This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum nondemolition measurements in the relativistic Dirac oscillator

Wei Sun Quantum Institute for Light and Atoms, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China    Keye Zhang kyzhang@phy.ecnu.edu.cn Quantum Institute for Light and Atoms, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China    Pierre Meystre J. Wyant College of Optical Sciences and Department of Physics, University of Arizona, Tucson, Arizona 85721, USA.    Weiping Zhang wpz@sjtu.edu.cn School of Physics and Astronomy, and Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Abstract

We investigate the feasibility of performing quantum nondemolition (QND) measurements in the one-dimensional Dirac oscillator, a frequently used toy model to investigate relativistic extensions of nonrelativistic quantum effects. We derive general expressions for its QND observables and find that they are in general complex combinations of the position, momentum, and spin operators, which makes them challenging to realize experimentally. However, the situation is considerably simplified in both the weakly and strongly relativistic limits, where they should be amenable to an experimental demonstration. This suggests exploiting continuous measurements of small departures from the QND character of these variables in the intermediate regime as probes of relativistic effects.

preprint: APS/123-QED

I Introduction

Quantum nondemolition (QND) measurements were first proposed by Braginsky Braginsky (1967); Braginsky and Nazarenko (1969) as a way to circumvent the Standard Quantum Limit of measurements, that is, the backaction on a second measurement of a quantum observable a^(t)\hat{a}(t) from the uncertainty imposed on its conjugate variable. Under normal circumstances the uncertainty in a second measurement of an observable A^\hat{A} is limited by the Heisenberg Uncertainty Principle. QND variables are variables that commute with themselves at the times of t0t_{0} and t1t_{1} of these measurements, [A^(t0),A^(t1)]=0[\hat{A}(t_{0}),\hat{A}(t_{1})]=0. If this condition is satisfied at all times, dA^/dt=0d\hat{A}/dt=0, A^(t)\hat{A}(t) is called a continuous QND observable, else it is a stroboscopic QND observable see e.g. Refs. Braginsky (1967); Braginsky and Nazarenko (1969); Braginsky et al. (1975, 1980); Thorne et al. (1978).

Reference. Thorne et al. (1978), see also the reviews Caves et al. (1980) and Bocko and Onofrio (1996), showed that in the case of a simple harmonic oscillator of mass mm, frequency ω\omega and Hamiltonian H^0=ωa^a^\hat{H}_{0}=\hbar\omega\hat{a}^{\dagger}\hat{a}, either of the two quadratures

Y^1\displaystyle\hat{Y}_{1} =\displaystyle= x^cosωt(p^/mω)sinωt,\displaystyle\hat{x}\cos\omega t-(\hat{p}/m\omega)\sin\omega t,
Y^2\displaystyle\hat{Y}_{2} =\displaystyle= x^sinωt+(p^/mω)cosωt,\displaystyle\hat{x}\sin\omega t+(\hat{p}/m\omega)\cos\omega t,\, (1)

with [Y^1,Y^2]=i/mω[\hat{Y}_{1},\hat{Y}_{2}]=i\hbar/m\omega, ΔY1ΔY2/2mω\Delta Y_{1}\Delta Y_{2}\geq\hbar/2m\omega, and dY^/dt=0d\hat{Y}_{\ell}/dt=0, can be chosen as a QND observable (but of course not both simultaneously). This property was exploited in particular in optical and atomic interferometry Chen et al. (2017), weak force and gravitational wave detection Chen et al. (2011); Suh et al. (2014), and the preparation of squeezed states Vasilakis et al. (2015).

The goal of this paper is to extend these considerations to the case of a Dirac oscillator, an extension of the free particle Dirac equation obtained by the addition of a term linear in position and governed by the equation

itψ=[c𝜶(𝐩imω𝐫β)+βmc2]ψ.i\hbar\partial_{t}\psi=\left[c{\bm{\alpha}}\cdot\left({\bf p}-im\omega{\bf r}\beta\right)+\beta mc^{2}\right]\psi. (2)

Here 𝐩=i{\bf p}=-i\hbar{\bm{\nabla}} and

𝜶=(0𝝈𝝈0);β=(I00I)\bm{\alpha}=\begin{pmatrix}0&{\bm{\sigma}}\\ {\bm{\sigma}}&0\\ \end{pmatrix}\,\,\,\,\,;\,\,\,\,\,\beta=\begin{pmatrix}I&0\\ 0&-I\\ \end{pmatrix} (3)

with 𝝈\bm{\sigma} the vector Pauli spin matrix, so that αi\alpha_{i} and β\beta satisfy the anticommutation relations (ij=x,y,zi\neq j=x,y,z)

αiαj\displaystyle\alpha_{i}\alpha_{j} =αjαi,\displaystyle=-\alpha_{j}\alpha_{i}\,, (4)
αiβ\displaystyle\alpha_{i}\beta =βαi,\displaystyle=-\beta\alpha_{i}\,,

and αi2=β2=1\alpha_{i}^{2}=\beta^{2}=1.

The Dirac oscillator is characterized by the presence of a spin-orbit coupling term, as becomes particularly apparent when expressing the Dirac wave function in terms of its large and small components ψ1\psi_{1} and ψ2\psi_{2} as Moshinsky and Szczepaniak (1989)

ψ=(ψ1ψ2)eiEt/\psi=\begin{pmatrix}\psi_{1}\\ \psi_{2}\\ \end{pmatrix}e^{-iEt/\hbar} (5)

with

(Emc2)ψ1\displaystyle(E-mc^{2})\psi_{1} =\displaystyle= c𝝈(𝐩+imω𝐫)ψ2\displaystyle c{\bm{\sigma}}\cdot({\bf p}+im\omega{\bf r})\psi_{2}
(E+mc2)ψ2\displaystyle(E+mc^{2})\psi_{2} =\displaystyle= c𝝈(𝐩imω𝐫)ψ1\displaystyle c{\bm{\sigma}}\cdot({\bf p}-im\omega{\bf r})\psi_{1}\, (6)

exhibiting the familiar spin-orbit coupling of the Dirac equation. Reexpressing the energy EE as E=mc2+E=mc^{2}+{\cal E}, one finds that in the weakly relativistic limit mc2{\cal E}\ll mc^{2} and when expressed in terms of the large component ψ1\psi_{1} only, the energy of the system takes the form

=𝐩𝟐2m+mω2𝐫𝟐22ω𝐋𝐒3ω2,{\cal E}=\frac{\bf p^{2}}{2m}+\frac{m\omega^{2}\bf r^{2}}{2}-\frac{2\omega}{\hbar}{\bf L}\cdot{\bf S}-\frac{3\hbar\omega}{2}, (7)

where 𝐋=𝐫×𝐩{\bf L}={\bf r}\times{\bf p} and 𝐒=(/2)𝝈{\bf S}=(\hbar/2){\bm{\sigma}} Moshinsky and Szczepaniak (1989). That is, in addition to the familiar energy of a simple harmonic oscillator, \cal E comprises a spin-orbit coupling component of strength 2ω/-2\omega/\hbar. It is this property that justifies calling this system a Dirac oscillator.

The Dirac oscillator is frequently used as a toy model to investigate relativistic extensions of nonrelativistic quantum effects. These include in particular the generation of Dirac cat states Bermudez et al. (2007), the study of a relativistically deformed uncertainty principle in (1+1) dimensions Benzair et al. (2012), and a relativistic quantum heat engine using a single Dirac particle trapped in an infinite one-dimensional potential as its working substance Muñoz and Peña (2012). It has also found wide applications in nuclear physics, condensed matter physics and quantum optics, see e.g. the review Quesne (2017).

The spin-orbit coupling characteristic of the Dirac equation is also central to on-going efforts to control the spin and electronic ground state topology in quantum systems, which requires its detailed characterization Fasth et al. (2007), and is also becoming an efficient mechanism of quantum sensing in hybrid optomechanical systems Abdi et al. (2017); He et al. (2016). For this reason, extending the familiar physics associated with QND measurements in the simple harmonic oscillator to this system can help clarify the difficulties associated with this additional interaction and suggest ways to exploit this complication in diagnostic tools.

Because of its nonequidistant excitation spectrum and the presence of spin-orbit coupling, the dynamics of the Dirac oscillator differs significantly from that of the simple harmonic oscillator. For example, we showed in earlier work Zhang et al. (2018) that the interference between positive and negative energy states prevents the realization of quantum-mechanics free subsystems that avoid quantum measurement backaction. But whether a more direct generation of QND observables is possible remains an open question.

II Model

We consider for simplicity the (1+1)-dimensional version of the Dirac oscillator. In that case the Dirac operators 𝜶\bm{\alpha} and β\beta, reduce to 2×22\times 2 matrices that can be taken as any two of the three Pauli matrices, for example,

αxσ^x;βσ^z.\alpha_{x}\to\hat{\sigma}_{x}\;\;;\;\;\beta\to\hat{\sigma}_{z}. (8)

and the Dirac oscillator is governed by the equation

iψt=[cσ^xp^mcωσ^yx^+mc2σ^z]ψH^Dψ.i\hbar\frac{\partial\psi}{\partial t}=\left[c\hat{\sigma}_{x}\hat{p}-mc\omega\hat{\sigma}_{y}\hat{x}+mc^{2}\hat{\sigma}_{z}\right]\psi\equiv\hat{H}_{\rm D}\psi. (9)

We introduce the bosonic annihilation and creation operators a^\hat{a} and a^\hat{a}^{\dagger} and the excitation number operator n^=a^a^\hat{n}=\hat{a}^{\dagger}\hat{a} in the usual way via x^=xzpt(a^+a^)\hat{x}=x_{\rm zpt}(\hat{a}+\hat{a}^{\dagger}) and p^=ipzpt(a^a^)\hat{p}=-ip_{\rm zpt}(\hat{a}-\hat{a}^{\dagger}), where xzpt=/2mωx_{\text{zpt}}=\sqrt{\hbar/2m\omega} and pzpt=mω/2p_{\text{zpt}}=\sqrt{m\hbar\omega/2} are the zero-point position and momentum. H^D\hat{H}_{D} takes then the form of the anti-Jaynes-Cumming Hamiltonian

H^D=ησ^a^+ησ^+a^+mc2σ^z,\hat{H}_{\text{D}}=\eta\hat{\sigma}_{-}\hat{a}+\eta^{\ast}\hat{\sigma}_{+}\hat{a}^{\dagger}+mc^{2}\hat{\sigma}_{z}, (10)

where

η=imc22ϵ;ϵ=ω/mc2.\eta=-imc^{2}\sqrt{2\epsilon}\;\;\;\;;\;\;\;\;\epsilon=\hbar\omega/mc^{2}. (11)

As in (3+1) dimensions, the oscillator wave functions ψ\psi are spinors with components ψ1\psi_{1} and ψ2\psi_{2}. With

ψ=(ψ1ψ2)eiEt/,\psi=\begin{pmatrix}\psi_{1}\\ \psi_{2}\\ \end{pmatrix}e^{-iEt/\hbar}, (12)

Eq. (9) takes the form of the coupled equations

(Emc2)ψ1\displaystyle(E-mc^{2})\psi_{1} =c(p^+imωx^)ψ2,\displaystyle=c(\hat{p}+im\omega\hat{x})\psi_{2}, (13)
(E+mc2)ψ2\displaystyle(E+mc^{2})\psi_{2} =c(p^imωx^)ψ1.\displaystyle=c(\hat{p}-im\omega\hat{x})\psi_{1}.

or, in terms of a^\hat{a} and a^\hat{a}^{\dagger},

(Emc2)ψ1\displaystyle(E-mc^{2})\psi_{1} =ηa^ψ2,\displaystyle=\eta^{*}\hat{a}^{\dagger}\psi_{2}, (14)
(E+mc2)ψ2\displaystyle(E+mc^{2})\psi_{2} =ηa^ψ1,\displaystyle=\eta\hat{a}\,\psi_{1},

which explicitly show that the frequency ω\omega is a measure of the spin-orbit coupling between ψ1\psi_{1} and ψ2\psi_{2} already encountered in Eq. (7).

The eigenstates of the Hamiltonian (10) are the dressed states

|En+\displaystyle|E_{n}^{+}\rangle =\displaystyle= An|n,iBn|n1,,\displaystyle A_{n}|n,\uparrow\rangle-iB_{n}|n-1,\downarrow\rangle,
|En\displaystyle|E_{n}^{-}\rangle =\displaystyle= Bn+1|n+1,+iAn+1|n,,\displaystyle B_{n+1}|n+1,\uparrow\rangle+iA_{n+1}|n,\downarrow\rangle\,, (15)

with associated positive and negative eigenenergies

En=En+1+=mc21+2(n+1)ϵ.E_{n}^{-}=-E_{n+1}^{+}=-mc^{2}\sqrt{1+2(n+1)\epsilon}\,. (16)

Here |,|\left|\uparrow\right\rangle,\,\left|\downarrow\right\rangle are Pauli spinors, the states |n\left|n\right\rangle are eigenstates of the nonrelativistic harmonic oscillator, and

An\displaystyle A_{n} =\displaystyle= (En++mc2)/2En+,\displaystyle\sqrt{(E_{n}^{+}+mc^{2})/2E_{n}^{+}},
Bn\displaystyle B_{n} =\displaystyle= (En+mc2)/2En+.\displaystyle\sqrt{(E_{n}^{+}-mc^{2})/2E_{n}^{+}}. (17)

The asymmetry between the positive and negative energy branches and the property that the eigenstates are linear superpositions if motional states of opposite spins are direct consequences of the relativistic spin-coupling component of H^D\hat{H}_{\rm D}.

III QND observables

This section derives the general form of a pair of QND variables of the Hamiltonian H^D\hat{H}_{\rm D} and determines their dependence on the relativistic level of the oscillator, as characterized by the parameter

ϵ=ω/mc2,\epsilon=\hbar\omega/mc^{2}, (18)

with ω\omega the oscillator frequency and mm its rest mass. We consider first the two limiting cases of the weakly relativistic regime, ϵ1\epsilon\ll 1, and the extreme relativistic regime, ϵ1\epsilon\gg 1, and show that the corresponding QND variables reduce then to the familiar quadrature operators Y^1,2\hat{Y}_{1,2} of the simple harmonic oscillator, albeit with spin-dependent frequencies. In the intermediate regime, however, they take the form of intricate spin-orbit coupling operators. The following section will give estimates of experimental parameters achievable in QND measurements of implementations of the Dirac oscillator with either electrons or cold atoms.

III.1 Weakly relativistic limit

In the weakly relativistic limit ϵ1\epsilon\ll 1 we have En+mc2+nωE_{n}^{+}\approx mc^{2}+n\hbar\omega, An1A_{n}\approx 1 and Bn0B_{n}\approx 0, so that the superpositions of opposite spin states disappear, the eigenstates reducing to |n,\left|n,\uparrow\right\rangle and i|n,i\left|n,\downarrow\right\rangle, respectively. This can be seen more explicitly when eliminating ψ2\psi_{2} or ψ1\psi_{1} from these two equations by multiplying them by (E+mc2)(E+mc^{2}) and (Emc2)(E-mc^{2}), respectively, resulting in the Klein-Gordon-like equations

(E2m2c4)ψ1\displaystyle(E^{2}-m^{2}c^{4})\psi_{1} =2mc2(p^22m+12mω2x^ω2)ψ1,\displaystyle=2mc^{2}\left(\frac{\hat{p}^{2}}{2m}+\frac{1}{2}m\omega^{2}\hat{x}-\frac{\hbar\omega}{2}\right)\psi_{1}, (19)
(E2m2c4)ψ2\displaystyle(E^{2}-m^{2}c^{4})\psi_{2} =2mc2(p^22m+12mω2x^+ω2)ψ2.\displaystyle=2mc^{2}\left(\frac{\hat{p}^{2}}{2m}+\frac{1}{2}m\omega^{2}\hat{x}+\frac{\hbar\omega}{2}\right)\psi_{2}.

Consider first the component ψ1\psi_{1} of the Dirac spinor. With E=mc2+E=mc^{2}+{\cal E}, the weakly relativistic regime corresponds to mc2{\cal E}\ll mc^{2}, so that

(E2m2c4)2mc2+O(2)(E^{2}-m^{2}c^{4})\approx 2mc^{2}{\cal E}+O({\cal E}^{2}) (20)

so that

ψ1=(p^22m+12mω2x^ω2)ψ1.{\cal E}\psi_{1}=\left(\frac{\hat{p}^{2}}{2m}+\frac{1}{2}m\omega^{2}\hat{x}-\frac{\hbar\omega}{2}\right)\psi_{1}. (21)

with corresponding effective positive energy Hamiltonian

H^eff+=mc2+(p^22m+12mω2x^ω2).\hat{H}_{\rm{eff}}^{+}=mc^{2}+\left(\frac{\hat{p}^{2}}{2m}+\frac{1}{2}m\omega^{2}\hat{x}-\frac{\hbar\omega}{2}\right). (22)

Similarly, for the component ψ2\psi_{2} we set E=mc2+E=-mc^{2}+{\cal E}. The weakly relativistic limit ||mc2|{\cal E}|\ll mc^{2} yields then

(E2m2c4)2mc2+O(2),(E^{2}-m^{2}c^{4})\approx-2mc^{2}{\cal E}+O({\cal E}^{2}), (23)

so that

ψ2=(p^22m+12mω2x^+ω2)ψ2{\cal E}\psi_{2}=-\left(\frac{\hat{p}^{2}}{2m}+\frac{1}{2}m\omega^{2}\hat{x}+\frac{\hbar\omega}{2}\right)\psi_{2} (24)

with corresponding negative energy Hamiltonian

H^eff=mc2(p^22m+12mω2x^+ω2).\hat{H}_{\rm{eff}}^{-}=-mc^{2}-\left(\frac{\hat{p}^{2}}{2m}+\frac{1}{2}m\omega^{2}\hat{x}+\frac{\hbar\omega}{2}\right). (25)

Combining Eqs. (22) and (25) gives finally the effective Hamiltonian characterizing the weakly relativistic limit of the (1+1)-dimensional Dirac oscillator as

H^nr\displaystyle\hat{H}_{\rm nr} =\displaystyle= [mc2+p^22m+12mω2x^]σ^z12ω\displaystyle\left[mc^{2}+\frac{\hat{p}^{2}}{2m}+\frac{1}{2}m\omega^{2}\hat{x}\right]\hat{\sigma}_{z}-\frac{1}{2}\hbar\omega (26)
=\displaystyle= mc2σ^z+ω(a^a^+12)σ^z12ω.\displaystyle mc^{2}\hat{\sigma}_{z}+\hbar\omega\left(\hat{a}^{\dagger}\hat{a}+\frac{1}{2}\right)\hat{\sigma}_{z}-\frac{1}{2}\hbar\omega.

In that limit the two components of the spinor ψ\psi become therefore approximately decoupled and σ^z\hat{\sigma}_{z} is a constant of motion, hence a QND observable. In addition, it also follows that the system possesses an additional pair of QND observables X^,nr\hat{X}_{\ell,\text{nr}}, =(1,2)\ell=(1,2), of precisely the same form as the quadrature operators Y^\hat{Y}_{\ell} of Eqs. (1) but with the important difference that the frequency ω\omega becomes now a spin-dependent frequency operator

ωω^nrωσ^z,\omega\to\hat{\omega}_{\rm{nr}}\equiv\omega\hat{\sigma}_{z}, (27)

so that

X^1,nr\displaystyle\hat{X}_{1,\text{nr}} =\displaystyle= xzpt(a^eiω^nrt+h.c.),\displaystyle x_{\text{zpt}}(\hat{a}e^{i\hat{\omega}_{\text{nr}}t}+{\rm h.c.})\,,
X^2,nr\displaystyle\hat{X}_{2,\text{nr}} =\displaystyle= ixzpt(eiω^nrta^h.c.).\displaystyle ix_{\text{zpt}}(e^{-i\hat{\omega}_{\text{nr}}t}\hat{a}^{\dagger}-{\rm h.c.}). (28)

Since [a^,ω^nr]=0[\hat{a},\hat{\omega}_{\text{nr}}]=0 these operators obey the same commutation relations as the harmonic oscillator quadratures Y^1,2\hat{Y}_{1,2}.

III.2 Extreme relativistic limit

In the other extreme limit, ϵ1\epsilon\gg 1, the spin-orbit coupling term ησ^a^+ησ^+a^\eta\hat{\sigma}_{-}\hat{a}+\eta^{\ast}\hat{\sigma}_{+}\hat{a}^{\dagger} dominates the Hamiltonian so that En+mc22nϵE_{n}^{+}\approx mc^{2}\sqrt{2n\epsilon} and AnBn1/2A_{n}\approx B_{n}\approx 1/\sqrt{2}. Moreover, the energy difference between neighboring motional states |n\left|n\right\rangle and |n1\left|n-1\right\rangle scales as 1/n1/\sqrt{n} and approaches zero for large excitations n1n\gg 1. The eigenstates of H^D\hat{H}_{\rm D} can then be approximated by the factorized motional and spin states |En±|n(|i|)/2\left|E_{n}^{\pm}\right\rangle\approx|n\rangle(\left|\uparrow\right\rangle\mp i\left|\downarrow\right\rangle)/\sqrt{2}, corresponding to the effective Hamiltonian

H^r=σ^y2mc2ωn^.\hat{H}_{\rm r}=-\hat{\sigma}_{y}\sqrt{2mc^{2}\hbar\omega\hat{n}}\,. (29)

In contrast to H^nr\hat{H}_{\rm nr} the eigenenergy spectrum of H^r\hat{H}_{\rm r} are not equidistant, and σ^y\hat{\sigma}_{y} rather than σ^z\hat{\sigma}_{z} is now a constant of motion, hence a QND observable. Like in the weakly relativistic case H^r\hat{H}_{\rm r} also possesses a pair of QND observables X^,r\hat{X}_{\ell,\rm r} that are formally identical with the quadrature operators (28), but now with the replacement of ω\omega by a frequency operator ω^r\hat{\omega}_{\rm r} with both a motional and spin dependence,

ωω^rω2/ε(n^1n^)σ^y.\omega\to\hat{\omega}_{\rm r}\equiv\omega\sqrt{2/\varepsilon}(\sqrt{\hat{n}-1}-\sqrt{\hat{n}})\hat{\sigma}_{y}\,. (30)

With the equality a^f(n^)=f(n^+1)a^\hat{a}f(\hat{n})=f(\hat{n}+1)\hat{a} one can readily show that the dynamical evolution and uncertainty relation of X^,r\hat{X}_{\ell,\rm r} are the same as those of the quadrature operators Y^\hat{Y}_{\ell}. (Note that since [a^,ω^r]0[\hat{a},\hat{\omega}_{\text{r}}]\neq 0 the operator ordering in X^,r\hat{X}_{\ell,\rm r} cannot be arbitrarily changed.)

III.3 General case

It is easily verified that the formal similarity between the QND observables X^\hat{X}_{\ell} of the Dirac oscillator in the limits ϵ1\epsilon\ll 1 and ϵ1\epsilon\gg 1 and the quadratures Y^\hat{Y}_{\ell} of the simple harmonic oscillator follows from the fact that in both limits n^\hat{n} is a conserved quantity (approximately so for the case ϵ1\epsilon\gg 1), in which case QND observables in that general form, with an appropriately chosen frequency operator ω^\hat{\omega}, can always be found. However, in the intermediate regime of the Dirac oscillator n^\hat{n} is no longer a conserved quantity, a consequence of the spin-orbit induced exchange of energy between the motional and spin degrees of freedom.

The effects of this spin-orbit coupling can be formally eliminated in the Foldy-Wouthuysen (FW) representation Moreno and Zentella (1989), as we now show. For the one-dimensional Dirac oscillator, the FW and the original Dirac representation are related by the unitary transformations Verlan and Razumova (2001),

U^=[A^niB^nn^a^a^B^nn^iA^n+1],\hat{U}=\begin{bmatrix}\hat{A}_{n}&i\frac{\hat{B}_{n}}{\sqrt{\hat{n}}}\hat{a}^{\dagger}\\ \hat{a}\frac{\hat{B}_{n}}{\sqrt{\hat{n}}}&-i\hat{A}_{n+1}\end{bmatrix}, (31)

where the operators A^n\hat{A}_{n} and B^n\hat{B}_{n} are obtained by replacing nn by n^\hat{n} in the expressions for AnA_{n} and BnB_{n} of Eqs. (17). The transformed Hamiltonian is then the sum of n^\hat{n}-conserving Hamiltonians H^F(n^)\hat{H}_{\text{F}}(\hat{n}) of the form

H^F(n^)=U^H^DU^=σ^zmc21+(2n^σ^z+1)ε,\hat{H}_{\text{F}}(\hat{n})=\hat{U}\hat{H}_{\text{D}}\hat{U}^{\dagger}=\hat{\sigma}_{z}mc^{2}\sqrt{1+(2\hat{n}-\hat{\sigma}_{z}+1)\varepsilon}\,, (32)

with eigenstates |n,\left|n,\uparrow\right\rangle and |n,\left|n,\downarrow\right\rangle and associated positive and negative eigenenergies En+E_{n}^{+} and EnE_{n}^{-}, respectively. Importantly, the FW eigenstates do not involve superpositions of the two spin states, that is, the positive and negative energy eigenstates are uniquely associated with spin up and spin down, respectively, as was the case in the weakly relativistic limit ϵ1\epsilon\ll 1. Following a similar approach we can therefore again construct a pair of QND observables

X^1,F\displaystyle\hat{X}_{1,\rm F} =\displaystyle= xzpt(a^eiω^ϵt+h.c.),\displaystyle x_{\rm zpt}(\hat{a}e^{i\hat{\omega}_{\epsilon}t}+{\rm h.c.})\,,
X^2,F\displaystyle\hat{X}_{2,\rm F} =\displaystyle= ixzpt(eiω^ϵta^h.c.),\displaystyle ix_{\rm zpt}(e^{-i\hat{\omega}_{\epsilon}t}\hat{a}^{\dagger}-{\rm h.c.})\,, (33)

where the frequency operator is now

ω^ϵ[H^F(n^)H^F(n^1)]/,\hat{\omega}_{\epsilon}\equiv\left[\hat{H}_{\text{F}}(\hat{n})-\hat{H}_{\text{F}}(\hat{n}-1)\right]/\hbar, (34)

and accounts for the unequally spaced energy spectrum. As in the previous cases these quadratures obey the commutation relation [X^1,F,X^2,F]=i/mω[\hat{X}_{1,\text{F}},\hat{X}_{2,\text{F}}]=i\hbar/m\omega.

From Eq. (34), the eigenvalues ωn±\omega_{n}^{\pm} of ω^ϵ\hat{\omega}_{\epsilon}, given by ω^ϵ|n,=ωn+|n,\hat{\omega}_{\epsilon}|n,\uparrow\rangle=\omega_{n}^{+}|n,\uparrow\rangle (n1n\geq 1) and ω^ϵ|n,=ωn|n,\hat{\omega}_{\epsilon}|n,\downarrow\rangle=\omega_{n}^{-}|n,\downarrow\rangle (n0n\geq 0), are simply the differences in frequency of neighboring eigenstates of the FW-transformed Dirac oscillator. In the weakly relativistic limit ϵ1\epsilon\ll 1 they approach the constant value ω\omega characteristic of a harmonic oscillator, while for a system deep in the relativistic regime we have |ωn±|/ω0\left|\omega_{n}^{\pm}\right|/\omega\to 0 for large nn, a signature of the increasing anharmonicity of the system.

Refer to caption
Figure 1: (Color online) (a) Time evolution of the mean values (color lines) and uncertainties (background shadows) of X^1,F\hat{X}_{1,\text{F}} (blue) and X^2,F\hat{X}_{2,\text{F}} (red) under a continuous QND measurement described by the Hamiltonian (35); (b) Corresponding evolution of x^\hat{x} (blue) and p^\hat{p} (red). Here the Dirac oscillator is initially in a coherent state with α=0.5\alpha=0.5, c1=c2=1/2c_{1}=c_{2}=1/\sqrt{2}, and ϵ=0.1\epsilon=0.1; the probe optical field is in a coherent state |β=2|\beta=2\rangle and g=0.1g=0.1. Position in units of xzpt=/2mωx_{\text{zpt}}=\sqrt{\hbar/2m\omega} and momentum in units of pzpt=mω/2p_{\text{zpt}}=\sqrt{m\hbar\omega/2}.

If one were to ignore the important point that X^1,F\hat{X}_{1,\rm F} needs to be transformed back to the Dirac representation to assess possible practical measurement schemes, one might argue that it could formally be monitored e.g. by continuous QND measurements described by the total Hamiltonian

H^tot=H^F+ωbb^b^+gX^1,Fb^b^,\hat{H}_{\rm{tot}}=\hat{H}_{\rm F}+\hbar\omega_{b}\hat{b}^{\dagger}\hat{b}+g\hat{X}_{1,\rm F}\hat{b}^{\dagger}\hat{b}, (35)

where b^\hat{b} represents the annihilation operator of an optical mode of frequency ωb\omega_{b}, a form reminiscent of the optomechanical Hamiltonian of quantum optics. The associated Heisenberg equations of motion dX^1,F/dt=0d\hat{X}_{1,\rm F}/dt=0, dX^2,F/dt=gb^b^/mωd\hat{X}_{2,\rm F}/dt=-g\hat{b}^{\dagger}\hat{b}/m\omega and db^/dt=i(ωb+gX^1,F/)b^d\hat{b}/dt=-i(\omega_{b}+g\hat{X}_{1,\rm F}/\hbar)\hat{b} show that the QND variable X^1,F\hat{X}_{1,\rm F} is imprinted on the phase of the optical mode b^\hat{b}, while X^2,F\hat{X}_{2,\rm F} is subject to the the measurement backaction from the radiation pressure force gb^b^g\hat{b}^{\dagger}\hat{b}. For example, for a Dirac oscillator initially in the state |ϕF=|α(c1|+c2|)|\phi\rangle_{\rm F}=|\alpha\rangle\otimes(c_{1}\left|\uparrow\right\rangle+c_{2}\left|\downarrow\right\rangle), with |α|\alpha\rangle a coherent state and c1c_{1} and c2c_{2} arbitrary probability amplitudes, we have that ΔX^1,F2(0)=ΔX^2,F2(0)=/2mω\Delta\hat{X}_{1,\rm F}^{2}(0)=\Delta\hat{X}_{2,\rm F}^{2}(0)=\hbar/2m\omega. In that case, as shown in Fig. 1(a), the mean value and the uncertainty in the measured observable X^1,F\hat{X}_{1,\rm F} remain constant in time as expected of QND measurements, while the mean value and variance of X^2,F\hat{X}_{2,\rm F} becomeX^2,F(t)=X^2,F(0)(g/mω)n^bt\langle\hat{X}_{2,\rm F}(t)\rangle=\langle\hat{X}_{2,\rm F}(0)\rangle-(g/m\omega)\langle\hat{n}_{b}\rangle t and ΔX^2,F2(t)=/2mω+(g/mω)2Δn^b2t2\Delta\hat{X}_{2,\rm F}^{2}(t)=\hbar/2m\omega+(g/m\omega)^{2}\Delta\hat{n}_{b}^{2}t^{2}.

However, when expressed in the Dirac representation the observables X^=U^X^,FU^\hat{X}_{\ell}=\hat{U}^{\dagger}\hat{X}_{\ell,{\rm F}}\hat{U} become in general complex combinations of x^\hat{x}, p^\hat{p}, and 𝝈\bm{\sigma}, so that realizing the system-probe interaction (35) is anything but obvious in general. That this is the case is also apparent from Fig. 1(b), which shows the evolution of x^\langle\hat{x}\rangle and p^\langle\hat{p}\rangle under the measurement scheme and the same parameters as Fig 1(a). In addition to slow oscillations at a frequency of order ω\omega, the evolution of these observables is characterized by high-frequency Zitterbewegung oscillations induced by the spin-orbit coupling induced interferences between the positive and negative energy states Zhang et al. (2018), as well as by significant measurement backaction. This situation is considerably more complex than for the simple harmonic oscillator, where the QND nature quadratures (1) follows readily and intuitively from the simple oscillatory evolution of x^\hat{x} and p^\hat{p}.

IV Implementation

The explicit expressions of X^1,2\hat{X}_{1,2} in terms of x^\hat{x}, p^\hat{p}, and 𝝈\bm{\sigma} in the Dirac representation are in general quite cumbersome, as they include several spin-orbit-coupling composite observables (see Appendix A for their explicit form). Their measurement represents therefore a considerable challenge for arbitrary ϵ\epsilon, and while possible in principle, they are likely to remain unrealistic in practice. The situation is considerably simplified in both the weakly relativistic and extreme relativistic limits, as we now show.

IV.1 Weakly relativistic limit

For ϵ1\epsilon\ll 1 we have

X^1,nr=x^cosωt(p^σ^z/mω)sinωt,\hat{X}_{1,\rm nr}=\hat{x}\cos\omega t-(\hat{p}\hat{\sigma}_{z}/m\omega)\sin\omega t, (36)

so that in addition to the measurement of x^\hat{x} the composite observable p^σ^z\hat{p}\hat{\sigma}_{z} requires only spin-sensitive momentum measurements. This is because in this limit the spin-orbit coupling is so weak as not to couple the components ψ1\psi_{1} and ψ2\psi_{2} of the spinor, as we have seen. σ^z\hat{\sigma}_{z} is then a constant of motion and commutes with p^\hat{p}. Consequently, if the initial state of the Dirac oscillator is known not to exhibit spin-motion correlations, these measurements can be performed by measuring the spin and the momentum independently.

IV.2 Extreme relativistic limit

The situation is somewhat more complex, but still manageable in principle in the extreme relativistic limit ϵ1\epsilon\gg 1 where

X^1,r=12(x^+ip^/mω)eiω^rt+h.c.\hat{X}_{1,\rm r}=\frac{1}{2}(\hat{x}+i\hat{p}/m\omega)e^{i\hat{\omega}_{r}t}+{\rm h.c.} (37)

As we have seen, that regime is characterized by a relativistically induced anharmonicity of the oscillator which results in an excitation frequency that is no longer a constant, but rather a quantum observable ω^r\hat{\omega}_{\rm r} that does not commute with x^\hat{x} and p^\hat{p}, see Eq. (30). In that case the measurement of the composite observables that comprise X^1,r\hat{X}_{1,\rm r} requires a coupling between the probe and x^\hat{x} and p^\hat{p} that is sensitive to the excitation frequency. However, as we shall see the time evolution of ω^r\hat{\omega}_{\rm r} is far slower than the other observables, so that this coupling can be approximated by introducing an additional probe of ω^r\hat{\omega}_{\rm r} and then combining with a probe of the motional observables.

To see more concretely how this scheme can be implemented we consider a probe with internal degree of freedom described by the Pauli spin operators s^x,y,z\hat{s}_{x,y,z}, and external degree of freedom by the bosonic operators b^\hat{b} and b^\hat{b}^{\dagger}. The measurement scheme is described by the total Hamiltonian

H^tot=H^D+ωbb^b^+ωss^z+V^m,\hat{H}_{\rm{tot}}=\hat{H}_{\rm D}+\hbar\omega_{\rm b}\hat{b}^{\dagger}\hat{b}+\hbar\omega_{\rm{s}}\hat{s}_{z}+\hat{V}_{\rm m},\\ (38)

where ωb\omega_{b} and ωs\omega_{s} are the external and the internal characteristic frequencies of the probe. in the extreme relativistic limit considered here H^DH^r\hat{H}_{\rm D}\approx\hat{H}_{\rm r}. Finally V^m\hat{V}_{\rm{m}} describes the measurement interaction. Its explicit form is

V^m=ω^r2s^x+gxzpt[a^(s^zis^y)+h.c.](b^+b^),\hat{V}_{\rm m}=\frac{\hbar\hat{\omega}_{\rm r}}{2}\hat{s}_{x}+gx_{\rm zpt}\big{[}\hat{a}(\hat{s}_{z}-i\hat{s}_{y})+{\rm h.c.}\big{]}(\hat{b}^{\dagger}+\hat{b}), (39)

where the first term accounts for the rotation of the probe internal spin due to ω^r\hat{\omega}_{r}, and the second describes the Dirac oscillator driven modification of the spin-orbit coupling of the probe. The Heisenberg equations of motion ot the oscillator-probe system are

ds^xdt\displaystyle\frac{d\hat{s}_{x}}{dt} =\displaystyle= 2ωss^yigpzpt[a^(s^zis^y)h.c.](b^+b^),\displaystyle-2\omega_{\rm{s}}\hat{s}_{y}-i\frac{g}{p_{\rm zpt}}[\hat{a}(\hat{s}_{z}-i\hat{s}_{y})-{\rm h.c.}](\hat{b}^{\dagger}+\hat{b}), (40)
ds^ydt\displaystyle\frac{d\hat{s}_{y}}{dt} =\displaystyle= ω^rs^z+2ωss^x+gpzpt(a^s^x+h.c.)(b^+b^),\displaystyle-\hat{\omega}_{\rm{r}}\hat{s}_{z}+2\omega_{\rm{s}}\hat{s}_{x}+\frac{g}{p_{\rm zpt}}(\hat{a}\hat{s}_{x}+{\rm h.c.})(\hat{b}^{\dagger}+\hat{b}), (41)
ds^zdt\displaystyle\frac{d\hat{s}_{z}}{dt} =\displaystyle= ω^rs^y+igpzpt(a^s^xh.c.)(b^+b^),\displaystyle\hat{\omega}_{\rm{r}}\hat{s}_{y}+i\frac{g}{p_{\rm zpt}}(\hat{a}\hat{s}_{x}-{\rm h.c.})(\hat{b}^{\dagger}+\hat{b}), (42)
dω^rdt\displaystyle\frac{d\hat{\omega}_{\rm{r}}}{dt} =\displaystyle= iσ^ycg(2n^n^+1n^1)a^(s^zis^y)(b^+b^)+h.c.,\displaystyle\frac{i\hat{\sigma}_{y}}{\hbar}cg(2\sqrt{\hat{n}}-\sqrt{\hat{n}+1}-\sqrt{\hat{n}-1})\hat{a}(\hat{s}_{z}-i\hat{s}_{y})(\hat{b}^{\dagger}+\hat{b})+{\rm h.c.}, (43)
da^dt\displaystyle\frac{d\hat{a}}{dt} =\displaystyle= ia^ω^riσ^ycpzpt(2n^n^+1n^1)a^s^xig2pzpt(s^z+is^y)(b^+b^),\displaystyle-i\hat{a}{\hat{\omega}_{\rm{r}}}-\frac{i\hat{\sigma}_{y}}{\hbar}cp_{\rm zpt}(2\sqrt{\hat{n}}-\sqrt{\hat{n}+1}-\sqrt{\hat{n}-1})\hat{a}\hat{s}_{x}-\frac{ig}{2p_{\rm zpt}}(\hat{s}_{z}+i\hat{s}_{y})(\hat{b}^{\dagger}+\hat{b}), (44)
db^dt\displaystyle\frac{d\hat{b}}{dt} =\displaystyle= iωbb^ig2pzpt[a^(s^zis^y)+h.c.],\displaystyle-i\omega_{b}\hat{b}-i\frac{g}{2p_{\rm zpt}}[\hat{a}(\hat{s}_{z}-i\hat{s}_{y})+{\rm h.c.}], (45)

where the coupling between Eqs. (43) and (44) is due to the fact [a^,ω^r]0[\hat{a},\hat{\omega}_{\text{r}}]\neq 0, which leads to the difficulty of measuring x^\hat{x}, p^\hat{p}, and ω^r\hat{\omega}_{\rm r} independently, in contrast to the weakly relativistic limit.

Assuming that a^\langle\hat{a}\rangle scales as n\sqrt{n}, Eq. (43) shows that ω^˙r\langle\dot{\hat{\omega}}_{\rm r}\rangle scales then as 1/n1/n, so that ω^˙r/ω^r\langle\dot{\hat{\omega}}_{\rm r}\rangle/\langle\hat{\omega}_{\rm r}\rangle scales as g/nωmg/\sqrt{n\hbar\omega m}, where we have used Eq. (30). For weak enough measurement strength gg, large enough oscillator excitation nn, and assuming further that ω^rωs\langle\hat{\omega}_{r}\rangle\gg\omega_{s}, so that it dominates the evolution of the probe field, see Eqs. (40), (41), and (42), the Heisenberg equations for s^x,y,z\hat{s}_{x,y,z} can be approximated as

ds^xdt0,ds^ydtω^rs^z,ds^zdtω^rs^y,\frac{d\hat{s}_{x}}{dt}\approx 0,\ \ \frac{d\hat{s}_{y}}{dt}\approx-\hat{\omega}_{\rm r}\hat{s}_{z},\ \ \frac{d\hat{s}_{z}}{dt}\approx\hat{\omega}_{\rm r}\hat{s}_{y}, (46)

so that

s^x(t)s^x(0),\displaystyle\hat{s}_{x}(t)\approx\hat{s}_{x}(0), (47)
s^y(t)s^y(0)cosω^rts^z(0)sinω^rt,\displaystyle\hat{s}_{y}(t)\approx\hat{s}_{y}(0)\cos{\hat{\omega}_{\rm r}t}-\hat{s}_{z}(0)\sin{\hat{\omega}_{\rm r}t},
s^z(t)s^y(0)sinω^rt+s^z(0)cosω^rt.\displaystyle\hat{s}_{z}(t)\approx\hat{s}_{y}(0)\sin{\hat{\omega}_{\rm r}t}+\hat{s}_{z}(0)\cos{\hat{\omega}_{\rm r}t}.

Substituting these expressions into V^m\hat{V}_{\rm m}, and for the probe initially in the internal state |\left|\uparrow\right\rangle so that s^x,y(0)=0\langle\hat{s}_{x,y}(0)\rangle=0 and s^z(0)=1\langle\hat{s}_{z}(0)\rangle=1, the effective form of the measurement interaction becomes

V^mgX^1,r(b^+b^),\hat{V}_{\rm m}\approx g\hat{X}_{\rm{1,r}}(\hat{b}^{\dagger}+\hat{b}), (48)

so that this model detection scheme performs indeed approximate QND measurements on that observable.

IV.3 Near QND measurements as probes of relativistic effects

The fact that in the weakly and extreme relativistic limits ϵ1\epsilon\ll 1 and ϵ1\epsilon\gg 1 the QND variables X^1,nr\hat{X}_{1,\rm nr} and X^1,r\hat{X}_{1,\rm r} are amenable to direct detection suggests exploiting continuous measurement departures from their QND character as probes of relativistic effects, that is, of spin-orbit coupling.

Refer to caption
Figure 2: (color online) Upper row: Time evolution of the normalized mean values (colored lines) and corresponding uncertainties (background shadows of the same colors) of X^1,nr\hat{X}_{1,{\rm nr}} (blue solid) and X^2,nr\hat{X}_{2,\rm{nr}} (red dashed) under continuous measurements for increasing relativistic parameters, (a) ϵ=0.001\epsilon=0.001, (b) 0.020.02, and (c) 0.10.1. Middle row: Corresponding time evolution of x^\hat{x} (blue solid) and p^\hat{p} (red dashed) for (d) ϵ=0.001\epsilon=0.001, (e) 0.020.02, and (f) 0.10.1. Lower row: Dependence on ϵ\epsilon of X1,nr\left\langle X_{1,{\rm nr}}\right\rangle (blue solid) and X2,nr\left\langle X_{2,{\rm nr}}\right\rangle (red dashed) and their variances at time t=4π/ωt=4\pi/\omega. The Dirac oscillator is initially in a coherent state with α=1\alpha=1 and c1=c2=1/2c_{1}=c_{2}=1/\sqrt{2}, the optical field is in the coherent state β=1\beta=1 and the measurement strength is g=1g=1. The normalized units are same as in Fig. 1.

This is illustrated for the example of X^1,nr\hat{X}_{1,\rm nr} in Fig. 2, which shows both its evolution and the evolution of its conjugate variable X^2,nr\hat{X}_{2,\rm nr} for three values of ϵ\epsilon. In the weakly relativistic regime ϵ=103\epsilon=10^{-3} of Figs. 2(a) and 2(d), X^1,nr\hat{X}_{1,\rm nr} behaves as expected as a QND observable, but it starts departing from this behavior as ϵ\epsilon increases. This is apparent also from the temporal increase in its variance, as well as by the onset of Zitterbewegung superposed to damped oscillations at frequency 2ω2\omega for large enough ϵ\epsilon. Fig. 2(g) shows the dependence on ϵ\epsilon of X1,nrX_{1,{\rm nr}} and X2,nrX_{2,{\rm nr}} at a fixed time t=4π/ωt=4\pi/\omega, for the same parameters, illustrating the sensitivity of both X^1,nr\langle\hat{X}_{1,\rm nr}\rangle and its variance on ϵ\epsilon.

More quantitatively, on the weakly relativistic side, and keeping terms up to the first order of ϵ\epsilon in H^D\hat{H}_{\rm D}, the Heisenberg equations for X^,nr\hat{X}_{\ell,\rm{nr}} become

dX^1,nrdt\displaystyle\frac{d\hat{X}_{1,\rm{nr}}}{dt} \displaystyle\approx ω^nrϵ2[iX^1,nr+(2n^σ^z+1)X^2,nr],\displaystyle-\frac{\hat{\omega}_{\rm{nr}}\epsilon}{2}[i\hat{X}_{1,\rm{nr}}+(2\hat{n}-\hat{\sigma}_{z}+1)\hat{X}_{2,\rm{nr}}], (49)
dX^2,nrdt\displaystyle\frac{d\hat{X}_{2,\rm{nr}}}{dt} \displaystyle\approx ω^nrϵ2[iX^2,nr(2n^σ^z+1)X^1,nr]gb^b^mω.\displaystyle-\frac{\hat{\omega}_{\rm{nr}}\epsilon}{2}[i\hat{X}_{2,\rm{nr}}-(2\hat{n}-\hat{\sigma}_{z}+1)\hat{X}_{1,\rm{nr}}]-\frac{g\hat{b}^{\dagger}\hat{b}}{m\omega}.

which illustrates the ϵ\epsilon-dependence of measurement induced backaction on X^1,nr\hat{X}_{1,\rm{nr}}. (The results of Fig. 2 were obtained numerically, keeping ϵ\epsilon to all orders.)

Similarly, slightly departing from the extreme relativistic limit the Heisenberg equations for X^,r\hat{X}_{\ell,\rm{r}} are

dX^1,rdt\displaystyle\frac{d\hat{X}_{1,\rm{r}}}{dt} \displaystyle\approx 18ϵ[(iX^1,rX^2,r)ω^rn^h.c.],\displaystyle\frac{1}{8\epsilon}[(i\hat{X}_{1,\rm{r}}-\hat{X}_{2,\rm r})\frac{\hat{\omega}_{\rm r}}{\hat{n}}-{\rm h.c.}], (50)
dX^2,rdt\displaystyle\frac{d\hat{X}_{2,\rm{r}}}{dt} \displaystyle\approx 18ϵ[(X^1,r+iX^2,r)ω^rn^+h.c.]gb^b^mω.\displaystyle\frac{1}{8\epsilon}[(\hat{X}_{1,\rm r}+i\hat{X}_{2,\rm{r}})\frac{\hat{\omega}_{\rm r}}{\hat{n}}+{\rm h.c.}]-\frac{g\hat{b}^{\dagger}\hat{b}}{m\omega}.

Turning finally to order-of-magnitude estimates of relevance for a potential laboratory implementation of this system, we note first that for a sample of electrons with mass me1031m_{e}\sim 10^{-31}kg in the relativistic limit with ϵ103\epsilon\sim 10^{3} and in highly excited states n104n\sim 10^{4}, the frequency of the Dirac oscillator is ω1023\omega\sim 10^{23}Hz, and the uncertainty ΔX11013\Delta X_{1}\sim 10^{-13}m, This corresponds to electron energies of the order of EeH^r10E_{e}\sim\langle\hat{H}_{\rm r}\rangle\sim 10MeV, rendering an experimental implementation challenging. On the other hand, these numbers are significantly improved in tabletop simulations of relativistic quantum systems. For example, for a Dirac oscillator simulated by a spin-orbit coupled ultracold atomic sample Zhang et al. (2018) with effective mass m1027m\sim 10^{-27}kg and effective velocity of light c102c\sim 10^{-2}m/s, and for a same relativistic limit condition, the oscillating frequency ω106\omega\sim 10^{6}Hz and ΔX1107\Delta X_{1}\sim 10^{-7}m, with characteristic energy levels decreased to a manageable 10910^{-9}eV.

V Conclusion and outlook

We have established that despite the existence of anharmonicity and spin-orbit coupling resulting from relativistic effects one can identify a pair of conjugate QND observables of the one-dimensional Dirac oscillator. They can be monitored relatively simply in the weakly and strongly relativistic limits of the oscillator, and may be used for instance as probes of modulated spin-orbit coupling by relativistic effect. A laboratory implementation should be possible in artificial Dirac systems. Although a single-particle theory, the existence of these observables may provide a simple model to investigate aspects of relativistic quantum measurements Marolf and Rovelli (2002) and the generalized relativistic uncertainty principle Rosen and Vallarta (1932); Al-Hashimi and Wiese (2009); Todorinov et al. (2019), and may also find applications in the development of alternative detection technique for topological insulators and other quantum systems with genuine or synthetic spin–orbit coupling Cooper et al. (2019).

Acknowledgements.
We acknowledge enlightening discussions with Baiqiang Zhu. This work was supported by the National Natural Science Foundation of China (Grants No. 11974116 and No. 11654005), the National Key Research and Development Program of China (Grant No. 2016YFA0302001), the Fundamental Research Funds for the Central Universities, the Shanghai Municipal Science and Technology Major Project under Grant No. 2019SHZDZX01, the Chinese National Youth Talent Support Program and and the Shanghai Talent Program.

Appendices

V.1 Transforms between the Dirac representation and the Foldy–Wouthuysen representation

In the Dirac representation the Hamiltonian of a (1+1)-dimensional Dirac oscillator can be written in the form of anti-Jaynes-Cummings model,

H^D=ησ^a^+ησ^+a^+mc2σ^z,\hat{H}_{\rm{D}}=\eta\hat{\sigma}_{-}\hat{a}+\eta^{\ast}\hat{\sigma}_{+}\hat{a}^{\dagger}+mc^{2}\hat{\sigma}_{z}, (51)

where the matrix forms of the Pauli operators are

σ^z=[1001],σ^+=[0100],σ^=[0010].\hat{\sigma}_{z}=\begin{bmatrix}1&0\\ 0&-1\end{bmatrix},\ \hat{\sigma}_{+}=\begin{bmatrix}0&1\\ 0&0\end{bmatrix},\ \hat{\sigma}_{-}=\begin{bmatrix}0&0\\ 1&0\end{bmatrix}. (52)

Then its eigenstates are in the form of dressed states as shown in Eq. (15),

|En+=An|n,iBn|n1,,\displaystyle|E^{+}_{n}\rangle=A_{n}|n,\uparrow\rangle-iB_{n}|n-1,\downarrow\rangle, (53)
|En=Bn+1|n+1,+iAn+1|n,.\displaystyle|E^{-}_{n}\rangle=B_{n+1}|n+1,\uparrow\rangle+iA_{n+1}|n,\downarrow\rangle.

In the Foldy-Wouthuysen (FW) representation, the complications associated with the spin-orbit coupling are formally eliminated. The form of the Hamiltonian becomes into a diagonal 2×22\times 2 matrix

H^F(n^)\displaystyle\hat{H}_{\rm{F}}(\hat{n}) =U^H^DU^\displaystyle=\hat{U}\hat{H}_{\rm{D}}\hat{U}^{\dagger} (54)
=mc2[1+2n^ϵ001+2(n^+1)ϵ].\displaystyle=mc^{2}\begin{bmatrix}\sqrt{1+2\hat{n}\epsilon}&0\\ 0&-\sqrt{1+2(\hat{n}+1)\epsilon}\end{bmatrix}.

where the unitary transformation operators U^\hat{U} is given in Eq. (31) and we have used the equality

a^f(n^)=f(n^+1)a^.\hat{a}f(\hat{n})=f(\hat{n}+1)\hat{a}. (55)

The eigenstates become |n,|n,\uparrow\rangle and |n,|n,\downarrow\rangle corresponding to the positive eigenenergies En+E^{+}_{n} and the negative eigenenergies EnE^{-}_{n}, respectively. The eigenstates in the FW and the Dirac representations are related by the unitary transformation

|n,=U^|En+,\displaystyle|n,\uparrow\rangle=\hat{U}|E^{+}_{n}\rangle, (56)
|n,=U^|En.\displaystyle|n,\downarrow\rangle=\hat{U}|E^{-}_{n}\rangle.

Then the QND observables for a (1+1)-dimensional Dirac oscillator can be concisely expressed in the FW representation,

X^1,F=2mω(a^eiω^ϵt+eiω^ϵta^),\displaystyle\hat{X}_{1,\rm{F}}=\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}e^{i\hat{\omega}_{\epsilon}t}+e^{-i\hat{\omega}_{\epsilon}t}\hat{a}^{\dagger}), (57)
X^2,F=i2mω(eiω^ϵta^a^eiω^ϵt),\displaystyle\hat{X}_{2,\rm{F}}=i\sqrt{\frac{\hbar}{2m\omega}}(e^{-i\hat{\omega}_{\epsilon}t}\hat{a}^{\dagger}-\hat{a}e^{i\hat{\omega}_{\epsilon}t}),

where we defined a frequency operator

ω^ϵ=H^F(n^)H^F(n^1).\hbar\hat{\omega}_{\epsilon}=\hat{H}_{\rm F}(\hat{n})-\hat{H}_{\rm F}(\hat{n}-1). (58)

We have the corresponding minimum uncertainty state

|ϕF=|α(c1|+c2|).\left|\phi\right\rangle_{\rm F}=\left|\alpha\right\rangle\otimes(c_{1}\left|\uparrow\right\rangle+c_{2}\left|\downarrow\right\rangle). (59)

If we go back to the Dirac representation, the QND observables become

X^,D=U^X^,FU^,=1,2,\hat{X}_{\ell,\rm D}=\hat{U}^{\dagger}\hat{X}_{\ell,\rm{F}}\hat{U},\,\,\ell=1,2, (60)

where the operator a^\hat{a} and a^\hat{a}^{\dagger} are transformed into the forms with complex spin-orbit coupling,

U^a^U^=[(A^nA^n+1+n^n^+1B^nB^n+1)a^i(A^nB^n+1n^+1A^n+1B^nn^)a^a^+iA^nB^n+1n^+1ia^(A^nB^n+1n^+1A^n+1B^nn^)a^(A^n+1A^n+2+n^+2n^+1B^n+1B^n+2)a^],\displaystyle\hat{U}^{\dagger}\hat{a}\hat{U}=\begin{bmatrix}(\hat{A}_{n}\hat{A}_{n+1}+\frac{\sqrt{\hat{n}}}{\sqrt{\hat{n}+1}}\hat{B}_{n}\hat{B}_{n+1})\hat{a}&i(\frac{\hat{A}_{n}\hat{B}_{n+1}}{\sqrt{\hat{n}+1}}-\frac{\hat{A}_{n+1}\hat{B}_{n}}{\sqrt{\hat{n}}})\hat{a}^{\dagger}\hat{a}+i\frac{\hat{A}_{n}\hat{B}_{n+1}}{\sqrt{\hat{n}+1}}\\ i\hat{a}(\frac{\hat{A}_{n}\hat{B}_{n+1}}{\sqrt{\hat{n}+1}}-\frac{\hat{A}_{n+1}\hat{B}_{n}}{\sqrt{\hat{n}}})\hat{a}&(\hat{A}_{n+1}\hat{A}_{n+2}+\frac{\sqrt{\hat{n}+2}}{\sqrt{\hat{n}+1}}\hat{B}_{n+1}\hat{B}_{n+2})\hat{a}\end{bmatrix}, (61)
U^a^U^=[a^(A^nA^n+1+n^n^+1B^nB^n+1)ia^(A^nB^n+1n^+1A^n+1B^nn^)a^ia^a^(A^nB^n+1n^+1A^n+1B^nn^)iA^nB^n+1n^+1a^(A^n+1A^n+2+n^+2n^+1B^n+1B^n+2)],\displaystyle\hat{U}^{\dagger}\hat{a}^{\dagger}\hat{U}=\begin{bmatrix}\hat{a}^{\dagger}(\hat{A}_{n}\hat{A}_{n+1}+\frac{\sqrt{\hat{n}}}{\sqrt{\hat{n}+1}}\hat{B}_{n}\hat{B}_{n+1})&-i\hat{a}^{\dagger}(\frac{\hat{A}_{n}\hat{B}_{n+1}}{\sqrt{\hat{n}+1}}-\frac{\hat{A}_{n+1}\hat{B}_{n}}{\sqrt{\hat{n}}})\hat{a}^{\dagger}\\ -i\hat{a}^{\dagger}\hat{a}(\frac{\hat{A}_{n}\hat{B}_{n+1}}{\sqrt{\hat{n}+1}}-\frac{\hat{A}_{n+1}\hat{B}_{n}}{\sqrt{\hat{n}}})-i\frac{\hat{A}_{n}\hat{B}_{n+1}}{\sqrt{\hat{n}+1}}&\hat{a}^{\dagger}(\hat{A}_{n+1}\hat{A}_{n+2}+\frac{\sqrt{\hat{n}+2}}{\sqrt{\hat{n}+1}}\hat{B}_{n+1}\hat{B}_{n+2})\end{bmatrix},

and the transformed frequency operator ω^ϵ\hat{\omega}_{\epsilon} is no longer diagonal in the matrix form

U^ω^ϵU^ω=[χϵ(n^)i2ϵχϵ(n^)a^ia^2ϵχϵ(n^)χϵ(n^+1)],\displaystyle\frac{\hat{U}^{\dagger}\hat{\omega}_{\epsilon}\hat{U}}{\omega}=\begin{bmatrix}\chi_{\epsilon}(\hat{n})&i\sqrt{2\epsilon}\chi_{\epsilon}(\hat{n})\hat{a}^{\dagger}\\ -i\hat{a}\sqrt{2\epsilon}\chi_{\epsilon}(\hat{n})&-\chi_{\epsilon}(\hat{n}+1)\end{bmatrix}, (62)

where

χϵ(n^)=1ϵ(112ϵ1+2ϵn^).\chi_{\epsilon}(\hat{n})=\frac{1}{\epsilon}(1-\sqrt{1-\frac{2\epsilon}{1+2\epsilon\hat{n}}}). (63)

The minimum uncertainty state in the Dirac representation becomes

|ϕD=U^|ϕF=e12|α|2n=0αnn!(c1|En++c2|En).|\phi\rangle_{\rm D}=\hat{U}^{\dagger}|\phi\rangle_{\rm F}=e^{-\frac{1}{2}|\alpha|^{2}}\sum_{n=0}^{\infty}\frac{\alpha^{n}}{\sqrt{n!}}(c_{1}|E_{n}^{+}\rangle+c_{2}|E_{n}^{-}\rangle). (64)

V.2 QND observables, weakly relativistic limit

In the weakly relativistic limit ϵ0\epsilon\sim 0, we have

A^n1n^ϵ/4,B^nn^ϵ/2.\hat{A}_{n}\approx 1-\hat{n}\epsilon/4,\ \ \hat{B}_{n}\approx\sqrt{\hat{n}\epsilon}/\sqrt{2}. (65)

To the first order of ϵ\epsilon, the transforms (61) of the operators a^\hat{a} and a^\hat{a}^{\dagger} are approximated as

U^a^U^a^ϵ4σ^za^+iϵ2σ^+,\hat{U}^{\dagger}\hat{a}\hat{U}\approx\hat{a}-\frac{\epsilon}{4}\hat{\sigma}_{z}\hat{a}+i\sqrt{\frac{\epsilon}{2}}\hat{\sigma}_{+}, (66)

and because

χϵ(n^)1+(122n^)ϵ,\chi_{\epsilon}(\hat{n})\approx 1+(\frac{1}{2}-2\hat{n})\epsilon, (67)

the transformed frequency operator is approximated as

U^ω^ϵU^ωσ^z+ϵ(2n^+12)ϵσ^z+i2ϵ(a^σ^+a^σ^).\frac{\hat{U}^{\dagger}\hat{\omega}_{\epsilon}\hat{U}}{\omega}\approx\hat{\sigma}_{z}+\epsilon-(2\hat{n}+\frac{1}{2})\epsilon\hat{\sigma}_{z}+i\sqrt{2\epsilon}(\hat{a}^{\dagger}\hat{\sigma}_{+}-\hat{a}\hat{\sigma}_{-}). (68)

So in the Dirac representation for a vanishing ϵ\epsilon, retaining the leading order terms the QND observables (57) are still in the form of quadrature operators

X^1X^1,nr\displaystyle\hat{X}_{1}\approx\hat{X}_{1,\rm{nr}} =\displaystyle= 2mω(a^eiωσ^zt+a^eiωσ^zt),\displaystyle\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}e^{i\omega\hat{{\sigma}}_{z}t}+\hat{a}^{\dagger}e^{-i\omega\hat{{\sigma}}_{z}t}),
=\displaystyle= x^cosωtp^σ^zmωsinωt,\displaystyle\hat{x}\cos{\omega t}-\frac{\hat{p}\hat{\sigma}_{z}}{m\omega}\sin{\omega t},
X^2X^2,nr\displaystyle\hat{X}_{2}\approx\hat{X}_{2,\rm{nr}} =\displaystyle= i2mω(a^eiωσ^zta^eiωσ^zt),\displaystyle-i\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}e^{i\omega\hat{{\sigma}}_{z}t}-\hat{a}^{\dagger}e^{-i\omega\hat{{\sigma}}_{z}t}), (69)
=\displaystyle= x^σ^zsinωt+p^mωcosωt,\displaystyle\hat{x}\hat{\sigma}_{z}\sin{\omega t}+\frac{\hat{p}}{m\omega}\cos{\omega t},

associated with a weakly relativistic minimum uncertainty state (64),

|ϕD|α(c1|+ic2|).|\phi\rangle_{\rm D}\approx|\alpha\rangle\otimes(c_{1}|\uparrow\rangle+ic_{2}|\downarrow\rangle). (70)

When the Dirac oscillator departs from the weakly relativistic limit, its Hamiltonian, retaining the small terms of next order, becomes

H^DH^nrω8σ^z(2n^σ^z+1)2ϵ.\hat{H}_{\rm{D}}\approx\hat{H}_{\rm{nr}}-\frac{\hbar\omega}{8}\hat{\sigma}_{z}(2\hat{n}-\hat{\sigma}_{z}+1)^{2}\epsilon. (71)

To the present relativistic level, the QND observables should also include the small terms of next order,

X^1\displaystyle\hat{X}_{1} 2mω(a^eiωσ^zt+iε2σ^+eiωσ^zt+h.c)\displaystyle\approx\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}e^{i\omega\hat{\sigma}_{z}t}+i\sqrt{\frac{\varepsilon}{2}}\hat{\sigma}_{+}e^{i\omega\hat{\sigma}_{z}t}+h.c) (72)
+2mω2ε[(a^σ^+a^σ^)a^+h.c]sinωt,\displaystyle+\sqrt{\frac{\hbar}{2m\omega}}\sqrt{2\varepsilon}[(\hat{a}^{\dagger}\hat{\sigma}_{+}-\hat{a}\hat{\sigma}_{-})\hat{a}^{\dagger}+h.c]\sin\omega t,
X^2\displaystyle\hat{X}_{2} i2mω(a^eiωσ^zt+iε2σ^+eiωσ^zth.c)\displaystyle\approx-i\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}e^{i\omega\hat{\sigma}_{z}t}+i\sqrt{\frac{\varepsilon}{2}}\hat{\sigma}_{+}e^{i\omega\hat{\sigma}_{z}t}-h.c)
i2mω2ε[(a^σ^+a^σ^)a^h.c]sinωt,\displaystyle-i\sqrt{\frac{\hbar}{2m\omega}}\sqrt{2\varepsilon}[(\hat{a}^{\dagger}\hat{\sigma}_{+}-\hat{a}\hat{\sigma}_{-})\hat{a}^{\dagger}-h.c]\sin\omega t,

in which except the terms in Eq. (V.2) there are additional terms involving complex spin-orbit coupling. As the Dirac oscillator slides deeper into the relativistic regime, the QND observables have increasingly complex forms, which means their measurements are more challenging.

V.3 QND observables, extreme relativistic limit

In the extreme relativistic limit ϵ1\epsilon\gg 1, we have

A^nB^n1/2,\hat{A}_{n}\approx\hat{B}_{n}\approx 1/\sqrt{2}, (73)

and then the transforms on a^\hat{a} becomes

a^r\displaystyle\hat{a}_{\rm r} =U^a^U^\displaystyle=\hat{U}^{\dagger}\hat{a}\hat{U} (74)
12(1+n^n^+1)a^+(n^+2n^n^+1)1σ^z4a^\displaystyle\approx\frac{1}{2}(1+\frac{\sqrt{\hat{n}}}{\sqrt{\hat{n}+1}})\hat{a}+(\frac{\sqrt{\hat{n}+2}-\sqrt{\hat{n}}}{\sqrt{\hat{n}+1}})\frac{1-\hat{\sigma}_{z}}{4}\hat{a}
+i2[(1n^+11n^)a^σ^++σ^a^(1n^+11n^)]a^\displaystyle+\frac{i}{2}[(\frac{1}{\sqrt{\hat{n}+1}}-\frac{1}{\hat{n}})\hat{a}^{\dagger}\hat{\sigma}_{+}+\hat{\sigma}_{-}\hat{a}(\frac{1}{\sqrt{\hat{n}+1}}-\frac{1}{\hat{n}})]\hat{a}
+i2σ^+n^+1,\displaystyle+\frac{i}{2}\frac{\hat{\sigma}_{+}}{\sqrt{\hat{n}+1}},

and the operator χϵ(n^)\chi_{\epsilon}(\hat{n}) is approximated as

χϵ(n^)1ϵ(111n^),\chi_{\epsilon}(\hat{n})\approx\frac{1}{\epsilon}(1-\sqrt{1-\frac{1}{\hat{n}}}), (75)

such that the transformed frequency operator ω^ϵ\hat{\omega}_{\epsilon} becomes

ω^rω=U^ω^ϵU^ω2ϵ[0i(111n^)a^ia^(111n^)0].\displaystyle\frac{\hat{\omega}_{\rm r}}{\omega}=\frac{\hat{U}^{\dagger}\hat{\omega}_{\epsilon}\hat{U}}{\omega}\approx\sqrt{\frac{2}{\epsilon}}\begin{bmatrix}0&i(1-\sqrt{1-\frac{1}{\hat{n}}})\hat{a}^{\dagger}\\ -i\hat{a}(1-\sqrt{1-\frac{1}{\hat{n}}})&0\end{bmatrix}. (76)

Then the QND observables are in the forms

X^1,r\displaystyle\hat{X}_{1,\rm r} 2mω(a^reiω^rt+eiω^rta^r),\displaystyle\approx\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}_{\rm r}e^{i\hat{\omega}_{\rm r}t}+e^{-i\hat{\omega}_{\rm r}t}\hat{a}_{\rm r}^{\dagger}), (77)
X^2,r\displaystyle\hat{X}_{2,\rm r} i2mω(a^reiω^rteiω^rta^r),\displaystyle\approx-i\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}_{\rm r}e^{i\hat{\omega}_{\rm r}t}-e^{-i\hat{\omega}_{\rm r}t}\hat{a}_{\rm r}^{\dagger}),

In the high excited level n1n\gg 1, the operators a^r\hat{a}_{\rm r} and a^r\hat{a}_{\rm r}^{\dagger} can be approximated as a^\hat{a} and a^\hat{a}^{\dagger}, respectively, and then

X^1,r12(x^+ip^mω)eiω^rt+h.c.,\displaystyle\hat{X}_{1,\rm{r}}\approx\frac{1}{2}(\hat{x}+\frac{i\hat{p}}{m\omega})e^{i\hat{\omega}_{\rm{r}}t}+h.c., (78)
X^2,ri2((x^+ip^mω)eiω^rth.c.),\displaystyle\hat{X}_{2,\rm{r}}\approx-\frac{i}{2}((\hat{x}+\frac{i\hat{p}}{m\omega})e^{i\hat{\omega}_{\rm{r}}t}-h.c.),

where

ω^rω2/ε(n^1n^)σ^y,\hat{\omega}_{\rm r}\approx\omega\sqrt{2/\varepsilon}(\sqrt{\hat{n}-1}-\sqrt{\hat{n}})\hat{\sigma}_{y}, (79)

associated with the approximate minimum uncertainty state

|ϕD|α(c1+c2)|i(c1c2)|2.|\phi\rangle_{\rm D}\approx|\alpha\rangle\otimes\frac{(c_{1}+c_{2})\left|\uparrow\right\rangle-i(c_{1}-c_{2})\left|\downarrow\right\rangle}{\sqrt{2}}. (80)

References

  • Braginsky (1967) V. B. Braginsky, Zh. Eksp. Teor. Fiz 53, 1434 (1967).
  • Braginsky and Nazarenko (1969) V. B. Braginsky and V. S. Nazarenko, Soviet Journal of Experimental and Theoretical Physics 30, 770 (1969).
  • Braginsky et al. (1975) V. B. Braginsky, Y. I. Vorontsov,  and V. D. Krivchenkov, Zh. Eksp. Teor. Fiz 68, 55 (1975).
  • Braginsky et al. (1980) V. B. Braginsky, Y. I. Vorontsov,  and K. S. Thorne, Science 209, 547 (1980).
  • Thorne et al. (1978) K. S. Thorne, R. W. P. Drever, C. M. Caves, M. Zimmermann,  and V. D. Sandberg, Phys. Rev. Lett. 40, 667 (1978).
  • Caves et al. (1980) C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg,  and M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980).
  • Bocko and Onofrio (1996) M. F. Bocko and R. Onofrio, Rev. Mod. Phys. 68, 755 (1996).
  • Chen et al. (2017) S. Chen, L. Chen, Z.-Y. Ou,  and W. Hang, Optics Express 25, 31827 (2017).
  • Chen et al. (2011) Y. Chen, S. L. Danilishin, F. Y. Khalili,  and H. Müller-Ebhardt, General Relativity and Gravitation 43, 671 (2011).
  • Suh et al. (2014) J. Suh, A. J. Weinstein, C. U. Lei, E. E. Wollman, S. K. Steinke, P. Meystre, A. A. Clerk,  and K. C. Schwab, Science 344, 1262 (2014).
  • Vasilakis et al. (2015) G. Vasilakis, H. Shen, K. Jensen, M. Balabas, D. Salart, B. Chen,  and E. S. Polzik, Nature Physics 11, 389 (2015).
  • Moshinsky and Szczepaniak (1989) M. Moshinsky and A. Szczepaniak, Journal of Physics A: Mathematical and General 22, L817 (1989).
  • Bermudez et al. (2007) A. Bermudez, M. A. Martin-Delgado,  and E. Solano, Phys. Rev. Lett. 99, 123602 (2007).
  • Benzair et al. (2012) H. Benzair, T. Boudjedaa,  and M. Merad, Journal of mathematical physics 53, 123516 (2012).
  • Muñoz and Peña (2012) E. Muñoz and F. J. Peña, Phys. Rev. E 86, 061108 (2012).
  • Quesne (2017) C. Quesne, Journal of Physics A: Mathematical and Theoretical 50, 081001 (2017).
  • Fasth et al. (2007) C. Fasth, A. Fuhrer, L. Samuelson, V. N. Golovach,  and D. Loss, Phys. Rev. Lett. 98, 266801 (2007).
  • Abdi et al. (2017) M. Abdi, M.-J. Hwang, M. Aghtar,  and M. B. Plenio, Phys. Rev. Lett. 119, 233602 (2017).
  • He et al. (2016) L. He, H. Li,  and M. Li, Science Advances 2, e1600485 (2016).
  • Zhang et al. (2018) K. Zhang, L. Zhou, P. Meystre,  and W. Zhang, Phys. Rev. Lett. 121, 110401 (2018).
  • Moreno and Zentella (1989) M. Moreno and A. Zentella, Journal of Physics A: Mathematical and General 22, L821 (1989).
  • Verlan and Razumova (2001) É. Verlan and M. Razumova, Optics and Spectroscopy 91, 735 (2001).
  • Marolf and Rovelli (2002) D. Marolf and C. Rovelli, Phys. Rev. D 66, 023510 (2002).
  • Rosen and Vallarta (1932) N. Rosen and M. S. Vallarta, Phys. Rev. 40, 569 (1932).
  • Al-Hashimi and Wiese (2009) M. Al-Hashimi and U.-J. Wiese, Annals of Physics 324, 2599 (2009).
  • Todorinov et al. (2019) V. Todorinov, P. Bosso,  and S. Das, Annals of Physics 405, 92 (2019).
  • Cooper et al. (2019) N. R. Cooper, J. Dalibard,  and I. B. Spielman, Rev. Mod. Phys. 91, 015005 (2019).