This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quasilinear diffusion coefficients in a finite Larmor radius expansion for ion cyclotron heated plasmas

Jungpyo Lee Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, MA, USA    John Wright Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, MA, USA    Nicola Bertelli Princeton Plasma Physics Laboratory, Princeton, NJ, USA    Erwin F. Jaeger XCEL Engineering, Oak Ridge, TN, USA    Ernest Valeo Princeton Plasma Physics Laboratory, Princeton, NJ, USA    Robert Harvey CompX, Del Mar, CA, USA    Paul Bonoli Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, MA USA
(September 6, 2025)
Abstract

In this paper, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker planck equation self-consistently for ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (W˙\dot{W}) is used to derive the reduced model diffusion coefficients for the fundamental damping (n=1) and the second harmonic damping (n=2) to the lowest order of the finite Larmor radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of dielectric tensor. We also present the simulations of ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.

I Introduction

The ion cyclotron range of frequency (ICRF) waves have been used in a tokamak as a main heating tool Perkins (1977) or a control tool of MHD phenomena Sauter et al. (2002) (e.g. sawtooth) and turbulent transport Rice et al. (2001); Mantsinen et al. (2003). In many experiments, the waves are injected to transfer their energy and momentum to plasmas by the fundamental cyclotron resonance with a small population ion species (minority) or by the second harmonic resonance with a major ion species Perkins (1977). To estimate the propagation and damping of the waves theoretically, it is necessary to model ion gyro-motion accurately. A reduced model to capture the effect of gyro-motion in the wave-plasma interactions has been developed by assuming a small Larmor radius compared to the wave perpendicular wavelength, which is typically valid in many scenarios of tokamak Brambilla and Krucken (1988); Brambilla (1989). The reduced model is used in many numerical codes such as CYRANO Lamalle (1994), EVE Dumont (2009), PSTELION Vdovin (2001), and TORIC Brambilla (1999), and it can reduce the computation cost and numerical complexity compared to a full model without the small Larmor radius assumption (e.g. AORSA Jaeger et al. (2001); Jaeger et al. (2006a)), while including the sufficiently accurate gyro-motion model. In this assumption, the dielectric tensor of plasmas is expanded by a small parameter kρik_{\perp}\rho_{i}. Here, kk_{\perp} is the perpendicular wavevector and ρi\rho_{i} is the ion Larmor radius. The finite Larmor radius (FLR) expansion up to the second order O((kρi)2)O((k_{\perp}\rho_{i})^{2}) is sufficient to model the fundamental damping and the second harmonic damping of the fast wave branch Brambilla and Krucken (1988); Brambilla (1989).

A kinetic description of the ICRF wave propagation and damping is important because there is a significant portion of the wave energy is deposited on fast ions. For the kinetic description, the Maxwell’s equations are solved for the electric and magnetic fields of the waves and the Fokker-Plank equation is solved for the balance between Coulomb collisions and the particle acceleration due to the wave fields. These two equations should be solved self-consistently, and it is typically obtained by iterating two non-linearly coupled codes. In this iteration process, the quasilinear velocity diffusion coefficients are used to define the acceleration term of the Fokker-Plank equation. The electric and magnetic fields result in velocity space diffusion that can be described by quasilinear theory when the perturbation by the wave is sufficiently small Cary et al. (1990). The quasilinear description that represents the average of two linearly perturbed quantities is known to be valid within some acceptable deviation Laval and Pesme (1999); Lee et al. (2011), and the coefficients are proportional to the square of the wave field intensity (or the wave power equivalently). The quasilinear diffusion coefficients were derived in the wavevector 𝐤\mathbf{k} spectrum space by Kennel and Engelmann (K-E) Kennel and Engelmann (1966), as summarized in Appendix A. It assumes that the particle trajectory is not perturbed by the wave fields and the magnetic field along the trajectory is homogeneous. As a result, the coefficients do not consider the finite orbit width of particles, which may be important in the low aspect ratio of toroidal geometry Petrov and Harvey (2016). In this paper, for simplicity, we also persist the assumptions of K-E coefficients that are acceptably valid when the inhomogeneity of the magnetic field and the wave power density are not significantly large Laval and Pesme (1999); Lee et al. (2011).

The quasilinear diffusion coefficients are evaluated differently in the numerical codes according to their assumptions and formulations. Some advanced model for quasilinear diffusion has been developed by analytically considering the particle trajectory Catto and Myra (1992) and the decorrelation between resonances Lamalle (1997) in the toroidal geometry, and numerically evaluating those effects Johnson et al. (2006); Harvey et al. (2011). The numerical diffusion coefficients are obtained by measuring the diffusion of test particles in a realistic geometry to take account of the finite orbit width and the perturbed orbit. With the assumption of the homogenous magnetic field along the unperturbed trajectory, in the full model without the FLR approximation Jaeger et al. (2006a), the K-E quasilinear diffusion coefficients can be implemented without significant modifications. In the reduced model for the wave solver that does not evaluate kk_{\perp} explicitly, the kk_{\perp} can be approximately estimated by the dispersion relation of a specific branch (e.g. fast wave) to evaluate the K-E coefficients (e.g. TORIC-SSFPQL Brambilla and Bilato (2009)). Although the K-E diffusion coefficients in the reduced model code are useful to evaluate the energetic ion tails, they result in an inconsistency between the dielectric tensor in the FLR approximation and the K-E diffusion coefficients without the approximation.

In this paper, we develop the FLR approximation of the quasilinear diffusion coefficients to be consistent with the dielectric tensor in the reduced model. This approximation of the quasilinear formulation for the FLR expansion is not trivial in terms of several points. Because the numerical formulation to calculate the power absorption is different in each code depending on its assumption and code environment (e.g. geometry, coordinates), the quasilinear diffusion coefficients need to be reformulated to correspond to the power absorption. We formulate the quasilinear coefficients by addressing the following questions: (1) is it possible to use the FLR expansion of the wave power absorption by W˙\dot{W} and 𝐉𝐄\mathbf{J}\cdot\mathbf{E} for the quasilinear diffusion? (2) is it possible to keep the important characteristics of K-E diffusion (diffusion direction, wave polarization effect, and H-theorem) in the FLR expansion? Here, 𝐉\mathbf{J} is the plasma current vector, 𝐄\mathbf{E} is the electric field and W˙\dot{W} is the kinetic energy change which will be defined in Section II. We will show that there are some problems with the FLR expansion in terms of the above issues, but the solutions will be suggested in Section III.

Our quasilinear diffusion coefficients are implemented in a coupled code for the Maxwell equation and the Fokker-Plank equation, TORIC Brambilla (1999)-CQL3D Harvey and McCoy (1992), as will be shown in Section IV. The wave code for the reduced model, TORIC, uses the second order FLR expansion to solve the Swanson-Colestock-Kashuba (SCK) wave equations for the ICRF propagation and damping in a tokamak. It uses a spectral method in both poloidal and toroidal directions, and a cubic finite element method in the radial direction. The second order expansion results in the differential operator of the continuous radial elements, and this numerical formulation results in the distinct characteristics of the reduced model compared to the full model that uses the radial spectral mode for kk_{\perp}. In the wave equation in a toroidally symmetric geometry, the toroidal wave spectral modes are decoupled, but the poloidal and radial spectral modes are coupled to each other. For each toroidal spectral mode, the computation time of TORIC solver is about O(nr(6np)3)O(n_{r}(6n_{p})^{3}) while it is about O((3nrnp)3)O((3n_{r}n_{p})^{3}) in the full model code, AORSA. Here npn_{p} is the number of poloidal spectral modes and nrn_{r} is the number of radial elements in TORIC or the radial spectral mode in AORSA. In TORIC, the FLR expansion by the SCK approximation reduces the degree of the complexity in the poloidal and radial coupling because only two adjacent radial elements are coupled with the poloidal modes of the element. In spite of the merits of this approach, it is not possible to find the accurate kk_{\perp} due to the missing radial spectral mode, thus TORIC has the inherent limitation to model gyro-motion by the Bessel functions with the argument kρik_{\perp}\rho_{i}, as done in the K-E quasilinear diffusion coefficients. In this paper, we suggest the alternative method to model the quasilinear diffusion coefficients for the reduced model without using kk_{\perp}.

The code CQL3D Harvey and McCoy (1992); Petrov and Harvey (2016) solves the bounce-averaged Fokker-Plank equation. It has one radial real space coordinate and two velocity coordinates in the gyro-averaged velocity space. Hence, the quasilinear coefficients in Section IV are bounce-averaged at each radius. We implement the equivalent FLR expansions in the quasilinear coefficients and the dielectric tensor of the coupled code. Thus, the self-consistent solutions of the wave fields and the distribution functions are obtained both for the minority fundamental damping (n=1n=1) and the second harmonic damping (n=2n=2) of major ions. Here, nn is defined by the range of wave frequency ωnΩ\omega\simeq n\Omega, where Ω\Omega is the ion cyclotron frequency.

The rest of the paper is organized as follows. In Section II, we explain the kinetic energy change W˙\dot{W} by the ICRF fundamental damping (n=1n=1) in the FLR expansion and point out some problems in calculating the quasilinear diffusion coefficients. In Section III, some solutions to resolve the problems are suggested and then using the same solution we define the coefficients for the second harmonic damping (n=2n=2). In Section IV, the quasilinear diffusion coefficients and dielectric tensor in the reduced model are implemented in the coupled code, TORIC-CQL3D. Until Section III, the formulae are derived non-relativistically for simplicity, but in Section IV they are expressed relativistically for CQL3D using the relativistic velocity coordinate. Some examples using the codes are shown in Section V. Finally, a discussion is given in Section VI.

II Derivation of W˙\dot{W}

In Section II.1, we revisit the derivation of the quasilinear diffusion coefficients using W˙\dot{W} in the kk spectrum without the FLR approximation. Then, in Section II.2, we expand W˙\dot{W} in terms of a small Larmor radius, and explain some problems of calculating the quasilinear coefficients in this approximation.

II.1 W˙\dot{W} without FLR approximation

The increase of the kinetic energy density of plasmas due to the energy transfer from RF waves can be described by Brambilla and Krucken (1988)

tW˙𝑑t\displaystyle\int_{-\infty}^{t}\dot{W}dt^{\prime} =\displaystyle= q𝑑𝐯t𝑑t{Re[𝐄(𝐫,t)]𝐯}{Re[f~(𝐯,𝐫,t)]}w,\displaystyle q\int d\mathbf{v}\bigg{\langle}\int_{-\infty}^{t}dt^{\prime}\{Re[\mathbf{E}(\mathbf{r}^{\prime},t^{\prime})]\cdot\mathbf{v}^{\prime}\}\{Re[\widetilde{f}(\mathbf{v}^{\prime},\mathbf{r}^{\prime},t^{\prime})]\}\bigg{\rangle}_{w}, (1)

where qq is the species charge, f~\widetilde{f} is the perturbed distribution function of the species due to the RF waves and w\left\langle...\right\rangle_{w} indicates the average over a number of wave periods in time and space. Here, ω\omega is the RF wave frequency, and 𝐯\mathbf{v}^{\prime} and 𝐫\mathbf{r}^{\prime} denote the velocity and space vector at the past time tt^{\prime}, respectively. Using the solution of the linearized Vlasov equation for f~\widetilde{f} and the time harmonic form for the frequency ω\omega, the energy increase rate (so-called Wdot) is

W˙\displaystyle\dot{W} =\displaystyle= q2ωmd𝐯limγ0γωRe[tdteiω(tt)(𝐄(𝐫)𝐯)\displaystyle\frac{q^{2}\omega}{m}\int d\mathbf{v}\lim_{\gamma\rightarrow 0}\frac{\gamma}{\omega}Re\bigg{[}\int_{-\infty}^{t}dt^{\prime}e^{-i\omega^{*}(t-t^{\prime})}\left(\mathbf{E}(\mathbf{r}^{\prime})^{*}\cdot{\mathbf{v}^{\prime}}\right) (2)
tdt′′eiω(tt′′)(𝐄(𝐫′′)+iω𝐯(𝐫′′)×(×𝐄(𝐫′′)))(𝐯′′f)],\displaystyle\cdot\int_{-\infty}^{t^{\prime}}dt^{\prime\prime}e^{i\omega(t-t^{\prime\prime})}\left(\mathbf{E}(\mathbf{r^{\prime\prime}})+\frac{i}{\omega}\mathbf{v}(\mathbf{r^{\prime\prime}})\times(\nabla\times\mathbf{E}(\mathbf{r^{\prime\prime}}))\right)\cdot\left(\nabla_{\mathbf{v^{\prime\prime}}}f\right)\bigg{]},

where mm is the mass of the species, γ\gamma is the damping rate of the wave, and ff is the background distribution function. This general expression of the wave damping can be reformulated differently in each numerical code depending on its specific numerical formation and assumption. Using the Fourier spectral representation of the space coordinate, it may be described by

W˙\displaystyle\dot{W} =\displaystyle= 12Re[𝐤𝟏𝐤𝟐ei(𝐤𝟏𝐤𝟐)𝐫(𝐄𝐤𝟏𝐖𝐥𝐄𝐤𝟐)],\displaystyle\frac{1}{2}Re\bigg{[}\sum_{\mathbf{k_{1}}}\sum_{\mathbf{k_{2}}}e^{i(\mathbf{k_{1}}-\mathbf{k_{2}})\cdot\mathbf{r}}(\mathbf{E}_{\mathbf{k_{1}}}\cdot\mathbf{W_{l}}\cdot\mathbf{E}_{\mathbf{k_{2}}})\bigg{]}, (3)

where 𝐖𝐥\mathbf{W_{l}} is the resonance kernel and, for example, it is defined in Eq. (11) of Jaeger et al. (2006a) for AORSA.

In this paper, we represent the quasilinear diffusion tensor in spherical coordinates, (v,ϑ,ϕ)(v,\vartheta,\phi), where v=v2+v2v=\sqrt{v_{\perp}^{2}+v_{\|}^{2}} is the speed, ϑ=arctan(v/v)\vartheta=\arctan(v_{\perp}/v_{\|}) is the pitchangle, and ϕ\phi is the gyroangle. Here, vv_{\perp} and vv_{\|} are the velocity perpendicular and parallel to the static magnetic field, respectively. This coordinate is beneficial to evaluate the quasilinear diffusion tensor because it can reduce the computation time due to the adiabatic invariant, vv, as will be explained in Section IV. Then, the quasilinear diffusion coefficients (B, C, E and F) determine the divergence of the flux in velocity space by Kerbel and McCoy (1985)

Q(f)=1v2v{Bv+Cϑ}f+1v2sinϑϑ{Ev+Fϑ}f.\displaystyle Q(f)=\frac{1}{v^{2}}\frac{\partial}{\partial v}\left\{{\textsf{B}}\frac{\partial}{\partial v}+\textsf{C}\frac{\partial}{\partial\vartheta}\right\}f+\frac{1}{v^{2}\sin\vartheta}\frac{\partial}{\partial\vartheta}\left\{{\textsf{E}}\frac{\partial}{\partial v}+\textsf{F}\frac{\partial}{\partial\vartheta}\right\}f. (4)

Because the gyro-averaged quasilinear diffusion coefficients (averaged in ϕ\phi) are sufficient to model the energy transfer, we define the four coefficients in Q(f)Q(f) and do not retain the flux in the gyro-phase direction. For the perpendicular momentum transfer, the flux along the gyro-phase direction should be included Lee et al. (2012), but it is not interest of this paper.

The energy transfer using the quasilinear diffusion coefficient is

W˙\displaystyle\dot{W} =\displaystyle= 𝑑𝐯mv22Q(f)=4π0𝑑vmv0π𝑑ϑsinϑ(Bfv+Cfϑ).\displaystyle\int d\mathbf{v}\frac{mv^{2}}{2}Q(f)=-4\pi\int_{0}^{\infty}dv{mv}\int_{0}^{\pi}d\vartheta\sin\vartheta\left(\textsf{B}\frac{\partial f}{\partial v}+\textsf{C}\frac{\partial f}{\partial\vartheta}\right). (5)

Using the resonance kernel in Eqs. (3) and (5), we can evaluate the quasilinear diffusion coefficients for any numerical formulation. Note that the Kennel-Engelmann quasilinear diffusion operator is derived in uniform plasmas with a homogenous static magnetic field, as shown in Appendix A. In a toroidal geometry, we redefine W˙\dot{W} using the local space coordinate (x,y,z)(x,y,z) where xx and yy coordinates are orthogonal in the plane that is perpendicular to the static magnetic field along the zz coordinate. The unit vector for (x,y,z)(x,y,z) coordinates are 𝐞𝐱\mathbf{e_{x}}, 𝐞𝐲\mathbf{e_{y}}, and 𝐞\mathbf{e_{\|}}, respectively. For convenience, we define the rotating coordinate 𝐞+=(𝐞𝐱+i𝐞𝐲)/2\mathbf{e_{+}}=(\mathbf{e_{x}}+i\mathbf{e_{y}})/\sqrt{2} and 𝐞=(𝐞𝐱i𝐞𝐲)/2\mathbf{e_{-}}=(\mathbf{e_{x}}-i\mathbf{e_{y}})/\sqrt{2} and the electric field E+=𝐄𝐞+E_{+}=\mathbf{E}\cdot\mathbf{e_{+}} and E=𝐄𝐞E_{-}=\mathbf{E}\cdot\mathbf{e_{-}} Brambilla and Krucken (1988). For example, the diagonal components of the quasilinear tensor in the speed direction vv is

B =\displaystyle= πϵωp22mnsnRe[𝐤𝟐vχ𝐤𝟐,nei(𝐤𝟐𝐫)𝐤𝟏vχ𝐤𝟏,nδ(ωnΩvk1)ei(𝐤𝟏𝐫)],\displaystyle\frac{\pi\epsilon\omega_{p}^{2}}{2mn_{s}}\sum_{n}Re\bigg{[}{\sum_{\mathbf{k_{2}}}v_{\perp}\chi_{\mathbf{k_{2}},n}^{*}}e^{-i(\mathbf{k_{2}}\cdot\mathbf{r})}{\sum_{\mathbf{k_{1}}}v_{\perp}\chi_{\mathbf{k_{1}},n}}\delta(\omega-n\Omega-v_{\|}k_{\|1})e^{i(\mathbf{k_{1}}\cdot\mathbf{r})}\bigg{]}, (6)

where ϵ\epsilon is the vacuum permittivity, Ω\Omega, ωp\omega_{p} and nsn_{s} are the gyrofrequency, the plasma frequency and the density of the species, respectively, and k=𝐤𝐞k_{\|}=\mathbf{k}\cdot\mathbf{e_{\|}} is the parallel wavevector. The dirac-delta function is obtained by Plemelj relation Stix (1992) for (ωnΩvk)1(\omega-n\Omega-v_{\|}k_{\|})^{-1} term in the resonance kernel in Eq. (3) and the contribution of the wave polarization is determined by the effective potential χ𝐤,n\chi_{\mathbf{k},n} (see Appendix A),

χ𝐤,n=12E𝐤,+Jn1+12E𝐤,Jn+1+vvE𝐤,Jn,\displaystyle\chi_{\mathbf{k},n}=\frac{1}{\sqrt{2}}E_{\mathbf{k},+}J_{n-1}+\frac{1}{\sqrt{2}}E_{\mathbf{k},-}J_{n+1}+\frac{v_{\|}}{v_{\perp}}E_{\mathbf{k},\|}J_{n}, (7)

where Jn=Jn(kρi)J_{n}=J_{n}(k_{\perp}\rho_{i}) is the first kind Bessel function for the order n. The relations between the quasilinear coefficients are determined by the diffusion direction. The diffusion direction is fixed by G(f)=0G(f)=0 Kennel and Engelmann (1966); Stix (1992), where the operator GG in Eq. (67) can be also described in spherical coordinates,

G(f)\displaystyle G(f) =\displaystyle= 1v(fv+(vvkvω)1vfϑ).\displaystyle\frac{1}{v}\left(\frac{\partial f}{\partial v}+\left(\frac{v_{\|}}{v}-\frac{k_{\|}v}{\omega}\right)\frac{1}{v_{\perp}}\frac{\partial f}{\partial\vartheta}\right). (8)

The operator GG results in the Onsager relations of the coefficients Kerbel and McCoy (1985):

C =\displaystyle= B1vsinϑ[cosϑkvω],\displaystyle\textsf{B}\frac{1}{v\sin\vartheta}\left[\cos\vartheta-\frac{k_{\|}v}{\omega}\right], (9)
E =\displaystyle= B1v[cosϑkvω],\displaystyle\textsf{B}\frac{1}{v}\left[\cos\vartheta-\frac{k_{\|}v}{\omega}\right], (10)
F =\displaystyle= B1v2sinϑ[cosϑkvω]2.\displaystyle\textsf{B}\frac{1}{v^{2}\sin\vartheta}\left[\cos\vartheta-\frac{k_{\|}v}{\omega}\right]^{2}. (11)

These relations are important when we derive the expansion of the quasilinear diffusion coefficients in terms of small Larmor radius in the following sections. The relations should be preserved to fix the diffusion direction in any approximation. Because the relations do not depend on the perpendicular wavevector, kk_{\perp}, it can be used in the FLR expansion.

II.2 W˙\dot{W} in FLR expansion

When the ion Larmor radius is much smaller than the perpendicular wavelength, W˙\dot{W} can be expanded by Brambilla and Krucken (1988),

W˙\displaystyle\dot{W} \displaystyle\simeq q2ωmlimγ0γωd𝐯[1+(𝐫𝐫𝐠)+12(𝐫𝐫𝐠)(𝐫𝐫𝐠):+]\displaystyle\frac{q^{2}\omega}{m}\lim_{\gamma\rightarrow 0}\frac{\gamma}{\omega}\int d\mathbf{v}\left[1+(\mathbf{r}-\mathbf{r_{g}})\cdot\nabla+\frac{1}{2}(\mathbf{r}-\mathbf{r_{g}})(\mathbf{r}-\mathbf{r_{g}}):\nabla\nabla+...\right] (12)
×Re[tdteiω(tt)[1(𝐫𝐫𝐠)+12(𝐫𝐫𝐠)(𝐫𝐫𝐠):+](𝐄(𝐫)𝐯)\displaystyle\times Re\bigg{[}\int_{-\infty}^{t}dt^{\prime}e^{-i\omega^{*}(t-t^{\prime})}\left[1-(\mathbf{r}-\mathbf{r_{g}})^{\prime}\cdot\nabla+\frac{1}{2}(\mathbf{r}-\mathbf{r_{g}})^{\prime}(\mathbf{r}-\mathbf{r_{g}})^{\prime}:\nabla\nabla+...\right]\left(\mathbf{E}(\mathbf{r}^{\prime})^{*}\cdot{\mathbf{v}^{\prime}}\right)
tdt′′eiω(tt′′)[1(𝐫𝐫𝐠)′′+12(𝐫𝐫𝐠)′′(𝐫𝐫𝐠)′′:+]\displaystyle\cdot\int_{-\infty}^{t^{\prime}}dt^{\prime\prime}e^{i\omega(t-t^{\prime\prime})}\left[1-(\mathbf{r}-\mathbf{r_{g}})^{\prime\prime}\cdot\nabla+\frac{1}{2}(\mathbf{r}-\mathbf{r_{g}})^{\prime\prime}(\mathbf{r}-\mathbf{r_{g}})^{\prime\prime}:\nabla\nabla+...\right]
×(𝐄(𝐫′′)+iω𝐯(𝐫′′)×(×𝐄(𝐫′′)))(𝐯′′f)],\displaystyle\times\left(\mathbf{E}(\mathbf{r^{\prime\prime}})+\frac{i}{\omega}\mathbf{v}(\mathbf{r^{\prime\prime}})\times(\nabla\times\mathbf{E}(\mathbf{r^{\prime\prime}}))\right)\cdot\left(\nabla_{\mathbf{v^{\prime\prime}}}f\right)\bigg{]}\ ,

where the SCK approximation is used as in Eq. (23) of Brambilla and Krucken (1988). In Brambilla and Krucken (1988) the electromagnetic contribution is ignored for the Maxwellian distribution function f=fM(v)f=f_{M}(v) (i.e. (𝐯×𝐁)vfM=0(\mathbf{v}\times\mathbf{B})\cdot\nabla_{v}f_{M}=0), but it is included in Eq. (12) for an arbitrary distribution function f(v,ϑ)f(v,\vartheta). For the small Larmor radius compared to the perpendicular wavelength (i.e. kρi1k_{\perp}\rho_{i}\ll 1), we use the Taylor series for the position vector 𝐫\mathbf{r} from the guiding center position 𝐫𝐠\mathbf{r_{g}}. In this approximation, we expand it by

(𝐫𝐫𝐠)=(𝐫𝐫𝐠)(1)+(𝐫𝐫𝐠)(2)+,\displaystyle(\mathbf{r}-\mathbf{r_{g}})^{\prime}=(\mathbf{r}-\mathbf{r_{g}})^{(1)\prime}+(\mathbf{r}-\mathbf{r_{g}})^{(2)\prime}+..., (13)

where the number in the parenthesis of the superscript denotes the order in the small parameter kρik_{\perp}\rho_{i}. The velocity in the lowest order is

𝐯(0)=v𝐞+v2{ei(ϕ+ttΩ𝑑τ)𝐞++ei(ϕ+ttΩ𝑑τ)𝐞},\displaystyle\mathbf{v}^{(0)\prime}=v_{\|}\mathbf{e_{\|}}^{\prime}+\frac{v_{\perp}}{\sqrt{2}}\left\{e^{i(\phi+\int_{t}^{t^{\prime}}\Omega^{\prime}d\tau)}\mathbf{e_{+}}^{\prime}+e^{-i(\phi+\int_{t}^{t^{\prime}}\Omega^{\prime}d\tau)}\mathbf{e_{-}}^{\prime}\right\}, (14)

where ϕ\phi is the gyroangle between vv_{\perp} and vxv_{x} in the perpendicular velocity plane at the time tt. The position vector from the gyro-center in the first order is

(𝐫𝐫g)(1)=𝐯(0)×𝐞Ω=iv2Ω{eiϕeittΩ𝑑τ𝐞+eiϕeittΩ𝑑τ𝐞}.\displaystyle(\mathbf{r}-\mathbf{r}_{g})^{(1)\prime}=-\frac{\mathbf{v}^{(0)\prime}\times\mathbf{e_{\|}}}{\Omega}=i\frac{v_{\perp}}{\sqrt{2}\Omega}\left\{e^{i\phi}e^{i\int_{t}^{t^{\prime}}\Omega^{\prime}d\tau}\mathbf{e_{+}}^{\prime}-e^{-i\phi}e^{-i\int_{t}^{t^{\prime}}\Omega^{\prime}d\tau}\mathbf{e_{-}}^{\prime}\right\}. (15)

In Eq. (12), the electrostatic contribution is associated with both quasilinear coefficients B and C by

𝐄𝐯f=E(𝐞𝐯f)+E(𝐞𝐯f)\displaystyle\mathbf{E}\cdot\nabla_{\mathbf{v}}f=E_{\perp}(\mathbf{e_{\perp}}\cdot\nabla_{\mathbf{v}}f)+E_{\|}(\mathbf{e_{\|}}\cdot\nabla_{\mathbf{v}}f)
=(Evv+Evv)fv+(EvEv)fϑ,\displaystyle=\left(E_{\perp}\frac{v_{\perp}}{v}+E_{\|}\frac{v_{\|}}{v}\right)\frac{\partial f}{\partial v}+\left(E_{\perp}v_{\|}-E_{\|}v_{\perp}\right)\frac{\partial f}{\partial\vartheta}, (16)

where E(𝐫)=𝐄(𝐯v𝐞)/v={E+exp(i(ϕ+ttΩ𝑑τ))+Eexp(i(ϕ+ttΩ𝑑τ))}/2E_{\perp}(\mathbf{r}^{\prime})=\mathbf{E}\cdot(\mathbf{v}^{\prime}-v_{\|}^{\prime}\mathbf{e_{\|}})/v_{\perp}^{\prime}=\{E_{+}\exp({i(\phi+\int_{t}^{t^{\prime}}\Omega^{\prime}d\tau)})+E_{-}\exp({-i(\phi+\int_{t}^{t^{\prime}}\Omega^{\prime}d\tau)})\}/\sqrt{2}. The electromagnetic contribution depends on only the coefficient C that is associated with the pitch-angle direction variation of the distribution function (f/ϑ\partial f/{\partial\vartheta}) by

(iω𝐯(𝐫)×(×𝐄(𝐫)))(𝐯f)=iω(×𝐄)(𝐯×𝐯f)\displaystyle\left(\frac{i}{\omega}\mathbf{v}(\mathbf{r^{\prime}})\times(\nabla\times\mathbf{E}(\mathbf{r^{\prime}}))\right)\cdot\left(\nabla_{\mathbf{v^{\prime}}}f\right)=-\frac{i}{\omega}\left(\nabla\times\mathbf{E}\right)\cdot\left(\mathbf{v}\times\nabla_{\mathbf{v^{\prime}}}f\right)
=iω(EE)fϑ,\displaystyle=-\frac{i}{\omega}(\nabla_{\|}E_{\perp}-\nabla_{\perp}E_{\|})\frac{\partial f}{\partial\vartheta}, (17)

where ={exp(i(ϕ+ttΩ𝑑τ))++exp(i(ϕ+ttΩ𝑑τ))}/2\nabla_{\perp}=\{\exp({i(\phi+\int_{t}^{t^{\prime}}\Omega^{\prime}d\tau)})\partial_{+}+\exp({-i(\phi+\int_{t}^{t^{\prime}}\Omega^{\prime}d\tau)})\partial_{-}\}/{\sqrt{2}}, +=𝐞+\partial_{+}=\mathbf{e_{+}}\cdot\nabla, =𝐞\partial_{-}=\mathbf{e_{-}}\cdot\nabla, and ==𝐞\nabla_{\|}=\partial_{\|}=\mathbf{e_{\|}}\cdot\nabla.

For simplicity of the representation and the connection to the coefficients, we can separate the contributions on W˙\dot{W} by each harmonic gyrofrequency (nn) and by the diffusion directions associated with B and C. The B part that is associated with f/v\partial f/\partial v for the ion fundamental damping (n=1n=1) is Brambilla (1989)

W˙Bn=1\displaystyle\dot{W}^{n=1}_{B} \displaystyle\simeq q2ωmlimγ0γωd𝐯vfv{12|0dτei0τ(ωΩ)𝑑τE+vv|2\displaystyle\frac{q^{2}\omega}{m}\lim_{\gamma\rightarrow 0}\frac{\gamma}{\omega}\int d\mathbf{v}v\frac{\partial f}{\partial v}\bigg{\{}\frac{1}{2}\bigg{|}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-\Omega)d\tau}E_{+}^{\prime}\frac{v_{\perp}^{\prime}}{v}\bigg{|}^{2} (18)
\displaystyle- Re[(0dτei0τ(ωΩ)𝑑τE+vv){(0dτei0τ(ωΩ)𝑑τivvvΩ+E)\displaystyle Re\bigg{[}\bigg{(}\int_{0}^{\infty}d\tau^{*}e^{i\int_{0}^{\tau}(\omega^{*}-\Omega)d\tau}E_{+}^{\prime*}\frac{v_{\perp}^{\prime}}{v}\bigg{)}\bigg{\{}\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-\Omega)d\tau}i\frac{v_{\|}}{v}\frac{{v^{\prime}_{\perp}}}{\Omega}\partial_{+}E_{\|}^{\prime}\bigg{)}
+(0dτei0τ(ωΩ)𝑑τv22Ω2((+++)E++2E)vv)}]}\displaystyle+\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-\Omega)d\tau}\frac{{v^{\prime}_{\perp}}^{2}}{2\Omega^{2}}((\partial_{+}\partial_{-}+\partial_{-}\partial_{+})E_{+}^{\prime}-\partial_{+}^{2}E_{-}^{\prime})\frac{v_{\perp}^{\prime}}{v}\bigg{)}\bigg{\}}\bigg{]}\bigg{\}}
q2ωmlimγ0γω{(+++)𝑑𝐯v22Ω2vfv|0𝑑τei0τ(ωΩ)𝑑τE+vv|2},\displaystyle-\frac{q^{2}\omega}{m}\lim_{\gamma\rightarrow 0}\frac{\gamma}{\omega}\bigg{\{}(\partial_{+}\partial_{-}+\partial_{-}\partial_{+})\int d\mathbf{v}\frac{{v^{\prime}_{\perp}}^{2}}{2\Omega^{2}}v\frac{\partial f}{\partial v}\bigg{|}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-\Omega)d\tau}E_{+}^{\prime}\frac{v_{\perp}^{\prime}}{v}\bigg{|}^{2}\bigg{\}},

where the term in the first line on the right hand side of Eq. (18) is for the lowest order O(1)O(1), the term in the second line is in the first order of O(kρi)O(k_{\perp}\rho_{i}), and the remaining terms are in the second order of O((kρi)2)O((k_{\perp}\rho_{i})^{2}).

The C part that is associated with f/ϑ\partial f/\partial\vartheta for ion fundamental damping (n=1n=1) is determined by both electrostatic and electromagnetic parts (i.e. W˙Cn=1=W˙C,ESn=1+W˙C,EMn=1\dot{W}^{n=1}_{C}=\dot{W}^{n=1}_{C,ES}+\dot{W}^{n=1}_{C,EM}). The electrostatic part is

W˙C,ESn=1\displaystyle\dot{W}^{n=1}_{C,ES} \displaystyle\simeq q2ωmlimγ0γωd𝐯vRe[(0dτei0τ(ωΩ)𝑑τE+vv){(0dτei0τ(ωΩ)𝑑τE+vfϑ)\displaystyle\frac{q^{2}\omega}{m}\lim_{\gamma\rightarrow 0}\frac{\gamma}{\omega}\int d\mathbf{v}vRe\bigg{[}\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega^{*}-\Omega)d\tau}E_{+}^{\prime*}\frac{v_{\perp}^{\prime}}{v}\bigg{)}\bigg{\{}\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-\Omega)d\tau}E_{+}^{\prime*}{v_{\|}^{\prime}}\frac{\partial f}{\partial\vartheta}\bigg{)} (19)
+(0𝑑τei0τ(ωΩ)𝑑τivΩ+Evfϑ)\displaystyle+\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-\Omega)d\tau}i\frac{{v^{\prime}_{\perp}}}{\Omega}\partial_{+}E_{\|}^{\prime}v_{\perp}\frac{\partial f}{\partial\vartheta}\bigg{)}
+(0dτei0τ(ωΩ)𝑑τ(v22Ω2((+++)E++2E)vfϑ)}]\displaystyle+\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-\Omega)d\tau}\bigg{(}\frac{{v^{\prime}_{\perp}}^{2}}{2\Omega^{2}}((\partial_{+}\partial_{-}+\partial_{-}\partial_{+})E_{+}^{\prime}-\partial_{+}^{2}E_{-}^{\prime}){v_{\|}^{\prime}}\frac{\partial f}{\partial\vartheta}\bigg{)}\bigg{\}}\bigg{]}
q2ωmlimγ0γω{(+++)d𝐯vRe[(0dτei0τ(ωΩ)𝑑τE+vv)\displaystyle-\frac{q^{2}\omega}{m}\lim_{\gamma\rightarrow 0}\frac{\gamma}{\omega}\bigg{\{}(\partial_{+}\partial_{-}+\partial_{-}\partial_{+})\int d\mathbf{v}vRe\bigg{[}\bigg{(}\int_{0}^{\infty}d\tau^{*}e^{i\int_{0}^{\tau}(\omega^{*}-\Omega)d\tau}E_{+}^{\prime*}\frac{v_{\perp}^{\prime}}{v}\bigg{)}
×(0dτei0τ(ωΩ)𝑑τE+vfϑ)]},\displaystyle\times\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-\Omega)d\tau}E_{+}^{\prime*}{v_{\|}^{\prime}}\frac{\partial f}{\partial\vartheta}\bigg{)}\bigg{]}\bigg{\}},

and the electromagnetic part is

W˙C,EMn=1\displaystyle\dot{W}^{n=1}_{C,EM} \displaystyle\simeq q2ωmlimγ0γωd𝐯vRe[(0dτei0τ(ωΩ)𝑑τE+vv){(0dτei0τ(ωΩ)𝑑τ(E++E)fϑ)\displaystyle\frac{q^{2}\omega}{m}\lim_{\gamma\rightarrow 0}\frac{\gamma}{\omega}\int d\mathbf{v}vRe\bigg{[}\bigg{(}\int_{0}^{\infty}d\tau^{*}e^{i\int_{0}^{\tau}(\omega^{*}-\Omega)d\tau}E_{+}^{\prime*}\frac{v_{\perp}^{\prime}}{v}\bigg{)}\bigg{\{}\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-\Omega)d\tau}(\partial_{\|}E_{+}^{\prime}-\partial_{+}E_{\|}^{\prime})\frac{\partial f}{\partial\vartheta}\bigg{)} (20)
+(0𝑑τei0τ(ωΩ)𝑑τivΩ(E++E)fϑ)\displaystyle+\left(\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-\Omega)d\tau}i\frac{{v^{\prime}_{\perp}}}{\Omega}(\partial_{\|}E_{+}^{\prime}-\partial_{+}E_{\|}^{\prime})\frac{\partial f}{\partial\vartheta}\right)
+(0dτei0τ(ωΩ)𝑑τv22Ω2((+++)(E++E)+2(EE))fϑ)}]\displaystyle+\left(\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-\Omega)d\tau}\frac{{v^{\prime}_{\perp}}^{2}}{2\Omega^{2}}\left((\partial_{+}\partial_{-}+\partial_{-}\partial_{+})(\partial_{\|}E_{+}^{\prime}-\partial_{+}E_{\|}^{\prime})-\partial_{+}^{2}(\partial_{\|}E_{-}^{\prime}-\partial_{-}E_{\|}^{\prime})\right)\frac{\partial f}{\partial\vartheta}\right)\bigg{\}}\bigg{]}
q2ωmlimγ0γω{(+++)d𝐯vv22Ω2Re[(0dτei0τ(ωΩ)𝑑τE+vv)\displaystyle-\frac{q^{2}\omega}{m}\lim_{\gamma\rightarrow 0}\frac{\gamma}{\omega}\bigg{\{}(\partial_{+}\partial_{-}+\partial_{-}\partial_{+})\int d\mathbf{v}v\frac{{v^{\prime}_{\perp}}^{2}}{2\Omega^{2}}Re\bigg{[}\bigg{(}\int_{0}^{\infty}d\tau^{*}e^{i\int_{0}^{\tau}(\omega^{*}-\Omega)d\tau}E_{+}^{\prime*}\frac{v_{\perp}^{\prime}}{v}\bigg{)}
×(0dτei0τ(ωΩ)𝑑τ(E++E)fϑ)]},\displaystyle\times\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-\Omega)d\tau}(\partial_{\|}E_{+}^{\prime}-\partial_{+}E_{\|}^{\prime})\frac{\partial f}{\partial\vartheta}\bigg{)}\bigg{]}\bigg{\}},

where the first line is for the lowest order O(1)O(1), the second line is for the first order of O(kρi)O(k_{\perp}\rho_{i}), and the remaining is for the second order of O((kρi)2)O((k_{\perp}\rho_{i})^{2}) in both Eq. (19) and (20).

Before formulating the quasilinear diffusion coefficients using the W˙B1\dot{W}^{1}_{B} and W˙C1\dot{W}^{1}_{C}, we note three important problems that occur in the expansion of W˙\dot{W}:
(1) The coefficient B needs to be positive-definite so that the energy is transferred from the waves to plasmas for the Maxwellian equilibrium distribution and the H-theorem by K-E coefficients is guaranteed Kennel and Engelmann (1966). However, only the lowest order term in W˙B1\dot{W}^{1}_{B} guarantees the positive definite property because of the square form. This problem is also explained in Brambilla (1989).
(2) The zero order in W˙C1\dot{W}^{1}_{C} in the first line has the both contribution from E+E_{+} and EE_{\|}, while it is only determined by E+E_{+} in the Kennel-Engelmann form in the lowest order Kennel and Engelmann (1966). It results in the different contribution from the wave polarization even in the lowest order. In χ𝐤,n=1\chi_{\mathbf{k},n=1} of Eq. (7) for the K-E coefficient, only E𝐤,+J0E_{\mathbf{k},+}J_{0} results in the zero order contribution.
(3) The relation between B and C is different from the relation between K-E form of Eq. (9), which results in the different direction of diffusion.

In the next section, we will resolve these three problems to derive the quasilinear diffusion coefficients correctly in the small Larmor radius limit.

III quasilinear diffusion

III.1 Selection by the lowest order

A solution of the first problem described in the Section II is to retain only the lowest order in the quasilinear diffusion. The lowest order for the fundamental damping (n=1n=1) is the zero order in the FLR expansion O(1)O(1), while the lowest order for the second harmonic damping (n=2n=2) is the second order O((kρi)2)O((k_{\perp}\rho_{i})^{2}). Keeping the lowest order is sufficient unless the parameter kρik_{\perp}\rho_{i} of the fast ions is too large, as will be shown in Section V. The parameter kρik_{\perp}\rho_{i} is determined by the wave power density, the ion density and mass, and the static magnetic field strength.

Another advantage of selecting only the lowest order term is the compatibility with the dielectric tensor for the current. The current can be derived in FLR expansion Brambilla (1989) by

𝐉(𝐫)\displaystyle\mathbf{J}(\mathbf{r}) \displaystyle\simeq sq2md𝐮[1+(𝐫𝐫𝐠)+12(𝐫𝐫𝐠)(𝐫𝐫𝐠):]\displaystyle\sum_{s}\frac{q^{2}}{m}\int d\mathbf{u}\left[1+(\mathbf{r}-\mathbf{r_{g}})\cdot\nabla+\frac{1}{2}(\mathbf{r}-\mathbf{r_{g}})(\mathbf{r}-\mathbf{r_{g}}):\nabla\nabla\right] (21)
×{𝐯[1(𝐫𝐠𝐫𝐠)]tdte(iω(tt))[1(𝐫𝐫𝐠)+12(𝐫𝐫𝐠)(𝐫𝐫𝐠):]\displaystyle\times\bigg{\{}\mathbf{v}\left[1-(\mathbf{r_{g}}-\mathbf{r_{g}}^{\prime})_{\perp}\cdot\nabla_{\perp}\right]\int_{-\infty}^{t}dt^{\prime}e^{(i\omega(t-t^{\prime}))}\left[1-(\mathbf{r}-\mathbf{r_{g}})^{\prime}\cdot\nabla+\frac{1}{2}(\mathbf{r}-\mathbf{r_{g}})^{\prime}(\mathbf{r}-\mathbf{r_{g}})^{\prime}:\nabla\nabla\right]
×(𝐄(𝐫)+iω𝐯(𝐫)×(×𝐄(𝐫)))(𝐯f)}.\displaystyle\times\left(\mathbf{E}(\mathbf{r^{\prime}})+\frac{i}{\omega}\mathbf{v}(\mathbf{r^{\prime}})\times(\nabla\times\mathbf{E}(\mathbf{r^{\prime}}))\right)\cdot\left(\nabla_{\mathbf{v^{\prime}}}f\right)\bigg{\}}.

where s\sum_{s} is the summation over the species. In the finite Larmor radius approximation,

𝐉(𝐫)=[𝐉(0)+𝐉(1)+𝐉(2)+]e(iωt),\displaystyle\mathbf{J}(\mathbf{r})=\left[\mathbf{J}^{(0)}+\mathbf{J}^{(1)}+\mathbf{J}^{(2)}+...\right]e^{(-i\omega t)}, (22)

the zero Larmor radius current is

𝐉(0)(𝐫)=sq2m𝑑𝐯𝐯(0)t𝑑te(iω(tt))(𝐄(𝐫)+iω𝐯(0)×(×𝐄(𝐫)))𝐯f(𝐯(0)).\displaystyle\mathbf{J}^{(0)}(\mathbf{r})=\sum_{s}\frac{q^{2}}{m}\int d\mathbf{v}\mathbf{v}^{(0)\prime}\int_{-\infty}^{t}dt^{\prime}e^{(i\omega(t-t^{\prime}))}\left(\mathbf{E}(\mathbf{r^{\prime}})+\frac{i}{\omega}\mathbf{v}^{(0)\prime}\times(\nabla\times\mathbf{E}(\mathbf{r^{\prime}}))\right)\cdot\nabla_{\mathbf{v^{\prime}}}f(\mathbf{v}^{(0)\prime}). (23)

The n=1n=1 fundamental damping is determined by the 𝐞+\mathbf{e_{+}} in the lowest order. After gyro-average in ϕ\phi, it can be described by the non-local operators L^\hat{L}, ΔL^1\Delta\hat{L}_{1} and ΔL^2\Delta\hat{L}_{2},

𝐞+(𝐄+μ0iω𝐉(0))=(L^+ΔL^1)E++ΔL^2E,\displaystyle\mathbf{e_{+}}\cdot\left(\mathbf{E}+\frac{\mu_{0}i}{\omega}\mathbf{J}^{(0)}\right)=(\hat{L}+\Delta\hat{L}_{1})E_{+}+\Delta\hat{L}_{2}E_{\|}, (24)

where μ0\mu_{0} is the vacuum permeability and the integral operator L^\hat{L} Brambilla (1999) is

L^E+\displaystyle\hat{L}E_{+} =\displaystyle= E+(𝐫)sωp2nsω2d3v(𝐯(0)𝐞+)(𝐯f𝐞+)(iωt𝑑teitt(ωΩ)𝑑τE+)\displaystyle E_{+}(\mathbf{r})-\sum_{s}\frac{\omega_{p}^{2}}{n_{s}\omega^{2}}\int d^{3}v({\mathbf{v}^{(0)}\cdot\mathbf{e_{+}}^{*}})(\nabla_{\mathbf{v}}f\cdot\mathbf{e_{+}})\left(-i\omega\int_{-\infty}^{t}dt^{\prime}e^{i\int^{t}_{t^{\prime}}(\omega-\Omega^{\prime})d\tau}{E_{+}}^{\prime}\right) (25)
=\displaystyle= E+(𝐫)sωp2nsω2d3vv2fv(iωt𝑑teitt(ωΩ)𝑑τE+).\displaystyle E_{+}(\mathbf{r})-\sum_{s}\frac{\omega_{p}^{2}}{n_{s}\omega^{2}}\int d^{3}v\frac{v_{\perp}}{2}\frac{\partial f}{\partial v_{\perp}}\left(-i\omega\int_{-\infty}^{t}dt^{\prime}e^{i\int^{t}_{t^{\prime}}(\omega-\Omega^{\prime})d\tau}{E_{+}}^{\prime}\right).

The electromagnetic contribution to the integral operator are ΔL^1\Delta\hat{L}_{1} and ΔL^2\Delta\hat{L}_{2},

ΔL^1E+\displaystyle\Delta\hat{L}_{1}E_{+} =\displaystyle= sωp2nsω2d3uv2iωfϑ(iωt𝑑teitt(ωΩ)𝑑τE+),\displaystyle\sum_{s}\frac{\omega_{p}^{2}}{n_{s}\omega^{2}}\int d^{3}u\frac{v_{\perp}}{2}\frac{i}{\omega}\frac{\partial f}{\partial\vartheta}\left(-i\omega\int_{-\infty}^{t}dt^{\prime}e^{i\int^{t}_{t^{\prime}}(\omega-\Omega^{\prime})d\tau}\partial_{\|}{E_{+}}^{\prime}\right), (26)
ΔL^2E\displaystyle\Delta\hat{L}_{2}E_{\|} =\displaystyle= sωp2nsω2d3uv2iωfϑ(iωt𝑑teitt(ωΩ)𝑑τ+E).\displaystyle\sum_{s}\frac{\omega_{p}^{2}}{n_{s}\omega^{2}}\int d^{3}u\frac{v_{\perp}}{2}\frac{i}{\omega}\frac{\partial f}{\partial\vartheta}\left(i\omega\int_{-\infty}^{t}dt^{\prime}e^{i\int^{t}_{t^{\prime}}(\omega-\Omega^{\prime})d\tau}\partial_{+}{E_{\|}}^{\prime}\right). (27)

Because of the cancelation by full FLR terms as will be shown in the next subsection, the lowest order of W˙C,EMn=1\dot{W}^{n=1}_{C,EM} has only the term with E+E_{+} in the first line of Eq. (20), and the ΔL^2E\Delta\hat{L}_{2}E_{\|} only contributes to the higher order O(kρi)O(k_{\perp}\rho_{i}). Then, to the lowest order, one can prove that

W˙n=1(0)\displaystyle\dot{W}^{n=1(0)} =\displaystyle= 12Re(𝐄𝐉n=1(0))\displaystyle\frac{1}{2}Re({\mathbf{E}^{*}\cdot\mathbf{J}}^{n=1(0)}) (28)
=\displaystyle= ω2μ0Re[𝐤1𝐤2E+(𝐤2)ei𝐤2𝐫Im(L^+ΔL^1)E+(𝐤1)ei𝐤1𝐫],\displaystyle\frac{\omega}{2\mu_{0}}Re\bigg{[}\sum_{\mathbf{k}_{1}}\sum_{\mathbf{k}_{2}}E_{+}^{*}(\mathbf{k}_{2})e^{-i\mathbf{k}_{2}\cdot\mathbf{r}}\ Im(\hat{L}+\Delta\hat{L}_{1})E_{+}(\mathbf{k}_{1})e^{i\mathbf{k}_{1}\cdot\mathbf{r}}\bigg{]},

where we used the SCK approximation, giving the electric field for the trajectory along the static magnetic field by 𝐄=𝐄(𝐫ttv𝐞dτ)\mathbf{E}^{\prime}=\mathbf{E}\left(\mathbf{r}-\int^{t}_{t^{\prime}}v_{\|}\mathbf{e_{\|}}\prime d\tau\right) and

𝐯f𝐞+(𝐯f𝐞+)eittΩ𝑑τ,\displaystyle\nabla_{\mathbf{v}^{\prime}}f\cdot\mathbf{e_{+}}^{\prime}\simeq(\nabla_{\mathbf{v}}f\cdot\mathbf{e_{+}})e^{i\int_{t}^{t^{\prime}}\Omega^{\prime}d\tau},
𝐯f𝐞(𝐯f𝐞)eittΩ𝑑τ.\displaystyle\nabla_{\mathbf{v}^{\prime}}f\cdot\mathbf{e_{-}}^{\prime}\simeq(\nabla_{\mathbf{v}}f\cdot\mathbf{e_{-}})e^{-i\int_{t}^{t^{\prime}}\Omega^{\prime}d\tau}. (29)

In the general relation, there exists the contribution of kinetic flux making the difference between W˙\dot{W} and 𝐄𝐉w\langle\mathbf{E}\cdot\mathbf{J}\rangle_{w},

𝐄𝐉w=W˙+𝐓,\displaystyle\langle\mathbf{E}\cdot\mathbf{J}\rangle_{w}=\dot{W}+\nabla\cdot\mathbf{T}, (30)

where the kinetic flux 𝐓\mathbf{T} has been derived in many studies Brambilla and Krucken (1988); Smithe (1989). However, to the lowest order, this kinetic flux contribution vanishes in the n=1n=1 damping. Also, the W˙\dot{W} and 𝐄𝐉w\langle\mathbf{E}\cdot\mathbf{J}\rangle_{w} in Eq. (28) are equivalent to the W˙\dot{W} in Eq. (14) of Jaeger et al. (2006a) by making J0(kρi)=1J_{0}(k_{\perp}\rho_{i})=1 and Jn>0(kρi)=0J_{n>0}(k_{\perp}\rho_{i})=0 in the FLR approximation. For the iteration between TORIC-CQL3D, this equivalence between W˙\dot{W} and 𝐄𝐉w\langle\mathbf{E}\cdot\mathbf{J}\rangle_{w} in the lowest order makes the numerical implementation much simpler, and we can use the existing implementation for non-Maxwellian dielectric tensor in the lowest order Phillips et al. (2003); Bertelli et al. (2017).

III.2 Cancelation by full FLR expansion

The second and third problems described in the Section II can be resolved by considering the cancelations of the terms using the summation of all FLR expansions, as described in Chapters 10 and 17 of Stix (1992). In this subsection, we explain the cancellation, which can be applicable for both forms in W˙Bn=1(0)+W˙Cn=1(0)\dot{W}^{n=1(0)}_{B}+\dot{W}^{n=1(0)}_{C} and (L^+ΔL1^)E++ΔL^2E(\hat{L}+\Delta\hat{L_{1}})E_{+}+\Delta\hat{L}_{2}E_{\|}. The methods of cancellation in both forms are the same, so we only derive it for the latter form.

We note two facts in the form of (L^+ΔL1^)E++ΔL^2E(\hat{L}+\Delta\hat{L_{1}})E_{+}+\Delta\hat{L}_{2}E_{\|}. First, the operator (L^+ΔL1^)(\hat{L}+\Delta\hat{L_{1}}) has the operator UU,

U\displaystyle U \displaystyle\equiv (fv+kωfϑ)=vG,\displaystyle\left(\frac{\partial f}{\partial v_{\perp}}+\frac{k_{\|}}{\omega}\frac{\partial f}{\partial\vartheta}\right)=v_{\perp}G, (31)

where kk_{\|} comes from \partial_{\|} in Eq. (26). The operator UU guarantees the diffusion direction of K-E coefficients towards G=0G=0. Secondly, the ΔL^2E\Delta\hat{L}_{2}E_{\|} term cancels with other contributions of EE_{\|} (on PP operator in Stix notation Stix (1992); Brambilla (1999)) by

eiλsinϕEfv+cosϕeiλsinϕiωEfϑ=EneinϕJn(λ)[fvnλkωfϑ]\displaystyle e^{i\lambda\sin{\phi}}E_{\|}\frac{\partial f}{\partial v_{\|}}+\cos{\phi}e^{i\lambda\sin{\phi}}\frac{i}{\omega}\nabla_{\perp}E_{\|}\frac{\partial f}{\partial\vartheta}=E_{\|}\sum_{n}e^{in\phi}J_{n}(\lambda)\left[\frac{\partial f}{\partial v_{\|}}-\frac{n}{\lambda}\frac{k_{\perp}}{\omega}\frac{\partial f}{\partial\vartheta}\right] (32)
=\displaystyle= EneinϕJn(λ)[(1nΩω)1vfϑ+vvfv]\displaystyle E_{\|}\sum_{n}e^{in\phi}J_{n}(\lambda)\left[\left(1-\frac{n\Omega}{\omega}\right)\frac{1}{v_{\perp}}\frac{\partial f}{\partial\vartheta}+\frac{v_{\|}}{v_{\perp}}\frac{\partial f}{\partial v_{\perp}}\right]
=\displaystyle= EneinϕJn(λ)[vvU+ωkvnΩω(fvvvfv)],\displaystyle E_{\|}\sum_{n}e^{in\phi}J_{n}(\lambda)\left[\frac{v_{\|}}{v_{\perp}}U+\frac{\omega-k_{\|}v_{\|}-n\Omega}{\omega}\left(\frac{\partial f}{\partial v_{\|}}-\frac{v_{\|}}{v_{\perp}}\frac{\partial f}{\partial v_{\perp}}\right)\right],

where λ=kρi\lambda=k_{\perp}\rho_{i}. Because the term for the resonance condition ωkvnΩ\omega-k_{\|}v_{\|}-n\Omega also exists in the denominator of the operators ΔL^2\Delta\hat{L}_{2} and PP, the second term in the last line of Eq. (32) vanishes for any distribution function ff. The remaining term depends on the UU operator and it is in the higher order of O(kρi)O(k_{\perp}\rho_{i}) for n=1 because of J1(λ)kρi/2J_{1}(\lambda)\sim k_{\perp}\rho_{i}/2. Here, when we derive Eq. (32), we utilize the Bessel function expansion for the sinusoid phase in Eq. (65) and the following Bessel function identities are used for the cancellation

n=nJn2(λ)=0,n=JndJn(λ)dλ=0,n=Jn2(λ)=1.\displaystyle\sum_{n=-\infty}^{\infty}nJ_{n}^{2}(\lambda)=0,\;\;\;\sum_{n=-\infty}^{\infty}J_{n}\frac{dJ_{n}(\lambda)}{d\lambda}=0,\;\;\;\sum_{n=-\infty}^{\infty}J_{n}^{2}(\lambda)=1. (33)

Here, note that the full summation over nn number is required in the cancellation. The small contributions from the higher orders n>1n>1 accumulate for the cancelation in the lower order.

Because the operator UU only remains for both (L^+ΔL1^)(\hat{L}+\Delta\hat{L_{1}}) and ΔL^2E\Delta\hat{L}_{2}E_{\|}, the diffusion direction in the relations of Eq. (9-11) still holds. Also, to the lowest order, the coefficient B for n=1 is only determined by L^\hat{L}, giving

B =\displaystyle= πϵωp24mnsRe[𝐤𝟐vE+,𝐤𝟐ei(𝐤𝟐𝐫)𝐤𝟏vE+,𝐤𝟏δ(ωΩvk1)ei(𝐤𝟏𝐫)],\displaystyle\frac{\pi\epsilon\omega_{p}^{2}}{4mn_{s}}Re\bigg{[}{\sum_{\mathbf{k_{2}}}{v_{\perp}E_{+,\mathbf{k_{2}}}^{*}}e^{-i(\mathbf{k_{2}}\cdot\mathbf{r})}}{\sum_{\mathbf{k_{1}}}v_{\perp}E_{+,\mathbf{k_{1}}}}\delta(\omega-\Omega-v_{\|}k_{\|1})e^{i(\mathbf{k_{1}}\cdot\mathbf{r})}\bigg{]}, (34)

which is the FLR approximation of Eq. (6).

III.3 Second harmonic damping when ω2Ω\omega\sim 2\Omega

As was done for n=1, we can select only the lowest order FLR contributions of W˙\dot{W} to derive the quasilinear diffusion coefficient for n=2n=2. The B part of the W˙\dot{W} for n=2n=2 in the lowest order that is associated with f/v{\partial f}/{\partial v} is

W˙Bn=2\displaystyle\dot{W}^{n=2}_{B} \displaystyle\simeq q2ωmlimγ0γω𝑑𝐯vfvv2Ω2|0𝑑τei0τ(ω2Ω)𝑑τ+E+vv|2.\displaystyle\frac{q^{2}\omega}{m}\lim_{\gamma\rightarrow 0}\frac{\gamma}{\omega}\int d\mathbf{v}v\frac{\partial f}{\partial v}\frac{v_{\perp}^{2}}{\Omega^{2}}\bigg{|}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-2\Omega)d\tau}\partial_{+}E_{+}^{\prime}\frac{v_{\perp}^{\prime}}{v}\bigg{|}^{2}. (35)

As shown in Eq. (35), the dominant term for n=2n=2 is in O((kρi)2)O((k_{\perp}\rho_{i})^{2}) Brambilla and Krucken (1988). The CC part that is associated with f/ϑ\partial f/\partial\vartheta for n=2n=2 is determined by both electrostatic and electromagnetic parts (i.e. W˙Cn=2=W˙C,ESn=2+W˙C,EMn=2\dot{W}^{n=2}_{C}=\dot{W}^{n=2}_{C,ES}+\dot{W}^{n=2}_{C,EM}). To the lowest order, the electrostatic part is

W˙C,ESn=2\displaystyle\dot{W}^{n=2}_{C,ES} \displaystyle\simeq q2ωmlimγ0γωd𝐯vv2Ω2Re[(0dτei0τ(ω2Ω)𝑑τE+vv)\displaystyle\frac{q^{2}\omega}{m}\lim_{\gamma\rightarrow 0}\frac{\gamma}{\omega}\int d\mathbf{v}v\frac{v_{\perp}^{2}}{\Omega^{2}}Re\bigg{[}\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega^{*}-2\Omega)d\tau}\partial_{-}E_{+}^{\prime*}\frac{v_{\perp}^{\prime}}{v}\bigg{)} (36)
×(0dτei0τ(ω2Ω)𝑑τ+E+vfϑ)],\displaystyle\times\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-2\Omega)d\tau}\partial_{+}E_{+}^{\prime}{v_{\|}^{\prime}}\frac{\partial f}{\partial\vartheta}\bigg{)}\bigg{]},

where +=\partial_{+}^{*}=\partial_{-} is used. The electromagnetic part is

W˙C,EMn=2\displaystyle\dot{W}^{n=2}_{C,EM} \displaystyle\simeq q2ωmlimγ0γωd𝐯vv2Ω2Re[(0dτei0τ(ω2Ω)𝑑τE+vv)\displaystyle\frac{q^{2}\omega}{m}\lim_{\gamma\rightarrow 0}\frac{\gamma}{\omega}\int d\mathbf{v}v\frac{v_{\perp}^{2}}{\Omega^{2}}Re\bigg{[}\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega^{*}-2\Omega)d\tau}\partial_{-}E_{+}^{\prime*}\frac{v_{\perp}^{\prime}}{v}\bigg{)} (37)
×(0dτei0τ(ω2Ω)𝑑τ+(E++E)fϑ)].\displaystyle\times\bigg{(}\int_{0}^{\infty}d\tau e^{i\int_{0}^{\tau}(\omega-2\Omega)d\tau}\partial_{+}(\partial_{\|}E_{+}^{\prime}-\partial_{+}E_{\|}^{\prime})\frac{\partial f}{\partial\vartheta}\bigg{)}\bigg{]}.

In the SCK approximation, the ion current 𝐉(2,2)\mathbf{J}^{(2,2)} retains the term resonant at ω=2Ω\omega=2\Omega Brambilla (1999), and it is obtained by the operators, λ^(2)\hat{\lambda}^{(2)}, Δλ^1(2)\Delta\hat{\lambda}_{1}^{(2)}, and Δλ^2(2)\Delta\hat{\lambda}_{2}^{(2)},

𝐞+(μ0iωJ+,Bn=2,(2))\displaystyle\mathbf{e_{+}}\cdot\left(\frac{\mu_{0}i}{\omega}{J}_{+,B}^{n=2,(2)}\right) =\displaystyle= c2ω2{2(λ^(2)+Δλ^1(2))+E++2Δλ^2(2)+E}\displaystyle\frac{c^{2}}{\omega^{2}}\bigg{\{}2\partial_{-}(\hat{\lambda}^{(2)}+\Delta\hat{\lambda}_{1}^{(2)})\partial_{+}E_{+}^{\prime}+2\partial_{-}\Delta\hat{\lambda}_{2}^{(2)}\partial_{+}E_{\|}^{\prime}\bigg{\}} (38)

where the operator λ^(2)\hat{\lambda}^{(2)} is Brambilla (1999)

λ^(2)E+\displaystyle\hat{\lambda}^{(2)}{E_{+}}^{\prime} =\displaystyle= sωp2nsc2d3vv34Ω2fv(iωt𝑑teitt(ω2Ω)𝑑τE+).\displaystyle\sum_{s}\frac{\omega_{p}^{2}}{n_{s}c^{2}}\int d^{3}v\frac{v_{\perp}^{3}}{4\Omega^{2}}\frac{\partial f}{\partial v_{\perp}}\left(-i\omega\int_{-\infty}^{t}dt^{\prime}e^{i\int^{t}_{t^{\prime}}(\omega-2\Omega^{\prime})d\tau}{E_{+}}^{\prime}\right). (39)

The electromagnetic contribution to the integral operator are Δλ^1(2)\Delta\hat{\lambda}_{1}^{(2)}, and Δλ^2(2)\Delta\hat{\lambda}_{2}^{(2)},

Δλ^1(2)E+\displaystyle\Delta\hat{\lambda}^{(2)}_{1}{E_{+}}^{\prime} =\displaystyle= sωp2nsc2d3vv34Ω2iωfϑ(iωt𝑑teitt(ω2Ω)𝑑τE+),\displaystyle\sum_{s}\frac{\omega_{p}^{2}}{n_{s}c^{2}}\int d^{3}v\frac{v_{\perp}^{3}}{4\Omega^{2}}\frac{i}{\omega}\frac{\partial f}{\partial\vartheta}\left(-i\omega\int_{-\infty}^{t}dt^{\prime}e^{i\int^{t}_{t^{\prime}}(\omega-2\Omega^{\prime})d\tau}{\partial_{\|}E_{+}}^{\prime}\right), (40)
Δλ^2(2)E\displaystyle\Delta\hat{\lambda}^{(2)}_{2}{E_{\|}}^{\prime} =\displaystyle= sωp2nsc2d3vv34Ω2iωfϑ(iωt𝑑teitt(ω2Ω)𝑑τ+E).\displaystyle\sum_{s}\frac{\omega_{p}^{2}}{n_{s}c^{2}}\int d^{3}v\frac{v_{\perp}^{3}}{4\Omega^{2}}\frac{i}{\omega}\frac{\partial f}{\partial\vartheta}\left(i\omega\int_{-\infty}^{t}dt^{\prime}e^{i\int^{t}_{t^{\prime}}(\omega-2\Omega^{\prime})d\tau}{\partial_{+}E_{\|}}^{\prime}\right). (41)

Because of the cancelation by the full FLR expansions as shown in the previous section, the lowest order contributions for n=2n=2 in O((kρi)2)O((k_{\perp}\rho_{i})^{2}) result in

W˙n=2(2)\displaystyle\dot{W}^{n=2(2)} =\displaystyle= 12Re(𝐄𝐉n=2(2))\displaystyle\frac{1}{2}Re({\mathbf{E}^{*}\cdot\mathbf{J}}^{n=2(2)}) (42)
=\displaystyle= ω2μ0Re[𝐤1𝐤2E+(𝐤2)ei𝐤2𝐫Im(λ^(2)+Δλ^1(2))E+(𝐤1)ei𝐤1𝐫],\displaystyle\frac{\omega}{2\mu_{0}}Re\bigg{[}\sum_{\mathbf{k}_{1}}\sum_{\mathbf{k}_{2}}E_{+}^{*}(\mathbf{k}_{2})e^{-i\mathbf{k}_{2}\cdot\mathbf{r}}\ Im(\hat{\lambda}^{(2)}+\Delta\hat{\lambda}^{(2)}_{1})E_{+}(\mathbf{k}_{1})e^{i\mathbf{k}_{1}\cdot\mathbf{r}}\bigg{]},

where the integration by parts is used. Then, to the lowest order for n=2n=2, the diffusion direction in the relations of Eq. (9-11) still holds and the coefficient B is only determined by λ^(2)\hat{\lambda}^{(2)}, giving

B =\displaystyle= πϵωp28mnsRe[v2Ω2𝐤𝟐vE+,𝐤𝟐ei(𝐤𝟐𝐫)(𝐤𝟏v+E+,𝐤𝟏ei(𝐤𝟏𝐫)δ(ω2Ωvk1))],\displaystyle\frac{\pi\epsilon\omega_{p}^{2}}{8mn_{s}}Re\bigg{[}\frac{v_{\perp}^{2}}{\Omega^{2}}{\sum_{\mathbf{k_{2}}}{v_{\perp}E_{+,\mathbf{k_{2}}}^{*}}e^{-i(\mathbf{k_{2}}\cdot\mathbf{r})}}\partial_{-}\bigg{(}{\sum_{\mathbf{k_{1}}}v_{\perp}\partial_{+}E_{+,\mathbf{k_{1}}}}e^{i(\mathbf{k_{1}}\cdot\mathbf{r})}\delta(\omega-2\Omega-v_{\|}k_{\|1})\bigg{)}\bigg{]}, (43)

which is equivalent to the J1(kρi)=kρi/2J_{1}(k_{\perp}\rho_{i})=k_{\perp}\rho_{i}/2 for the small Larmor radius approximation of Eq. (6), and the kk_{\perp} is replaced by the operators \partial_{-} and +\partial_{+}.

IV Implementation in TORIC-CQL3D

In this section, we explain a specific numerical code (TORIC-CQL3D) to solve the Maxwell equation and Fokker-Plank equation self-consistently using the quasilinear diffusion in Section III. The expansion of the quasilinear diffusion coefficients is consistent with the FLR approximation of the wave equations in TORIC. The quasilinear diffusion coefficients are used as the input data of the Fokker-Plank solver, CQL3D, which uses 1-D radial coordinate and 2-D velocity space (vv and ϑ\vartheta coordinate). The toroidal coordinate is neglected because of toroidal symmetry and the velocity coordinate in the gyro-angle direction is eliminated by the average over the fast gyro-motion. The poloidal dependency is also eliminated by using the bounce-averaged Fokker-Plank equation, in which the parallel streaming term is eliminated by the average Harvey and McCoy (1992). While vv is invariant over the poloidal angle θ\theta of a flux surface, the velocity pitch angle ϑ\vartheta is not. Accordingly, CQL3D uses a distribution function that is defined at a poloidal location (outer-midplane) of each flux surface. The effects of the poloidal finite orbit width is included in the modified version of CQL3D Petrov and Harvey (2016), but it is not considered in this paper. To transfer the quasilinear diffusion coefficients to CQL3D, we need to evaluate the bounce-average of the quasilinear coefficients, which are explained in Section IV.1. Additionally, the coefficients are also described relativistically, because the CQL3D uses the normalized relativistic velocity coordinate at the outer-midplane, 𝐮0=γr𝐯0/c\mathbf{u}_{0}=\gamma_{r}\mathbf{v}_{0}/c, where γr\gamma_{r} is the relativistic factor, cc is the speed of light and the subscript 0 denotes the value at the outer-midplane. Once we find the solution of distribution function in CQL3D, we need to reevaluate the wave fields in TORIC corresponding to the new distribution function. In this case, we need to use the dielectric tensor for the non-Maxwellian plasmas in TORIC, as implemented in Phillips et al. (2003); Bertelli et al. (2017). In Section IV.2, we briefly mention the equivalence between the quasilinear diffusion coefficients and the dielectric tensor.

IV.1 Bounce-averaging

The bounce average is defined as Xb=(1/τb)𝑑X/|v|=(1/τb)𝑑θX/(|v|𝐞θ)\langle X\rangle_{b}=({1}/{\tau_{b}})\oint{d\ell X}/|{v_{\|}}|=({1}/{\tau_{b}})\oint{d\theta X}/(|v_{\|}|\mathbf{e_{\|}}\cdot\nabla\theta) along the particle trajectory, where \ell is the trajectory distance and τb=d/|v|\tau_{b}=d\ell/|{v_{\|}}| is the bounce time. Using this definition, the B component of bounce-averaged quasilinear diffusion coefficient for n=1 is

Bb\displaystyle\langle\textsf{B}\rangle_{b} =\displaystyle= πϵωp24mns1τb02πdθ|v|𝐞θm1m2Re[ei(m2m1)θE+(m1)\displaystyle\frac{\pi\epsilon\omega_{p}^{2}}{4mn_{s}}\frac{1}{\tau_{b}}\int_{0}^{2\pi}\frac{d\theta}{|v_{\|}|\mathbf{e_{\|}}\cdot\nabla\theta}\sum_{m_{1}}\sum_{m_{2}}Re\bigg{[}e^{i(m_{2}-m_{1})\theta}{E_{+}}(m_{1}) (44)
×[u2c2γr|k|δ(vωΩk)]E+(m2)],\displaystyle\times\left[\frac{u_{\perp}^{2}c^{2}}{\gamma_{r}|k_{\|}|}\delta\left(v_{\|}-\frac{\omega-\Omega}{k_{\|}}\right)\right]{E_{+}}(m_{2})\bigg{]},

where the electric field is decomposed into poloidal spectral modes m𝐄(m)exp(imθ)\sum_{m}\mathbf{E}(m)\exp({im\theta}) for a fixed toroidal spectral mode at each radial element. The resonance condition ωΩvk=0\omega-\Omega-v_{\|}{k_{\|}}=0 is relativistic using γr=(1+u2)1/2\gamma_{r}=(1+u^{2})^{1/2} and Ω=Ωs/γr\Omega=\Omega_{s}/\gamma_{r} where Ωs\Omega_{s} is the gyrofrequency with the rest mass, giving the elliptic equation Harvey and McCoy (1992)

(u,resu,t)2+u,res21n2=ut2,\displaystyle(u_{\|,res}-u_{\|,t})^{2}+\frac{u_{\perp,res}^{2}}{1-n_{\|}^{2}}=u_{t}^{2}, (45)

where n=kc/ωn_{\|}=k_{\|}c/\omega is the parallel refractive index and

u,tc\displaystyle\frac{u_{\|,t}}{c} =\displaystyle= Ωsωn1n2,\displaystyle\frac{\Omega_{s}}{\omega}\frac{n_{\|}}{1-n_{\|}^{2}},
(utc)2\displaystyle\left(\frac{u_{t}}{c}\right)^{2} =\displaystyle= ((Ωsω)2(1n2))1(1n2)2.\displaystyle\left(\left(\frac{\Omega_{s}}{\omega}\right)^{2}-(1-n_{\|}^{2})\right)\frac{1}{(1-n_{\|}^{2})^{2}}. (46)

The numerical representation of Dirac delta function in Eq. (44) has two options. One is to model the delta function as a kernel in parallel velocity coordinate having the delta function properties (e.g. rectangular, triangular, or gaussian shape) Jaeger et al. (2006a). For simplicity, the rectangular delta function in u0u_{\|0} coordinate with a small width Δu0\Delta u_{\|0} and a large height 1/Δu01/\Delta u_{\|0} is used in the code. The other option is to pre-evaluate the delta function in the integral in terms of poloidal angle, because the argument of delta function varies along the poloidal angle, and giving the local resonance at a poloidal angle θres\theta_{res} (i.e. δ(v(ωΩ)/k)=δ(θθres)/((v(ωΩ)/k)/θ)\delta(v_{\|}-({\omega-\Omega})/{k_{\|}})=\delta(\theta-\theta_{res})/(\partial(v_{\|}-({\omega-\Omega})/{k_{\|}})/\partial\theta)) Wright et al. (2010). The latter does not use the model of the delta function kernel, so it can be more accurate theoretically. However due to the numerical error by the negative value of bounce-average, the first option is likely better to produce the accurate value of Bb\langle\textsf{B}\rangle_{b}.

The quasilinear diffusion coefficients for the second harmonic damping in TORIC use the same differential operator as the plasma current for n=2n=2. The ion current 𝐉n=2,(2)\mathbf{J}^{n=2,(2)} retaining the term resonant at ω=2Ω\omega=2\Omega is

μ0iω𝐉n=2,(2)(𝐫)\displaystyle\frac{\mu_{0}i}{\omega}\mathbf{J}^{n=2,(2)}(\mathbf{r}) =\displaystyle= c2ω2𝐑{((λ^(2)+Δλ^1(2))(𝐑𝐄)+i(λ^(2)+Δλ^1(2))(𝐞×𝐑𝐄))\displaystyle\frac{c^{2}}{\omega^{2}}\mathbf{R}\cdot\bigg{\{}\nabla_{\perp}((\hat{\lambda}^{(2)}+\Delta\hat{\lambda}^{(2)}_{1})\nabla_{\perp}\cdot(\mathbf{R}\cdot\mathbf{E}_{\perp})+i(\hat{\lambda}^{(2)}+\Delta\hat{\lambda}^{(2)}_{1})\nabla_{\perp}\cdot(\mathbf{e}_{\|}\times\mathbf{R}\cdot\mathbf{E}_{\perp})) (47)
(𝐞×)((λ^(2)+Δλ^1(2))(𝐞×𝐑𝐄))\displaystyle-(\mathbf{e}_{\|}\times\nabla_{\perp})((\hat{\lambda}^{(2)}+\Delta\hat{\lambda}^{(2)}_{1})\nabla_{\perp}\cdot(\mathbf{e}_{\|}\times\mathbf{R}\cdot\mathbf{E}_{\perp}))
i(λ^(2)+Δλ^1(2))(𝐑𝐄))},\displaystyle-i(\hat{\lambda}^{(2)}+\Delta\hat{\lambda}^{(2)}_{1})\nabla_{\perp}\cdot(\mathbf{R}\cdot\mathbf{E}_{\perp}))\bigg{\}},

where the matrix 𝐑\mathbf{R} is the reflection matrix with respect to the plane containing the static magnetic field 𝐁0\mathbf{B}_{0}, giving 𝐑𝐄i𝐞×(𝐑𝐄)=2E±𝐞±\mathbf{R}\cdot\mathbf{E}\mp i\mathbf{e}_{\|}\times(\mathbf{R}\cdot\mathbf{E})=2E_{\pm}\mathbf{e}_{\pm} Brambilla (1989). Then, its corresponding bounce-averaged quasilinear coefficient for B is

Bb\displaystyle\langle\textsf{B}\rangle_{b} =\displaystyle= 1τb02πdθ|v|𝐞θRem1m2ei(m2m1)θ\displaystyle\frac{1}{\tau_{b}}\int_{0}^{2\pi}\frac{d\theta}{|v_{\|}|\mathbf{e_{\|}}\cdot\nabla\theta}Re\sum_{m_{1}}\sum_{m_{2}}e^{i(m_{2}-m_{1})\theta} (48)
×𝐄(m1)𝐑{(λ¯(2)(𝐑𝐄(m2))+iλ¯(2)(𝐞×𝐑𝐄(m2)))\displaystyle\times\mathbf{E}_{\perp}(m_{1})\cdot\mathbf{R}\cdot\bigg{\{}\nabla_{\perp}(\bar{\lambda}^{(2)}\nabla_{\perp}\cdot(\mathbf{R}\cdot\mathbf{E}_{\perp}(m_{2}))+i\bar{\lambda}^{(2)}\nabla_{\perp}\cdot(\mathbf{e}_{\|}\times\mathbf{R}\cdot\mathbf{E}_{\perp}(m_{2})))
(𝐞×)(λ¯(2)(𝐞×𝐑𝐄(m2))iλ¯(2)(𝐑𝐄(m2)))},\displaystyle-(\mathbf{e}_{\|}\times\nabla_{\perp})(\bar{\lambda}^{(2)}\nabla_{\perp}\cdot(\mathbf{e}_{\|}\times\mathbf{R}\cdot\mathbf{E}_{\perp}(m_{2}))-i\bar{\lambda}^{(2)}\nabla_{\perp}\cdot(\mathbf{R}\cdot\mathbf{E}_{\perp}(m_{2})))\bigg{\}},

where the redefined operator λ¯\bar{\lambda} is

λ¯(2)\displaystyle\bar{\lambda}^{(2)} =\displaystyle= πωp28mnsu4c2Ω2γr1|k|δ(vω2Ωk).\displaystyle\frac{\pi\omega_{p}^{2}}{8mn_{s}}\frac{u_{\perp}^{4}c^{2}}{\Omega^{2}\gamma_{r}}\frac{1}{|k_{\|}|}\delta\left(v_{\|}-\frac{\omega-2\Omega}{k_{\|}}\right). (49)

The relations between the bounce-averaged coefficients are obtained by the diffusion direction in Eq. (9-11) and the resonance condition Harvey and McCoy (1992),

Cb\displaystyle\langle{\textsf{C}}\rangle_{b} =\displaystyle= Bb1vsinϑ[cosϑkvω]ϑ0ϑ|res\displaystyle\langle{\textsf{B}}\rangle_{b}\frac{1}{v\sin\vartheta}\left[\cos\vartheta-\frac{k_{\|}v}{\omega}\right]\frac{\partial\vartheta_{0}}{\partial\vartheta}\bigg{|}_{res}
=\displaystyle= Bbsinϑ0v0cosϑ0[cos2ϑsin2ϑωmΩωsin2ϑ]|res\displaystyle\langle{\textsf{B}}\rangle_{b}\frac{\sin\vartheta_{0}}{v_{0}\cos\vartheta_{0}}\left[\frac{\cos^{2}\vartheta}{\sin^{2}\vartheta}-\frac{\omega-m\Omega}{\omega\sin^{2}\vartheta}\right]\bigg{|}_{res}
=\displaystyle= Bb(mΩ0/ω)sin2ϑ0v0cosϑ0sinϑ0,\displaystyle\langle{\textsf{B}}\rangle_{b}\frac{(m\Omega_{0}/\omega)-\sin^{2}\vartheta_{0}}{v_{0}\cos\vartheta_{0}\sin\vartheta_{0}},
Eb\displaystyle\langle{\textsf{E}}\rangle_{b} =\displaystyle= Bb(mΩ0/ω)sin2ϑ0v0cosϑ0,\displaystyle\langle{\textsf{B}}\rangle_{b}\frac{(m\Omega_{0}/\omega)-\sin^{2}\vartheta_{0}}{v_{0}\cos\vartheta_{0}},
Fb\displaystyle\langle{\textsf{F}}\rangle_{b} =\displaystyle= Bb{(mΩ0/ω)sin2ϑ0}2v02cos2ϑ0sinϑ0,\displaystyle\langle{\textsf{B}}\rangle_{b}\frac{\{(m\Omega_{0}/\omega)-\sin^{2}\vartheta_{0}\}^{2}}{v_{0}^{2}\cos^{2}\vartheta_{0}\sin\vartheta_{0}}, (50)

where the conserved magnetic moment results in ϑ0/ϑ=(cosϑ/cosϑ0)(sinϑ0/sinϑ){\partial\vartheta_{0}}/{\partial\vartheta}=(\cos\vartheta/\cos\vartheta_{0})(\sin\vartheta_{0}/\sin\vartheta), and Ω0=Ωsin2ϑ0/sin2ϑ\Omega_{0}=\Omega\sin^{2}\vartheta_{0}/\sin^{2}\vartheta is the gyrofrequency at the outer-midplane. It is worth noting that the final relations do not depend on the wavevector kk_{\|} and the resonance poloidal locations. Hence, the heavy computation to evaluate the quasilinear tensor is required only in evaluating one component, Bb\langle{\textsf{B}}\rangle_{b}, and other components Cb\langle{\textsf{C}}\rangle_{b}, Eb\langle{\textsf{E}}\rangle_{b}, and Fb\langle{\textsf{F}}\rangle_{b} are obtained in the post-process using the relations in Eq. (50). It is an advantage of using the coordinate in (u,ϑ0)(u,\vartheta_{0}) that has the invariant variable uu.

IV.2 Dielectric tensor for non-Maxwellian plasmas in FLR limit

The FLR approximation to the quasilinear diffusion coefficients needs to be accordance with the approximation to the imaginary part of dielectric tensor, because we proved 𝐄𝐉w=W˙\langle\mathbf{E}\cdot\mathbf{J}\rangle_{w}=\dot{W} to the lowest order for n=1n=1 and n=2n=2. For any nn, the dielectric tensor is generalized in Stix (1992) by

χ¯s=ωp2ω02πv𝑑v𝑑v[𝐞𝐞v2ω(1vfv1vfv)+n=(vUωkvnΩT¯n)],\displaystyle\bar{\chi}_{s}=\frac{\omega_{p}^{2}}{\omega}\int_{0}^{\infty}2\pi v_{\perp}dv_{\perp}\int_{-\infty}^{\infty}dv_{\|}\left[{\mathbf{e}_{\|}}{\mathbf{e}_{\|}}\frac{v_{\|}^{2}}{\omega}\left(\frac{1}{v_{\|}}\frac{\partial f}{\partial v_{\|}}-\frac{1}{v_{\perp}}\frac{\partial f}{\partial v_{\perp}}\right)+\sum_{n=-\infty}^{\infty}\left(\frac{v_{\perp}U}{\omega-k_{\|}v_{\|}-n\Omega}\bar{T}_{n}\right)\right], (51)

where T¯n\bar{T}_{n} is the polarization matrix having the Bessel function JnJ_{n} and its derivatives JnJ_{n}^{\prime}. For n=1n=1 and n=2n=2, the polarization matrix is approximated by the FLR expansion of the Bessel functions Phillips et al. (2003); Bertelli et al. (2017). For n=1, using J1(kv/Ω)kv/2ΩJ_{1}\left({k_{\perp}v_{\perp}}/{\Omega}\right)\simeq{k_{\perp}v_{\perp}}/{2\Omega} and integration by parts for the vv_{\perp} integration, the components of the dielectric tensor in the zero order are Phillips et al. (2003)

χxx(0)=χyy(0)=ωps2ω[12(A~1,0+A~1,0)],\displaystyle\chi_{xx}^{(0)}=\chi_{yy}^{(0)}=\frac{\omega_{ps}^{2}}{\omega}\left[\frac{1}{2}\left(\tilde{A}_{1,0}+\tilde{A}_{-1,0}\right)\right],
χxy(0)=χyx(0)=iωps2ω[12(A~1,0A~1,0)],\displaystyle\chi_{xy}^{(0)}=-\chi_{yx}^{(0)}=i\frac{\omega_{ps}^{2}}{\omega}\left[\frac{1}{2}\left(\tilde{A}_{1,0}-\tilde{A}_{-1,0}\right)\right], (52)

where A~n,j\tilde{A}_{n,j} has the integration in vv_{\|},

A~n,j\displaystyle\tilde{A}_{n,j} =\displaystyle= 𝑑v1ωkvnΩ02πv𝑑vHj(v,v),\displaystyle\int_{-\infty}^{\infty}dv_{\|}\frac{1}{\omega-k_{\|}v_{\|}-n\Omega}\int_{0}^{\infty}2\pi v_{\perp}dv_{\perp}H_{j}(v_{\|},v_{\perp}), (53)
H0(v,v)\displaystyle H_{0}(v_{\|},v_{\perp}) =\displaystyle= 12kw2ωfv(1kvω)f.\displaystyle\frac{1}{2}\frac{k_{\|}w_{\perp}^{2}}{\omega}\frac{\partial f}{\partial v_{\|}}-\left(1-\frac{k_{\|}v_{\|}}{\omega}\right)f. (54)

Here, ww_{\perp} is the average perpendicular velocity. This approximation is exactly corresponding to the quasilinear diffusion approximation in W˙n=1(0)\dot{W}^{n=1(0)} of Eq. (28), because the operator H0H_{0} in Eq. (54) corresponds to the operator UU in Eq. (31) that determines the diffusion direction, and the left-hand polarization in Eq. (52) corresponds to the dielectric constant for E+E_{+}. Thus, for the dielectric tensor of the non-Maxweliian distribution, the operator A~1,0\tilde{A}_{1,0} can be used instead of (L^+ΔL1^)(\hat{L}+\Delta\hat{L_{1}}) in TORIC.

For n=2n=2, the imaginary part is determined by

χxxn=2,(2)=χyyn=2,(2)=ωps2ω[k2w24Ω2(A~2,1+A~2,1)],\displaystyle\chi_{xx}^{n=2,(2)}=\chi_{yy}^{n=2,(2)}=\frac{\omega_{ps}^{2}}{\omega}\left[\frac{k_{\perp}^{2}w_{\perp}^{2}}{4\Omega^{2}}\left(\tilde{A}_{2,1}+\tilde{A}_{-2,1}\right)\right],
χxyn=2,(2)=χyxn=2,(2)=iωps2ω[k2w24Ω2(A~2,1A~2,1)],\displaystyle\chi_{xy}^{n=2,(2)}=-\chi_{yx}^{n=2,(2)}=i\frac{\omega_{ps}^{2}}{\omega}\left[\frac{k_{\perp}^{2}w_{\perp}^{2}}{4\Omega^{2}}\left(\tilde{A}_{2,1}-\tilde{A}_{-2,1}\right)\right], (55)

where J2(kv/Ω)k2v2/8Ω2J_{2}\left({k_{\perp}v_{\perp}}/{\Omega}\right)\simeq{k_{\perp}^{2}v_{\perp}^{2}}/{8\Omega^{2}} is used to the lowest order Phillips et al. (2003), giving

H1(v,v)\displaystyle H_{1}(v_{\|},v_{\perp}) =\displaystyle= 14kw2ωfvv4w4(1kvω)fv2w2.\displaystyle\frac{1}{4}\frac{k_{\|}w_{\perp}^{2}}{\omega}\frac{\partial f}{\partial v_{\|}}\frac{v_{\perp}^{4}}{w_{\perp}^{4}}-\left(1-\frac{k_{\|}v_{\|}}{\omega}\right)f\frac{v_{\perp}^{2}}{w_{\perp}^{2}}. (56)

Here, kk_{\perp} in Eq. (55) is not explicitly evaluated in TORIC but the corresponding vector operators in Eq. (47) are used. Then, the operator A~2,1\tilde{A}_{2,1} can be used instead of λ^(2)+Δλ^1(2)\hat{\lambda}^{(2)}+\Delta\hat{\lambda}^{(2)}_{1} in Eq. (47), giving the 𝐄𝐉w=W˙\langle\mathbf{E}\cdot\mathbf{J}\rangle_{w}=\dot{W} to the lowest order of n=2n=2 in TORIC.

V Examples

We present some examples using the reduced model in TORIC-CQL3D and compare them with the results by the full model in AORSA-CQL3D Jaeger et al. (2006b). In the following two examples, we simulate the 10MW ICRF minority species heating scenarios in ITER with a static magnetic field 5.3T at the magnetic axis, as in the benchmark study of Budny et al. (2012). The two examples have the different wave frequencies and the cyclotron layer location is set to be off-axis in the first example and on-axis in the second example. The wave power density of the first example is much smaller than the second examples because the off-axis damping of the first example results in the wave energy transfer at a larger volume compared to the core damping of the second example. Since the maximum energy of the fast ions depends on the wave power density, we can compare the validity of the FLR approximation in the examples.

V.1 Fundamental damping by He3 with 48 MHz ICRF in ITER

In this example, we simulate three ion species with the ratio of (D,T,He3)=(48,48,2)%=(48,48,2)\% and the ICRF wave frequency is 48MHz. The dominant wave power is absorbed by the minority species He3 in the off-axis because the cyclotron layer is located at R=R0+0.87mR=R_{0}+0.87\textrm{m} in the low field side, which is tangential to the flux surface of r/a=0.52r/a=0.52. Here, R0=6.2mR_{0}=6.2\textrm{m} is the major radius of magnetic-axis and r/ar/a is the normalized radial coordinate, which is determined by the square root of poloidal flux in this section. The power absorption results between TORIC and AORSA are similar particularly in the ion damping, but some differences are seen in the electron channel due to the approximation made in TORIC for ion Bernstein wave damping Brambilla (1999). The power decomposition is 67%67\% of He3 fundamental damping, 17%17\% of T second harmonic damping, and 15% electron damping in TORIC, while it is 79%79\% of He3 fundamental damping, 13%13\% of T second harmonic damping, and 9%9\% electron damping in AORSA. The radial power profiles of He3 are reasonably similar between two codes as shown in Figure 1.

The wave power density (1MW/m3\lesssim 1\textrm{MW/m}^{3}) in this example results in the non-negligible change from the initial Maxwellian distribution as shown in Figure 2, although its impact on the power absorption profile is not significant as shown in the difference between blue and green curves in Figure 1. The patterns of the distribution functions show the reasonable agreement between the reduced model (TORIC-CQL3D) in Figure 2-(a) and (c) and the full model (AORSA-CQL3D) in Figure 2-(b) and (d). Figure 3-(a) and (b) shows the diagonal component of the quasilinear diffusion coefficient in the speed direction for the reduced model and the full model. Their patterns are reasonably similar, while the diffusion of the high energetic ions around 1MeV in the reduced model is higher than that of the full model. In Figure 3-(a), the diffusion coefficients in the reduced model almost constantly increase in terms of perpendicular velocity, which is relevant to v2v_{\perp}^{2} in Eq. (34) that does not have the decaying factor by the Bessel function J0(kρi)2J_{0}(k_{\perp}\rho_{i})^{2} in Eq. (6). Nevertheless, this difference does not affect significantly on the energy transfer or the distribution functions in Figure 2. The figures of Figure 3-(c) and (d) show the small difference of diffusion coefficients between two models if they are multiplied by the weight of the general exponential decay of the distribution function. In this example, the maximum energy of the energetic ions is approximately 1MeV with a Larmor radius of about 3 cm and the fast wave branch has approximately 20 cm wavelength. Accordingly, the most of ions satisfy kρi1k_{\perp}\rho_{i}\lesssim 1 and the reduced model is marginally valid.

(a)                                                                         (b)                                                                
Refer to captionRefer to caption

Figure 1: Example 1: radial profiles of power absorption by He3 for the 48 MHz ICRF injection. The total wave power is 10MW, and the profiles are simulated (a) by the reduced model in TORIC-CQL3D and (b) by the full model in AORSA-CQL3D. The blue curve is the absorption by 𝐄𝐉w\langle\mathbf{E}\cdot\mathbf{J}\rangle_{w} for the isotropic Maxwellian distribution function. The green and red curves are the absorption by 𝐄𝐉w\langle\mathbf{E}\cdot\mathbf{J}\rangle_{w} in the wave code (TORIC or AORSA) and the absorption by W˙\dot{W} in the Fokker-Plank code (CQL3D), respectively, when the iteration converges so that the self-consistent non-Maxwellian distribution is developed.

(a)                                                                         (b)                                                                
Refer to captionRefer to caption
(c)                                                                         (d)                                                                
Refer to caption            Refer to caption

Figure 2: Example 1: (a) and (b) are the 2-D contour plots of the distribution function in (u0,u0)(u_{\|0},u_{\perp 0}). (c) and (d) are the 1-D distribution functions in terms of uu for several pitch-angles ϑ\vartheta at r/a=0.44r/a=0.44. Figure (a) and (c) are simulated by TORIC-CQL3D and (b) and (d) are simulated by AORSA-CQL3D, where unormu_{norm} is the momentum corresponding to the energy of He3 1MeV. The dashed lines in the contour plots are the trapped-passing boundaries, and the unit of the distribution function is cm3\textrm{cm}^{-3}.

(a)                                                                         (b)                                                                
Refer to captionRefer to caption
(c)                                                                         (d)                                                                
Refer to captionRefer to caption

Figure 3: Example 1: (a) and (b) are the 2-D contour plots of quasilinear diffusion coefficient λB\lambda\langle B\rangle in (u0,u0)(u_{\|0},u_{\perp 0}) and (c) and (d) are those weighted by the Maxwellian factor λBexp(v2/vt2)\lambda\langle B\rangle\exp(-v^{2}/v_{t}^{2}) at r/a=0.44r/a=0.44. Figure (a) and (c) are simulated by TORIC-CQL3D and (b) and (d) are simulated by AORSA-CQL3D, where the contour values are normalized to unormu_{norm} is the momentum corresponding to the energy of He3 1MeV. The dashed lines are the trapped-passing boundaries, and the unit of the λB\lambda\langle B\rangle is vnorm4v_{norm}^{4} where vnormv_{norm} is the speed corresponding to unormu_{norm}.

V.2 Fundamental damping by He3 with 52.5 MHz ICRF in ITER

In this example, we simulate three ion species with the ratio of (D,T,He3)=(48,48,2)%=(48,48,2)\% as the first example, but the ICRF wave frequency is 52.5MHz. This example has the same condition as the benchmark case between TORIC and AORSA in Budny et al. (2012). The dominant wave power is absorbed by the minority species He3 around the magnetic axis because the cyclotron layer is located at R=R0+0.17mR=R_{0}+0.17m in the low field side, which is tangential to the flux surface of r/a=0.10r/a=0.10. The power decompositions reasonably agree between TORIC and AORSA: For Maxwellian plasmas, 51%51\% of He3 fundamental damping, 15%15\% of T second harmonic damping, and 34%34\% electron damping in TORIC, while 55%55\% of He3 fundamental damping, 12%12\% of T second harmonic damping, and 34%34\% electron damping in AORSA. For self-consistent non-Maxwellian plasmas, we found 50%50\% of He3 fundamental damping, 16%16\% of T second harmonic damping, and 34%34\% electron damping in TORIC, while 56%56\% of He3 fundamental damping, 12%12\% of T second harmonic damping, and 33%33\% electron damping in AORSA. These results also agree with the previous results in Budny et al. (2012). Figure 4 shows the radial power profiles of He3 for this example. Both in TORIC and AORSA, the damping at the core (r/a0.1r/a\lesssim 0.1) is reduced by the non-Maxwellian plasmas and the power absorption profile is broadened (compare the blue curve and the red curve). The broaden profile of the power absorption with the non-Maxwellian distribution is expected because of the Doppler shift of the energetic ions Dumont et al. (2005).

The difference between the green curve and the red curve in TORIC-CQL3D of Figure 4-(a) indicates some problems in the iteration convergence. The high power density (>5MW/m3>5\textrm{MW/m}^{3}) at the core results in the high energetic tail up to 4 MeV in Figure 5, in which the FLR approximation may not be acceptable. For the high energetic ions with kρi2k_{\perp}\rho_{i}\geq 2, their quasilinear diffusion coefficients in the reduced model of Eq. (34) may be inaccurate compared to the full model of Eq. (6) due to two reasons. One reason is the missing Bessel function factor J02(kρi2)<0.2J_{0}^{2}(k_{\perp}\rho_{i}\geq 2)<0.2 in the term of E+E_{+}, and the other reason is the missing higher order term of J2(kρi)EJ_{2}(k_{\perp}\rho_{i})E_{-}. The former likely causes the overestimation of the diffusion, while the latter causes the underestimation when J2J_{2} is not negligible for the high kρik_{\perp}\rho_{i}. Figure 6-(a) and (b) show such differences, in which the diffusion of the reduced model increases in vv_{\perp} while the diffusion of the full model is small up to the particle energy 2MeV but it is large beyond the energy.

For the high energetic particles (>2MeV>2\textrm{MeV}), the distribution function of the full model in Figure 5-(b) and (d) is much larger than that of the reduced model in Figure 5-(a) and (c) because of the strong diffusion. Nevertheless, for the most population particles below 2MeV the distribution functions in Figure 5 are very similar between two models because the diffusions are comparable according to the Figure 6-(c) and (d). Thus, even for the simulation of the high wave power density which results in the problematic FLR approximation, the reduced model can be useful to estimate the sub-MeV distribution functions and the wave power absorption.

(a)                                                                         (b)                                                                
Refer to captionRefer to caption

Figure 4: Example 2: radial profiles of power absorption by He3 for the 52.5 MHz ICRF injection. The total wave power is 10MW, and the profiles are simulated (a) by the reduced model in TORIC-CQL3D and (b) by the full model in AORSA-CQL3D.

(a)                                                                         (b)                                                                
Refer to captionRefer to caption
(c)                                                                         (d)                                                                
Refer to caption            Refer to caption

Figure 5: Example 2: (a) and (b) are the 2-D contour plots of the distribution function in (u0,u0)(u_{\|0},u_{\perp 0}). (c) and (d) are the 1-D distribution functions in terms of uu for several pitch-angles ϑ\vartheta at r/a=0.08r/a=0.08. Figure (a) and (c) are simulated by TORIC-CQL3D and (b) and (d) are simulated by AORSA-CQL3D, where unormu_{norm} is the momentum corresponding to the energy of He3 4MeV.

(a)                                                                         (b)                                                                
Refer to captionRefer to caption
(c)                                                                         (d)                                                                
Refer to captionRefer to caption

Figure 6: Example 2: (a) and (b) are the 2-D contour plots of quasilinear diffusion coefficient λB\lambda\langle B\rangle in (u0,u0)(u_{\|0},u_{\perp 0}) and (c) and (d) are those weighted by the Maxwellian factor λBexp(v2/vt2)\lambda\langle B\rangle\exp(-v^{2}/v_{t}^{2}) at r/a=0.08r/a=0.08. Figure (a) and (c) are simulated by TORIC-CQL3D and (b) and (d) are simulated by AORSA-CQL3D, where the contour values are normalized to unormu_{norm} is the momentum corresponding to the energy of He3 4MeV.

VI Discussion

In this paper, we derived and evaluated the quasilinear diffusion coefficients for the reduced model based on the small Larmor radius approximation. Although we present rigorous derivation and proof for the coefficients, the result can be summarized by the two simple statements: (1) use the approximation of Bessel function to the lowest order in kρik_{\perp}\rho_{i} for the coefficient B of Eq. (6) in the full model, and (2) use the relations in Eqs. (9-11) for other coefficients C, E, and F. In other words, it is sufficient for the coefficient B in the reduced model to use J0=1J_{0}=1 and J1=J2=0J_{1}=J_{2}=0 for n=1n=1 damping and J1=kρi/2J_{1}=k_{\perp}\rho_{i}/2 and J2=J3=0J_{2}=J_{3}=0 for n=2n=2 damping. These quasilinear diffusion coefficients guarantee the equivalence with the dielectric tensor in the reduced model of Section IV.2 and the necessary properties of theoretical velocity diffusion such as the wave polarization and the diffusion direction. Because the reduced model is only valid when the Larmor radius is sufficiently small compared to the perpendicular wavelength, it can be inaccurate if there is a significant population of the energetic ions.

In Section V, we observe that the diffusion characteristics between the reduced model and the full model are different for the energetic ions with kρi1.0k_{\perp}\rho_{i}\gtrsim 1.0, although the overall diffusion patterns in the full range of distribution function are similar. The diffusion of the energetic ions by E+E_{+} is reduced significantly in the full model because of the decay of Bessel functions in vv_{\perp}, while there is no such a decay in the reduced model. Additionally, the dominant polarization changes from E+E_{+} to EE_{-} in the full model, if kρi1.4k_{\perp}\rho_{i}\gtrsim 1.4. As shown in the first example in Section V, if the wave power density is sufficiently small so that the population of energetic ions with kρi1.0k_{\perp}\rho_{i}\gtrsim 1.0 is negligible, the self-consistent reduced model is sufficiently accurate compared to the full model. Even for the high power density in the second example, the wave damping profile shows a reasonable agreement with the results of the full model unless there are too many energetic ions with kρi2.0k_{\perp}\rho_{i}\gtrsim 2.0.

We also derived the reduced model for the second harmonic n=2n=2 damping and implemented it in TORIC-CQL3D. For the high power density of the damping, the error of the reduced model by the FLR approximation is likely larger than the fundamental n=1n=1 damping because the approximation of the Bessel function by J1kρi/2J_{1}\simeq k_{\perp}\rho_{i}/2 results in the significant difference from the full model for the high kρik_{\perp}\rho_{i}.

In high volume tokamaks such as ITER and future reactors, the ICRF wave power density is likely small, and the benefit of the reduced model becomes more important because of the saving of the large computation cost. In this case, the self-consistent quasilinear diffusion coefficients in this paper for the reduced model can be useful, although they are expected to have allowable deviations from the full model. Furthermore, we would like to point out that even for the full model, using the Kennel-Engelmann diffusion coefficients results in the limitations to describe the important physics of the energetic ions in the high power density such as the finite orbit width and the perturbed orbit. The saved computation cost in the reduced model can be used for the extensions of the simulation toward the physically more important directions. For example, it has been noticed the importance of three dimensional simulations that superpose many toroidal modes of two dimensional solutions, time dependent simulations, or the coupling of the core plasma wave with the edge/scrape off layer wave simulations.

Appendix A quasilinear diffusion coefficient in a homogenous magnetic field

In a uniform magnetic field with spatially uniform plasmas, the Kennel-Engelmann quasilinear diffusion operator Kennel and Engelmann (1966) can be defined by

Q(f)\displaystyle Q(f) =\displaystyle= qmv[(𝐄+𝐯×𝐁c)f]w\displaystyle-\frac{q}{m}\left\langle\nabla_{v}\cdot\left[\left(\mathbf{E}+\frac{\mathbf{v}\times\mathbf{B}}{c}\right){f}\right]\right\rangle_{w} (57)
\displaystyle\simeq qmv[𝐤{I(1𝐤𝐯ω)+𝐤𝐯ω}𝐄𝐤f𝐤],\displaystyle-\frac{q}{m}\nabla_{v}\cdot\left[\sum_{\mathbf{k}}\left\{\stackrel{{\scriptstyle\leftrightarrow}}{{I}}\left(1-\frac{\mathbf{k}\cdot\mathbf{v}}{\omega}\right)+\frac{\mathbf{k}\mathbf{v}}{\omega}\right\}\cdot\mathbf{E}_{\mathbf{-k}}f_{\mathbf{k}}\right], (58)

where I\stackrel{{\scriptstyle\leftrightarrow}}{{I}} is the unit tensor. We have used the Fourier analyzed fluctuating electric field, 𝐄=𝐤𝐄𝐤exp(i𝐤𝐫iω𝐤t)\mathbf{E}=\sum_{\mathbf{k}}\mathbf{E}_{\mathbf{k}}\exp(i\mathbf{k}\cdot\mathbf{r}-i\omega_{\mathbf{k}}t), the fluctuating magnetic field 𝐁=𝐤𝐁𝐤exp(i𝐤𝐫iω𝐤t)\mathbf{B}=\sum_{\mathbf{k}}\mathbf{B}_{\mathbf{k}}\exp(i\mathbf{k}\cdot\mathbf{r}-i\omega_{\mathbf{k}}t), and the fluctuating distribution function, f=𝐤f𝐤exp(i𝐤𝐫iω𝐤t)f=\sum_{\mathbf{k}}f_{\mathbf{k}}\exp(i\mathbf{k}\cdot\mathbf{r}-i\omega_{\mathbf{k}}t). The functions 𝐄𝐤𝐄(ω𝐤,𝐤)\mathbf{E}_{\mathbf{k}}\equiv\mathbf{E}(\omega_{\mathbf{k}},\mathbf{k}), 𝐁𝐤𝐁(ω𝐤,𝐤)\mathbf{B}_{\mathbf{k}}\equiv\mathbf{B}(\omega_{\mathbf{k}},\mathbf{k}), and f𝐤f(ω𝐤,𝐤)f_{\mathbf{k}}\equiv f(\omega_{\mathbf{k}},\mathbf{k}) satisfy the relation f𝐤f(ω𝐤,𝐤)=f(ω𝐤,𝐤)f_{-\mathbf{k}}\equiv f(\omega_{-\mathbf{k}},-\mathbf{k})=f^{*}(\omega_{\mathbf{k}},\mathbf{k}) where * denotes complex conjugate and ω𝐤=ω𝐤\omega_{\mathbf{k}}=-\omega^{*}_{-\mathbf{k}}. Faraday’s law has been used in going from (57) to (58) to write 𝐁𝐤=(c/ω)𝐤×𝐄𝐤\mathbf{B}_{\mathbf{k}}=(c/\omega)\mathbf{k}\times\mathbf{E}_{\mathbf{k}}. The quasilinear operator can be written as

Q(f)qm[1vv(vΓ)+1vΓϕϕ+Γv].\displaystyle Q(f)\equiv\frac{q}{m}\left[\frac{1}{v_{\perp}}\frac{\partial}{\partial v_{\perp}}\left(v_{\perp}\Gamma_{\perp}\right)+\frac{1}{v_{\perp}}\frac{\partial\Gamma_{\phi}}{\partial\phi}+\frac{\partial\Gamma_{\|}}{\partial v_{\|}}\right]. (59)

The flux in the perpendicular direction is

Γ=𝐤{E𝐤,(1kvω)+E𝐤,kvωcos(ϕβ)}f𝐤.\displaystyle\Gamma_{\perp}=-\sum_{\mathbf{k}}\bigg{\{}E^{*}_{\mathbf{k},\perp}\bigg{(}1-\frac{k_{\|}v_{\|}}{\omega}\bigg{)}+E^{*}_{\mathbf{k},\|}\frac{k_{\perp}v_{\|}}{\omega}\cos{(\phi-\beta)}\bigg{\}}f_{\mathbf{k}}. (60)

Here, the velocity is defined as 𝐯=vcosϕ𝐞𝐱+vsinϕ𝐞𝐲+v𝐞\mathbf{v}=v_{\perp}\cos{\phi}\;\mathbf{e_{x}}+v_{\perp}\sin{\phi}\;\mathbf{e_{y}}+v_{\|}\mathbf{e_{\|}}, where ϕ\phi is the gyro phase angle, and xx and yy are the orthogonal coordinates in the perpendicular plane to the static magnetic field. The wavenumber vector is defined as 𝐤=kcosβ𝐞𝐱+ksinβ𝐞𝐲+k𝐞\mathbf{k}=k_{\perp}\cos{\beta}\;\mathbf{e_{x}}+k_{\perp}\sin{\beta}\;\mathbf{e_{y}}+k_{\|}\mathbf{e_{\|}}. The flux in the gyro-phase direction is

Γϕ\displaystyle\Gamma_{\phi} =\displaystyle= 𝐤{E𝐤,ϕ(1kvωcos(ϕβ)kvω)\displaystyle-\sum_{\mathbf{k}}\bigg{\{}E^{*}_{\mathbf{k},\phi}\bigg{(}1-\frac{k_{\perp}v_{\perp}}{\omega}\cos{(\phi-\beta)}-\frac{k_{\|}v_{\|}}{\omega}\bigg{)} (61)
\displaystyle- E𝐤,kvωsin(ϕβ)E𝐤,kvωsin(ϕβ)}f𝐤,\displaystyle E^{*}_{\mathbf{k},\perp}\frac{k_{\perp}v_{\perp}}{\omega}\sin{(\phi-\beta)}-E^{*}_{\mathbf{k},\|}\frac{k_{\perp}v_{\|}}{\omega}\sin{(\phi-\beta)}\bigg{\}}{f}_{\mathbf{k}},

and the flux in the parallel direction is

Γ=𝐤{E𝐤,(1kvωcos(ϕβ))+E𝐤,kvω}f𝐤.\displaystyle\Gamma_{\|}=-\sum_{\mathbf{k}}\bigg{\{}E^{*}_{\mathbf{k},\|}\bigg{(}1-\frac{k_{\perp}v_{\perp}}{\omega}\cos{(\phi-\beta)}\bigg{)}+E^{*}_{\mathbf{k},\perp}\frac{k_{\|}v_{\perp}}{\omega}\bigg{\}}{f}_{\mathbf{k}}. (62)

Here, the perturbed fluctuating distribution function consistent with a single mode wave is

f𝐤\displaystyle f_{\mathbf{k}} =\displaystyle= qmei𝐤𝐫+iωttdtei𝐤𝐫iωt𝐄𝐤[I(1𝐯𝐤ω)+𝐯𝐤ω]vf,\displaystyle-\frac{q}{m}e^{-i\mathbf{k}\cdot\mathbf{r}+i\omega t}\int^{t}_{-\infty}dt^{\prime}e^{i\mathbf{k}\cdot\mathbf{r}^{\prime}-i\omega t^{\prime}}\mathbf{E_{\mathbf{k}}}\cdot\left[\stackrel{{\scriptstyle\leftrightarrow}}{{I}}\left(1-\frac{\mathbf{v}^{\prime}\cdot\mathbf{k}}{\omega}\right)+\frac{\mathbf{v}^{\prime}\mathbf{k}}{\omega}\right]\cdot\nabla_{v^{\prime}}f, (63)

where (t,𝐫,𝐯)(t^{\prime},\mathbf{r}^{\prime},\mathbf{v}^{\prime}) is a point of phase space along the zero-order particle trajectory. The trajectory end point corresponds to (t,𝐫,𝐯)(t,\mathbf{r},\mathbf{v}). The background distribution, f=f(t,𝐫,v,v)f=f(t,\mathbf{r},v_{\perp},v_{\|}), is gyro-phase independent because of the fast gyro-motion. As a result,

f𝐤\displaystyle f_{\mathbf{k}} =\displaystyle= qm0dτexp(iα){cos(η+Ωτ)((E𝐤,++E𝐤,)UE𝐤,V)\displaystyle-\frac{q}{m}\int_{0}^{\infty}d\tau\exp({i\alpha})\bigg{\{}\cos{(\eta+\Omega\tau)}((E_{\mathbf{k},+}+E_{\mathbf{k},-})U-E_{\mathbf{k},\|}V) (64)
isin(η+Ωτ)(E𝐤,+E𝐤,)U+E𝐤,fv}.\displaystyle-i\sin{(\eta+\Omega\tau)}(E_{\mathbf{k},+}-E_{\mathbf{k},-})U+E_{\mathbf{k},\|}\frac{\partial f}{\partial v_{\|}}\bigg{\}}.

Here, τ=tt\tau=t-t^{\prime}, and α=(ωkv)τλ(sin(η+Ωτ)sin(η))\alpha=(\omega-k_{\|}v_{\|})\tau-\lambda(\sin{(\eta+\Omega\tau)}-\sin{(\eta)}), where λ=kv/Ω\lambda={k_{\perp}v_{\perp}}/{\Omega} and η=ϕβ\eta=\phi-\beta. Also, U=f/v+(k/ω)(vf/vvf/v)U={\partial f}/{\partial v_{\perp}}+({k_{\|}}/{\omega})\left(v_{\perp}{\partial f}/{\partial v_{\|}}-v_{\|}{\partial f}/{\partial v_{\perp}}\right), and V=(k/ω)(vf/vvf/v)V=({k_{\perp}}/{\omega})\left(v_{\perp}{\partial f}/{\partial v_{\|}}-v_{\|}{\partial f}/{\partial v_{\perp}}\right). We follow Stix’ notation Stix (1992).

For the energy transfer, the contribution of the flux in the gyro-phase direction vanishes due to the integral over ϕ\phi. Using the Bessel function expansion for the sinusoid phase,

eiλsinη\displaystyle e^{i\lambda\sin{\eta}} =\displaystyle= neinηJn(λ),\displaystyle\sum_{n}e^{in\eta}J_{n}(\lambda),
sinηeiλsinη\displaystyle\sin{\eta}e^{i\lambda\sin{\eta}} =\displaystyle= nieinηJn(λ),\displaystyle-\sum_{n}ie^{in\eta}J_{n}^{\prime}(\lambda),
cosηeiλsinη\displaystyle\cos{\eta}e^{i\lambda\sin{\eta}} =\displaystyle= nnλeinηJn(λ),\displaystyle\sum_{n}\frac{n}{\lambda}e^{in\eta}J_{n}(\lambda), (65)

the gyro-averaged quasilinear diffusion Kennel and Engelmann (1966); Stix (1992) is

Q(f)\displaystyle Q(f) =\displaystyle= πq2m2nG(v2δ(ωkvnΩ)|χ𝐤,n|2G(f))\displaystyle\frac{{\pi}q^{2}}{m^{2}}\int_{-\infty}^{\infty}\sum_{n}G\bigg{(}v^{2}_{\perp}\delta(\omega-k_{\|}v_{\|}-n\Omega)|\chi_{\mathbf{k},n}|^{2}G(f)\bigg{)} (66)

where χ𝐤,n=E𝐤,+Jn1/2+E𝐤,Jn+1/2+(v/v)E𝐤,Jn\chi_{\mathbf{k},n}=E_{\mathbf{k},+}J_{n-1}/\sqrt{2}+E_{\mathbf{k},-}J_{n+1}/\sqrt{2}+({v_{\|}}/v_{\perp})E_{\mathbf{k},\|}J_{n} is the effective electric field, and the operator GG is

G(f)=(1kvω)1vfv+kvω1vfv\displaystyle G(f)=\left(1-\frac{k_{\|}v_{\|}}{\omega}\right)\frac{1}{v_{\perp}}\frac{\partial f}{\partial v_{\perp}}+\frac{k_{\|}v_{\perp}}{\omega}\frac{1}{v_{\perp}}\frac{\partial f}{\partial v_{\|}} (67)

Acknowledgments

This work was supported by US DoE Contract No. DE-FC02-01ER54648 under a Scientific Discovery through Advanced Computing Initiative. NB and EV were supported by the US DOE under DE-AC02-CH0911466. This research used resources of MIT, PPPL, and NERSC by the US DoE Contract No.DE-AC02-05CH11231

References

  • Perkins (1977) F. W. Perkins, Nuclear Fusion 17, 1197 (1977).
  • Sauter et al. (2002) O. Sauter, E. Westerhof, M. Mayoral, B. Alper, P. Belo, R.  Buttery, A. Gondhalekar, T. Hellsten, T. Hender, D. Howell, T. Johnson, P. Lamalle, M. Mantsinen, F. Milani, M. Nave, F. Nguyen, A. Pecquet, S. Pinches, S. Podda, and J.  Rapp, Physical review letters 88, 105001 (2002).
  • Rice et al. (2001) J. Rice, R. Boivin, P. Bonoli, J. Goetz, R. Granetz, M Greenwald, I. Hutchinson, E. Marmar, G. Schilling, and J. Snipes, Nuclear Fusion 41, 277 (2001).
  • Mantsinen et al. (2003) M. Mantsinen, L. Eriksson, E. Gauthier, G. Hoang, E. Joffrin, R. Koch, X. Litaudon, A. Lyssoivan, P. Mantica, and M. Nave, Plasma physics and controlled fusion 45, A445 (2003).
  • Brambilla and Krucken (1988) M. Brambilla, and T. Krucken, Plasma physics and controlled fusion 30, 1083 (1988).
  • Brambilla (1989) M. Brambilla, Plasma physics and controlled fusion 31, 723 (1989).
  • Lamalle (1994) P. Lamalle, Ph.D. thesis, PhD Thesis (1994).
  • Dumont (2009) R. Dumont, Nuclear Fusion 49, 075033 (2009).
  • Vdovin (2001) V. Vdovin, in 28th European Conference on Controlled Fusion and Plasma Physics (Madeira, Portugal, 2001), poster 2001 , vol. 4, p. 1541.
  • Brambilla (1999) M. Brambilla, Plasma Physics and Controlled Fusion 41, 1 (1999).
  • Jaeger et al. (2001) E. F. Jaeger, L. A. Berry, E. DAzevedo, D. B. Batchelor, and M. D. Carter, Physics of Plasmas (2001).
  • Jaeger et al. (2006a) E. F. Jaeger, R. Harvey, L. A. Berry, J. Myra, R. Dumont C. Phillips, D. Smithe, R. Barrett, D. Batchelor, P. Bonoli, M. Carter, E. D’azevedo, D. D’ippolito, R. Moore, and J. Wright, Nuclear Fusion 46, S397 (2006a).
  • Cary et al. (1990) J. R. Cary, D. F. Escande, and A. D. Verga, Physical Review Letters 65, 3132 (1990).
  • Laval and Pesme (1999) G. Laval, and D. Pesme, Plasma physics and controlled fusion 41, A239 (1999).
  • Lee et al. (2011) J. P. Lee, P. T. Bonoli, and J. C. Wright, Physics of Plasmas 18, 012503 (2011).
  • Kennel and Engelmann (1966) C. F. Kennel, and F. Engelmann, Phys. Fluids 9, 2377 (1966).
  • Petrov and Harvey (2016) Y. V. Petrov, and R. Harvey, Plasma Physics and Controlled Fusion 58, 115001 (2016).
  • Catto and Myra (1992) P. J. Catto, and J. Myra, Physics of Fluids B: Plasma Physics (1989-1993) 4, 187 (1992).
  • Lamalle (1997) P. Lamalle, Plasma physics and controlled fusion 39, 1409 (1997).
  • Johnson et al. (2006) T. Johnson, T. Hellsten, and L.-G. Eriksson, Nuclear fusion 46, S433 (2006).
  • Harvey et al. (2011) R. Harvey,ber Y. Petrov, E. Jaeger, and RF SciDAC Group, in 19th Topical Conference on Radio Frequency Power in Plasmas 2011 , vol. 1406, p. 369.
  • Brambilla and Bilato (2009) M. Brambilla, and R. Bilato, Nuclear Fusion 49, 085004 (2009).
  • Harvey and McCoy (1992) R. W. Harvey, and M. G. McCoy, in Proc. IAEA TCM on Advances in Sim. and Modeling of Thermonuclear Plasmas, available through USDOC/NTIS No. DE93002962 1992 , pp. 489–526.
  • Lee et al. (2012) J. P. Lee, F. I. Parra, R. R. Parker, and P. T. Bonoli, Plasma Physics of Controlled Fusion 54, 125005 (2012).
  • Stix (1992) T. H. Stix, Waves in Plasmas AIP Press, 1992 , ISBN 0-88318-859-7.
  • Kerbel and McCoy (1985) G. Kerbel, and M. McCoy, Physics of Fluids (1958-1988) 28, 3629 (1985).
  • Smithe (1989) D. N. Smithe, Plasma Physics and Controlled Fusion 31, 1105 (1989).
  • Phillips et al. (2003) C. K. Phillips, A. Pletzer, R. J. Dumont, and D. N. Smithe, AIP Conference Proceedings 694, 499 (2003).
  • Bertelli et al. (2017) N. Bertelli, E. J. Valeo, D. L. Green, M. Gororlenkova, C. K. Phillips M. Podest‘a, J.  P. Lee, J.  C. Wright, and P.  T. Bonoli , Nuclear Fusion 57, 056035 (2017).
  • Wright et al. (2010) J. C. Wright, J. P. Lee, E.Valeo, P. T. Bonoli, C. KPhillips, E. F. Jaeger, and, R. W. Harvey, IEEE Transactions on Plasma Science 38, 2136 (2010).
  • Jaeger et al. (2006b) E. F. Jaeger, L. A. Berry, S. Ahern, R. F. Barrett, D. B. Batchelor, M.  D. Carter, E.  F. D’Azevedo, R.  D. Moore, R.  W. Harvey, J.  R. Myra, D.  A. D’Ippolito, R.  J. Dumont, C.  K. Phillips, H. Okuda, D.  N. Smithe, P.  T. Bonoli, J.  C. Wright, and, M. Choi, Physics of Plasmas (1994-present) 13, 056101 (2006b).
  • Budny et al. (2012) R. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R.J.  Dumont, A.  Fukuyama, R.  Harvey, E.F.  Jaeger, K.  Indireshkumar, E.  Lerche, D.  McCune, C.K.  Phillips, V.  Vdovin, J.  Wright, and, members of the ITPA-IOS, Nuclear Fusion 52, 023023 (2012).
  • Dumont et al. (2005) R. Dumont, C. Phillips, and D. Smithe, Physics of Plasmas (1994-present) 12, 042508 (2005).