This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Radius Constants of Sigmoid Starlike Functions

Priyanka Goel Department of Applied Mathematics, Delhi Technological University, Delhi–110042, India priyanka.goel0707@gmail.com  and  S. Sivaprasad Kumar Department of Applied Mathematics, Delhi Technological University, Delhi–110042, India spkumar@dce.ac.in
Abstract.

In the present investigation, we study the class of Sigmoid starlike functions, given by 𝒮SG={f𝒜:zf(z)/f(z)2/(1+ez)}\mathcal{S}^{*}_{SG}=\{f\in\mathcal{A}:{zf^{\prime}(z)}/{f(z)}\prec 2/(1+e^{-z})\} in context of estimating the sharp radius constants associated with several known subclasses of starlike functions. Further, graphical validation for the sharpness of results is also provided.

Key words and phrases:
Radius problem, Sigmoid function, Starlike functions
2020 Mathematics Subject Classification:
30C45, 30C80
Corresponding Author
The first author is supported by The Council of Scientific and Industrial Research(CSIR). Ref.No.:08/133(0018)/2017-EMR-I.

1. Introduction

Let 𝒜n\mathcal{A}_{n} be the class of analytic functions defined on 𝔻:={z:|z|<1}\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}, satisfying f(0)=0,f(0)=1f(0)=0,\;f^{\prime}(0)=1 and of the form

f(z)=z+an+1zn+1+an+2zn+2+,n.f(z)=z+a_{n+1}z^{n+1}+a_{n+2}z^{n+2}+\cdots,\quad n\in\mathbb{N}.

We denote by 𝒜:=𝒜1\mathcal{A}:=\mathcal{A}_{1} and let 𝒮𝒜\mathcal{S}\subset\mathcal{A} be the class of univalent functions. For the functions ff and F,F, we say that ff is subordinate to F,F, written as fF,f\prec F, if it is possible to write f(z)=F(ω(z))f(z)=F(\omega(z)) for some Schwarz function ω.\omega. Let 𝒮\mathcal{S}^{*} and 𝒞\mathcal{C} denote respectively the class of starlike and convex functions. Note that if we consider f𝒜n,f\in\mathcal{A}_{n}, the class of starlike and convex functions are denoted by 𝒮n\mathcal{S}^{*}_{n} and 𝒞n\mathcal{C}_{n} respectively. For n,n\in\mathbb{N}, we now define the Carathéodory class 𝒫n,\mathcal{P}_{n}, containing functions of the form p(z)=1+cnzn+cn+1zn+1+p(z)=1+c_{n}z^{n}+c_{n+1}z^{n+1}+\cdots with Re(p(z))>0\operatorname{Re}(p(z))>0 on 𝔻.\mathbb{D}. Using subordination, Ma and Minda [11] defined a general subclass of starlike functions, given by 𝒮(ϕ):={f𝒜:zf(z)/f(z)ϕ(z)}.\mathcal{S}^{*}(\phi):=\{f\in\mathcal{A}:zf^{\prime}(z)/f(z)\prec\phi(z)\}. For different choices of ϕ,\phi, authors have defined several subclasses of 𝒮\mathcal{S}^{*} and examined these classes for different geometric properties. These classes will be described in the text wherever needed. In 2020, we introduced the class of Sigmoid starlike functions by taking ϕ(z)=2/(1+ez),\phi(z)=2/(1+e^{-z}), the Modified Sigmoid function and denote it by 𝒮SG\mathcal{S}^{*}_{SG} [3]. The image of 𝔻\mathbb{D} under the Modified Sigmoid function is denoted by ΔSG:={w:|log(w/(2w))|<1}\Delta_{SG}:=\{w\in\mathbb{C}:|\log(w/(2-w))|<1\}. In [3], we present some basic geometry of this function, prove several inclusion relationships, obtain some coefficient bounds, and study mainly first-order differential subordination results. Later in [8], we proved various second and third order differential subordination results for Sigmoid starlike functions. Soon the class gained popularity and attracted many authors to study further in context of various aspects such as coefficient problems and convolution results (see [6, 13]). In continuation of these works, we now investigate 𝒮SG\mathcal{S}^{*}_{SG} for radius problems. We present in this paper, radius estimates for 𝒮SG\mathcal{S}^{*}_{SG} in conjunction with a bunch of other subclasses of starlike functions. Further, we consider certain families of analytic functions, which are characterized by the ratio of its functions with a specific function gg and obtain 𝒮SG\mathcal{S}^{*}_{SG}- radius for these families. We extensively use the following lemma in order to prove our main results:

Lemma 1.1.

[3] Let 2/(1+e)<a<2e/(1+e)2/(1+e)<a<2e/(1+e). If

ra=e1e+1|a1|,r_{a}=\dfrac{e-1}{e+1}-|a-1|,

then

{w:|wa|<ra}ΔSG.\{w\in\mathbb{C}:|w-a|<r_{a}\}\subset\Delta_{SG}. (1.1)

2. Main Results

To begin with, we consider the class 𝒮n[A,B](1B<A1),\mathcal{S}^{*}_{n}[A,B]\;(-1\leq B<A\leq 1), introduced by Janowski [4], as below.

𝒮n[A,B]:={f𝒜n:zf(z)f(z)1+Az1+Bz}.\mathcal{S}^{*}_{n}[A,B]:=\left\{f\in\mathcal{A}_{n}:\frac{zf^{\prime}(z)}{f(z)}\prec\frac{1+Az}{1+Bz}\right\}.

Corresponding to the above class, we consider 𝒫n[A,B]\mathcal{P}_{n}[A,B] and a few results related to this class, given as follows:

𝒫n[A,B]:={f𝒫n:p(z)1+Az1+Bz}.\mathcal{P}^{*}_{n}[A,B]:=\left\{f\in\mathcal{P}_{n}:p(z)\prec\frac{1+Az}{1+Bz}\right\}.
Lemma 2.1.

[15, Lemma 2.1]

  • (i)(i)

    If p𝒫n[A,B]p\in\mathcal{P}_{n}[A,B], then for |z|=r|z|=r,

    |p(z)1ABr2n1B2r2n|(AB)rn1B2r2n.\left|p(z)-\dfrac{1-ABr^{2n}}{1-B^{2}r^{2n}}\right|\leq\dfrac{(A-B)r^{n}}{1-B^{2}r^{2n}}.
  • (ii)(ii)

    In particular, if p𝒫n(α):=𝒫[12α,1]p\in\mathcal{P}_{n}(\alpha):=\mathcal{P}[1-2\alpha,-1], then

    |p(z)1+(12α)r2n1r2n|2(1α)rn1r2n.\left|p(z)-\dfrac{1+(1-2\alpha)r^{2n}}{1-r^{2n}}\right|\leq\dfrac{2(1-\alpha)r^{n}}{1-r^{2n}}.
Lemma 2.2.

[17, Lemma 2] If p𝒫n(α),p\in\mathcal{P}_{n}(\alpha), then for |z|=r,|z|=r,

|zp(z)p(z)|2nrn(1α)(1rn)(1+(12α)rn).\left|\frac{zp^{\prime}(z)}{p(z)}\right|\leq\frac{2nr^{n}(1-\alpha)}{(1-r^{n})(1+(1-2\alpha)r^{n})}.
Theorem 2.3.

The sharp 𝒮SG,n\mathcal{S}^{*}_{SG,n}-radius of the class 𝒮n[A,B]\mathcal{S}^{*}_{n}[A,B] is given by

  • (i)(i)

    R𝒮SG,n(𝒮n[A,B])=min{1,(e1A(1+e)2B)1n},R_{\mathcal{S}^{*}_{SG,n}}(\mathcal{S}^{*}_{n}[A,B])=\min\left\{1,\;\left(\frac{e-1}{A(1+e)-2B}\right)^{\frac{1}{n}}\right\}, when 0B<A1.0\leq B<A\leq 1.

  • (ii)(ii)

    R𝒮SG,n(𝒮n[A,B])=min{1,(e1A(1+e)2Be)1n},R_{\mathcal{S}^{*}_{SG,n}}(\mathcal{S}^{*}_{n}[A,B])=\min\left\{1,\;\left(\frac{e-1}{A(1+e)-2Be}\right)^{\frac{1}{n}}\right\}, when 1B<A1-1\leq B<A\leq 1 with B0.B\leq 0.

In particular, for the class 𝒮\mathcal{S}^{*}, we have R𝒮SG(𝒮)=(e1)/(3e+1)R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*})=(e-1)/(3e+1).

Proof.

Let f𝒮n[A,B]f\in\mathcal{S}^{*}_{n}[A,B]. Using Lemma 2.1, we have

|zf(z)f(z)1ABr2n1B2r2n|(AB)rn1B2r2n.\left|\frac{zf^{\prime}(z)}{f(z)}-\frac{1-ABr^{2n}}{1-B^{2}r^{2n}}\right|\leq\frac{(A-B)r^{n}}{1-B^{2}r^{2n}}. (2.1)

(i) If 0B<A10\leq B<A\leq 1, then

a:=1ABr2n1B2r2n1.a:=\frac{1-ABr^{2n}}{1-B^{2}r^{2n}}\leq 1.

Further, we observe that f𝒮SG,nf\in\mathcal{S}^{*}_{SG,n} if the disk (2.1) is contained in the disk (1.1). Thus by using Lemma 1.1, it suffices to show that

(AB)rn1B2r2n1ABr2n1B2r2n21+e,\frac{(A-B)r^{n}}{1-B^{2}r^{2n}}\leq\frac{1-ABr^{2n}}{1-B^{2}r^{2n}}-\frac{2}{1+e},

which upon simplification, yields

r(e1A(1+e)2B)1n.r\leq\left(\frac{e-1}{A(1+e)-2B}\right)^{\frac{1}{n}}.

(ii) If 1B<0<A1-1\leq B<0<A\leq 1, then

a:=1ABr2n1B2r2n1.a:=\frac{1-ABr^{2n}}{1-B^{2}r^{2n}}\geq 1.

Again by Lemma 1.1, we see that f𝒮SG,nf\in\mathcal{S}^{*}_{SG,n} if

(AB)rn1B2r2n2e1+e1ABr2n1B2r2n,\frac{(A-B)r^{n}}{1-B^{2}r^{2n}}\leq\frac{2e}{1+e}-\frac{1-ABr^{2n}}{1-B^{2}r^{2n}},

which simplifies to

r(e1A(1+e)2Be)1/n.r\leq\biggl{(}\frac{e-1}{A(1+e)-2Be}\biggl{)}^{1/n}.

The result follows with sharpness due to the function fA,B(z),f_{A,B}(z), given by

fA,B(z)={z(1+Bzn)ABnB;B0,zexp(Aznn);B=0.f_{A,B}(z)=\left\{\begin{array}[]{ll}z(1+Bz^{n})^{\frac{A-B}{nB}};&B\neq 0,\\ z\exp\left(\frac{Az^{n}}{n}\right);&B=0.\end{array}\right.

Corollary 2.4.

The sharp 𝒮SG\mathcal{S}^{*}_{SG}-radius for 𝒮(α)\mathcal{S}^{*}(\alpha) is (e1)/(1+3e2α(1+e)), 0α<1.(e-1)/(1+3e-2\alpha(1+e)),\;0\leq\alpha<1. The bound is sharp for kα(z)=z/(1z)2(1α).k_{\alpha}(z)=z/(1-z)^{2(1-\alpha)}.

Corollary 2.5.

The sharp 𝒮SG\mathcal{S}^{*}_{SG}-radius for 𝒮\mathcal{S}^{*} is (e1)/(1+3e).(e-1)/(1+3e). The bound is sharp for k(z)=z/(1z)2.k(z)=z/(1-z)^{2}.

Before we proceed to our next result, we need to recall the following classes:
For 0α<1,0\leq\alpha<1, the class 𝒮(α):={f𝒜:zf(z)/f(z)1+z/(1αz2)},\mathcal{BS}^{*}(\alpha):=\{f\in\mathcal{A}:zf^{\prime}(z)/f(z)\prec 1+z/(1-\alpha z^{2})\}, defined by Kargar et al. [5]. In [7], Khatter et al. generalized 𝒮L:=𝒮(1+z)\mathcal{S}^{*}_{L}:=\mathcal{S}^{*}(\sqrt{1+z}) and 𝒮e:=𝒮(ez)\mathcal{S}^{*}_{e}:=\mathcal{S}^{*}(e^{z}) to 𝒮L(α):=𝒮(α+(1α)1+z)\mathcal{S}^{*}_{L}(\alpha):=\mathcal{S}^{*}(\alpha+(1-\alpha)\sqrt{1+z}) and 𝒮α,e:=𝒮(α+(1α)ez)\mathcal{S}^{*}_{\alpha,e}:=\mathcal{S}^{*}(\alpha+(1-\alpha)e^{z}) respectively, for α[0,1)\alpha\in[0,1).

Theorem 2.6.

The radius estimates of Sigmoid starlikeness, for the classes 𝒮(α),𝒮L(α)\mathcal{BS}^{*}(\alpha),\;\mathcal{S}^{*}_{L}(\alpha) and 𝒮α,e\mathcal{S}^{*}_{\alpha,e} are given by

  • (i)(i)

    R𝒮SG(𝒮(α))=r𝒮(α):=2(e1)/((1+e)+(1+e)2+4α(e1)2)R_{\mathcal{S}^{*}_{SG}}(\mathcal{BS}^{*}(\alpha))=r_{\mathcal{BS}}(\alpha):=2(e-1)/((1+e)+\sqrt{(1+e)^{2}+4\alpha(e-1)^{2}}), where α[0,1).\alpha\in[0,1).

  • (ii)(ii)

    R𝒮SG(𝒮L(α))=rL(α):=((e1)(3+e2α(1+e)))/((1α)2(1+e)2),whereα[0,(3+e)/2(1+e)).R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{L}(\alpha))=r_{L}(\alpha):=((e-1)(3+e-2\alpha(1+e)))/((1-\alpha)^{2}(1+e)^{2}),\;\text{where}\;\alpha\in[0,(3+e)/2(1+e)). In particular, R𝒮SG(𝒮L)=((e1)(3+e))/(1+e)2.R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{L})=((e-1)(3+e))/(1+e)^{2}.

  • (iii)(iii)

    R𝒮SG(𝒮α,e)=re(α):=log(2eα(1+e))/(1+e)(1α),R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{\alpha,e})=r_{e}(\alpha):=\log{(2e-\alpha(1+e))/(1+e)(1-\alpha)}, where α[0,(e(1+e)2e)/((1+e)(e1))).\alpha\in[0,(e(1+e)-2e)/((1+e)(e-1))). In particular, R𝒮SG(𝒮e)=log(2e/(1+e)).R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{e})=\log(2e/(1+e)).

All estimates are sharp.

Proof.
  • (i)

    Let f𝒮(α).f\in\mathcal{BS}^{*}(\alpha). Then zf(z)/f(z)1+z/(1αz2)zf^{\prime}(z)/f(z)\prec 1+z/(1-\alpha z^{2}) and thus

    |zf(z)f(z)1||z1αz2||r1αr2|on |z|=r.\left|\dfrac{zf^{\prime}(z)}{f(z)}-1\right|\leq\left|\frac{z}{1-\alpha z^{2}}\right|\leq\left|\frac{r}{1-\alpha r^{2}}\right|\quad\text{on }|z|=r.

    Using Lemma 1.1, it can be said that the above disk lies in ΔSG\Delta_{SG} if r/(1αr2)(e1)/(e+1).r/(1-\alpha r^{2})\leq(e-1)/(e+1). This further implies rr𝒮(α).r\leq r_{\mathcal{BS}}(\alpha). Sharpness holds for the function

    f𝒮(z)={z(1+αz1αz)1/(2α),α(0,1)zez,α=0.f_{\mathcal{BS}}(z)=\begin{cases}z\left(\frac{1+\sqrt{\alpha z}}{1-\sqrt{\alpha}z}\right)^{1/(2\sqrt{\alpha})},&\alpha\in(0,1)\\ ze^{z},&\alpha=0.\end{cases}

    It can be verified with the following graph that zf𝒮(z)/f𝒮(z)zf^{\prime}_{\mathcal{BS}}(z)/f_{\mathcal{BS}}(z) touches the boundary of ΔSG\Delta_{SG} at the points ±2(e1)/((1+e)+(1+e)2+4α(e1)2).\pm 2(e-1)/((1+e)+\sqrt{(1+e)^{2}+4\alpha(e-1)^{2}}). Note that the domain ΩBS\Omega_{BS} denotes the image of 𝔻\mathbb{D} mapped by the function 1+z/(1αz2)1+z/(1-\alpha z^{2})
     

    Refer to caption
    Sharpness for α=0.5\alpha=0.5
    Refer to caption Sharpness for α=0.9\alpha=0.9
    Figure 1.
  • (ii)

    Let f𝒮L(α),f\in\mathcal{S}^{*}_{L}(\alpha), then zf(z)/f(z)α+(1α)1+zzf^{\prime}(z)/f(z)\prec\alpha+(1-\alpha)\sqrt{1+z} and therefore on |z|=r|z|=r

    |zf(z)f(z)1||(1α)(11+z)|(1α)(11r).\left|\frac{zf^{\prime}(z)}{f(z)}-1\right|\leq|(1-\alpha)(1-\sqrt{1+z})|\leq(1-\alpha)(1-\sqrt{1-r}).

    By Lemma 1.1, it is clear that for the above disk to lie in ΔSG,\Delta_{SG}, we need (1α)(11r)(e1)/(e+1),(1-\alpha)(1-\sqrt{1-r})\leq(e-1)/(e+1), which upon simplification yields r((e1)(3+e2α(1+e)))/((1α)2(1+e)2).r\leq((e-1)(3+e-2\alpha(1+e)))/((1-\alpha)^{2}(1+e)^{2}). Note that for the function

    fL(z)=z+(1α)z2+116(1α)(12α)z3+,f_{L}(z)=z+(1-\alpha)z^{2}+\frac{1}{16}(1-\alpha)(1-2\alpha)z^{3}+\cdots,

    the result is sharp. The sharpness of this result can be verified by the following graph, where ΩL\Omega_{L} denotes the image of 𝔻\mathbb{D} mapped by α+(1α)1+z\alpha+(1-\alpha)\sqrt{1+z}.

    Refer to caption
    Sharpness for α=0.1\alpha=0.1
    Refer to caption Sharpness for α=0.5\alpha=0.5
    Figure 2.
  • (iii)

    Let f𝒮α,e,f\in\mathcal{S}^{*}_{\alpha,e}, then zf(z)/f(z)α+(1α)ez.zf^{\prime}(z)/f(z)\prec\alpha+(1-\alpha)e^{z}. So on |z|=r|z|=r

    |zf(z)f(z)1|(1α)|ez1|(1α)(er1).\left|\frac{zf^{\prime}(z)}{f(z)}-1\right|\leq(1-\alpha)|e^{z}-1|\leq(1-\alpha)(e^{r}-1).

    By Lemma 1.1, f𝒮SGf\in\mathcal{S}^{*}_{SG} if (1α)(er1)(e1)/(e+1),(1-\alpha)(e^{r}-1)\leq(e-1)/(e+1), which is equivalent to rre(α).r\leq r_{e}(\alpha). The result is sharp for the function

    fe(z)=z+(1α)z2+14(1α)(32α)z3+f_{e}(z)=z+(1-\alpha)z^{2}+\frac{1}{4}(1-\alpha)(3-2\alpha)z^{3}+\cdots

    and is validated by the following graph. The image of 𝔻\mathbb{D} mapped by α+(1α)ez\alpha+(1-\alpha)e^{z} is denoted by Ωe\Omega_{e}.

    Refer to caption
    Sharpness for α=0.1\alpha=0.1
    Refer to caption Sharpness for α=0.9\alpha=0.9
    Figure 3.

Before we proceed further, let us recall the following classes: In [14], Mendiratta et al. considered the class of starlike functions associated with right lemniscate of Bernoulli, denoted by 𝒮RL=𝒮(ϕ),\mathcal{S}^{*}_{RL}=\mathcal{S}^{*}(\phi), where ϕ\phi is given by

ϕ(z)=2(21)1z1+2(21)z.\phi(z)=\sqrt{2}-(\sqrt{2}-1)\sqrt{\frac{1-z}{1+2(\sqrt{2}-1)z}}.

The class of cardioid starlike functions, denoted by 𝒮C:=𝒮(1+4z/3+2z2/3),\mathcal{S}^{*}_{C}:=\mathcal{S}^{*}(1+4z/3+2z^{2}/3), defined by Sharma et al. [18]. For k=2+1,k=\sqrt{2}+1, Kumar and Ravichandran [10] introduced 𝒮R\mathcal{S}^{*}_{R} by taking ϕ\phi as 1+z(k+z)/k(kz).1+z(k+z)/k(k-z).

Theorem 2.7.

The sharp 𝒮SG\mathcal{S}^{*}_{SG}-radius for the classes 𝒮RL,𝒮C\mathcal{S}^{*}_{RL},\;\mathcal{S}^{*}_{C} and 𝒮R\mathcal{S}^{*}_{R} is given by:

  • (i)(i)

    R𝒮SG(𝒮RL)=:rRL=(427e5)(e1)/(3227e2+6e(425)47)0.738309.R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{RL})=:r_{RL}=\left(4\sqrt{2}-7e-5\right)(e-1)/(32\sqrt{2}-7e^{2}+6e\left(4\sqrt{2}-5\right)-47)\approx 0.738309.

  • (ii)(ii)

    R𝒮SG(𝒮C)=:rC=1+(1+5e)/(2+2e)0.301221.R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{C})=:r_{C}=-1+\sqrt{(-1+5e)/(2+2e)}\approx 0.301221.

  • (iii)(iii)

    R𝒮SG(𝒮R)=:rR=((22+3)(2e21)(2+1)e)/(1+e)0.645131.R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{R})=:r_{R}=(\sqrt{\left(2\sqrt{2}+3\right)\left(2e^{2}-1\right)}-\left(\sqrt{2}+1\right)e)/(1+e)\approx 0.645131.

Proof.
  • (i)

    Let f𝒮RL.f\in\mathcal{S}^{*}_{RL}. Then

    zf(z)f(z)2(21)1z1+2(21)z.\frac{zf^{\prime}(z)}{f(z)}\prec\sqrt{2}-(\sqrt{2}-1)\sqrt{\frac{1-z}{1+2(\sqrt{2}-1)z}}.

    Thus on |z|=r,|z|=r, we have

    |zf(z)f(z)1|1(2(21)1+r12(21)r).\left|\frac{zf^{\prime}(z)}{f(z)}-1\right|\leq 1-\left(\sqrt{2}-(\sqrt{2}-1)\sqrt{\frac{1+r}{1-2(\sqrt{2}-1)r}}\right).

    By Lemma 1.1, ff is in 𝒮SG\mathcal{S}^{*}_{SG} if

    1(2(21)1+r12(21)r)e1e+1,1-\left(\sqrt{2}-(\sqrt{2}-1)\sqrt{\frac{1+r}{1-2(\sqrt{2}-1)r}}\right)\leq\frac{e-1}{e+1},

    which is equivalent to rrRL.r\leq r_{RL}. This result is sharp for the following function

    fRL(z)=z(1z+1+2(21)z2)222exp(2(21)tan1Ψ(z)),f_{RL}(z)=z\left(\frac{\sqrt{1-z}+\sqrt{1+2(\sqrt{2}-1)z}}{2}\right)^{2\sqrt{2}-2}\exp{\left(\sqrt{2(\sqrt{2}-1)}\tan^{-1}\Psi(z)\right)},

    where

    Ψ(z)=2(21)(2(21)z+11z)2(21)1z+2(21)z+1.\Psi(z)=\frac{\sqrt{2(\sqrt{2}-1)}\left(\sqrt{2(\sqrt{2}-1)z+1}-\sqrt{1-z}\right)}{2(\sqrt{2}-1)\sqrt{1-z}+\sqrt{2(\sqrt{2}-1)z+1}}.

    The sharpness of this bound can be verified from Figure 4(i).

  • (ii)

    Let f𝒮C,f\in\mathcal{S}^{*}_{C}, then we have zf(z)/f(z)1+4z/3+2z2/3.zf^{\prime}(z)/f(z)\prec 1+4z/3+2z^{2}/3. Therefore on |z|=r,|z|=r, we get

    |zf(z)f(z)1|2(r2+2r)3,\left|\frac{zf^{\prime}(z)}{f(z)}-1\right|\leq\frac{2(r^{2}+2r)}{3},

    which if not exceeds (e1)/(e+1),(e-1)/(e+1), implies that ff lies in 𝒮SG,\mathcal{S}^{*}_{SG}, by Lemma 1.1. Solving this, we get rrC.r\leq r_{C}. In order to verify the sharpness of this result, we consider the following function.

    fC(z)=zexp(4z3+z23).f_{C}(z)=z\exp{\left(\frac{4z}{3}+\frac{z^{2}}{3}\right)}.

    Clearly fC𝒮Cf_{C}\in\mathcal{S}^{*}_{C} and moreover zfC(z)/fC(z)zf^{\prime}_{C}(z)/f_{C}(z) touches the boundary of ΔSG\Delta_{SG} at the point z0=1+(1+5e/(2+2e),z_{0}=-1+\sqrt{(-1+5e/(2+2e)}, as shown in Figure 4(ii).

  • (iii)

    Let f𝒮R,f\in\mathcal{S}^{*}_{R}, then

    zf(z)f(z)1+z(k+z)k(kz),\frac{zf^{\prime}(z)}{f(z)}\prec 1+\frac{z(k+z)}{k(k-z)},

    where k=2+1.k=\sqrt{2}+1. Thus on |z|=r,|z|=r,

    |zf(z)f(z)1|r(k+r)k(kr).\left|\frac{zf^{\prime}(z)}{f(z)}-1\right|\leq\frac{r(k+r)}{k(k-r)}.

    In view of Lemma 1.1, f𝒮SGf\in\mathcal{S}^{*}_{SG} if r(k+r)/k(kr)(e1)/(e+1).r(k+r)/k(k-r)\leq(e-1)/(e+1). Solving this inequality, we obtain rrRr\leq r_{R}. The equality of the radius estimate holds for the function

    fR(z)=k2z(kz)2ez/k,k=2+1.f_{R}(z)=\dfrac{k^{2}z}{(k-z)^{2}}e^{-z/k},\quad k=\sqrt{2}+1.

    Figure 4(iii) verifies the sharpness of the result. Note that ΩRL,Ωc\Omega_{RL},\;\Omega_{c} and ΩR\Omega_{R} denote the image of 𝔻\mathbb{D} mapped by zf(z)/f(z)zf^{\prime}(z)/f(z) for fRL,fCf_{RL},\;f_{C} and fRf_{R} repectively.

    Refer to caption
    Refer to caption
    Refer to caption
    Figure 4.

Let us recall the following classes in order to obtain our next result. By taking ϕ(z)=z+1+z2\phi(z)=z+\sqrt{1+z^{2}}, Sharma et al. [19] introduced 𝒮.\mathcal{S}^{*}_{\leftmoon}. Similarly, Kumar and Gangania [9] intoduced 𝒮\mathcal{S}^{*}_{\wp} by taking ϕ\phi as 1+zez,1+ze^{z}, the cardioid function.

Theorem 2.8.

The sharp 𝒮SG\mathcal{S}^{*}_{SG}-radii for the classes 𝒮\mathcal{S}^{*}_{\leftmoon} and 𝒮\mathcal{S}^{*}_{\wp} is given by

  • (i)(i)

    R𝒮SG(𝒮)=12e+3e24e+4e20.389089.R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{\leftmoon})=\frac{-1-2e+3e^{2}}{4e+4e^{2}}\approx 0.389089.

  • (ii)(ii)

    R𝒮SG(𝒮)=r0.331672,R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{\wp})=r_{\wp}\approx 0.331672, where rr_{\wp} is the smallest positive root of the equation (e+1)rer=e1.(e+1)re^{r}=e-1.

Proof.
  • (i)(i)

    Let f𝒮,f\in\mathcal{S}^{*}_{\leftmoon}, then zf(z)/f(z)z+1+z2.zf^{\prime}(z)/f(z)\prec z+\sqrt{1+z^{2}}. Therefore on |z|=r,|z|=r,

    |zf(z)f(z)1|=|z+1+z21|r+1+r21.\left|\frac{zf^{\prime}(z)}{f(z)}-1\right|=|z+\sqrt{1+z^{2}}-1|\leq r+\sqrt{1+r^{2}}-1.

    Now by using Lemma 1.1, the above disk lies inside the domain ΔSG\Delta_{SG} if r+1+r21(e1)/(e+1).r+\sqrt{1+r^{2}}-1\leq(e-1)/(e+1). Solving this equation, we obtain the desired bound of r.r. The result is sharp for the function

    f(z)=zexp(0zt+1+t21t𝑑t)=z+z2+3z34+5z412+z56+.f_{\leftmoon}(z)=z\exp{\left(\int_{0}^{z}\dfrac{t+\sqrt{1+t^{2}}-1}{t}dt\right)}=z+z^{2}+\dfrac{3z^{3}}{4}+\dfrac{5z^{4}}{12}+\dfrac{z^{5}}{6}+\cdots.
  • (ii)(ii)

    Let f𝒮,f\in\mathcal{S}^{*}_{\wp}, then it is clear that zf(z)/f(z)1+zez.zf^{\prime}(z)/f(z)\prec 1+ze^{z}. So we have

    |zf(z)f(z)1|=|zez|reron|z|=r.\left|\dfrac{zf^{\prime}(z)}{f(z)}-1\right|=|ze^{z}|\leq re^{r}\quad\text{on}\;|z|=r.

    By using Lemma 1.1, we can say that f𝒮SGf\in\mathcal{S}^{*}_{SG} if rer(e1)/(e+1),re^{r}\leq(e-1)/(e+1), which is equivalent to rr.r\leq r_{\wp}. The sharpness of the result can be verified by the function f(z)=zeez1.f_{\wp}(z)=ze^{e^{z}-1}. The following graph depicts the sharpness of both the estimates. Note that the image of 𝔻\mathbb{D} mapped by z+1+z2z+\sqrt{1+z^{2}} and 1+zez1+ze^{z} are respectively denoted by Ω\Omega_{\leftmoon} and Ω.\Omega_{\wp}.

Refer to caption
Sharpness of R𝒮SG(𝒮)R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{\leftmoon})
Refer to caption Sharpness of R𝒮SG(𝒮)R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{\wp})
Figure 5.

Now we consider the following classes for our next result. The class 𝒮Ne,\mathcal{S}^{*}_{Ne}, defined by Wani and Swaminathan [21] by taking ϕ\phi as 1+zz3/31+z-z^{3}/3 and the class 𝒮S=𝒮(1+sinz)\mathcal{S}^{*}_{S}=\mathcal{S}^{*}(1+\sin{z}), introduced by Cho et al. [2].

Theorem 2.9.

The 𝒮SG\mathcal{S}^{*}_{SG}-radius for the classes 𝒮Ne\mathcal{S}^{*}_{Ne} and 𝒮S\mathcal{S}^{*}_{S} is given by:

  • (i)(i)

    R𝒮SG(𝒮Ne)=rNe0.43473,R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{Ne})=r_{Ne}\approx 0.43473, which is the smallest positive root of the equation (e+1)(3r+r3)=3(e1).(e+1)(3r+r^{3})=3(e-1).

  • (ii)(ii)

    R𝒮SG(𝒮S)=log(2(1+e2)+e11+e)0.447074.R_{\mathcal{S}^{*}_{SG}}(\mathcal{S}^{*}_{S})=\log\left(\frac{\sqrt{2\left(1+e^{2}\right)}+e-1}{1+e}\right)\approx 0.447074.

Proof.
  • (i)(i)

    Let f𝒮Ne,f\in\mathcal{S}^{*}_{Ne}, then zf(z)/f(z)1+zz3/3.zf^{\prime}(z)/f(z)\prec 1+z-z^{3}/3. Thus on |z|=r,|z|=r,

    |zf(z)f(z)1|=|zz33|r+r33,\left|\dfrac{zf^{\prime}(z)}{f(z)}-1\right|=|z-\dfrac{z^{3}}{3}|\leq r+\dfrac{r^{3}}{3},

    which if, not greater than (e1)/(e+1),(e-1)/(e+1), is sufficient to conclude that f𝒮SGf\in\mathcal{S}^{*}_{SG} by Lemma 1.1. Note that for rrNe,r\leq r_{Ne}, the above inequality holds and hence the result.

  • (ii)(ii)

    Let f𝒮S,f\in\mathcal{S}^{*}_{S}, then zf(z)/f(z)1+sinz.zf^{\prime}(z)/f(z)\prec 1+\sin{z}. So on |z|=r,|z|=r, we have

    |zf(z)f(z)1|=|sinz|sinhr.\left|\frac{zf^{\prime}(z)}{f(z)}-1\right|=|\sin{z}|\leq\sinh{r}.

    Now by using Lemma 1.1, we observe that for ff to belong to 𝒮SG,\mathcal{S}^{*}_{SG}, it is sufficient to prove that sinhr(e1)/(e+1).\sinh{r}\leq(e-1)/(e+1). Solving this inequality, we obtain the desired result.

Further let us consider the classes, introduced by Ali et al. [1], defined as follows:

𝒢1\displaystyle\mathcal{G}_{1} =\displaystyle= {f𝒜n:fg𝒫nandg(z)z𝒫n,g𝒜n}\displaystyle\left\{f\in\mathcal{A}_{n}:\frac{f}{g}\in\mathcal{P}_{n}\;\text{and}\;\frac{g(z)}{z}\in\mathcal{P}_{n},\;g\in\mathcal{A}_{n}\right\}
𝒢2\displaystyle\mathcal{G}_{2} =\displaystyle= {f𝒜n:fg𝒫nandg(z)z𝒫n(1/2),g𝒜n}\displaystyle\left\{f\in\mathcal{A}_{n}:\frac{f}{g}\in\mathcal{P}_{n}\;\text{and}\;\frac{g(z)}{z}\in\mathcal{P}_{n}(1/2),\;g\in\mathcal{A}_{n}\right\}
𝒢3\displaystyle\mathcal{G}_{3} =\displaystyle= {f𝒜n:|f(z)g(z)1|<1andg(z)z𝒫n,g𝒜n}\displaystyle\left\{f\in\mathcal{A}_{n}:\left|\frac{f(z)}{g(z)}-1\right|<1\;\text{and}\;\frac{g(z)}{z}\in\mathcal{P}_{n},\;g\in\mathcal{A}_{n}\right\}
𝒢4\displaystyle\mathcal{G}_{4} =\displaystyle= {f𝒜n:|f(z)g(z)1|<1,g𝒞n}.\displaystyle\left\{f\in\mathcal{A}_{n}:\left|\frac{f(z)}{g(z)}-1\right|<1,\;g\in\mathcal{C}_{n}\right\}.
Theorem 2.10.

The 𝒮SG,n\mathcal{S}^{*}_{SG,n} radius of the class 𝒢1\mathcal{G}_{1} is given by

R𝒮SG,n(𝒢1)=r𝒢1:=(e1)1n(2n(1+e)+4n2(1+e)2+(e1)2)1n.R_{\mathcal{S}^{*}_{SG,n}}(\mathcal{G}_{1})=r_{\mathcal{G}_{1}}:=\frac{(e-1)^{\frac{1}{n}}}{(2n(1+e)+\sqrt{4n^{2}(1+e)^{2}+(e-1)^{2}})^{\frac{1}{n}}}.

The estimate is sharp.

Proof.

Let f𝒢1,f\in\mathcal{G}_{1}, then there exists p,q𝒫np,\;q\in\mathcal{P}_{n} such that

p(z)=g(z)zandq(z)=f(z)g(z).p(z)=\frac{g(z)}{z}\quad\text{and}\quad q(z)=\frac{f(z)}{g(z)}.

By Lemma 2.2, we have on |z|=r,|z|=r, the following inequalities

|zp(z)p(z)|2nrn1r2nand|zq(z)q(z)|2nrn1r2n.\left|\frac{zp^{\prime}(z)}{p(z)}\right|\leq\frac{2nr^{n}}{1-r^{2n}}\quad\text{and}\quad\left|\frac{zq^{\prime}(z)}{q(z)}\right|\leq\frac{2nr^{n}}{1-r^{2n}}. (2.2)

Further, note that f(z)=g(z)q(z)=zp(z)q(z),f(z)=g(z)q(z)=zp(z)q(z), which upon logarithmic differentiation yields

zf(z)f(z)=1+zp(z)p(z)+zq(z)q(z).\frac{zf^{\prime}(z)}{f(z)}=1+\frac{zp^{\prime}(z)}{p(z)}+\frac{zq^{\prime}(z)}{q(z)}. (2.3)

Using (2.2), we obtain

|zf(z)f(z)1|4nrn1r2n.\left|\frac{zf^{\prime}(z)}{f(z)}-1\right|\leq\frac{4nr^{n}}{1-r^{2n}}.

By Lemma 1.1, it is clear that f𝒮SGf\in\mathcal{S}^{*}_{SG} if the quantity 4nrn/(1r2n)4nr^{n}/(1-r^{2n}) does not exceed (e1)/(e+1).(e-1)/(e+1). This leads us to (e1)r2n+4n(e+1)rn(e1)0.(e-1)r^{2n}+4n(e+1)r^{n}-(e-1)\leq 0. Solving this inequality, we obtain rr𝒢1.r\leq r_{\mathcal{G}_{1}}. The sharpness of the bound can be verified by the functions

f1(z)=z(1+zn1zn)2andg1(z)=z(1+zn1zn).f_{1}(z)=z\left(\frac{1+z^{n}}{1-z^{n}}\right)^{2}\quad\text{and}\quad g_{1}(z)=z\left(\frac{1+z^{n}}{1-z^{n}}\right).

Clearly f1,g1𝒜nf_{1},g_{1}\in\mathcal{A}_{n} and f1(z)/g1(z)=g1(z)/z,f_{1}(z)/g_{1}(z)=g_{1}(z)/z, which belongs to 𝒫n.\mathcal{P}_{n}. So f1𝒢1f_{1}\in\mathcal{G}_{1} and

zf1(z)f1(z)=1+4nzn1z2n.\frac{zf_{1}^{\prime}(z)}{f_{1}(z)}=1+\frac{4nz^{n}}{1-z^{2n}}.

The image domain of 𝔻\mathbb{D} mapped by zf1(z)/f1(z)zf_{1}^{\prime}(z)/f_{1}(z) touches the boundary of ΔSG\Delta_{SG} at the points ±r𝒢1.\pm r_{\mathcal{G}_{1}}.

Theorem 2.11.

The 𝒮SG,n\mathcal{S}^{*}_{SG,n} radius of the class 𝒢2\mathcal{G}_{2} is given by

R𝒮SG,n(𝒢2)=r𝒢2:=(2(e1))1n(3n(1+e)+(3n(e+1))2+4(e1)(n(e+1)+(e1)))1n.R_{\mathcal{S}^{*}_{SG,n}}(\mathcal{G}_{2})=r_{\mathcal{G}_{2}}:=\frac{(2(e-1))^{\frac{1}{n}}}{(3n(1+e)+\sqrt{(3n(e+1))^{2}+4(e-1)(n(e+1)+(e-1))})^{\frac{1}{n}}}.

The estimate is sharp.

Proof.

Let f𝒢2.f\in\mathcal{G}_{2}. Now, let us define

p(z)=g(z)zandq(z)=f(z)g(z)p(z)=\frac{g(z)}{z}\quad\text{and}\quad q(z)=\frac{f(z)}{g(z)}

so that f(z)=zp(z)q(z),f(z)=zp(z)q(z), where p𝒫n(1/2)p\in\mathcal{P}_{n}(1/2) and q𝒫n.q\in\mathcal{P}_{n}. From (2.3) and Lemma 2.2, we have

|zf(z)f(z)1|2nrn1r2n+nrn1rn=nr2n+3nrn1r2non|z|=r.\left|\frac{zf^{\prime}(z)}{f(z)}-1\right|\leq\frac{2nr^{n}}{1-r^{2n}}+\frac{nr^{n}}{1-r^{n}}=\frac{nr^{2n}+3nr^{n}}{1-r^{2n}}\quad\text{on}\;|z|=r.

In view of Lemma 1.1, ff is a member of 𝒮SG\mathcal{S}^{*}_{SG} if (nr2n+3nrn)/(1r2n)(e1)/(e+1).(nr^{2n}+3nr^{n})/(1-r^{2n})\leq(e-1)/(e+1). Equivalently, (n(e+1)+e1)r2n+3n(e+1)rn(e1)0.(n(e+1)+e-1)r^{2n}+3n(e+1)r^{n}-(e-1)\leq 0. Solving this inequality, we obtain rr𝒢2.r\leq r_{\mathcal{G}_{2}}. The sharpness of the bound can be verified by the functions

f2(z)=z(1+zn)(1zn)2andg2(z)=z1zn.f_{2}(z)=\frac{z(1+z^{n})}{(1-z^{n})^{2}}\quad\text{and}\quad g_{2}(z)=\frac{z}{1-z^{n}}.

Clearly f2,g2𝒜n,f_{2},g_{2}\in\mathcal{A}_{n}, f2/g2𝒫nf_{2}/g_{2}\in\mathcal{P}_{n} and g2/z𝒫(1/2).g_{2}/z\in\mathcal{P}(1/2). Hence f2f_{2} is a member of 𝒢2\mathcal{G}_{2} and

zf2(z)f2(z)=1+3nzn+(n1)z2n1z2n.\frac{zf_{2}^{\prime}(z)}{f_{2}(z)}=\frac{1+3nz^{n}+(n-1)z^{2n}}{1-z^{2n}}.

The radius estimate is sharp since zf2(z)/f2(z)zf^{\prime}_{2}(z)/f_{2}(z) maps 𝔻\mathbb{D} onto a domain which touches the boundary of ΔSG\Delta_{SG} at z=r𝒢2.z=r_{\mathcal{G}_{2}}.

Theorem 2.12.

The 𝒮SG,n\mathcal{S}^{*}_{SG,n} radius of the class 𝒢3\mathcal{G}_{3} is given by

R𝒮SG,n(𝒢3)=r𝒢3:=(2(e1))1n(3n(1+e)+(3n(e+1))2+4(e1)(n(e+1)+(e1)))1n.R_{\mathcal{S}^{*}_{SG,n}}(\mathcal{G}_{3})=r_{\mathcal{G}_{3}}:=\frac{(2(e-1))^{\frac{1}{n}}}{(3n(1+e)+\sqrt{(3n(e+1))^{2}+4(e-1)(n(e+1)+(e-1))})^{\frac{1}{n}}}.

The estimate is sharp.

Proof.

Let f𝒢3.f\in\mathcal{G}_{3}. So, we may define

p(z)=g(z)zandq(z)=g(z)f(z).p(z)=\frac{g(z)}{z}\quad\text{and}\quad q(z)=\frac{g(z)}{f(z)}.

In view of the following implication

|f(z)g(z)1|<1gf𝒫n(12),\left|\dfrac{f(z)}{g(z)}-1\right|<1\iff\frac{g}{f}\in\mathcal{P}_{n}\left(\frac{1}{2}\right),

it is obvious that p𝒫np\in\mathcal{P}_{n} and q𝒫n(1/2).q\in\mathcal{P}_{n}(1/2). Note that f(z)=zp(z)/q(z)f(z)=zp(z)/q(z) and thus

zf(z)f(z)=1+p(z)p(z)zq(z)q(z).\frac{zf^{\prime}(z)}{f(z)}=1+\frac{p^{\prime}(z)}{p(z)}-\frac{zq^{\prime}(z)}{q(z)}.

By using Lemma 2.2, we obtain

|zf(z)f(z)1|nr2n+3nrn1r2non|z|=r.\left|\frac{zf^{\prime}(z)}{f(z)}-1\right|\leq\frac{nr^{2n}+3nr^{n}}{1-r^{2n}}\quad\text{on}\;|z|=r.

In order to prove f𝒮SG,f\in\mathcal{S}^{*}_{SG}, it suffices to show that (nr2n+3nrn)/(1r2n)(e1)/(e+1),(nr^{2n}+3nr^{n})/(1-r^{2n})\leq(e-1)/(e+1), in view of Lemma 1.1. This inequality reduces to (n(e+1)+e1)r2n+3n(e+1)rn(e1)0.(n(e+1)+e-1)r^{2n}+3n(e+1)r^{n}-(e-1)\leq 0. Solving this, we obtain rr𝒢3.r\leq r_{\mathcal{G}_{3}}. The sharpness of the bound can be verified by the functions

f3(z)=z(1+zn)21znandg3(z)=z(1+zn)1zn.f_{3}(z)=\frac{z(1+z^{n})^{2}}{1-z^{n}}\quad\text{and}\quad g_{3}(z)=\frac{z(1+z^{n})}{1-z^{n}}.

Note that

|f3(z)g3(z)1|=|z|n<1andg3(z)z=1+zn1zn𝒫n,\left|\frac{f_{3}(z)}{g_{3}(z)}-1\right|=|z|^{n}<1\quad\text{and}\quad\frac{g_{3}(z)}{z}=\frac{1+z^{n}}{1-z^{n}}\in\mathcal{P}_{n},

which implies that f3𝒢3.f_{3}\in\mathcal{G}_{3}. Moreover, it can be observed that the domain (zf3/f3)(𝔻)(zf^{\prime}_{3}/f_{3})(\mathbb{D}) touches the boundary of ΔSG\Delta_{SG} at r𝒢3.-r_{\mathcal{G}_{3}}.

Theorem 2.13.

The 𝒮SG,n\mathcal{S}^{*}_{SG,n} radius of the class 𝒢4\mathcal{G}_{4} is given by

R𝒮SG,n(𝒢4)=r𝒢4:=(2(e1))1n((n+1)(1+e)+(n+1)2(1+e)2+4(e1)((e+1)n2))1n.R_{\mathcal{S}^{*}_{SG,n}}(\mathcal{G}_{4})=r_{\mathcal{G}_{4}}:=\frac{(2(e-1))^{\frac{1}{n}}}{((n+1)(1+e)+\sqrt{(n+1)^{2}(1+e)^{2}+4(e-1)((e+1)n-2)})^{\frac{1}{n}}}.

The estimate is sharp.

Proof.

Let f𝒢4.f\in\mathcal{G}_{4}. Now, suppose q(z)=g(z)/f(z),q(z)=g(z)/f(z), where g𝒜ng\in\mathcal{A}_{n} is a convex function. As deduced in the last theorem, we know that q𝒫n(1/2).q\in\mathcal{P}_{n}(1/2). By using Lemma 2.2, we obtain

|zq(z)q(z)|nrn1rn,|z|=r.\left|\frac{zq^{\prime}(z)}{q(z)}\right|\leq\frac{nr^{n}}{1-r^{n}},\quad|z|=r. (2.4)

Also since gg is convex, we have zg/gzg^{\prime}/g is in 𝒫(1/2).\mathcal{P}(1/2). Hence

|zg(z)g(z)11r2n|rn1r2n\left|\frac{zg^{\prime}(z)}{g(z)}-\frac{1}{1-r^{2n}}\right|\leq\frac{r^{n}}{1-r^{2n}} (2.5)

by Lemma 2.2. Since f=g/q,f=g/q, we obtain

zf(z)f(z)=zg(z)g(z)zq(z)q(z).\frac{zf^{\prime}(z)}{f(z)}=\frac{zg^{\prime}(z)}{g(z)}-\frac{zq^{\prime}(z)}{q(z)}.

In view of (2.4) and (2.5), we have

|zf(z)f(z)11r2n|(n+1)rn+nr2n1r2n.\left|\frac{zf^{\prime}(z)}{f(z)}-\frac{1}{1-r^{2n}}\right|\leq\frac{(n+1)r^{n}+nr^{2n}}{1-r^{2n}}.

For each r(0,1),r\in(0,1), the quantity 1r2n1-r^{2n} is less than 1 and thus Lemma 1.1 implies that f𝒮SGf\in\mathcal{S}^{*}_{SG} provided

(n+1)rn+nr2n1r2n11r2n21+e.\frac{(n+1)r^{n}+nr^{2n}}{1-r^{2n}}\leq\frac{1}{1-r^{2n}}-\frac{2}{1+e}.

This inequality reduces to

((1+e)n2)r2n+(n+1)(1+e)rn+1e0.((1+e)n-2)r^{2n}+(n+1)(1+e)r^{n}+1-e\leq 0.

Solving this inequality, we obtain rr𝒢4.r\leq r_{\mathcal{G}_{4}}. The functions

f4(z)=z(1+zn)(1zn)1/nandg4(z)=z(1zn)1/nf_{4}(z)=\frac{z(1+z^{n})}{(1-z^{n})^{1/n}}\quad\text{and}\quad g_{4}(z)=\frac{z}{(1-z^{n})^{1/n}}

validate the sharpness of the bound. Note that |f4(z)/g4(z)1|=|z|n<1|f_{4}(z)/g_{4}(z)-1|=|z|^{n}<1 and g4𝒞n,g_{4}\in\mathcal{C}_{n}, which implies f4𝒢4.f_{4}\in\mathcal{G}_{4}. Moreover, it can be observed that zf4/f4zf^{\prime}_{4}/f_{4} maps 𝔻\mathbb{D} onto a domain that touches the boundary of ΔSG\Delta_{SG} at ±r𝒢4.\pm r_{\mathcal{G}_{4}}.

For 0α<1,0\leq\alpha<1, Reade [16] introduced the class of close-to-starlike functions of type α,\alpha, given by

𝒞𝒮(α):={f𝒜n:fg𝒫n,g𝒮(α)}.\mathcal{CS}^{*}(\alpha):=\left\{f\in\mathcal{A}_{n}:\frac{f}{g}\in\mathcal{P}_{n},\;g\in\mathcal{S}^{*}(\alpha)\right\}.
Theorem 2.14.

The sharp 𝒮SG,n\mathcal{S}^{*}_{SG,n} radius for the class 𝒞𝒮n(α)\mathcal{CS}^{*}_{n}(\alpha) is given by

R𝒮SG,n(𝒞𝒮n(α))=rcs\displaystyle R_{\mathcal{S}^{*}_{SG,n}}(\mathcal{CS}^{*}_{n}(\alpha))=r_{cs} :=\displaystyle:= (e1)/((1+e)(1+nα)\displaystyle(e-1)/((1+e)(1+n-\alpha)
+\displaystyle+ (e+1)2(1+nα)2+(e1)((12α)(e+1)+2e))\displaystyle\sqrt{(e+1)^{2}(1+n-\alpha)^{2}+(e-1)((1-2\alpha)(e+1)+2e)})
Proof.

Let f𝒞𝒮n(α).f\in\mathcal{CS}^{*}_{n}(\alpha). Then there is some function g𝒮n(α)g\in\mathcal{S}^{*}_{n}(\alpha) such that h=f/g𝒫n.h=f/g\in\mathcal{P}_{n}. Using Lemma 2.2, we get

|zh(z)h(z)|2nrn1r2n.\left|\frac{zh^{\prime}(z)}{h(z)}\right|\leq\frac{2nr^{n}}{1-r^{2n}}. (2.6)

Since g𝒮n(α)g\in\mathcal{S}^{*}_{n}(\alpha) and zg/g𝒫n(α),zg^{\prime}/g\in\mathcal{P}_{n}(\alpha), again by using Lemma 2.2, we obtain

|zg(z)g(z)1+(12α)r2n1r2n|2(1α)rn1r2n.\left|\frac{zg^{\prime}(z)}{g(z)}-\frac{1+(1-2\alpha)r^{2n}}{1-r^{2n}}\right|\leq\frac{2(1-\alpha)r^{n}}{1-r^{2n}}. (2.7)

Since f=hg,f=hg, we have

zf(z)f(z)=zg(z)g(z)+zh(z)h(z)\frac{zf^{\prime}(z)}{f(z)}=\frac{zg^{\prime}(z)}{g(z)}+\frac{zh^{\prime}(z)}{h(z)}

From (2.6) and (2.7), it follows that

|zf(z)f(z)1+(12α)r2n1r2n|2(1+nα)rn1r2n.\left|\frac{zf^{\prime}(z)}{f(z)}-\frac{1+(1-2\alpha)r^{2n}}{1-r^{2n}}\right|\leq\frac{2(1+n-\alpha)r^{n}}{1-r^{2n}}.

Note that the above inequality represents a disk with center aa and radius r0r_{0} given by

a:=1+(12α)r2n1r2nandr0:=2(1+nα)rn1r2n.a:=\frac{1+(1-2\alpha)r^{2n}}{1-r^{2n}}\quad\text{and}\quad r_{0}:=\frac{2(1+n-\alpha)r^{n}}{1-r^{2n}}.

Since a>1,a>1, we have from Lemma 1.1 that ff is a member of the class 𝒮SG\mathcal{S}^{*}_{SG} if r0(2e)/(e+1)ar_{0}\leq(2e)/(e+1)-a or equivalently,

((12α)(e+1)+2e)r2n+2(e+1)(1+nα)rn+1e0.((1-2\alpha)(e+1)+2e)r^{2n}+2(e+1)(1+n-\alpha)r^{n}+1-e\leq 0.

Solving this inequality, we obtain rrcs.r\leq r_{cs}. The sharpness of this result can be verified by the following functions.

f(z)=z(1+zn)(1z)(n+22α)/nandg(z)=z(1zn)(22α)/n.f(z)=\frac{z(1+z^{n})}{(1-z)^{(n+2-2\alpha)/n}}\quad\text{and}\quad g(z)=\frac{z}{(1-z^{n})^{(2-2\alpha)/n}}.

Note that f/g=(1+zn)/(1zn)𝒫nf/g=(1+z^{n})/(1-z^{n})\in\mathcal{P}_{n} and g𝒮n(α),g\in\mathcal{S}^{*}_{n}(\alpha), which ensures that f𝒞𝒮n(α).f\in\mathcal{CS}^{*}_{n}(\alpha).

For our next result, let us recall the class 𝒲n,\mathcal{W}_{n}, given as

𝒲n:={f𝒜n:f/z𝒫n},\mathcal{W}_{n}:=\{f\in\mathcal{A}_{n}:f/z\in\mathcal{P}_{n}\},

which was introduced by MacGregor [12].

Theorem 2.15.

The sharp 𝒮SG,n\mathcal{S}^{*}_{SG,n} radius for 𝒲n\mathcal{W}_{n} is

R𝒮SG,n(𝒲n):=rw=(e1n2(e+1)2+(e1)2+n(e+1))1/n.R_{\mathcal{S}^{*}_{SG,n}}(\mathcal{W}_{n}):=r_{w}=\left(\frac{e-1}{\sqrt{n^{2}(e+1)^{2}+(e-1)^{2}}+n(e+1)}\right)^{1/n}.
Proof.

Let f𝒲n,f\in\mathcal{W}_{n}, then there exists some h𝒫nh\in\mathcal{P}_{n} such that h(z)=f(z)/z.h(z)=f(z)/z. Using Lemma 2.2, we have

|zh(z)h(z)|2nrn1r2n.\left|\frac{zh^{\prime}(z)}{h(z)}\right|\leq\frac{2nr^{n}}{1-r^{2n}}.

This further implies that

|zf(z)f(z)1|=|zh(z)h(z)|2nrn1r2n.\left|\frac{zf^{\prime}(z)}{f(z)}-1\right|=\left|\frac{zh^{\prime}(z)}{h(z)}\right|\leq\frac{2nr^{n}}{1-r^{2n}}.

Now, by using 1.1 it follows that f𝒮SGf\in\mathcal{S}^{*}_{SG} provided 2nrn/(1r2n)(e1)/(e+1).2nr^{n}/(1-r^{2n})\leq(e-1)/(e+1). This inequality, after a few steps, reduces to the following

(e1)r2n+2n(e+1)rn(e1)0.(e-1)r^{2n}+2n(e+1)r^{n}-(e-1)\leq 0.

Solving this inequality gives us rrw.r\leq r_{w}. The sharpness of the result can be verified by the function fw(z)=z(1+zn)/(1zn).f_{w}(z)=z(1+z^{n})/(1-z^{n}). Clearly this function satisfy f(z)/z𝒫nf(z)/z\in\mathcal{P}_{n} and thus fw𝒲n.f_{w}\in\mathcal{W}_{n}. Also, at the points ±rw\pm r_{w} the function zfw/fwzf^{\prime}_{w}/f_{w} touches the boundary of ΔSG.\Delta_{SG}.

For β>1,\beta>1, the class (β)\mathcal{M}(\beta) introduced by Uralegaddi et al. [20] is given by

(β):={f𝒜n:Rezf(z)f(z)<β,z𝔻}.\mathcal{M}(\beta):=\left\{f\in\mathcal{A}_{n}:\operatorname{Re}\frac{zf^{\prime}(z)}{f(z)}<\beta,\;z\in\mathbb{D}\right\}.

In terms of subordination, the above class can be written as

(β):={f𝒜n:zf(z)f(z)1+(12β)zn1zn,z𝔻}.\mathcal{M}(\beta):=\left\{f\in\mathcal{A}_{n}:\frac{zf^{\prime}(z)}{f(z)}\prec\frac{1+(1-2\beta)z^{n}}{1-z^{n}},\;z\in\mathbb{D}\right\}.
Theorem 2.16.

The 𝒮SG,n\mathcal{S}^{*}_{SG,n} radius for the class (β)\mathcal{M}(\beta) is given by

𝒮SG(n(β))=(e1(e1)+(e+1)(β)1)1/n.\mathcal{S}^{*}_{SG}(\mathcal{M}_{n}(\beta))=\left(\frac{e-1}{(e-1)+(e+1)(\beta)-1}\right)^{1/n}.

The result is sharp for the function f(z)=z(1zn)(2(β1)/n).f(z)=z(1-z^{n})^{(2(\beta-1)/n)}.

The proof of the above theorem is omitted here as it is much similar to the proof of Theorem 2.14. Next we consider the class 𝒞(α)(0α<1),\mathcal{C}(\alpha)\;(0\leq\alpha<1), of convex functions of order α.\alpha. Note that this class is a generalization of the class 𝒞,\mathcal{C}, which can be obtained by setting α=0.\alpha=0.

Theorem 2.17.

Let f𝒮SG,f\in\mathcal{S}^{*}_{SG}, then f is convex of order α\alpha in |z|<r𝒞(α),|z|<r_{\mathcal{C}}(\alpha), where r𝒞(α)(0,1)r_{\mathcal{C}}(\alpha)\in(0,1) is the smallest positive root of

er(r+α)2+α=0.e^{r}(r+\alpha)-2+\alpha=0.
Proof.

Let f𝒮SG,f\in\mathcal{S}^{*}_{SG}, then zf(z)/f(z)2/(1+ez)zf^{\prime}(z)/f(z)\prec 2/(1+e^{-z}) and thus there exists a function ω\omega with ω(0)=0\omega(0)=0 and |ω(z)|<1|\omega(z)|<1 such that

zf(z)f(z)=21+eω(z).\frac{zf^{\prime}(z)}{f(z)}=\frac{2}{1+e^{-\omega(z)}}.

Differentiating the above equation logarithmically, we obtain

1+zf′′(z)f(z)=21+eω(z)+ω(z)eω(z)1+eω(z).1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}=\frac{2}{1+e^{-\omega(z)}}+\frac{\omega^{\prime}(z)e^{-\omega(z)}}{1+e^{-\omega(z)}}.

Note that

Re(1+zf′′(z)f(z))\displaystyle\operatorname{Re}\left(1+\dfrac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right) =\displaystyle= Re(21+eω(z)+ω(z)eω(z)1+eω(z))\displaystyle\operatorname{Re}\left(\dfrac{2}{1+e^{-\omega(z)}}+\dfrac{\omega^{\prime}(z)e^{-\omega(z)}}{1+e^{-\omega(z)}}\right)
\displaystyle\geq Re(21+eω(z))|ω(z)eω(z)1+eω(z)|\displaystyle\operatorname{Re}\left(\dfrac{2}{1+e^{-\omega(z)}}\right)-\left|\dfrac{\omega^{\prime}(z)e^{-\omega(z)}}{1+e^{-\omega(z)}}\right|
\displaystyle\geq 21+errer1+er,\displaystyle\dfrac{2}{1+e^{r}}-\dfrac{re^{r}}{1+e^{r}},

which is greater than α\alpha provided rr𝒞(α).r\leq r_{\mathcal{C}}(\alpha). The result is sharp for the function

f0(z)=zexp(0zet1t(et+1)𝑑t)=z+z22+z38+z41445z51152+,f_{0}(z)=z\exp{\left(\int_{0}^{z}\dfrac{e^{t}-1}{t(e^{t}+1)}dt\right)}=z+\dfrac{z^{2}}{2}+\dfrac{z^{3}}{8}+\dfrac{z^{4}}{144}-\dfrac{5z^{5}}{1152}+\cdots,

Corollary 2.18.

The sharp radius of convexity for the functions in 𝒮SG\mathcal{S}^{*}_{SG} is r0.852606.r\approx 0.852606.

References

  • [1] R. M. Ali, N. K. Jain and V. Ravichandran, On the radius constants for classes of analytic functions, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 1, 23–38.
  • [2] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (2019), no. 1, 213–232.
  • [3] P. Goel and S. Sivaprasad Kumar,Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 1, 957–991.
  • [4] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23 (1970/71), 159–177.
  • [5] R. Kargar, A. Ebadian and J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys. 9 (2019), no. 1, 143–154.
  • [6] M. G. Khan, B. Ahmad, G. Murugusundaramoorthy, R. Chinram, and W. K. Mashwani, Applications of modified sigmoid functions to a class of starlike functions, J. Funct. Spaces 2020, doi.org/10.1155/2020/8844814
  • [7] K. Khatter, V. Ravichandran and S. Sivaprasad Kumar, Starlike functions associated with exponential function and the lemniscate of Bernoulli, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 1, 233–253.
  • [8] S. S. Kumar and P. Goel, Starlike functions and higher order differential subordinations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 192, 23 pp.
  • [9] S. S. Kumar and G. Kamaljeet, A cardioid domain and starlike functions, Anal. Math. Phys. 11 (2021), no. 2, Paper No. 54, 34 pp.
  • [10] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2016), no. 2, 199–212.
  • [11] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
  • [12] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963), 514–520.
  • [13] W. K. Mashwani, B. Ahmad, N. Khan, M. G. Khan, S. Arjika, B. Khan and R. Chinram, Fourth Hankel determinant for a subclass of starlike functions based on modified sigmoid, J. Funct. Spaces 2021, doi.org/10.1155/2021/6116172
  • [14] R. Mendiratta, S. Nagpal and V. Ravichandran, A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math. 25 (2014), no. 9, 1450090, 17 pp.
  • [15] V. Ravichandran, F. Rønning and T. N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Variables Theory Appl. 33 (1997), no. 1-4, 265–280.
  • [16] M. O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3 (1955), 59–62.
  • [17] G. M. Shah, On the univalence of some analytic functions, Pacific J. Math. 43 (1972), 239–250.
  • [18] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), no. 5-6, 923–939.
  • [19] P. Sharma, R. K. Raina and J. Sokół, Certain Ma-Minda type classes of analytic functions associated with the crescent-shaped region, Anal. Math. Phys. 9 (2019), no. 4, 1887–1903.
  • [20] B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), no. 3, 225–230.
  • [21] L. A. Wani and A. Swaminathan, Starlike and convex functions associated with a nephroid domain, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 1, 79–104.