This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quasiparticle Pattern of Phenomena in Exotic Superconductors

V. A. Khodel National Research Centre Kurchatov Institute, Moscow, 123182, Russia McDonnell Center for the Space Sciences & Department of Physics, Washington University, St. Louis, MO 63130, USA    J. W. Clark McDonnell Center for the Space Sciences & Department of Physics, Washington University, St. Louis, MO 63130, USA Centro de Investigação em Matemática e Aplicações, University of Madeira, 9020-105 Funchal, Madeira, Portugal    M. V. Zverev National Research Centre Kurchatov Institute, Moscow, 123182, Russia Moscow Institute of Physics and Technology, Dolgoprudny, Moscow District 141700, Russia
Abstract

The quasiparticle formalism invented by Lev Landau for description of conventional Fermi liquids is generalized to exotic superconductivity attributed to Cooper pairing, whose measured properties defy explanation within the standard BCS-Fermi Liquid description. We demonstrate that in such systems the quasiparticle number remains equal to particle number, just as in common Fermi liquids. We are then able to explain the puzzling relationship between the variation with doping xx of two key properties of the family La2-xSrxCu04 of exotic superconductors, namely the T=0T=0 superfluid density ρs0(x)\rho_{s0}(x) and the coefficient A1(x)A_{1}(x) in the linear-in-TT component of the normal-state low-TT resistivity ρ(T)=ρ0+A1T+A2T2\rho(T)=\rho_{0}+A_{1}T+A_{2}T^{2}, in terms of the presence of interaction-induced flat bands in the ground states of these metals.

The BCS paradigm BCS ; gor'kov ; eliash , emergent more than half a century ago, has successfully explained the phenomenon of superconductivity discovered by Kamerlingh Onnes in 1911. This success rests upon (i) the Cooper scenario for electron pairing in metals cooper and (ii) the Landau quasiparticle formalism, applicable to the normal state of a Fermi liquid (FL) provided the damping γ\gamma of single-particle excitations is small compared with their energy ϵ(𝐩)\epsilon({\bf p}) measured from the chemical potential μ\mu lan1 ; lan2 . Subsequently, Larkin and Migdal (LM) adapted the BCS-FL theory to quantitative description of superfluid liquid 3He LM ; migdal . One of the prominent LM results is that the T=0T=0 superfluid density ρs0\rho_{s0} coincides with total density ρ\rho, irrespective of the strength of interparticle forces.

However, the LM theory fails to describe superconducting alloys. In the presence of impurity-induced electron scattering, the damping γ\gamma becomes finite, rendering the Landau postulate γ/|ϵ(𝐩)|1\gamma/|\epsilon({\bf p})|\ll 1 inapplicable. In the analysis of the properties of these metals pioneered by Abrikosov and Gor’kov(AG) AG , an additional dimensionless parameter γ/Tc(x)\gamma/T_{c}(x) comes into play, resulting in substantial suppression of ρs0\rho_{s0} as observed experimentally, with ρs0(x)\rho_{s0}(x) coming to naught at a doping value xcx_{c}, in tandem with the critical temperature Tc(x)T_{c}(x). Although the effects of eee-e interaction are ignored in AG theory, their involvement within the standard BCS-FL approach makes little difference prb2019 . These findings suggest that the replacement of FL quasiparticles by more realistic quasiparticles of finite lifetime is instrumental to elucidating the properties of superconducting alloys.

The BCS-FL-AG era ended dramatically with the discovery by Bednorz and Müller (BM) BM of exotic superconductivity, whose properties defy explanation within the BCS paradigm, opening up a new chapter of condensed-matter physics devoted to studies of non-Fermi-liquid (NFL) behavior of strongly correlated electron systems leggett . Results of extensive later experimental studies of the evolution of superfluid density with doping xx and temperature TT, performed in overdoped high-TcT_{c} superconducting LSCO compounds, have confirmed the collapse of the BCS-FL-AG formalism zaanen ; bozovic ; bozprl ; bozltp . Given this situation, an implicit question drives our agenda: Is it possible to further modify the Landau formalism so as to adapt it to description of such NFL behavior, well documented in recent years? As will be seen, the answer to this question is positive.

Any version of the quasiparticle pattern is based on decomposition of the single-particle Green’s function GG into the sum lan2 ; AGD

G(𝐩,ε)zGq(𝐩,ε)+Gr(𝐩,ε).G({\bf p},\varepsilon)\equiv zG^{q}({\bf p},\varepsilon)+G^{r}({\bf p},\varepsilon). (1)

Here Gr(𝐩,ε)G^{r}({\bf p},\varepsilon) is the regular part of GG, while Gq(𝐩,ε)G^{q}({\bf p},\varepsilon), entering with quasiparticle weight zz, is the pole term. In FL theory, one has

Gq(𝐩,ε)=1nL(𝐩)εϵ(𝐩)+iγ(ε)+nL(𝐩)εϵ(𝐩)iγ(ε),G^{q}({\bf p},\varepsilon)=\frac{1-n_{L}({\bf p})}{\varepsilon-\epsilon({\bf p})+i\gamma(\varepsilon)}+\frac{n_{L}({\bf p})}{\varepsilon-\epsilon({\bf p})-i\gamma(\varepsilon)}, (2)

with the damping γ\gamma small compared to |ϵ(𝐩)||\epsilon({\bf p})| and the Landau quasiparticle momentum distribution

nL(𝐩)=θ(ϵ(𝐩)),n_{L}({\bf p})=\theta(-\epsilon({\bf p})), (3)

normalized by ρ=(2/2π3)nL(𝐩)d3𝐩\rho=(2/2\pi^{3})\int n_{L}({\bf p})d^{3}{\bf p} .

FL theory is designed to express all low-TT characteristics of Fermi systems in terms of the quasiparticle Green’s functions GqG^{q} and a universal phenomenological interaction function ff that absorbs all contributions from GrG^{r}. An integral feature of the FL pattern is equality between the particle and quasiparticle numbers, known as the celebrated Landau-Lüttinger (LL) theorem.

In dealing with superconducting alloys, Eq. (3) still holds when γ\gamma becomes finite, while remaining small compared with the bandwidth even in the dirtiest alloys. Given the obvious violation of the FL condition γ/|ϵ(𝐩)|1\gamma/|\epsilon({\bf p})|\ll 1, the FL formalism has never been applied to check for any analogs of the LL theorem in these systems. Furthermore, the authors of some theoretical articles (see e.g. pjh2 ) claim that violation of this condition rules out the possibility of creating a quasiparticle pattern of phenomena in strongly correlated Fermi systems. However, as we will see, this is not the case: the quasiparticle picture can still apply, including the equality between the quasiparticle and particle numbers, at any realistic value of the ratio γ/|ϵ(𝐩)|\gamma/|\epsilon({\bf p})|.

Upgrade of the FL proof of the LL theorem AGD is based on analysis of specific behavior of a Fermi system placed in an external long-wavelength longitudinal field 𝐩𝐄(𝐤,ω){\bf p}{\bf E}({\bf k},\omega). While the effect of the field is absent in the limit 𝐤=0,ω0{\bf k}=0,\omega\neq 0, it becomes well pronounced in the opposite case ω=0,𝐤0\omega=0,{\bf k}\neq 0, no matter how small the wave vector 𝐤{\bf k}. To make proper use of this unique feature, we rewrite the usual formula for ρ\rho in terms of the corresponding response function:

ρ=NV=23CpnG(𝐩,ε)pnd3𝐩dε(2π)4i\rho=\frac{N}{V}=-\frac{2}{3}\int\!\!\!\!\int_{C}p_{n}\frac{\partial G({\bf p},\varepsilon)}{\partial p_{n}}\frac{d^{3}{\bf p}\,d\varepsilon}{(2\pi)^{4}i}\qquad\qquad\qquad
=23CpnK(𝐩,ε)G1(𝐩,ε)pnd3𝐩dε(2π)4i,=\frac{2}{3}\int\!\!\!\!\int_{C}\!\!p_{n}K({\bf p},\varepsilon)\frac{\partial G^{-1}({\bf p},\varepsilon)}{\partial p_{n}}\frac{d^{3}{\bf p}\,d\varepsilon}{(2\pi)^{4}i}, (4)

where pnp_{n} is the normal component of momentum 𝐩{\bf p} and K(𝐩,ε)=lim𝐤0G(𝐩,ε)G(𝐩+𝐤,ε)K({\bf p},\varepsilon)=\lim_{{\bf k}\to 0}G({\bf p},\varepsilon)\,G({\bf p}{+}{\bf k},\varepsilon). That the integral (4) does represent the longitudinal response function follows from the relation 𝒯(𝐩,ε;𝐤0,ω=0)=G1(𝐩,ε)/𝐩{\cal T}({\bf p},\varepsilon;{\bf k}\to 0,\omega=0)=-\partial G^{-1}({\bf p},\varepsilon)/\partial{\bf p} based on gauge invariance AGD .

In accord with results from pioneering work of Migdal migp , ρ\rho decomposes into a sum ρ=ρL+ρR\rho=\rho_{L}+\rho_{R}, with

ρL\displaystyle\rho_{L} =\displaystyle= 23LpnK(𝐩,ε)G1(𝐩,ε)pnd3𝐩dε(2π)4i,\displaystyle\frac{2}{3}\int\!\!\!\!\int_{L}\!\!p_{n}K({\bf p},\varepsilon)\frac{\partial G^{-1}({\bf p},\varepsilon)}{\partial p_{n}}\frac{d^{3}{\bf p}\,d\varepsilon}{(2\pi)^{4}i},
ρR\displaystyle\rho_{R} =\displaystyle= 23RpnG(𝐩,ε)G(𝐩,ε)G1(𝐩,ε)pnd3𝐩dε(2π)4i.\displaystyle\frac{2}{3}\int\!\!\!\!\int_{R}\!\!p_{n}G({\bf p},\varepsilon)\,G({\bf p},\varepsilon)\frac{\partial G^{-1}({\bf p},\varepsilon)}{\partial p_{n}}\frac{d^{3}{\bf p}\,d\varepsilon}{(2\pi)^{4}i}. (5)
Refer to caption
Figure 1: Arrangement of the contour CC for the energy integration in Eq. (4)

The term ρL\rho_{L} containing a loop integral absorbs quasiparticle contributions from the poles of GqG^{q} having the form (2). Implicitly, quasiparticle contributions are also present in a term ρR\rho_{R} associated with integration along the remaining part RR of the contour CC (see Fig. 1). To prove this we employ the relation AGD

G1(𝐩,ε)=𝐯0(𝐩)+C𝒰(𝐩,ε,𝐥,ω)G(𝐥,ω)d3𝐥dω(2π)4i-\nabla G^{-1}({\bf p},\varepsilon)={\bf v}_{0}({\bf p})+\int\!\!\!\!\int_{C}\!\!{\cal U}({\bf p},\varepsilon,{\bf l},\omega)\nabla G({\bf l},\omega)\frac{d^{3}{\bf l}\,d\omega}{(2\pi)^{4}i} (6)

derived within many-body theory assuming gauge invariance. Here 𝐯0=ϵ𝐩0{\bf v}_{0}=\nabla\epsilon^{0}_{{\bf p}} is the bare group velocity, while 𝒰{\cal U} represents the block of Feynman diagrams for the scattering amplitude irreducible in the particle-hole channel, and =/𝐩\nabla=\partial/\partial{\bf p}.

The first step of our program, adapted from FL theory, is implemented by introducing an interaction amplitude ΓR\Gamma^{R} determined by the Landau equation lan2 ; AGD

ΓR(𝐩,ε,𝐩1,ε1)=𝒰(𝐩,ε,𝐩1,ε1)\Gamma^{R}({\bf p},\varepsilon,{\bf p}_{1},\varepsilon_{1})={\cal U}({\bf p},\varepsilon,{\bf p}_{1},\varepsilon_{1})
+2R𝒰(𝐩,ε,𝐥,ω)G(𝐥,ω)G(𝐥,ω)ΓR(𝐥,ω,𝐩1,ε1)d3𝐥dω(2π)4i.+2\int\!\!\!\!\int_{R}\!\!{\cal U}({\bf p},\varepsilon,{\bf l},\omega)G({\bf l},\omega)G({\bf l},\omega)\Gamma^{R}({\bf l},\omega,{\bf p}_{1},\varepsilon_{1})\frac{d^{3}{\bf l}\,d\omega}{(2\pi)^{4}i}. (7)

Hereafter we employ FL symbolic notations, with round brackets implying summation and integration over all intermediate variables, supplemented by respective normalization factors. Thereby Eq. (7) becomes

ΓR=𝒰+(ΓRK𝒰)R𝒰+(𝒰KΓR)R.\Gamma^{R}={\cal U}+\Bigl{(}\Gamma^{R}K{\cal U}\Bigr{)}_{\!R}\equiv{\cal U}+\Bigl{(}{\cal U}K\Gamma^{R}\Bigr{)}_{\!R}. (8)

Further, as usual, we multiply Eq. (6) from the left by ΓRGG\Gamma^{R}GG and perform R-integration to obtain

G1=𝐯0+(ΓRK𝐯0)R+(ΓRG)L.-\nabla G^{-1}={\bf v}_{0}+\Bigl{(}\Gamma^{R}K{\bf v}_{0}\Bigr{)}_{\!R}+\Bigl{(}\Gamma^{R}\nabla G\Bigr{)}_{\!L}. (9)

Both Eqs. (8) and (6) were employed to obtain this result. Upon its substitution into the second integral of Eq. (5), one finds

ρR=(𝐩KG1)R=([𝐩+(𝐩KΓR)R]K𝐯0)R\rho_{R}=\Bigl{(}{\bf p}K\nabla G^{-1}\Bigr{)}_{\!R}=-\biggl{(}\Bigl{[}{\bf p}+\Bigl{(}{\bf p}K\Gamma^{R}\Bigr{)}_{\!R}\Bigr{]}K{\bf v}_{0}\biggr{)}_{\!R}
+((𝐩KΓR)RKG1)L.+\biggl{(}\!\Bigl{(}{\bf p}K\Gamma^{R}\Bigr{)}_{\!R}K\nabla G^{-1}\biggl{)}_{\!\!L}. (10)

After employing the relation migdal ; pit

G1(𝐩,ε)ε𝐩=𝐩+(𝐩KΓR)R,\frac{\partial G^{-1}({\bf p},\varepsilon)}{\partial\varepsilon}{\bf p}={\bf p}+\Bigl{(}{\bf p}K\Gamma^{R}\Bigr{)}_{\!R}, (11)

applicable provided the momentum operator 𝐩{\bf p} commutes with the total Hamiltonian of the system, Eq. (10) is significantly facilitated, taking the form

ρR=(𝐩[G1(𝐩,ε)ε1]KG1)L,\rho_{R}=\Bigl{(}{\bf p}\Bigl{[}\frac{\partial G^{-1}({\bf p},\varepsilon)}{\partial\varepsilon}-1\Bigr{]}K\nabla G^{-1}\Bigr{)}_{\!\!L}, (12)

upon noting that the first term on the r.h.s. of Eq. (10), rewritten as (pn(G1/ε)GGvn0)R=(pnvn0G/ε)R-\Bigl{(}p_{n}(\partial G^{-1}/\partial\varepsilon)GGv^{0}_{n}\Bigr{)}_{\!R}=\Bigl{(}p_{n}v^{0}_{n}\partial G/\partial\varepsilon\Bigr{)}_{\!R}, vanishes upon energy integration.

Summation of ρR\rho_{R} from Eq. (12) and ρL\rho_{L} as given by the first of the integrals (5) yields the desired result

ρ=23LG1(𝐩,ε)εpnK(𝐩,ε)G1(𝐩,ε)pnd3𝐩dε(2π)4i.\rho=\frac{2}{3}\int\!\!\!\!\int_{L}\!\!\frac{\partial G^{-1}({\bf p},\varepsilon)}{\partial\varepsilon}p_{n}K({\bf p},\varepsilon)\frac{\partial G^{-1}({\bf p},\varepsilon)}{\partial p_{n}}\frac{d^{3}{\bf p}\,d\varepsilon}{(2\pi)^{4}i}. (13)

Near the pole, one has G1(𝐩,ε)/ε=z1\partial G^{-1}({\bf p},\varepsilon)/\partial\varepsilon=z^{-1}, while G1(𝐩,ε)=z1ϵ(𝐩)\nabla G^{-1}({\bf p},\varepsilon)=-z^{-1}\nabla\epsilon({\bf p}). Given that the Fermi surface (FS) remains simply connected, insertion of these results into Eq. (13) produces

ρ=23LpnGq(𝐩,ε)pnd3𝐩dε(2π)4i=2nL(𝐩)d3p(2π)3=pF33π2.\rho=-\frac{2}{3}\int\!\!\!\!\int_{L}p_{n}\frac{\partial G^{q}({\bf p},\varepsilon)}{\partial p_{n}}\frac{d^{3}{\bf p}\,d\varepsilon}{(2\pi)^{4}i}=2\!\int n_{L}({\bf p})\frac{d^{3}p}{(2\pi)^{3}}=\frac{p^{3}_{F}}{3\pi^{2}}. (14)

This result, known as the Landau-Lüttinger (LL) theorem, remains valid as long as the equation

ϵ(𝐩,nL)=0\epsilon({\bf p},n_{L})=0 (15)

has a single root lifshitz ; volovik . This is indeed the case, provided the change δE(nL)=𝐩ϵ(𝐩;nL)δnL(𝐩)\delta E(n_{L})=\sum_{{\bf p}}\epsilon({\bf p};n_{L})\delta n_{L}({\bf p}) of the energy of the Landau state remains non-negative under any variation of the momentum distribution nL(𝐩)n_{L}({\bf p}) compatible with the Pauli principle physrep . This is true for homogeneous Fermi liquids where ϵ(p,nL)=vF(ρ)(ppF)\epsilon(p,n_{L})=v_{F}(\rho)(p-p_{F}), provided the Fermi velocity vF=pF/mv_{F}=p_{F}/m^{*} remains positive lan1 . It then follows that the quantities ϵ(𝐩)\epsilon({\bf p}) and δn(𝐩)\delta n({\bf p}) always have the same sign, to guarantee δE>0\delta E>0.

Analogous manipulations performed for Eq. (6) lead to the Pitaevskii equation pit

ϵ(𝐩;nL)𝐩=ϵ0(𝐩)𝐩+2f(𝐩,𝐥)nL(𝐥)𝐥d3𝐥(2π)3\frac{\partial\epsilon({\bf p};n_{L})}{\partial{\bf p}}=\frac{\partial\epsilon_{0}({\bf p})}{\partial{\bf p}}+2\int f({\bf p},{\bf l})\frac{\partial n_{L}({\bf l})}{\partial{\bf l}}\frac{d^{3}{\bf l}}{(2\pi)^{3}} (16)

involving the interaction function f=z2ΓRf=z^{2}\Gamma^{R}. Given its form, Eq. (16) can be solved numerically to yield the quasiparticle spectrum ϵ(𝐩;nL)\epsilon({\bf p};n_{L}) in all of momentum space physrep ; zkp . However, Eqs. (14) and (16) need to be rearranged when Eq. (15) acquires additional roots that occur if the Fermi velocity vFv_{F}, calculated for the given Landau state, changes sign. In the 2D homogeneous electron liquid of MOSFETs, such a situation occurs at a critical density ρ=0.8×1011cm2\rho_{\infty}=0.8\times 10^{11}\,{\rm cm}^{-2} mokashi where both the density of states and the effective mass diverge. Beyond this topological critical point (TCP), countless options for breakdown of the original Landau state arise.

The anisotropy of the electron spectrum in solids furnishes additional opportunities for topological rearrangement of the Landau state. These effects are associated with the inflow of the TCPs where the function vF(p,𝐧;nL)v_{F}(p,{\bf n};n_{L}) found from Eq. (16) changes sign at certain points of the Fermi surface, occurring automatically if the respective solutions of Eq. (16) attain boundaries of the Brillouin zone. Presumably, such a situation is realized in twisted bilayer graphene (TBLG), where vF(ρ,θ)v_{F}(\rho,\theta) passes through zero at a critical twist angle θm1.1\theta_{m}\simeq 1.1^{\circ}, inducing an inevitable topological rearrangement of nearly-flat-band solutions, which have been identified in Ref. bm . In this case, variations δE(nL)\delta E(n_{L}) inescapably acquire a negative sign ubiquitously in the whole momentum region where vF(nL)<0v_{F}(n_{L})<0, implying that the number of roots of Eq. (15) becomes infinite again.

A relevant solution of the problem can be found, requiring the associated energy variations

δE(n)=𝐩ϵ(𝐩;n)δn(𝐩)\delta E(n_{*})=\sum_{\bf p}\epsilon({\bf p};n_{*})\delta n_{*}({\bf p}) (17)

of the state with the rearranged quasiparticle momentum distribution n(p)n_{*}(p) to be non-negative. Allowing the permissible occupation numbers n(𝐩;n)n({\bf p};n_{*}) to lie between 0 and 1, both signs of δn(𝐩)\delta n_{*}({\bf p}) come into play. Non-negativity of δE(n)\delta E(n_{*}) can then be ensured, provided the energy ϵ(𝐩,n)\epsilon({\bf p},n_{*}) vanishes identically in the momentum region Ω\Omega. Accordingly, in this regime the single-particle spectrum becomes completely flat ks ; vol1 ; noz ; ktsn1 ; volovik ; prb2008 ; m100 ; annals ; ktsn2 ; book yielding

0=ϵ0(𝐩)𝐩+2f(𝐩,𝐥)n(𝐥)𝐥d3𝐥(2π)3,𝐩Ω,0=\frac{\partial\epsilon_{0}({\bf p})}{\partial{\bf p}}+2\int f({\bf p},{\bf l})\frac{\partial n_{*}({\bf l})}{\partial{\bf l}}\frac{d^{3}{\bf l}}{(2\pi)^{3}},\quad{\bf p}\in\Omega, (18)

while remaining unchanged outside Ω\Omega (except for the obvious replacement nLnn_{L}\to n_{*}).

Previously prb2008 ; m100 , we have investigated the fate of the LL theorem in Fermi systems harboring the fermion condensate (FC), where the pole term GqG^{q} becomes

Gq(𝐩,ε)=1n(𝐩)εϵ(𝐩)+iγ(ε)+n(𝐩)εϵ(𝐩)iγ(ε),G^{q}({\bf p},\varepsilon)=\frac{1-n_{*}({\bf p})}{\varepsilon-\epsilon({\bf p})+i\gamma(\varepsilon)}+\frac{n_{*}({\bf p})}{\varepsilon-\epsilon({\bf p})-i\gamma(\varepsilon)}, (19)

with ϵ(𝐩)\epsilon({\bf p}) now determined from Eq. (18). In Refs. prb2008 ; m100 , we have obtained the relation

ρ=2n(𝐩)d3𝐩(2π)3,\rho=2\int n_{*}({\bf p})\frac{d^{3}{\bf p}}{(2\pi)^{3}}, (20)

which also follows from Eq. (14) upon inserting Eq. (19).

A salient feature inherent in states having an interaction-induced flat band is exhibited in the advent of an entropy excess SS_{*} given by Landau-like formula

SV=2Ω[n(𝐩)lnn(𝐩)+(1n(𝐩))ln(1n(𝐩)]d3𝐩(2π)3.\frac{S_{*}}{V}=-2\int_{\Omega}[n_{*}({\bf p})\ln n_{*}({\bf p})+(1-n_{*}({\bf p}))\ln(1-n_{*}({\bf p})]\frac{d^{3}{\bf p}}{(2\pi)^{3}}. (21)

In essence, Eqs. (18)-(21) form the basis of the interaction-induced flat-band scenario, also called the theory of fermion condensation.

Adaptation of the foregoing strategy to the description of superconducting alloys naturally requires the introduction of Gor’kov equations involving two different single-particle Green’s functions AGD ; gor'kov ; migdal ; gor ,

Gs(𝐩,ε)\displaystyle G_{s}({\bf p},\varepsilon) =\displaystyle= [G1(𝐩,ε)+Δ2(𝐩)G(𝐩,ε)]1,\displaystyle\Bigl{[}G^{-1}({\bf p},\varepsilon)+\Delta^{2}({\bf p})G(-{\bf p},-\varepsilon)\Bigr{]}^{-1},
F(𝐩,ε)\displaystyle F({\bf p},\varepsilon) =\displaystyle= G(𝐩,ε)Δ(𝐩)Gs(𝐩,ε).\displaystyle G(-{\bf p},-\varepsilon)\Delta({\bf p})G_{s}({\bf p},\varepsilon). (22)

Here the normal-state Green’s function G(𝐩,ε)G({\bf p},\varepsilon) obeys formulas (1) and (2), as before.

Within the framework of the BCS approach, the superconducting gap Δ\Delta is supposed to be pp- and ε\varepsilon-independent, which greatly facilitates further analysis. Eq. (4) is then replaced by

ρ=23CpnGs(𝐩,ε)pnd3𝐩dε(2π)4i\rho=-\frac{2}{3}\int\!\!\!\!\int_{C}p_{n}\frac{\partial G_{s}({\bf p},\varepsilon)}{\partial p_{n}}\frac{d^{3}{\bf p}\,d\varepsilon}{(2\pi)^{4}i}
=23C𝐩Ks(𝐩,ε)G1(𝐩,ε)d3𝐩dε(2π)4i,=\frac{2}{3}\int\!\!\!\!\int_{C}\!\!{\bf p}K_{s}({\bf p},\varepsilon)\nabla G^{-1}({\bf p},\varepsilon)\frac{d^{3}{\bf p}\,d\varepsilon}{(2\pi)^{4}i}, (23)

where

Ks(𝐩,ε)=lim𝐤0[Gs(𝐩,ε)Gs(𝐩+𝐤,ε)F(𝐩,ε)F(𝐩+𝐤,ε)].K_{s}({\bf p},\varepsilon)=\lim_{{\bf k}\to 0}[G_{s}({\bf p},\varepsilon)G_{s}({\bf p}+{\bf k},\varepsilon)-F({\bf p},\varepsilon)F({\bf p}+{\bf k},\varepsilon)]. (24)

In symbolic notations, one now has

ρR\displaystyle\rho_{R} =\displaystyle= (𝐩KsG1)R,ΓR=𝒰+(ΓRKs𝒰)R,\displaystyle\Bigl{(}{\bf p}K_{s}\nabla G^{-1}\Bigr{)}_{\!R},\quad\Gamma^{R}={\cal U}+\Bigl{(}\Gamma^{R}K_{s}{\cal U}\Bigr{)}_{\!R},
G1\displaystyle-\nabla G^{-1} =\displaystyle= 𝐯0+(ΓRKs𝐯0)R+(ΓRG)L,\displaystyle{\bf v}_{0}+\Bigl{(}\Gamma^{R}K_{s}{\bf v}_{0}\Bigr{)}_{\!R}+\Bigl{(}\Gamma^{R}\nabla G\Bigr{)}_{\!L},
G1(𝐩,ε)ε𝐩\displaystyle\frac{\partial G^{-1}({\bf p},\varepsilon)}{\partial\varepsilon}{\bf p} =\displaystyle= 𝐩+(𝐩KsΓR)R.\displaystyle{\bf p}+\Bigl{(}{\bf p}K_{s}\Gamma^{R}\Bigr{)}_{\!R}. (25)

These formulas are obtained from those derived for a normal Fermi liquid through the replacement KKsK\to K_{s}.

Proceeding farther along the same lines as before, we find

ρR=(G1εKs𝐯0)R+(𝐩[G1(𝐩,ε)ε1]KsG1)L.\rho_{R}=-\Bigl{(}\frac{\partial G^{-1}}{\partial\varepsilon}K_{s}{\bf v}_{0}\Bigr{)}_{\!R}+\Bigl{(}{\bf p}\Bigl{[}\frac{\partial G^{-1}({\bf p},\varepsilon)}{\partial\varepsilon}-1\Bigr{]}K_{s}\nabla G^{-1}\Bigr{)}_{\!\!L}. (26)

The first term in the sum vanishes again, since KsG1/εGs/εK_{s}\partial G^{-1}/\partial\varepsilon\equiv\partial G_{s}/\partial\varepsilon, and hence its integration over energy vanishes. Thus we arrive at a nontrivial result: regular (R) contributions to the density ρ\rho associated with the contour R that may in principle depend on the gap value drop out identically, so we are left with the pole contributions (L) tied to the loop contour L. Indeed, upon summation of ρR\rho_{R} with ρL\rho_{L}, we are led to

ρ=23LG1(𝐩,ε)εpnKs(𝐩,ε)G1(𝐩,ε)pnd3𝐩dε(2π)4i.\rho=\frac{2}{3}\int\!\!\!\!\int_{L}\!\!\frac{\partial G^{-1}({\bf p},\varepsilon)}{\partial\varepsilon}p_{n}K_{s}({\bf p},\varepsilon)\frac{\partial G^{-1}({\bf p},\varepsilon)}{\partial p_{n}}\frac{d^{3}{\bf p}\,d\varepsilon}{(2\pi)^{4}i}. (27)

Near the quasiparticle pole Gs(𝐩,ε)=zGsq(𝐩,ε)G_{s}({\bf p},\varepsilon)=zG^{q}_{s}({\bf p},\varepsilon) and Ks(𝐩,ε)=z2[Gsq(𝐩,ε)Gsq(𝐩,ε)Fq(𝐩,ε)Fq(𝐩,ε)]K_{s}({\bf p},\varepsilon)=z^{2}[G_{s}^{q}({\bf p},\varepsilon)G_{s}^{q}({\bf p},\varepsilon)-F^{q}({\bf p},\varepsilon)F^{q}({\bf p},\varepsilon)], with LM ; migdal

Gsq(𝐩,ε)=u2(𝐩)εE(𝐩)+iδ+v2(𝐩)ϵ+E(𝐩)iδ,G_{s}^{q}({\bf p},\varepsilon)=\frac{u^{2}({\bf p})}{\varepsilon-E({\bf p})+i\delta}+\frac{v^{2}({\bf p})}{\epsilon+E({\bf p})-i\delta}, (28)

and v2(𝐩)=(E(𝐩)ϵ(𝐩))/2E(𝐩)v^{2}({\bf p})=(E({\bf p})-\epsilon({\bf p}))/2E({\bf p}), where E(𝐩)=ϵ2(𝐩)+Δ2(𝐩)E({\bf p})=\sqrt{\epsilon^{2}({\bf p})+\Delta^{2}({\bf p})} is the Bogolyubov quasiparticle energy. Upon performing loop integrations in Eq. (27), all the zz-factors cancel out again to arrive at

ρ=23pnGsq(𝐩,ε)pnd3𝐩dε(2π)4i=2v2(𝐩)d3𝐩(2π)3.\rho=-\frac{2}{3}\int\!\!\!\!\int p_{n}\frac{\partial G_{s}^{q}({\bf p},\varepsilon)}{\partial p_{n}}\frac{d^{3}{\bf p}\,d\varepsilon}{(2\pi)^{4}i}=2\!\int\!v^{2}({\bf p})\frac{d^{3}{\bf p}}{(2\pi)^{3}}. (29)

Therewith we have demonstrated the coincidence between the particle and quasiparticle densities in Cooper superconductors, irrespective of the ratio Δ/TF\Delta/T_{F} and the magnitude of the damping γ\gamma in normal states.

We are now in a position to analyze one of the most challenging results of recent extensive experimental studies of overdoped LSCO compounds. This is the deep connection between anomalous properties of their superconducting and normal states, revealed by comparison of the critical temperature Tc(x)T_{c}(x) of termination of exotic superconductivity with the linear-in-TT term A1(x)A_{1}(x) in the low-TT normal-state resistivity ρ(T>Tc)=ρ0+A1T+A2T2\rho(T>T_{c})=\rho_{0}+A_{1}T+A_{2}T^{2} (identified over a decade ago in Refs. hussey1 ; paglione ). This connection is exhibited in a striking correlation between variations of the T=0T=0 LSCO superfluid density ρs0(x)\rho_{s0}(x) with doping xx zaanen and the normal-state coefficient A1(x)A_{1}(x) bozovic . Permanence of the ratio (x)=A1(x)/ρs0(x){\cal R}(x)=A_{1}(x)/\rho_{s0}(x) as a function of doping xx, as confirmed by data shown in Fig. 2, rules out all attempts to explain the outstanding experimental results of Refs. bozovic ; bozltp ; bozprl within the BCS-AG concept and its modifications. This includes the scaling theory of Refs. broun1 ; broun2 , where the eee-e interactions are completely ignored. There the theoretical value of the ratio (x){\cal R}(x) is identically zero, since the NFL effects are not accounted for in the BCS-AG approach, and therefore A1A_{1} is simply nonexistent.

Refer to caption
Figure 2: Ratio (x)=A1(x)/ρs0(x){\cal R}(x)=A_{1}(x)/\rho_{s0}(x) of the coefficient A1A_{1} of the linear-in-TT term in the low-TT normal-state resistivity of La2-xSrxCuO4 compounds to their T=0T=0 superfluid density ρs0\rho_{s0}, versus doping xx measured from its critical value xcx_{c} for gap termination. Black squares show (x){\cal R}(x) extracted from the data of Ref. bozovic . The horizontal red line illustrates the prediction for (x)=const.{\cal R}(x)={\rm const.} within the FC scenario, its value being chosen to match the experimental data, while the blue line shows the zero value of this ratio within the BCS-AG concept.

On the other hand, the experimental behavior of A1(x)xcxA_{1}(x)\propto x_{c}-x hussey1 ; paglione ; bozovic is properly explained within the FC scenario, where its value

A1(x)ρFC(x)A_{1}(x)\propto\rho_{FC}(x) (30)

turns out to be proportional to the density ρFC\rho_{FC} of the fermion condensate. (For details, we refer the reader to recent articles jetplett2015 ; PLA2018 ; RC2020 ).

Evaluation of the superfluid density ρs\rho_{s} reduces to finding the response function QijQ_{ij} that connects a T=0T=0 electric current 𝐣{\bf j} with the transverse vector potential 𝐀{\bf A} AGD ,

ji(𝐤)=ρe2meQij(𝐤)Aj(𝐤).j_{i}({\bf k})=-\frac{\rho e^{2}}{m_{e}}Q_{ij}({\bf k})A_{j}({\bf k}). (31)

One has Qij(k)=(δijkikj/k2)Q(k)Q_{ij}(k)=(\delta_{ij}-k_{i}k_{j}/k^{2})Q(k) and ρs0=Q(0)ρ\rho_{s0}=Q(0)\rho. The function Q(0)Q(0) is known to contain a vacuum contribution Qvac=1Q_{\rm vac}=1 coming from the term δ2=e2A2/2me\delta^{2}{\cal H}=e^{2}A^{2}/2m_{e} in the corresponding second variation of the vacuum Hamiltonian {\cal H}, which responsible, notably, for light scattering by electrons. Thereby one obtains Q(0)=1+Ps(0)Q(0)=1+P_{s}(0). Importantly, in evaluation of the current-current correlator Ps(0)P_{s}(0), the propagator Ls=GsGs+FFL_{s}=G_{s}G_{s}+FF replaces Ks=GsGsFFK_{s}=G_{s}G_{s}-FF AGD (which enters in the above proof of the LL-like theorem in superconducting systems). Otherwise, the renormalization is carried out along the same lines as in the foregoing proof of the equality between the quasiparticle and particle numbers to yield prb2019

ρs0(x)/ρ=I(x)/[1+(α1)(1I(x))],\rho_{s0}(x)/\rho=I(x)/[1+(\alpha-1)(1-I(x))], (32)

where α=m/me\alpha=m^{*}/m_{e} and

I(x)F2(ϵ,ζ)𝑑ϵ𝑑ζ=Δ2η2(ζ)dϵdζ((ζ2+Δ2)η2(ζ)+ϵ2)2,I(x)\propto\int\!\!\!\int F^{2}(\epsilon,\zeta)\,d\epsilon\,d\zeta=\int\!\!\!\int\frac{\Delta^{2}\eta^{2}(\zeta)\,d\epsilon\,d\zeta}{\Bigl{(}(\zeta^{2}+\Delta^{2})\eta^{2}(\zeta)+\epsilon^{2}\Bigr{)}^{2}}, (33)

with

η(ζ)=12(1+γ2ζ2+Δ2)\eta(\zeta)=\frac{1}{2}\left(1+\frac{\gamma}{2\sqrt{\zeta^{2}+\Delta^{2}}}\right)\qquad\qquad\qquad\qquad
+[14(1+γ2ζ2+Δ2)2+γπρFCρεFζ2+Δ2]1/2.+\left[\frac{1}{4}\left(1+\frac{\gamma}{2\sqrt{\zeta^{2}+\Delta^{2}}}\right)^{2}+\frac{\gamma}{\pi}\frac{\rho_{FC}}{\rho}\frac{\varepsilon_{F}}{\zeta^{2}+\Delta^{2}}\right]^{1/2}. (34)

The FC contribution to the integral (34) is found to be insignificant at small FC density ρFC\rho_{FC} because this contribution is proportional to Δ0ρFC\Delta_{0}\rho_{FC}. Thus, the result of our calculations prb2019 , namely

ρs0(x)Δ0(x)meγtrm,\rho_{s0}(x)\propto\Delta_{0}(x)\frac{m_{e}}{\gamma_{tr}m^{*}}, (35)

turns out to be correct at any xcxx_{c}-x. Since the gap value Δ0\Delta_{0} is proportional to the FC density ρFC\rho_{FC} as well ks ; jetpl2017 , the function (x){\cal R}(x) is indeed doping-independent, in agreement with experiment.

This article is a logical complement to earlier work addressing the origin of topological disorder RC2020 arising in strongly correlated electron systems. The quasiparticle formalism developed here furnishes the proper theoretical foundation for the analysis of such phenomena. Importantly, this formalism applies to superconducting states with nontrivial topology as well, providing the basis for quantitative analysis of interaction-induced effects in cuprates and other high-TcT_{c} superconductors, including magic-angle TBLG where the standard near-flat-band solutions bm must experience a topological rearrangement.

In conclusion, the authors are deeply grateful to V. Shaginyan and G. Volovik for discussing issues addressed in this article.

References

  • (1) J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 106, 162 (1957); 108, 1175 (1957).
  • (2) L. P. Gor’kov, Sov. Phys. JETP 7, 505 (1958).
  • (3) G. M. Eliashberg, Sov. Phys. JETP 11, 696 (1960).
  • (4) L. N. Cooper, Phys. Rev. 104, 1159 (1957).
  • (5) L. D. Landau, Sov. Phys. JETP 3, 920 (1957).
  • (6) L. D. Landau, Sov. Phys. JETP 8, 70 (1958).
  • (7) A. I. Larkin, A. B. Migdal, Sov. Phys. JETP 17,1146 (1963).
  • (8) A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley, New York, 1967).
  • (9) A. A. Abrikosov, L. P. Gor’kov, Sov. Phys. JETP, 8, 1090, (1959); ibid 12, 1243 (1960).
  • (10) V. A. Khodel, J. W. Clark, M. V. Zverev, Phys. Rev. B99, 184503 (2019).
  • (11) J. G. Bednorz, K. A. Müller, Z. Phys. B64, 189 (1986).
  • (12) A. J. Leggett, Lecture Notes on Exotic Superconductivity, University of Tokyo Open Course Ware, June 2011.
  • (13) J. Zaanen, Nature 536, 282 (2016).
  • (14) I.  Bozovic̀, X. He, J. Wu, A. T. Bollinger, Nature 536, 309 (2016).
  • (15) F. Mahmood, X. He, I. Bozovic̀, N. P. Armitage, Phys. Rev. Lett. 122, 027003 (2019).
  • (16) I. Bozovic̀, A. T. Bollinger, J. Wu, X. He, Low Temp. Phys. 44, 519 (2018).
  • (17) A. A. Abrikosov, L. P. Gor’kov, I. E. Dzjaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Pergamon Press, Oxford, 1965).
  • (18) Y. Cao et al., Phys. Rev. Lett. 124, 076801 (2020).
  • (19) A. B. Migdal, Sov. Phys. JETP 5, s333 (1957).
  • (20) L. P. Pitaevskii, Sov. JETP 10, 1267 (1960).
  • (21) I. M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).
  • (22) G. E. Volovik, Springer Lecture Notes in Physics 718, 31 (2007).
  • (23) V. A. Khodel, V. V. Khodel and V. R. Shaginyan, Phys. Rep. 249, 1 (1994).
  • (24) M. V. Zverev, V. A. Khodel, S. S. Pankratov, JETP Lett. 96, 192 (2012).
  • (25) A. Mokashi et al., Phys. Rev. Lett. 109, 096405 (2012).
  • (26) R. Bistritzer and A. H. McDonald, Proc. Natl. Acad. Sci. U.S.A. 108, 12233 (2011).
  • (27) G. E. Volovik, JETP Lett. 53, 222 (1991).
  • (28) V. Yu. Irhin, A. A. Katanin, M. I. Katsnelson, Phys. Rev. Lett. 89, 076401 (2002).
  • (29) V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).
  • (30) P. Nozières, J. Phys. I France 2, 443 (1992).
  • (31) V. A. Khodel, J. W. Clark, M. V. Zverev, Phys. Rev. B 78, 075120 (2008).
  • (32) V. A. Khodel, J. W. Clark, M. V. Zverev, Phys. At. Nucl. 74, 1237 (2011).
  • (33) J. W. Clark, M. V. Zverev, V. A. Khodel, Ann. Phys. 327, 3063 (2012).
  • (34) D. Yudin et al., Phys. Rev. Lett. 112, 070403 (2014).
  • (35) M. Ya. Amusya, V. R. Shaginyan, Strongly Correlated Fermi systems: A New State of Matter, Springer Tracts in Modern Physics Vol. 283 (Springer International Publishing, 2020).
  • (36) L. P. Gor’kov, Theory of Superconducting Alloys, edited by K. H. Bennemann and J. B. Ketterson, Superconductivity Vol. 1 (Springer-Verlag, New York, 2008).
  • (37) R. A. Cooper et al., Science 323, 603 (2009).
  • (38) K. Jin et al., Nature 476, 73 (2011).
  • (39) N. R. Lee-Hone et al., Phys. Rev. 96, 024501 (2017).
  • (40) N. R. Lee-Hone et al., Phys. Rev. 98, 054506 (2018).
  • (41) V. A. Khodel et al., JETP Lett. 101, 413 (2015).
  • (42) V. A. Khodel, J. W. Clark, M. V. Zverev, Phys. Lett. A 382, 3281 (2018).
  • (43) V. A. Khodel, J. W. Clark, M. V. Zverev, JETP Lett. A 105, 267 (2017).
  • (44) V. A. Khodel, J. W. Clark, M. V. Zverev, Phys. Rev. B 102, 201108(R) (2020).