This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.


Radial BPZ equations and partition functions of FK-Ising interfaces conditional on one-arm event

Yu Feng yufeng_proba@163.com Tsinghua University, China Hao Wu hao.wu.proba@gmail.com. Supported by Beijing Natural Science Foundation (JQ20001). Tsinghua University, China
Abstract

Radial BPZ equations come naturally when one solves Dubédat’s commutation relation in the radial setting. We construct positive solutions to radial BPZ equations and show that partition functions of FK-Ising interfaces in a polygon conditional on a one-arm event are positive solutions to radial BPZ equations.


Keywords: commutation relation, BPZ equations, random-cluster model

MSC: 60J67

1 Introduction

To describe the scaling limit of random interfaces in planar critical lattice models, Schramm realized that it is equivalent to classifying random planar curves with conformal invariance and domain Markov property. In a simply connected domain with two marked boundary points, these properties impose that the chordal Loewner driving function of such a random curve has to be a multiple of Brownian motion, and this gives the definition of chordal SLE [Sch00].

After classifying the random curves with conformal invariance and domain Markov property in a simply connected domain with two marked points on the boundary, it is natural to try to classify random curves with these properties in a simply connected domain with more marked points which correspond to the scaling limit of random interfaces in a polygon. We say that (Ω;x1,,xp)(\Omega;x_{1},\ldots,x_{p}) is a polygon if Ω\Omega\subsetneq\mathbb{C} is simply connected and x1,,xpΩx_{1},\ldots,x_{p}\in\partial\Omega are distinct points lying counterclockwise along the boundary. We assume that Ω\partial\Omega is locally connected. We say (Ω;x1,,xp)(\Omega;x_{1},\ldots,x_{p}) is a nice polygon if the marked boundary points x1,,xpx_{1},\ldots,x_{p} lie on sufficiently regular boundary segments, e.g. C1+ϵC^{1+\epsilon} for some ϵ>0\epsilon>0. The most often used polygon is the upper half-plane (;x1,,xp)(\mathbb{H};x_{1},\ldots,x_{p}) with x1<<xpx_{1}<\cdots<x_{p}. Dubédat analyzed random curves in polygons with conformal invariance, domain Markov property, and a technical requirement “absolute continuity” in [Dub07]. These properties give a commutation relation on the infinitesimal generators of the curves. In particular, such commutation relation results in a system of chordal Belavin-Polyakov-Zamolodchikov (BPZ) equations: for all 1jp1\leq j\leq p,

κ2j2𝒵𝒵+j(2xxj𝒵𝒵2h(xxj)2)=0.\displaystyle\frac{\kappa}{2}\frac{\partial_{j}^{2}\mathcal{Z}}{\mathcal{Z}}+\sum_{\ell\neq j}\left(\frac{2}{x_{\ell}-x_{j}}\frac{\partial_{\ell}\mathcal{Z}}{\mathcal{Z}}-\frac{2h}{(x_{\ell}-x_{j})^{2}}\right)=0. (1.1)

To classify random curves in a polygon with conformal invariance and domain Markov property, one needs to understand positive solutions to chordal BPZ equations (1.1). Since [Dub07], there has been active research on the classification of solutions to chordal BPZ equations and on their relation to planar critical lattice models [Gra07, Law09, FK15a, FK15b, KP16, FSKZ17, Izy17, PW19, Wu20, FSK22, Izy22, AHSY23, PW23, SY23, LPW24, FPW24, FLPW24].

In contrast to the chordal setting, commutation relation in the radial setting is less explored. We say (Ω;x1,,xp;z)(\Omega;x_{1},\ldots,x_{p};z) is a polygon with an interior point if (Ω;x1,,xp)(\Omega;x_{1},\ldots,x_{p}) is a polygon and zΩz\in\Omega. The most often used polygon with an interior point is the unit disc (𝕌;exp(𝔦θ1),,exp(𝔦θp);0)(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\ldots,\exp(\mathfrak{i}\theta_{p});0) with 𝜽=(θ1,,θp)𝒳p\boldsymbol{\theta}=(\theta_{1},\ldots,\theta_{p})\in\mathcal{X}_{p} where

𝒳p={𝜽=(θ1,,θp)p:θ1<θ2<<θp<θ1+2π}.\mathcal{X}_{p}=\{\boldsymbol{\theta}=(\theta_{1},\ldots,\theta_{p})\in\mathbb{R}^{p}:\theta_{1}<\theta_{2}<\cdots<\theta_{p}<\theta_{1}+2\pi\}.

In [Dub07], Dubédat also derived commutation relation in such radial setting. In particular, the commutation relation in the radial setting also gives a system of radial BPZ equations [Dub07, WW24, Zha24b]: there exists a constant \aleph\in\mathbb{R}, for all 1jp1\leq j\leq p,

κ2j2𝒵𝒵+j(cot((θθj)/2)𝒵𝒵(6κ)/(4κ)(sin((θθj)/2))2)=.\displaystyle\frac{\kappa}{2}\frac{\partial_{j}^{2}\mathcal{Z}}{\mathcal{Z}}+\sum_{\ell\neq j}\left(\cot((\theta_{\ell}-\theta_{j})/2)\frac{\partial_{\ell}\mathcal{Z}}{\mathcal{Z}}-\frac{(6-\kappa)/(4\kappa)}{\left(\sin((\theta_{\ell}-\theta_{j})/2)\right)^{2}}\right)=\aleph. (1.2)

Different from the chordal setting, the system of radial BPZ equations (1.2) has one more degree of freedom on the choice of the constant \aleph on the right-hand side. It is an interesting question to classify solutions to radial BPZ equations (1.2) and to understand the role of the constant \aleph. The authors in [HL21] analyzed multi-sided radial SLEκ\mathrm{SLE}_{\kappa} whose partition function is a solution to the system of radial BPZ equations (1.2) with =1N22κ\aleph=\frac{1-N^{2}}{2\kappa}. The authors in [WW24] studied commutation relation and found all solutions to the system of radial BPZ equations (1.2) with N=1N=1 and \aleph\in\mathbb{R}. The author in [Zha24b] analyzed solutions to the semi-classical limit (κ=0\kappa=0) of radial BPZ equations (1.2). See [Car04, DC07, SKFZ11, FKZ12] for other results about radial BPZ equations.

As we mentioned above, commutation relation comes naturally when one investigates the scaling limit of planar critical lattice models. Thus, solutions to radial BPZ equations should have a connection to planar critical lattice models. This is the focus of this article. It turns out that the scaling limit of interfaces of planar critical random-cluster model conditional on one-arm event corresponds to a partition function which is a positive solution to radial BPZ equations (1.2) with a specific constant \aleph that we describe below.

1.1 Random-cluster model

We fix a polygon with an interior point (Ω;x1,,x2N;z)(\Omega;x_{1},\ldots,x_{2N};z). Suppose (Ωδ;x1δ,,x2Nδ;zδ)(\Omega^{\delta};x_{1}^{\delta},\ldots,x_{2N}^{\delta};z^{\delta}) is a sequence of discrete domains on δ2\delta\mathbb{Z}^{2} converges to (Ω;x1,,x2N;z)(\Omega;x_{1},\ldots,x_{2N};z) in the close-Carathéodory sense (see Definition 3.2). We denote by

Ωδ=(Ω;x1,,x2N)δ\mathbb{P}^{\delta}_{\Omega}=\mathbb{P}^{\delta}_{(\Omega;x_{1},\ldots,x_{2N})}

the law of critical random-cluster model in (Ωδ;x1δ,,x2Nδ)(\Omega^{\delta};x_{1}^{\delta},\ldots,x_{2N}^{\delta}) with cluster-weight q[1,4)q\in[1,4) and alternating boundary condition:

(x2j1δx2jδ) is wired,for all j{1,,N},(x_{2j-1}^{\delta}x_{2j}^{\delta})\text{ is wired},\qquad\text{for all }j\in\{1,\ldots,N\}, (1.3)

and these NN wired arcs are not wired outside of Ωδ\Omega^{\delta} (see details in Section 3.1). Under such boundary condition, there exist NN interfaces (η(1,δ),,η(N,δ))(\eta^{(1,\delta)},\ldots,\eta^{(N,\delta)}) on the medial graph Ωδ,\Omega^{\delta,\diamond} connecting the marked points {x1δ,,,x2Nδ,}\{x_{1}^{\delta,\diamond},\ldots,x_{2N}^{\delta,\diamond}\} pairwise. The goal of this article is to derive the scaling limit of these interfaces conditional on the following one-arm event:

𝒜δ=𝒜δ(Ωδ;x1δ,,x2Nδ;zδ)={ an open path connecting zδ to j=1N(x2j1δx2jδ)}.\mathcal{A}^{\delta}=\mathcal{A}^{\delta}(\Omega^{\delta};x_{1}^{\delta},\ldots,x_{2N}^{\delta};z^{\delta})=\{\exists\text{ an open path connecting }z^{\delta}\text{ to }\cup_{j=1}^{N}(x_{2j-1}^{\delta}x_{2j}^{\delta})\}. (1.4)
Conjecture 1.1.

Fix a polygon with an interior point (Ω;x1,,x2N;z)(\Omega;x_{1},\ldots,x_{2N};z) and suppose a sequence of medial domains (Ωδ,;x1δ,,,x2Nδ,;zδ,)(\Omega^{\delta,\diamond};x_{1}^{\delta,\diamond},\ldots,x_{2N}^{\delta,\diamond};z^{\delta,\diamond}) converges to (Ω;x1,,x2N;z)(\Omega;x_{1},\ldots,x_{2N};z) in the close-Carathéodory sense. Consider critical random-cluster model on the primal domain (Ωδ;x1δ,,x2Nδ)(\Omega^{\delta};x_{1}^{\delta},\ldots,x_{2N}^{\delta}) with alternating boundary condition (1.3). The cluster-weight qq and parameter κ\kappa are related through

q=4cos2(4π/κ)[1,4),κ(4,6].q=4\cos^{2}(4\pi/\kappa)\in[1,4),\quad\kappa\in(4,6]. (1.5)

Let ηjδ\eta_{j}^{\delta} be the interface starting from xjδ,x_{j}^{\delta,\diamond}. Let φ\varphi be any conformal map from Ω\Omega onto 𝕌\mathbb{U} such that φ(z)=0\varphi(z)=0 and denote exp(𝔦θj)=φ(xj)\exp(\mathfrak{i}\theta_{j})=\varphi(x_{j}) for j{1,,2N}j\in\{1,\ldots,2N\} such that θ1<<θ2N<θ1+2π\theta_{1}<\cdots<\theta_{2N}<\theta_{1}+2\pi. Then the law of ηjδ\eta_{j}^{\delta} conditional on the one-arm event 𝒜δ\mathcal{A}^{\delta} in (1.4) converges weakly under the topology induced by dist\mathrm{dist} in (3.1) to the image under φ1\varphi^{-1} of the radial Loewner chain with the following driving function, up to the first time either φ(xj1)\varphi(x_{j-1}) or φ(xj+1)\varphi(x_{j+1}) is disconnected from the origin:

{dξt=κdBt+κ(jlog𝒢(𝔯1))(Vt(1),,Vt(j1),ξt,Vt(j+1),,Vt(2N))dt,ξ0=θj;dVt(i)=cot((Vt(i)ξt)/2)dt,V0(i)=θi,for i{1,,j1,j+1,,2N},\displaystyle\begin{cases}\mathrm{d}\xi_{t}=\sqrt{\kappa}\mathrm{d}B_{t}+\kappa(\partial_{j}\log\mathcal{G}^{(\mathfrak{r}_{1})})(V_{t}^{(1)},\ldots,V_{t}^{(j-1)},\xi_{t},V_{t}^{(j+1)},\ldots,V_{t}^{(2N)})\mathrm{d}t,\quad\xi_{0}=\theta_{j};\\ \mathrm{d}V_{t}^{(i)}=\cot((V_{t}^{(i)}-\xi_{t})/2)\mathrm{d}t,\quad V_{0}^{(i)}=\theta_{i},\quad\text{for }i\in\{1,\ldots,j-1,j+1,\ldots,2N\},\end{cases} (1.6)

where 𝔯1=𝔯1(κ)\mathfrak{r}_{1}=\mathfrak{r}_{1}(\kappa) is the one-arm exponent for conformal loop ensemble [SSW09]:

𝔯1(κ):=(3κ8)(8κ)32κ,\mathfrak{r}_{1}(\kappa):=\frac{(3\kappa-8)(8-\kappa)}{32\kappa},

the partition function 𝒢(𝔯1)\mathcal{G}^{(\mathfrak{r}_{1})} is defined in Definition 3.9 and is a solution to the system of radial BPZ equations (1.2) with =16κ232κ\aleph=\frac{16-\kappa^{2}}{32\kappa}: for all 1j2N1\leq j\leq 2N,

κ2j2𝒢(𝔯1)𝒢(𝔯1)+j(cot((θθj)/2)𝒢(𝔯1)𝒢(𝔯1)(6κ)/(4κ)(sin((θθj)/2))2)=16κ232κ.\displaystyle\frac{\kappa}{2}\frac{\partial_{j}^{2}\mathcal{G}^{(\mathfrak{r}_{1})}}{\mathcal{G}^{(\mathfrak{r}_{1})}}+\sum_{\ell\neq j}\left(\cot((\theta_{\ell}-\theta_{j})/2)\frac{\partial_{\ell}\mathcal{G}^{(\mathfrak{r}_{1})}}{\mathcal{G}^{(\mathfrak{r}_{1})}}-\frac{(6-\kappa)/(4\kappa)}{\left(\sin((\theta_{\ell}-\theta_{j})/2)\right)^{2}}\right)=\frac{16-\kappa^{2}}{32\kappa}. (1.7)

The partition function 𝒢(𝔯1)\mathcal{G}^{(\mathfrak{r}_{1})} in Conjecture 1.1 is not explicit in general, but it has a simple explicit expression when N=1N=1: up to a multiplicative constant,

𝒢(𝔯1)(θ1,θ2)=(sin((θ2θ1)/2))16/κ(sin((θ2θ1)/4))8/κ1.\mathcal{G}^{(\mathfrak{r}_{1})}(\theta_{1},\theta_{2})=\left(\sin\left(\left(\theta_{2}-\theta_{1}\right)/2\right)\right)^{1-6/\kappa}\left(\sin\left(\left(\theta_{2}-\theta_{1}\right)/4\right)\right)^{8/\kappa-1}. (1.8)
Theorem 1.2.

Conjecture 1.1 holds for FK-Ising model q=2q=2 with κ=16/3\kappa=16/3.

The proof of Theorem 1.2 relies on three inputs: 1st. a general construction of positive solutions to radial BPZ equations in Proposition 1.4; 2nd. the asymptotic analysis of probabilities of one-arm events of the FK-Ising model in Lemma 1.5 and 3rd. the convergence of FK-Ising interfaces without conditioning [BPW21, FPW24]. We will explain the construction of positive solutions in Section 1.2 and then explain the strategy of the proof of Theorem 1.2 in Section 1.3.

1.2 Positive solutions for radial BPZ equations

In this section, we construct positive solutions to radial BPZ equations (1.2) using global multiple SLEκ\mathrm{SLE}_{\kappa}. To this end, we first introduce global multiple SLEs.

For κ(0,8)\kappa\in(0,8), a chordal SLEκ\mathrm{SLE}_{\kappa} is a random continuous non-self-crossing curve in a simply connected domain Ω\Omega connecting two prime ends x1,x2x_{1},x_{2} on the boundary Ω\partial\Omega. We call such process chordal SLEκ\mathrm{SLE}_{\kappa} in (Ω;x1,x2)(\Omega;x_{1},x_{2}) for short. Suppose (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}) is a polygon. We consider curves (η(1),,η(N))(\eta^{(1)},\ldots,\eta^{(N)}) in Ω¯\overline{\Omega} each of which connects two distinct points among {x1,x2,,x2N}\{x_{1},x_{2},\ldots,x_{2N}\} in such a way that they do not cross each other. The curves (η(1),,η(N))(\eta^{(1)},\ldots,\eta^{(N)}) can have various planar connectivity patterns, which we describe in terms of planar link patterns α={{a1,b1},,{aN,bN}}\alpha=\{\{a_{1},b_{1}\},\ldots,\{a_{N},b_{N}\}\} where {a1,b1,,aN,bN}={1,2,,2N}\{a_{1},b_{1},\ldots,a_{N},b_{N}\}=\{1,2,\ldots,2N\}. For convenience, we choose the following ordering:

as<bs, for all s{1,,N},and a1<a2<<aN.a_{s}<b_{s},\text{ for all }s\in\{1,\ldots,N\},\quad\text{and }a_{1}<a_{2}<\cdots<a_{N}. (1.9)

We denote by LPN\mathrm{LP}_{N} the set of such planar link patterns. Note that #LPN\#\mathrm{LP}_{N} is given by NN:th Catalan number 1N+1(2NN)\frac{1}{N+1}\binom{2N}{N}. For each α={{a1,b1},,{aN,bN}}LPN\alpha=\{\{a_{1},b_{1}\},\ldots,\{a_{N},b_{N}\}\}\in\mathrm{LP}_{N}, we denote by 𝔛α(Ω;x1,,x2N)\mathfrak{X}_{\alpha}(\Omega;x_{1},\ldots,x_{2N}) the collection of curves (η(1),,η(N))(\eta^{(1)},\ldots,\eta^{(N)}) such that, for each j{1,,N}j\in\{1,\ldots,N\}, the curve η(j)\eta^{(j)} is a continuous non-self-crossing curves in Ω\Omega connecting xajx_{a_{j}} and xbjx_{b_{j}} and η(j)\eta^{(j)} does not disconnect any two points xasx_{a_{s}} and xbsx_{b_{s}} for sjs\neq j.

Definition 1.3.

Global NN-SLEκ\mathrm{SLE}_{\kappa} associated to the link pattern αLPN\alpha\in\mathrm{LP}_{N} in the polygon (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}) is the unique probability measure on 𝔛α(Ω;x1,,x2N)\mathfrak{X}_{\alpha}(\Omega;x_{1},\ldots,x_{2N}) with resampling property: for each j{1,,N}j\in\{1,\ldots,N\}, the conditional law of the curve ηj\eta_{j} given {η(1),,η(N)}{η(j)}\{\eta^{(1)},\ldots,\eta^{(N)}\}\setminus\{\eta^{(j)}\} is chordal SLEκ\mathrm{SLE}_{\kappa} connecting xajx_{a_{j}} and xbjx_{b_{j}} in the connected component of the domain Ωsjη(s)\Omega\setminus\cup_{s\neq j}\eta^{(s)} having the end points xajx_{a_{j}} and xbjx_{b_{j}} on its boundary. We denote its law by

α=α(Ω;x1,,x2N).\mathbb{Q}_{\alpha}=\mathbb{Q}_{\alpha}(\Omega;x_{1},\ldots,x_{2N}).

There is extensive literature about the existence and uniqueness of global NN-SLEκ\mathrm{SLE}_{\kappa} for different ranges of κ\kappa: [KL07, MS16a, MS16b, PW19, Wu20, BPW21, AHSY23, Zha24a, FLPW24]. They guarantee the existence and uniqueness of global NN-SLEκ\mathrm{SLE}_{\kappa} for κ(0,8)\kappa\in(0,8). Its law is encoded by pure partition functions (see Section 2.2)

𝒵α(Ω;x1,,x2N).\mathcal{Z}_{\alpha}(\Omega;x_{1},\ldots,x_{2N}).

In particular, when Ω=\Omega=\mathbb{H}, they are solutions to chordal BPZ equations (1.1).

Proposition 1.4.

Fix N1,αLPNN\geq 1,\alpha\in\mathrm{LP}_{N} and a polygon with an interior point (Ω;x1,,x2N;z)(\Omega;x_{1},\ldots,x_{2N};z). Fix κ(0,6]\kappa\in(0,6] and suppose (η(1),,η(N))α(\eta^{(1)},\ldots,\eta^{(N)})\sim\mathbb{Q}_{\alpha} is the global NN-SLEκ\mathrm{SLE}_{\kappa} associated to α\alpha in (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}). We write 𝛈=j=1Nη(j)\boldsymbol{\eta}=\cup_{j=1}^{N}\eta^{(j)}, and denote by CR(Ω𝛈;z)\mathrm{CR}\left(\Omega\setminus\boldsymbol{\eta};z\right) the conformal radius of the connected component of Ω𝛈\Omega\setminus\boldsymbol{\eta} containing zz. For 𝔯\mathfrak{r}\in\mathbb{R}, we define

𝒵α(𝔯)(Ω;x1,,x2N;z)=𝒵α(Ω;x1,,x2N)𝔼α[CR(Ω𝜼;z)𝔯].\mathcal{Z}_{\alpha}^{(\mathfrak{r})}(\Omega;x_{1},\ldots,x_{2N};z)=\mathcal{Z}_{\alpha}(\Omega;x_{1},\ldots,x_{2N})\mathbb{E}_{\alpha}\left[\mathrm{CR}\left(\Omega\setminus\boldsymbol{\eta};z\right)^{-\mathfrak{r}}\right]. (1.10)

Then the expectation in (1.10) is finite when 𝔯<1κ/8\mathfrak{r}<1-\kappa/8. Furthermore, for (θ1,,θ2N)𝒳2N(\theta_{1},\ldots,\theta_{2N})\in\mathcal{X}_{2N}, if we write

𝒵α(𝔯)(θ1,,θ2N)=𝒵α(𝔯)(𝕌;exp(𝔦θ1),,exp(𝔦θ2N);0),\mathcal{Z}_{\alpha}^{(\mathfrak{r})}(\theta_{1},\ldots,\theta_{2N})=\mathcal{Z}_{\alpha}^{(\mathfrak{r})}(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\ldots,\exp(\mathfrak{i}\theta_{2N});0), (1.11)

then 𝒵α(𝔯):𝒳2N>0\mathcal{Z}_{\alpha}^{(\mathfrak{r})}:\mathcal{X}_{2N}\to\mathbb{R}_{>0} satisfies the system of radial BPZ equations (1.2) with =(6κ)(κ2)8κ𝔯>32κ\aleph=\frac{(6-\kappa)(\kappa-2)}{8\kappa}-\mathfrak{r}>-\frac{3}{2\kappa}: for all 1j2N1\leq j\leq 2N,

κ2j2𝒵α(𝔯)𝒵α(𝔯)+j(cot((θθj)/2)𝒵α(𝔯)𝒵α(𝔯)(6κ)/(4κ)(sin((θθj)/2))2)=(6κ)(κ2)8κ𝔯.\frac{\kappa}{2}\frac{\partial_{j}^{2}\mathcal{Z}_{\alpha}^{(\mathfrak{r})}}{\mathcal{Z}_{\alpha}^{(\mathfrak{r})}}+\sum_{\ell\neq j}\left(\cot((\theta_{\ell}-\theta_{j})/2)\frac{\partial_{\ell}\mathcal{Z}_{\alpha}^{(\mathfrak{r})}}{\mathcal{Z}_{\alpha}^{(\mathfrak{r})}}-\frac{(6-\kappa)/(4\kappa)}{\left(\sin((\theta_{\ell}-\theta_{j})/2)\right)^{2}}\right)=\frac{(6-\kappa)(\kappa-2)}{8\kappa}-\mathfrak{r}. (1.12)

Proposition 1.4 with N=1N=1 is proved in [WW24]. If we set 𝔯=0\mathfrak{r}=0, then 𝒵α(𝔯)\mathcal{Z}_{\alpha}^{(\mathfrak{r})} in Proposition 1.4 becomes pure partition function 𝒵α\mathcal{Z}_{\alpha} and radial BPZ equations (1.2) with =(6κ)(κ2)8κ\aleph=\frac{(6-\kappa)(\kappa-2)}{8\kappa} is equivalent to the chordal BPZ equations (1.1) written in radial coordinates (1.11).

1.3 Relation between Theorem 1.2 and Proposition 1.4

For the FK-Ising model, we have the following asymptotic behavior of probabilities of one-arm events.

Lemma 1.5.

Fix a bounded simply connected domain Ω\Omega and suppose that a sequence of admissible medial domains Ωδ,\Omega^{\delta,\diamond} converges to Ω\Omega in the Carathéodory sense (see details in Section 3.1). Suppose that zδzz^{\delta}\to z as δ0\delta\to 0. Consider the critical FK-Ising model on the primal domain Ωδ\Omega^{\delta} with the wired boundary condition. Then we have

limδ0Ω,wδ[ an open path connecting zδ to Ωδ]𝕌,wδ[ an open path connecting 0 to 𝕌δ]=CR(Ω;z)1/8.\lim_{\delta\to 0}\frac{\mathbb{P}^{\delta}_{\Omega,\mathrm{w}}[\exists\text{ an open path connecting }z^{\delta}\text{ to }\partial\Omega^{\delta}]}{\mathbb{P}^{\delta}_{\mathbb{U},\mathrm{w}}[\exists\text{ an open path connecting }0\text{ to }\partial\mathbb{U}^{\delta}]}=\mathrm{CR}(\Omega;z)^{-1/8}. (1.13)

Indeed, it follows from [CHI15, Theorem 1.2] and the Edwards-Sokal coupling that

Ω,wδ[ an open path connecting zδ to Ωδ]=Cδ1/8CR(Ω;z)1/8(1+o(1)),as δ0,\mathbb{P}^{\delta}_{\Omega,\mathrm{w}}[\exists\text{ an open path connecting }z^{\delta}\text{ to }\partial\Omega^{\delta}]=C\delta^{1/8}\mathrm{CR}(\Omega;z)^{-1/8}(1+o(1)),\quad\text{as }\delta\to 0, (1.14)

for some C(0,)C\in(0,\infty), which is stronger than Lemma 1.5. We will give an alternative proof of Lemma 1.5 in Appendix A based on the CLE\mathrm{CLE}-convergence result stated in Proposition A.2 for the following two reasons: first, the weaker result Lemma 1.5 is sufficient for us to prove Theorem 1.2; second, while generalizing the arguments in [CHI15] to other critical models seems to be out of reach111One does not have an analogue of (1.14) for percolation, for example., the recent groundbreaking work [DCKK+20] suggests that a proof of the CLE\mathrm{CLE}-convergence for critical random-cluster models with q[1,4)q\in[1,4) other than 22 may be more realistic.

Let us explain the reason for radial BPZ equations (1.7) in Theorem 1.2. Assume the same setup as in Theorem 1.2, without conditioning, the law of the scaling limit 𝜼=(η(1),,η(N))\boldsymbol{\eta}=(\eta^{(1)},\ldots,\eta^{(N)}) of the collection of interfaces (η(1,δ),,η(N,δ))(\eta^{(1,\delta)},\ldots,\eta^{(N,\delta)}) is a linear combination of global NN-SLE16/3\mathrm{SLE}_{16/3} (due to [BPW21] and [FPW24], see details in Section 3.2). Given the collection of interfaces, the conditional probability of the one-arm event 𝒜δ\mathcal{A}^{\delta} in (1.4), after proper normalization as in Lemma 1.5, converges to CR(Ω𝜼;z)1/8\mathrm{CR}(\Omega\setminus\boldsymbol{\eta};z)^{-1/8}. Therefore, the scaling limit of the collection of interfaces (η(1,δ),,η(N,δ))(\eta^{(1,\delta)},\ldots,\eta^{(N,\delta)}) is a linear combination of global NN-SLE16/3\mathrm{SLE}_{16/3} weighted by CR(Ω𝜼;z)1/8\mathrm{CR}(\Omega\setminus\boldsymbol{\eta};z)^{-1/8} (see details in Section 3.3). Combining with Proposition 1.4, we find that the corresponding partition function 𝒢(𝔯1)\mathcal{G}^{(\mathfrak{r}_{1})} satisfies radial BPZ equations (1.2) with

=(6κ)(κ2)8κ𝔯1=16κ232κ\aleph=\frac{(6-\kappa)(\kappa-2)}{8\kappa}-\mathfrak{r}_{1}=\frac{16-\kappa^{2}}{32\kappa}

as in (1.7) for κ=16/3\kappa=16/3.

Remark 1.6.

Our proof for Theorem 1.2 relies on three inputs: Proposition 1.4, Lemma 1.5 and previous results of the convergence of the collection of FK-Ising interfaces (without conditioning). Conjecture 1.1 can be proved using the same strategy as long as one knows the convergence of a single interface to SLE and the convergence of the collection of loops to CLE. In particular, Conjecture 1.1 holds for Bernoulli site percolation on the triangular lattice with κ=6\kappa=6, as the convergence to SLE6\mathrm{SLE}_{6} and CLE6\mathrm{CLE}_{6} are known [Smi01, LSW02, CN07, CN06].

Outline.

We will prove Proposition 1.4 in Section 2, prove Theorem 1.2 in Section 3 and prove Lemma 1.5 in Appendix A.

Acknowledgments.

We thank Federico Camia and Yilin Wang for helpful discussions. H.W. is partly affiliated with Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing, China.

2 Global multiple SLEs and proof of Proposition 1.4

Fix parameters

κ(0,6],h=6κ2κ,h~=(6κ)(κ2)8κ.\kappa\in(0,6],\qquad h=\frac{6-\kappa}{2\kappa},\qquad\tilde{h}=\frac{(6-\kappa)(\kappa-2)}{8\kappa}. (2.1)

The goal of this section is to prove Proposition 1.4. To this end, we first introduce the Poisson kernel and notations with radial Loewner chain.

Poisson kernel.

(Boundary) Poisson kernel H(Ω;x,y)H(\Omega;x,y) is defined for nice Dobrushin domain (Ω;x,y)(\Omega;x,y). When Ω=\Omega=\mathbb{H}, we have

H(;x,y)=|yx|2,x,y.H(\mathbb{H};x,y)=|y-x|^{-2},\quad x,y\in\mathbb{R}.

For nice Dobrushin domain (Ω;x,y)(\Omega;x,y), we extend its definition via conformal covariance:

H(Ω;x,y)=|φ(x)φ(y)|H(;φ(x),φ(y)),H(\Omega;x,y)=|\varphi^{\prime}(x)\varphi^{\prime}(y)|H(\mathbb{H};\varphi(x),\varphi(y)),

where φ\varphi is any conformal map from Ω\Omega\to\mathbb{H}. When Ω=𝕌\Omega=\mathbb{U}, we have

H(𝕌;exp(𝔦θ1),exp(𝔦θ2))=(2sin((θ2θ1)/2))2.H(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\exp(\mathfrak{i}\theta_{2}))=\left(2\sin((\theta_{2}-\theta_{1})/2)\right)^{-2}.

Poisson kernel satisfies the following monotonicity. Let (Ω;x,y)(\Omega;x,y) be a nice Dobrushin domain and let UΩU\subset\Omega be a simply connected domain that agrees with Ω\Omega in neighborhoods of xx and of yy. Then we have

H(U;x,y)H(Ω;x,y).H(U;x,y)\leq H(\Omega;x,y). (2.2)

Radial Loewner chain.

Suppose K𝕌K\subset\mathbb{U} is a compact set such that 𝕌K\mathbb{U}\setminus K is simply connected and contains the origin. Let φ\varphi be the conformal map from 𝕌K\mathbb{U}\setminus K onto 𝕌\mathbb{U} with φ(0)=0\varphi(0)=0 and φ(0)>0\varphi^{\prime}(0)>0. The capacity of KK is logφ(0)=logCR(𝕌K;0)\log\varphi^{\prime}(0)=-\log\mathrm{CR}(\mathbb{U}\setminus K;0).

Fix θ[0,2π)\theta\in[0,2\pi). Suppose η:[0,T]𝕌¯\eta:[0,T]\to\overline{\mathbb{U}} is a continuous non-self-crossing curve such that η0=exp(𝔦θ)\eta_{0}=\exp(\mathfrak{i}\theta). Let UtU_{t} be the connected component of 𝕌η[0,t]\mathbb{U}\setminus\eta_{[0,t]} containing the origin. Let gt:Ut𝕌g_{t}:U_{t}\to\mathbb{U} be the unique conformal map with gt(0)=0g_{t}(0)=0 and gt(0)>0g^{\prime}_{t}(0)>0. We say that the curve is parameterized by capacity if gt(0)=exp(t)g^{\prime}_{t}(0)=\exp(t). Then gtg_{t} satisfies the radial Loewner chain:

tgt(z)=gt(z)exp(𝔦ξt)+gt(z)exp(𝔦ξt)gt(z),g0(z)=z,\partial_{t}g_{t}(z)=g_{t}(z)\frac{\exp(\mathfrak{i}\xi_{t})+g_{t}(z)}{\exp(\mathfrak{i}\xi_{t})-g_{t}(z)},\quad g_{0}(z)=z,

where tξtt\mapsto\xi_{t}\in\mathbb{R} is continuous and called the driving function of η\eta. Radial SLEκ\mathrm{SLE}_{\kappa} is the radial Loewner chain with driving function ξt=κBt\xi_{t}=\sqrt{\kappa}B_{t} where (Bt,t0)(B_{t},t\geq 0) is one-dimensional Brownian motion. We will call it radial SLEκ\mathrm{SLE}_{\kappa} in (𝕌;exp(𝔦θ);0)(\mathbb{U};\exp(\mathfrak{i}\theta);0) for short. Radial SLE in a general domain is defined via conformal image.

Let ϕt\phi_{t} be the covering map of gtg_{t}, i.e., the continuous function such that gt(exp(𝔦θ))=exp(𝔦ϕt(θ))g_{t}(\exp(\mathfrak{i}\theta))=\exp(\mathfrak{i}\phi_{t}(\theta)) and ϕ0(θ)=θ\phi_{0}(\theta)=\theta, we have tϕt(θ)=cot((ϕt(θ)ξt)/2)\partial_{t}\phi_{t}(\theta)=\cot\left(\left(\phi_{t}(\theta)-\xi_{t}\right)/2\right). In the following, we will have multiple marked points. For (θ1,,θp)𝒳p(\theta_{1},\ldots,\theta_{p})\in\mathcal{X}_{p}, suppose η:[0,T]𝕌¯\eta:[0,T]\to\overline{\mathbb{U}} is a continuous non-self-crossing curve such that η0=exp(𝔦θ1)\eta_{0}=\exp(\mathfrak{i}\theta_{1}). Then the evolution Vt(j)V_{t}^{(j)} of the marked point θj\theta_{j} is the same as ϕt(θj)\phi_{t}(\theta_{j}) for j{2,,p}j\in\{2,\ldots,p\}.

The proof of Proposition 1.4 is split into the following two lemmas.

Lemma 2.1.

Assume the same notations as in Proposition 1.4. The expectation in (1.10) is finite. Moreover, we have the following upper bound: there exists a constant Cκ(𝔯)(0,)\mathrm{C}_{\kappa}^{(\mathfrak{r})}\in(0,\infty) depending on κ\kappa and 𝔯\mathfrak{r} such that

𝒵α(𝔯)(Ω;x1,,x2N;z)NCκ(𝔯)CR(Ω;z)𝔯{a,b}αH(Ω;xa,xb)h.\mathcal{Z}_{\alpha}^{(\mathfrak{r})}(\Omega;x_{1},\ldots,x_{2N};z)\leq N\mathrm{C}_{\kappa}^{(\mathfrak{r})}\mathrm{CR}(\Omega;z)^{-\mathfrak{r}}\prod_{\{a,b\}\in\alpha}H(\Omega;x_{a},x_{b})^{h}. (2.3)

We denote by

α(𝔯)=α(𝔯)(Ω;x1,,x2N;z)\mathbb{Q}_{\alpha}^{(\mathfrak{r})}=\mathbb{Q}_{\alpha}^{(\mathfrak{r})}(\Omega;x_{1},\ldots,x_{2N};z)

the probability measure of (η(1),,η(N))α(\eta^{(1)},\ldots,\eta^{(N)})\sim\mathbb{Q}_{\alpha} global NN-SLEκ\mathrm{SLE}_{\kappa} associated to α\alpha in polygon (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}) weighted by

𝒵α(Ω;x1,,x2N)𝒵α(𝔯)(Ω;x1,,x2N;z)CR(Ω𝜼;z)𝔯.\frac{\mathcal{Z}_{\alpha}(\Omega;x_{1},\ldots,x_{2N})}{\mathcal{Z}_{\alpha}^{(\mathfrak{r})}(\Omega;x_{1},\ldots,x_{2N};z)}\mathrm{CR}(\Omega\setminus\boldsymbol{\eta};z)^{-\mathfrak{r}}.
Lemma 2.2.

Assume the same notations as in Proposition 1.4 and in Lemma 2.1.

  • The function 𝒵α(𝔯):𝒳2N>0\mathcal{Z}_{\alpha}^{(\mathfrak{r})}:\mathcal{X}_{2N}\to\mathbb{R}_{>0} in (1.11) satisfies the system of radial BPZ equations (1.12).

  • For (θ1,,θ2N)𝒳2N(\theta_{1},\ldots,\theta_{2N})\in\mathcal{X}_{2N}, suppose (η(1),,η(N))α(𝔯)(\eta^{(1)},\ldots,\eta^{(N)})\sim\mathbb{Q}_{\alpha}^{(\mathfrak{r})} in (𝕌;exp(𝔦θ1),,exp(𝔦θ2N);0)(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\ldots,\exp(\mathfrak{i}\theta_{2N});0). Then the law of η(1)\eta^{(1)} under α(𝔯)\mathbb{Q}_{\alpha}^{(\mathfrak{r})} is the same as radial SLEκ\mathrm{SLE}_{\kappa} in (𝕌;exp(𝔦θ1);0)(\mathbb{U};\exp(\mathfrak{i}\theta_{1});0) weighted by the following local martingale, up to the first time exp(𝔦θ2)\exp(\mathfrak{i}\theta_{2}) or exp(𝔦θ2N)\exp(\mathfrak{i}\theta_{2N}) is disconnected from the origin:

    Mt(𝒵α(𝔯))=gt(0)𝔯h~×j=22Nϕt(θj)h×𝒵α(𝔯)(ξt,ϕt(θ2),,ϕt(θ2N)).M_{t}(\mathcal{Z}_{\alpha}^{(\mathfrak{r})})=g_{t}^{\prime}(0)^{\mathfrak{r}-\tilde{h}}\times\prod_{j=2}^{2N}\phi_{t}^{\prime}(\theta_{j})^{h}\times\mathcal{Z}_{\alpha}^{(\mathfrak{r})}(\xi_{t},\phi_{t}(\theta_{2}),\ldots,\phi_{t}(\theta_{2N})). (2.4)

The rest of this section is organized as follows. We first give preliminaries on chordal SLE in Section 2.1 and give preliminaries on pure partition functions in Section 2.2. Then we prove Lemma 2.1 in Section 2.3 and prove Lemma 2.2 in Section 2.4. Finally, we give a generalization of Proposition 1.4 in Section 2.5, the purpose of such generalization will be clear in the proof of Theorem 1.2 in Section 3.3.

2.1 Preliminaries on chordal SLE

Chordal SLE is usually defined in the upper-half plane, in this article, it is more convenient to write down its definition in the unit disc. Fix (θ1,θ2)𝒳2(\theta_{1},\theta_{2})\in\mathcal{X}_{2}, the law of a chordal SLEκ\mathrm{SLE}_{\kappa} in (𝕌;exp(𝔦θ1),exp(𝔦θ2))(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\exp(\mathfrak{i}\theta_{2})) is the same as a radial SLEκ\mathrm{SLE}_{\kappa} in (𝕌;exp(𝔦θ1);0)(\mathbb{U};\exp(\mathfrak{i}\theta_{1});0) weighted by the following local martingale, up to the first time exp(𝔦θ2)\exp(\mathfrak{i}\theta_{2}) is disconnected from the origin:

Mt(𝒵[Uncaptioned image]):=gt(0)h~×ϕt(θ2)h×𝒵[Uncaptioned image](ξt,ϕt(θ2)),where 𝒵[Uncaptioned image](θ1,θ2)=(2sin((θ2θ1)/2))2h.M_{t}(\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}):=g_{t}^{\prime}(0)^{-\tilde{h}}\times\phi_{t}^{\prime}(\theta_{2})^{h}\times\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}(\xi_{t},\phi_{t}(\theta_{2})),\quad\text{where }\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}(\theta_{1},\theta_{2})=(2\sin((\theta_{2}-\theta_{1})/2))^{-2h}.

We say that the partition function for chordal SLEκ\mathrm{SLE}_{\kappa} in (𝕌;exp(𝔦θ1),exp(𝔦θ2))(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\exp(\mathfrak{i}\theta_{2})) is (2sin((θ2θ1)/2))2h(2\sin((\theta_{2}-\theta_{1})/2))^{-2h}. Chordal SLE in a general domain is defined via conformal image. Furthermore, the partition function for chordal SLEκ\mathrm{SLE}_{\kappa} in (Ω;x1,x2)(\Omega;x_{1},x_{2}) is given by

𝒵[Uncaptioned image](Ω;x1,x2)=H(Ω;x1,x2)h.\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}(\Omega;x_{1},x_{2})=H(\Omega;x_{1},x_{2})^{h}. (2.5)
Lemma 2.3.

Fix κ(0,8)\kappa\in(0,8) and a Dobrushin domain with an interior point (Ω;x1,x2;z)(\Omega;x_{1},x_{2};z). Suppose η[Uncaptioned image]\eta\sim\mathbb{Q}_{\includegraphics[scale={0.2}]{figures/link-0}} is chordal SLEκ\mathrm{SLE}_{\kappa} in (Ω;x1,x2)(\Omega;x_{1},x_{2}). For 𝔯\mathfrak{r}\in\mathbb{R}, define

𝒵[Uncaptioned image](𝔯)(Ω;x1,x2;z)=𝒵[Uncaptioned image](Ω;x1,x2)𝔼[Uncaptioned image][CR(Ωη;z)𝔯].\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\Omega;x_{1},x_{2};z)=\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}(\Omega;x_{1},x_{2})\mathbb{E}_{\includegraphics[scale={0.2}]{figures/link-0}}\left[\mathrm{CR}(\Omega\setminus\eta;z)^{-\mathfrak{r}}\right]. (2.6)

Then the expectation in (2.6) is finite if and only if 𝔯<1κ/8\mathfrak{r}<1-\kappa/8. Furthermore, if we denote

𝒵[Uncaptioned image](𝔯)(π):=𝒵[Uncaptioned image](𝔯)(𝕌;1,1;0).\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\pi):=\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\mathbb{U};1,-1;0). (2.7)

Then, we have the following upper bound:

𝒵[Uncaptioned image](𝔯)(Ω;x1,x2;z){CR(Ω;z)𝔯H(Ω;x1,x2)h,if 𝔯0;4h𝒵[Uncaptioned image](𝔯)(π)CR(Ω;z)𝔯H(Ω;x1,x2)h,if 0<𝔯<1κ/8.\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\Omega;x_{1},x_{2};z)\leq\begin{cases}\mathrm{CR}(\Omega;z)^{-\mathfrak{r}}H(\Omega;x_{1},x_{2})^{h},&\text{if }\mathfrak{r}\leq 0;\\ 4^{h}\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\pi)\mathrm{CR}(\Omega;z)^{-\mathfrak{r}}H(\Omega;x_{1},x_{2})^{h},&\text{if }0<\mathfrak{r}<1-\kappa/8.\end{cases} (2.8)
Proof.

It suffices to show the conclusion for Ω=𝕌\Omega=\mathbb{U} and z=0z=0. The first part of the conclusion is proved in [WW24, Proof of Lemma 3.10]. Furthermore, the proof there gives the following description of the expectation in 𝕌\mathbb{U}. For (θ1,θ2)𝒳2(\theta_{1},\theta_{2})\in\mathcal{X}_{2}, we write

𝒵[Uncaptioned image](𝔯)(θ1,θ2)=𝒵[Uncaptioned image](𝔯)(𝕌;exp(𝔦θ1),exp(𝔦θ2);0).\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\theta_{1},\theta_{2})=\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\exp(\mathfrak{i}\theta_{2});0).

We denote θ=θ2θ1\theta=\theta_{2}-\theta_{1} and write

𝒵[Uncaptioned image](𝔯)(θ1,θ2)=(2sin(θ/2))2hΦ(κ,𝔯;u),where u=sin2(θ/4).\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\theta_{1},\theta_{2})=(2\sin(\theta/2))^{-2h}\Phi(\kappa,\mathfrak{r};u),\quad\text{where }u=\sin^{2}(\theta/4).

When 𝔯<1κ/8\mathfrak{r}<1-\kappa/8, the function uΦ(κ,𝔯;u)u\mapsto\Phi(\kappa,\mathfrak{r};u) satisfies the following Euler’s hypergeometric differential equation:

u(1u)Φ′′+3κ82κ(12u)Φ+8𝔯κΦ=0.u(1-u)\Phi^{\prime\prime}+\frac{3\kappa-8}{2\kappa}(1-2u)\Phi^{\prime}+\frac{8\mathfrak{r}}{\kappa}\Phi=0.

Then there are two cases.

  • When 𝔯0\mathfrak{r}\leq 0, as CR(𝕌η)1\mathrm{CR}(\mathbb{U}\setminus\eta)\leq 1, we have 𝒵[Uncaptioned image](𝔯)(θ1,θ2)𝒵[Uncaptioned image](θ1,θ2)=(2sin(θ/2))2h\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\theta_{1},\theta_{2})\leq\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}(\theta_{1},\theta_{2})=(2\sin(\theta/2))^{-2h} as desired in (2.8).

  • When 0𝔯<1κ/80\leq\mathfrak{r}<1-\kappa/8, we have Φ(κ,𝔯;u)Φ(κ,𝔯;1/2)\Phi(\kappa,\mathfrak{r};u)\leq\Phi(\kappa,\mathfrak{r};1/2). Thus,

    𝒵[Uncaptioned image](𝔯)(θ1,θ2)=\displaystyle\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\theta_{1},\theta_{2})= (2sin(θ/2))2hΦ(κ,𝔯;u)\displaystyle(2\sin(\theta/2))^{-2h}\Phi(\kappa,\mathfrak{r};u)
    \displaystyle\leq (2sin(θ/2))2hΦ(κ,𝔯;1/2)\displaystyle(2\sin(\theta/2))^{-2h}\Phi(\kappa,\mathfrak{r};1/2)
    =\displaystyle= (sin(θ/2))2h𝒵[Uncaptioned image](𝔯)(π)=4h𝒵[Uncaptioned image](𝔯)(π)(2sin(θ/2))2h,\displaystyle(\sin(\theta/2))^{-2h}\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\pi)=4^{h}\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\pi)(2\sin(\theta/2))^{-2h},

    as desired in (2.8). Note that

    Φ(κ,𝔯;1/2)=4h𝒵[Uncaptioned image](𝔯)(π).\Phi(\kappa,\mathfrak{r};1/2)=4^{h}\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(\mathfrak{r})}(\pi). (2.9)

The following estimate will be useful in the proof of Lemma 2.1.

Corollary 2.4.

Fix κ(0,8)\kappa\in(0,8) and suppose η[Uncaptioned image]\eta\sim\mathbb{Q}_{\includegraphics[scale={0.2}]{figures/link-0}} is chordal SLEκ\mathrm{SLE}_{\kappa} in (𝕌;exp(𝔦θ1),exp(𝔦θ2))(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\exp(\mathfrak{i}\theta_{2})). For any p(0,1κ/8)p\in(0,1-\kappa/8) and ϵ(0,1)\epsilon\in(0,1), we have

[Uncaptioned image][CR(𝕌η)ϵ]4h𝒵[Uncaptioned image](p)(π)ϵp.\displaystyle\mathbb{Q}_{\includegraphics[scale={0.2}]{figures/link-0}}\left[\mathrm{CR}(\mathbb{U}\setminus\eta)\leq\epsilon\right]\leq 4^{h}\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(p)}(\pi)\epsilon^{p}. (2.10)
Proof.

We assume the same notations as in the proof of Lemma 2.3. By Markov inequality, we have

[Uncaptioned image][CR(𝕌η)ϵ]=\displaystyle\mathbb{Q}_{\includegraphics[scale={0.2}]{figures/link-0}}\left[\mathrm{CR}(\mathbb{U}\setminus\eta)\leq\epsilon\right]= [Uncaptioned image][CR(𝕌η)pϵp]\displaystyle\mathbb{Q}_{\includegraphics[scale={0.2}]{figures/link-0}}\left[\mathrm{CR}(\mathbb{U}\setminus\eta)^{-p}\geq\epsilon^{-p}\right]
\displaystyle\leq ϵp𝔼[Uncaptioned image][CR(𝕌η)p]=ϵpΦ(κ,p;u).\displaystyle\epsilon^{p}\mathbb{E}_{\includegraphics[scale={0.2}]{figures/link-0}}\left[\mathrm{CR}(\mathbb{U}\setminus\eta)^{-p}\right]=\epsilon^{p}\Phi(\kappa,p;u).

From (2.9), we have Φ(κ,p;u)Φ(κ,p;1/2)=4h𝒵[Uncaptioned image](p)(π)\Phi(\kappa,p;u)\leq\Phi(\kappa,p;1/2)=4^{h}\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(p)}(\pi). This completes the proof of (2.10). ∎

2.2 Preliminaries on pure partition functions

Recall that LPN\mathrm{LP}_{N} denotes the set of all planar link patterns among 2N2N boundary points. We denote LP=N0LPN\mathrm{LP}=\sqcup_{N\geq 0}\mathrm{LP}_{N}. Pure partition functions of multiple SLEκ\mathrm{SLE}_{\kappa} are the recursive collection {𝒵α:αLP}\{\mathcal{Z}_{\alpha}\colon\alpha\in\mathrm{LP}\} of functions

𝒵α(;):{(x1,,x2N)2N:x1<<x2N}\mathcal{Z}_{\alpha}(\mathbb{H};\cdot)\colon\{(x_{1},\ldots,x_{2N})\in\mathbb{R}^{2N}:x_{1}<\cdots<x_{2N}\}\to\mathbb{R}

uniquely determined by the following four properties:

  • Chordal BPZ equations: for all j{1,,2n}j\in\{1,\ldots,2n\},

    [κ2j2+j(2xxj2h(xxj)2)]𝒵α(;x1,,x2n)=0.\displaystyle\left[\frac{\kappa}{2}\partial_{j}^{2}+\sum_{\ell\neq j}\left(\frac{2}{x_{\ell}-x_{j}}\partial_{\ell}-\frac{2h}{(x_{\ell}-x_{j})^{2}}\right)\right]\mathcal{Z}_{\alpha}(\mathbb{H};x_{1},\ldots,x_{2n})=0.
  • Möbius covariance: for all Möbius maps φ\varphi of the upper half-plane \mathbb{H} such that φ(x1)<<φ(x2N)\varphi(x_{1})<\cdots<\varphi(x_{2N}), we have

    𝒵α(;x1,,x2N)=j=12Nφ(xj)h×𝒵α(;φ(x1),,φ(x2N)).\displaystyle\mathcal{Z}_{\alpha}(\mathbb{H};x_{1},\ldots,x_{2N})=\prod_{j=1}^{2N}\varphi^{\prime}(x_{j})^{h}\times\mathcal{Z}_{\alpha}(\mathbb{H};\varphi(x_{1}),\ldots,\varphi(x_{2N})).
  • Asymptotics: with 𝒵1\mathcal{Z}_{\emptyset}\equiv 1 for the empty link pattern LP0\emptyset\in\mathrm{LP}_{0}, the collection {𝒵α:αLP}\{\mathcal{Z}_{\alpha}\colon\alpha\in\mathrm{LP}\} satisfies the following recursive asymptotics property. Fix N1N\geq 1 and j{1,2,,2N1}j\in\{1,2,\ldots,2N-1\}. Then, we have

    limxj,xj+1ξ𝒵α(;x1,,x2N)(xj+1xj)2h={𝒵α/{j,j+1}(;x1,,xj1,xj+2,,x2N),if {j,j+1}α,0,if {j,j+1}α,\displaystyle\lim_{x_{j},x_{j+1}\to\xi}\frac{\mathcal{Z}_{\alpha}(\mathbb{H};x_{1},\ldots,x_{2N})}{(x_{j+1}-x_{j})^{-2h}}=\begin{cases}\mathcal{Z}_{\alpha/\{j,j+1\}}(\mathbb{H};x_{1},\ldots,x_{j-1},x_{j+2},\ldots,x_{2N}),&\quad\text{if }\{j,j+1\}\in\alpha,\\ 0,&\quad\text{if }\{j,j+1\}\not\in\alpha,\end{cases}

    where ξ(xj1,xj+2)\xi\in(x_{j-1},x_{j+2}) (with the convention that x0=x_{0}=-\infty and x2N+1=+x_{2N+1}=+\infty), and α/{k,l}\alpha/\{k,l\} denotes the link pattern in LPN1\mathrm{LP}_{N-1} obtained by removing {k,l}\{k,l\} from α\alpha and then relabeling the remaining indices so that they are the first 2(N1)2(N-1) positive integers.

  • The functions are positive and satisfy the following power-law bound:

    0<𝒵α(;x1,,x2N){a,b}α|xaxb|2h,for all x1<<x2N.\displaystyle 0<\mathcal{Z}_{\alpha}(\mathbb{H};x_{1},\ldots,x_{2N})\leq\prod_{\{a,b\}\in\alpha}|x_{a}-x_{b}|^{-2h},\quad\text{for all }x_{1}<\cdots<x_{2N}. (2.11)

The uniqueness when κ(0,8)\kappa\in(0,8) of such collection of functions is proved in [FK15a]. The existence when κ(0,6]\kappa\in(0,6] is proved in [Wu20]. For other results related to the existence of such functions, see [FK15b, KP16, PW19, AHSY23, FLPW24]. We extend the definition of 𝒵α\mathcal{Z}_{\alpha} to more general polygons (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}) as

𝒵α(Ω;x1,,x2N):=j=12N|φ(xj)|h×𝒵α(;φ(x1),,φ(x2N)),\displaystyle\mathcal{Z}_{\alpha}(\Omega;x_{1},\ldots,x_{2N}):=\prod_{j=1}^{2N}|\varphi^{\prime}(x_{j})|^{h}\times\mathcal{Z}_{\alpha}(\mathbb{H};\varphi(x_{1}),\ldots,\varphi(x_{2N})), (2.12)

where φ\varphi is any conformal map from Ω\Omega onto \mathbb{H} with φ(x1)<<φ(x2N)\varphi(x_{1})<\cdots<\varphi(x_{2N}). The power-law bound (2.11) becomes

0<𝒵α(Ω;x1,,x2N){a,b}αH(Ω;xa,xb)h.0<\mathcal{Z}_{\alpha}(\Omega;x_{1},\ldots,x_{2N})\leq\prod_{\{a,b\}\in\alpha}H(\Omega;x_{a},x_{b})^{h}. (2.13)

For the polygon (𝕌;exp(𝔦θ1),,exp(𝔦θ2N))(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\ldots,\exp(\mathfrak{i}\theta_{2N})) with (θ1,,θ2N)𝒳2N(\theta_{1},\ldots,\theta_{2N})\in\mathcal{X}_{2N}, we write

𝒵α(θ1,,θ2N)=𝒵α(𝕌;exp(𝔦θ1),,exp(𝔦θ2N)).\displaystyle\mathcal{Z}_{\alpha}\left(\theta_{1},\ldots,\theta_{2N}\right)=\mathcal{Z}_{\alpha}\left(\mathbb{U};\exp\left(\mathfrak{i}\theta_{1}\right),\ldots,\exp\left(\mathfrak{i}\theta_{2N}\right)\right).

Then the chordal BPZ equations (1.1) become radial BPZ equations (1.2) with =(6κ)(κ2)8κ\aleph=\frac{(6-\kappa)(\kappa-2)}{8\kappa}.

The Loewner evolution in global multiple SLEs can be described by pure partition functions.

Lemma 2.5.

Fix κ(0,6],N1\kappa\in(0,6],N\geq 1, αLPN\alpha\in\mathrm{LP}_{N} and (θ1,,θ2N)𝒳2N(\theta_{1},\ldots,\theta_{2N})\in\mathcal{X}_{2N}. Suppose 𝛈=(η(1),,η(N))α\boldsymbol{\eta}=(\eta^{(1)},\ldots,\eta^{(N)})\sim\mathbb{Q}_{\alpha} is global NN-SLEκ\mathrm{SLE}_{\kappa} associated to α\alpha in (𝕌;exp(𝔦θ1),,exp(𝔦θ2N))(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\ldots,\exp(\mathfrak{i}\theta_{2N})). Then the law of η(1)\eta^{(1)} under α\mathbb{Q}_{\alpha} is the same as radial SLEκ\mathrm{SLE}_{\kappa} in (𝕌;exp(𝔦θ1);0)(\mathbb{U};\exp(\mathfrak{i}\theta_{1});0) weighted by the following local martingale, up to the first time exp(𝔦θ2)\exp(\mathfrak{i}\theta_{2}) or exp(𝔦θ2N)\exp(\mathfrak{i}\theta_{2N}) is disconnected from the origin:

Mt(𝒵α)=gt(0)h~×j=22Nϕt(θj)h×𝒵α(ξt,ϕt(θ2),,ϕt(θ2N)).M_{t}(\mathcal{Z}_{\alpha})=g_{t}^{\prime}(0)^{-\tilde{h}}\times\prod_{j=2}^{2N}\phi_{t}^{\prime}(\theta_{j})^{h}\times\mathcal{Z}_{\alpha}(\xi_{t},\phi_{t}(\theta_{2}),\ldots,\phi_{t}(\theta_{2N})). (2.14)
Proof.

Analogous conclusion is known for the upper-half plane, see e.g. [Wu20, Section 6]. From \mathbb{H} to 𝕌\mathbb{U}, we perform a standard change of variables calculation [SW05]. ∎

The following cascade relation for pure partition functions will be useful later. Suppose (η(1),,η(N))α(\eta^{(1)},\ldots,\eta^{(N)})\sim\mathbb{Q}_{\alpha} is global NN-SLEκ\mathrm{SLE}_{\kappa} associated to α\alpha in polygon (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}). The curve η(1)\eta^{(1)} is in Ω\Omega from xa1x_{a_{1}} to xb1x_{b_{1}}. We will describe the Radon-Nikodym derivative between η(1)\eta^{(1)} under α\mathbb{Q}_{\alpha} and chordal SLEκ\mathrm{SLE}_{\kappa} in (Ω;xa1,xb1)(\Omega;x_{a_{1}},x_{b_{1}}) below. For α={{a1,b1},,{aN,bN}}\alpha=\{\{a_{1},b_{1}\},\ldots,\{a_{N},b_{N}\}\}, the link {a1,b1}\{a_{1},b_{1}\} divides α\alpha into two sub-link patterns, connecting {a1+1,,b11}\{a_{1}+1,\ldots,b_{1}-1\} and {b1+1,,a11}\{b_{1}+1,\ldots,a_{1}-1\} respectively. After relabeling the indices, we denote these two link patterns by α1R\alpha_{1}^{R} and α1L\alpha_{1}^{L}. Suppose η\eta is SLEκ\mathrm{SLE}_{\kappa} in Ω\Omega from xa1x_{a_{1}} to xb1x_{b_{1}}, we say that η\eta is allowed by α\alpha if, for all s1s\neq 1, the points xasx_{a_{s}} and xbsx_{b_{s}} lie on the boundary of the same connected component of 𝕌η\mathbb{U}\setminus\eta. In other words, η\eta is allowed by α\alpha if it does not disconnect any pair of points {xas,xbs}\{x_{a_{s}},x_{b_{s}}\} for s1s\neq 1. We denote this event by α(η)\mathcal{E}_{\alpha}(\eta). On the event α(η)\mathcal{E}_{\alpha}(\eta), the points xa1+1,,xb11x_{a_{1}+1},\ldots,x_{b_{1}-1} are divided into smaller groups. We denote the connected components of Ωη\Omega\setminus\eta having these points on the boundary by Ω1R,1,,Ω1R,r\Omega_{1}^{R,1},\ldots,\Omega_{1}^{R,r} in counterclockwise order and denote their union by Ω1R\Omega_{1}^{R}. The sub-link pattern α1R\alpha_{1}^{R} is further divided into smaller sub-link patterns, after relabeling the indices, we denote these link patterns by α1R,1,,α1R,r\alpha_{1}^{R,1},\ldots,\alpha_{1}^{R,r}. We define

𝒵α1R(Ω1R;xa1+1,,xb11)=𝒵α1R,1(Ω1R,1;)××𝒵α1R,r(Ω1R,r;).\mathcal{Z}_{\alpha_{1}^{R}}(\Omega_{1}^{R};x_{a_{1}+1},\ldots,x_{b_{1}-1})=\mathcal{Z}_{\alpha_{1}^{R,1}}(\Omega_{1}^{R,1};\ldots)\times\cdots\times\mathcal{Z}_{\alpha_{1}^{R,r}}(\Omega_{1}^{R,r};\ldots).

We define Ω1L,1,,Ω1L,,Ω1L,α1L,1,,α1L,\Omega_{1}^{L,1},\ldots,\Omega_{1}^{L,\ell},\Omega_{1}^{L},\alpha_{1}^{L,1},\ldots,\alpha_{1}^{L,\ell} similarly and define

𝒵α1L(Ω1L;xb1+1,,xa11)=𝒵α1L,1(Ω1L,1;)××𝒵α1L,(Ω1L,;).\mathcal{Z}_{\alpha_{1}^{L}}(\Omega_{1}^{L};x_{b_{1}+1},\ldots,x_{a_{1}-1})=\mathcal{Z}_{\alpha_{1}^{L,1}}(\Omega_{1}^{L,1};\ldots)\times\cdots\times\mathcal{Z}_{\alpha_{1}^{L,\ell}}(\Omega_{1}^{L,\ell};\ldots).

We also write

𝒵α/{a1,b1}(Ωη;xa1+1,,xb11,xb1+1,,xa11)\displaystyle\mathcal{Z}_{\alpha/\{a_{1},b_{1}\}}(\Omega\setminus\eta;x_{a_{1}+1},\ldots,x_{b_{1}-1},x_{b_{1}+1},\ldots,x_{a_{1}-1})
=\displaystyle= 𝒵α1R(Ω1R;xa1+1,,xb11)×𝒵α1L(Ω1L;xb1+1,,xa11).\displaystyle\mathcal{Z}_{\alpha_{1}^{R}}(\Omega_{1}^{R};x_{a_{1}+1},\ldots,x_{b_{1}-1})\times\mathcal{Z}_{\alpha_{1}^{L}}(\Omega_{1}^{L};x_{b_{1}+1},\ldots,x_{a_{1}-1}).
Lemma 2.6.

Fix κ(0,6],N1\kappa\in(0,6],N\geq 1, αLPN\alpha\in\mathrm{LP}_{N} and a polygon (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}). Suppose η[Uncaptioned image]\eta\sim\mathbb{Q}_{\includegraphics[scale={0.2}]{figures/link-0}} is chordal SLEκ\mathrm{SLE}_{\kappa} in (Ω;xa1,xb1)(\Omega;x_{a_{1}},x_{b_{1}}). Pure partition functions have the following cascade relation:

𝒵α(Ω;x1,,x2N)=𝒵[Uncaptioned image](Ω;xa1,xb1)𝔼[Uncaptioned image][𝒵α/{a1,b1}(Ωη;xa1+1,,xb11,xb1+1,,xa11)𝟙{α(η)}]\displaystyle\mathcal{Z}_{\alpha}(\Omega;x_{1},\ldots,x_{2N})=\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}(\Omega;x_{a_{1}},x_{b_{1}})\mathbb{E}_{\includegraphics[scale={0.2}]{figures/link-0}}\left[\mathcal{Z}_{\alpha/\{a_{1},b_{1}\}}(\Omega\setminus\eta;x_{a_{1}+1},\ldots,x_{b_{1}-1},x_{b_{1}+1},\ldots,x_{a_{1}-1})\mathbb{1}\{\mathcal{E}_{\alpha}(\eta)\}\right]

Furthermore, the law of η(1)\eta^{(1)} under α(Ω;x1,,x2N)\mathbb{Q}_{\alpha}(\Omega;x_{1},\ldots,x_{2N}) is the same as η[Uncaptioned image](Ω;xa1,xb1)\eta\sim\mathbb{Q}_{\includegraphics[scale={0.2}]{figures/link-0}}(\Omega;x_{a_{1}},x_{b_{1}}) weighted by

𝒵[Uncaptioned image](Ω;xa1,xb1)𝒵α(Ω;x1,,x2N)𝒵α/{a1,b1}(Ωη;xa1+1,,xb11,xb1+1,,xa11)𝟙{α(η)}.\frac{\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}(\Omega;x_{a_{1}},x_{b_{1}})}{\mathcal{Z}_{\alpha}(\Omega;x_{1},\ldots,x_{2N})}\mathcal{Z}_{\alpha/\{a_{1},b_{1}\}}(\Omega\setminus\eta;x_{a_{1}+1},\ldots,x_{b_{1}-1},x_{b_{1}+1},\ldots,x_{a_{1}-1})\mathbb{1}\{\mathcal{E}_{\alpha}(\eta)\}.
Proof.

See [Wu20, Section 6]. ∎

2.3 Proof of Lemma 2.1

Proof of Lemma 2.1.

It suffices to show the conclusion for Ω=𝕌\Omega=\mathbb{U} and z=0z=0. Recall that 𝜼=(η(1),,η(N))α\boldsymbol{\eta}=(\eta^{(1)},\ldots,\eta^{(N)})\sim\mathbb{Q}_{\alpha} is global NN-SLEκ\mathrm{SLE}_{\kappa} associated to α\alpha in polygon (𝕌;x1,,x2N)(\mathbb{U};x_{1},\ldots,x_{2N}). We denote 𝜼=j=1Nη(j)\boldsymbol{\eta}=\cup_{j=1}^{N}\eta^{(j)} and denote by CR(𝕌𝜼)\mathrm{CR}(\mathbb{U}\setminus\boldsymbol{\eta}) the conformal radius of the connected component of 𝕌𝜼\mathbb{U}\setminus\boldsymbol{\eta} containing the origin. Note that CR(𝕌𝜼)1\mathrm{CR}(\mathbb{U}\setminus\boldsymbol{\eta})\leq 1. If 𝔯0\mathfrak{r}\leq 0, we have

𝒵α(𝔯)(𝕌;x1,,x2N;0)\displaystyle\mathcal{Z}_{\alpha}^{(\mathfrak{r})}(\mathbb{U};x_{1},\ldots,x_{2N};0)\leq 𝒵α(𝕌;x1,,x2N){a,b}αH(𝕌;xa,xb)h,\displaystyle\mathcal{Z}_{\alpha}(\mathbb{U};x_{1},\ldots,x_{2N})\leq\prod_{\{a,b\}\in\alpha}H(\mathbb{U};x_{a},x_{b})^{h}, (due to (2.13))

as desired in (2.3).

In the rest of the proof, we assume 𝔯>0\mathfrak{r}>0. We write αLPN\alpha\in\mathrm{LP}_{N} as in (1.9). Let us estimate the probability α[CR(𝕌𝜼)ϵ]\mathbb{Q}_{\alpha}\left[\mathrm{CR}\left(\mathbb{U}\setminus\boldsymbol{\eta}\right)\leq\epsilon\right] for ϵ>0\epsilon>0 small. For any subset K𝕌K\subset\mathbb{U}, Koebe’s one quarter theorem gives dist(0,K)CR(𝕌K)4dist(0,K)\mathrm{dist}(0,K)\leq\mathrm{CR}(\mathbb{U}\setminus K)\leq 4\mathrm{dist}(0,K). Thus,

{CR(𝕌𝜼)ϵ}j=1N{dist(0,η(j))ϵ}j=1N{CR(𝕌η(j))4ϵ}.\displaystyle\left\{\mathrm{CR}\left(\mathbb{U}\setminus\boldsymbol{\eta}\right)\leq\epsilon\right\}\quad\subset\quad\cup_{j=1}^{N}\left\{\mathrm{dist}(0,\eta^{(j)})\leq\epsilon\right\}\quad\subset\quad\cup_{j=1}^{N}\left\{\mathrm{CR}(\mathbb{U}\setminus\eta^{(j)})\leq 4\epsilon\right\}.

Consequently,

α[CR(𝕌𝜼)ϵ]j=1Nα[CR(𝕌η(j))4ϵ].\displaystyle\mathbb{Q}_{\alpha}\left[\mathrm{CR}\left(\mathbb{U}\setminus\boldsymbol{\eta}\right)\leq\epsilon\right]\leq\sum_{j=1}^{N}\mathbb{Q}_{\alpha}\left[\mathrm{CR}(\mathbb{U}\setminus\eta^{(j)})\leq 4\epsilon\right]. (2.15)

It suffices to estimate α[CR(𝕌η(j))4ϵ]\mathbb{Q}_{\alpha}[\mathrm{CR}(\mathbb{U}\setminus\eta^{(j)})\leq 4\epsilon].

From Lemma 2.6, the law of η(j)\eta^{(j)} under α\mathbb{Q}_{\alpha} is absolutely continuous with respect to η[Uncaptioned image]\eta\sim\mathbb{Q}_{\includegraphics[scale={0.2}]{figures/link-0}} chordal SLEκ\mathrm{SLE}_{\kappa} in (𝕌;xaj,xbj)(\mathbb{U};x_{a_{j}},x_{b_{j}}). We denote by αj(η)\mathcal{E}^{j}_{\alpha}(\eta) the event that η\eta is allowed by α\alpha. Then the law of η(j)\eta^{(j)} under α\mathbb{Q}_{\alpha} is the same as η\eta weighted by

𝒵[Uncaptioned image](𝕌;xaj,xbj)𝒵α(𝕌;x1,,x2N)𝒵α/{aj,bj}(𝕌η;xaj+1,,xbj1,xbj+1,,xaj1)𝟙{αj(η)}.\frac{\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}(\mathbb{U};x_{a_{j}},x_{b_{j}})}{\mathcal{Z}_{\alpha}(\mathbb{U};x_{1},\ldots,x_{2N})}\mathcal{Z}_{\alpha/\{a_{j},b_{j}\}}(\mathbb{U}\setminus\eta;x_{a_{j}}+1,\ldots,x_{b_{j}-1},x_{b_{j}+1},\ldots,x_{a_{j}-1})\mathbb{1}\left\{\mathcal{E}^{j}_{\alpha}(\eta)\right\}.

From (2.13) and the monotonicity of Poisson kernel (2.2), we have

𝒵α/{aj,bj}(𝕌η;xaj+1,,xbj1,xbj+1,,xaj1)sjH(𝕌;xas,xbs)h.\displaystyle\mathcal{Z}_{\alpha/\{a_{j},b_{j}\}}(\mathbb{U}\setminus\eta;x_{a_{j}}+1,\ldots,x_{b_{j}-1},x_{b_{j}+1},\ldots,x_{a_{j}-1})\leq\prod_{s\neq j}H(\mathbb{U};x_{a_{s}},x_{b_{s}})^{h}. (2.16)

We pick p(0,1κ/8)p\in(0,1-\kappa/8), then

α[CR(𝕌η(j))4ϵ]\displaystyle\mathbb{Q}_{\alpha}[\mathrm{CR}(\mathbb{U}\setminus\eta^{(j)})\leq 4\epsilon]
=\displaystyle= 𝒵[Uncaptioned image](𝕌;xaj,xbj)𝒵α(𝕌;x1,,x2N)𝔼[Uncaptioned image][𝒵α/{aj,bj}(𝕌η;xaj+1,,xbj1,xbj+1,,xaj1)𝟙{αj(η){CR(𝕌η)4ϵ}}]\displaystyle\frac{\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}(\mathbb{U};x_{a_{j}},x_{b_{j}})}{\mathcal{Z}_{\alpha}(\mathbb{U};x_{1},\ldots,x_{2N})}\mathbb{E}_{\includegraphics[scale={0.2}]{figures/link-0}}\left[\mathcal{Z}_{\alpha/\{a_{j},b_{j}\}}(\mathbb{U}\setminus\eta;x_{a_{j}}+1,\ldots,x_{b_{j}-1},x_{b_{j}+1},\ldots,x_{a_{j}-1})\mathbb{1}\left\{\mathcal{E}_{\alpha}^{j}(\eta)\cap\{\mathrm{CR}(\mathbb{U}\setminus\eta)\leq 4\epsilon\}\right\}\right]
\displaystyle\leq s=1NH(𝕌;xas,xbs)h𝒵α(𝕌;x1,,x2N)[Uncaptioned image][CR(𝕌η)4ϵ]\displaystyle\frac{\prod_{s=1}^{N}H(\mathbb{U};x_{a_{s}},x_{b_{s}})^{h}}{\mathcal{Z}_{\alpha}(\mathbb{U};x_{1},\ldots,x_{2N})}\mathbb{Q}_{\includegraphics[scale={0.2}]{figures/link-0}}[\mathrm{CR}(\mathbb{U}\setminus\eta)\leq 4\epsilon] (due to (2.16))
\displaystyle\leq s=1NH(𝕌;xas,xbs)h𝒵α(𝕌;x1,,x2N)4h𝒵[Uncaptioned image](p)(π)(4ϵ)p.\displaystyle\frac{\prod_{s=1}^{N}H(\mathbb{U};x_{a_{s}},x_{b_{s}})^{h}}{\mathcal{Z}_{\alpha}(\mathbb{U};x_{1},\ldots,x_{2N})}4^{h}\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(p)}(\pi)(4\epsilon)^{p}. (due to (2.10))

Plugging into (2.15), we obtain:

α[CR(𝕌𝜼)ϵ]N4p4h𝒵[Uncaptioned image](p)(π)s=1NH(𝕌;xas,xbs)h𝒵α(𝕌;x1,,x2N)ϵp.\displaystyle\mathbb{Q}_{\alpha}\left[\mathrm{CR}\left(\mathbb{U}\setminus\boldsymbol{\eta}\right)\leq\epsilon\right]\leq N4^{p}4^{h}\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(p)}(\pi)\frac{\prod_{s=1}^{N}H(\mathbb{U};x_{a_{s}},x_{b_{s}})^{h}}{\mathcal{Z}_{\alpha}(\mathbb{U};x_{1},\ldots,x_{2N})}\epsilon^{p}. (2.17)

Now, we are ready to show the conclusion. For 𝔯(0,1κ/8)\mathfrak{r}\in(0,1-\kappa/8), we pick p(𝔯,1κ/8)p\in(\mathfrak{r},1-\kappa/8), then we have

𝔼α[CR(𝕌𝜼)𝔯]\displaystyle\mathbb{E}_{\alpha}\left[\mathrm{CR}\left(\mathbb{U}\setminus\boldsymbol{\eta}\right)^{-\mathfrak{r}}\right]\leq k=12k𝔯α[2kCR(𝕌𝜼)2k+1]\displaystyle\sum_{k=1}^{\infty}2^{k\mathfrak{r}}\mathbb{Q}_{\alpha}\left[2^{-k}\leq\mathrm{CR}\left(\mathbb{U}\setminus\boldsymbol{\eta}\right)\leq 2^{-k+1}\right]
\displaystyle\leq N4p4h𝒵[Uncaptioned image](p)(π)s=1NH(𝕌;xas,xbs)h𝒵α(𝕌;x1,,x2N)k=12k𝔯2(k1)p\displaystyle N4^{p}4^{h}\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(p)}(\pi)\frac{\prod_{s=1}^{N}H(\mathbb{U};x_{a_{s}},x_{b_{s}})^{h}}{\mathcal{Z}_{\alpha}(\mathbb{U};x_{1},\ldots,x_{2N})}\sum_{k=1}^{\infty}2^{k\mathfrak{r}}2^{-(k-1)p} (due to (2.17))
=\displaystyle= N4p4h𝒵[Uncaptioned image](p)(π)s=1NH(𝕌;xas,xbs)h𝒵α(𝕌;x1,,x2N)2p12𝔯p.\displaystyle N4^{p}4^{h}\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(p)}(\pi)\frac{\prod_{s=1}^{N}H(\mathbb{U};x_{a_{s}},x_{b_{s}})^{h}}{\mathcal{Z}_{\alpha}(\mathbb{U};x_{1},\ldots,x_{2N})}\frac{2^{p}}{1-2^{\mathfrak{r}-p}}.

Therefore,

𝒵α(𝔯)(𝕌;x1,,x2N;0)N4p4h𝒵[Uncaptioned image](p)(π)2p12𝔯p×s=1NH(𝕌;xas,xbs)h.\displaystyle\mathcal{Z}_{\alpha}^{(\mathfrak{r})}(\mathbb{U};x_{1},\ldots,x_{2N};0)\leq N4^{p}4^{h}\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(p)}(\pi)\frac{2^{p}}{1-2^{\mathfrak{r}-p}}\times\prod_{s=1}^{N}H(\mathbb{U};x_{a_{s}},x_{b_{s}})^{h}.

This gives (2.3) by choosing p(𝔯,1κ/8)p\in(\mathfrak{r},1-\kappa/8) and setting

Cκ(𝔯)=4p4h𝒵[Uncaptioned image](p)(π)2p12𝔯p.\displaystyle\mathrm{C}_{\kappa}^{(\mathfrak{r})}=4^{p}4^{h}\mathcal{Z}_{\includegraphics[scale={0.2}]{figures/link-0}}^{(p)}(\pi)\frac{2^{p}}{1-2^{\mathfrak{r}-p}}.

2.4 Proof of Lemma 2.2

Proof of Lemma 2.2.

For (θ1,,θ2N)𝒳2N(\theta_{1},\ldots,\theta_{2N})\in\mathcal{X}_{2N}, suppose 𝜼=(η(1),,η(N))α\boldsymbol{\eta}=(\eta^{(1)},\ldots,\eta^{(N)})\sim\mathbb{Q}_{\alpha} is global NN-SLEκ\mathrm{SLE}_{\kappa} associated to α\alpha in (𝕌;exp(𝔦θ1),,exp(𝔦θ2N))(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\ldots,\exp(\mathfrak{i}\theta_{2N})). We denote 𝜼=j=1Nη(j)\boldsymbol{\eta}=\cup_{j=1}^{N}\eta^{(j)} and denote by CR(𝕌𝜼)\mathrm{CR}(\mathbb{U}\setminus\boldsymbol{\eta}) the conformal radius of the connected component of 𝕌𝜼\mathbb{U}\setminus\boldsymbol{\eta} containing the origin. We denote by α(𝔯)\mathbb{Q}_{\alpha}^{(\mathfrak{r})} the law of α\mathbb{Q}_{\alpha} weighted by

𝒵α(𝕌;exp(𝔦θ1),,exp(𝔦θ2N))𝒵α(𝔯)(𝕌;exp(𝔦θ1),,exp(𝔦θ2N);0)CR(𝕌𝜼)𝔯.\frac{\mathcal{Z}_{\alpha}(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\ldots,\exp(\mathfrak{i}\theta_{2N}))}{\mathcal{Z}_{\alpha}^{(\mathfrak{r})}(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\ldots,\exp(\mathfrak{i}\theta_{2N});0)}\mathrm{CR}\left(\mathbb{U}\setminus\boldsymbol{\eta}\right)^{-\mathfrak{r}}.

It suffices to show the conclusions for j=1j=1.

For η=η(1)\eta=\eta^{(1)}, let us calculate the conditional expectation of CR(𝕌𝜼)𝔯\mathrm{CR}\left(\mathbb{U}\setminus\boldsymbol{\eta}\right)^{-\mathfrak{r}} given η[0,t]\eta_{[0,t]} for t>0t>0 small. From the conformal invariance and domain Markov property of global NN-SLEκ\mathrm{SLE}_{\kappa}, we have

𝔼α[CR(𝕌𝜼)𝔯|η[0,t]]=e𝔯t𝒵α(𝔯)(ξt,ϕt(θ2),,ϕt(θ2N))𝒵α(ξt,ϕt(θ2),,ϕt(θ2N))=Mt(𝒵α(𝔯))Mt(𝒵α),\displaystyle\mathbb{E}_{\alpha}\left[\mathrm{CR}\left(\mathbb{U}\setminus\boldsymbol{\eta}\right)^{-\mathfrak{r}}\,|\,\eta_{[0,t]}\right]=\mathrm{e}^{\mathfrak{r}t}\frac{\mathcal{Z}_{\alpha}^{(\mathfrak{r})}(\xi_{t},\phi_{t}(\theta_{2}),\ldots,\phi_{t}(\theta_{2N}))}{\mathcal{Z}_{\alpha}(\xi_{t},\phi_{t}(\theta_{2}),\ldots,\phi_{t}(\theta_{2N}))}=\frac{M_{t}(\mathcal{Z}_{\alpha}^{(\mathfrak{r})})}{M_{t}(\mathcal{Z}_{\alpha})}, (2.18)

where Mt(𝒵α)M_{t}(\mathcal{Z}_{\alpha}) is defined in (2.14) and Mt(𝒵α(𝔯))M_{t}(\mathcal{Z}_{\alpha}^{(\mathfrak{r})}) is defined in (2.4). Combining Lemma 2.5 and (2.18), the law of η=η(1)\eta=\eta^{(1)} under α(𝔯)\mathbb{Q}_{\alpha}^{(\mathfrak{r})} is the same as radial SLEκ\mathrm{SLE}_{\kappa} in (𝕌;exp(𝔦θ1);0)(\mathbb{U};\exp(\mathfrak{i}\theta_{1});0) weighted by Mt(𝒵α(𝔯))M_{t}(\mathcal{Z}_{\alpha}^{(\mathfrak{r})}).

It remains to show that 𝒵α(𝔯)\mathcal{Z}_{\alpha}^{(\mathfrak{r})} satisfies radial BPZ equation (1.12) with j=1j=1. Let us calculate dMt(𝒵α(𝔯))\mathrm{d}M_{t}(\mathcal{Z}_{\alpha}^{(\mathfrak{r})}) assuming that 𝒵α(𝔯)\mathcal{Z}_{\alpha}^{(\mathfrak{r})} is C2C^{2}. Recall that

gt(0)=et,\displaystyle g_{t}^{\prime}(0)=\mathrm{e}^{t},\quad tϕt(w)=cot((ϕt(w)ξt)/2),tϕt(w)=12csc2((ϕt(w)ξt)/2)ϕt(w).\displaystyle\partial_{t}\phi_{t}(w)=\cot((\phi_{t}(w)-\xi_{t})/2),\quad\partial_{t}\phi_{t}^{\prime}(w)=-\frac{1}{2}\csc^{2}((\phi_{t}(w)-\xi_{t})/2)\phi_{t}^{\prime}(w).

Thus, Itô’s calculus gives

dMt(𝒵α(𝔯))Mt(𝒵α(𝔯))\displaystyle\frac{\mathrm{d}M_{t}(\mathcal{Z}_{\alpha}^{(\mathfrak{r})})}{M_{t}(\mathcal{Z}_{\alpha}^{(\mathfrak{r})})} (2.19)
=\displaystyle= 1𝒵α(𝔯)𝒵α(𝔯)dξt+[κ212𝒵α(𝔯)𝒵α(𝔯)+j=22N(cot((ϕt(θj)ξt)/2)j𝒵α(𝔯)𝒵α(𝔯)h2csc2((ϕt(θj)ξt)/2))+(𝔯h~)]dt.\displaystyle\frac{\partial_{1}\mathcal{Z}_{\alpha}^{(\mathfrak{r})}}{\mathcal{Z}_{\alpha}^{(\mathfrak{r})}}\mathrm{d}\xi_{t}+\left[\frac{\kappa}{2}\frac{\partial_{1}^{2}\mathcal{Z}_{\alpha}^{(\mathfrak{r})}}{\mathcal{Z}_{\alpha}^{(\mathfrak{r})}}+\sum_{j=2}^{2N}\left(\cot\left((\phi_{t}(\theta_{j})-\xi_{t})/2\right)\frac{\partial_{j}\mathcal{Z}_{\alpha}^{(\mathfrak{r})}}{\mathcal{Z}_{\alpha}^{(\mathfrak{r})}}-\frac{h}{2}\csc^{2}\left((\phi_{t}(\theta_{j})-\xi_{t})/2\right)\right)+(\mathfrak{r}-\tilde{h})\right]\mathrm{d}t.

As Mt(𝒵α(𝔯))M_{t}(\mathcal{Z}_{\alpha}^{(\mathfrak{r})}) is a local martingale for radial SLEκ\mathrm{SLE}_{\kappa}, the second term in RHS of (2.19) has to vanish. Thus 𝒵α(𝔯)\mathcal{Z}_{\alpha}^{(\mathfrak{r})} has to solve radial BPZ equation (1.12) with j=1j=1 under the assumption that 𝒵α(𝔯)\mathcal{Z}_{\alpha}^{(\mathfrak{r})} is C2C^{2}. Let us elaborate on the C2C^{2} assumption here. In fact, the above analysis implies that 𝒵α(𝔯)\mathcal{Z}_{\alpha}^{(\mathfrak{r})} is a weak solution for (1.12) with j=1j=1 (see [FLPW24, Appendix A]). As the operator in LHS of (1.12) is hypoelliptic, weak solutions are strong solutions, thus 𝒵α(𝔯)\mathcal{Z}_{\alpha}^{(\mathfrak{r})} is indeed smooth and satisfies (1.12) as desired. ∎

2.5 A generalization of Proposition 1.4

For κ(0,6]\kappa\in(0,6], suppose 𝜼=(η(1),,η(N))α\boldsymbol{\eta}=(\eta^{(1)},\ldots,\eta^{(N)})\sim\mathbb{Q}_{\alpha} is global NN-SLEκ\mathrm{SLE}_{\kappa} associated to α\alpha in polygon (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}) and order α\alpha as in (1.9). We orient η(j)\eta^{(j)} from xajx_{a_{j}} to xbjx_{b_{j}}. We denote by Ω𝜼(z)\Omega_{\boldsymbol{\eta}}(z) the connected component of Ω𝜼\Omega\setminus\boldsymbol{\eta} containing zz. We will give a generalization of Proposition 1.4. We first explain the generalization when κ4\kappa\leq 4 as it is easier to describe in this case and then give the formal definition for general κ(0,6]\kappa\in(0,6].

Fix κ(0,4]\kappa\in(0,4]. The NN curves η(1),,η(N)\eta^{(1)},\ldots,\eta^{(N)} are disjoint and Ω𝜼\Omega\setminus\boldsymbol{\eta} has (N+1)(N+1) connected components. If we denote these (N+1)(N+1) connected components by D1,,DN+1D_{1},\ldots,D_{N+1} and replace 𝔼α[CR(Ω𝜼;z)𝔯]\mathbb{E}_{\alpha}\left[\mathrm{CR}(\Omega\setminus\boldsymbol{\eta};z)^{-\mathfrak{r}}\right] by 𝔼α[𝟙{zDj}CR(Ω𝜼;z)𝔯]\mathbb{E}_{\alpha}\left[\mathbb{1}\{z\in D_{j}\}\mathrm{CR}(\Omega\setminus\boldsymbol{\eta};z)^{-\mathfrak{r}}\right] in (1.10), then the corresponding partition functions still satisfy the system of radial BPZ equations (1.2) with =(6κ)(κ2)8κ𝔯\aleph=\frac{(6-\kappa)(\kappa-2)}{8\kappa}-\mathfrak{r}. In particular, any linear combination of such functions satisfy the same system of radial BPZ equations. We define 𝒲(𝜼;z)\mathcal{W}(\boldsymbol{\eta};z) to be the event that {(Ω𝜼(z)Ω)j=1N(x2j1x2j)}\{\left(\partial\Omega_{\boldsymbol{\eta}}(z)\cap\partial\Omega\right)\subset\cup_{j=1}^{N}(x_{2j-1}x_{2j})\} and replace 𝔼α[CR(Ω𝜼;z)𝔯]\mathbb{E}_{\alpha}\left[\mathrm{CR}(\Omega\setminus\boldsymbol{\eta};z)^{-\mathfrak{r}}\right] by 𝔼α[𝟙{𝒲(𝜼;z)}CR(Ω𝜼;z)𝔯]\mathbb{E}_{\alpha}\left[\mathbb{1}\{\mathcal{W}(\boldsymbol{\eta};z)\}\mathrm{CR}(\Omega\setminus\boldsymbol{\eta};z)^{-\mathfrak{r}}\right] in (1.10), then the corresponding partition functions still satisfy the system of radial BPZ equations (1.2) with =(6κ)(κ2)8κ𝔯\aleph=\frac{(6-\kappa)(\kappa-2)}{8\kappa}-\mathfrak{r}. See Figure 1(a).

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Refer to caption
(e)
Refer to caption
(f)
Figure 2.1: When N=2N=2, there are two possibilities for the link pattern among the four marked points {x1,x2,x3,x4}\{x_{1},x_{2},x_{3},x_{4}\}: {{1,2},{3,4}}\{\{1,2\},\{3,4\}\} and {{1,4},{2,3}}\{\{1,4\},\{2,3\}\}. For each connectivity, the two simple curves η(1),η(2)\eta^{(1)},\eta^{(2)} divide the domain into three connected components. If we consider the link pattern together with the location of zz, there are six possibilities. The event 𝒲(𝜼;z)\mathcal{W}(\boldsymbol{\eta};z) is the union of the cases in (b), (c) and (d).

       
       

We give the formal definition of the event 𝒲(𝜼;z)\mathcal{W}(\boldsymbol{\eta};z) for κ(0,6]\kappa\in(0,6] in Definition 2.7. When κ4\kappa\leq 4, it is the same as defined above. When κ(4,6]\kappa\in(4,6], as the curves have touchings, the description is more complicated but the idea is the same. This is the continuum analogue of the discrete event in Definition 3.7.

Definition 2.7.

Fix N1,αLPNN\geq 1,\alpha\in\mathrm{LP}_{N} and a polygon with an interior point (Ω;x1,,x2N;z)(\Omega;x_{1},\ldots,x_{2N};z). Fix κ(0,6]\kappa\in(0,6] and suppose (η(1),,η(N))α(\eta^{(1)},\ldots,\eta^{(N)})\sim\mathbb{Q}_{\alpha} is global NN-SLEκ\mathrm{SLE}_{\kappa} associated to α\alpha in (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}). We order α\alpha as in (1.9) and orient η(j)\eta^{(j)} from xajx_{a_{j}} to xbjx_{b_{j}}. We denote by 𝒲(𝜼;z)\mathcal{W}(\boldsymbol{\eta};z) the even that zz stays to the right of (resp. to the left of) η(j)\eta^{(j)} if aja_{j} is odd (resp. if aja_{j} is even) for all η(j)\eta^{(j)} such that Ω𝜼(z)η(j)\partial\Omega_{\boldsymbol{\eta}}(z)\cap\eta^{(j)}\neq\emptyset. For 𝔯\mathfrak{r}\in\mathbb{R}, we define

𝒵α;w(𝔯)(Ω;x1,,x2N;z)=𝒵α(Ω;x1,,x2N)𝔼α[𝟙{𝒲(𝜼;z)}CR(Ω𝜼;z)𝔯].\mathcal{Z}_{\alpha;\mathrm{w}}^{(\mathfrak{r})}(\Omega;x_{1},\ldots,x_{2N};z)=\mathcal{Z}_{\alpha}(\Omega;x_{1},\ldots,x_{2N})\mathbb{E}_{\alpha}\left[\mathbb{1}\{\mathcal{W}(\boldsymbol{\eta};z)\}\mathrm{CR}\left(\Omega\setminus\boldsymbol{\eta};z\right)^{-\mathfrak{r}}\right]. (2.20)

Then the expectation in (2.20) is finite when 𝔯<1κ/8\mathfrak{r}<1-\kappa/8. We denote by

α;w(𝔯)=α;w(𝔯)(Ω;x1,,x2N;z)\mathbb{Q}_{\alpha;\mathrm{w}}^{(\mathfrak{r})}=\mathbb{Q}_{\alpha;\mathrm{w}}^{(\mathfrak{r})}(\Omega;x_{1},\ldots,x_{2N};z)

the probability measure of (η(1),,η(N))α(\eta^{(1)},\ldots,\eta^{(N)})\sim\mathbb{Q}_{\alpha} global NN-SLEκ\mathrm{SLE}_{\kappa} associated to α\alpha in polygon (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}) weighted by

𝒵α(Ω;x1,,x2N)𝒵α;w(𝔯)(Ω;x1,,x2N;z)𝟙{𝒲(𝜼;z)}CR(Ω𝜼;z)𝔯.\frac{\mathcal{Z}_{\alpha}(\Omega;x_{1},\ldots,x_{2N})}{\mathcal{Z}_{\alpha;\mathrm{w}}^{(\mathfrak{r})}(\Omega;x_{1},\ldots,x_{2N};z)}\mathbb{1}\{\mathcal{W}(\boldsymbol{\eta};z)\}\mathrm{CR}(\Omega\setminus\boldsymbol{\eta};z)^{-\mathfrak{r}}.
Lemma 2.8.

Assume the same notations as in Definition 2.7.

  • For (θ1,,θ2N)𝒳2N(\theta_{1},\ldots,\theta_{2N})\in\mathcal{X}_{2N}, if we write

    𝒵α;w(𝔯)(θ1,,θ2N)=𝒵α;w(𝔯)(𝕌;exp(𝔦θ1),,exp(𝔦θ2N);0),\mathcal{Z}_{\alpha;\mathrm{w}}^{(\mathfrak{r})}(\theta_{1},\ldots,\theta_{2N})=\mathcal{Z}_{\alpha;\mathrm{w}}^{(\mathfrak{r})}(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\ldots,\exp(\mathfrak{i}\theta_{2N});0),

    then 𝒵α;w(𝔯):𝒳2N>0\mathcal{Z}_{\alpha;\mathrm{w}}^{(\mathfrak{r})}:\mathcal{X}_{2N}\to\mathbb{R}_{>0} satisfies the system of radial BPZ equations (1.2) with =(6κ)(κ2)8κ𝔯\aleph=\frac{(6-\kappa)(\kappa-2)}{8\kappa}-\mathfrak{r}.

  • For (θ1,,θ2N)𝒳2N(\theta_{1},\ldots,\theta_{2N})\in\mathcal{X}_{2N}, suppose (η(1),,η(N))α;w(𝔯)(\eta^{(1)},\ldots,\eta^{(N)})\sim\mathbb{Q}_{\alpha;\mathrm{w}}^{(\mathfrak{r})} in (𝕌;exp(𝔦θ1),,exp(𝔦θ2N);0)(\mathbb{U};\exp(\mathfrak{i}\theta_{1}),\ldots,\exp(\mathfrak{i}\theta_{2N});0). Then the law of η(1)\eta^{(1)} under α;w(𝔯)\mathbb{Q}_{\alpha;\mathrm{w}}^{(\mathfrak{r})} is the same as radial SLEκ\mathrm{SLE}_{\kappa} in (𝕌;exp(𝔦θ1);0)(\mathbb{U};\exp(\mathfrak{i}\theta_{1});0) weighted by the following local martingale, up to the first time exp(𝔦θ2)\exp(\mathfrak{i}\theta_{2}) or exp(𝔦θ2N)\exp(\mathfrak{i}\theta_{2N}) is disconnected from the origin:

    Mt(𝒵α;w(𝔯))=gt(0)𝔯h~×j=22Nϕt(θj)h×𝒵α;w(𝔯)(ξt,ϕt(θ2),,ϕt(θ2N)).M_{t}(\mathcal{Z}_{\alpha;\mathrm{w}}^{(\mathfrak{r})})=g_{t}^{\prime}(0)^{\mathfrak{r}-\tilde{h}}\times\prod_{j=2}^{2N}\phi_{t}^{\prime}(\theta_{j})^{h}\times\mathcal{Z}_{\alpha;\mathrm{w}}^{(\mathfrak{r})}(\xi_{t},\phi_{t}(\theta_{2}),\ldots,\phi_{t}(\theta_{2N})). (2.21)
Proof.

This can be proved in the same way as Lemma 2.2. ∎

3 FK-Ising model and proof of Theorem 1.2

This section is organized as follows. We first give preliminaries on random-cluster models in Section 3.1 and give preliminaries on the FK-Ising model in Section 3.2. Then we complete the proof of Theorem 1.2 in Section 3.3. To simplify the notation, we write fgf\lesssim g if f/gf/g is bounded by a finite constant from above, and write fgf\asymp g if fgf\lesssim g and gfg\lesssim f. For zz\in\mathbb{C} and 0<r1<r20<r_{1}<r_{2}, define

Br1(z):={w:|wz|<r1}andAr1,r2(z):={w:r1<|wz|<r2}.B_{r_{1}}(z):=\{w\in\mathbb{C}:|w-z|<r_{1}\}\quad\text{and}\quad A_{r_{1},r_{2}}(z):=\{w\in\mathbb{C}:r_{1}<|w-z|<r_{2}\}.

3.1 Preliminaries on random-cluster models

Random-cluster model.

Let G=(V(G),E(G))G=(V(G),E(G)) be a finite subgraph of 2\mathbb{Z}^{2}. A random-cluster configuration ω=(ωe)eE(G)\omega=(\omega_{e})_{e\in E(G)} is an element of {0,1}E(G)\{0,1\}^{E(G)}. An edge eE(G)e\in E(G) is called open (resp. closed) if ωe=1\omega_{e}=1 (resp. ωe=0\omega_{e}=0). We denote by o(ω)o(\omega) (resp. c(ω)c(\omega)) the number of open (resp. closed) edges in ω\omega.

We are interested in the connectivity properties of the graph ω\omega with various boundary conditions. The maximal connected222Two vertices zz and ww are said to be connected by ω\omega if there exists a sequence {zj:0jl}\{z_{j}\colon 0\leq j\leq l\} of vertices such that z0=zz_{0}=z and zl=wz_{l}=w, and each edge zj,zj+1\langle z_{j},z_{j+1}\rangle is open in ω\omega for 0j<l0\leq j<l. components of ω\omega are called clusters. The boundary conditions encode how the vertices are connected outside of GG. Precisely, by a boundary condition π\pi we refer to a partition π1πm\pi_{1}\sqcup\cdots\sqcup\pi_{m} of the boundary G\partial G. Two vertices z,wGz,w\in\partial G are said to be wired in π\pi if z,wπjz,w\in\pi_{j} for some common jj. In contrast, free boundary segments comprise vertices that are not wired with any other vertex (so the corresponding part πj\pi_{j} is a singleton). We denote by ωπ\omega^{\pi} the (quotient) graph obtained from the configuration ω\omega by identifying the wired vertices in π\pi.

Finally, the random-cluster model on GG with edge-weight p[0,1]p\in[0,1], cluster-weight q>0q>0, and boundary condition π\pi, is the probability measure μp,q,Gπ\smash{\mu^{\pi}_{p,q,G}} on the set {0,1}E(G)\{0,1\}^{E(G)} of configurations ω\omega defined by

μp,q,Gπ[ω]:=\displaystyle\mu^{\pi}_{p,q,G}[\omega]:=\; po(ω)(1p)c(ω)qk(ωπ)ϖ{0,1}E(G)po(ϖ)(1p)c(ϖ)qk(ϖπ),\displaystyle\frac{p^{o(\omega)}(1-p)^{c(\omega)}q^{k(\omega^{\pi})}}{\underset{\varpi\in\{0,1\}^{E(G)}}{\sum}p^{o(\varpi)}(1-p)^{c(\varpi)}q^{k(\varpi^{\pi})}},

where k(ωπ)k(\omega^{\pi}) is the number of connected components of the graph ωπ\omega^{\pi}. For q=2q=2, this model is also known as the FK-Ising model, while for q=1q=1, it is simply the Bernoulli bond percolation (assigning independent values for each ωe\omega_{e}). For A,BGA,B\subseteq G, we write {AB}\{A\leftrightarrow B\} for the event that there exists an open path connecting AA to BB; if A={v}A=\{v\} for some vertex vv, then we write {vB}\{v\leftrightarrow B\} for the event {{v}B}\{\{v\}\leftrightarrow B\}.

In the present article, we focus on the random-cluster model on finite subgraphs of the square lattice 2\mathbb{Z}^{2}, or the scaled square lattice δ2\delta\mathbb{Z}^{2}. It has been proven for the range q[1,4]q\in[1,4] in [DCST17] that when the edge-weight is chosen suitably, namely as (the critical, self-dual value)

p=pc(q):=q1+q,\displaystyle p=p_{c}(q):=\frac{\sqrt{q}}{1+\sqrt{q}},

then the random-cluster model exhibits a continuous phase transition.

RSW estimates.

For 1q<41\leq q<4 and p=pc(q)p=p_{c}(q), we have the following strong RSW estimates. For a discrete quad (G;a,b,c,d)(G;a,b,c,d), we denote by L=L(G;a,b,c,d)L=L(G;a,b,c,d) the discrete extremal distance between (ab)(ab) and (cd)(cd) in GG; see [Che16, Section 6]. The discrete extremal distance is uniformly comparable to its continuous counterpart, i.e., the classical extremal distance.

Lemma 3.1.

[DCMT21, Theorem 1.2] Let q[1,4)q\in[1,4). For each L0>0L_{0}>0, there exists c(L0,q)>0c(L_{0},q)>0 such that the following holds: for any discrete quad (G;a,b,c,d)(G;a,b,c,d) with L(G;a,b,c,d)L0L(G;a,b,c,d)\leq L_{0} and any boundary condition π\pi, we have

μpc(q),q,Gπ[(ab)(cd)]c(L0,q).\mu_{p_{c}(q),q,G}^{\pi}\left[(ab)\leftrightarrow(cd)\right]\geq c(L_{0},q).

Discrete polygons.

A discrete (topological) polygon is a finite simply connected subgraph of 2\mathbb{Z}^{2}, or δ2\delta\mathbb{Z}^{2}, with 2N2N marked boundary points in counterclockwise order. We now give its precise definition.

  1. 1.

    First, we define the medial polygon. Edges of the medial lattice (2)(\mathbb{Z}^{2})^{\diamond} are oriented as follows: edges of each face containing a vertex of 2\mathbb{Z}^{2} are oriented clockwise, and edges of each face containing a vertex of (2)(\mathbb{Z}^{2})^{\bullet} are oriented counterclockwise. Let x1,,x2Nx_{1}^{\diamond},\ldots,x_{2N}^{\diamond} be 2N2N distinct medial vertices. Let (x1x2),(x2x3),,(x2Nx1)(x_{1}^{\diamond}\,x_{2}^{\diamond}),(x_{2}^{\diamond}\,x_{3}^{\diamond}),\ldots,(x_{2N}^{\diamond}\,x_{1}^{\diamond}) be 2N2N oriented paths on (2)(\mathbb{Z}^{2})^{\diamond} satisfying the following conditions333Throughout, we use the convention that x2N+1:=x1x_{2N+1}^{\diamond}:=x_{1}^{\diamond}.:

    • the path (x2i1x2i)(x_{2i-1}^{\diamond}\,x_{2i}^{\diamond}) consists of counterclockwise oriented edges for 1iN1\leq i\leq N;

    • the path (x2ix2i+1)(x_{2i}^{\diamond}\,x_{2i+1}^{\diamond}) consists of clockwise oriented edges for 1iN1\leq i\leq N;

    • all paths are edge-self-avoiding and satisfy (xi1xi)(xixi+1)={xi}(x_{i-1}^{\diamond}\,x_{i}^{\diamond})\cap(x_{i}^{\diamond}\,x_{i+1}^{\diamond})=\{x_{i}^{\diamond}\} for 1i2N1\leq i\leq 2N;

    • if j{i+1,i1}j\notin\{i+1,i-1\}, then (xi1xi)(xj1xj)=(x_{i-1}^{\diamond}\,x_{i}^{\diamond})\cap(x_{j-1}^{\diamond}\,x_{j}^{\diamond})=\emptyset;

    • the infinite connected component of (2)i=12N(xixi+1)(\mathbb{Z}^{2})^{\diamond}\setminus\smash{\bigcup_{i=1}^{2N}}(x_{i}^{\diamond}\,x_{i+1}^{\diamond}) is on the right of the oriented path (x1x2)(x_{1}^{\diamond}\,x_{2}^{\diamond}).

    Given {(xixi+1):1i2N}\{(x_{i}^{\diamond}\,x_{i+1}^{\diamond})\colon 1\leq i\leq 2N\}, the medial polygon (Ω;x1,,x2N)(\Omega^{\diamond};x_{1}^{\diamond},\ldots,x_{2N}^{\diamond}) is defined as the subgraph of (2)(\mathbb{Z}^{2})^{\diamond} induced by the vertices lying on or enclosed by the non-oriented loop obtained by concatenating all of (xixi+1)(x_{i}^{\diamond}\,x_{i+1}^{\diamond}). For each i{1,2,,2N}i\in\{1,2,\ldots,2N\}, the outer corner yi(2)Ωy_{i}^{\diamond}\in(\mathbb{Z}^{2})^{\diamond}\setminus\Omega^{\diamond} is defined to be a medial vertex adjacent to xix_{i}^{\diamond}, and the outer corner edge eie_{i}^{\diamond} is defined to be the medial edge connecting them.

  2. 2.

    Second, we define the primal polygon (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}) induced by (Ω;x1,,x2N)(\Omega^{\diamond};x_{1}^{\diamond},\ldots,x_{2N}^{\diamond}) as follows:

    • Ω\Omega is a subgraph of 2\mathbb{Z}^{2};

    • its edge set E(Ω)E(\Omega) consists of edges passing through endpoints of medial edges in E(Ω)i=1N(x2ix2i+1)E(\Omega^{\diamond})\setminus\smash{\bigcup_{i=1}^{N}}(x_{2i}^{\diamond}\,x_{2i+1}^{\diamond});

    • its vertex set V(Ω)V(\Omega) consists of endpoints of edges in E(Ω)E(\Omega);

    • the marked boundary vertex xix_{i} is defined to be the vertex in Ω\Omega nearest to xix_{i}^{\diamond} for each 1i2N1\leq i\leq 2N;

    • the arc (x2i1x2i)(x_{2i-1}\,x_{2i}) is the set of edges whose midpoints are vertices in (x2i1x2i)Ω(x_{2i-1}^{\diamond}\,x_{2i}^{\diamond})\cap\partial\Omega^{\diamond} for 1iN1\leq i\leq N.

  3. 3.

    Third, we define the dual polygon (Ω;x1,,x2N)(\Omega^{\bullet};x_{1}^{\bullet},\ldots,x_{2N}^{\bullet}) induced by (Ω;x1,,x2N)(\Omega^{\diamond};x_{1}^{\diamond},\ldots,x_{2N}^{\diamond}) in a similar way: Ω\Omega^{\bullet} is the subgraph of (2)(\mathbb{Z}^{2})^{\bullet} with

    • edge set consisting of edges passing through endpoints of medial edges in E(Ω)i=1N(x2i1x2i)E(\Omega^{\diamond})\setminus\smash{\bigcup_{i=1}^{N}}(x_{2i-1}^{\diamond}\,x_{2i}^{\diamond});

    • and vertex set consisting of the endpoints of these edges.

    For each i{1,2,,2N}i\in\{1,2,\ldots,2N\}, the marked boundary vertex xix_{i}^{\bullet} is defined to be the vertex in Ω\Omega^{\bullet} nearest to xix_{i}^{\diamond}; and for each i{1,2,,N}i\in\{1,2,\ldots,N\}, the boundary arc (x2ix2i+1)(x_{2i}^{\bullet}\,x_{2i+1}^{\bullet}) is defined to be the set of edges whose midpoints are vertices in (x2ix2i+1)Ω(x_{2i}^{\diamond}\,x_{2i+1}^{\diamond})\cap\Omega^{\diamond}.

Admissible domains

We say a simply connected subgraph Ωδ,\Omega^{\delta,\diamond} of (δ)(\delta\mathbb{Z})^{\diamond} is an admissible medial domain if its boundary consists of counterclockwise oriented edges. Suppose that Ωδ,\Omega^{\delta,\diamond} is an admissible domain. Then we denote the law of the critical FK-Ising model on the primal domain Ωδ\Omega^{\delta} with the wired boundary condition by Ω,wδ\mathbb{P}_{\Omega,\mathrm{w}}^{\delta}.

Boundary conditions.

In this work, we shall focus on the critical FK-Ising model on the primal polygon (Ω;x1,,x2N)=(Ωδ;x1δ,,x2Nδ)(\Omega;x_{1},\ldots,x_{2N})=(\Omega^{\delta};x_{1}^{\delta},\ldots,x_{2N}^{\delta}), with the alternating boundary condition (1.3):

(x2j1δx2jδ) is wired, for all j{1,2,,N},\displaystyle(x_{2j-1}^{\delta}\,x_{2j}^{\delta})\textnormal{ is wired,}\qquad\textnormal{ for all }j\in\{1,2,\ldots,N\},

and these NN wired arcs are not wired outside of Ωδ\Omega^{\delta}. This boundary condition is encoded in the unnested link pattern:

¯={{1,2},{3,4},,{2N1,2N}}.\boldsymbol{\underline{\cap\cap}}=\{\{1,2\},\{3,4\},\ldots,\{2N-1,2N\}\}.

We denote by Ωδ\mathbb{P}^{\delta}_{\Omega} the law, and by 𝔼Ωδ\mathbb{E}_{\Omega}^{\delta} the expectation, of the critical model on (Ωδ;x1δ,,x2Nδ)(\Omega^{\delta};x_{1}^{\delta},\ldots,x_{2N}^{\delta}) with the boundary condition described above, where the cluster-weight has the fixed value q=2q=2 in this section.

Loop representation and interfaces.

Let ω{0,1}E(Ωδ)\omega\in\{0,1\}^{E(\Omega^{\delta})} be a configuration with the alternating boundary condition (1.3) on the primal polygon (Ωδ;x1δ,,x2Nδ)(\Omega^{\delta};x_{1}^{\delta},\ldots,x_{2N}^{\delta}). The dual configuration ω\omega^{\bullet} on Ω\Omega^{\bullet} induced by ω\omega is defined by ωe=1ωe\omega^{\bullet}_{e}=1-\omega_{e}. We say that an edge eE(Ω)e\in E(\Omega^{\bullet}) is dual-open (resp. dual-closed) if ωe=1\omega^{\bullet}_{e}=1 (resp. ωe=0\omega^{\bullet}_{e}=0). Given ω\omega, we can draw self-avoiding paths on the medial graph Ωδ,\Omega^{\delta,\diamond} between ω\omega and ω\omega^{\bullet} as follows: a path arriving at a vertex of Ωδ,\Omega^{\delta,\diamond} always makes a turn of ±π/2\pm\pi/2, so as not to cross the open or dual-open edges through this vertex. The loop representation of ω\omega consists of a number of loops and NN pairwise-disjoint and self-avoiding interfaces connecting the 2N2N outer corners y1δ,,,y2Nδ,y_{1}^{\delta,\diamond},\ldots,y_{2N}^{\delta,\diamond} of the medial polygon (Ωδ,;x1δ,,,x2Nδ,)(\Omega^{\delta,\diamond};x_{1}^{\delta,\diamond},\ldots,x_{2N}^{\delta,\diamond}). For each i{1,2,,2N}i\in\{1,2,\ldots,2N\}, we shall denote by ηiδ\eta_{i}^{\delta} the interface starting from the medial vertex yiδ,y_{i}^{\delta,\diamond} (and we also refer to it as the interface starting from the boundary point xiδ,x_{i}^{\delta,\diamond}). We denote by ϑδ\vartheta^{\delta} the (random) link pattern of multiple interfaces (η1δ,,η2Nδ)(\eta_{1}^{\delta},\ldots,\eta_{2N}^{\delta}), which takes value in LPN\mathrm{LP}_{N}.

Note that for the model on an admissible domain Ωδ\Omega^{\delta} with the wired boundary condition, we can also define its loop representation as above, which consists of interface loops only.

Scaling limits

We need a topology for the interfaces, which we regard as (images of) continuous mappings from [0,1][0,1] to \mathbb{C} modulo reparameterization, i.e., planar oriented curves. For a simply connected domain Ω\Omega\subsetneq\mathbb{C}, we will consider curves in Ω¯\overline{\Omega}. For definiteness, we map Ω\Omega onto the unit disc 𝕌:={z:|z|<1}\mathbb{U}:=\{z\in\mathbb{C}\colon|z|<1\}: for this we shall fix444The metric (3.1) depends on the choice of the conformal map Φ\Phi, but the induced topology does not. any conformal map Φ\Phi from Ω\Omega onto 𝕌\mathbb{U}. Then, we endow the curves with the metric

dist(η1,η2):=infψ1,ψ2supt[0,1]|Φ(η1(ψ1(t)))Φ(η2(ψ2(t)))|,\displaystyle\mathrm{dist}(\eta_{1},\eta_{2}):=\inf_{\psi_{1},\psi_{2}}\sup_{t\in[0,1]}|\Phi(\eta_{1}(\psi_{1}(t)))-\Phi(\eta_{2}(\psi_{2}(t)))|, (3.1)

where the infimum is taken over all increasing homeomorphisms ψ1,ψ2:[0,1][0,1]\psi_{1},\psi_{2}\colon[0,1]\to[0,1]. The space of continuous curves on Ω¯\overline{\Omega} modulo reparameterizations then becomes a complete separable metric space. Let k1k\geq 1, for two collections of curves (η1,,ηk)(\eta_{1},\ldots,\eta_{k}) and (γ1,,γk)(\gamma_{1},\ldots,\gamma_{k}), we define

dist((η1,,ηk),(γ1,,γk)):=min1jkdist(ηj,γj).\mathrm{dist}\left((\eta_{1},\ldots,\eta_{k}),(\gamma_{1},\ldots,\gamma_{k})\right):=\min_{1\leq j\leq k}\mathrm{dist}(\eta_{j},\gamma_{j}). (3.2)

We denote by XkX_{k} the space of the collections of curves (η1,,ηk)(\eta_{1},\ldots,\eta_{k}) endowed with the metric (3.2).

We also need a topology for the collection of loops in the loop representation. An oriented continuous curve γ:[0,1]\gamma:[0,1]\to\mathbb{C} with γ(0)=γ(1)\gamma(0)=\gamma(1) is called a loop. Then, we define a distance between two closed sets of loops, Γ1\Gamma_{1} and Γ2\Gamma_{2}, as follows:

Dist(Γ1,Γ2):=inf{ϵ>0:γ1Γ1, γ2Γ2 s.t. dist(γ1,γ2)ϵ and vice versa}.\displaystyle\mathrm{Dist}(\Gamma_{1},\Gamma_{2}):=\inf\{\epsilon>0:\forall\gamma_{1}\in\Gamma_{1},\text{ }\exists\gamma_{2}\in\Gamma_{2}\text{ s.t. }\mathrm{dist}(\gamma_{1},\gamma_{2})\leq\epsilon\text{ and vice versa}\}. (3.3)

The space of collections of loops with distance Dist\mathrm{Dist} is also complete and separable.

Convergence of polygons.

To investigate the scaling limit, we use three kinds of convergence of domains: convergence of domains in the Carathédory sense [Pom92] (used in Lemma 1.5 and Proposition A.2), convergence of polygons in the close-Carathéodory sense [Kar24, Kar19] (used in Propositions 3.4 and 3.6), and the convergence of polygons with an interior point in the close-Carathédory sense (used in Conjecture 1.1). Abusing notation, for a discrete polygon, we will occasionally denote by Ωδ\Omega^{\delta} also the open simply connected subset of \mathbb{C} defined as the interior of the set Ω¯δ\overline{\Omega}^{\delta} comprising all vertices, edges, and faces of the polygon Ωδ\Omega^{\delta}. A sequence of domains Ωδ\Omega^{\delta} converges to Ω\Omega in the Carathéodory sense as δ0\delta\to 0 if there exist conformal maps φδ\varphi_{\delta} from Ωδ\Omega^{\delta} onto 𝕌\mathbb{U}, and a conformal map φ\varphi from Ω\Omega onto 𝕌\mathbb{U}, such that φδ1φ1\varphi_{\delta}^{-1}\to\varphi^{-1} locally uniformly on 𝕌\mathbb{U} as δ0\delta\to 0.

Definition 3.2.

We say that a sequence of discrete polygons (Ωδ;x1δ,,x2Nδ)(\Omega^{\delta};x_{1}^{\delta},\ldots,x_{2N}^{\delta}) converges as δ0\delta\to 0 to a polygon (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}) in the close-Carathéodory sense if

  1. 1.

    xjδxjx_{j}^{\delta}\to x_{j} for all 1j2N1\leq j\leq 2N; and

  2. 2.

    there exist conformal maps φδ\varphi_{\delta} from Ωδ\Omega^{\delta} onto 𝕌\mathbb{U} and a conformal map φ\varphi from Ω\Omega onto 𝕌\mathbb{U}, such that φδ1φ1\varphi_{\delta}^{-1}\to\varphi^{-1} locally uniformly on 𝕌\mathbb{U}, and moreover φδ(xjδ)φ(xj)\varphi_{\delta}(x_{j}^{\delta})\to\varphi(x_{j}) for all 1j2N1\leq j\leq 2N; and

  3. 3.

    for a given reference point uΩu\in\Omega and small enough r>0r>0, let SrS_{r} be the arc of B(xj,r)Ω\partial B(x_{j},r)\cap\Omega disconnecting (in Ω\Omega) xjx_{j} from uu and from all other arcs of this set, then for small enough rr and δ\delta (depending on rr), the boundary point xjδx_{j}^{\delta} is connected to the midpoint of SrS_{r} inside ΩδB(xj,r)\Omega^{\delta}\cap B(x_{j},r).

If we also have zδzz^{\delta}\to z as δ0\delta\to 0 for some zδΩδz^{\delta}\in\Omega^{\delta} and zΩz\in\Omega, then we say that (Ωδ;x1δ,,x2Nδ;zδ)(\Omega^{\delta};x_{1}^{\delta},\ldots,x_{2N}^{\delta};z^{\delta}) converges as δ0\delta\to 0 to (Ω;x1,,x2N;z)(\Omega;x_{1},\ldots,x_{2N};z) in the close-Carathédory sense.

Lemma 3.3.

Assume the same notations as in Conjecture 1.1. Fix i{1,2,,2N}i\in\{1,2,\ldots,2N\}. The family of laws of {(η1δ,η2Nδ)}δ>0\{(\eta_{1}^{\delta},\ldots\eta_{2N}^{\delta})\}_{\delta>0} is precompact in the space of curves with metric (3.2). Furthermore, each ηj\eta_{j} in any subsequential limit (η1,,η2N)(\eta_{1},\ldots,\eta_{2N}) does not hit any other point in {x1,x2,,x2N}\{x_{1},x_{2},\ldots,x_{2N}\} than its two endpoints, almost surely.

Proof.

Without conditioning on the one-arm event (1.4), the proof is standard nowadays. For instance, the case where q=2q=2 is treated in [Izy22, Lemmas 4.1 and 5.4]. The main tools are RSW bounds from [DCHN11, KS17] — see also [Kar24, Kar19]. The case of general q[1,4)q\in[1,4) follows from [DCST17, Theorem 6] and [DCMT21, Section 1.4]. The argument still works for the interfaces conditional on the one-arm event (1.4) due to the facts that (1.4) is an increasing event and that we have the FKG inequality. ∎

3.2 Preliminaries on FK-Ising model

We collect two results concerning the conformal invariance of FK-Ising multiple interfaces (Proposition 3.4) and their connection probabilities (Proposition 3.6).

Proposition 3.4.

[BPW21, Proposition 1.4] Fix a polygon (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}) and suppose a sequence of medial domains (Ωδ,;x1δ,,,x2Nδ,)(\Omega^{\delta,\diamond};x_{1}^{\delta,\diamond},\ldots,x_{2N}^{\delta,\diamond}) converges to (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}) in the close-Carathéodory sense. Consider the critical FK-Ising model on the primal domain (Ωδ;x1δ,,x2Nδ)(\Omega^{\delta};x_{1}^{\delta},\ldots,x_{2N}^{\delta}) with alternating boundary condition (1.3). Fix αLPN\alpha\in\mathrm{LP}_{N}. Then the law of the collection of multiple interfaces conditional on the event {ϑδ=α}\{\vartheta^{\delta}=\alpha\} converges weakly under the topology induced by dist\mathrm{dist} in (3.2) to global NN-SLE16/3\mathrm{SLE}_{16/3} associated to α\alpha in (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}).

Definition 3.5.

A meander formed from two link patterns α,βLPN\alpha,\beta\in\mathrm{LP}_{N} is the planar diagram obtained by placing α\alpha and the horizontal reflection β\beta on top of each other. An example of a meander is

α=[Uncaptioned image],β=[Uncaptioned image][Uncaptioned image].\displaystyle\alpha\quad=\quad\vbox{\hbox{\includegraphics[scale={0.275}]{figures/alpha.pdf}}}\quad,\quad\beta\quad=\quad\vbox{\hbox{\includegraphics[scale={0.275}]{figures/beta.pdf}}}\quad\quad\quad\Longrightarrow\quad\quad\quad\vbox{\hbox{\includegraphics[scale={0.275}]{figures/meander.pdf}}}.

We denote by α,β\mathcal{L}_{\alpha,\beta} the number of loops in the meander formed from α\alpha and β\beta. Fix q(0,4)q\in(0,4). We define the meander matrix {α,β(q):α,βLPN}\{\mathcal{M}_{\alpha,\beta}(q)\colon\alpha,\beta\in\mathrm{LP}_{N}\} via

α,β(q):=qα,β.\displaystyle\mathcal{M}_{\alpha,\beta}(q):=\sqrt{q}^{\;\mathcal{L}_{\alpha,\beta}}.
Proposition 3.6.

[FPW24, Theorem 1.8] Assume the same notations as in Proposition 3.4. Recall that ϑδ\vartheta^{\delta} is the link pattern given by multiple interfaces (η1δ,,η2Nδ)(\eta_{1}^{\delta},\ldots,\eta_{2N}^{\delta}). Then we have

limδ0Ωδ[ϑδ=α]=¯,α(2)𝒵α(θ1,,θ2N)(θ1,,θ2N),for all αLPN,\displaystyle\lim_{\delta\to 0}\mathbb{P}_{\Omega}^{\delta}[\vartheta^{\delta}=\alpha]=\mathcal{M}_{\boldsymbol{\underline{\cap\cap}},\alpha}(2)\frac{\mathcal{Z}_{\alpha}(\theta_{1},\ldots,\theta_{2N})}{\mathcal{F}(\theta_{1},\ldots,\theta_{2N})},\quad\text{for all }\alpha\in\mathrm{LP}_{N},

where the function \mathcal{F} is defined by

(θ1,,θ2N)=\displaystyle\mathcal{F}(\theta_{1},\ldots,\theta_{2N})=\; s=1N(sin((θ2sθ2s1)/2))1/8(𝝁{±1}N1s<tNχ(θ2s1,θ2t1,θ2t,θ2s)μsμt/4)1/2,\displaystyle\prod_{s=1}^{N}\big{(}\sin((\theta_{2s}-\theta_{2s-1})/2)\big{)}^{-1/8}\bigg{(}\sum_{\boldsymbol{\mu}\in\{\pm 1\}^{N}}\prod_{1\leq s<t\leq N}\chi(\theta_{2s-1},\theta_{2t-1},\theta_{2t},\theta_{2s})^{\mu_{s}\mu_{t}/4}\bigg{)}^{1/2},

where

χ(θ^1,θ^2,θ^3,θ^4):=|sin((θ^2θ^1)/2)sin((θ^4θ^3)/2)sin((θ^3θ^1)/2)sin((θ^4θ^2)/2)|.\displaystyle\chi(\hat{\theta}_{1},\hat{\theta}_{2},\hat{\theta}_{3},\hat{\theta}_{4}):=\left|\frac{\sin((\hat{\theta}_{2}-\hat{\theta}_{1})/2)\sin((\hat{\theta}_{4}-\hat{\theta}_{3})/2)}{\sin((\hat{\theta}_{3}-\hat{\theta}_{1})/2)\sin((\hat{\theta}_{4}-\hat{\theta}_{2})/2)}\right|.

We now consider the crtitical FK-Ising model in a polygon (Ωδ;x1δ,,x2Nδ)(\Omega^{\delta};x_{1}^{\delta},\ldots,x_{2N}^{\delta}) with the alternating boundary condition (1.3), and let ηjδ\eta_{j}^{\delta} be the interface starting from xjδ,x_{j}^{\delta,\diamond}, 1j2N1\leq j\leq 2N. Let zδΩδz^{\delta}\in\Omega^{\delta} and write 𝜼δ=j=12Nηjδ\boldsymbol{\eta}^{\delta}=\cup_{j=1}^{2N}\eta_{j}^{\delta}. Note that the event {zδj=1N(x2j1δx2jδ)}\{z^{\delta}\leftrightarrow\cup_{j=1}^{N}(x_{2j-1}^{\delta}x_{2j}^{\delta})\} would impose some topological restrictions on the locations of 𝜼δ\boldsymbol{\eta}^{\delta} and zδz^{\delta}. We now elaborate on these restrictions.

Definition 3.7.

Let Ω𝜼δδ,(zδ)\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta,\diamond}(z^{\delta}) be the connected component of Ωδ,𝜼δ\Omega^{\delta,\diamond}\setminus\boldsymbol{\eta}^{\delta} containing zδz^{\delta}. Let Ω𝜼δδ(zδ)\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta}) be the connected component of Ωδ𝜼δ\Omega^{\delta}\setminus\boldsymbol{\eta}^{\delta} containing zδz^{\delta}. We give each ηjδ\eta_{j}^{\delta} an orientation such that it always has open edges on its right and dual-open edges on its left. We also give j=1N(x2j1δ,x2jδ,)\cup_{j=1}^{N}(x_{2j-1}^{\delta,\diamond}x_{2j}^{\delta,\diamond}) (resp., j=1N(x2jδ,x2j+1δ,)\cup_{j=1}^{N}(x_{2j}^{\delta,\diamond}x_{2j+1}^{\delta,\diamond})) an orientation such that it has Ωδ,\Omega^{\delta,\diamond} on its right (resp., left). We then denote by 𝒲(𝜼δ;zδ)\mathcal{W}(\boldsymbol{\eta}^{\delta};z^{\delta}) the event that the boundary of Ω𝜼δδ,(zδ)\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta,\diamond}(z^{\delta}) is oriented clockwise.

Using the domain Markov property of the FK-Ising model, we have

Ωδ[zδj=1N(x2j1δx2jδ)]=𝔼Ωδ[𝟙{𝒲(𝜼δ;zδ)}Ω𝜼δδ(zδ),wδ[zδΩ𝜼δδ(zδ)]].\displaystyle\mathbb{P}_{\Omega}^{\delta}\left[z^{\delta}\leftrightarrow\cup_{j=1}^{N}(x_{2j-1}^{\delta}x_{2j}^{\delta})\right]=\mathbb{E}_{\Omega}^{\delta}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta}^{\delta};z^{\delta})\right\}\mathbb{P}_{\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta}),\mathrm{w}}^{\delta}\left[z^{\delta}\leftrightarrow\partial\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta})\right]\right]. (3.4)
Corollary 3.8.

Assume the same notations as in Conjecture 1.1 and fix q=2q=2. Then we have

limδ0Ωδ[zδj=1N(x2j1δx2jδ)]𝕌,wδ[0𝕌δ]=αLPN¯,α(2)𝒵α(θ1,,θ2N)(θ1,,θ2N)𝔼α[𝟙{𝒲(𝜼;z)}CR(Ω𝜼;z)1/8],\displaystyle\lim_{\delta\to 0}\frac{\mathbb{P}_{\Omega}^{\delta}\left[z^{\delta}\leftrightarrow\cup_{j=1}^{N}(x_{2j-1}^{\delta}x_{2j}^{\delta})\right]}{\mathbb{P}^{\delta}_{\mathbb{U},\mathrm{w}}[0\leftrightarrow\partial\mathbb{U}^{\delta}]}=\sum_{\alpha\in\mathrm{LP}_{N}}\mathcal{M}_{\boldsymbol{\underline{\cap\cap}},\alpha}(2)\frac{\mathcal{Z}_{\alpha}(\theta_{1},\ldots,\theta_{2N})}{\mathcal{F}(\theta_{1},\ldots,\theta_{2N})}\mathbb{E}_{\alpha}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta};z)\right\}\mathrm{CR}(\Omega\setminus\boldsymbol{\eta};z)^{-1/8}\right], (3.5)

where 𝔼α\mathbb{E}_{\alpha} is the expectation with respect to the law of global NN-SLE16/3\mathrm{SLE}_{16/3} associated to α\alpha in the polygon (Ω;x1,,x2N)(\Omega;x_{1},\ldots,x_{2N}), and the event 𝒲(𝛈;z)\mathcal{W}(\boldsymbol{\eta};z) is defined in Definition 2.7.

Proof.

It follows from the observation (3.4) that

Ωδ[zδj=1N(x2j1δx2jδ)]=αLPN𝔼αδ[𝟙{𝒲(𝜼δ;zδ)}Ω𝜼δδ(zδ),wδ[zδΩ𝜼δδ(zδ)]]×Ωδ[ϑδ=α],\displaystyle\mathbb{P}_{\Omega}^{\delta}\left[z^{\delta}\leftrightarrow\cup_{j=1}^{N}(x_{2j-1}^{\delta}x_{2j}^{\delta})\right]=\sum_{\alpha\in\mathrm{LP}_{N}}\mathbb{E}_{\alpha}^{\delta}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta}^{\delta};z^{\delta})\right\}\mathbb{P}_{\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta}),\mathrm{w}}^{\delta}\left[z^{\delta}\leftrightarrow\partial\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta})\right]\right]\times\mathbb{P}_{\Omega}^{\delta}\left[\vartheta^{\delta}=\alpha\right],

where 𝔼αδ\mathbb{E}_{\alpha}^{\delta} is the expectation with respect to the law of Ωδ\mathbb{P}_{\Omega}^{\delta} conditional on the event {ϑδ=α}\{\vartheta^{\delta}=\alpha\}. Thanks to Proposition 3.6, it suffices to show that

limδ0𝔼αδ[𝟙{𝒲(𝜼δ;zδ)}Ω𝜼δδ(zδ),wδ[zδΩ𝜼δδ(zδ)]]𝕌,wδ[0𝕌δ]=𝔼α[𝟙{𝒲(𝜼;z)}CR(Ω𝜼;z)1/8],for all αLPN.\displaystyle\lim_{\delta\to 0}\frac{\mathbb{E}_{\alpha}^{\delta}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta}^{\delta};z^{\delta})\right\}\mathbb{P}_{\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta}),\mathrm{w}}^{\delta}\left[z^{\delta}\leftrightarrow\partial\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta})\right]\right]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}^{\delta}\left[0\leftrightarrow\partial\mathbb{U}^{\delta}\right]}=\mathbb{E}_{\alpha}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta};z)\right\}\mathrm{CR}(\Omega\setminus\boldsymbol{\eta};z)^{-1/8}\right],\enspace\text{for all }\alpha\in\mathrm{LP}_{N}. (3.6)

Fix αLPN\alpha\in\mathrm{LP}_{N} and write α={{a1,b1},,{aN,bN}}\alpha=\{\{a_{1},b_{1}\},\ldots,\{a_{N},b_{N}\}\}. Conditional on the event {ϑδ=α}\{\vartheta^{\delta}=\alpha\}, for 1jN1\leq j\leq N, let η(j,δ)\eta^{(j,\delta)} be the curve in (η1δ,,η2Nδ)(\eta_{1}^{\delta},\ldots,\eta_{2N}^{\delta}) having xajδδ,x_{a_{j}^{\delta}}^{\delta,\diamond} and xbjδδ,x_{b_{j}^{\delta}}^{\delta,\diamond} as endpoints. According to Proposition 3.4 (also by coupling them into the same probability space), we may assume that (η(1,δ),,η(N,δ))(\eta^{(1,\delta)},\ldots,\eta^{(N,\delta)}) converges almost surely as δ0\delta\to 0 to (η(1),,η(N))α(\eta^{(1)},\ldots,\eta^{(N)})\sim\mathbb{P}_{\alpha} under the metric (3.2). Then the discrete domains Ω𝜼δδ(zδ)\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta}) converge almost surely as δ0\delta\to 0 to Ω𝜼(z)\Omega_{\boldsymbol{\eta}}(z) in the Carathédory sense. Let 0<ϵ10<\epsilon\ll 1. On the one hand, a standard application of the FKG inequality and RSW estimates implies that

𝟙{𝒲(𝜼δ;zδ),𝜼δBϵ(zδ)=}Ω𝜼δδ(zδ),wδ[zδΩ𝜼δδ(zδ)]𝕌,wδ[0𝕌δ]1,as δ0.\frac{\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta}^{\delta};z^{\delta}),\;\boldsymbol{\eta}^{\delta}\cap B_{\epsilon}(z^{\delta})=\emptyset\right\}\mathbb{P}_{\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta}),\mathrm{w}}^{\delta}\left[z^{\delta}\leftrightarrow\partial\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta})\right]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}^{\delta}\left[0\leftrightarrow\partial\mathbb{U}^{\delta}\right]}\lesssim 1,\quad\text{as }\delta\to 0.

It then follows from Lemma 1.5 and the dominated convergence theorem that

limδ0𝔼αδ[𝟙{𝒲(𝜼δ;zδ),𝜼δBϵ(zδ)=}Ω𝜼δδ(zδ),wδ[zδΩ𝜼δδ(zδ)]]𝕌,wδ[0𝕌δ]=𝔼α[𝟙{𝒲(𝜼;z),𝜼Bϵ(z)=}CR(Ω𝜼;z)1/8].\displaystyle\begin{split}&\lim_{\delta\to 0}\frac{\mathbb{E}_{\alpha}^{\delta}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta}^{\delta};z^{\delta}),\;\boldsymbol{\eta}^{\delta}\cap B_{\epsilon}(z^{\delta})=\emptyset\right\}\mathbb{P}_{\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta}),\mathrm{w}}^{\delta}\left[z^{\delta}\leftrightarrow\partial\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta})\right]\right]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}^{\delta}\left[0\leftrightarrow\partial\mathbb{U}^{\delta}\right]}\\ &\qquad=\mathbb{E}_{\alpha}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta};z),\;\boldsymbol{\eta}\cap B_{\epsilon}(z)=\emptyset\right\}\mathrm{CR}(\Omega\setminus\boldsymbol{\eta};z)^{-1/8}\right].\end{split} (3.7)

On the other hand, note that on the event {𝜼δBϵ(zδ)}\{\boldsymbol{\eta}^{\delta}\cap B_{\epsilon}(z^{\delta})\neq\emptyset\}, there exist one open path and one dual-open path connecting Ωδ,\partial\Omega^{\delta,\diamond} to Bϵ(zδ)\partial B_{\epsilon}(z^{\delta}). Then a standard application of the FKG inequality and strong RSW estimates in Lemma 3.1 (see e.g., [DCMT21, Proof of Corollary 6.7]) implies that there exists a constant c1c_{1} which is independent of δ\delta and ϵ\epsilon such that

𝔼αδ[𝟙{𝒲(𝜼δ;zδ),𝜼δBϵ(zδ)}Ω𝜼δδ(zδ),wδ[zδΩ𝜼δδ(zδ)]]𝕌,wδ[0𝕌δ]ϵc1.\displaystyle\frac{\mathbb{E}_{\alpha}^{\delta}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta}^{\delta};z^{\delta}),\;\boldsymbol{\eta}^{\delta}\cap B_{\epsilon}(z^{\delta})\neq\emptyset\right\}\mathbb{P}_{\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta}),\mathrm{w}}^{\delta}\left[z^{\delta}\leftrightarrow\partial\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta})\right]\right]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}^{\delta}\left[0\leftrightarrow\partial\mathbb{U}^{\delta}\right]}\lesssim\epsilon^{c_{1}}. (3.8)

Combining (3.7) with (3.8) and letting ϵ0\epsilon\to 0 give (3.6), as desired. ∎

3.3 Proof of Theorem 1.2

Definition 3.9.

Fix κ(4,6]\kappa\in(4,6]. The cluster-weight qq and parameter κ\kappa are related through (1.5). We define

𝒢(𝔯)(θ1,,θ2N)=αLPN¯,α(q)𝒵α;w(𝔯)(θ1,,θ2N),for (θ1,,θ2N)𝔛2N,\displaystyle\mathcal{G}^{(\mathfrak{r})}(\theta_{1},\ldots,\theta_{2N})=\sum_{\alpha\in\mathrm{LP}_{N}}\mathcal{M}_{\boldsymbol{\underline{\cap\cap}},\alpha}(q)\mathcal{Z}_{\alpha;\mathrm{w}}^{(\mathfrak{r})}(\theta_{1},\ldots,\theta_{2N}),\quad\text{for }(\theta_{1},\ldots,\theta_{2N})\in\mathfrak{X}_{2N}, (3.9)

where 𝒵α;w(𝔯)\mathcal{Z}_{\alpha;\mathrm{w}}^{(\mathfrak{r})} is defined in Definition 2.7.

From Lemma 2.8, the function 𝒢(𝔯)\mathcal{G}^{(\mathfrak{r})} defined in (3.9) satisfies the system of radial BPZ equations (1.2) with =(6κ)(κ2)8κ𝔯>32κ\aleph=\frac{(6-\kappa)(\kappa-2)}{8\kappa}-\mathfrak{r}>-\frac{3}{2\kappa}.

Proof of Theorem 1.2.

Fix κ=16/3\kappa=16/3. Without loss of generality, we may assume Ω=𝕌\Omega=\mathbb{U}, z=0z=0 and φ\varphi is the identity map.

By Lemma 3.3, we may choose a subsequence δn0\delta_{n}\to 0 such that (η1δn,,η2Nδn)(\eta_{1}^{\delta_{n}},\ldots,\eta_{2N}^{\delta_{n}}) converges weakly in the metric (3.2) as nn\to\infty. We denote the limit by (η1,,η2N)(\eta_{1},\ldots,\eta_{2N}). Let ϑ={{a1,b1},,{aN,bN}}LPN\vartheta=\{\{a_{1},b_{1}\},\ldots,\{a_{N},b_{N}\}\}\in\mathrm{LP}_{N} be the link pattern given by (η1,,η2N)(\eta_{1},\ldots,\eta_{2N}). For 1jN1\leq j\leq N, let η(j)\eta^{(j)} be the curve in (η1,,η2N)(\eta_{1},\ldots,\eta_{2N}) having xajx_{a_{j}} and xbjx_{b_{j}} as endpoints. We denote by \mathbb{P} the law of (η(1),,η(N))(\eta^{(1)},\ldots,\eta^{(N)}) and by 𝔼\mathbb{E} the corresponding expectation.

Let FF be any bounded continuous function on the space (XN,dist)(X_{N},\mathrm{dist}). We claim that

𝔼[F(η(1),,η(N))]=αLPN¯,α(2)𝒵α(θ1,,θ2N)𝔼α[𝟙{𝒲(𝜼;0)}CR(𝕌𝜼;0)1/8F(η(1),,η(N))]𝒢(1/8)(θ1,,θ2N),\displaystyle\mathbb{E}\left[F(\eta^{(1)},\ldots,\eta^{(N)})\right]=\sum_{\alpha\in\mathrm{LP}_{N}}\mathcal{M}_{\boldsymbol{\underline{\cap\cap}},\alpha}(2)\mathcal{Z}_{\alpha}(\theta_{1},\ldots,\theta_{2N})\frac{\mathbb{E}_{\alpha}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta};0)\right\}\mathrm{CR}(\mathbb{U}\setminus\boldsymbol{\eta};0)^{-1/8}F(\eta^{(1)},\ldots,\eta^{(N)})\right]}{\mathcal{G}^{(1/8)}(\theta_{1},\ldots,\theta_{2N})}, (3.10)

where the function 𝒢(1/8)\mathcal{G}^{(1/8)} is defined in Definition 3.9. Combining the claim (3.10) with Lemma 2.8, we conclude that the law of η(1)\eta^{(1)} is the same as radial SLEκ\mathrm{SLE}_{\kappa} in (𝕌;exp(𝔦θ1);0)(\mathbb{U};\exp(\mathfrak{i}\theta_{1});0) weighted by the following local martingale, up to the first time exp(𝔦θ2)\exp(\mathfrak{i}\theta_{2}) or exp(𝔦θ2N)\exp(\mathfrak{i}\theta_{2N}) is disconnected from the origin:

Mt(𝒢(1/8))=gt(0)1/8h~×j=22Nϕt(θj)h×𝒢(1/8)(ξt,ϕt(θ2),,ϕt(θ2N)).M_{t}(\mathcal{G}^{(1/8)})=g_{t}^{\prime}(0)^{1/8-\tilde{h}}\times\prod_{j=2}^{2N}\phi_{t}^{\prime}(\theta_{j})^{h}\times\mathcal{G}^{(1/8)}(\xi_{t},\phi_{t}(\theta_{2}),\ldots,\phi_{t}(\theta_{2N})).

This gives (1.6) for j=1j=1. For j{2,,2N}j\in\{2,\ldots,2N\}, the proof is essentially the same.

We now prove the claim (3.10). Let ϑδ={{a1δ,b1δ},,{aNδ,bNδ}}LPN\vartheta^{\delta}=\{\{a_{1}^{\delta},b_{1}^{\delta}\},\ldots,\{a_{N}^{\delta},b_{N}^{\delta}\}\}\in\mathrm{LP}_{N} be the link pattern given by (η1δ,,η2Nδ)(\eta_{1}^{\delta},\ldots,\eta_{2N}^{\delta}). For 1jN1\leq j\leq N, let η(j,δ)\eta^{(j,\delta)} be the curve in (η1δ,,η2Nδ)(\eta_{1}^{\delta},\ldots,\eta_{2N}^{\delta}) having xajδδ,x_{a_{j}^{\delta}}^{\delta,\diamond} and xbjδδ,x_{b_{j}^{\delta}}^{\delta,\diamond} as endpoints. We denote by 𝔼~δ\tilde{\mathbb{E}}^{\delta} the expectation with respect to the law of (η(1,δ),,η(N,δ))(\eta^{(1,\delta)},\ldots,\eta^{(N,\delta)}). Note that the law of (η(1,δn),,η(N,δn))(\eta^{(1,\delta_{n})},\ldots,\eta^{(N,\delta_{n})}) converges weakly to \mathbb{P} in the metric (3.2) as nn\to\infty, which implies

limn𝔼~δn[F(η(1,δn),,η(N,δn))]=𝔼[F(η(1),,η(N))].\displaystyle\lim_{n\to\infty}\tilde{\mathbb{E}}^{\delta_{n}}\left[F(\eta^{(1,\delta_{n})},\ldots,\eta^{(N,\delta_{n})})\right]=\mathbb{E}\left[F(\eta^{(1)},\ldots,\eta^{(N)})\right]. (3.11)

It follows from the domain Markv property of the FK-Ising model that

𝔼~δ[F(η(1,δ),,η(N,δ))]=𝔼Ωδ[𝟙{𝒲(𝜼δ;zδ)}Ω𝜼δδ(zδ),wδ[zδΩ𝜼δδ(zδ)]F(η(1,δ),,η(N,δ))]Ωδ[zδj=1N(x2j1δx2jδ)]=𝔼Ωδ[𝟙{𝒲(𝜼δ;zδ)}Ω𝜼δδ(zδ),wδ[zδΩ𝜼δδ(zδ)]F(η(1,δ),,η(N,δ))]/𝕌,wδ[0𝕌δ]Ωδ[zδj=1N(x2j1δx2jδ)]/𝕌,wδ[0𝕌δ].\displaystyle\begin{split}&\tilde{\mathbb{E}}^{\delta}\left[F(\eta^{(1,\delta)},\ldots,\eta^{(N,\delta)})\right]\\ &\qquad=\frac{\mathbb{E}_{\Omega}^{\delta}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta}^{\delta};z^{\delta})\right\}\mathbb{P}_{\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta}),\mathrm{w}}^{\delta}\left[z^{\delta}\leftrightarrow\partial\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta})\right]F(\eta^{(1,\delta)},\ldots,\eta^{(N,\delta)})\right]}{\mathbb{P}_{\Omega}^{\delta}\left[z^{\delta}\leftrightarrow\cup_{j=1}^{N}(x_{2j-1}^{\delta}x_{2j}^{\delta})\right]}\\ &\qquad=\frac{\mathbb{E}_{\Omega}^{\delta}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta}^{\delta};z^{\delta})\right\}\mathbb{P}_{\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta}),\mathrm{w}}^{\delta}\left[z^{\delta}\leftrightarrow\partial\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta})\right]F(\eta^{(1,\delta)},\ldots,\eta^{(N,\delta)})\right]/\mathbb{P}^{\delta}_{\mathbb{U},\mathrm{w}}[0\leftrightarrow\partial\mathbb{U}^{\delta}]}{\mathbb{P}_{\Omega}^{\delta}\left[z^{\delta}\leftrightarrow\cup_{j=1}^{N}(x_{2j-1}^{\delta}x_{2j}^{\delta})\right]/\mathbb{P}^{\delta}_{\mathbb{U},\mathrm{w}}[0\leftrightarrow\partial\mathbb{U}^{\delta}]}.\end{split} (3.12)

The denominator was treated in Corollary 3.8. For the numerator, one can proceed as in the proof of Corollary 3.8 to show that

limδ0𝔼Ωδ[𝟙{𝒲(𝜼δ;zδ)}Ω𝜼δδ(zδ),wδ[zδΩ𝜼δδ(zδ)]F(η(1,δ),,η(N,δ))]/𝕌,wδ[0𝕌δ]=αLPN¯,α(2)𝒵α(θ1,,θ2N)(θ1,,θ2N)𝔼α[𝟙{𝒲(𝜼;z)}CR(Ω𝜼;z)1/8F(η(1),,η(N))].\displaystyle\begin{split}&\lim_{\delta\to 0}\mathbb{E}_{\Omega}^{\delta}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta}^{\delta};z^{\delta})\right\}\mathbb{P}_{\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta}),\mathrm{w}}^{\delta}\left[z^{\delta}\leftrightarrow\partial\Omega_{\boldsymbol{\eta}^{\delta}}^{\delta}(z^{\delta})\right]F(\eta^{(1,\delta)},\ldots,\eta^{(N,\delta)})\right]/\mathbb{P}^{\delta}_{\mathbb{U},\mathrm{w}}[0\leftrightarrow\partial\mathbb{U}^{\delta}]\\ &\qquad=\sum_{\alpha\in\mathrm{LP}_{N}}\mathcal{M}_{\boldsymbol{\underline{\cap\cap}},\alpha}(2)\frac{\mathcal{Z}_{\alpha}(\theta_{1},\ldots,\theta_{2N})}{\mathcal{F}(\theta_{1},\ldots,\theta_{2N})}\mathbb{E}_{\alpha}\left[\mathbb{1}\left\{\mathcal{W}(\boldsymbol{\eta};z)\right\}\mathrm{CR}(\Omega\setminus\boldsymbol{\eta};z)^{-1/8}F(\eta^{(1)},\ldots,\eta^{(N)})\right].\end{split} (3.13)

Plugging (3.5), (3.12) and (3.13) into (3.11) gives the claim (3.10), as we set out to prove. ∎

Appendix A Proof of Lemma 1.5

The goal of this appendix is to prove Lemma 1.5. We first prove a coupling result in Lemma A.1 and collect a result concerning the convergence of FK-Ising interface loops to CLE16/3\mathrm{CLE}_{16/3} in Proposition A.2. Then we complete the proof of Lemma 1.5.

Lemma A.1.

Suppose that zδδ2z^{\delta}\in\delta\mathbb{Z}^{2}, Ωδ,Ω^δδ2\Omega^{\delta},\hat{\Omega}^{\delta}\subseteq\delta\mathbb{Z}^{2} satisfy B10ϵ(zδ)ΩδΩ^δB_{10\epsilon}(z^{\delta})\subseteq\Omega^{\delta}\cap\hat{\Omega}^{\delta} for some ϵ>0\epsilon>0. Fix q[1,4)q\in[1,4) and let a(δ,ϵ)a\in(\delta,\epsilon). Then there exists a constant c2(0,)c_{2}\in(0,\infty) depending only on q[1,4)q\in[1,4) such that the following holds. There exists a coupling μδ\mu^{\delta}, between Λ~δμpc(q),q,Ωδπ1[|ΩδBa(zδ)]\tilde{\Lambda}^{\delta}\sim\mu_{p_{c}(q),q,\Omega^{\delta}}^{\pi_{1}}[\cdot\,|\,\partial\Omega^{\delta}\leftrightarrow\partial B_{a}(z^{\delta})] and Λ^δμpc(q),q,Ω^δπ2[|Ω^δBa(zδ)]\hat{\Lambda}^{\delta}\sim\mu_{p_{c}(q),q,\hat{\Omega}^{\delta}}^{\pi_{2}}[\cdot\,|\,\partial\hat{\Omega}^{\delta}\leftrightarrow\partial B_{a}(z^{\delta})], and an event 𝒮\mathcal{S}, such that,

  • first, 𝒮\mathcal{S} is the event that there exists a common open circuit surrounding zδz^{\delta} inside Aa,ϵ(zδ)A_{a,\epsilon}(z^{\delta}) in both Λ~δ\tilde{\Lambda}^{\delta} and Λ^δ\hat{\Lambda}^{\delta}, and we denote by γδ\gamma^{\delta} the outermost such open circuit;

  • second,

    μδ[𝒮c]\displaystyle\mu^{\delta}[\mathcal{S}^{c}]\lesssim (aϵ)c2;\displaystyle\left(\frac{a}{\epsilon}\right)^{c_{2}};
  • and third, if 𝒮\mathcal{S} happens, then the status of edges inside of the region surrounded by γδ\gamma^{\delta} are the same under both configurations Λ~δ\tilde{\Lambda}^{\delta} and Λ^δ\hat{\Lambda}^{\delta}.

As a consequence, we have

|μpc(q),q,Ωδπ1[zδΩδ|ΩδBa(zδ)]μpc(q),q,Ω^δπ2[zδΩ^δ|Ω^δBa(zδ)]1|(aϵ)c2.\left|\frac{\mu_{p_{c}(q),q,\Omega^{\delta}}^{\pi_{1}}[z^{\delta}\leftrightarrow\partial\Omega^{\delta}\,|\,\partial\Omega^{\delta}\leftrightarrow\partial B_{a}(z^{\delta})]}{\mu_{p_{c}(q),q,\hat{\Omega}^{\delta}}^{\pi_{2}}[z^{\delta}\leftrightarrow\partial\hat{\Omega}^{\delta}\,|\,\partial\hat{\Omega}^{\delta}\leftrightarrow\partial B_{a}(z^{\delta})]}-1\right|\lesssim\left(\frac{a}{\epsilon}\right)^{c_{2}}. (A.1)
Proof.

One can adopt the strategy in [Cam24, Proof of Lemma 2.1] to show the existence of the coupling μδ\mu^{\delta}, with the FKG inequality and RSW estimates for critical site percolation replaced by these two properties for the critical random cluster model with cluster weight q[1,4)q\in[1,4), and with the exploration starting from zδz^{\delta} replaced by the exploration starting from Bϵ(zδ)δ2\partial B_{\epsilon}(z^{\delta})\cap\delta\mathbb{Z}^{2}.

We then show the estimate (A.1). Note that

μpc(q),q,Ωδπ1[zδΩδ|ΩδBa(zδ),𝒮]=\displaystyle\mu_{p_{c}(q),q,\Omega^{\delta}}^{\pi_{1}}[z^{\delta}\leftrightarrow\partial\Omega^{\delta}\,|\,\partial\Omega^{\delta}\leftrightarrow\partial B_{a}(z^{\delta}),\;\mathcal{S}]= μpc(q),q,Ωδπ1[zδγδ|ΩδBa(zδ),𝒮],\displaystyle\mu_{p_{c}(q),q,\Omega^{\delta}}^{\pi_{1}}[z^{\delta}\leftrightarrow\gamma^{\delta}\,|\,\partial\Omega^{\delta}\leftrightarrow\partial B_{a}(z^{\delta}),\;\mathcal{S}],
μpc(q),q,Ω^δπ2[zδΩ^δ|ΩδBa(zδ),𝒮]=\displaystyle\mu_{p_{c}(q),q,\hat{\Omega}^{\delta}}^{\pi_{2}}[z^{\delta}\leftrightarrow\partial\hat{\Omega}^{\delta}\,|\,\partial\Omega^{\delta}\leftrightarrow\partial B_{a}(z^{\delta}),\;\mathcal{S}]= μpc(q),q,Ω^δπ2[zδγδ|ΩδBa(zδ),𝒮].\displaystyle\mu_{p_{c}(q),q,\hat{\Omega}^{\delta}}^{\pi_{2}}[z^{\delta}\leftrightarrow\gamma^{\delta}\,|\,\partial\Omega^{\delta}\leftrightarrow\partial B_{a}(z^{\delta}),\;\mathcal{S}].

Let Baδ(zδ):=Ba(zδ)δ2B^{\delta}_{a}(z^{\delta}):=B_{a}(z^{\delta})\cap\delta\mathbb{Z}^{2}. Consequently, thanks to the existence of the coupling μδ\mu^{\delta}, we have

|μpc(q),q,Ωδπ1[zδΩδ|ΩδBa(zδ)]μpc(q),q,Ω^δπ2[zδΩ^δ|Ω^δBa(zδ)]|μδ[𝒮c]×μpc(q),q,Baδ(zδ)1[zδBaδ(zδ)](ϵa)c2×μpc(q),q,Baδ(zδ)1[zδBaδ(zδ)],\displaystyle\begin{split}&\left|\mu_{p_{c}(q),q,\Omega^{\delta}}^{\pi_{1}}[z^{\delta}\leftrightarrow\partial\Omega^{\delta}\,|\,\partial\Omega^{\delta}\leftrightarrow\partial B_{a}(z^{\delta})]-\mu_{p_{c}(q),q,\hat{\Omega}^{\delta}}^{\pi_{2}}[z^{\delta}\leftrightarrow\partial\hat{\Omega}^{\delta}\,|\,\partial\hat{\Omega}^{\delta}\leftrightarrow\partial B_{a}(z^{\delta})]\right|\\ &\qquad\qquad\qquad\qquad\qquad\leq\mu^{\delta}[\mathcal{S}^{c}]\times\mu^{1}_{p_{c}(q),q,B_{a}^{\delta}(z^{\delta})}\left[z^{\delta}\leftrightarrow\partial B_{a}^{\delta}(z^{\delta})\right]\\ &\qquad\qquad\qquad\qquad\qquad\lesssim\left(\frac{\epsilon}{a}\right)^{c_{2}}\times\mu^{1}_{p_{c}(q),q,B_{a}^{\delta}(z^{\delta})}\left[z^{\delta}\leftrightarrow\partial B_{a}^{\delta}(z^{\delta})\right],\end{split} (A.2)

where μpc(q),q,Baδ(zδ)1\mu^{1}_{p_{c}(q),q,B_{a}^{\delta}(z^{\delta})} is the critical random cluster model on Baδ(zδ)B_{a}^{\delta}(z^{\delta}) with the wired boundary condition. Then (A.1) follows from (LABEL:eqn::asy_identi_arm_event_aux) and a standard application of the FKG inequality and RSW estimates. ∎

Proposition A.2.

([KS16, Theorem 1.1],  [KS19, Theorem 1.1]) Fix a bounded simply connected domain Ω\Omega and suppose that a sequence of admissible medial domains Ωδ,\Omega^{\delta,\diamond} converges to Ω\Omega in the Carathéodory sense. Consider the critical FK-Ising model on the primal domain Ωδ\Omega^{\delta} with the wired boundary condition. Let Γδ\Gamma^{\delta} be the collection of loops in the loop representation. Then the law of Γδ\Gamma^{\delta} converges weakly under the topology induced by Dist\mathrm{Dist} in (3.3) to the law of the nested CLE16/3\mathrm{CLE}_{16/3} on Ω\Omega; we denote by Ω,w\mathbb{P}_{\Omega,\mathrm{w}} the latter law.

Proof of Lemma 1.5.

Without loss of generality, we may assume that zδ=z=0z^{\delta}=z=0.

Choose a decreasing sequence {ak}k=1\{a_{k}\}_{k=1}^{\infty} such that limkak=0\lim_{k\to\infty}a_{k}=0. For large enough kk, write

Ω,wδ[0Ωδ]𝕌,wδ[0𝕌δ]=Ω,wδ[Bak(0)Ωδ]𝕌,wδ[Bak(0)𝕌δ]T1δ×Ω,wδ[0Ωδ|Bak(0)Ωδ]𝕌,wδ[0𝕌δ|Bak(0)𝕌δ]T2δ.\displaystyle\frac{\mathbb{P}^{\delta}_{\Omega,\mathrm{w}}[0\leftrightarrow\partial\Omega^{\delta}]}{\mathbb{P}^{\delta}_{\mathbb{U},\mathrm{w}}[0\leftrightarrow\partial\mathbb{U}^{\delta}]}=\underbrace{\frac{\mathbb{P}^{\delta}_{\Omega,\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\Omega^{\delta}]}{\mathbb{P}^{\delta}_{\mathbb{U},\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\mathbb{U}^{\delta}]}}_{T_{1}^{\delta}}\times\underbrace{\frac{\mathbb{P}^{\delta}_{\Omega,\mathrm{w}}[0\leftrightarrow\partial\Omega^{\delta}|\partial B_{a_{k}}(0)\leftrightarrow\partial\Omega^{\delta}]}{\mathbb{P}^{\delta}_{\mathbb{U},\mathrm{w}}[0\leftrightarrow\partial\mathbb{U}^{\delta}|\partial B_{a_{k}}(0)\leftrightarrow\partial\mathbb{U}^{\delta}]}}_{T_{2}^{\delta}}. (A.3)

As explained in [Cam24, Section 2.1], in the discrete, the events {Bak(0)Ωδ}\{\partial B_{a_{k}}(0)\leftrightarrow\partial\Omega^{\delta}\} and {Bak(0)𝕌δ}\{\partial B_{a_{k}}(0)\leftrightarrow\partial\mathbb{U}^{\delta}\} can be expressed in terms of interface loops in the loop representation; moreover, their analog events in the scaling limit defined using the CLE\mathrm{CLE} loops, which we denote by {BakΩ}\{\partial B_{a_{k}}\leftrightarrow\partial\Omega\} and {Ωak𝕌}\{\partial\Omega_{a_{k}}\leftrightarrow\partial\mathbb{U}\}, respectively, are continuity events. It then follows from Proposition A.2 that

limδ0T1δ=Ω,w[Bak(0)Ω]𝕌,w[Bak(0)𝕌].\displaystyle\lim_{\delta\to 0}T_{1}^{\delta}=\frac{\mathbb{P}_{\Omega,\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\Omega]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\mathbb{U}]}. (A.4)

For the term T2δT_{2}^{\delta}, Lemma A.1 implies that there exist two constants c2,c3(0,)c_{2},c_{3}\in(0,\infty) such that

1c3(akϵ)c2lim infδ0T2δlim supδ0T2δ1+c3(akϵ)c2.\displaystyle 1-c_{3}\left(\frac{a_{k}}{\epsilon}\right)^{c_{2}}\leq\liminf_{\delta\to 0}T_{2}^{\delta}\leq\limsup_{\delta\to 0}T_{2}^{\delta}\leq 1+c_{3}\left(\frac{a_{k}}{\epsilon}\right)^{c_{2}}. (A.5)

A standard application of the FKG inequality and RSW estimates implies that there are two constants c4,c5(0,)c_{4},c_{5}\in(0,\infty) such that

c4Ω,w[Bak(0)Ω]𝕌,w[Bak(0)𝕌]c5,for all k1.\displaystyle c_{4}\leq\frac{\mathbb{P}_{\Omega,\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\Omega]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\mathbb{U}]}\leq c_{5},\quad\text{for all }k\geq 1.

So we can choose some subsequence {akj}j=1\{a_{k_{j}}\}_{j=1}^{\infty} such that

limjΩ,w[Bakj(0)Ω]𝕌,w[Bakj(0)𝕌]=V,for some V(0,).\displaystyle\lim_{j\to\infty}\frac{\mathbb{P}_{\Omega,\mathrm{w}}[\partial B_{a_{k_{j}}}(0)\leftrightarrow\partial\Omega]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{a_{k_{j}}}(0)\leftrightarrow\partial\mathbb{U}]}=V,\quad\text{for some }V\in(0,\infty). (A.6)

Plugging (A.4), (A.5) and (A.6) into (A.3) gives

ϕ(Ω;0):=limδ0Ω,wδ[0Ωδ]𝕌,wδ[0𝕌δ]=V(0,),\displaystyle\phi(\Omega;0):=\lim_{\delta\to 0}\frac{\mathbb{P}^{\delta}_{\Omega,\mathrm{w}}[0\leftrightarrow\partial\Omega^{\delta}]}{\mathbb{P}^{\delta}_{\mathbb{U},\mathrm{w}}[0\leftrightarrow\partial\mathbb{U}^{\delta}]}=V\in(0,\infty),

which also implies that the value VV is independent of the choice of the subsequence {akj}j=1\{a_{k_{j}}\}_{j=1}^{\infty} so that we actually have

limkΩ,w[Bak(0)Ω]𝕌,w[Bak(0)𝕌]=ϕ(Ω;0).\displaystyle\lim_{k\to\infty}\frac{\mathbb{P}_{\Omega,\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\Omega]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\mathbb{U}]}=\phi(\Omega;0). (A.7)

Now we show that

ϕ(Ω;0)=CR(Ω;0)1/8.\displaystyle\phi(\Omega;0)=\mathrm{CR}(\Omega;0)^{-1/8}. (A.8)

First, assume that Ω=R𝕌\Omega=R\mathbb{U} for some R>0R>0. Without loss of generality, we may assume that R>1R>1. On the one hand, according to [SSW09, Proof of Theorem 2] (the first displayed equation in the proof),

𝕌,w[Br(0)𝕌]r1/8,as r0.\displaystyle\mathbb{P}_{\mathbb{U},\mathrm{w}}\left[\partial B_{r}(0)\leftrightarrow\partial\mathbb{U}\right]\asymp r^{1/8},\quad\text{as }r\to 0.

On the other hand, according to (A.7) and the scale invariance of CLE16/3\mathrm{CLE}_{16/3}, we have

limr0𝕌,w[Br/R(0)𝕌]𝕌,w[Br(0)𝕌]=limr0R𝕌,w[Br(0)R𝕌]𝕌,w[Br(0)𝕌]=ϕ(R𝕌;0).\displaystyle\lim_{r\to 0}\frac{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{r/R}(0)\leftrightarrow\partial\mathbb{U}]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{r}(0)\leftrightarrow\partial\mathbb{U}]}=\lim_{r\to 0}\frac{\mathbb{P}_{R\mathbb{U},\mathrm{w}}[\partial B_{r}(0)\leftrightarrow R\partial\mathbb{U}]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{r}(0)\leftrightarrow\partial\mathbb{U}]}=\phi(R\mathbb{U};0). (A.9)

For k>1k>1, we write

𝕌,w[B1/Rk(0)𝕌]=𝕌,w[B1/Rk(0)𝕌]𝕌,w[B1/Rk1(0)𝕌]𝕌,w[B1/Rk1(0)𝕌]𝕌,w[B1/Rk2(0)𝕌]𝕌,w[B1/R(0)𝕌]𝕌,w[B1(0)𝕌],\displaystyle\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{1/R^{k}}(0)\leftrightarrow\partial\mathbb{U}]=\frac{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{1/R^{k}}(0)\leftrightarrow\partial\mathbb{U}]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{1/R^{k-1}}(0)\leftrightarrow\partial\mathbb{U}]}\frac{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{1/R^{k-1}}(0)\leftrightarrow\partial\mathbb{U}]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{1/R^{k-2}}(0)\leftrightarrow\partial\mathbb{U}]}\cdots\frac{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{1/R}(0)\leftrightarrow\partial\mathbb{U}]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{1}(0)\leftrightarrow\partial\mathbb{U}]},

where

𝕌,w[B1(0)𝕌]:=1.\displaystyle\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{1}(0)\leftrightarrow\partial\mathbb{U}]:=1.

Using (A.9) and the convergence of the Cesàro mean gives

limk1klog𝕌,w[B1/Rk(0)0]=logϕ(R𝕌;0).\displaystyle\lim_{k\to\infty}\frac{1}{k}\log\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{1/R^{k}}(0)\leftrightarrow 0]=\log\phi(R\mathbb{U};0). (A.10)

Comparing (A.8) with (A.10) gives

ϕ(R𝕌;0)=R1/8.\displaystyle\phi(R\mathbb{U};0)=R^{-1/8}. (A.11)

Next, we consider the general case. Let φ\varphi be the conformal map from 𝕌\mathbb{U} onto Ω\Omega such that φ(0)=0\varphi(0)=0 and φ(0)>0\varphi^{\prime}(0)>0, then we have φ(0)=CR(Ω;0)\varphi^{\prime}(0)=\mathrm{CR}(\Omega;0). Let Ark,Rk(0)A_{r_{k},R_{k}}(0) be the thinnest annulus whose closure contains the symmetric difference555If Bak/φ(0)(0)=φ1(Bak(0))B_{a_{k}/\varphi^{\prime}(0)}(0)=\varphi^{-1}(B_{a_{k}}(0)), then define rk=Rk=ak/φ(0)r_{k}=R_{k}=a_{k}/\varphi^{\prime}(0). between Bak/φ(0)(0)B_{a_{k}/\varphi^{\prime}(0)}(0) and φ1(Bak(0))\varphi^{-1}(B_{a_{k}}(0)). Note that

limkrkak=limkRkak=1/φ(0).\displaystyle\lim_{k\to\infty}\frac{r_{k}}{a_{k}}=\lim_{k\to\infty}\frac{R_{k}}{a_{k}}=1/\varphi^{\prime}(0). (A.12)

It follows from (A.7) and the conformal invariance of CLE16/3\mathrm{CLE}_{16/3} that

ϕ(Ω,0)=limkΩ,w[Bak(0)Ω]𝕌,w[Bak(0)𝕌]=limk𝕌,w[φ1(Bak(0))𝕌]𝕌,w[Bak(0)𝕌]limk𝕌,w[BRk(0)𝕌]𝕌,w[Bak(0)𝕌]=limkφ(0)𝕌,w[Bak(0)φ(0)𝕌]𝕌,w[Bak(0)𝕌]T3(k)×φ(0)𝕌,w[φ(0)Rk𝕌φ(0)𝕌]φ(0)𝕌,w[Bak(0)φ(0)𝕌]T4(k).\displaystyle\begin{split}\phi(\Omega,0)=&\lim_{k\to\infty}\frac{\mathbb{P}_{\Omega,\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\Omega]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\mathbb{U}]}=\lim_{k\to\infty}\frac{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial\varphi^{-1}(B_{a_{k}}(0))\leftrightarrow\partial\mathbb{U}]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\mathbb{U}]}\\ \leq&\lim_{k\to\infty}\frac{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{R_{k}}(0)\leftrightarrow\partial\mathbb{U}]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\mathbb{U}]}=\underbrace{\lim_{k\to\infty}\frac{\mathbb{P}_{\varphi^{\prime}(0)\mathbb{U},\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\varphi^{\prime}(0)\partial\mathbb{U}]}{\mathbb{P}_{\mathbb{U},\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\partial\mathbb{U}]}}_{T_{3}^{(k)}}\times\underbrace{\frac{\mathbb{P}_{\varphi^{\prime}(0)\mathbb{U},\mathrm{w}}\left[\varphi^{\prime}(0)R_{k}\partial\mathbb{U}\leftrightarrow\varphi^{\prime}(0)\partial\mathbb{U}\right]}{\mathbb{P}_{\varphi^{\prime}(0)\mathbb{U},\mathrm{w}}[\partial B_{a_{k}}(0)\leftrightarrow\varphi^{\prime}(0)\partial\mathbb{U}]}}_{T_{4}^{(k)}}.\end{split} (A.13)

According to (A.7) and (A.11), we have

limkT3(k)=ϕ(φ(0)𝕌;0)=φ(0)1/8=CR(Ω;0)1/8.\displaystyle\lim_{k\to\infty}T_{3}^{(k)}=\phi(\varphi^{\prime}(0)\mathbb{U};0)=\varphi^{\prime}(0)^{-1/8}=\mathrm{CR}(\Omega;0)^{-1/8}. (A.14)

According to the observation (A.12) and the fact that the boundary three-arm exponent for the FK-Ising model equals 22 (see e.g., [Wu18, Theorem 2]), which is strictly bigger than 11, we have

limkT4(k)=1.\displaystyle\lim_{k\to\infty}T_{4}^{(k)}=1. (A.15)

Plugging (A.14) and (A.15) into (A.13) gives

ϕ(Ω,0)CR(Ω;0)1/8.\displaystyle\phi(\Omega,0)\leq\mathrm{CR}(\Omega;0)^{-1/8}. (A.16)

Similarly, one can show that

ϕ(Ω,0)CR(Ω;0)1/8.\displaystyle\phi(\Omega,0)\geq\mathrm{CR}(\Omega;0)^{-1/8}. (A.17)

Combining (A.16) with (A.17) gives (A.8) and completes the proof. ∎

References

  • [AHSY23] Morris Ang, Nina Holden, Xin Sun, and Pu Yu. Conformal welding of quantum disks and multiple SLE: the non-simple case. Preprint in arXiv:2310.20583, 2023.
  • [BPW21] Vincent Beffara, Eveliina Peltola, and Hao Wu. On the uniqueness of global multiple SLEs. Ann. Probab., 49(1):400–434, 2021.
  • [Cam24] Federico Camia. Conformal covariance of connection probabilities and fields in 2D critical percolation. Comm. Pure Appl. Math., 77(3):2138–2176, 2024.
  • [Car04] John Cardy. Calogero-Sutherland model and bulk-boundary correlations in conformal field theory. Phys. Lett. B, 582(1-2):121–126, 2004.
  • [Che16] Dmitry Chelkak. Robust discrete complex analysis: A toolbox. The Annals of Probability, 44(1):628–683, 2016.
  • [CHI15] Dmitry Chelkak, Clément Hongler, and Konstantin Izyurov. Conformal invariance of spin correlations in the planar Ising model. Ann. of Math. (2), 181(3):1087–1138, 2015.
  • [CN06] Federico Camia and Charles M. Newman. Two-dimensional critical percolation: the full scaling limit. Comm. Math. Phys., 268(1):1–38, 2006.
  • [CN07] Federico Camia and Charles M. Newman. Critical percolation exploration path and SLE6{\rm SLE}_{6}: a proof of convergence. Probab. Theory Related Fields, 139(3-4):473–519, 2007.
  • [DC07] B. Doyon and J. Cardy. Calogero-Sutherland eigenfunctions with mixed boundary conditions and conformal field theory correlators. J. Phys. A, 40(10):2509–2540, 2007.
  • [DCHN11] Hugo Duminil-Copin, Clément Hongler, and Pierre Nolin. Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Comm. Pure Appl. Math., 64(9):1165–1198, 2011.
  • [DCKK+20] Hugo Duminil-Copin, Karol Kajetan Kozlowski, Dmitry Krachun, Ioan Manolescu, and Mendes Oulamara. Rotational invariance in critical planar lattice models. Preprint in arXiv:2012.11672, 2020.
  • [DCMT21] Hugo Duminil-Copin, Ioan Manolescu, and Vincent Tassion. Planar random-cluster model: fractal properties of the critical phase. Probab. Theory Related Fields, 181(1-3):401–449, 2021.
  • [DCST17] Hugo Duminil-Copin, Vladas Sidoravicius, and Vincent Tassion. Continuity of the phase transition for planar random-cluster and Potts models with 1q41\leq q\leq 4. Comm. Math. Phys., 349(1):47–107, 2017.
  • [Dub07] Julien Dubédat. Commutation relations for Schramm-Loewner evolutions. Comm. Pure Appl. Math., 60(12):1792–1847, 2007.
  • [FK15a] Steven M. Flores and Peter Kleban. A solution space for a system of null-state partial differential equations: Part 2. Comm. Math. Phys., 333(1):435–481, 2015.
  • [FK15b] Steven M. Flores and Peter Kleban. A solution space for a system of null-state partial differential equations: Part 3. Comm. Math. Phys., 333(2):597–667, 2015.
  • [FKZ12] S. M. Flores, P. Kleban, and R. M. Ziff. Cluster pinch-point densities in polygons. J. Phys. A, 45(50):505002, 45, 2012.
  • [FLPW24] Yu Feng, Mingchang Liu, Eveliina Peltola, and Hao Wu. Multiple SLEs for κ(0,8)\kappa\in(0,8): Coulomb gas integrals and pure partition functions. Preprint in arXiv: 2406.06522, 2024.
  • [FPW24] Yu Feng, Eveliina Peltola, and Hao Wu. Connection probabilities of multiple FK-Ising interfaces. Probability Theory and Related Fields, 189(1-2):281–367, March 2024.
  • [FSK22] Steven M. Flores, Jacob J. H. Simmons, and Peter Kleban. Multiple-SLEκ{\rm SLE}_{\kappa} connectivity weights for rectangles, hexagons, and octagons. J. Phys. A, 55(22):Paper No. 224001, 54, 2022.
  • [FSKZ17] S. M. Flores, J. J. H. Simmons, P. Kleban, and R. M. Ziff. A formula for crossing probabilities of critical systems inside polygons. J. Phys. A, 50(6):064005, 91, 2017.
  • [Gra07] K. Graham. On multiple Schramm-Loewner evolutions. J. Stat. Mech. Theory Exp., (3):P03008, 21, 2007.
  • [HL21] Vivian Olsiewski Healey and Gregory F. Lawler. N-sided radial Schramm-Loewner evolution. Probab. Theory Related Fields, 181(1-3):451–488, 2021.
  • [Izy17] Konstantin Izyurov. Critical Ising interfaces in multiply-connected domains. Probab. Theory Related Fields, 167(1-2):379–415, 2017.
  • [Izy22] Konstantin Izyurov. On multiple SLE for the FK-Ising model. Ann. Probab., 50(2):771–790, 2022.
  • [Kar19] Alex Karrila. Multiple SLE type scaling limits: from local to global. Preprint in arXiv:1903.10354, 2019.
  • [Kar24] Alex M. Karrila. Limits of conformal images and conformal images of limits for planar random curves. Enseign. Math., 70(3-4):385–423, 2024.
  • [KL07] Michael J. Kozdron and Gregory F. Lawler. The configurational measure on mutually avoiding SLE paths. In Universality and renormalization, volume 50 of Fields Inst. Commun., pages 199–224. Amer. Math. Soc., Providence, RI, 2007.
  • [KP16] Kalle Kytölä and Eveliina Peltola. Pure partition functions of multiple SLEs. Comm. Math. Phys., 346(1):237–292, 2016.
  • [KS16] Antti Kemppainen and Stanislav Smirnov. Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE. Preprint in arXiv:1609.08527, 2016.
  • [KS17] Antti Kemppainen and Stanislav Smirnov. Random curves, scaling limits and loewner evolutions. Ann. Probab., 45(2):698–779, 03 2017.
  • [KS19] Antti Kemppainen and Stanislav Smirnov. Conformal invariance of boundary touching loops of FK Ising model. Comm. Math. Phys., 369(1):49–98, 2019.
  • [Law09] Gregory F. Lawler. Partition functions, loop measure, and versions of SLE. J. Stat. Phys., 134(5-6):813–837, 2009.
  • [LPW24] Mingchang Liu, Eveliina Peltola, and Hao Wu. Uniform spanning tree in topological polygon, partition functions for SLE(8), and correlations in c=2c=-2 logarithm CFT. Ann. Probab. to appear, 2024.
  • [LSW02] Gregory F. Lawler, Oded Schramm, and Wendelin Werner. One-arm exponent for critical 2D percolation. Electron. J. Probab., 7:no. 2, 13 pp. (electronic), 2002.
  • [MS16a] Jason Miller and Scott Sheffield. Imaginary geometry I: Interacting SLEs. Probab. Theory Related Fields, 164(3-4):553–705, 2016.
  • [MS16b] Jason Miller and Scott Sheffield. Imaginary geometry II: Reversibility of SLEκ(ρ1;ρ2)\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2}) for κ(0,4)\kappa\in(0,4). Ann. Probab., 44(3):1647–1722, 2016.
  • [Pom92] Ch. Pommerenke. Boundary behaviour of conformal maps, volume 299 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992.
  • [PW19] Eveliina Peltola and Hao Wu. Global and local multiple SLEs for κ4\kappa\leq 4 and connection probabilities for level lines of GFF. Comm. Math. Phys., 366(2):469–536, 2019.
  • [PW23] Eveliina Peltola and Hao Wu. Crossing probabilities of multiple Ising interfaces. Ann. Appl. Probab., 33(4):3169–3206, 2023.
  • [Sch00] Oded Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118:221–288, 2000.
  • [SKFZ11] Jacob J. H. Simmons, Peter Kleban, Steven M. Flores, and Robert M. Ziff. Cluster densities at 2D critical points in rectangular geometries. J. Phys. A, 44(38):385002, 34, 2011.
  • [Smi01] Stanislav Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333(3):239–244, 2001.
  • [SSW09] Oded Schramm, Scott Sheffield, and David B. Wilson. Conformal radii for conformal loop ensembles. Comm. Math. Phys., 288(1):43–53, 2009.
  • [SW05] Oded Schramm and David B. Wilson. SLE coordinate changes. New York J. Math., 11:659–669 (electronic), 2005.
  • [SY23] Xin Sun and Pu Yu. Conformal welding of quantum disks and multiple SLE: the non-simple case. Preprint in arXiv:2309.05177, 2023.
  • [Wu18] Hao Wu. Polychromatic arm exponents for the critical planar FK-Ising model. J. Stat. Phys., 170(6):1177–1196, 2018.
  • [Wu20] Hao Wu. Hypergeometric SLE: conformal Markov characterization and applications. Comm. Math. Phys., 374(2):433–484, 2020.
  • [WW24] Yilin Wang and Hao Wu. Commutation relations for two-sided radial SLE. Preprint in arXiv:2405.07082, 2024.
  • [Zha24a] Dapeng Zhan. Existence and uniqueness of nonsimple multiple SLE. J. Stat. Phys., 191(8):Paper No. 101, 15, 2024.
  • [Zha24b] Jiaxin Zhang. Multiple radial SLE(0) and classical Calogero-Sutherland system. Preprint in arXiv:2410.21544, 2024.