This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Real-Valued Vector Modified Korteweg–de Vries Equation: Solitons Featuring Multiple Poles

Zhenzhen Yang School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China Huan Liu E-mail: liuhuan@zzu.edu.cn School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China Jing Shen School of Mathematics and Statistics, Henan University of Technology, Zhengzhou, Henan 450001, People’s Republic of China
Abstract

We delve into the inverse scattering transform of the real-valued vector modified Korteweg–de Vries equation, emphasizing the challenges posed by NN pairs of higher-order poles in the transmission coefficient and the enhanced spectral symmetry stemming from real-valued constraints. Utilizing the generalized vector cross product, we formulate an (n+1)×(n+1)(n+1)\times(n+1) matrix-valued Riemann–Hilbert problem to tackle the complexities inherent in multi-component systems. We subsequently demonstrate the existence and uniqueness of solutions for a singularity-free equivalent problem, adeptly handling the intricacies of multiple poles. In reflectionless cases, we reconstruct multi-pole soliton solutions through a system of linear algebraic equations.

Keywords: real-valued vector modified Korteweg–de Vries equation; Riemann–Hilbert problem; multi-pole solitons

1 Introduction

Solitons, renowned for their stability in wave propagation, play a crucial role in nonlinear physics. They are vital in various fields such as fiber-optic communications[1, 2], plasma physics[3, 4, 5], Bose–Einstein condensation[6] and oceanography[7]. Solitons are solutions to nonlinear wave equations where the balance between dispersion and nonlinearity is achieved, a characteristic typical of integrable systems. To find soliton solutions, various methods are employed, including the inverse scattering transform (IST)[8, 9, 10], the Hirota bilinear method[11, 12], the Darboux transformation[13, 14, 15], and the Riemann–Hilbert (RH) method[16, 17].

In the context of IST theory, the poles of the transmission coefficient are essential for generating soliton solutions in integrable equations. The presence of NN pairs of simple conjugate poles directly leads to the formation of NN-soliton solutions. This principle extends to the study of reflectionless solutions, characterized by NN pairs of higher-order poles, known as multi-pole solutions. There has been extensive research on integrable equations associated with the Ablowitz–Kaup–Newell–Segur (AKNS) spectral problem, encompassing the nonlinear Schrödinger equation [18, 19, 20, 21, 22, 23, 24], the modified Korteweg–de Vries equation [25, 26], and the sine-Gordon equation [27]. Furthermore, studies have also delved into discrete integrable equations, such as the discrete sine-Gordon equation [28] and the Ablowitz–Ladik equation[29], as well as integrable equations associated with third and fourth order matrix spectral problems, including the Sasa–Satsuma equation[30] and the spin-1 Gross–Pitaevskii equation[31].

The complexity and dynamics of integrable systems are enhanced by multi-component coupling, which leads to interactions between components and results in phenomena not present in single-component systems. Investigating these couplings reveals new algebraic structures that are fundamental to the advancement of integrable system theory. This exploration not only deepens our understanding of solitons but also enriches the mathematical and physical frameworks that describe them. Consequently, many researchers have investigated multi-component integrable systems[32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45], which is both essential and significant. However, the literature on higher-order poles solutions to integrable equations associated with multi-component AKNS spectral problems remains scarce.

This paper focuses on the vector modified Korteweg–de Vries(vmKdV) equation[46]

𝐪t+𝐪xxx+3(𝐪x𝐪T𝐪+𝐪𝐪T𝐪x)=𝟎,\mathbf{q}_{t}+\mathbf{q}_{xxx}+3\left(\mathbf{q}_{x}\mathbf{q}^{\mathrm{T}}\mathbf{q}+\mathbf{q}\mathbf{q}^{\mathrm{T}}\mathbf{q}_{x}\right)=\mathbf{0}, (1.1)

where 𝐪=(q1,,qn)T\mathbf{q}=(\mathrm{q}_{1},\ldots,\mathrm{q}_{n})^{\mathrm{T}} is an nn dimensional real-valued vector function of independent variables xx and tt. Wang and Han [47] derived soliton solutions to the vmKdV equation (1.1) by dressing the RH problem associated with single-order zeros. Our work, however, aims to establish an inverse scattering analysis based on an (n+1)×(n+1)(n+1)\times(n+1) matrix RH problem that includes several residue conditions at NN pairs of multiple poles. We introduce a generalized cross product operator in n+1\mathbb{C}^{n+1}, thereby laying the groundwork for the subsequent analysis of the discrete spectrum. We also rigorously demonstrate the existence and uniqueness of the solution to this RH problem. To our knowledge, no previous studies have investigated multiple higher-order pole solutions of the vmKdV equation (1.1) within the framework of the RH problem associated with (n+1)×(n+1)(n+1)\times(n+1) matrix spectral problem.

The research process is as follows: In Section 2, we investigate the direct scattering problem, constructing a mapping from the initial data to the scattering data and analyzing the discrete spectrum related to the NN pairs of multiple zeros. In Section 3, we explore the inverse scattering problem, constructing a mapping from the scattering data to an (n+1)×(n+1)(n+1)\times(n+1) matrix RH problem in the absence of NN pairs of multiple poles. In the reflectionless case, we construct a concise linear algebraic system, allowing us to obtain multi-pole solutions solving this linear system, with more explicit solutions derived by appropriately selecting parameters.

Throughout this paper, we adhere to a set of defined notations to maintain clarity and consistency. The complex conjugate of a complex number λ\lambda is denoted by λ¯\bar{\lambda}. For a complex-valued matrix 𝐀\mathbf{A}, ad[𝐀]\mathrm{ad}[\mathbf{A}] signifies the adjugate of 𝐀\mathbf{A}, 𝐀¯\mathbf{\bar{A}} denotes the element-wise complex conjugate, 𝐀T\mathbf{A}^{\mathrm{T}} indicates the transpose, and 𝐀\mathbf{A}^{{\dagger}} represents the conjugate transpose. The commutator of two (n+1)×(n+1)(n+1)\times(n+1) matrices 𝐀\mathbf{A} and 𝐁\mathbf{B} is defined as [𝐀,𝐁]=𝐀𝐁𝐁𝐀[\mathbf{A},\mathbf{B}]=\mathbf{A}\mathbf{B}-\mathbf{B}\mathbf{A}. An (n+1)×(n+1)(n+1)\times(n+1) matrix 𝐀\mathbf{A} is represented in block form as follows:

𝐀=\displaystyle\mathbf{A}= (𝐀11𝐀12𝐀1(n+1)𝐀21𝐀22𝐀2(n+1)𝐀(n+1)1𝐀(n+1)2𝐀(n+1)(n+1))\displaystyle\begin{pmatrix}\mathbf{A}_{11}&\mathbf{A}_{12}&\cdots&\mathbf{A}_{1(n+1)}\\ \mathbf{A}_{21}&\mathbf{A}_{22}&\cdots&\mathbf{A}_{2(n+1)}\\ \vdots&\vdots&\cdots&\vdots\\ \mathbf{A}_{(n+1)1}&\mathbf{A}_{(n+1)2}&\cdots&\mathbf{A}_{(n+1)(n+1)}\end{pmatrix}
=\displaystyle= (𝐀1,𝐀2,,𝐀n+1)=(𝐀L,𝐀R)=(𝐀UL𝐀UR𝐀DL𝐀DR),\displaystyle(\mathbf{A}_{1},\mathbf{A}_{2},\ldots,\mathbf{A}_{n+1})=(\mathbf{A}_{\mathrm{L}},\mathbf{A}_{\mathrm{R}})=\begin{pmatrix}\mathbf{A}_{\mathrm{UL}}&\mathbf{A}_{\mathrm{UR}}\\ \mathbf{A}_{\mathrm{DL}}&\mathbf{A}_{\mathrm{DR}}\end{pmatrix},

where 𝐀ij\mathbf{A}_{ij} refers to the (i,j)(i,j)-entry of the matrix, 𝐀j\mathbf{A}_{j} represents the jj-th column, 𝐀L\mathbf{A}_{\mathrm{L}} refers to the first column, 𝐀R\mathbf{A}_{\mathrm{R}} represents the last nn columns, 𝐀UL\mathbf{A}_{\mathrm{UL}} is a scalar, and 𝐀DR\mathbf{A}_{\mathrm{DR}} is an n×nn\times n matrix. The identity matrix of appropriate size is denoted by 𝐈\mathbf{I}, and ±\mathbb{C^{\pm}} represents the complex plane divided into upper and lower half-planes. For a vector-valued function 𝐟(x,t;λ)\mathbf{f}(x,t;\lambda), we define 𝐟(h)(x,t;λ)=λh𝐟(x,t;λ)\mathbf{f}^{(h)}(x,t;\lambda)=\partial_{\lambda}^{h}\mathbf{f}(x,t;\lambda), 𝐟(h)(x,t;λ0)=λh𝐟(x,t;λ)|λ=λ0\mathbf{f}^{(h)}(x,t;\lambda_{0})=\partial_{\lambda}^{h}\mathbf{f}(x,t;\lambda)|_{\lambda=\lambda_{0}}. For simplicity, we occasionally omit the variables xx and tt.

2 Direct scattering problem

2.1 Jost solutions

The vmKdV equation (1.1) is associated with the Lax pair:

ψx=(iλσ+𝐐)ψ,\displaystyle\psi_{x}=(-\mathrm{i}\lambda\sigma+\mathbf{Q})\psi, (2.1a)
ψt=(4iλ3σ+𝐐~)ψ,\displaystyle\psi_{t}=(-4\mathrm{i}\lambda^{3}\sigma+\tilde{\mathbf{Q}})\psi, (2.1b)

where

σ=(1𝟎𝟎𝐈n×n),𝐐=(0𝐪T𝐪𝟎n×n),\displaystyle\sigma=\begin{pmatrix}1&\mathbf{0}\\ \mathbf{0}&-\mathbf{I}_{n\times n}\end{pmatrix},\quad\mathbf{Q}=\begin{pmatrix}0&-\mathbf{q}^{\mathrm{T}}\\ \mathbf{q}&\mathbf{0}_{n\times n}\end{pmatrix}, (2.2)
𝐐~=4λ2𝐐+2iλσ(𝐐x𝐐2)+2𝐐3𝐐xx+[𝐐x,𝐐],\displaystyle\tilde{\mathbf{Q}}=4\lambda^{2}\mathbf{Q}+2\mathrm{i}\lambda\sigma\left(\mathbf{Q}_{x}-\mathbf{Q}^{2}\right)+2\mathbf{Q}^{3}-\mathbf{Q}_{xx}+\left[\mathbf{Q}_{x},\mathbf{Q}\right],

and ψ(x,t;λ)\psi(x,t;\lambda) is an (n+1)×(n+1)(n+1)\times(n+1) matrix-valued function depending on x,tx,t, and the spectral parameter λ\lambda\in\mathbb{C}. The vmKdV equation (1.1) is equivalent to the zero-curvature condition:

𝐐t𝐐~x+[iλσ+𝐐,4iλ3σ+𝐐~]=𝟎.\mathbf{Q}_{t}-\tilde{\mathbf{Q}}_{x}+[-\mathrm{i}\lambda\sigma+\mathbf{Q},-4\mathrm{i}\lambda^{3}\sigma+\tilde{\mathbf{Q}}]=\mathbf{0}. (2.3)

We are in search of a solution 𝐪(x,t)\mathbf{q}(x,t) to Eq.(1.1) that decays rapidly to zero as xx becomes sufficiently large for any (x,t)×+(x,t)\in\mathbb{R}\times\mathbb{R}^{+}. Subsequently, we examine Eq.(2.1) and seek two fundamental solution matrices ψ±(x,t;λ)\psi_{\pm}(x,t;\lambda), which satisfy the boundary conditions for λ\lambda\in\mathbb{R}:

ψ±(x,t;λ)=eiθ(x,t;λ)σ+o(1),x±,\psi_{\pm}(x,t;\lambda)=\mathrm{e}^{-\mathrm{i}\theta(x,t;\lambda)\sigma}+o(1),\quad x\rightarrow\pm\infty, (2.4)

where θ(x,t;λ)=λx+4λ3t\theta(x,t;\lambda)=\lambda x+4\lambda^{3}t. In this context, ψ±(x,t;λ)\psi_{\pm}(x,t;\lambda) are known as the Jost solutions of Eq.(2.1).

Define

μ±(x,t;λ)=ψ±(x,t;λ)eiθ(x,t;λ)σ,\mu_{\pm}(x,t;\lambda)=\psi_{\pm}(x,t;\lambda)\mathrm{e}^{\mathrm{i}\theta(x,t;\lambda)\sigma}, (2.5)

then we have the following system of equations:

xμ±(x,t;λ)=[μ±(x,t;λ),iλσ]+𝐐(x,t)μ±(x,t;λ),\displaystyle\partial_{x}\mu_{\pm}(x,t;\lambda)=[\mu_{\pm}(x,t;\lambda),\mathrm{i}\lambda\sigma]+\mathbf{Q}(x,t)\mu_{\pm}(x,t;\lambda), (2.6)
tμ±(x,t;λ)=[μ±(x,t;λ),4iλ3σ]+𝐐~(x,t;λ)μ±(x,t;λ),\displaystyle\partial_{t}\mu_{\pm}(x,t;\lambda)=[\mu_{\pm}(x,t;\lambda),4\mathrm{i}\lambda^{3}\sigma]+\tilde{\mathbf{Q}}(x,t;\lambda)\mu_{\pm}(x,t;\lambda),
limx±μ±(x,t;λ)=𝐈.\displaystyle\lim_{x\rightarrow\pm\infty}\mu_{\pm}(x,t;\lambda)=\mathbf{I}.

The functions μ±(x,t;λ)\mu_{\pm}(x,t;\lambda) can be expressed in the form of Volterra integral equation:

μ±(x,t;λ)=𝐈+±xeiλ(ξx)σ^[𝐐(ξ,t)μ±(ξ,t;λ)]dξ,\mu_{\pm}(x,t;\lambda)=\mathbf{I}+\int_{\pm\infty}^{x}\mathrm{e}^{\mathrm{i}\lambda(\xi-x)\hat{\sigma}}[\mathbf{Q}(\xi,t)\mu_{\pm}(\xi,t;\lambda)]\,\mathrm{d}\xi, (2.7)

where σ^𝐗=[σ,𝐗]\hat{\sigma}\mathbf{X}=[\sigma,\mathbf{X}] and eσ^𝐗=eσ𝐗eσ\mathrm{e}^{\hat{\sigma}}\mathbf{X}=\mathrm{e}^{\sigma}\mathbf{X}\mathrm{e}^{-\sigma}.

Drawing on the theory of Volterra integral equations and the boundedness of the integral factor, we can establish the following theorem:

Theorem 2.1.

Suppose that 𝐪(,t)L1()\mathbf{q}(\cdot,t)\in\mathrm{L}^{1}(\mathbb{R}) for a fixed tt. Then, the modified eigenfunctions μ±(x,t;λ)\mu_{\pm}(x,t;\lambda) defined in Eq.(2.7) are well-defined for λ\lambda\in\mathbb{R}. Specifically, μL(x,t;λ)\mu_{\mathrm{-L}}(x,t;\lambda) and μ+R(x,t;λ)\mu_{\mathrm{+R}}(x,t;\lambda) can be analytically continued to the upper half-plane +\mathbb{C}^{+}, while μ+L(x,t;λ)\mu_{\mathrm{+L}}(x,t;\lambda) and μR(x,t;λ)\mu_{\mathrm{-R}}(x,t;\lambda) can be analytically continued to the lower half-plane \mathbb{C}^{-}. Within the interior of their respective domains of analyticity, μ±(x,t;λ)\mu_{\pm}(x,t;\lambda) remain bounded for xx\in\mathbb{R}. It is noteworthy that the functions ψ±(x,t;λ)\psi_{\pm}(x,t;\lambda) exhibit analogous properties of analyticity.

2.2 Symmetry and asymptotic behavior

The spectral problem (2.1) is characterized by a pair of symmetries that play a crucial role in shaping its solutions. These symmetries are encapsulated by the transformations λλ¯\lambda\rightarrow\bar{\lambda}, which corresponds to complex conjugation, and λλ\lambda\rightarrow-\lambda, representing reflection about the origin in the complex plane. Building on these symmetries, and particularly leveraging the skew-symmetry property of the matrix 𝐐\mathbf{Q}, which is expressed as 𝐐T=𝐐\mathbf{Q}^{\mathrm{T}}=-\mathbf{Q}, we derive significant implications for the fundamental matrix solutions ψ±(x,t;λ)\psi_{\pm}(x,t;\lambda) of the Lax pair (2.1).

Proposition 2.2.

The fundamental matrix solutions ψ±(x,t;λ)\psi_{\pm}(x,t;\lambda) of the Lax pair (2.1) display the symmetries:

ψ±1(x,t;λ)=ψ±(x,t;λ¯)=ψ±T(x,t;λ),λ.\psi_{\pm}^{-1}(x,t;\lambda)=\psi_{\pm}^{{\dagger}}(x,t;\bar{\lambda})=\psi_{\pm}^{\mathrm{T}}(x,t;-\lambda),\quad\lambda\in\mathbb{R}. (2.8)

Furthermore,

μ±1(x,t;λ)=μ±(x,t;λ¯)=μ±T(x,t;λ),λ.\mu_{\pm}^{-1}(x,t;\lambda)=\mu_{\pm}^{{\dagger}}(x,t;\bar{\lambda})=\mu_{\pm}^{\mathrm{T}}(x,t;-\lambda),\quad\lambda\in\mathbb{R}. (2.9)

Given that 𝐐\mathbf{Q} is traceless, Abel’s Theorem implies that xdet[μ±(x,t;λ)]=0\partial_{x}\mathrm{det}[\mu_{\pm}(x,t;\lambda)]=0. By combining Eq.(2.5) with Eq.(2.6), we deduce that

det[μ±(x,t;λ)]=1,det[ψ±(x,t;λ)]=e(n1)iθ(x,t;λ),λ.\mathrm{det}[\mu_{\pm}(x,t;\lambda)]=1,\quad\mathrm{det}[\psi_{\pm}(x,t;\lambda)]=\mathrm{e}^{(n-1)\mathrm{i}\theta(x,t;\lambda)},\quad\lambda\in\mathbb{R}. (2.10)

Since both ψ+(x,t;λ)\psi_{+}(x,t;\lambda) and ψ(x,t;λ)\psi_{-}(x,t;\lambda) are fundamental solutions of the Lax pair (2.1), an n×nn\times n scattering matrix 𝐒(λ)\mathbf{S}(\lambda) exists, which is independent of xx and tt, and satisfies the relationship:

ψ(x,t;λ)=ψ+(x,t;λ)𝐒(λ),λ.\psi_{-}(x,t;\lambda)=\psi_{+}(x,t;\lambda)\mathbf{S}(\lambda),\quad\lambda\in\mathbb{R}. (2.11)

Alternatively,

μ(x,t;λ)=μ+(x,t;λ)eiθ(x,t;λ)σ^𝐒(λ),λ.\mu_{-}(x,t;\lambda)=\mu_{+}(x,t;\lambda)\mathrm{e}^{-\mathrm{i}\theta(x,t;\lambda)\hat{\sigma}}\mathbf{S}(\lambda),\quad\lambda\in\mathbb{R}. (2.12)

In light of Eq.(2.8) and Eq.(2.11), we find that 𝐒(λ)\mathbf{S}(\lambda) satisfies the following properties:

det[𝐒(λ)]=1,𝐒1(λ)=𝐒(λ¯)=𝐒T(λ),λ.\mathrm{det}[\mathbf{S}(\lambda)]=1,\quad\mathbf{S}^{-1}(\lambda)=\mathbf{S}^{{\dagger}}(\bar{\lambda})=\mathbf{S}^{\mathrm{T}}(-\lambda),\quad\lambda\in\mathbb{R}. (2.13)

Consequently, the relationships between the components of 𝐒(λ)\mathbf{S}(\lambda) are derived as:

𝐒UL(λ¯)=det[𝐒DR(λ)],𝐒DL(λ¯)=𝐒UR(λ)ad[𝐒DR(λ)].\mathbf{S}_{\mathrm{UL}}^{{\dagger}}(\bar{\lambda})=\mathrm{det}[\mathbf{S}_{\mathrm{DR}}(\lambda)],\quad\mathbf{S}_{\mathrm{DL}}^{{\dagger}}(\bar{\lambda})=-\mathbf{S}_{\mathrm{UR}}(\lambda)\mathrm{ad}[\mathbf{S}_{\mathrm{DR}}(\lambda)]. (2.14)

Based on the above relationships, 𝐒(λ)\mathbf{S}(\lambda) can be expressed in the form:

𝐒(λ)=(det[𝐚(λ¯)]𝐛(λ)ad[𝐚(λ¯)]𝐛(λ¯)𝐚(λ)),λ.\mathbf{S}(\lambda)=\begin{pmatrix}\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]&\mathbf{b}(\lambda)\\ -\mathrm{ad}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]\mathbf{b}^{{\dagger}}(\bar{\lambda})&\mathbf{a}(\lambda)\\ \end{pmatrix},\quad\lambda\in\mathbb{R}. (2.15)

In addition,

𝐚(λ¯)=𝐚T(λ),𝐛(λ¯)=𝐛T(λ),λ.\mathbf{a}^{{\dagger}}(\bar{\lambda})=\mathbf{a}^{\mathrm{T}}(-\lambda),\quad\mathbf{b}^{{\dagger}}(\bar{\lambda})=\mathbf{b}^{\mathrm{T}}(-\lambda),\quad\quad\lambda\in\mathbb{R}. (2.16)

According to Eqs.(2.7) and (2.12), the 𝐚(λ)\mathbf{a}(\lambda) and 𝐛(λ)\mathbf{b}(\lambda) in the scattering matrix 𝐒(λ)\mathbf{S}(\lambda) can be expressed in integral form as:

𝐚(λ)=𝐈++𝐪(x,0)μUR(x,0;λ)dx,\displaystyle\mathbf{a}(\lambda)=\mathbf{I}+\int^{+\infty}_{-\infty}\mathbf{q}(x,0)\mu_{\mathrm{-UR}}(x,0;\lambda)\mathrm{d}x, (2.17)
𝐛(λ)=+e2iλx𝐪T(x,0)μDR(x,0;λ)dx.\displaystyle\mathbf{b}(\lambda)=\int^{+\infty}_{-\infty}-\mathrm{e}^{2\mathrm{i}\lambda x}\mathbf{q}^{\mathrm{T}}(x,0)\mu_{\mathrm{-DR}}(x,0;\lambda)\mathrm{d}x.

Given that 𝐪(x,0)L1()\mathbf{q}(x,0)\in\mathrm{L}^{1}(\mathbb{R}), 𝐚(λ)\mathbf{a}(\lambda) and 𝐛(λ)\mathbf{b}(\lambda) are well-defined for λ\lambda\in\mathbb{R}, and 𝐚(λ)\mathbf{a}(\lambda) can be analytically continued onto \mathbb{C}^{-}. Furthermore, based on Eqs.(2.5), (2.9), (2.12) and (2.15), it can be concluded that 𝐚(λ)\mathbf{a}(\lambda) and 𝐛(λ)\mathbf{b}(\lambda) can be expressed in terms of μ±(x,t;λ)\mu_{\pm}(x,t;\lambda) or ψ±(x,t;λ)\psi_{\pm}(x,t;\lambda). Indeed,

𝐚(λ)=(μ+R)(λ¯)μR(λ)=(ψ+R)(λ¯)ψR(λ),\displaystyle\mathbf{a}(\lambda)=(\mu_{\mathrm{+R}})^{{\dagger}}(\bar{\lambda})\mu_{\mathrm{-R}}(\lambda)=(\psi_{\mathrm{+R}})^{{\dagger}}(\bar{\lambda})\psi_{\mathrm{-R}}(\lambda), λ,\displaystyle\lambda\in\mathbb{C^{-}}\cup\mathbb{R}, (2.18a)
det[𝐚(λ)]=det[μ+L(λ),μR(λ)]=e(n1)iθ(λ)det[ψ+L(λ),ψR(λ)],\displaystyle\mathrm{det}[\mathbf{a}(\lambda)]=\mathrm{det}[\mu_{\mathrm{+L}}(\lambda),\mu_{\mathrm{-R}}(\lambda)]=\mathrm{e}^{-(n-1)\mathrm{i}\theta(\lambda)}\mathrm{det}[\psi_{\mathrm{+L}}(\lambda),\psi_{\mathrm{-R}}(\lambda)], λ,\displaystyle\lambda\in\mathbb{C^{-}}\cup\mathbb{R}, (2.18b)
𝐚(λ¯)=(μR)(λ¯)μ+R(λ)=(ψR)(λ¯)ψ+R(λ),\displaystyle\mathbf{a}^{{\dagger}}(\bar{\lambda})=(\mu_{\mathrm{-R}})^{{\dagger}}(\bar{\lambda})\mu_{\mathrm{+R}}(\lambda)=(\psi_{\mathrm{-R}})^{{\dagger}}(\bar{\lambda})\psi_{\mathrm{+R}}(\lambda), λ+,\displaystyle\lambda\in\mathbb{C^{+}}\cup\mathbb{R}, (2.18c)
det[𝐚(λ¯)]=det[μL(λ),μ+R(λ)]=e(n1)iθ(λ)det[ψL(λ),ψ+R(λ)],\displaystyle\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]=\mathrm{det}[\mu_{\mathrm{-L}}(\lambda),\mu_{\mathrm{+R}}(\lambda)]=\mathrm{e}^{-(n-1)\mathrm{i}\theta(\lambda)}\mathrm{det}[\psi_{\mathrm{-L}}(\lambda),\psi_{\mathrm{+R}}(\lambda)], λ+,\displaystyle\lambda\in\mathbb{C^{+}}\cup\mathbb{R}, (2.18d)
𝐛(λ)=e2iθ(λ)(μ+L)(λ¯)μR=(ψ+L)(λ¯)ψR(λ),\displaystyle\mathbf{b}(\lambda)=\mathrm{e}^{2\mathrm{i}\theta(\lambda)}(\mu_{\mathrm{+L}})^{{\dagger}}(\bar{\lambda})\mu_{\mathrm{-R}}=(\psi_{\mathrm{+L}})^{{\dagger}}(\bar{\lambda})\psi_{\mathrm{-R}}(\lambda), λ,\displaystyle\lambda\in\mathbb{R}, (2.18e)
ad[𝐚(λ¯)]𝐛(λ¯)=e2iθ(λ)(μ+R)(λ¯)μL(λ)=(ψ+R)(λ¯)ψL(λ),\displaystyle-\mathrm{ad}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]\mathbf{b}^{{\dagger}}(\bar{\lambda})=\mathrm{e}^{-2\mathrm{i}\theta(\lambda)}(\mu_{\mathrm{+R}})^{{\dagger}}(\bar{\lambda})\mu_{\mathrm{-L}}(\lambda)=(\psi_{\mathrm{+R}})^{{\dagger}}(\bar{\lambda})\psi_{\mathrm{-L}}(\lambda), λ.\displaystyle\lambda\in\mathbb{R}. (2.18f)

By substituting the Wentzel–Kramers–Brillouin expansion of μ±(x,t;λ)\mu_{\pm}(x,t;\lambda) into Eq.(2.6) and systematically collecting the terms of order λj\lambda^{j}, we arrive at the following asymptotic results:

Theorem 2.3.

As λ\lambda\rightarrow\infty within the relevant analytic region of μ±(x,t;λ)\mu_{\pm}(x,t;\lambda),

(μ+L(x,t;λ),μR(x,t;λ))=𝐈+O(λ1),\displaystyle(\mu_{\mathrm{+L}}(x,t;\lambda),\mu_{\mathrm{-R}}(x,t;\lambda))=\mathbf{I}+\mathrm{O}(\lambda^{-1}),\quad λ,\displaystyle\lambda\in\mathbb{C^{-}}\rightarrow\infty, (2.19)
(μL(x,t;λ),μ+R(x,t;λ))=𝐈+O(λ1),\displaystyle(\mu_{\mathrm{-L}}(x,t;\lambda),\mu_{\mathrm{+R}}(x,t;\lambda))=\mathbf{I}+\mathrm{O}(\lambda^{-1}),\quad λ+.\displaystyle\lambda\in\mathbb{C^{+}}\rightarrow\infty.

Consequently,

𝐚(λ)=𝐈+O(λ1),\displaystyle\mathbf{a}(\lambda)=\mathbf{I}+\mathrm{O}(\lambda^{-1}),\quad λ,\displaystyle\lambda\rightarrow\infty, (2.20)
𝐛(λ)=O(λ1),\displaystyle\mathbf{b}(\lambda)=\mathrm{O}(\lambda^{-1}),\quad λ.\displaystyle\lambda\rightarrow\infty.

We define the reflection coefficient as

γ(λ)=𝐛(λ)𝐚1(λ),λ.\mathbf{\gamma}(\lambda)=\mathbf{b}(\lambda)\mathbf{a}^{-1}(\lambda),\quad\lambda\in\mathbb{R}. (2.21)

The transmission coefficient is given by 1det[𝐚(λ)]\frac{1}{\mathrm{det}[\mathbf{a}(\lambda)]}, and it follows that γ(λ¯)=γT(λ)\mathbf{\gamma}^{{\dagger}}(\bar{\lambda})=\mathbf{\gamma}^{\mathrm{T}}(-\lambda). As λ\lambda\rightarrow\infty, we find that γ(λ)=O(λ1)\mathbf{\gamma}(\lambda)=\mathrm{O}(\lambda^{-1}).

To further elucidate the symmetries inherent in μ±(x,t;λ)\mu_{\pm}(x,t;\lambda), we now introduce the definitions of two pivotal operators. These operators are essential for deciphering the algebraic frameworks that underpin our forthcoming analyses.

Definition 2.4.

(Generalized Cross Product) For all 𝐮1,,𝐮nn+1\mathbf{u}_{1},\ldots,\mathbf{u}_{n}\in\mathbb{C}^{n+1}, define

𝒢[𝐮1,,𝐮n]=j=1n+1det(𝐮1,,𝐮n,𝐞j)𝐞j,\mathcal{G}[\mathbf{u}_{1},\ldots,\mathbf{u}_{n}]=\sum_{j=1}^{n+1}\mathrm{det}(\mathbf{u}_{1},\ldots,\mathbf{u}_{n},\mathbf{e}_{j})\mathbf{e}_{j}, (2.22)

where 𝐞1,,𝐞n+1{\mathbf{e}_{1},\ldots,\mathbf{e}_{n+1}} are the standard basis vectors of n+1\mathbb{R}^{n+1}.

Definition 2.5.

For all 𝐮1,,𝐮n+1n+1\mathbf{u}_{1},\ldots,\mathbf{u}_{n+1}\in\mathbb{C}^{n+1}, define

𝒢[𝐮1,,𝐮n+1]=l=1n+1j=1n+1det(𝐮𝐞j𝐞lT0)𝐞j𝐞lT,\mathscr{G}[\mathbf{u}_{1},\ldots,\mathbf{u}_{n+1}]=-\sum_{l=1}^{n+1}\sum_{j=1}^{n+1}\mathrm{det}\left(\begin{array}[]{cc}\mathbf{u}&\mathbf{e}_{j}\\ \mathbf{e}_{l}^{\mathrm{T}}&0\end{array}\right)\mathbf{e}_{j}\mathbf{e}_{l}^{\mathrm{T}}, (2.23)

where 𝐮=(𝐮1,,𝐮n+1)\mathbf{u}=(\mathbf{u}_{1},\ldots,\mathbf{u}_{n+1}). Thus, for l=1,,n+1l=1,\ldots,n+1, the ll-th column of 𝒢[𝐮1,,𝐮n+1]\mathscr{G}[\mathbf{u}_{1},\ldots,\mathbf{u}_{n+1}] is given by

𝒢l[𝐮1,,𝐮n+1]=𝒢[𝐮1,,𝐮n+1]𝐞l=j=1n+1det(𝐮𝐞j𝐞lT0)𝐞j.\mathscr{G}_{l}[\mathbf{u}_{1},\ldots,\mathbf{u}_{n+1}]=\mathscr{G}[\mathbf{u}_{1},\ldots,\mathbf{u}_{n+1}]\mathbf{e}_{l}=-\sum_{j=1}^{n+1}\mathrm{det}\left(\begin{array}[]{cc}\mathbf{u}&\mathbf{e}_{j}\\ \mathbf{e}_{l}^{\mathrm{T}}&0\end{array}\right)\mathbf{e}_{j}. (2.24)

By direct calculations, it is straightforward to verify the following relationship among the adjugate matrix ad[]\mathrm{ad}[\cdot], the generalized cross product 𝒢[]\mathcal{G}[\cdot] and the operator 𝒢[]\mathscr{G}[\cdot]:

ad[𝐮]=((1)n𝒢T[𝐮2,,𝐮n+1](1)n1𝒢T[𝐮1,𝐮3,,𝐮n+1](1)n+1j𝒢T[𝐮1,,𝐮j1,𝐮j+1,,𝐮n+1]𝒢T[𝐮1,,𝐮n])=𝒢T[𝐮1,,𝐮n+1].\mathrm{ad}[\mathbf{u}]=\left(\begin{array}[]{cccc}(-1)^{n}\mathcal{G}^{\mathrm{T}}[\mathbf{u}_{2},\ldots,\mathbf{u}_{n+1}]\\ (-1)^{n-1}\mathcal{G}^{\mathrm{T}}[\mathbf{u}_{1},\mathbf{u}_{3},\ldots,\mathbf{u}_{n+1}]\\ \quad\vdots\\ (-1)^{n+1-j}\mathcal{G}^{\mathrm{T}}[\mathbf{u}_{1},\ldots,\mathbf{u}_{j-1},\mathbf{u}_{j+1},\ldots,\mathbf{u}_{n+1}]\\ \quad\vdots\\ \mathcal{G}^{\mathrm{T}}[\mathbf{u}_{1},\ldots,\mathbf{u}_{n}]\end{array}\right)=\mathscr{G}^{\mathrm{T}}[\mathbf{u}_{1},\ldots,\mathbf{u}_{n+1}]. (2.25)
Lemma 2.6.

For all 𝐮1,,𝐮n,𝐯1,,𝐯nn+1\mathbf{u}_{1},\ldots,\mathbf{u}_{n},\mathbf{v}_{1},\ldots,\mathbf{v}_{n}\in\mathbb{C}^{n+1},

(𝒢1,,𝒢n)[𝐮1,,𝐮n,𝒢[𝐯1,,𝐯n]]=𝐯ad[𝐮(1)T𝐯],(\mathscr{G}_{1},\ldots,\mathscr{G}_{n})[\mathbf{u}_{1},\ldots,\mathbf{u}_{n},\mathcal{G}[\mathbf{v}_{1},\ldots,\mathbf{v}_{n}]]=\mathbf{v}\mathrm{ad}[\mathbf{u}_{(1)}^{\mathrm{T}}\mathbf{v}], (2.26)

where 𝐮(1)=(𝐮1,,𝐮n)\mathbf{u}_{(1)}=(\mathbf{u}_{1},\ldots,\mathbf{u}_{n}) and 𝐯=(𝐯1,,𝐯n)\mathbf{v}=(\mathbf{v}_{1},\ldots,\mathbf{v}_{n}).(see Lemma 3.3 in Ref.[48])

According to Eq.(2.25), it is evident that

ad[μ±(λ)]=\displaystyle\mathrm{ad}[\mu_{\pm}(\lambda)]= ((1)n𝒢T[μ±2(λ),,μ±(n+1)(λ)](1)n1𝒢T[μ±1(λ),μ±3(λ),,μ±(n+1)(λ)](1)n+1j𝒢T[μ±1(λ),,μ±(j1)(λ),μ±(j+1)(λ),,μ±(n+1)(λ)]𝒢T[μ±1(λ),,μ±n(λ)])\displaystyle\left(\begin{array}[]{cccc}(-1)^{n}\mathcal{G}^{\mathrm{T}}[\mu_{\pm 2}(\lambda),\ldots,\mu_{\pm(n+1)}(\lambda)]\\ (-1)^{n-1}\mathcal{G}^{\mathrm{T}}[\mu_{\pm 1}(\lambda),\mu_{\pm 3}(\lambda),\ldots,\mu_{\pm(n+1)}(\lambda)]\\ \quad\vdots\\ (-1)^{n+1-j}\mathcal{G}^{\mathrm{T}}[\mu_{\pm 1}(\lambda),\ldots,\mu_{\pm(j-1)}(\lambda),\mu_{\pm(j+1)}(\lambda),\ldots,\mu_{\pm(n+1)}(\lambda)]\\ \quad\vdots\\ \mathcal{G}^{\mathrm{T}}[\mu_{\pm 1}(\lambda),\ldots,\mu_{\pm n}(\lambda)]\end{array}\right) (2.27)
=\displaystyle= 𝒢T[μ±1(λ),,μ±(n+1)(λ)].\displaystyle\mathscr{G}^{\mathrm{T}}[\mu_{\pm 1}(\lambda),\ldots,\mu_{\pm(n+1)}(\lambda)].

When λ\lambda\in\mathbb{R}, det[μ±(x,t;λ)]=1\det[\mu_{\pm}(x,t;\lambda)]=1. Based on Eq.(2.9), the following expression can be derived:

[ad[μ±(x,t;λ)]]T=μ¯±(x,t;λ¯).[\mathrm{ad}[\mu_{\pm}(x,t;\lambda)]]^{\mathrm{T}}=\bar{\mu}_{\pm}(x,t;\bar{\lambda}). (2.28)

Since [[ad[μ+(x,t;λ)]]T]L[[\mathrm{ad}[\mu_{+}(x,t;\lambda)]]^{\mathrm{T}}]_{\mathrm{L}} and μ¯+L(x,t;λ¯)\bar{\mu}_{\mathrm{+L}}(x,t;\bar{\lambda}) are analytic in +\mathbb{C}^{+}, the equality [[ad[μ+(x,t;λ)]]T]L=μ¯+L(x,t;λ¯)[[\mathrm{ad}[\mu_{+}(x,t;\lambda)]]^{\mathrm{T}}]_{\mathrm{L}}=\bar{\mu}_{\mathrm{+L}}(x,t;\bar{\lambda}) can be analytically continued to the domain +\mathbb{C}^{+}. Similarly, since [[ad[μ(x,t;λ)]]T]L[[\mathrm{ad}[\mu_{-}(x,t;\lambda)]]^{\mathrm{T}}]_{\mathrm{L}} and μ¯L(x,t;λ¯)\bar{\mu}_{\mathrm{-L}}(x,t;\bar{\lambda}) are analytic in \mathbb{C}^{-}, the equality [[ad[μ(x,t;λ)]]T]L=μ¯L(x,t;λ¯)[[\mathrm{ad}[\mu_{-}(x,t;\lambda)]]^{\mathrm{T}}]_{\mathrm{L}}=\bar{\mu}_{\mathrm{-L}}(x,t;\bar{\lambda}) can be analytically continued to the domain \mathbb{C}^{-}.

Therefore, based on Eqs.(2.24), (2.27) and (2.28), we can deduce that

μ¯+L(x,t;λ¯)=[[ad[μ+(x,t;λ)]]T]L\displaystyle\bar{\mu}_{\mathrm{+L}}(x,t;\bar{\lambda})=[[\mathrm{ad}[\mu_{+}(x,t;\lambda)]]^{\mathrm{T}}]_{\mathrm{L}} (2.29)
=\displaystyle= [𝒢[μ+1(x,t;λ),,μ+(n+1)(x,t;λ)]]L\displaystyle[\mathscr{G}[\mu_{+1}(x,t;\lambda),\ldots,\mu_{+(n+1)}(x,t;\lambda)]]_{\mathrm{L}}
=\displaystyle= 𝒢1[μ+1(x,t;λ),,μ+(n+1)(x,t;λ)]\displaystyle\mathscr{G}_{1}[\mu_{+1}(x,t;\lambda),\ldots,\mu_{+(n+1)}(x,t;\lambda)]
=\displaystyle= (1)nj=1n+1det(μ+R(x,t;λ),𝐞j)𝐞j.\displaystyle(-1)^{n}\sum_{j=1}^{n+1}\mathrm{det}(\mu_{\mathrm{+R}}(x,t;\lambda),\mathbf{e}_{j})\mathbf{e}_{j}.

By combining Eq.(2.18) and Lemma (2.6) with Eq.(2.27), we obtain

μR(x,t;λ)ad[𝐚(λ)]\displaystyle\mu_{\mathrm{-R}}(x,t;\lambda)\mathrm{ad}[\mathbf{a}(\lambda)] (2.30)
=\displaystyle= μR(x,t;λ)ad[(μ+R)(x,t;λ¯)μR(x,t;λ)]\displaystyle\mu_{\mathrm{-R}}(x,t;\lambda)\mathrm{ad}[(\mu_{\mathrm{+R}})^{{\dagger}}(x,t;\bar{\lambda})\mu_{\mathrm{-R}}(x,t;\lambda)]
=\displaystyle= (𝒢1,,𝒢n)[μ¯+R(x,t;λ¯),𝒢[μR(x,t;λ)]]\displaystyle(\mathscr{G}_{1},\ldots,\mathscr{G}_{n})[\bar{\mu}_{\mathrm{+R}}(x,t;\bar{\lambda}),\mathcal{G}[\mu_{\mathrm{-R}}(x,t;\lambda)]]
=\displaystyle= (𝒢1,,𝒢n)[μ¯+R(x,t;λ¯),(1)n[[ad[μ(x,t;λ)]]T]L]\displaystyle(\mathscr{G}_{1},\ldots,\mathscr{G}_{n})[\bar{\mu}_{\mathrm{+R}}(x,t;\bar{\lambda}),(-1)^{n}[[\mathrm{ad}[\mu_{-}(x,t;\lambda)]]^{\mathrm{T}}]_{\mathrm{L}}]
=\displaystyle= (𝒢1,,𝒢n)[μ¯+R(x,t;λ¯),(1)nμ¯L(x,t;λ¯)].\displaystyle(\mathscr{G}_{1},\ldots,\mathscr{G}_{n})[\bar{\mu}_{\mathrm{+R}}(x,t;\bar{\lambda}),(-1)^{n}\bar{\mu}_{\mathrm{-L}}(x,t;\bar{\lambda})].

2.3 Discrete spectrum

Proposition 2.7.

Suppose that λ0\lambda_{0} is a zero of det[𝐚(λ¯)]\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})] with multiplicity m+1m+1. There exist m+1m+1 complex-valued constant vectors 𝐁0,𝐁1,,𝐁m\mathbf{B}_{0},\mathbf{B}_{1},\ldots,\mathbf{B}_{m}, where for each s{0,,m}s\in\left\{0,\ldots,m\right\}, 𝐁s=(Bs1,,Bsn)T\mathbf{B}_{s}=(\mathrm{B}_{s1},\ldots,\mathrm{B}_{sn})^{\mathrm{T}} and 𝐁0𝟎\mathbf{B}_{0}\neq\mathbf{0}. For each h{0,,m}h\in\left\{0,\ldots,m\right\}, the following expression holds:

ψL(h)(x,t;λ0)h!=j+k=hj,k0ψ+R(k)(x,t;λ0)𝐁jj!k!.\frac{\psi_{\mathrm{-L}}^{(h)}(x,t;\lambda_{0})}{h!}=\sum_{\begin{subarray}{c}j+k=h\\ j,k\geqslant 0\end{subarray}}\frac{\psi_{\mathrm{+R}}^{(k)}(x,t;\lambda_{0})\mathbf{B}_{j}}{j!k!}. (2.31)
Proof.

When h=0h=0, based on Eq.(2.18), it follows that the vectors ψ1(x,t;λ0)\psi_{-1}(x,t;\lambda_{0}), ψ+2(x,t;λ0)\psi_{+2}(x,t;\lambda_{0}), \ldots, ψ+(n+1)(x,t;λ0)\psi_{+(n+1)}(x,t;\lambda_{0}) are linearly dependent. Furthermore, since the rank of ψ+R(x,t;λ)\psi_{\mathrm{+R}}(x,t;\lambda) is nn, there must exist a non-zero complex-valued constant vector 𝐁0\mathbf{B}_{0} such that ψL(x,t;λ0)=ψ+R(x,t;λ0)𝐁0\psi_{\mathrm{-L}}(x,t;\lambda_{0})=\psi_{\mathrm{+R}}(x,t;\lambda_{0})\mathbf{B}_{0}.

For any positive integer jmj\leqslant m, supposed that this proposition holds for all h<jh<j, meaning that there exist complex-valued constant vctors 𝐁0,𝐁1,,𝐁j1\mathbf{B}_{0},\mathbf{B}_{1},\ldots,\mathbf{B}_{j-1} such that for each h{0,,j1}h\in\left\{0,\ldots,j-1\right\}, the following relation holds:

ψL(h)(x,t;λ0)h!=r+s=hr,s0ψ+R(s)(x,t;λ0)𝐁rr!s!.\frac{\psi_{\mathrm{-L}}^{(h)}(x,t;\lambda_{0})}{h!}=\sum_{\begin{subarray}{c}r+s=h\\ r,s\geqslant 0\end{subarray}}\frac{\psi_{\mathrm{+R}}^{(s)}(x,t;\lambda_{0})\mathbf{B}_{r}}{r!s!}. (2.32)

By combining Eq.(2.18) with dj(det[𝐚(λ¯)])dλj|λ=λ0=0\frac{\mathrm{d}^{j}(\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})])}{\mathrm{d}\lambda^{j}}\big{|}_{\lambda=\lambda_{0}}=0, we can see that

s+l1++ln=js,l1,,ln0j!s!l1!ln!det(ψ1(s)(λ0),ψ+2(l1)(λ0),,ψ+(n+1)(ln)(λ0))=0.\sum_{\begin{subarray}{c}s+l_{1}+\cdots+l_{n}=j\\ s,l_{1},\ldots,l_{n}\geqslant 0\end{subarray}}\frac{j!}{s!l_{1}!\ldots l_{n}!}\mathrm{det}\left(\psi_{-1}^{(s)}(\lambda_{0}),\psi_{+2}^{(l_{1})}(\lambda_{0}),\ldots,\psi_{+(n+1)}^{(l_{n})}(\lambda_{0})\right)=0. (2.33)

Substituting Eq.(2.32) into Eq.(2.33) yields

0=\displaystyle 0= det(ψ1(j)(λ0),ψ+2(λ0),,ψ+(n+1)(λ0))\displaystyle\mathrm{det}\left(\psi_{-1}^{(j)}(\lambda_{0}),\psi_{+2}(\lambda_{0}),\ldots,\psi_{+(n+1)}(\lambda_{0})\right)
+s+r+l1++ln=js+rjs,l1,,ln0j!s!r!l1!ln!det(ψ+R(s)(λ0)𝐁r,ψ+2(l1)(λ0),,ψ+(n+1)(ln)(λ0))\displaystyle+\sum_{\begin{subarray}{c}s+r+l_{1}+\cdots+l_{n}=j\\ s+r\neq j\\ s,l_{1},\ldots,l_{n}\geqslant 0\end{subarray}}\frac{j!}{s!r!l_{1}!\ldots l_{n}!}\mathrm{det}\left(\psi_{+\mathrm{R}}^{(s)}(\lambda_{0})\mathbf{B}_{r},\psi_{+2}^{(l_{1})}(\lambda_{0}),\ldots,\psi_{+(n+1)}^{(l_{n})}(\lambda_{0})\right)
=\displaystyle= det(ψL(j)(λ0),ψ+R(λ0))\displaystyle\mathrm{det}\left(\psi_{\mathrm{-L}}^{(j)}(\lambda_{0}),\psi_{\mathrm{+R}}(\lambda_{0})\right)
+(s+r+l1++ln=js+rjl1+rjln+rjs,l1,,ln0+k=1ns+r+l1++ln=js+rjlk+r=js,l1,,ln0k,m=1ns+r+l1++ln=js+rjlk+r=jlm+r=js,l1,,ln0+k,m,p=1ns+r+l1++ln=js+rjlk+r=jlm+r=jlp+r=js,l1,,ln0\displaystyle+\Bigg{(}\sum_{\begin{subarray}{c}s+r+l_{1}+\cdots+l_{n}=j\\ s+r\neq j\\ l_{1}+r\neq j\\ \vdots\\ l_{n}+r\neq j\\ s,l_{1},\ldots,l_{n}\geqslant 0\end{subarray}}+\sum_{k=1}^{n}\sum_{\begin{subarray}{c}s+r+l_{1}+\cdots+l_{n}=j\\ s+r\neq j\\ l_{k}+r=j\\ s,l_{1},\ldots,l_{n}\geqslant 0\end{subarray}}-\sum_{k,m=1}^{n}\sum_{\begin{subarray}{c}s+r+l_{1}+\cdots+l_{n}=j\\ s+r\neq j\\ l_{k}+r=j\\ l_{m}+r=j\\ s,l_{1},\ldots,l_{n}\geqslant 0\end{subarray}}+\sum_{k,m,p=1}^{n}\sum_{\begin{subarray}{c}s+r+l_{1}+\cdots+l_{n}=j\\ s+r\neq j\\ l_{k}+r=j\\ l_{m}+r=j\\ l_{p}+r=j\\ s,l_{1},\ldots,l_{n}\geqslant 0\end{subarray}}-\cdots
+(1)n+1s+r+l1++ln=js+rjl1+r=jln+r=js,l1,,ln0)j!s!r!l1!ln!det(ψ+R(s)(λ0)𝐁r,ψ+2(l1)(λ0),,ψ+(n+1)(ln)(λ0))\displaystyle+(-1)^{n+1}\sum_{\begin{subarray}{c}s+r+l_{1}+\cdots+l_{n}=j\\ s+r\neq j\\ l_{1}+r=j\\ \vdots\\ l_{n}+r=j\\ s,l_{1},\ldots,l_{n}\geqslant 0\end{subarray}}\Bigg{)}\frac{j!}{s!r!l_{1}!\ldots l_{n}!}\mathrm{det}\left(\psi_{+\mathrm{R}}^{(s)}(\lambda_{0})\mathbf{B}_{r},\psi_{+2}^{(l_{1})}(\lambda_{0}),\ldots,\psi_{+(n+1)}^{(l_{n})}(\lambda_{0})\right)
=\displaystyle= det(ψL(j)(λ0),ψ+R(λ0))\displaystyle\mathrm{det}\left(\psi_{\mathrm{-L}}^{(j)}(\lambda_{0}),\psi_{\mathrm{+R}}(\lambda_{0})\right)
+k=1nlk+r=jlk>0,r0j!lk!r!det(ψ+R(λ0)𝐁r,ψ+2(λ0),,ψ+(k+1)(lk)(λ0),,ψ+(n+1)(λ0))\displaystyle+\sum_{k=1}^{n}\sum_{\begin{subarray}{c}l_{k}+r=j\\ l_{k}>0,r\geqslant 0\end{subarray}}\frac{j!}{l_{k}!r!}\mathrm{det}\left(\psi_{\mathrm{+R}}(\lambda_{0})\mathbf{B}_{r},\psi_{+2}(\lambda_{0}),\ldots,\psi_{+(k+1)}^{(l_{k})}(\lambda_{0}),\ldots,\psi_{+(n+1)}(\lambda_{0})\right)
=\displaystyle= det(ψL(j)(λ0),ψ+R(λ0))+k=1nlk+r=jlk>0,r0j!lk!r!\displaystyle\mathrm{det}\left(\psi_{\mathrm{-L}}^{(j)}(\lambda_{0}),\psi_{\mathrm{+R}}(\lambda_{0})\right)+\sum_{k=1}^{n}\sum_{\begin{subarray}{c}l_{k}+r=j\\ l_{k}>0,r\geqslant 0\end{subarray}}\frac{j!}{l_{k}!r!}
det(ψ+2(λ0)Br1++ψ+(n+1)(λ0)Brn,ψ+2(λ0),,ψ+(k+1)(lk)(λ0),,ψ+(n+1)(λ0))\displaystyle\mathrm{det}\left(\psi_{+2}(\lambda_{0})\mathrm{B}_{r1}+\cdots+\psi_{+(n+1)}(\lambda_{0})\mathrm{B}_{rn},\psi_{+2}(\lambda_{0}),\ldots,\psi_{+(k+1)}^{(l_{k})}(\lambda_{0}),\ldots,\psi_{+(n+1)}(\lambda_{0})\right)
=\displaystyle= det(ψL(j)(λ0),ψ+R(λ0))\displaystyle\mathrm{det}\left(\psi_{\mathrm{-L}}^{(j)}(\lambda_{0}),\psi_{\mathrm{+R}}(\lambda_{0})\right)
+k=1nlk+r=jlk>0,r0j!lk!r!det(ψ+(k+1)(λ0),ψ+2(λ0),,ψ+(k+1)(lk)(λ0),,ψ+(n+1)(λ0))Brk\displaystyle+\sum_{k=1}^{n}\sum_{\begin{subarray}{c}l_{k}+r=j\\ l_{k}>0,r\geqslant 0\end{subarray}}\frac{j!}{l_{k}!r!}\mathrm{det}\left(\psi_{+(k+1)}(\lambda_{0}),\psi_{+2}(\lambda_{0}),\ldots,\psi_{+(k+1)}^{(l_{k})}(\lambda_{0}),\ldots,\psi_{+(n+1)}(\lambda_{0})\right)\mathrm{B}_{rk}
=\displaystyle= det(ψL(j)(λ0),ψ+R(λ0))l+r=jl>0,r0j!l!r!det(ψ+R(l)(λ0)𝐁r,ψ+R(λ0))\displaystyle\mathrm{det}\left(\psi_{\mathrm{-L}}^{(j)}(\lambda_{0}),\psi_{\mathrm{+R}}(\lambda_{0})\right)-\sum_{\begin{subarray}{c}l+r=j\\ l>0,r\geqslant 0\end{subarray}}\frac{j!}{l!r!}\mathrm{det}\left(\psi_{\mathrm{+R}}^{(l)}(\lambda_{0})\mathbf{B}_{r},\psi_{\mathrm{+R}}(\lambda_{0})\right)
=\displaystyle= det(ψL(j)(λ0)l+r=jl>0,r0j!l!r!ψ+R(l)(λ0)𝐁r,ψ+R(λ0)).\displaystyle\mathrm{det}\bigg{(}\psi_{\mathrm{-L}}^{(j)}(\lambda_{0})-\sum_{\begin{subarray}{c}l+r=j\\ l>0,r\geqslant 0\end{subarray}}\frac{j!}{l!r!}\psi_{\mathrm{+R}}^{(l)}(\lambda_{0})\mathbf{B}_{r},\psi_{\mathrm{+R}}(\lambda_{0})\bigg{)}. (2.34)

Since the rank of ψ+R(λ0)\psi_{\mathrm{+R}}(\lambda_{0}) is nn, there must exist a non-zero complex-valued constant vector 𝐁j\mathbf{B}_{j} such that

ψL(j)(λ0)l+r=jl>0,r0j!l!r!ψ+R(l)(λ0)𝐁r=ψ+R(λ0)𝐁j.\psi_{\mathrm{-L}}^{(j)}(\lambda_{0})-\sum_{\begin{subarray}{c}l+r=j\\ l>0,r\geqslant 0\end{subarray}}\frac{j!}{l!r!}\psi_{\mathrm{+R}}^{(l)}(\lambda_{0})\mathbf{B}_{r}=\psi_{\mathrm{+R}}(\lambda_{0})\mathbf{B}_{j}. (2.35)

Thus,

ψL(j)(λ0)=l+r=jl,r0j!l!r!ψ+R(l)(λ0)𝐁r,\psi_{\mathrm{-L}}^{(j)}(\lambda_{0})=\sum_{\begin{subarray}{c}l+r=j\\ l,r\geqslant 0\end{subarray}}\frac{j!}{l!r!}\psi_{\mathrm{+R}}^{(l)}(\lambda_{0})\mathbf{B}_{r}, (2.36)

which shows this proposition holds for h=jh=j. Consequently, the proposition is proven. ∎

Corollary 2.8.

Supposed that λ0\lambda_{0} is a zero of det[𝐚(λ¯)]\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})] with multiplicity m+1m+1. Consequently, for each h{0,,m}h\in\left\{0,\ldots,m\right\}, the following relationship holds:

μL(h)(x,t;λ0)h!=j+k+l=hj,k,l0Θ(k)(x,t;λ0)μ+R(l)(x,t;λ0)𝐁jj!k!l!,\frac{\mu_{\mathrm{-L}}^{(h)}(x,t;\lambda_{0})}{h!}=\sum_{\begin{subarray}{c}j+k+l=h\\ j,k,l\geqslant 0\end{subarray}}\frac{\Theta^{(k)}(x,t;\lambda_{0})\mu_{\mathrm{+R}}^{(l)}(x,t;\lambda_{0})\mathbf{B}_{j}}{j!k!l!}, (2.37)

where Θ(x,t;λ)=e2iθ(x,t;λ)\Theta(x,t;\lambda)=\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)} and 𝐁0,𝐁1,,𝐁m\mathbf{B}_{0},\mathbf{B}_{1},\ldots,\mathbf{B}_{m} are given in Proposition 2.7. Moreover,

[μR(x,t;λ)ad[𝐚(λ)]](h)λ=λ¯0h!=j+k+l=hj,k,l0Θ(k)(x,t;λ0)¯μ+L(l)(x,t;λ¯0)𝐁jj!k!l!.\frac{[\mu_{\mathrm{-R}}(x,t;\lambda)\mathrm{ad}[\mathbf{a}(\lambda)]]^{(h)}\mid_{\lambda=\bar{\lambda}_{0}}}{h!}=-\sum_{\begin{subarray}{c}j+k+l=h\\ j,k,l\geqslant 0\end{subarray}}\frac{\overline{\Theta^{(k)}(x,t;\lambda_{0})}\mu_{\mathrm{+L}}^{(l)}(x,t;\bar{\lambda}_{0})\mathbf{B}_{j}^{{\dagger}}}{j!k!l!}. (2.38)
Proof.

By combining Eq.(2.5) with Proposition 2.7, we derive

μL(h)(λ0)h!=\displaystyle\frac{\mu_{\mathrm{-L}}^{(h)}(\lambda_{0})}{h!}= (Θ12ψL)(h)(λ0)h!=r+s=hr,s0(Θ12)(r)(λ0)ψL(s)(λ0)r!s!\displaystyle\frac{(\Theta^{\frac{1}{2}}\psi_{\mathrm{-L}})^{(h)}(\lambda_{0})}{h!}=\sum_{\begin{subarray}{c}r+s=h\\ r,s\geqslant 0\end{subarray}}\frac{(\Theta^{\frac{1}{2}})^{(r)}(\lambda_{0})\psi_{\mathrm{-L}}^{(s)}(\lambda_{0})}{r!s!} (2.39)
=\displaystyle= r+s=hr,s0j+m=sj,m0(Θ12)(r)(λ0)ψ+R(m)(λ0)𝐁jr!j!m!\displaystyle\sum_{\begin{subarray}{c}r+s=h\\ r,s\geqslant 0\end{subarray}}\sum_{\begin{subarray}{c}j+m=s\\ j,m\geqslant 0\end{subarray}}\frac{(\Theta^{\frac{1}{2}})^{(r)}(\lambda_{0})\psi_{\mathrm{+R}}^{(m)}(\lambda_{0})\mathbf{B}_{j}}{r!j!m!}
=\displaystyle= r+j+m=hr,j,m0(Θ12)(r)(λ0)(Θ12μ+R)(m)(λ0)𝐁jr!j!m!\displaystyle\sum_{\begin{subarray}{c}r+j+m=h\\ r,j,m\geqslant 0\end{subarray}}\frac{(\Theta^{\frac{1}{2}})^{(r)}(\lambda_{0})(\Theta^{\frac{1}{2}}\mu_{\mathrm{+R}})^{(m)}(\lambda_{0})\mathbf{B}_{j}}{r!j!m!}
=\displaystyle= r+j+s+l=hr,j,s,l0(Θ12)(r)(λ0)(Θ12)(s)(λ0)μ+R(l)(λ0)𝐁jr!j!s!l!\displaystyle\sum_{\begin{subarray}{c}r+j+s+l=h\\ r,j,s,l\geqslant 0\end{subarray}}\frac{(\Theta^{\frac{1}{2}})^{(r)}(\lambda_{0})(\Theta^{\frac{1}{2}})^{(s)}(\lambda_{0})\mu_{\mathrm{+R}}^{(l)}(\lambda_{0})\mathbf{B}_{j}}{r!j!s!l!}
=\displaystyle= j+k+l=hj,k,l0r+s=kr,s0(Θ12)r(λ0)(Θ12)(s)(λ0)r!s!μ+R(l)(λ0)𝐁jj!l!\displaystyle\sum_{\begin{subarray}{c}j+k+l=h\\ j,k,l\geqslant 0\end{subarray}}\sum_{\begin{subarray}{c}r+s=k\\ r,s\geqslant 0\end{subarray}}\frac{(\Theta^{\frac{1}{2}})^{r}(\lambda_{0})(\Theta^{\frac{1}{2}})^{(s)}(\lambda_{0})}{r!s!}\frac{\mu_{\mathrm{+R}}^{(l)}(\lambda_{0})\mathbf{B}_{j}}{j!l!}
=\displaystyle= j+k+l=hj,k,l0Θ(k)(λ0)μ+R(l)(λ0)𝐁jj!k!l!.\displaystyle\sum_{\begin{subarray}{c}j+k+l=h\\ j,k,l\geqslant 0\end{subarray}}\frac{\Theta^{(k)}(\lambda_{0})\mu_{\mathrm{+R}}^{(l)}(\lambda_{0})\mathbf{B}_{j}}{j!k!l!}.

It follows from Eqs.(2.24), (LABEL:eq:sym2), (LABEL:eq:sym3) and (2.37) that

[μR(λ)ad[𝐚(λ)]](h)|λ=λ¯0h!\displaystyle\frac{[\mu_{\mathrm{-R}}(\lambda)\mathrm{ad}[\mathbf{a}(\lambda)]]^{(h)}|_{\lambda=\bar{\lambda}_{0}}}{h!}
=\displaystyle= [(𝒢1,,𝒢n)[μ¯+R(λ¯),(1)nμ¯L(λ¯)]](h)|λ=λ¯0h!\displaystyle\frac{[(\mathscr{G}_{1},\ldots,\mathscr{G}_{n})[\bar{\mu}_{\mathrm{+R}}(\bar{\lambda}),(-1)^{n}\bar{\mu}_{\mathrm{-L}}(\bar{\lambda})]]^{(h)}|_{\lambda=\bar{\lambda}_{0}}}{h!}
=\displaystyle= s=1n[𝒢s[μ¯+R(λ¯),(1)nμ¯L(λ¯)]](h)|λ=λ¯0h!𝐞sT\displaystyle\sum_{s=1}^{n}\frac{[\mathscr{G}_{s}[\bar{\mu}_{\mathrm{+R}}(\bar{\lambda}),(-1)^{n}\bar{\mu}_{\mathrm{-L}}(\bar{\lambda})]]^{(h)}|_{\lambda=\bar{\lambda}_{0}}}{h!}\mathbf{e}_{s}^{\mathrm{T}}
=\displaystyle= (1)ns=1n[𝒢s[μ+R(λ),μL(λ)]](h)|λ=λ0¯h!𝐞sT\displaystyle(-1)^{n}\sum_{s=1}^{n}\frac{\overline{[\mathscr{G}_{s}[\mu_{\mathrm{+R}}(\lambda),\mu_{\mathrm{-L}}(\lambda)]]^{(h)}|_{\lambda=\lambda_{0}}}}{h!}\mathbf{e}_{s}^{\mathrm{T}}
=\displaystyle= (1)ns=1nr1++rn1+k=hr1,,rn1,k0𝒢s[μ+2(r1)(λ0),,μ+(s+1)(λ0),,μ+(n+1)(rn1)(λ0),μL(k)(λ0)]¯r1!rn1!k!𝐞sT\displaystyle(-1)^{n}\sum_{s=1}^{n}\sum_{\begin{subarray}{c}r_{1}+\cdots+r_{n-1}+k=h\\ r_{1},\ldots,r_{n-1},k\geqslant 0\end{subarray}}\frac{\overline{\mathscr{G}_{s}[\mu_{+2}^{(r_{1})}(\lambda_{0}),\ldots,\mu_{+(s+1)}(\lambda_{0}),\ldots,\mu_{+(n+1)}^{(r_{n-1})}(\lambda_{0}),\mu_{\mathrm{-L}}^{(k)}(\lambda_{0})]}}{r_{1}!\cdots r_{n-1}!k!}\mathbf{e}_{s}^{\mathrm{T}}
=\displaystyle= (1)ns=1nr1++rn1+k+l+j=hr1,,rn1,k,l,j0𝒢s[μ+2(r1)(λ0),,μ+(s+1)(λ0),,μ+(n+1)(rn1)(λ0),Θ(k)(λ0)μ+R(l)(λ0)𝐁j]¯r1!rn1!k!l!j!𝐞sT\displaystyle(-1)^{n}\sum_{s=1}^{n}\sum_{\begin{subarray}{c}r_{1}+\cdots+r_{n-1}+k+l+j=h\\ r_{1},\ldots,r_{n-1},k,l,j\geqslant 0\end{subarray}}\frac{\overline{\mathscr{G}_{s}[\mu_{+2}^{(r_{1})}(\lambda_{0}),\ldots,\mu_{+(s+1)}(\lambda_{0}),\ldots,\mu_{+(n+1)}^{(r_{n-1})}(\lambda_{0}),\Theta^{(k)}(\lambda_{0})\mu_{\mathrm{+R}}^{(l)}(\lambda_{0})\mathbf{B}_{j}]}}{r_{1}!\cdots r_{n-1}!k!l!j!}\mathbf{e}_{s}^{\mathrm{T}}
=\displaystyle= (1)ns=1nr+k+j=hr,k,j0r1++rn1+l=rr1,,rn1,l0Θ(k)(λ0)¯𝒢s[μ+2(r1)(λ0),,μ+(s+1)(λ0),,μ+(n+1)(rn1)(λ0),μ+(s+1)(l)(λ0)]¯B¯jsr1!rn1!k!l!j!𝐞sT\displaystyle(-1)^{n}\sum_{s=1}^{n}\sum_{\begin{subarray}{c}r+k+j=h\\ r,k,j\geqslant 0\end{subarray}}\sum_{\begin{subarray}{c}r_{1}+\cdots+r_{n-1}+l=r\\ r_{1},\ldots,r_{n-1},l\geqslant 0\end{subarray}}\overline{\Theta^{(k)}(\lambda_{0})}\frac{\overline{\mathscr{G}_{s}[\mu_{+2}^{(r_{1})}(\lambda_{0}),\ldots,\mu_{+(s+1)}(\lambda_{0}),\ldots,\mu_{+(n+1)}^{(r_{n-1})}(\lambda_{0}),\mu_{+(s+1)}^{(l)}(\lambda_{0})]}\bar{\mathrm{B}}_{js}}{r_{1}!\cdots r_{n-1}!k!l!j!}\mathbf{e}_{s}^{\mathrm{T}}
=\displaystyle= (1)ns=1nr+k+j=hr,k,j0Θ(k)(λ0)¯[𝒢s[μ+R(λ),μ+(s+1)(λ)]](r)|λ=λ0¯B¯jsr!j!k!𝐞sT\displaystyle(-1)^{n}\sum_{s=1}^{n}\sum_{\begin{subarray}{c}r+k+j=h\\ r,k,j\geqslant 0\end{subarray}}\overline{\Theta^{(k)}(\lambda_{0})}\frac{\overline{[\mathscr{G}_{s}[\mu_{\mathrm{+R}}(\lambda),\mu_{+(s+1)}(\lambda)]]^{(r)}|_{\lambda=\lambda_{0}}}\bar{\mathrm{B}}_{js}}{r!j!k!}\mathbf{e}_{s}^{\mathrm{T}}
=\displaystyle= (1)ns=1nr+k+j=hr,k,j0Θ(k)(λ0)¯(1)ns[𝒢s[μ+2(λ),,μ+(s+1)(λ),μ+(s+1)(λ),,μ+(n+1)(λ)]](r)|λ=λ0¯B¯jsr!j!k!𝐞sT\displaystyle(-1)^{n}\sum_{s=1}^{n}\sum_{\begin{subarray}{c}r+k+j=h\\ r,k,j\geqslant 0\end{subarray}}\overline{\Theta^{(k)}(\lambda_{0})}\frac{(-1)^{n-s}\overline{[\mathscr{G}_{s}[\mu_{\mathrm{+2}}(\lambda),\ldots,\mu_{+(s+1)}(\lambda),\mu_{+(s+1)}(\lambda),\ldots,\mu_{+(n+1)}(\lambda)]]^{(r)}|_{\lambda=\lambda_{0}}}\bar{\mathrm{B}}_{js}}{r!j!k!}\mathbf{e}_{s}^{\mathrm{T}}
=\displaystyle= (1)ns=1nr+k+j=hr,k,j0Θ(k)(λ0)¯(1)ns(1)n+s+1l=1n+1[det[μ+R(λ),𝐞l]](r)|λ=λ0¯𝐞lr!j!k!B¯js𝐞sT\displaystyle(-1)^{n}\sum_{s=1}^{n}\sum_{\begin{subarray}{c}r+k+j=h\\ r,k,j\geqslant 0\end{subarray}}\overline{\Theta^{(k)}(\lambda_{0})}\frac{(-1)^{n-s}(-1)^{n+s+1}\sum\limits_{l=1}^{n+1}\overline{[\mathrm{det}[\mu_{\mathrm{+R}}(\lambda),\mathbf{e}_{l}]]^{(r)}|_{\lambda=\lambda_{0}}}\mathbf{e}_{l}}{r!j!k!}\bar{\mathrm{B}}_{js}\mathbf{e}_{s}^{\mathrm{T}}
=\displaystyle= (1)n+1r+j+k=hr,j,k,0Θ(k)(λ0)¯l=1n+1[det[μ+R(λ),𝐞l]](r)|λ=λ0¯r!j!k!𝐞l[B¯j1,,B¯jn]\displaystyle(-1)^{n+1}\sum_{\begin{subarray}{c}r+j+k=h\\ r,j,k,\geqslant 0\end{subarray}}\overline{\Theta^{(k)}(\lambda_{0})}\sum_{l=1}^{n+1}\frac{\overline{[\mathrm{det}[\mu_{\mathrm{+R}}(\lambda),\mathbf{e}_{l}]]^{(r)}|_{\lambda=\lambda_{0}}}}{r!j!k!}\mathbf{e}_{l}[\bar{\mathrm{B}}_{j1},\ldots,\bar{\mathrm{B}}_{jn}]
=\displaystyle= r+j+k=hr,j,k,0Θ(k)(λ0)¯μ¯+L(r)(λ¯)|λ=λ0¯r!j!k!𝐁j\displaystyle-\sum_{\begin{subarray}{c}r+j+k=h\\ r,j,k,\geqslant 0\end{subarray}}\overline{\Theta^{(k)}(\lambda_{0})}\frac{\overline{\bar{\mu}_{\mathrm{+L}}^{(r)}(\bar{\lambda})|_{\lambda=\lambda_{0}}}}{r!j!k!}\mathbf{B}_{j}^{{\dagger}}
=\displaystyle= j+k+l=hj,k,l0Θ(k)(λ0)¯μ+L(l)(λ¯0)𝐁jj!k!l!.\displaystyle-\sum_{\begin{subarray}{c}j+k+l=h\\ j,k,l\geqslant 0\end{subarray}}\frac{\overline{\Theta^{(k)}(\lambda_{0})}\mu_{\mathrm{+L}}^{(l)}(\bar{\lambda}_{0})\mathbf{B}_{j}^{{\dagger}}}{j!k!l!}. (2.40)

Suppose that λ0\lambda_{0} is a zero of det[𝐚(λ¯)]\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})] with multiplicity m+1m+1, 1det[𝐚(λ¯)]\frac{1}{\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]} can be expressed as a Laurent series expansion around λ=λ0\lambda=\lambda_{0},

1det[𝐚(λ¯)]=am1(λλ0)m+1+am(λλ0)m++a1λλ0+O(1),λλ0,\frac{1}{\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]}=\frac{a_{-m-1}}{(\lambda-\lambda_{0})^{m+1}}+\frac{a_{-m}}{(\lambda-\lambda_{0})^{m}}+\cdot\cdot\cdot+\frac{a_{-1}}{\lambda-\lambda_{0}}+O(1),\quad\lambda\rightarrow\lambda_{0},

where am10a_{-m-1}\neq 0 and ah1=a~(mh)(λ0)(mh)!a_{-h-1}=\frac{\tilde{a}^{(m-h)}(\lambda_{0})}{(m-h)!}, with a~(λ)=(λλ0)m+1det[𝐚(λ¯)]\tilde{a}(\lambda)=\frac{(\lambda-\lambda_{0})^{m+1}}{\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]} for h=0,,mh=0,\ldots,m. By combining with Corollary 2.8, we can derive the following for each h{0,,m}h\in\left\{0,\ldots,m\right\}:

Resλ=λ0(λλ0)hμL(x,t;λ)det[𝐚(λ¯)]=j+s+k+l=mhj,s,k,l0a~(j)(λ0)Θ(l)(x,t;λ0)μ+R(s)(x,t;λ0)𝐁kj!s!k!l!,\displaystyle\underset{\lambda=\lambda_{0}}{\mathrm{Res}}\frac{(\lambda-\lambda_{0})^{h}\mu_{\mathrm{-L}}(x,t;\lambda)}{\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]}=\sum_{\begin{subarray}{c}j+s+k+l=m-h\\ j,s,k,l\geqslant 0\end{subarray}}\frac{\tilde{a}^{(j)}(\lambda_{0})\Theta^{(l)}(x,t;\lambda_{0})\mu_{\mathrm{+R}}^{(s)}(x,t;\lambda_{0})\mathbf{B}_{k}}{j!s!k!l!}, (2.41)
Resλ=λ¯0(λλ¯0)hμR(x,t;λ)𝐚1(λ)=j+s+k+l=mhj,s,k,l0a~(j)(λ0)Θ(l)(x,t;λ0)¯μ+L(s)(x,t;λ¯0)𝐁kj!s!k!l!.\displaystyle\underset{\lambda=\bar{\lambda}_{0}}{\mathrm{Res}}(\lambda-\bar{\lambda}_{0})^{h}\mu_{\mathrm{-R}}(x,t;\lambda)\mathbf{a}^{-1}(\lambda)=-\sum_{\begin{subarray}{c}j+s+k+l=m-h\\ j,s,k,l\geqslant 0\end{subarray}}\frac{\overline{\tilde{a}^{(j)}(\lambda_{0})\Theta^{(l)}(x,t;\lambda_{0})}\mu_{\mathrm{+L}}^{(s)}(x,t;\bar{\lambda}_{0})\mathbf{B}_{k}^{{\dagger}}}{j!s!k!l!}. (2.42)

We introduce a vector-valued polynomial 𝐟0(λ)\mathbf{f}_{0}(\lambda) of a degree at most mm to encapsulate the residues more succinctly. The polynomial 𝐟0(λ)\mathbf{f}_{0}(\lambda) is defined as

𝐟0(λ)=l=0mj+k=lj,k0a~(j)(λ0)𝐁kj!k!(λλ0)l,\mathbf{f}_{0}(\lambda)=\sum_{l=0}^{m}\sum_{\begin{subarray}{c}j+k=l\\ j,k\geqslant 0\end{subarray}}\frac{\tilde{a}^{(j)}(\lambda_{0})\mathbf{B}_{k}}{j!k!}(\lambda-\lambda_{0})^{l}, (2.43)

with the condition that 𝐟0(λ0)𝟎\mathbf{f}_{0}(\lambda_{0})\neq\mathbf{0}. Consequently, we have

Resλ=λ0(λλ0)hμL(x,t;λ)det[𝐚(λ¯)]=\displaystyle\underset{\lambda=\lambda_{0}}{\mathrm{Res}}\frac{(\lambda-\lambda_{0})^{h}\mu_{\mathrm{-L}}(x,t;\lambda)}{\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]}= r+l+s=mhr,l,s0Θ(l)(x,t;λ0)μ+R(s)(x,t;λ0)𝐟0(r)(λ0)r!l!s!\displaystyle\sum_{\begin{subarray}{c}r+l+s=m-h\\ r,l,s\geqslant 0\end{subarray}}\frac{\Theta^{(l)}(x,t;\lambda_{0})\mu_{\mathrm{+R}}^{(s)}(x,t;\lambda_{0})\mathbf{f}_{0}^{(r)}(\lambda_{0})}{r!l!s!} (2.44)
=\displaystyle= [e2iθ(x,t;λ)μ+R(x,t;λ)𝐟0(λ)](mh)|λ=λ0(mh)!,\displaystyle\frac{\left[\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mu_{\mathrm{+R}}(x,t;\lambda)\mathbf{f}_{0}(\lambda)\right]^{(m-h)}\Big{|}_{\lambda=\lambda_{0}}}{(m-h)!},
Resλ=λ¯0(λλ¯0)hμR(x,t;λ)𝐚1(λ)=\displaystyle\underset{\lambda=\bar{\lambda}_{0}}{\mathrm{Res}}(\lambda-\bar{\lambda}_{0})^{h}\mu_{\mathrm{-R}}(x,t;\lambda)\mathbf{a}^{-1}(\lambda)= r+l+s=mhr,l,s0Θ(l)(x,t;λ0)¯μ+L(s)(x,t;λ¯0)(𝐟0(r)(λ0))r!l!s!\displaystyle-\sum_{\begin{subarray}{c}r+l+s=m-h\\ r,l,s\geqslant 0\end{subarray}}\frac{\overline{\Theta^{(l)}(x,t;\lambda_{0})}\mu_{\mathrm{+L}}^{(s)}(x,t;\bar{\lambda}_{0})(\mathbf{f}_{0}^{(r)}(\lambda_{0}))^{{\dagger}}}{r!l!s!} (2.45)
=\displaystyle= [e2iθ(x,t;λ)μ+L(x,t;λ)𝐟0(λ¯)](mh)|λ=λ¯0(mh)!.\displaystyle-\frac{\left[\mathrm{e}^{-2\mathrm{i}\theta(x,t;\lambda)}\mu_{\mathrm{+L}}(x,t;\lambda)\mathbf{f}_{0}^{{\dagger}}(\bar{\lambda})\right]^{(m-h)}\Big{|}_{\lambda=\bar{\lambda}_{0}}}{(m-h)!}.

We designate 𝐟0(λ0),,𝐟0(m)(λ0)\mathbf{f}_{0}(\lambda_{0}),\ldots,\mathbf{f}_{0}^{(m)}(\lambda_{0}) as the residue constants associated with the discrete spectrum λ0\lambda_{0}.

Assumption 2.9.

Supposed that det[𝐚(λ¯)]\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})] has NN pairs of distinct zeros{λk,λ¯k}k=1N+\left\{\lambda_{k},-\bar{\lambda}_{k}\right\}_{k=1}^{N}\in\mathbb{C^{+}} with multiplicity {mk+1}k=1N\left\{m_{k}+1\right\}_{k=1}^{N}, respectively. Specifically, if for k=1,,N1k=1,\ldots,N_{1}, Reλk=0\mathrm{Re}\lambda_{k}=0, then λk=λ¯k\lambda_{k}=-\bar{\lambda}_{k}; for k=N1+1,,Nk=N_{1}+1,\ldots,N, Reλk0\mathrm{Re}\lambda_{k}\neq 0, and none of these zeros lie on the real axis.

Proposition 2.10.

If λ1,,λN\lambda_{1},\ldots,\lambda_{N} are as described in the Assumption 2.9, then there exists uniquely a vector-valued polynomial 𝐟(λ)\mathbf{f}(\lambda) with a degree less than τ=k=1N(mk+1)\tau=\sum\limits_{k=1}^{N}(m_{k}+1) such that 𝐟(λk)𝟎\mathbf{f}(\lambda_{k})\neq\mathbf{0}, and for each k=1,,Nk=1,\ldots,N, nk=0,,mkn_{k}=0,\ldots,m_{k},

Resλ=λk(λλk)nkμL(x,t;λ)det[𝐚(λ¯)]=[e2iθ(x,t;λ)μ+R(x,t;λ)𝐟(λ)](mknk)|λ=λk(mknk)!,\displaystyle\underset{\lambda=\lambda_{k}}{\mathrm{Res}}\frac{(\lambda-\lambda_{k})^{n_{k}}\mu_{\mathrm{-L}}(x,t;\lambda)}{\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]}=\frac{\left[\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mu_{\mathrm{+R}}(x,t;\lambda)\mathbf{f}(\lambda)\right]^{(m_{k}-n_{k})}\Big{|}_{\lambda=\lambda_{k}}}{(m_{k}-n_{k})!}, (2.46)
Resλ=λ¯k(λ+λ¯k)nkμL(x,t;λ)det[𝐚(λ¯)]=[e2iθ(x,t;λ)μ+R(x,t;λ)𝐟¯(λ¯)](mknk)|λ=λ¯k(1)mk+1(mknk)!,\displaystyle\underset{\lambda=-\bar{\lambda}_{k}}{\mathrm{Res}}\frac{(\lambda+\bar{\lambda}_{k})^{n_{k}}\mu_{\mathrm{-L}}(x,t;\lambda)}{\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]}=\frac{\left[\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mu_{\mathrm{+R}}(x,t;\lambda)\bar{\mathbf{f}}(-\bar{\lambda})\right]^{(m_{k}-n_{k})}\Big{|}_{\lambda=-\bar{\lambda}_{k}}}{(-1)^{m_{k}+1}(m_{k}-n_{k})!}, (2.47)
Resλ=λ¯k(λλ¯k)nkμR(x,t;λ)𝐚1(λ)=[e2iθ(x,t;λ)μ+L(x,t;λ)𝐟(λ¯)](mknk)|λ=λ¯k(mknk)!,\displaystyle\underset{\lambda=\bar{\lambda}_{k}}{\mathrm{Res}}(\lambda-\bar{\lambda}_{k})^{n_{k}}\mu_{\mathrm{-R}}(x,t;\lambda)\mathbf{a}^{-1}(\lambda)=-\frac{\left[\mathrm{e}^{-2\mathrm{i}\theta(x,t;\lambda)}\mu_{\mathrm{+L}}(x,t;\lambda)\mathbf{f}^{{\dagger}}(\bar{\lambda})\right]^{(m_{k}-n_{k})}\Big{|}_{\lambda=\bar{\lambda}_{k}}}{(m_{k}-n_{k})!}, (2.48)
Resλ=λk(λ+λk)nkμR(x,t;λ)𝐚1(λ)=[e2iθ(x,t;λ)μ+L(x,t;λ)𝐟T(λ)](mknk)|λ=λk(1)mk(mknk)!.\displaystyle\underset{\lambda=-\lambda_{k}}{\mathrm{Res}}(\lambda+\lambda_{k})^{n_{k}}\mu_{\mathrm{-R}}(x,t;\lambda)\mathbf{a}^{-1}(\lambda)=\frac{\left[\mathrm{e}^{-2\mathrm{i}\theta(x,t;\lambda)}\mu_{\mathrm{+L}}(x,t;\lambda)\mathbf{f}^{\mathrm{T}}(-\lambda)\right]^{(m_{k}-n_{k})}\Big{|}_{\lambda=-\lambda_{k}}}{(-1)^{m_{k}}(m_{k}-n_{k})!}. (2.49)

In addition, 𝐟(λ)\mathbf{f}(\lambda) satisfies the symmetry condition:

𝐟(mknk)(λk)=(1)nk+1𝐟(mknk)(λk)¯,k=1,,N1.\mathbf{f}^{(m_{k}-n_{k})}(\lambda_{k})=(-1)^{n_{k}+1}\overline{\mathbf{f}^{(m_{k}-n_{k})}(\lambda_{k})},\quad k=1,\ldots,N_{1}. (2.50)
Proof.

Analogous to Eqs.(2.44) and (2.45), for each k{1,,N},k\in\left\{1,\ldots,N\right\}, there exists a vector-valued polynomial 𝐟k(λ)\mathbf{f}_{k}(\lambda) of degree no greater than mkm_{k} with 𝐟k(λk)𝟎\mathbf{f}_{k}(\lambda_{k})\neq\mathbf{0}, satisfying

Resλ=λk(λλk)nkμL(x,t;λ)det[𝐚(λ¯)]=[e2iθ(x,t;λ)μ+R(x,t;λ)𝐟k(λ)](mknk)|λ=λk(mknk)!,\displaystyle\underset{\lambda=\lambda_{k}}{\mathrm{Res}}\frac{(\lambda-\lambda_{k})^{n_{k}}\mu_{\mathrm{-L}}(x,t;\lambda)}{\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]}=\frac{\left[\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mu_{\mathrm{+R}}(x,t;\lambda)\mathbf{f}_{k}(\lambda)\right]^{(m_{k}-n_{k})}\Big{|}_{\lambda=\lambda_{k}}}{(m_{k}-n_{k})!}, (2.51)
Resλ=λ¯k(λλ¯k)nkμR(x,t;λ)𝐚1(λ)=[e2iθ(x,t;λ)μ+L(x,t;λ)𝐟k(λ¯)](mknk)|λ=λ¯k(mknk)!,\displaystyle\underset{\lambda=\bar{\lambda}_{k}}{\mathrm{Res}}(\lambda-\bar{\lambda}_{k})^{n_{k}}\mu_{\mathrm{-R}}(x,t;\lambda)\mathbf{a}^{-1}(\lambda)=-\frac{\left[\mathrm{e}^{-2\mathrm{i}\theta(x,t;\lambda)}\mu_{\mathrm{+L}}(x,t;\lambda)\mathbf{f}_{k}^{{\dagger}}(\bar{\lambda})\right]^{(m_{k}-n_{k})}\Big{|}_{\lambda=\bar{\lambda}_{k}}}{(m_{k}-n_{k})!}, (2.52)

where nk=0,,mkn_{k}=0,\ldots,m_{k}. According to the Hermite interpolation formula, there exists a unique vector-valued polynomial 𝐟(λ)\mathbf{f}(\lambda) with a degree less than τ\tau such that

{𝐟(n1)(λ1)=𝐟1(n1)(λ1),n1=0,,m1,𝐟(nN)(λN)=𝐟N(nN)(λN),nN=0,,mN.\displaystyle\begin{cases}\mathbf{f}^{(n_{1})}(\lambda_{1})=\mathbf{f}_{1}^{(n_{1})}(\lambda_{1}),&\text{$n_{1}=0,\ldots,m_{1}$},\\ {\qquad\qquad}\vdots\\ \mathbf{f}^{(n_{N})}(\lambda_{N})=\mathbf{f}_{N}^{(n_{N})}(\lambda_{N}),&\text{$n_{N}=0,\ldots,m_{N}$}.\end{cases} (2.53)

Thus, Eqs.(2.46) and (2.48) are established. From Eqs.(2.9), (2.16) and (2.46), it follows that

Resλ=λ¯k(λ+λ¯k)nkμL(x,t;λ)det[𝐚(λ¯)]\displaystyle\underset{\lambda=-\bar{\lambda}_{k}}{\mathrm{Res}}\frac{(\lambda+\bar{\lambda}_{k})^{n_{k}}\mu_{\mathrm{-L}}(x,t;\lambda)}{\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]}
=\displaystyle= Resλ=λk[(λ+λk)nkμ¯L(x,t;λ¯)det[𝐚T(λ)]]¯\displaystyle-\overline{\underset{\lambda=\lambda_{k}}{\mathrm{Res}}\left[\frac{(-\lambda+\lambda_{k})^{n_{k}}\bar{\mu}_{\mathrm{-L}}(x,t;-\bar{\lambda})}{\mathrm{det}[\mathbf{a}^{\mathrm{T}}(-\lambda)]}\right]}
=\displaystyle= (1)nk+1Resλ=λk[(λλk)nkμL(x,t;λ)det[𝐚(λ¯)]]¯\displaystyle(-1)^{n_{k}+1}\overline{\underset{\lambda=\lambda_{k}}{\mathrm{Res}}\left[\frac{(\lambda-\lambda_{k})^{n_{k}}\mu_{\mathrm{-L}}(x,t;\lambda)}{\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]}\right]} (2.54)
=\displaystyle= (1)nk+1[e2iθ(x,t;λ)μ+R(x,t;λ)𝐟(λ)](mknk)|λ=λk(mknk)!¯\displaystyle(-1)^{n_{k}+1}\overline{\frac{\left[\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mu_{\mathrm{+R}}(x,t;\lambda)\mathbf{f}(\lambda)\right]^{(m_{k}-n_{k})}\Big{|}_{\lambda=\lambda_{k}}}{(m_{k}-n_{k})!}}
=\displaystyle= (1)nk+1(1)mknk[e2iθ(x,t;λ¯)¯μ¯+R(x,t;λ¯)𝐟¯(λ¯)](mknk)|λ=λ¯k(mknk)!\displaystyle(-1)^{n_{k}+1}(-1)^{m_{k}-n_{k}}\frac{\left[\overline{\mathrm{e}^{2\mathrm{i}\theta(x,t;-\bar{\lambda})}}\bar{\mu}_{\mathrm{+R}}(x,t;-\bar{\lambda})\bar{\mathbf{f}}(-\bar{\lambda})\right]^{(m_{k}-n_{k})}\Big{|}_{\lambda=-\bar{\lambda}_{k}}}{(m_{k}-n_{k})!}
=\displaystyle= (1)mk+1[e2iθ(x,t;λ)μ+R(x,t;λ)𝐟¯(λ¯)](mknk)|λ=λ¯k(mknk)!.\displaystyle(-1)^{m_{k}+1}\frac{\left[\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mu_{\mathrm{+R}}(x,t;\lambda)\bar{\mathbf{f}}(-\bar{\lambda})\right]^{(m_{k}-n_{k})}\Big{|}_{\lambda=-\bar{\lambda}_{k}}}{(m_{k}-n_{k})!}.

We have proven that Eq.(2.47) holds. Similarly, Eq.(2.49) can be proven. For k=1,,N1k=1,\dots,N_{1}, λk=λ¯k\lambda_{k}=-\bar{\lambda}_{k}, combining Eq.(2.46) with Eq.(2.47) yields Eq.(2.50). ∎

Remark 2.11.

Similar to Eq.(2.43), we know that the vector-valued polynomial 𝐟(λ)\mathbf{f}(\lambda) described in Proposition 2.10 is determined by det[𝐚(λ)]\det[\mathbf{a}(\lambda)], the set {λk,mk}k=1N\left\{\lambda_{k},m_{k}\right\}_{k=1}^{N} and a collection of nonzero complex-valued constant vectors {𝐁k,0,,𝐁k,mk}k=1N\left\{\mathbf{B}_{k,0},\ldots,\mathbf{B}_{k,m_{k}}\right\}_{k=1}^{N}. If 𝐟(λ)\mathbf{f}(\lambda) is replaced by 𝐟(λ)+k=1N(λλk)mk+1𝐠(λ)\mathbf{f}(\lambda)+\prod\limits_{k=1}^{N}(\lambda-\lambda_{k})^{m_{k}+1}\mathbf{g}(\lambda), where 𝐠(λ)\mathbf{g}(\lambda) is a vector-valued function which is analytic at {λk}k=1N\left\{\lambda_{k}\right\}_{k=1}^{N}, then Eqs.(2.53) still holds. Therefore, Proposition 2.10 can be reformulated as follows:“there exists a vector-valued function 𝐟~(λ)\tilde{\mathbf{f}}(\lambda) that is analytic and nonzero at {λk}k=1N\left\{\lambda_{k}\right\}_{k=1}^{N}, and still satisfies Eqs.(2.46)-(2.49)”.

3 Inverse problem

In Section 2, we outlined the direct scattering map:

𝒟:𝐪(x,0){γ(λ),{λk,mk,{𝐟(nk)(λk)}nk=0mk}k=1N},\mathcal{D}:{\mathbf{q}(x,0)}\mapsto\left\{\gamma(\lambda),\left\{\lambda_{k},m_{k},\left\{\mathbf{f}^{(n_{k})}(\lambda_{k})\right\}_{n_{k}=0}^{m_{k}}\right\}_{k=1}^{N}\right\}, (3.1)

linking the initial potential to its scattering data. We now turn to the inverse scattering map:

:{γ(λ),{λk,mk,{𝐟(nk)(λk)}nk=0mk}k=1N}𝐪(x,t),\mathcal{I}:\left\{\gamma(\lambda),\left\{\lambda_{k},m_{k},\left\{\mathbf{f}^{(n_{k})}(\lambda_{k})\right\}_{n_{k}=0}^{m_{k}}\right\}_{k=1}^{N}\right\}\mapsto\mathbf{q}(x,t), (3.2)

which reconstructs the potential from the scattering data via an (n+1)×(n+1)(n+1)\times(n+1) matrix RH problem. This process is pivotal for understanding the time evolution of solutions to the vmKdV equation.

3.1 Riemann–Hilbert problem

Define a piecewise meromorphic function 𝐌(x,t;λ)\mathbf{M}(x,t;\lambda),

𝐌(x,t;λ)=(μL(x,t;λ)det[𝐚(λ¯)],μ+R(x,t;λ)),\displaystyle\mathbf{M}(x,t;\lambda)=\left(\frac{\mu_{\mathrm{-L}}(x,t;\lambda)}{\mathrm{det}[\mathbf{a}^{{\dagger}}(\bar{\lambda})]},\mu_{\mathrm{+R}}(x,t;\lambda)\right), λ+,\displaystyle\quad\lambda\in\mathbb{C}^{+}, (3.3)
𝐌(x,t;λ)=(μ+L(x,t;λ),μR(x,t;λ)𝐚1(λ)),\displaystyle\mathbf{M}(x,t;\lambda)=\left(\mu_{\mathrm{+L}}(x,t;\lambda),\mu_{\mathrm{-R}}(x,t;\lambda)\mathbf{a}^{-1}(\lambda)\right), λ.\displaystyle\quad\lambda\in\mathbb{C}^{-}.

We can utilize it to formulate an (n+1)×(n+1)(n+1)\times(n+1) matrix RH problem.

Riemann–Hilbert Problem 3.1.

Seek an (n+1)×(n+1)(n+1)\times(n+1) matrix-valued function 𝐌(x,t;λ)\mathbf{M}(x,t;\lambda) that satisfies the following conditions:

  • 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐢𝐭𝐲:\mathbf{Analyticity:} 𝐌(x,t;λ)\mathbf{M}(x,t;\lambda) is analytic in λ\lambda for λ\({±λk,±λ¯k}k=1N)\lambda\in\mathbb{C}\backslash\left(\mathbb{R}\cup\ \left\{\pm\lambda_{k},\pm\bar{\lambda}_{k}\right\}^{N}_{k=1}\right);

  • 𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:\mathbf{Normalization:} 𝐌(x,t;λ)\mathbf{M}(x,t;\lambda) has the following asymptotic behavior:

    𝐌(x,t;λ)𝐈,λ;\mathbf{M}(x,t;\lambda)\rightarrow\mathbf{I},\quad\lambda\in\mathbb{C}\setminus\mathbb{R}\rightarrow\infty; (3.4)
  • 𝐉𝐮𝐦𝐩:\mathbf{Jump:} The matrix 𝐌(x,t;λ)\mathbf{M}(x,t;\lambda) exhibits a jump across the oriented contour \mathbb{R} expressed as

    𝐌+(x,t;λ)=𝐌(x,t;λ)𝐉(x,t;λ),λ,\mathbf{M}_{+}(x,t;\lambda)=\mathbf{M}_{-}(x,t;\lambda)\mathbf{J}(x,t;\lambda),\quad\lambda\in\mathbb{R}, (3.5)

    where 𝐌±(x,t;λ)=limϵ0𝐌(x,t;λ±iϵ)\mathbf{M}_{\pm}(x,t;\lambda)=\underset{\epsilon\rightarrow 0}{\mathrm{lim}}\mathbf{M}(x,t;\lambda\pm\mathrm{i}\epsilon) and the jump matrix 𝐉(x,t;λ)\mathbf{J}(x,t;\lambda) is defined as

    𝐉(x,t;λ)=(1+γ(λ)γ(λ¯)e2iθ(x,t;λ)γ(λ)e2iθ(x,t;λ)γ(λ¯)𝐈);\mathbf{J}(x,t;\lambda)=\begin{pmatrix}1+\mathbf{\gamma}(\lambda)\mathbf{\gamma}^{{\dagger}}(\bar{\lambda})&-\mathrm{e}^{-2\mathrm{i}\theta(x,t;\lambda)}\mathbf{\gamma}(\lambda)\\ -\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mathbf{\gamma}^{{\dagger}}(\bar{\lambda})&\mathbf{I}\\ \end{pmatrix}; (3.6)
  • 𝐑𝐞𝐬𝐢𝐝𝐮𝐞𝐬:\mathbf{Residues:} For k=1,,Nk=1,\ldots,N, 𝐌(x,t;λ)\mathbf{M}(x,t;\lambda) exhibits multiple poles of order mk+1m_{k}+1 at the points λ=±λk\lambda=\pm\lambda_{k} and λ=±λ¯k\lambda=\pm\bar{\lambda}_{k}. Furthermore, the residues of 𝐌(x,t;λ)\mathbf{M}(x,t;\lambda) at these poles satisfy the following conditions for each nk=0,,mkn_{k}=0,\ldots,m_{k}:

    Resλ=λk(λλk)nk𝐌(x,t;λ)=([e2iθ(x,t;λ)𝐌R(x,t;λ)𝐟(λ)](mknk)|λ=λk(mknk)!,𝟎),\displaystyle\underset{\lambda=\lambda_{k}}{\mathrm{Res}}(\lambda-\lambda_{k})^{n_{k}}\mathbf{M}(x,t;\lambda)=\left(\frac{\left[\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mathbf{M}_{\mathrm{R}}(x,t;\lambda)\mathbf{f}(\lambda)\right]^{(m_{k}-n_{k})}\big{|}_{\lambda=\lambda_{k}}}{(m_{k}-n_{k})!},\mathbf{0}\right), (3.7a)
    Resλ=λ¯k(λ+λ¯k)nk𝐌(x,t;λ)=([e2iθ(x,t;λ)𝐌R(x,t;λ)𝐟¯(λ¯)](mknk)|λ=λ¯k(1)mk+1(mknk)!,𝟎),\displaystyle\underset{\lambda=-\bar{\lambda}_{k}}{\mathrm{Res}}(\lambda+\bar{\lambda}_{k})^{n_{k}}\mathbf{M}(x,t;\lambda)=\left(\frac{\left[\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mathbf{M}_{\mathrm{R}}(x,t;\lambda)\bar{\mathbf{f}}(-\bar{\lambda})\right]^{(m_{k}-n_{k})}\big{|}_{\lambda=-\bar{\lambda}_{k}}}{(-1)^{m_{k}+1}(m_{k}-n_{k})!},\mathbf{0}\right), (3.7b)
    Resλ=λ¯k(λλ¯k)nk𝐌(x,t;λ)=(𝟎,[e2iθ(x,t;λ)𝐌L(x,t;λ)𝐟(λ¯)](mknk)|λ=λ¯k(mknk)!),\displaystyle\underset{\lambda=\bar{\lambda}_{k}}{\mathrm{Res}}(\lambda-\bar{\lambda}_{k})^{n_{k}}\mathbf{M}(x,t;\lambda)=\left(\mathbf{0},-\frac{\left[\mathrm{e}^{-2\mathrm{i}\theta(x,t;\lambda)}\mathbf{M}_{\mathrm{L}}(x,t;\lambda)\mathbf{f}^{{\dagger}}(\bar{\lambda})\right]^{(m_{k}-n_{k})}\big{|}_{\lambda=\bar{\lambda}_{k}}}{(m_{k}-n_{k})!}\right), (3.7c)
    Resλ=λk(λ+λk)nk𝐌(x,t;λ)=(𝟎,[e2iθ(x,t;λ)𝐌L(x,t;λ)𝐟T(λ)](mknk)|λ=λk(1)mk(mknk)!).\displaystyle\underset{\lambda=-\lambda_{k}}{\mathrm{Res}}(\lambda+\lambda_{k})^{n_{k}}\mathbf{M}(x,t;\lambda)=\left(\mathbf{0},\frac{\left[\mathrm{e}^{-2\mathrm{i}\theta(x,t;\lambda)}\mathbf{M}_{\mathrm{L}}(x,t;\lambda)\mathbf{f}^{\mathrm{T}}(-\lambda)\right]^{(m_{k}-n_{k})}\big{|}_{\lambda=-\lambda_{k}}}{(-1)^{m_{k}}(m_{k}-n_{k})!}\right). (3.7d)

For each kk, let Ωk\Omega_{k} represent a small disk centered at λk\lambda_{k} with a radius so small such that the disk is entirely contained within the upper half of the complex plane, and it does not intersect with any other disks or with the set {Ωk}k=N1+1N\left\{\Omega_{-k}\right\}_{k=N_{1}+1}^{N}, where Ωk={λ|λΩk}\Omega_{-k}=\left\{\lambda|-\lambda\in\Omega_{k}\right\}. In addition, define Ω±k={λ|±λ¯Ωk}\Omega_{\pm k}^{*}=\left\{\lambda|\pm\bar{\lambda}\in\Omega_{k}\right\}. We now introduce a new matrix-valued function 𝐌~(x,t;λ)\tilde{\mathbf{M}}(x,t;\lambda), which is defined in relation to 𝐌(x,t;λ)\mathbf{M}(x,t;\lambda) as follows:

𝐌~(x,t;λ)={𝐌(x,t;λ)𝐏k(x,t;λ),λΩk,k=1,N,𝐌(x,t;λ)[𝐏kT(x,t;λ)]1,λΩk,k=N1+1,N,𝐌(x,t;λ)[𝐏k(x,t;λ¯)]1,λΩk,k=1,N,𝐌(x,t;λ)𝐏¯k(x,t;λ¯),λΩk,k=N1+1,N,𝐌(x,t;λ),otherwise,\tilde{\mathbf{M}}(x,t;\lambda)=\begin{cases}\mathbf{M}(x,t;\lambda)\mathbf{P}_{k}(x,t;\lambda),\quad&\lambda\in\Omega_{k},\quad k=1,\ldots N,\\ \mathbf{M}(x,t;\lambda)[\mathbf{P}_{k}^{\mathrm{T}}(x,t;-\lambda)]^{-1},\quad&\lambda\in\Omega_{-k},\quad k=N_{1}+1,\ldots N,\\ \mathbf{M}(x,t;\lambda)[\mathbf{P}_{k}^{{\dagger}}(x,t;\bar{\lambda})]^{-1},\quad&\lambda\in\Omega_{k}^{*},\quad k=1,\ldots N,\\ \mathbf{M}(x,t;\lambda)\bar{\mathbf{P}}_{k}(x,t;-\bar{\lambda}),\quad&\lambda\in\Omega_{-k}^{*},\quad k=N_{1}+1,\ldots N,\\ \mathbf{M}(x,t;\lambda),\quad&\mbox{otherwise},\end{cases} (3.8)

where

𝐏k(x,t;λ)=(1𝟎e2iθ(x,t;λ)𝐟(λ)(λλk)mk+1𝐈).\mathbf{P}_{k}(x,t;\lambda)=\begin{pmatrix}1&\mathbf{0}\\ -\frac{\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mathbf{f}(\lambda)}{(\lambda-\lambda_{k})^{m_{k}+1}}&\mathbf{I}\end{pmatrix}. (3.9)

Recognizing the matrix 𝐌(x,t;λ)𝐏k(x,t;λ)\mathbf{M}(x,t;\lambda)\mathbf{P}_{k}(x,t;\lambda) as having a removable singularity at λk\lambda_{k}, we proceed with the following detailed examination:

Resλ=λk(λλk)nk𝐌~(x,t;λ)\displaystyle\underset{\lambda=\lambda_{k}}{\mathrm{Res}}{(\lambda-\lambda_{k})^{n_{k}}\tilde{\mathbf{M}}(x,t;\lambda)}
=\displaystyle= Resλ=λk(λλk)nk(𝐌L(x,t;λ)e2iθ(x,t;λ)𝐌R(x,t;λ)𝐟(λ)(λλk)mk+1,𝐌R(x,t;λ))\displaystyle\underset{\lambda=\lambda_{k}}{\mathrm{Res}}{(\lambda-\lambda_{k})^{n_{k}}\left(\mathbf{M}_{\mathrm{L}}(x,t;\lambda)-\frac{\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mathbf{M}_{\mathrm{R}}(x,t;\lambda)\mathbf{f}(\lambda)}{(\lambda-\lambda_{k})^{m_{k}+1}},\mathbf{M}_{\mathrm{R}}(x,t;\lambda)\right)} (3.10)
=\displaystyle= (Resλ=λk(λλk)nk𝐌L(x,t;λ)Resλ=λke2iθ(x,t;λ)𝐌R(x,t;λ)𝐟(λ)(λλk)mknk+1,𝟎).\displaystyle\left(\underset{\lambda=\lambda_{k}}{\mathrm{Res}}{(\lambda-\lambda_{k})^{n_{k}}\mathbf{M}_{\mathrm{L}}(x,t;\lambda)}-\underset{\lambda=\lambda_{k}}{\mathrm{Res}}{\frac{\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mathbf{M}_{\mathrm{R}}(x,t;\lambda)\mathbf{f}(\lambda)}{(\lambda-\lambda_{k})^{m_{k}-n_{k}+1}}},\mathbf{0}\right).

This result is obtained by considering the residue condition (3.7) and conducting a thorough analysis of the Taylor series expansion of e2iθ(x,t;λ)𝐌R(x,t;λ)𝐟(λ)\mathrm{e}^{2\mathrm{i}\theta(x,t;\lambda)}\mathbf{M}_{\mathrm{R}}(x,t;\lambda)\mathbf{f}(\lambda) around λk\lambda_{k}. Consequently, it becomes apparent that for each kk and any 0nkmk0\leqslant n_{k}\leqslant m_{k}, we have Resλ=λk(λλk)nk𝐌~(x,t;λ)=𝟎\underset{\lambda=\lambda_{k}}{\mathrm{Res}}{(\lambda-\lambda_{k})^{n_{k}}\tilde{\mathbf{M}}(x,t;\lambda)}=\mathbf{0}. Employing a similar approach, one can demonstrate that 𝐌(x,t;λ)[𝐏kT(x,t;λ)]1\mathbf{M}(x,t;\lambda)[\mathbf{P}_{k}^{\mathrm{T}}(x,t;-\lambda)]^{-1} has a removable singularity at λk-\lambda_{k}, 𝐌(x,t;λ)[𝐏k(x,t;λ¯)]1\mathbf{M}(x,t;\lambda)[\mathbf{P}_{k}^{{\dagger}}(x,t;\bar{\lambda})]^{-1} has a removable singularity at λ¯k\bar{\lambda}_{k}, and 𝐌(x,t;λ)𝐏¯k(x,t;λ¯)\mathbf{M}(x,t;\lambda)\bar{\mathbf{P}}_{k}(x,t;-\bar{\lambda}) has a removable singularity at λ¯k-\bar{\lambda}_{k}. Given the definition of 𝐌~(x,t;λ)\tilde{\mathbf{M}}(x,t;\lambda), it follows that all points {±λk,±λ¯k}k=1N\left\{\pm\lambda_{k},\pm\bar{\lambda}_{k}\right\}_{k=1}^{N} are removable singularities of 𝐌~(x,t;λ)\tilde{\mathbf{M}}(x,t;\lambda). Therefore, it can be concluded that 𝐌~(x,t;λ)\tilde{\mathbf{M}}(x,t;\lambda) satisfies the conditions of an equivalent RH problem that is closely related to RH Problem 3.1, but with the residue conditions replaced by jump conditions defined on small contours encircling the points {±λk,±λ¯k}k=1N\left\{\pm\lambda_{k},\pm\bar{\lambda}_{k}\right\}_{k=1}^{N}.

Riemann–Hilbert Problem 3.2.

Seek an (n+1)×(n+1)(n+1)\times(n+1) matrix-valued function 𝐌~(x,t;λ)\tilde{\mathbf{M}}(x,t;\lambda) that satisfies the following conditions:

  • 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐢𝐭𝐲:\mathbf{Analyticity:} 𝐌~(x,t;λ)\tilde{\mathbf{M}}(x,t;\lambda) is analytic in λ\lambda for λΣ\lambda\in\mathbb{C}\setminus\Sigma, where Σ={Ωk,Ωk}k=1N{Ωk,Ωk}k=N1+1N\Sigma=\mathbb{R}\cup\left\{\partial\Omega_{k},\partial\Omega_{k}^{*}\right\}^{N}_{k=1}\cup\left\{\partial\Omega_{-k},\partial\Omega_{-k}^{*}\right\}^{N}_{k=N_{1}+1};

  • 𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:\mathbf{Normalization:} 𝐌~(x,t;λ)\tilde{\mathbf{M}}(x,t;\lambda) has the following asymptotic behavior:

    𝐌~(x,t;λ)𝐈,λ;\tilde{\mathbf{M}}(x,t;\lambda)\rightarrow\mathbf{I},\quad\lambda\in\mathbb{C}\setminus\mathbb{R}\rightarrow\infty;
  • 𝐉𝐮𝐦𝐩:\mathbf{Jump:} The matrix 𝐌~(x,t;λ)\tilde{\mathbf{M}}(x,t;\lambda) takes continuous boundary values 𝐌~±(x,t;λ)\tilde{\mathbf{M}}_{\pm}(x,t;\lambda) on \mathbb{R} from the respective regions ±\mathbb{C}^{\pm}, as well as from the left and right on the contours {Ωk}k=1N,{Ωk}k=N1+1N\left\{\partial\Omega_{k}\right\}_{k=1}^{N},\left\{\partial\Omega_{-k}\right\}_{k=N_{1}+1}^{N} oriented in a clockwise direction and {Ωk}k=1N,{Ωk}k=N1+1N\left\{\partial\Omega_{k}^{*}\right\}_{k=1}^{N},\left\{\partial\Omega_{-k}^{*}\right\}_{k=N_{1}+1}^{N} oriented in counterclockwise direction. These boundary values are interconnected through specific jump conditions,

    𝐌~+(x,t;λ)=𝐌~(x,t;λ)𝐉~(x,t;λ),λΣ,\tilde{\mathbf{M}}_{+}(x,t;\lambda)=\tilde{\mathbf{M}}_{-}(x,t;\lambda)\tilde{\mathbf{J}}(x,t;\lambda),\quad\lambda\in\Sigma, (3.11)

    where

    𝐉~(x,t;λ)={𝐉(x,t;λ),λ,𝐏k1(x,t;λ),λΩk,k=1,N,𝐏kT(x,t;λ),λΩk,k=N1+1,N,[𝐏k(x,t;λ¯)]1,λΩk,k=1,N,𝐏¯k(x,t;λ¯),λΩk,k=N1+1,N.\tilde{\mathbf{J}}(x,t;\lambda)=\begin{cases}\mathbf{J}(x,t;\lambda),\quad&\lambda\in\mathbb{R},\\ \mathbf{P}_{k}^{-1}(x,t;\lambda),\quad&\lambda\in\partial\Omega_{k},\quad k=1,\ldots N,\\ \mathbf{P}_{k}^{\mathrm{T}}(x,t;-\lambda),\quad&\lambda\in\partial\Omega_{-k},\quad k=N_{1}+1,\ldots N,\\ [\mathbf{P}_{k}^{{\dagger}}(x,t;\bar{\lambda})]^{-1},\quad&\lambda\in\partial\Omega_{k}^{*},\quad k=1,\ldots N,\\ \bar{\mathbf{P}}_{k}(x,t;-\bar{\lambda}),\quad&\lambda\in\partial\Omega_{-k}^{*},\quad k=N_{1}+1,\ldots N.\\ \end{cases} (3.12)

The unique existence of the solution to RH problem 3.2 is contingent upon the validity of the following lemma, which serves as a foundational component of our analysis (refer to Theorem 9.3 in Ref.[49])

Lemma 3.3.

(Vanishing Lemma)If the asymptotic condition in the RH problem 3.2 for 𝐌~(x,t;λ)\tilde{\mathbf{M}}(x,t;\lambda) is replaced by

𝐌~(x,t;λ)=O(λ1),λ,\tilde{\mathbf{M}}(x,t;\lambda)=O(\lambda^{-1}),\quad\lambda\rightarrow\infty, (3.13)

then the RH problem 3.2 has only the trivial solution.

Proof.

Consider the function

𝐇(x,t;λ)=𝐌~(x,t;λ)𝐌~(x,t;λ¯),\mathbf{H}(x,t;\lambda)=\tilde{\mathbf{M}}(x,t;\lambda)\tilde{\mathbf{M}}^{{\dagger}}(x,t;\bar{\lambda}), (3.14)

where 𝐇(x,t;λ)\mathbf{H}(x,t;\lambda) is analytic in λ\lambda for λΣ\lambda\in\mathbb{C}\setminus\Sigma, and continuous up to Σ\Sigma. The jump of 𝐇(x,t;λ)\mathbf{H}(x,t;\lambda) across λΣ\lambda\in\Sigma is derived as follows. Note that

𝐇+(x,t;λ)=𝐌~+(x,t;λ)𝐌~(x,t;λ¯),\mathbf{H}_{+}(x,t;\lambda)=\tilde{\mathbf{M}}_{+}(x,t;\lambda)\tilde{\mathbf{M}}_{-}^{{\dagger}}(x,t;\bar{\lambda}), (3.15)

for instance, if λ\lambda approaches Ωk\partial\Omega_{k} from the left(“+”side), then λ¯\bar{\lambda} approaches Ωk\partial\Omega_{k}^{*} from the right(“–”side). Here, the ``±"``\pm" subscripts denote boundary values on Ωk\partial\Omega_{k} (forλ)(for\lambda) and Ωk\partial\Omega_{k}^{*} (forλ¯)(for\bar{\lambda}), respectively. Applying the jump conditions across Σ\Sigma, we obtain

𝐇+(x,t;λ)=𝐌~+(x,t;λ)𝐌~(x,t;λ¯)=𝐌~(x,t;λ)𝐉~(x,t;λ)𝐌~(x,t;λ¯),\mathbf{H}_{+}(x,t;\lambda)=\tilde{\mathbf{M}}_{+}(x,t;\lambda)\tilde{\mathbf{M}}_{-}^{{\dagger}}(x,t;\bar{\lambda})=\tilde{\mathbf{M}}_{-}(x,t;\lambda)\tilde{\mathbf{J}}(x,t;\lambda)\tilde{\mathbf{M}}_{-}^{{\dagger}}(x,t;\bar{\lambda}), (3.16)

Using the property 𝐉~(x,t;λ)=𝐉~(x,t;λ¯)\tilde{\mathbf{J}}(x,t;\lambda)=\tilde{\mathbf{J}}^{{\dagger}}(x,t;\bar{\lambda}), we find

𝐇+(x,t;λ)=𝐌~(x,t;λ)𝐉~(x,t;λ¯)𝐌~(x,t;λ¯)=𝐌~(x,t;λ)𝐌~+(x,t;λ¯)=𝐇(x,t;λ).\mathbf{H}_{+}(x,t;\lambda)=\tilde{\mathbf{M}}_{-}(x,t;\lambda)\tilde{\mathbf{J}}^{{\dagger}}(x,t;\bar{\lambda})\tilde{\mathbf{M}}_{-}^{{\dagger}}(x,t;\bar{\lambda})=\tilde{\mathbf{M}}_{-}(x,t;\lambda)\tilde{\mathbf{M}}_{+}^{{\dagger}}(x,t;\bar{\lambda})=\mathbf{H}_{-}(x,t;\lambda). (3.17)

This implies that 𝐇(x,t;λ)\mathbf{H}(x,t;\lambda) is continuous across the entire complex λ\lambda-plane. By Morera’s theorem, 𝐇(x,t;λ)\mathbf{H}(x,t;\lambda) is an entire function of λ\lambda. Given that limλ𝐇(x,t;λ)=𝟎\underset{\lambda\rightarrow\infty}{\mathrm{lim}}\mathbf{H}(x,t;\lambda)=\mathbf{0}, Liouville’s theorem implies

𝐇(x,t;λ)𝟎.\mathbf{H}(x,t;\lambda)\equiv\mathbf{0}. (3.18)

Since 𝐉~(x,t;λ)\tilde{\mathbf{J}}(x,t;\lambda) is positive definite for λ\lambda\in\mathbb{R}, it follows directly from Eq.(3.16) that 𝐌~(x,t;λ)=𝟎\tilde{\mathbf{M}}_{-}(x,t;\lambda)=\mathbf{0} holds for λ\lambda\in\mathbb{R}. From the jump condition, it can be concluded that 𝐌~+(x,t;λ)=𝟎\tilde{\mathbf{M}}_{+}(x,t;\lambda)=\mathbf{0}. By analytic continuation, it follows that 𝐌~(x,t;λ)=𝟎\tilde{\mathbf{M}}(x,t;\lambda)=\mathbf{0} holds identically, extending to the boundaries {Ωk,Ωk}k=1N\left\{\partial\Omega_{k},\partial\Omega_{k}^{*}\right\}^{N}_{k=1} and {Ωk,Ωk}k=N1+1N\left\{\partial\Omega_{-k},\partial\Omega_{-k}^{*}\right\}^{N}_{k=N_{1}+1}. Applying the jump condition for 𝐌~(x,t;λ)\tilde{\mathbf{M}}(x,t;\lambda) along these arcs again confirms that 𝐌~(x,t;λ)=𝟎\tilde{\mathbf{M}}(x,t;\lambda)=\mathbf{0} holds for λ\lambda within the interior of {Ωk,Ωk}k=1N\left\{\Omega_{k},\Omega_{k}^{*}\right\}^{N}_{k=1} and {Ωk,Ωk}k=N1+1N\left\{\Omega_{-k},\Omega_{-k}^{*}\right\}^{N}_{k=N_{1}+1}. Consequently, 𝐌~(x,t;λ)=𝟎\tilde{\mathbf{M}}(x,t;\lambda)=\mathbf{0} holds throughout the entire complex plane. ∎

We now present a theorem that establishes the relationship between the solution of RH problem 3.2 and the solution to vmKdV equation (1.1).

Theorem 3.4.

If 𝐌~(x,t;λ)\tilde{\mathbf{M}}(x,t;\lambda) is the solution of RH problem 3.2, then

𝐪(x,t)=2ilimλλ𝐌~DL(x,t;λ),\mathbf{q}(x,t)=-2\mathrm{i}\underset{\lambda\rightarrow\infty}{\mathrm{lim}}\lambda\tilde{\mathbf{M}}_{\mathrm{DL}}(x,t;\lambda), (3.19)

is a solution to the vmKdV equation (1.1).

Proof.

This result is a consequence of the dressing method, as detailed in Ref.[50]. ∎

From the jump condition (3.11), it immediately follows that for λΣ\lambda\in\Sigma,

𝐌~+(x,t;λ)𝐌~(x,t;λ)=𝐌~(x,t;λ)[𝐉~(x,t;λ)𝐈]=𝐌~+(x,t;λ)[𝐈𝐉~1(x,t;λ)].\tilde{\mathbf{M}}_{+}(x,t;\lambda)-\tilde{\mathbf{M}}_{-}(x,t;\lambda)=\tilde{\mathbf{M}}_{-}(x,t;\lambda)[\tilde{\mathbf{J}}(x,t;\lambda)-\mathbf{I}]=\tilde{\mathbf{M}}_{+}(x,t;\lambda)[\mathbf{I}-\tilde{\mathbf{J}}^{-1}(x,t;\lambda)]. (3.20)

By applying the Sokhotski–Plemelj formula, 𝐌~(x,t;λ)\tilde{\mathbf{M}}(x,t;\lambda) can be represented as an integral:

𝐌~(x,t;λ)=𝐈\displaystyle\tilde{\mathbf{M}}(x,t;\lambda)=\mathbf{I} +12πi𝐌~(x,t;μ)[𝐉(x,t;μ)𝐈]μλdμ\displaystyle+\frac{1}{2\pi\mathrm{i}}\int_{\mathbb{R}}\frac{\tilde{\mathbf{M}}_{-}(x,t;\mu)[\mathbf{J}(x,t;\mu)-\mathbf{I}]}{\mu-\lambda}\mathrm{d}\mu (3.21)
+k=1N12πiΩk𝐌~(x,t;μ)[𝐏k1(x,t;μ)𝐈]μλdμ\displaystyle+\sum_{k=1}^{N}\frac{1}{2\pi\mathrm{i}}\int_{\partial\Omega_{k}}\frac{\tilde{\mathbf{M}}_{-}(x,t;\mu)[\mathbf{P}_{k}^{-1}(x,t;\mu)-\mathbf{I}]}{\mu-\lambda}\mathrm{d}\mu
+k=N1+1N12πiΩk𝐌~(x,t;μ)[𝐏kT(x,t;μ)𝐈]μλdμ\displaystyle+\sum_{k=N_{1}+1}^{N}\frac{1}{2\pi\mathrm{i}}\int_{\partial\Omega_{-k}}\frac{\tilde{\mathbf{M}}_{-}(x,t;\mu)[\mathbf{P}_{k}^{\mathrm{T}}(x,t;-\mu)-\mathbf{I}]}{\mu-\lambda}\mathrm{d}\mu
+k=1N12πiΩk𝐌~+(x,t;μ)[𝐈𝐏k(x,t;μ¯)]μλdμ\displaystyle+\sum_{k=1}^{N}\frac{1}{2\pi\mathrm{i}}\int_{\partial\Omega_{k}^{*}}\frac{\tilde{\mathbf{M}}_{+}(x,t;\mu)[\mathbf{I}-\mathbf{P}_{k}^{{\dagger}}(x,t;\bar{\mu})]}{\mu-\lambda}\mathrm{d}\mu
+k=N1+1N12πiΩk𝐌~+(x,t;μ)[𝐈(𝐏¯k(x,t;μ¯))1]μλdμ.\displaystyle+\sum_{k=N_{1}+1}^{N}\frac{1}{2\pi\mathrm{i}}\int_{\partial\Omega_{-k}^{*}}\frac{\tilde{\mathbf{M}}_{+}(x,t;\mu)[\mathbf{I}-(\bar{\mathbf{P}}_{k}(x,t;-\bar{\mu}))^{-1}]}{\mu-\lambda}\mathrm{d}\mu.

3.2 Reflectionless potential

The potential 𝐪(x,t)\mathbf{q}(x,t) is now explicitly reconstructed in the reflectionless case, where γ(λ)=𝟎\gamma(\lambda)=\mathbf{0}. In this scenario, there is no jump across the contour \mathbb{R}, then Eq.(3.21) becomes the following expression

𝐌~(x,t;λ)=𝐈\displaystyle\tilde{\mathbf{M}}(x,t;\lambda)=\mathbf{I} +k=1N12πiΩk𝐌~(x,t;μ)[𝐏k1(x,t;μ)𝐈]μλdμ\displaystyle+\sum_{k=1}^{N}\frac{1}{2\pi\mathrm{i}}\int_{\partial\Omega_{k}}\frac{\tilde{\mathbf{M}}_{-}(x,t;\mu)[\mathbf{P}_{k}^{-1}(x,t;\mu)-\mathbf{I}]}{\mu-\lambda}\mathrm{d}\mu (3.22)
+k=N1+1N12πiΩk𝐌~(x,t;μ)[𝐏kT(x,t;μ)𝐈]μλdμ\displaystyle+\sum_{k=N_{1}+1}^{N}\frac{1}{2\pi\mathrm{i}}\int_{\partial\Omega_{-k}}\frac{\tilde{\mathbf{M}}_{-}(x,t;\mu)[\mathbf{P}_{k}^{\mathrm{T}}(x,t;-\mu)-\mathbf{I}]}{\mu-\lambda}\mathrm{d}\mu
+k=1N12πiΩk𝐌~+(x,t;μ)[𝐈𝐏k(x,t;μ¯)]μλdμ\displaystyle+\sum_{k=1}^{N}\frac{1}{2\pi\mathrm{i}}\int_{\partial\Omega_{k}^{*}}\frac{\tilde{\mathbf{M}}_{+}(x,t;\mu)[\mathbf{I}-\mathbf{P}_{k}^{{\dagger}}(x,t;\bar{\mu})]}{\mu-\lambda}\mathrm{d}\mu
+k=N1+1N12πiΩk𝐌~+(x,t;μ)[𝐈(𝐏¯k(x,t;μ¯))1]μλdμ.\displaystyle+\sum_{k=N_{1}+1}^{N}\frac{1}{2\pi\mathrm{i}}\int_{\partial\Omega_{-k}^{*}}\frac{\tilde{\mathbf{M}}_{+}(x,t;\mu)[\mathbf{I}-(\bar{\mathbf{P}}_{k}(x,t;-\bar{\mu}))^{-1}]}{\mu-\lambda}\mathrm{d}\mu.

Using Cauchy’s Residue theorem and leveraging the definition of 𝐏k(x,t;λ)\mathbf{P}_{k}(x,t;\lambda), the inverse problem is simplified to an algebraic system:

𝐌~L(x,t;λ)=\displaystyle\tilde{\mathbf{M}}_{\mathrm{L}}(x,t;\lambda)= (1𝟎)k=1NResμ=λke2iθ(x,t;μ)𝐌~R(x,t;μ)𝐟(μ)(μλ)(μλk)mk+1\displaystyle\begin{pmatrix}1\\ \mathbf{0}\end{pmatrix}-\sum_{k=1}^{N}\underset{\mu=\lambda_{k}}{\mathrm{Res}}{\frac{\mathrm{e}^{2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{R}}(x,t;\mu)\mathbf{f}(\mu)}{(\mu-\lambda)(\mu-\lambda_{k})^{m_{k}+1}}} (3.23)
+k=N1+1NResμ=λ¯k(1)mke2iθ(x,t;μ)𝐌~R(x,t;μ)𝐟¯(μ¯)(μλ)(μ+λ¯k)mk+1\displaystyle+\sum_{k=N_{1}+1}^{N}\underset{\mu=-\bar{\lambda}_{k}}{\mathrm{Res}}{(-1)^{m_{k}}\frac{\mathrm{e}^{2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{R}}(x,t;\mu)\bar{\mathbf{f}}(-\bar{\mu})}{(\mu-\lambda)(\mu+\bar{\lambda}_{k})^{m_{k}+1}}}
=\displaystyle= (1𝟎)k=1N1mk!μmk(e2iθ(x,t;μ)𝐌~R(x,t;μ)𝐟(μ)μλ)|μ=λk\displaystyle\begin{pmatrix}1\\ \mathbf{0}\end{pmatrix}-\sum_{k=1}^{N}\frac{1}{m_{k}!}\partial_{\mu}^{m_{k}}\left(\frac{\mathrm{e}^{2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{R}}(x,t;\mu)\mathbf{f}(\mu)}{\mu-\lambda}\right)\bigg{|}_{\mu=\lambda_{k}}
+k=N1+1N(1)mkmk!μmk(e2iθ(x,t;μ)𝐌~R(x,t;μ)𝐟¯(μ¯)μλ)|μ=λ¯k\displaystyle+\sum_{k=N_{1}+1}^{N}\frac{(-1)^{m_{k}}}{m_{k}!}\partial_{\mu}^{m_{k}}\left(\frac{\mathrm{e}^{2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{R}}(x,t;\mu)\bar{\mathbf{f}}(-\bar{\mu})}{\mu-\lambda}\right)\bigg{|}_{\mu=-\bar{\lambda}_{k}}
=\displaystyle= (1𝟎)+k=1N1mk!μmk(e2iθ(x,t;μ)𝐌~R(x,t;μ)𝐟(μ)λμ)|μ=λk\displaystyle\begin{pmatrix}1\\ \mathbf{0}\end{pmatrix}+\sum_{k=1}^{N}\frac{1}{m_{k}!}\partial_{\mu}^{m_{k}}\left(\frac{\mathrm{e}^{2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{R}}(x,t;\mu)\mathbf{f}(\mu)}{\lambda-\mu}\right)\bigg{|}_{\mu=\lambda_{k}}
k=N1+1N1mk!μmk(e2iθ(x,t;μ)𝐌~R(x,t;μ)𝐟¯(μ¯)μ+λ)|μ=λ¯k,\displaystyle-\sum_{k=N_{1}+1}^{N}\frac{1}{m_{k}!}\partial_{\mu}^{m_{k}}\left(\frac{\mathrm{e}^{-2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{R}}(x,t;-\mu)\bar{\mathbf{f}}(\bar{\mu})}{\mu+\lambda}\right)\bigg{|}_{\mu=\bar{\lambda}_{k}},
𝐌~R(x,t;λ)=\displaystyle\tilde{\mathbf{M}}_{\mathrm{R}}(x,t;\lambda)= (𝟎𝐈)+k=1NResμ=λ¯ke2iθ(x,t;μ)𝐌~L(x,t;μ)𝐟(μ¯)(μλ)(μλ¯k)mk+1\displaystyle\begin{pmatrix}\mathbf{0}\\ \mathbf{I}\end{pmatrix}+\sum_{k=1}^{N}\underset{\mu=\bar{\lambda}_{k}}{\mathrm{Res}}{\frac{\mathrm{e}^{-2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{L}}(x,t;\mu)\mathbf{f}^{{\dagger}}(\bar{\mu})}{(\mu-\lambda)(\mu-\bar{\lambda}_{k})^{m_{k}+1}}} (3.24)
k=N1+1NResμ=λk(1)mke2iθ(x,t;μ)𝐌~L(x,t;μ)𝐟T(μ)(μλ)(μ+λk)mk+1\displaystyle-\sum_{k=N_{1}+1}^{N}\underset{\mu=-\lambda_{k}}{\mathrm{Res}}{(-1)^{m_{k}}\frac{\mathrm{e}^{-2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{L}}(x,t;\mu)\mathbf{f}^{\mathrm{T}}(-\mu)}{(\mu-\lambda)(\mu+\lambda_{k})^{m_{k}+1}}}
=\displaystyle= (𝟎𝐈)+k=1N1mk!μmk(e2iθ(x,t;μ)𝐌~L(x,t;μ)𝐟(μ¯)μλ)|μ=λ¯k\displaystyle\begin{pmatrix}\mathbf{0}\\ \mathbf{I}\end{pmatrix}+\sum_{k=1}^{N}\frac{1}{m_{k}!}\partial_{\mu}^{m_{k}}\left(\frac{\mathrm{e}^{-2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{L}}(x,t;\mu)\mathbf{f}^{{\dagger}}(\bar{\mu})}{\mu-\lambda}\right)\bigg{|}_{\mu=\bar{\lambda}_{k}}
k=N1+1N(1)mkmk!μmk(e2iθ(x,t;μ)𝐌~L(x,t;μ)𝐟T(μ)μλ)|μ=λk\displaystyle-\sum_{k=N_{1}+1}^{N}\frac{(-1)^{m_{k}}}{m_{k}!}\partial_{\mu}^{m_{k}}\left(\frac{\mathrm{e}^{-2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{L}}(x,t;\mu)\mathbf{f}^{\mathrm{T}}(-\mu)}{\mu-\lambda}\right)\bigg{|}_{\mu=-\lambda_{k}}
=\displaystyle= (𝟎𝐈)+k=1N1mk!μmk(e2iθ(x,t;μ)𝐌~L(x,t;μ)𝐟(μ¯)μλ)|μ=λ¯k\displaystyle\begin{pmatrix}\mathbf{0}\\ \mathbf{I}\end{pmatrix}+\sum_{k=1}^{N}\frac{1}{m_{k}!}\partial_{\mu}^{m_{k}}\left(\frac{\mathrm{e}^{-2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{L}}(x,t;\mu)\mathbf{f}^{{\dagger}}(\bar{\mu})}{\mu-\lambda}\right)\bigg{|}_{\mu=\bar{\lambda}_{k}}
+k=N1+1N1mk!μmk(e2iθ(x,t;μ)𝐌~L(x,t;μ)𝐟T(μ)μ+λ)|μ=λk.\displaystyle+\sum_{k=N_{1}+1}^{N}\frac{1}{m_{k}!}\partial_{\mu}^{m_{k}}\left(\frac{\mathrm{e}^{2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{L}}(x,t;-\mu)\mathbf{f}^{\mathrm{T}}(\mu)}{\mu+\lambda}\right)\bigg{|}_{\mu=\lambda_{k}}.

More precisely,

𝐌~DR(x,t;λ)=\displaystyle\tilde{\mathbf{M}}_{\mathrm{\mathrm{DR}}}(x,t;\lambda)= 𝐈+k=1N1mk!μmk(e2iθ(x,t;μ)𝐌~DL(x,t;μ)𝐟(μ¯)μλ)|μ=λ¯k\displaystyle\mathbf{I}+\sum_{k=1}^{N}\frac{1}{m_{k}!}\partial_{\mu}^{m_{k}}\left(\frac{\mathrm{e}^{-2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{DL}}(x,t;\mu)\mathbf{f}^{{\dagger}}(\bar{\mu})}{\mu-\lambda}\right)\bigg{|}_{\mu=\bar{\lambda}_{k}}
+k=N1+1N1mk!μmk(e2iθ(x,t;μ)𝐌~DL(x,t;μ)𝐟T(μ)λ+μ)|μ=λk,\displaystyle+\sum_{k=N_{1}+1}^{N}\frac{1}{m_{k}!}\partial_{\mu}^{m_{k}}\left(\frac{\mathrm{e}^{2\mathrm{i}\theta(x,t;\mu)}\tilde{\mathbf{M}}_{\mathrm{\mathrm{DL}}}(x,t;-\mu)\mathbf{f}^{\mathrm{T}}(\mu)}{\lambda+\mu}\right)\bigg{|}_{\mu=\lambda_{k}}, (3.25a)
𝐌~DL(x,t;μ)=\displaystyle\tilde{\mathbf{M}}_{\mathrm{\mathrm{DL}}}(x,t;\mu)= l=1N1ml!νml(e2iθ(x,t;ν)𝐌~DR(x,t;ν)𝐟(ν)μν)|ν=λl\displaystyle\sum_{l=1}^{N}\frac{1}{m_{l}!}\partial_{\nu}^{m_{l}}\left(\frac{\mathrm{e}^{2\mathrm{i}\theta(x,t;\nu)}\tilde{\mathbf{M}}_{\mathrm{DR}}(x,t;\nu)\mathbf{f}(\nu)}{\mu-\nu}\right)\bigg{|}_{\nu=\lambda_{l}}
l=N1+1N1ml!μml(e2iθ(x,t;ν)𝐌~DR(x,t;ν)𝐟¯(ν¯)μ+ν)|ν=λ¯l.\displaystyle-\sum_{l=N_{1}+1}^{N}\frac{1}{m_{l}!}\partial_{\mu}^{m_{l}}\left(\frac{\mathrm{e}^{-2\mathrm{i}\theta(x,t;\nu)}\tilde{\mathbf{M}}_{\mathrm{DR}}(x,t;-\nu)\bar{\mathbf{f}}(\bar{\nu})}{\mu+\nu}\right)\bigg{|}_{\nu=\bar{\lambda}_{l}}. (3.25b)

Let

𝐡(λ)=e2iθ(λ)𝐟(λ),\displaystyle\mathbf{h}(\lambda)=\mathrm{e}^{2\mathrm{i}\theta(\lambda)}\mathbf{f}(\lambda), (3.26)
𝐅1(λ)=2i𝐌~DR(λ)𝐡(λ),\displaystyle\mathbf{F}_{1}(\lambda)=-2\mathrm{i}\tilde{\mathbf{M}}_{\mathrm{DR}}(\lambda)\mathbf{h}(\lambda), (3.27)
𝐅2(λ)=2i𝐌~DR(λ)𝐡¯(λ¯),\displaystyle\mathbf{F}_{2}(\lambda)=2\mathrm{i}\tilde{\mathbf{M}}_{\mathrm{DR}}(-\lambda)\bar{\mathbf{h}}(\bar{\lambda}), (3.28)
𝐆1(λ)=\displaystyle\mathbf{G}_{1}(\lambda)= 𝐅1(λ)+2i𝐡(λ)+k=1Nl=1Nμmkνmlmk!ml!(𝐅1(ν)𝐡(μ¯)𝐡(λ)(λμ)(μν))|μ=λ¯kν=λl\displaystyle\mathbf{F}_{1}(\lambda)+2\mathrm{i}\mathbf{h}(\lambda)+\sum_{k=1}^{N}\sum_{l=1}^{N}\frac{\partial_{\mu}^{m_{k}}\partial_{\nu}^{m_{l}}}{m_{k}!m_{l}!}\left(\frac{\mathbf{F}_{1}(\nu)\mathbf{h}^{{\dagger}}(\bar{\mu})\mathbf{h}(\lambda)}{(\lambda-\mu)(\mu-\nu)}\right)\bigg{|}_{\begin{subarray}{c}\mu=\bar{\lambda}_{k}\\ \nu=\lambda_{l}\end{subarray}}
+k=1Nl=N1+1Nμmkνmlmk!ml!(𝐅2(ν)𝐡(μ¯)𝐡(λ)(λμ)(μ+ν))|μ=λ¯kν=λ¯l\displaystyle+\sum_{k=1}^{N}\sum_{l=N_{1}+1}^{N}\frac{\partial_{\mu}^{m_{k}}\partial_{\nu}^{m_{l}}}{m_{k}!m_{l}!}\left(\frac{\mathbf{F}_{2}(\nu)\mathbf{h}^{{\dagger}}(\bar{\mu})\mathbf{h}(\lambda)}{(\lambda-\mu)(\mu+\nu)}\right)\bigg{|}_{\begin{subarray}{c}\mu=\bar{\lambda}_{k}\\ \nu=\bar{\lambda}_{l}\end{subarray}}
+k=N1+1Nl=1Nμmkνmlmk!ml!(𝐅1(ν)𝐡T(μ)𝐡(λ)(λ+μ)(μ+ν))|μ=λkν=λl\displaystyle+\sum_{k=N_{1}+1}^{N}\sum_{l=1}^{N}\frac{\partial_{\mu}^{m_{k}}\partial_{\nu}^{m_{l}}}{m_{k}!m_{l}!}\left(\frac{\mathbf{F}_{1}(\nu)\mathbf{h}^{\mathrm{T}}(\mu)\mathbf{h}(\lambda)}{(\lambda+\mu)(\mu+\nu)}\right)\bigg{|}_{\begin{subarray}{c}\mu=\lambda_{k}\\ \nu=\lambda_{l}\end{subarray}} (3.29)
+k=N1+1Nl=N1+1Nμmkνmlmk!ml!(𝐅2(ν)𝐡T(μ)𝐡(λ)(λ+μ)(μν))|μ=λkν=λ¯l,\displaystyle+\sum_{k=N_{1}+1}^{N}\sum_{l=N_{1}+1}^{N}\frac{\partial_{\mu}^{m_{k}}\partial_{\nu}^{m_{l}}}{m_{k}!m_{l}!}\left(\frac{\mathbf{F}_{2}(\nu)\mathbf{h}^{\mathrm{T}}(\mu)\mathbf{h}(\lambda)}{(\lambda+\mu)(\mu-\nu)}\right)\bigg{|}_{\begin{subarray}{c}\mu=\lambda_{k}\\ \nu=\bar{\lambda}_{l}\end{subarray}},
𝐆2(λ)=\displaystyle\mathbf{G}_{2}(\lambda)= 𝐅2(λ)2i𝐡¯(λ¯)+k=1Nl=1Nμmkνmlmk!ml!(𝐅1(ν)𝐡(μ¯)𝐡¯(λ¯)(λ+μ)(μν))|μ=λ¯kν=λl\displaystyle\mathbf{F}_{2}(\lambda)-2\mathrm{i}\bar{\mathbf{h}}(\bar{\lambda})+\sum_{k=1}^{N}\sum_{l=1}^{N}\frac{\partial_{\mu}^{m_{k}}\partial_{\nu}^{m_{l}}}{m_{k}!m_{l}!}\left(\frac{\mathbf{F}_{1}(\nu)\mathbf{h}^{{\dagger}}(\bar{\mu})\bar{\mathbf{h}}(\bar{\lambda})}{(\lambda+\mu)(\mu-\nu)}\right)\bigg{|}_{\begin{subarray}{c}\mu=\bar{\lambda}_{k}\\ \nu=\lambda_{l}\end{subarray}}
+k=1Nl=N1+1Nμmkνmlmk!ml!(𝐅2(ν)𝐡(μ¯)𝐡¯(λ¯)(λ+μ)(μ+ν))|μ=λ¯kν=λ¯l\displaystyle+\sum_{k=1}^{N}\sum_{l=N_{1}+1}^{N}\frac{\partial_{\mu}^{m_{k}}\partial_{\nu}^{m_{l}}}{m_{k}!m_{l}!}\left(\frac{\mathbf{F}_{2}(\nu)\mathbf{h}^{{\dagger}}(\bar{\mu})\bar{\mathbf{h}}(\bar{\lambda})}{(\lambda+\mu)(\mu+\nu)}\right)\bigg{|}_{\begin{subarray}{c}\mu=\bar{\lambda}_{k}\\ \nu=\bar{\lambda}_{l}\end{subarray}}
+k=N1+1Nl=1Nμmkνmlmk!ml!(𝐅1(ν)𝐡T(μ)𝐡¯(λ¯)(λμ)(μ+ν))|μ=λkν=λl\displaystyle+\sum_{k=N_{1}+1}^{N}\sum_{l=1}^{N}\frac{\partial_{\mu}^{m_{k}}\partial_{\nu}^{m_{l}}}{m_{k}!m_{l}!}\left(\frac{\mathbf{F}_{1}(\nu)\mathbf{h}^{\mathrm{T}}(\mu)\bar{\mathbf{h}}(\bar{\lambda})}{(\lambda-\mu)(\mu+\nu)}\right)\bigg{|}_{\begin{subarray}{c}\mu=\lambda_{k}\\ \nu=\lambda_{l}\end{subarray}} (3.30)
+k=N1+1Nl=N1+1Nμmkνmlmk!ml!(𝐅2(ν)𝐡T(μ)𝐡¯(λ¯)(λμ)(μν))|μ=λkν=λ¯l.\displaystyle+\sum_{k=N_{1}+1}^{N}\sum_{l=N_{1}+1}^{N}\frac{\partial_{\mu}^{m_{k}}\partial_{\nu}^{m_{l}}}{m_{k}!m_{l}!}\left(\frac{\mathbf{F}_{2}(\nu)\mathbf{h}^{\mathrm{T}}(\mu)\bar{\mathbf{h}}(\bar{\lambda})}{(\lambda-\mu)(\mu-\nu)}\right)\bigg{|}_{\begin{subarray}{c}\mu=\lambda_{k}\\ \nu=\bar{\lambda}_{l}\end{subarray}}.

Substituting Eq.(3.25) into Eq.(3.25), we can conclude that

𝐆1(x,t;λ)=𝟎,(x,t;λ)×+×,λλ¯1,,λ¯N,λN1+1,,λN,\displaystyle\mathbf{G}_{1}(x,t;\lambda)=\mathbf{0},\quad(x,t;\lambda)\in\mathbb{R}\times\mathbb{R^{+}}\times\mathbb{C},\lambda\neq\bar{\lambda}_{1},\ldots,\bar{\lambda}_{N},-\lambda_{N_{1}+1},\ldots,-\lambda_{N}, (3.31)
𝐆2(x,t;λ)=𝟎,(x,t;λ)×+×,λλ¯1,,λ¯N,λN1+1,,λN.\displaystyle\mathbf{G}_{2}(x,t;\lambda)=\mathbf{0},\quad(x,t;\lambda)\in\mathbb{R}\times\mathbb{R^{+}}\times\mathbb{C},\lambda\neq-\bar{\lambda}_{1},\ldots,-\bar{\lambda}_{N},\lambda_{N_{1}+1},\ldots,\lambda_{N}. (3.32)
Theorem 3.5.

In the reflectionless case, the solution to the vmKdV equation (1.1) can be articulated as:

𝐪(x,t)=k=1N𝐅1(mk)(x,t;λk)mk!+k=N1+1N𝐅2(mk)(x,t;λ¯k)mk!,\mathbf{q}(x,t)=\sum_{k=1}^{N}\frac{\mathbf{F}_{1}^{(m_{k})}(x,t;\lambda_{k})}{m_{k}!}+\sum_{k=N_{1}+1}^{N}\frac{\mathbf{F}_{2}^{(m_{k})}(x,t;\bar{\lambda}_{k})}{m_{k}!}, (3.33)

where the set {{𝐅1(jk)(x,t;λk)}k=1,,Njk=0,,mk,{𝐅2(jk)(x,t;λ¯k)}k=N1+1,,Njk=0,,mk}\bigg{\{}\Big{\{}\mathbf{F}_{1}^{(j_{k})}(x,t;\lambda_{k})\Big{\}}_{\begin{subarray}{c}k=1,\ldots,N\\ j_{k}=0,\ldots,m_{k}\end{subarray}},\Big{\{}\mathbf{F}_{2}^{(j_{k})}(x,t;\bar{\lambda}_{k})\Big{\}}_{\begin{subarray}{c}k=N_{1}+1,\ldots,N\\ j_{k}=0,\ldots,m_{k}\end{subarray}}\bigg{\}} denotes the solution to the ensuing algebraic system

{𝐆1(j1)(x,t;λ1)j1!=𝟎,j1=0,1,,m1,𝐆1(jN)(x,t;λN)jN!=𝟎,jN=0,1,,mN,𝐆2(jN1+1)(x,t;λ¯N1+1)jN1+1!=𝟎,jN1+1=0,1,,mN1+1,𝐆2(jN)(x,t;λ¯N)jN!=𝟎,jN=0,1,,mN.\displaystyle\begin{cases}\frac{\mathbf{G}_{1}^{(j_{1})}(x,t;\lambda_{1})}{j_{1}!}=\mathbf{0},&\text{$j_{1}=0,1,\ldots,m_{1}$},\\ {\qquad}\vdots\\ \frac{\mathbf{G}_{1}^{(j_{N})}(x,t;\lambda_{N})}{j_{N}!}=\mathbf{0},&\text{$j_{N}=0,1,\ldots,m_{N}$},\\ \frac{\mathbf{G}_{2}^{(j_{N_{1}+1})}(x,t;\bar{\lambda}_{N_{1}+1})}{j_{N_{1}+1}!}=\mathbf{0},&\text{$j_{N_{1}+1}=0,1,\ldots,m_{N_{1}+1}$},\\ {\qquad}\vdots\\ \frac{\mathbf{G}_{2}^{(j_{N})}(x,t;\bar{\lambda}_{N})}{j_{N}!}=\mathbf{0},&\text{$j_{N}=0,1,\ldots,m_{N}$}.\\ \end{cases} (3.34)

3.3 Some explicit solutions

In the subsequent analysis, we will delve into the numerical characteristics of the multi-pole soliton solutions for the vmKdV equation (1.1) in a three-component system. This exploration will involve selecting various parameter values to understand how they influence the behavior and properties of the solutions. By examining different scenarios with distinct parameter sets, we aim to uncover the richness and complexity of the solutions to this nonlinear partial differential equation. Our goal is to gain a deeper understanding of the vmKdV equation’s solutions and their implications in the context of multi-component systems.

For N=1N=1, we have derived a suite of soliton solutions with varying complexity: a sixth-order pole soltion solution is presented in Figure 1, a third-order pole breather solution in Figure 2, and a third-order pole chain-type soliton solution in Figure 3. The density structures of (|q1|,|q2|,|q3|)(|q_{1}|,|q_{2}|,|q_{3}|) clearly demonstrate a pronounced dependence on the parameters we have meticulously selected. Specifically, varying configurations result in a different number of wave packets, emphasizing the pivotal role of parameter selection in shaping the soliton’s composition, and also suggesting the subtle interplay and mutual influences among the components.

For N=2N=2, we have derived a suite of soliton solutions with varying complexity: collision of a second-order pole soliton and a breather is presented in Figure 4, collision of two second-order pole soliton solutions in Figure 5. The density structures of (|q1|,|q2|,|q3|)(|q_{1}|,|q_{2}|,|q_{3}|) reveals distinct behaviors among the three components following the collision of two solitons: some retain their energy post-collision, others coalesce from two distinct wave packets into a single entity, and still others vanish completely after the interaction.

Refer to caption
Figure 1: Density structures of three components |q1||q_{1}|, |q2||q_{2}| and |q3||q_{3}| (from left to right) as N=1N=1, λ1=i2\lambda_{1}=\frac{\mathrm{i}}{2}, m1=5m_{1}=5, 𝐟(λ)=(1,(λλ1)2,(λλ1)4)T\mathbf{f}(\lambda)=\left(1,(\lambda-\lambda_{1})^{2},(\lambda-\lambda_{1})^{4}\right)^{\mathrm{T}}.
Refer to caption
Figure 2: Density structures of three components |q1||q_{1}|, |q2||q_{2}| and |q3||q_{3}| (from left to right) as N=1N=1, λ1=1+i4\lambda_{1}=\frac{1+\mathrm{i}}{4}, m1=2m_{1}=2, 𝐟(λ)=(1,λλ1,(λλ1)2)T\mathbf{f}(\lambda)=\left(1,\lambda-\lambda_{1},(\lambda-\lambda_{1})^{2}\right)^{\mathrm{T}}.
Refer to caption
Figure 3: Density structures of three components |q1||q_{1}|, |q2||q_{2}| and |q3||q_{3}| (from left to right) as N=1N=1, λ1=120+i2\lambda_{1}=\frac{1}{20}+\frac{\mathrm{i}}{2}, m1=2m_{1}=2, 𝐟(λ)=(1,λλ1,(λλ1)2)T\mathbf{f}(\lambda)=\left(1,\lambda-\lambda_{1},(\lambda-\lambda_{1})^{2}\right)^{\mathrm{T}}.
Refer to caption
Figure 4: Density structures of three components |q1||q_{1}|, |q2||q_{2}| and |q3||q_{3}| (from left to right) as N=2N=2, λ1=i2\lambda_{1}=\frac{\mathrm{i}}{2}, λ2=14+i4\lambda_{2}=\frac{1}{4}+\frac{\mathrm{i}}{4}, m1=1m_{1}=1, m2=0m_{2}=0, 𝐟(λ)=(λ2,1,(λλ1)2)T\mathbf{f}(\lambda)=\left(\lambda^{2},1,(\lambda-\lambda_{1})^{2}\right)^{\mathrm{T}}.
Refer to caption
Figure 5: Density structures of three components |q1||q_{1}|, |q2||q_{2}| and |q3||q_{3}| (from left to right) as N=2N=2, λ1=i2\lambda_{1}=\frac{\mathrm{i}}{2}, λ2=i4\lambda_{2}=\frac{\mathrm{i}}{4}, m1=1m_{1}=1, m2=1m_{2}=1, 𝐟(λ)=(λ2,(λλ1)2,(λλ2)2)T\mathbf{f}(\lambda)=\left(\lambda^{2},(\lambda-\lambda_{1})^{2},(\lambda-\lambda_{2})^{2}\right)^{\mathrm{T}}.

Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 12171439 and 12101190).

Data availability

All data generated or analyzed during this study are including in this published article.

Declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  • [1] Newell A.C.: Solitons in Mathematics and Physics. SIAM, Philadelphia (1985)
  • [2] Hasegawa A., Kodama Y.: Solitons in Optical Communications. Oxford University Press, New York (1995)
  • [3] Kuznetsov E.A., Rubenchik A.M., Zakharov V.E.: Soliton stability in plasmas and hydrodynamics. Phys. Rep. 142, 103-165 (1986)
  • [4] Pathak P., Sharma S.K., Nakamura Y., Bailung H.: Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions. Phys. Lett. A 381, 4011-4018 (2017)
  • [5] Cheemaa N., Seadawy A.R., Sugati T.G., Baleanu D.: Study of the dynamical nonlinear modified Korteweg–de Vries equation arising in plasma physics and its analytical wave solutions. Results Phys.19, 103480 (2020)
  • [6] Pitaevskii L., Stringari S.: Bose–Einstein Condensation. Oxford University Press, Oxford (2003)
  • [7] Osborne A.R.: Nonlinear Ocean Waves and the Inverse Scattering Transform. Elsevier, New York (2010)
  • [8] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M.: Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095-1097 (1967)
  • [9] Ablowitz M.J., Kaup D.J., Newell A.C., Segur H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249-315 (1974)
  • [10] Ablowitz M.J., Segur H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)
  • [11] Hirota R.: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192-1194 (1971)
  • [12] Hirota R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)
  • [13] Matveev V.B., Salle M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)
  • [14] Gu C.H., Hu H.S., Zhou Z.X.: Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry. Springer, Dordrecht (2005)
  • [15] Guo B.L., Ling L.M., Liu Q.P.: High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations. Stud. Appl. Math. 130, 317-344 (2013)
  • [16] Novikov S., Manakov S.V., Pitaevskiĭ L.P., Zakharov V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau Press, New York (1984)
  • [17] Its A.R.: The Riemann–Hilbert problem and integrable systems. Notices Amer. Math. Soc. 50, 1389-1400 (2003)
  • [18] Zakharov V.E., Shabat A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Phys. JETP 34, 62-69 (1972)
  • [19] Olmedilla E.: Multiple pole solutions of the nonlinear Schrödinger equation. Phys. D 25, 330-346 (1987)
  • [20] Aktosun T., Demontis F., van der Mee C.: Exact solutions to the focusing nonlinear Schrödinger equation. Inverse Prob. 23, 2171-2195 (2007)
  • [21] Schiebold C.: Asymptotics for the multiple pole solutions of the nonlinear Schrödinger equation. Nonlinearity 30, 2930-2981 (2017)
  • [22] Zhang Y.S., Tao X.X., Yao T.T., He J.S.: The regularity of the multiple higher-order poles solitons of the NLS equation. Stud. Appl. Math. 145, 812-827 (2020)
  • [23] Bilman D., Buckingham R.: Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation. J. Nonlinear Sci.29 2185-2229 (2019)
  • [24] Bilman D., Buckingham R., Wang D.S.: Far-field asymptotics for multiple-pole solitons in the large-order limit. J. Differ. Equ. 297, 320-369 (2021)
  • [25] Wadati M., Ohkuma K.: Multiple-pole solutions of the modified Korteweg–de Vries equation. J. Phys. Soc. Jpn. 51, 2029-2035 (1982)
  • [26] Zhang Y.S., Tao X.X., Xu S.W.: The bound-state soliton solutions of the complex modified KdV equation. Inverse Prob. 36, 065003 (2020)
  • [27] Tsuru H., Wadati M.: The multiple pole solutions of the sine-Gordon equation. J. Phys. Soc. Jpn. 53, 2908-2921 (1984)
  • [28] Chen M.S., Fan E.G.: Riemann–Hilbert approach for discrete sine-Gordon equation with simple and double poles. Stud. Appl. Math. 148, 1180–1207 (2022)
  • [29] Liu H., Shen J., Geng X.G.: Riemann–Hilbert method to the Ablowitz–Ladik equation: higher-order cases. Stud. Appl. Math. 153, e12748 (2024)
  • [30] Liu H., Zhou P.P., Geng X.G.: Inverse scattering transform for the Sasa–Satsuma equation: multiple-pole case of NN pairs. Z. Angew. Math. Phys. 75, 193 (2024)
  • [31] Liu H., Shen J., Geng X.G.: Multiple higher-order pole solutions in spinor Bose–Einstein condensates. J. Nonlinear Sci. 34, 48 (2024)
  • [32] Yao R.X., Qu C.Z., Li Z.B.: Painlevé property and conservation laws of multi-component mKdV equations. Chaos Solitons Fractals 22, 723-730 (2004)
  • [33] Zhang H.Q., Tian B., Xu T., Li H., Zhang C., Zhang H.: Lax pair and Darboux transformation for multi-component modified Korteweg–de Vries equations. J. Phys. A 41, 355210 (2008)
  • [34] Geng X.G., Zhai Y.Y., Dai H.H.: Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy. Adv. Math. 263, 123-153 (2014)
  • [35] Tian S.F.: Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method. J. Phys. A 50, 395204 (2017)
  • [36] Chang X.K., He Y., Hu X.B., Li S.H., Tam H.W., Zhang Y.N.: Coupled modified KdV equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property. Sci. China Math. 61, 1063-1078 (2018)
  • [37] Pelinovsky D.E., Stepanyants Y.A.: Helical solitons in vector modified Korteweg–de Vries equations. Phys. Lett. A 382, 3165-3171 (2018)
  • [38] Geng X.G., Chen M.M., Wang K.D.: Long-time asymptotics of the coupled modified Korteweg–de Vries equation. J. Geom. Phys. 142, 151-167 (2019)
  • [39] Wurile, Zhaqilao: Darboux transformation and soliton solutions for a three-component modified Korteweg–de Vries equation. Wave Motion 88, 73-84 (2019)
  • [40] Adamopoulou P., Papamikos G.: Drinfel’d–Sokolov construction and exact solutions of vector modified KdV hierarchy. Nuclear Phys. B 952, 114933 (2020)
  • [41] Xiao Y., Fan E.G., Liu P.: Inverse scattering transform for the coupled modified Korteweg–de Vries equation with nonzero boundary conditions. J. Math. Anal. Appl. 504, 125567 (2021)
  • [42] Malham S.J.A.: The non-commutative Korteweg–de Vries hierarchy and combinatorial Pöppe algebra. Phys. D 434, 133228 (2022)
  • [43] Liu N., Zhao X.D., Guo B.L.: Long-time asymptotic behavior for the matrix modified Korteweg–de Vries equation. Phys. D 443, 133560 (2023)
  • [44] Ye R.S., Zhang Y.: Initial-boundary value problems for the two-component complex modified Korteweg–de Vries equation on the interval. Discrete Contin. Dyn. Syst. Ser. S 16, 671-707 (2023)
  • [45] Wong C.N., Yin H.M., Chow K.W.: Transient modes for the coupled modified Korteweg–de Vries equations with negative cubic nonlinearity: stability and applications of breathers. Chaos 34, 083132 (2024)
  • [46] Liu H., Geng X.G.: Initial-boundary problems for the vector modified Korteweg–de Vries equation via Fokas unified transform method. J. Math. Anal. Appl. 440, 578-596 (2016)
  • [47] Wang X.B., Han B.: Application of the Riemann–Hilbert method to the vector modified Korteweg–de Vries equation. Nonlinear Dyn. 99, 1363-1377 (2020)
  • [48] Liu H., Shen J., Geng X.G.: Inverse scattering transformation for the NN-component focusing nonlinear Schrödinger equation with nonzero boundary conditions. Lett. Math. Phys. 113, 23 (2023)
  • [49] Zhou X.: The Riemann–Hilbert problem and inverse scattering. SIAM J. Math. Anal. 20, 966-986 (1989)
  • [50] Fokas A.S.: A unified approach to boundary value problems. SIAM, Philadelphia (2008)