] N. O’Dea, F. Burnell, A. Chandran, and V. Khemani, From tunnels to towers: Quantum scars from Lie algebras and qq-deformed Lie algebras, Phys. Rev. Research 2, 043305 (2020).
  • Yang [1989] C. N. Yang, η\eta pairing and off-diagonal long-range order in a Hubbard model, Phys. Rev. Lett. 63, 2144 (1989).
  • Yang and Zhang [1990] C. N. Yang and S. Zhang, SO4 symmetry in a Hubbard model, Mod. Phys. Lett. B 04, 759 (1990).
  • Mark et al. [2020] D. K. Mark, C.-J. Lin, and O. I. Motrunich, Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models, Phys. Rev. B 101, 195131 (2020).
  • Moudgalya et al. [2020a] S. Moudgalya, N. Regnault, and B. A. Bernevig, η\eta-pairing in Hubbard models: From spectrum generating algebras to quantum many-body scars, Phys. Rev. B 102, 085140 (2020a).
  • Moudgalya et al. [2018a] S. Moudgalya, S. Rachel, B. A. Bernevig, and N. Regnault, Exact excited states of nonintegrable models, Phys. Rev. B 98, 235155 (2018a).
  • Moudgalya et al. [2018b] S. Moudgalya, N. Regnault, and B. A. Bernevig, Entanglement of exact excited states of Affleck-Kennedy-Lieb-Tasaki models: Exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis, Phys. Rev. B 98, 235156 (2018b).
  • Moudgalya et al. [2020b] S. Moudgalya, E. O’Brien, B. A. Bernevig, P. Fendley, and N. Regnault, Large classes of quantum scarred Hamiltonians from matrix product states, Phys. Rev. B 102, 085120 (2020b).
  • Mark and Motrunich [2020] D. K. Mark and O. I. Motrunich, η\eta-pairing states as true scars in an extended Hubbard model, Phys. Rev. B 102, 075132 (2020).
  • Schecter and Iadecola [2019] M. Schecter and T. Iadecola, Weak Ergodicity Breaking and Quantum Many-Body Scars in Spin-1 XY Magnets, Phys. Rev. Lett. 123, 147201 (2019).
  • Iadecola and Schecter [2020] T. Iadecola and M. Schecter, Quantum many-body scar states with emergent kinetic constraints and finite-entanglement revivals, Phys. Rev. B 101, 024306 (2020).
  • Shibata et al. [2020] N. Shibata, N. Yoshioka, and H. Katsura, Onsager’s Scars in Disordered Spin Chains, Phys. Rev. Lett. 124, 180604 (2020).
  • Chattopadhyay et al. [2020] S. Chattopadhyay, H. Pichler, M. D. Lukin, and W. W. Ho, Quantum many-body scars from virtual entangled pairs, Phys. Rev. B 101, 174308 (2020).
  • Papić [2022] Z. Papić, Weak Ergodicity Breaking Through the Lens of Quantum Entanglement, in Entanglement in Spin Chains: From Theory to Quantum Technology Applications, edited by A. Bayat, S. Bose, and H. Johannesson (Springer, Cham, 2022) pp. 341–395.
  • Qi and Ranard [2019] X.-L. Qi and D. Ranard, Determining a local Hamiltonian from a single eigenstate, Quantum 3, 159 (2019).
  • Affleck et al. [1987] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous results on valence-bond ground states in antiferromagnets, Phys. Rev. Lett. 59, 799 (1987).
  • Note [1] The theoretical analysis is quite involved, and the detailed study in left in Appendix A.
  • Note [2] Refer to Appendix A for details.
  • Note [3] Refer to Appendix B for an in-depth analysis of the scar eigenoperator spaces and scar embedding examples.
  • Note [4] Refer to Appendix C for extra examples of QMBS in the spin-1 XY model which also includes references [54].
  • Lin and Motrunich [2019] C.-J. Lin and O. I. Motrunich, Exact Quantum Many-Body Scar States in the Rydberg-Blockaded Atom Chain, Phys. Rev. Lett. 122, 173401 (2019).
  • Moudgalya and Motrunich [2023] S. Moudgalya and O. I. Motrunich, Exhaustive Characterization of Quantum Many-Body Scars using Commutant Algebras (2023), arXiv:2209.03377 [cond-mat, physics:math-ph, physics:quant-ph] .
  • Kitazawa et al. [2003] A. Kitazawa, K. Hijii, and K. Nomura, An SU(2) symmetry of the one-dimensional spin-1 XY model, J. Phys. A: Math. Gen. 36, L351 (2003).