This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quintessential Axions from a New Confining Force

Jihn E. Kim, Younggeun Kim and Soonkeon Nam Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447, Republic of Korea
Abstract

Almost massless mesons created at the condensation scale of extra nonabelian gauge group can be candidates of dark energy source. This can be another motivation for introducing an additional confining force.

Dark energy, Quintessential axion, Supersymmetry, Chiral symmetry
pacs:
11.25.Mj, 11.30.Er, 11.25.Wx, 12.60.Jv

I Introduction

The origin of dark energy (DE) in the Universe is most mysterious in the current cosmology. At present, the DE density (0.003eV)4(0.003\,\,\mathrm{eV})^{4} is synonymous to the cosmological constant (CC). In the multiverse distinguished by CC, the anthropic choice allows some universes to evolve to the ones similar to our currently nearly flat and empty Universe to have creatures to quest about it now Weinberg88 . On the other hand, if the current DE is a transient one, parametrized by a varying θ\theta, the classically evolving scalar field θ\theta is interpreted as the source for the current domination of the energy density of the Universe FriemanWaga98 ; Carroll98 . The name ‘quintessential axion’ KimNilles03 ; Hill02 ; KimRMP10 is by identifying θ\theta as the pseudo-Goldstone boson of spontaneously broken global symmetry U(1)DE.

Light pseudoscalar particles are the lampposts to the road leading to physics scales much above their masses. The well-known example is the pion triplet looked at low energy strong interaction scale, which guided toward the SU(2)×L{}_{L}\timesSU(2)R chiral symmetry at a higher energy scale Nambu61 ; GellMann68 . Another is the very light axion which hints at the intermediate scale KimPRL79 ; KNS18 . In this pseudoscalar scenario, the scale where the symmetry is explicit is at the scale EfΛ2/mE\gtrsim f\sim\Lambda^{2}/m, for the pseudoscalar mass mm, where Λ4\Lambda^{4} is a typical energy density contributed by such a pseudoscalar. Before obtaining mass of quintessential axion by the energy density perturbation of order Λ4\Lambda^{4}, the pseudoscalar degree is the phase degree θ(x)\theta(x) of some unitary operators such that they have kinetic energy terms in quantum field theory below the defining scale ff of the pseudoscalar aa. Below the scale ff, the global transformation is expressed as θa/f\theta\to a/f where ff is the decay constant. Above the scale ff, the phase in eia/fe^{i\,a/f} is not a dynamical field, i.e. not depending on xx, but it still represents a phase direction of the global symmetry. On the other hand, if a pseudoscalar is originally present in the theory, then ff is the defining scale of that theory. In this sense, string scale MsM_{s} itself is the decay constant for axions from string theory.

Quintessential axion requires Carroll98 :

  • The decay constant is near the Planck scale MPM_{\rm P}, and

  • Mass is about 1032eV10^{-32\,}\,\mathrm{eV}.

Since the Planck mass is the mass defining scale, the first condition looks easy to be implemented. But, the singlets beyond the standard model may be required to interact with light fields, in which case a judicious care is needed to allow the VEV of singlets still remaining near the Planck scale. Implementing the second condition needs some symmetries such that the breaking scale is sufficiently small.

If the pseudoscalar mass mm is less than 1 MeV, it can rarely decay to two photons and two neutrinos. Using the π0\pi^{0} decay rate to two photons Γ(π02γ)(αem2/64π3)(Mπ0/fπ)2Mπ0\Gamma(\pi^{0}\to 2\gamma)\simeq(\alpha_{\rm em}^{2}/64\pi^{3})(M_{\pi^{0}}/f_{\pi})^{2}M_{\pi^{0}} (at leading order Holstein02 ) and to two neutrinos 1.2×105Γ(π02γ)1.2\times 10^{-5}\Gamma(\pi^{0}\to 2\gamma) Shrock79 , we can get an idea on the lifetime of the pseudoscalar. For it to be still present in our Universe, therefore we require Γ1>4.3×1017s=1/(1.53×1033eV)\Gamma^{-1}>4.3\times 10^{17}{\rm s}=1/(1.53\times 10^{-33}\,\mathrm{eV}). Using the above fmf-m relation, we get an idea on mm from the condition that it survives until now, using the QCD scale Λ\Lambda,

Γ164π3ΛQCD4αem2m41m>11.53×1033eV\begin{split}\Gamma^{-1}\simeq\frac{64\pi^{3}\,\Lambda_{\rm QCD}^{4}}{\alpha_{\rm em}^{2}m^{4}}\frac{1}{m}>\frac{1}{1.53\times 10^{-33}\,\mathrm{eV}}\end{split} (1)

or m<65eVm<65\,\,\mathrm{eV} for ΛQCD=380MeV\Lambda_{\rm QCD}=380\,\,\mathrm{MeV}.111For the very light axion, the specific coupling reduces it further to 24 eV KimRMP10 . If we take Λ4\Lambda^{4} as the current energy density of the Universe, then pseudoscalars with mass less than 3.3×104eV3.3\times 10^{-4}\,\,\mathrm{eV} survives until now.222Ultra-light axions (ULAs) KimPRD16 ; Witten17 was suggested for the galactic scale structures.

We will be using two words for describing breaking the global symmetry. One is the spontaneous breaking scale ff mentioned above. This is the vacuum expectation value (VEV) of the scalar field which carries the non-vanishing quantum number of the global symmetry and is determined from the interaction terms respecting the global symmetry. The other is the explicit breaking terms which are interaction terms explicitly breaking the global symmetry in question and provide the curvature in the direction of aa.

We will consider the QCD axion also because it is present in most models. Not only providing a solution of the strong CP problem, the QCD axion can work as a source of dark matter (DM) in the Universe PWW83 ; AS83 ; DF83 ; Bae08 , which depends on the confining scale ΛQCD\Lambda_{\rm QCD} and the axion decay constant faf_{a}. So, let us start with building a field theoretic model housing both the QCD and quintessential axions. Working out an explicit example, we employ supersymmetry because supersymmetry reduces the number of couplings and hence the discussion for generating symmetry breaking terms is much simpler.

Let the gauge group for a new confining force be 𝒢\cal G and the flavor symmetry of ex-quarks under 𝒢\cal G be U(N)×(N)\timesU(N)(N) which reduces to SU(N)×(N)\timesSU(N)(N) by removing the heavy singlet meson obtaining mass by the anomaly contribution. The light mesons Πji(i=1,,N;j=1,,N)\Pi^{i}_{j}(i=1,\cdots,N;j=1,\cdots,N) with Tr Π=0\Pi=0, belonging to the adjoint representation (𝐍𝟐𝟏\bf N^{2}-1) of SU(N)A(N)_{A}\subset SU(N)×(N)\timesSU(N)(N), obtain mass by explicit breaking of the flavor symmetry of ex-quarks.

One obvious scale breaking the global symmetry is the condensation scale Λ\Lambda of the ex-quarks,

Q¯LTjaiQL=Λ3eiΠjai/f\begin{split}\langle\overline{Q}_{L}T^{a\,i}_{j}Q_{L}\rangle=\Lambda^{3}e^{i\Pi^{ai}_{j}/f}\end{split} (2)

where Q¯LTjaiQL\overline{Q}_{L}T^{a\,i}_{j}Q_{L} is interpreted as the matrix for adjoint representation TaT^{a} sandwiched between the relevant fermion fields ψ¯RTaψL\overline{\psi}_{R}T^{a}\psi_{L}. To construct a model based on discrete symmetry, supersymmetric extension is simpler and we will discuss supersymmetric extension below.

In the 𝒩=1{\cal N}=1 supersymmetric extension, we include scalar partners of ex-quarks also. These scalar quarks are defined to have the chirality of the corresponding ex-quarks denoted by tilded fields. The SU(N)L×(N)_{L}\timesSU(N)R(N)_{R} representation of scalar ex-quarks are

QL=(a1a2aN)L,Q¯L=(b¯1b¯2b¯N)L.\begin{split}Q_{L}=\begin{pmatrix}a_{1}\\ a_{2}\\ \cdot\\ \cdot\\ \cdot\\ a_{N}\end{pmatrix}_{L},~{}~{}~{}~{}\overline{Q}_{L}=\begin{pmatrix}\bar{b}_{1}\\ \bar{b}_{2}\\ \cdot\\ \cdot\\ \cdot\\ \bar{b}_{N}\end{pmatrix}_{L}.\end{split} (3)

Usually the same notations QLQ_{L} and QRQ_{R} are used for the corresponding superfields also, QL+2Q~Lϑ+FQLϑ2Q_{L}+\sqrt{2}\tilde{Q}_{L}\,\vartheta+F_{Q_{L}}\vartheta^{2}, etc., and interaction is given by d4xd2ϑW\int d^{4}xd^{2}\vartheta W. In supersymmetric extension, the R-charges of chiral superfields determine possible terms in the superpotential WW. For dynamical SUSY breaking via the new confining gauge group 𝒢{\cal G}, the gaugino condensation scale Λ\Lambda is expected around 1013GeV10^{13\,}\,\textrm{GeV} Nilles82 . With U(1)DE, we also consider the breaking scale of U(1)PQ for the QCD axion KNS18 . For simplicity, let us assume the VEV of the singlet scalar field σ(V)\langle\sigma\rangle(\equiv V) is the QCD axion scale fa1010GeVf_{a}\approx 10^{10\,}\,\textrm{GeV}. In addition to singlet fields, below we will consider Higgs fields also.

In supersymmetric models, condensation is possible for bilinears of fermions and also bilinears of scalar ex-quarks (bi-scalar). Condensation of bi-scalars does not break supersymmetry. This is a merit introducing quintessential axion in the phases of bi-scalar condensation. So, ff for the bi-scalar condensation can be different from the gaugino condensation scale Λ\Lambda.

Condensation of bi-scalars is expected when the gauge coupling of the new non-abelian force becomes strong at Λ\Lambda. Let the bi-scalar singlet be XX,

Q¯LQLX.\begin{split}\overline{Q}_{L}Q_{L}\equiv X.\end{split} (4)

As mentioned above, nonzero XX does not break supersymmetry. If we consider a superpotential in terms of XX,

W=ΛX12MX2+.\begin{split}&W=\Lambda X-\frac{1}{2M}X^{2}+\cdots.\\ \end{split} (5)

where Λ\Lambda and 1/M1/M can result from the VEVs of some singlet fields and MM in the following is used for the Planck mass MP=2.43×1018GeVM_{\rm P}=2.43\times 10^{18\,}\,\textrm{GeV}. So, the first minimum of the potential appears from V=(Λ1MPX)2V=\left(\Lambda-\frac{1}{M_{\rm P}}X\right)^{2} and the next minimum can be far above the Planck scale. Then, the decay constant f=Xf=\sqrt{X} is expected at a median of Λ\Lambda and MPM_{\rm P}.

Now let us consider the explicit breaking terms. Anomalies of non-abelian gauge groups are inevitable breaking terms, and the QCD anomaly is used for the explicit breaking term of the U(1)PQ global symmetry. If we consider a phase of the SM singlet scalar field, the weak gauge group in the SM may work for an explicit breaking term of the U(1)DE global symmetry Kim21PLB . But our quintessence fields are mesons in the phase of bi-scalars, or scalar ex-quarks, and hence the SU(2)W anomaly cannot work for our quintessence fields. The only method is from the superpotential made of scalar fields. To have a sufficiently small numerical value for the vacuum energy, we consider the VEV scale of the SM Higgs fields. A possible superpotential is

ΔW=1Mn+3Q¯LQL(HuHd)2σn,\begin{split}\Delta W=\frac{1}{M^{n+3}}\overline{Q}_{L}Q_{L}\left(H_{u}H_{d}\right)^{2}\sigma^{n},\end{split} (6)

where we started from (HuHd)2\left(H_{u}H_{d}\right)^{2}. If we started with one power of HuHdH_{u}H_{d}, too large a value of nn would be required. Considering condensation of the hidden sector quark QQ in Eq. (6), the vacuum energy density is

4Mn+3Λ3(vuvd)2Vn=4Mn+3Λ3vd4cosβ4Vn(0.003eV)4\begin{split}\frac{4}{M^{n+3}}\Lambda^{3}(v_{u}v_{d})^{2}V^{n}=\frac{4}{M^{n+3}}\Lambda^{3}\frac{v_{d}^{4}}{\cos\beta^{4}}V^{n}\simeq(0.003\,\mathrm{eV})^{4}\end{split} (7)

where tanβ=vu/vd\tan\beta=v_{u}/v_{d}.

Refer to caption
Figure 1: Potential generated by Yukawa terms breaking U(1)DE. At the intersection of the blue curve and the fu=1f_{u}=1 line, vdv_{d} is 25.6GeV25.6\,\textrm{GeV}.

The top quark mass mtm_{t} is fuvu/2f_{u}v_{u}/\sqrt{2} and the bottom quark mass mbm_{b} is fdvd/2f_{d}v_{d}/\sqrt{2}. For the perturbative calculation to be possible, we limit the study in the region fu1f_{u}\leq 1 and fd1f_{d}\leq 1. Equation (7) has one parameter tanβ\tan\beta. For a given tanβ\tan\beta, relative values of fuf_{u} and fdf_{d} are given, as shown in Fig. 2. The blue curve in Fig. 2 is interpreted as the current DE, (0.003eV)4(0.003\,\mathrm{eV})^{4}, for fd=1f_{d}=1.

As an example, taking vd=20GeVv_{d}=20\,\textrm{GeV} and mt=173GeVm_{t}=173\,\,\textrm{GeV}, Eq. (7) is estimated as,

4Mn+3Λ3vd4cos4βVntan4β(VM)n(202.43×1018)4Λ30.97×1028eV=1010eV4,\begin{split}\frac{4}{M^{n+3}}\Lambda^{3}\frac{v_{d}^{4}}{\cos^{4}\beta}V^{n}\simeq\tan^{4}\beta\left(\frac{V}{M}\right)^{n}\left(\frac{20}{2.43\times 10^{18}}\right)^{4}\Lambda^{3}\cdot 0.97\times 10^{28}\,\mathrm{eV}=10^{-10}\,\mathrm{eV}^{4},\end{split} (8)

leading to

Λ={2.7×10+14GeV,for n=11.7×10+17GeV,for n=2\begin{split}\Lambda=\left\{\begin{array}[]{l}2.7\times 10^{+14}\,\textrm{GeV},~{}\textrm{for }n=1\\ 1.7\times 10^{+17}\,\textrm{GeV},~{}\textrm{for }n=2\\ \end{array}\right.\end{split} (9)

This example is shown as the red bullet in Fig. 2.

Representation under 𝒢{\cal G}\equivSU(𝒩{\cal N}) SU(2)W×(2)_{W}\timesU(1)Y 𝐙6R{{\bf Z}}_{6R}
QLQ_{L} 𝒩{\cal N} 𝟏{\bf 1} +1+1
Q¯L\overline{Q}_{L} 𝒩¯\overline{\cal N} 𝟏{\bf 1} 1-1
HuH_{u} 𝟏{\bf 1} 𝟐+1/2{\bf 2}_{+1/2} +3+3
HdH_{d} 𝟏{\bf 1} 𝟐1/2{\bf 2}_{-1/2} +2+2
σ\sigma 𝟏{\bf 1} 𝟏{\bf 1} +4+4
SS 𝟏{\bf 1} 𝟏{\bf 1} +5+5
Table 1: 𝐙6R{{\bf Z}}_{6R} quantum numbers of relevant chiral superfileds appearing in Eq. (6).

In Table 1, an example for the 𝐙6R{{\bf Z}}_{6R} discrete symmetry is shown, from which n=1n=1 is chosen in Eq. (9). The 𝐙6R{{\bf Z}}_{6R} is a discrete subgroup of R-symmetry U(1)R. Because the antisymmetric parameter ϑ\vartheta carries –1 unit of U(1)R charge, superpotential WW with +2 units of U(1)R charge survives in the integration d2ϑW\int d^{2}\vartheta\,W. To assign tree level Yukawa couplings of the SM quarks, we have the following quantum numbers

qL:0,uLc:1,dLc:0,\begin{split}q_{L}:0,~{}u_{L}^{c}:-1,~{}d_{L}^{c}:0,\end{split} (10)

such that both qLuLcHuq_{L}u_{L}^{c}H_{u} and qLdLcHdq_{L}d_{L}^{c}H_{d} carry two units (modulo 6) of U(1)R charge. To obtain a TeV scale μ\mu term KimNilles84 , one can introduce the following superpotential

Wμ=(1010GeV)2MHuHd,\begin{split}W_{\mu}=\frac{(10^{10\,}\,\textrm{GeV})^{2}}{M}\,H_{u}H_{d},\end{split} (11)

but should forbid the dimensions 2 and 3 superpotential terms HuHd,HuHdσH_{u}H_{d},H_{u}H_{d}\sigma and HuHdSH_{u}H_{d}S. Equation (11) can be satisfied with Sσ1010GeV\langle S\rangle\approx\langle\sigma\rangle\approx 10^{10\,}\,\textrm{GeV}. Then, singlets SS and σ\sigma lead to the following superpotential

W=ασS2+εMS4xM2σS2QLQ¯L+,\begin{split}W=-\alpha\sigma S^{2}+\frac{\varepsilon}{M}S^{4}-\frac{x}{M^{2}}\sigma S^{2}Q_{L}\overline{Q}_{L}+\cdots,\end{split} (12)

where the neglected terms \cdots denote other terms including QLQ¯LQ_{L}\overline{Q}_{L}. The relations between the VEVs of σ\sigma and SS are

Wσ:QLQ¯L=αM2xWS:(xQLQ¯LM2+α)σ=2εMS2.\begin{split}&\frac{\partial W}{\partial\sigma}:\to Q_{L}\overline{Q}_{L}=-\frac{\alpha M^{2}}{x}\\ &\frac{\partial W}{\partial S}:\to(x\frac{Q_{L}\overline{Q}_{L}}{M^{2}}+\alpha)\sigma=\frac{2\varepsilon}{M}S^{2}.\end{split} (13)

Relations in (13) give exact SUSY. But SUSY is broken dynamically by the condensation of ex-quarks at Λ1013GeV\Lambda\simeq 10^{13\,}\,\textrm{GeV}. This SUSY breaking effect is added in the first SUSY relation,

αS2xM2S2QLQ¯L+δ1Λ2=0,2εS3MαSσxM2SQLQ¯Lσ+δ2Λ22=0,2εMS4+(δ2S2δ1σ2)Λ2=0.\begin{split}-\alpha S^{2}-\frac{x}{M^{2}}S^{2}Q_{L}\overline{Q}_{L}+\delta_{1}\Lambda^{2}=0,\\ \frac{2\varepsilon S^{3}}{M}-\alpha S\sigma-\frac{x}{M^{2}}SQ_{L}\overline{Q}_{L}\sigma+\frac{\delta_{2}\Lambda^{2}}{2}=0,\\ 2\frac{\varepsilon}{M}S^{4}+(\frac{\delta_{2}S-2\delta_{1}\sigma}{2})\Lambda^{2}=0.\end{split} (14)

Solutions of σ\sigma and SS satisfying Eq. (14) are shown in Fig. 2. So, the needed μ\mu term is around the point (1,1)(1,1) in Fig. 2.

The above U(1)R symmetry is a kind of the PQ symmetry because the U(1)R quantum number of HuHdH_{u}H_{d} is non-zero. At the scale VPQσ2+S2V_{\rm PQ}\equiv\sqrt{\sigma^{2}+S^{2}}, therefore, the PQ symmetry is spontaneously broken and there results the QCD axion discussed in the literature KimRMP10 . Because the quantum numbers of σ\sigma and SS are relatively prime, all the axionic vacua are connected and the domain wall number is 1 KNS18 ; ChoiKim85 . This QCD axion is responsible for the DM in the Universe. On the other hand, the mesons resulting from the new confining force are responsible for the DE of the Universe.

Refer to caption
Figure 2: Solutions of σ\sigma and SS satisfying Eq. (14).

Gravity effects of breaking global and discrete symmetries can be given by the terms explicitly breaking them. Since supergravity with superpotential WW has a fine-tuning problem of adjusting the cosmological constant Nilles04 , we lack any understanding on the magnitude of the cosmological constant in supergravity. So, no attempt is made to introduce explicit DE terms. However, we can discuss the gravity effects to the parameters in the gauge part, especially on the θ¯\bar{\theta} of QCD, as done in Barr92 . Here, we consider only the potential VV satisfying the 𝐙6R{\bf Z}_{6R} symmetry, but not the superpotential WW. Possible 𝐙6R{\bf Z}_{6R} invariant terms are

σ3,σ3,S2σ,S6,S6,(σσ)nforn=1,2,,(SS)nforn=1,2,,etc.\begin{split}\sigma^{3},~{}{\sigma^{*}}^{3},~{}S^{2}{\sigma^{*}},~{}S^{6},~{}{S^{*}}^{6},~{}(\sigma\sigma^{*})^{n}~{}{\rm for}~{}n=1,2,\cdots,~{}(SS^{*})^{n}~{}{\rm for}~{}n=1,2,\cdots,~{}{\rm etc.}\end{split} (15)

Note that the (σσ)n(\sigma\sigma^{*})^{n} and (SS)n(SS^{*})^{n} terms respect the PQ symmetry and do not shift θ¯\bar{\theta}. The leading terms in shifting θ¯\bar{\theta} in Eq. (15) are the cubic terms. But these cubic terms do not arise from the superpotential and hence appear with supersymmetry breaking coefficients, i.e. the gaugino condensation 𝒢𝒢\langle{\cal G}{\cal G}\rangle of the new confining force. Thus the θ¯\bar{\theta} shift is estimated from

1M2𝒢𝒢σ3,\begin{split}\frac{1}{M^{2}}\langle{\cal G}{\cal G}\rangle\sigma^{3},\cdots\end{split} (16)

which can be compared to the axion (or Pontryagin number) shift by GμνG~μνΛ4\langle G_{\mu\nu}\tilde{G}^{\mu\nu}\rangle\approx\Lambda^{4},

Δθ¯σ3M2Λ1.7×1020,\begin{split}\Delta\bar{\theta}\approx\frac{\sigma^{3}}{M^{2}\Lambda}\approx 1.7\times 10^{-20},\end{split} (17)

for Λ=1013GeV\Lambda=10^{13}\,\textrm{GeV} and σ=1010GeV\sigma=10^{10}\,\textrm{GeV}. So, the θ¯\bar{\theta} shift by gravity effects falls in the allowed region, |θ¯|1011|\bar{\theta}|\lesssim 10^{-11} KimRMP10 . In addition, the higher order terms will give a potential of the form given in Fig. 3. Restrcting the vaccum for aa below MPM_{\rm P} as shown in the left-hand side of the dash line, the nonzero VEV of aa is near the Planck scale. In addition, note that the effects of pseudo-Goldstone bosons may induce terms expected in general relativityBludman77 . We note, however, that all such effects with supersymmetry are included in Eq. (12).

Refer to caption
Figure 3: Shape of the potential by Eq. (15).

In conclusion, we propsed a mechanism creating quintessential axions that are almost massless mesons created at the condensation scale of a new nonabelian gauge group. Since an extra nonabelian gauge group has been proposed for dymnamical supersymmetry breaking, our mechanism is better suited in supersymmetric models.

Acknowledgements.
This work is supported in part by the National Research Foundation (NRF) grant NRF-2018R1A2A3074631.

References

  • (1)
  • (2) S. Weinberg, Anthropic Bound on the Cosmological Constant, Phys. Rev. Lett. 59 (1987) 2607 [doi: 10.1103/PhysRevLett.59.2607].
  • (3) J. A. Frieman and I. Waga, Constraints from high redshift supernovae upon scalar field cosmologies, Phys. Rev. D 57 (1998) 4642 [doi: 10.1103/PhysRevD.57.4642].
  • (4) S. M. Carroll, Quintessence and the rest of the world, Phys. Rev. Lett. 81 (1998) 3067 [e-Print: astro-ph/9806099 [astro-ph]].
  • (5) J. E. Kim and H. P. Nilles, A quintessential axion, Phys. Lett. B 553 (2003) 1 [e-print: hep-ph/0210402 [hep-ph]].
  • (6) C. T. Hill, Natural theories of ultralow mass pseudo Nambu-Goldstone bosons: Axions and quintessence, Phys. Rev. D 66 (2002) 075010 [e-print:hep-ph/0205237].
  • (7) J. E. Kim and G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys. 82 (2010) 557 [e-print: 0807.3125 [hep-ph]].
  • (8) Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1., Phys. Rev. D 122 (1961) 345 [doi:10.1103/PhysRev.122.345].
  • (9) M. Gell-Mann, R. J. Oakes, and B. Renner, Behavior of current divergences under SU(3)×\timesSU(3), Phys. Rev. D 175 (1968) 2195 [doi:10.1103/PhysRev.175.2195].
  • (10) J. E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [doi:10.1103/ PhysRevLett.43.103].
  • (11) For a review, see, J. E. Kim, S. Nam, and Y. Semertzidis, Fate of global symmetries in the Universe: QCD axion, quintessential axion and trans-Planckian inflaton decay-constant, Int. J. Mod. Phys. A 33 (2018) 1830002 [e-print: 1712.08648 [hep-ph]].
  • (12) J. L. Goity, A. M. Bernstein, and B. R. Holstein, Decay π0γγ\pi^{0}\to\gamma\gamma to next to leading order in chiral perturbation theory, Phys. Rev. D 66 (2002) 076014 [e-print:hep-ph/0206007].
  • (13) R. E. Shrock and M. Voloshin, Bounds on quark mixing angles from the decay KLμμ¯K_{L}\to\mu\bar{\mu}, Phys. Lett. B 87 (1979) 375 [doi:10.1016/0370-2693(79)90557-4].
  • (14) J. E. Kim and D. J. E. Marsh, An ultralight pseudoscalar boson, Phys. Rev. D 93 (2016) 025027 [e-Print: 1510.01701 [hep-ph]].
  • (15) L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D 95 (2017) 043541 [e-print:1610.08297 [astro-ph.CO]].
  • (16) J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [doi:10.1016/0370-2693(83)90637-8].
  • (17) L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [doi:10.1016/0370-2693(83)90638-X].
  • (18) M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [doi:10.1016/0370-2693(83)90639-1].
  • (19) See a fit, K. J. Bae, J-H. Huh, and J. E. Kim, Update of axion CDM energy density, JCAP 09 (2008) 005 [e-print: 0806.0497 [hep-ph]].
  • (20) H. P. Nilles, Dynamically Broken Supergravity and the Hierarchy Problem, Phys. Lett. B 115 (1982) 193 [doi: 10.1016/0370-2693(82)90642-6].
  • (21) J. E. Kim, Anomalies and parities for quintessential and ultra-light axions, Phys. Lett. B 817 (2021) 136248 [e-Print: 2102.01795 [hep-ph]].
  • (22) M. Bronstein, Phys. Z. Sowjetunion 3 (1933) 73;
    M. O¨\ddot{\rm O}zer, M. O. Taha, Nucl. Phys. B 287 (1987) 797 ;
    B. Ratra and P. J. E. Peebles, Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D 37 (1988) 3406 [doi:10.1103/PhysRevD.37.3406];
    C. Wetterich, Cosmologies with variable Newton’s ‘constant’, Nucl. Phys. B 302 (1988) 645 [doi:10.1016/0550-3213(88)90192-7];
    H. Gies and C. Wetterich, Renormalization flow from UV to IR degrees of freedom, hep-ph/0205226;
    J. A. Frieman, C. T. Hill, and R. Watkins, Late-time cosmological phase transitions: Particle-physics models and cosmic evolution, Phys. Rev. D 46 (1992) 1226 [doi:10.1103/PhysRevD.46.1226];
    R. Caldwell, R. Dave, and P. J. Steinhardt, Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett. 80 (1998) 1582 [doi: 10.1103/PhysRevLett.80.1582];
    P. Binetruy, Models of dynamical supersymmetry breaking and quintessence, Phys. Rev. D 60 (1999) 063502 [e-Print: hep-ph/9810553 [hep-ph]];
    C. Kolda and D. H. Lyth, Quintessential difficulties, Phys. Lett. B 458 (1999) 197 [e-Print: hep-ph/9811375 [hep-ph]];
    T. Chiba, Quintessence, the gravitational constant, and gravity, Phys. Rev. D 60 (1999) 083508 [doi: 10.1103/PhysRevD.60.083508];
    P. Brax and J. Martin, Phys. Lett. B 468 (1999) 40 [];
    A. Masiero, M. Pietroni, F. Rosati, SUSY QCD and quintessence, Phys. Rev. D 61 (2000) 023504 [e-Print: hep-ph/9905346 [hep-ph]];
    J. E. Kim, Model dependent axion as quintessence with almost massless hidden sector quarks, JHEP 06 (2000) 016 [e-Print: hep-ph/9907528 [hep-ph]];
    M. C. Bento, O. Bertolami, Gen. Relativ. Gravit. 31 (1999) 1461 [e-Print: gr-qc/9905075 [gr-qc]];
    F. Perrotta, C. Baccigalupi, S. Matarrase, Extended quintessence, Phys. Rev. D 61 (2000) 023507 [e-Print: astro-ph/9906066 [astro-ph]];
    J. E. Kim, Model dependent axion as quintessence with almost massless hidden sector quarks, JHEP 06 (2000) 016 [e-Print: hep-ph/9907528 [hep-ph]];
    A. Arbey, J. Lesgourgues, P. Salati, Cosmological constraints on quintessential halos, Phys. Rev. D 65 (2002) 083514 [e-Print: astro-ph/0112324 [astro-ph]].
  • (23) K. Choi, S. H. Im, and C. S. Shin, Recent Progress in the Physics of Axions and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci. 71 (2021) 225 [e-Print: 2012.05029 [hep-ph]].
  • (24) J. E. Kim, H. P. Nilles, and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [e-Print: hep-ph/0409138 [hep-ph]].
  • (25) For a recent survay, see, A. Lague¨\ddot{\rm e}, J. R. Bond, R. Hlozek, K. K. Rogers, D. J. E. Marsh, and D. Grin, Constraining Ultralight Axions with Galaxy Survaeys, eprint:2104.07802[astro-ph.CO].
  • (26) T. W. B.Kibble, Topology of cosmic domains and strings, Jour. of Physics A: Mathematical and General 9 (1976) 1387.
  • (27) P. Sikivie, Of Axions, Domain Walls and the Early Universe, Phys. Rev. Lett. 48 (1982) 1156 [doi:10.1103/ PhysRevLett.48.1156].
  • (28) S. M. Barr, K. Choi and J. E. Kim, Axion Cosmology in Superstring Models, Nucl. Phys. B 283 (1987) 591 [doi:10.1016/0550-3213(87)90288-4].
  • (29) J. E. Kim and H. P. Nilles, The μ\mu problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [doi:10.1016/0370-2693(84)91890-2].
  • (30) K. Choi and J. E. Kim, Domain Walls in Superstring Models, Phys. Rev. Lett. 55 (1985) 2637 [doi:10.1103/PhysRevLett.55.2637].
  • (31) H P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rep. 110 (1984) 1 [doi:10.1016/0370-1573(84)90008-5].
  • (32) S. M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [doi: 10.1103/PhysRevD.46.539].
  • (33) S. A. Bludman and M. A. Ruderman, Induced Cosmological Constant Expected above the Phase Transition Restoring the Broken Symmetry, Phys. Rev. Lett. 38 (1977) 255 [doi:10.1103/PhysRevLett.38.255].