This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Reduction principle for functionals of strong-weak dependent vector random fields

Andriy Olenkolabel=e1]a.olenko@latrobe.edu.au [    Dareen Omarilabel=e2]omari.d@students.latrobe.edu.au [ [ Department of Mathematics and Statistics
La Trobe University
Melbourne, VIC, 3086, Australia

Abstract

We prove the reduction principle for asymptotics of functionals of vector random fields with weakly and strongly dependent components. These functionals can be used to construct new classes of random fields with skewed and heavy-tailed distributions. Contrary to the case of scalar long-range dependent random fields, it is shown that the asymptotic behaviour of such functionals is not necessarily determined by the terms at their Hermite rank. The results are illustrated by an application to the first Minkowski functional of the Student random fields. Some simulation studies based on the theoretical findings are also presented.

60G60, 60F99, 60B99, 60D99,
Reduction, long-range dependence, non-central limit theorem, random fields, first Minkowski functional, Student random fields.,
keywords:
[class=MSC]
keywords:
\arxiv

arXiv:1803.11271 \startlocaldefs \endlocaldefs

t1Supplementary Materials R code used for simulations in this article is available in the folder “Research materials” from \hrefhttps://sites.google.com/site/olenkoandriy/.

and

a]La Trobe University

1 Introduction

In various applications researchers often encounter cases involving dependent observations over time or space. Dependence properties of a random process are usually characterized by the asymptotic behaviour of its covariance function. In particular, a stationary random process η1(x),x\eta_{1}(x),\ x\in\mathbb{R}, is called weakly (short-range) dependent if its covariance function B(x)=Cov(η1(x+y),η1(y))B(x)=\textbf{Cov}(\eta_{1}(x+y),\eta_{1}(y)) is integrable, i.e. |B(x)|𝑑x<\int_{\mathbb{R}}|B(x)|dx<\infty. On the other hand, η1(x)\eta_{1}(x) possesses strong (long-range) dependence if its covariance function decays slowly and is non-integrable. An alternative definition of long-range dependence is based on singular properties of the spectral density of a random process, such as unboundedness at zero (see Doukhan et al. (2002); Souza (2008); Leonenko and Olenko (2013)).

Long-range dependent processes play a significant role in a wide range of areas, including finance, geophysics, astronomy, hydrology, climate and engineering (see Leonenko (1999); Ivanov and Leonenko (1989); Doukhan et al. (2002)). In statistical applications, long-range dependent models require developing new statistical methodologies, limit theorems and parameter estimates compared to the weakly dependent case (see Ivanov and Leonenko (1989); Worsley (1994); Leonenko and Olenko (2013); Beran et al. (2013)).

In statistical inference of random fields, limit theorems are the central topic. These theorems play a crucial role in developing asymptotic tests in the large sample theory. The central limit theorem (CLT) holds under the classical normalisation nd/2n^{-d/2} when the summands or integrands are weakly dependent random processes or fields. This result was proved by Breuer and Major (1983) for nonlinear functionals of Gaussian random fields. A generalisation for stationary Gaussian vector processes was obtained in de Naranjo (1995), for integral functionals of Gaussian processes or fields in Chambers and Slud (1989)Hariz (2002)Leonenko and Olenko (2014), for quasi-associated random fields under various conditions in Bulinski et al. (2012) and Demichev (2015). Some other CLTs for functionals of Gaussian processes or fields can be found in Doukhan and Louhichi (1999); Coulon-Prieur and Doukhan (2000) and Kratz and Vadlamani (2018).

The non-central limit theorems arise in the presence of long-range dependence. They use normalising coefficients different than in the CLT and have non-Gaussian limits. These limits are known as Hermite type distributions. A non-Gaussian asymptotic was first obtained in Rosenblatt (1961) as a limit for quadratic functionals of stationary Gaussian sequences. The article Taqqu (1975) continued this research and investigated weak limits of partial sums of Gaussian processes using characteristic functions. The Hermite processes of the first two orders were used. Later on, Dobrushin and Major (1979) and Taqqu (1979) established pioneering results in which asymptotics were presented in terms of multiple Wiener-Itô stochastic integrals. A generalisation for stationary Gaussian sequences of vectors was obtained in Arcones (1994) and Major (2019). Multivariate limit theorems for functionals of stationary Gaussian series were addressed under long-range dependence, short-range dependence and a mixture of both in Bai and Taqqu (2013). The asymtotices for Minkowski functionals of stationary and isotropic Gaussian random fields with dependent structures were studied in Ivanov and Leonenko (1989). Leonenko and Olenko (2014) obtained the limit theorems for sojourn measures of heavy-tailed random fields (Student and Fisher-Snedecor) under short or long-range dependence assumptions. Excellent surveys of limit theorems for shortly and strongly dependent random fields can be found in  Anh et al. (2015); Doukhan et al. (2002); Ivanov and Leonenko (1989); Leonenko (1999); Spodarev (2014).

The reduction theorems play an important role in studying the asymptotics for random processes and fields. These theorems show that the asymptotic distributions for functionals of random processes or fields coincide with distributions of other functionals that are much simpler and easier to analyse. The CLT can be considered as the “extreme” reduction case, when, due to weak dependence and despite the type of functionals and components distributions, asymptotics are reduced to the Gaussian behaviour. The classical non-central limit theorems are based on another “proper” reduction principle, when the asymptotic behaviour is reduced only to the leading Hermite term of nonlinear functionals. Recently, Olenko and Omari (2019) proved the reduction principle for functionals of strongly dependent vector random fields. Components of such vector fields can possess different long-range dependences. It was shown that, in contrast to the scalar cases, the limits can be degenerated or can include not all leading Hermite terms.

The available literature, except a few publications, addresses limit theorems and reduction principles for functionals of weakly or strongly dependent random fields separately. For scalar-valued random fields it is sufficient as such fields can exhibit only one type of dependence. However, for vector random fields there are various cases with different dependence structures of components. Such scenarios are important when one aggregates spatial data with different properties. For example, brain images of different patients or GIS data from different regions. Another reason for studying such models is constructing scalar random fields by a nonlinear transformation of a vector field. This approach was used to obtain non-Gaussian fields with some desirable properties, for example, skewed or heavy tailed marginal distributions, see Example 1, Theorem 5 and Leonenko and Olenko (2014).

This paper considers functionals of vector random fields which have both strongly and weakly dependent components. The results in the literature dealt with cases where the interplay between terms at the Hermite rank level and the memory parameter (covariance decay rate) of a Gaussian field completely determines the asymptotic behavior. This paper shows that in more general settings terms at non-Hermite rank levels can interplay with the memory parameter to determine the limit. As an application of the new reduction principle we provide some limit theorems for vector random fields. In particular, we show that it is possible to obtain non-Gaussian behaviour for the first Minkowski functional of the Student random field built on different memory type components. It contrasts to the known results about the cases of same type memory components in Leonenko and Olenko (2014) where, despite short or long range dependence, only the Gaussian limit is possible.

The remainder of the paper is organised as follows. In Section 2 we outline basic notations and definitions that are required in the subsequent sections. Section 3 presents assumptions and main results for functionals of vector random fields with strongly and weakly dependent components. Sections 4 gives the proofs. Section 5 demonstrates some numerical studies. Short conclusions and some new problems are presented in Section 6.

2 Notations

This section presents basic notations and definitions of the random field theory and multidimensional Hermite expansions. Also, we introduce the definition and basic properties of the first Minkowski functional (see Adler and Taylor (2009)). Denote by |||\cdot| and \|\cdot\| the Lebesgue measure and the Euclidean distance in d\mathbb{R}^{d}, respectively. The symbol CC denotes constants that are not important for our exposition. Moreover, the same symbol may be used for different constants appearing in the same proof. We assume that all random fields are defined on the same probability space (Ω,,P)\left(\Omega,\mathcal{F},\textbf{P}\right).

Definition 1.

Bingham et al. (1989) A measurable function L:(0,)(0,){L}:(0,\infty)\rightarrow(0,\infty) is slowly varying at infinity if for all t>0t>0, limrL(tr)/L(r)=1.\lim_{r\rightarrow\infty}{L}(tr)/{L}(r)=1.

A real-valued random field η1(x),xd\eta_{1}\left(x\right),x\in\mathbb{R}^{d}, satisfying Eη12(x)<\textbf{E}\eta_{1}^{2}(x)<\infty is said to be homogeneous and isotropic if its mean function is a constant and the covariance function B(x,y)B\left(x,y\right) depends only on the Euclidean distance xy\left\|{x-y}\right\| between xx and yy.

Let η1(x)\eta_{1}(x), xdx\in\mathbb{R}^{d}, be a measurable mean square continuous zero-mean homogeneous isotropic real-valued random field (see Ivanov and Leonenko (1989); Leonenko (1999)) with the covariance function

B(r):=Cov(η1(x),η1(y))\displaystyle B\left(r\right):=\textbf{Cov}(\eta_{1}(x),\eta_{1}(y)) =02(d2)/2Γ(d2)J(d2)/2(rz)\displaystyle=\int_{0}^{\infty}2^{(d-2)/2}\Gamma\bigg{(}\frac{d}{2}\bigg{)}J_{(d-2)/2}(rz)
×(rz)(2d)/2dΦ(z),x,yd,\displaystyle\times(rz)^{(2-d)/2}d\Phi\left(z\right),\quad x,\ y\in\mathbb{R}^{d},

where r=xyr=\rVert x-y\lVert and Jν()J_{\nu}(\cdot) is the Bessel function of the first kind of order ν>1/2\nu>-1/2. The finite measure Φ()\Phi\left(\cdot\right) is called the isotropic spectral measure of the random field η1(x)\eta_{1}\left(x\right), xdx\in\mathbb{R}^{d}.

The spectrum of the random field η1(x)\eta_{1}(x) is absolutely continuous if there exists a function φ(z)\varphi(z), z[0,)z\in[0,\infty), such that

Φ(z)=2πd/2Γ1(d/2)0zud1φ(u)𝑑u,ud1φ(u)L1([0,)).\Phi(z)=2\pi^{d/2}\Gamma^{-1}(d/2)\int_{0}^{z}u^{d-1}\varphi(u)du,\quad u^{d-1}\varphi(u)\in L_{1}([0,\infty)).

The function φ()\varphi(\cdot) is called the isotropic spectral density of the random field η1(x)\eta_{1}\left(x\right).

A random field η1(x)\eta_{1}\left(x\right) with an absolutely continuous spectrum has the following isonormal spectral representation

η1(x)=deiλ,xφ(λ)W(dλ),\eta_{1}\left(x\right)=\int_{\mathbb{R}^{d}}e^{i\langle\lambda,x\rangle}\sqrt{\varphi(\rVert\lambda\lVert)}W(d\lambda),

where W()W(\cdot) is the complex Gaussian white noise random measure on d\mathbb{R}^{d}.

Let Δd\Delta\subset\mathbb{R}^{d} be a Jordan-measurable compact connected set with |Δ|>0|\Delta|>0, and Δ\Delta contains the origin in its interior. Also, assume that Δ(r)\Delta(r), r>0r>0, is the homothetic image of the set Δ\Delta, with the centre of homothety in the origin and the coefficient r>0r>0, that is, |Δ(r)|=rd|Δ||\Delta(r)|=r^{d}|\Delta|.

Definition 2.

The first Minkowski functional is defined as

Mr{η1}:=|{xΔ(r):η1(x)>a}|=Δ(r)χ(η1(x)>a)𝑑x,M_{r}\left\{\eta_{1}\right\}:=|\left\{x\in\Delta(r):\eta_{1}(x)>a\right\}|=\int_{\Delta(r)}\chi(\eta_{1}(x)>a)dx,

where χ()\chi(\cdot) is the indicator function and aa is a constant.

The functional Mr{η1}M_{r}\left\{\eta_{1}\right\} has a geometrical meaning, namely, the sojourn measure of the random field η1(x)\eta_{1}(x).

In the following we will use integrals of the form Δ(r)Δ(r)Q(xy)𝑑x𝑑y\int_{\Delta(r)}\int_{\Delta(r)}Q(\|x-y\|)dxdy with various integrable Borel functions Q()Q(\cdot). Let two independent random vectors UU and VV in d\mathbb{R}^{d} be uniformly distributed inside the set Δ(r)\Delta(r). Consider a function Q:Q:\mathbb{R}\rightarrow\mathbb{R}. Then, we have the following representation

Δ(r)Δ(r)Q(xy)𝑑x𝑑y\displaystyle\int_{\Delta(r)}\int_{\Delta(r)}Q(\|x-y\|)dxdy =|Δ|2r2dEQ(UV)\displaystyle=|\Delta|^{2}r^{2d}\textbf{E}Q(\|U-V\|)
=|Δ|2r2d0diam{Δ(r)}Q(ρ)ψΔ(r)(ρ)𝑑ρ,\displaystyle=|\Delta|^{2}r^{2d}\int_{0}^{diam\{\Delta(r)\}}Q(\rho)\psi_{\Delta(r)}(\rho)d\rho, (2.1)

where ψΔ(r)(ρ)\psi_{\Delta(r)}(\rho), ρ0\rho\geq 0, denotes the density function of the distance UV\|U-V\| between UU and VV.

Using (2) for r=1r=1 and Q(ρ)=1ρα0Q(\rho)=\frac{1}{\rho^{\alpha_{0}}} one obtains for α0<d\alpha_{0}<d

ΔΔdxdyxyα0=ΔΔχ(xydiam(Δ))xyα0𝑑x𝑑y\displaystyle\int_{\Delta}\int_{\Delta}\dfrac{dxdy}{\|x-y\|^{\alpha_{0}}}=\int_{\Delta}\int_{\Delta}\chi\left(\|x-y\|\leq diam(\Delta)\right)\|x-y\|^{-\alpha_{0}}dxdy
C|Δ|0diam(Δ)ρd1α0𝑑ρ=C|Δ|(diam(Δ))dα0dα0<.\displaystyle\leq C|\Delta|\int_{0}^{diam(\Delta)}\rho^{d-1-\alpha_{0}}d\rho=C|\Delta|\dfrac{(diam(\Delta))^{d-\alpha_{0}}}{d-\alpha_{0}}<\infty. (2.2)

Let (η1,,η2p)\left(\eta_{1},\ldots,\eta_{2p}\right) be a 2p2p-dimensional zero-mean Gaussian vector and Hk(u)H_{k}(u), k0k\geq 0, uu\in\mathbb{R}, be the Hermite polynomials, see Taqqu (1977).

Consider

ev(ω):=j=1pHkj(ωj),e_{v}(\omega):=\prod_{j=1}^{p}H_{k_{j}}(\omega_{j}),

where ω=(ω1,,ωp)p\omega=(\omega_{1},\dots,\omega_{p})^{\prime}\in\mathbb{R}^{p}, v=(k1,,kp)p,v=(k_{1},\dots,k_{p})\in\mathbb{Z}^{p}, and all kj0k_{j}\geq 0 for j=1,,p.j=1,\dots,p.

The polynomials {ev(ω)}v\{e_{v}(\omega)\}_{v} form a complete orthogonal system in the Hilbert space

L2(p,ϕ(ω)dω)={G:pG2(ω)ϕ(ω)𝑑ω<},L_{2}\left(\mathbb{R}^{p},\phi(\lVert\omega\rVert)d\omega\right)=\left\{G:\int_{\mathbb{R}^{p}}G^{2}(\omega)\phi(\lVert\omega\rVert)d\omega<\infty\right\},

where

ϕ(ω):=j=1pϕ(ωj),ϕ(ωj):=eωj2/22π.\phi(\lVert\omega\rVert):=\prod_{j=1}^{p}\phi(\omega_{j}),\quad\quad\phi(\omega_{j}):=\dfrac{e^{-\omega_{j}^{2}/2}}{\sqrt{2\pi}}.

An arbitrary function G(ω)L2(p,ϕ(ω)dω)G(\omega)\in L_{2}\left(\mathbb{R}^{p},\phi(\lVert\omega\rVert)d\omega\right) admits an expansion with Hermite coefficients CvC_{v}, given as the following:

G(ω)=k=0vNkCvev(ω)v!,Cv:=pG(ω)ev(ω)ϕ(ω)𝑑ω,\displaystyle G(\omega)=\sum_{k=0}^{\infty}\sum_{v\in N_{k}}\dfrac{C_{v}e_{v}(\omega)}{v!},\quad C_{v}:=\int_{\mathbb{R}^{p}}G(\omega)e_{v}(\omega)\phi(\lVert\omega\rVert)d\omega,

where v!=k1!kp!v!=k_{1}!\dots k_{p}! and

Nk:={(k1,,kp)p:j=1pkj=k,kj0,j=1,,p}.N_{k}:=\left\{(k_{1},\dots,k_{p})\in\mathbb{Z}^{p}:\sum_{j=1}^{p}k_{j}=k,k_{j}\geqslant 0,j=1,\dots,p\right\}.
Definition 3.

The smallest integer κ1\kappa\geqslant 1 such that Cv=0C_{v}=0 for all vNjv\in N_{j}, j=1,,κ1j=1,\dots,\kappa-1, but Cv0C_{v}\neq 0 for some vNκv\in N_{\kappa} is called the Hermite rank of G()G(\cdot) and is denoted by HrankGHrankG.

In this paper, we consider Student random fields which are an example of heavy-tailed random fields. To define such fields, we use a vector random field 𝜼(x)=[η1(x),,ηn+1(x)]\bm{\eta}(x)=[\eta_{1}(x),\dots,\eta_{n+1}(x)]^{{}^{\prime}}, xdx\in\mathbb{R}^{d}, with Eηi(x)=0\textbf{E}\eta_{i}(x)=0 where ηi(x)\eta_{i}(x), i=1,,n+1i=1,\dots,n+1, are independent homogeneous isotropic unit variance Gaussian random fields.

Definition 4.

The Student random field (t-random field) Tn(x),xdT_{n}(x),\ x\in\mathbb{R}^{d}, is defined by

Tn(x)=η1(x)(1/n)(η22(x)++ηn+12(x)),xd.T_{n}(x)=\dfrac{\eta_{1}(x)}{\sqrt{{(1/n)(\eta_{2}^{2}(x)+\cdots+\eta_{n+1}^{2}(x))}}},\quad x\in\mathbb{R}^{d}.

3 Reduction principles and limit theorems

In this section we present some assumptions and the main results. We prove a version of the reduction principle for vector random fields with weakly and strongly dependent components.

In the following we will use the notation

𝜼(x)=[η1(x),,ηm(x),ηm+1(x),,ηm+n(x)],xd,\bm{\eta}(x)=[\eta_{1}(x),\dots,\eta_{m}(x),\eta_{m+1}(x),\dots,\eta_{m+n}(x)]^{\prime},\quad x\in\mathbb{R}^{d},

for a vector random field with m+nm+n components.

Assumption 1.

Let 𝛈(x)\bm{\eta}(x) be a vector homogeneous isotropic Gaussian random field with independent components, Eη(x)=0\textbf{E}\eta(x)=0 and a covariance matrix B(x){B}(x) such that B(0)={B}(0)=\mathcal{I} and

Bij(x)={0,ifij,1xβL1(x),ifi=j=1,,m,β>d,2xαL2(x),ifi=j=m+1,,m+n,α<d/κ,B_{ij}(\|x\|)=\left\{\begin{array}[]{lr}0,\quad{\rm if}\quad i\neq j,\\ \mathcal{I}_{1}\cdot\|x\|^{-\beta}L_{1}\left(\|x\|\right),\ {\rm if}\ i=j=1,\dots,m,\quad\beta>d,\\ \mathcal{I}_{2}\cdot\|x\|^{-\alpha}L_{2}\left(\|x\|\right),\ {\rm if}\ i=j=m+1,\dots,m+n,\ \alpha<d/\kappa,\end{array}\right.

where \mathcal{I}, 1\mathcal{I}_{1} and 2\mathcal{I}_{2} are unit matrices of size m+nm+n, mm and nn, respectively, Li()L_{i}\left(\|\cdot\|\right), i=1,2i=1,2, are slowly varying functions at infinity.

Remark 1.

If Assumption 1 holds true the diagonal elements of the covariance matrix B(x)B(x) are integrable for the first mm elements of 𝛈(x)\bm{\eta}(x), which corresponds to the case of short-range dependence, and non-integrable for the other elements, which corresponds to the case of long-range dependence. For simplicity, this paper investigates only the case of uncorrelated components.

Remark 2.

For j=m+1,,m+nj=m+1,\dots,m+n the random field 𝛈(x)\bm{\eta}(x) in Assumption 1 satisfies

𝐄(Hκ(ηj(x))Hκ(ηj(y)))=κ!Bjjκ(xy),x,yd,\displaystyle{\bf E}\left(H_{\kappa}(\eta_{j}(x))H_{\kappa}(\eta_{j}(y))\right)=\kappa!B_{jj}^{\kappa}(\|x-y\|),\quad x,\ y\in\mathbb{R}^{d}, (3.1)

see Leonenko (1999). Hence, under Assumption 1 the right-hand side of (3.1) is non-integrable when α<d/κ,\alpha<d/\kappa, which guarantees the case of long-range dependence.

Consider the following random variables:

Kr:=Δ(r)G(𝜼(x))𝑑x,Kr,κ:=vNκCvv!Δ(r)ev(𝜼(x))𝑑x,K_{r}:=\int_{\Delta(r)}G\left(\bm{\eta}\left(x\right)\right)dx,\quad\quad K_{r,\kappa}:=\sum_{v\in N_{\kappa}}\dfrac{C_{v}}{v!}\int_{\Delta(r)}e_{v}\left(\bm{\eta}\left(x\right)\right)dx,

and

Vr:=lκ+1vNlCvv!Δ(r)ev(𝜼(x))𝑑x,V_{r}:=\sum_{l\geq\kappa+1}\sum_{v\in N_{l}}\dfrac{C_{v}}{v!}\int_{\Delta(r)}e_{v}\left(\bm{\eta}\left(x\right)\right)dx,

where Cv(r)C_{v}(r) are the Hermite coefficients and κ\kappa is the Hermite rank of the function G()G(\cdot). Then

Kr=Kr,κ+Vr.K_{r}=K_{r,\kappa}+V_{r}.
Remark 3.

The random variable KrK_{r} is correctly defined, finite with probability 1 and in the mean square sense, see §3, Chapter IV in Gihman and Skorokhod (2004).

We will use the following notations. Consider the set

N+:={v=(k1,l,,km+n,l):vNl,Cv0,lκ}.N_{+}:=\{v=(k_{1,l},\dots,k_{m+n,l}):v\in N_{l},\ C_{v}\neq 0,\ \ l\geq\kappa\}.

Let

γ:=minvN+(βj=1mkj,l+αj=m+1m+nkj,l).\gamma:=\min_{v\in N_{+}}\big{(}\beta{\sum_{j=1}^{m}{k}_{j,l}}+\alpha\sum_{j=m+1}^{m+n}{k}_{j,l}\big{)}.

Note that γακ\gamma\geq\alpha\kappa and there are cases when γ\gamma can be reached at multiple vN+v\in N_{+}. Therefore, we define the sets

Nl:={v=(k1,l,,km+n,l):vN+Nl,βj=1mkj,l+αj=m+1m+nkj,l=γ}N_{l}^{*}:=\{v=(k_{1,l},\dots,k_{m+n,l}):v\in N_{+}\cap N_{l},\ \beta{\sum_{j=1}^{m}{k}_{j,l}}+\alpha\sum_{j=m+1}^{m+n}{k}_{j,l}=\gamma\} and

+:={l:Nl,lκ}.\mathcal{L}_{+}:=\{l:\ N_{l}^{*}\neq\varnothing,\ l\geq\kappa\}.

Also, we define the random variable

Kr,l:=vNlCvv!Δ(r)ev(𝜼(x))𝑑x.K_{r,l}^{*}:=\sum_{v\in N_{l}^{*}}\dfrac{C_{v}}{v!}\int_{\Delta(r)}e_{v}\left(\bm{\eta}\left(x\right)\right)dx.

The random variable Kr,l0K_{r,l}^{*}\not\equiv 0 if and only if l+l\in\mathcal{L}_{+}.

Theorem 1 in Olenko and Omari (2019) gives a reduction principle for vector random fields with strongly dependent components. The following result complements it for the case of random fields with strongly and weakly dependent components.

Theorem 1.

Suppose that a the vector random field 𝛈(x)\bm{\eta}\left(x\right), xdx\in\mathbb{R}^{d}, satisfies Assumption 1, HrankG()=κ1HrankG(\cdot)=\kappa\geq 1 and there is at least one v=(k1,κ,,km+n,κ)NκN+v=(k_{1,\kappa},\dots,k_{m+n,\kappa})\in N_{\kappa}\cap N_{+} such that j=m+1m+nkj,κ=κ\sum_{j=m+1}^{m+n}k_{j,\kappa}=\kappa. If for rr\rightarrow\infty a limit distribution exists for at least one of the random variables

KrVar(Kr)andKr,κVar(Kr,κ),\dfrac{K_{r}}{\sqrt{\textbf{Var}\ (K_{r})}}\quad and\quad\dfrac{K_{r,\kappa}}{\sqrt{\textbf{Var}\ (K_{r,\kappa})}},

then the limit distribution of the other random variable exists as well, and the limit distributions coincide. Moreover, the limit distributions of

Kr,κVar(Kr,κ)andKr,κVar(Kr,κ),\dfrac{K_{r,\kappa}}{\sqrt{\textbf{Var}\ (K_{r,\kappa})}}\quad and\quad\dfrac{K_{r,\kappa}^{*}}{\sqrt{\textbf{Var}\ (K_{r,\kappa}^{*})}},

are the same.

Remark 4.

It will be shown in the proof that the assumptions of Theorem 1 guarantee that κ+\kappa\in\mathcal{L}_{+}.

Remark 5.

It follows from the asymptotic analysis of the variances in Theorem 1 that

Var(Kr)Var(Kr,κ)Var(Kr,κ),r.\textbf{Var}(K_{r})\sim\textbf{Var}(K_{r,\kappa})\sim\textbf{Var}(K_{r,\kappa}^{*}),\quad r\to\infty.
Assumption 2.

Components ηj(x)\eta_{j}\left(x\right), j=m+1,,m+nj=m+1,\dots,m+n, of 𝛈(x)\bm{\eta}(x) have the spectral density f(λ)f\left(\|\lambda\|\right), λd\lambda\in\mathbb{R}^{d}, such that

f(λ)c2(d,α)λαdL2(1λ),λ0,f\left(\|\lambda\|\right)\sim c_{2}\left(d,\alpha\right)\|\lambda\|^{\alpha-d}L_{2}\left(\dfrac{1}{\|\lambda\|}\right),\quad\quad\quad\|\lambda\|\rightarrow 0,

where

c2(d,α)=Γ((dα)/2)2απd/2Γ(α/2).c_{2}\left(d,\alpha\right)=\dfrac{\Gamma\left((d-\alpha)/{2}\right)}{2^{\alpha}\pi^{d/2}\Gamma\left(\alpha/2\right)}.

Denote the Fourier transform of the indicator function of the set Δ\Delta by

𝒦(x):=Δeiu,x𝑑u,xd.\mathcal{K}\left(x\right):=\int_{\Delta}e^{i\langle u,x\rangle}du,\quad x\in\mathbb{R}^{d}.

Let us define the following random variable

Xκ:=dκ𝒦(λ1++λκ)W(dλ1)W(dλκ)λ1(dα)/2λκ(dα)/2,\displaystyle X_{\kappa}:=\int_{\mathbb{R}^{d\kappa}}^{\prime}\mathcal{K}\left(\lambda_{1}+\dots+\lambda_{\kappa}\right)\dfrac{W(d\lambda_{1})\dots W(d\lambda_{\kappa})}{\|\lambda_{1}\|^{(d-\alpha)/2}\dots\|\lambda_{\kappa}\|^{(d-\alpha)/2}}, (3.2)

where W()W(\cdot) is the Wiener measure on (d,d)(\mathbb{R}^{d},\mathcal{B}^{d}) and dκ\int_{\mathbb{R}^{d\kappa}}^{\prime} denotes the multiple Wiener-Itô integral.

Theorem 2.

Let the vector random field 𝛈(x)\bm{\eta}(x), xdx\in\mathbb{R}^{d}, and the function G()G(\cdot) satisfy assumptions of Theorem 1 and Assumption 2 holds true. Suppose that Nκ={vN+:kj,κ=κforsomej=m+1,,m+n}.N_{\kappa}^{*}=\{v\in N_{+}:k_{j,\kappa}=\kappa\ for\ some\ j=m+1,\dots,m+n\}. Then, for rr\to\infty the random variables

Xκ(r):=c2κ/2(d,α)r(κα)/2dL2κ/2(r)KrX_{\kappa}(r):=c_{2}^{-\kappa/2}(d,\alpha)r^{(\kappa\alpha)/2-d}L_{2}^{-\kappa/2}(r)K_{r}

converge in distribution to the random variable vNκCvκ!Xv\sum_{v\in N_{\kappa}^{*}}\dfrac{C_{v}}{\kappa!}X_{v}, where XvX_{v} are independent copies of XκX_{\kappa} defined by (3.2)\rm(\ref{rv}).

A popular recent approach to model skew distributed random variables is a convolution Y=η1+η~2Y=\eta_{1}+\tilde{\eta}_{2}, where η1\eta_{1} is Gaussian and η~2\tilde{\eta}_{2} is continuous positive-valued independent random variables. In this case the probability density of YY has the form fY(y)=Cϕ(y)G(y)f_{Y}(y)=C\phi(y)G(y), where ϕ()\phi(\cdot) is the pdf of η1\eta_{1} and G()G(\cdot) is the cdf of η~2\tilde{\eta}_{2}, which controls the skewness, see Arellano-Valle and Genton (2005); Azzalini and Capitanio (2014) and Amiri et al. (2019). This approach can be extended to the case of random fields as Y(x)=η1(x)+η~2(x)Y(x)=\eta_{1}(x)+\tilde{\eta}_{2}(x), xdx\in\mathbb{R}^{d}, resulting in Y(x)Y(x) with skewed marginal distributions. In the example below we use η~2(x)=η22(x)\tilde{\eta}_{2}(x)=\eta_{2}^{2}(x) and show that contrary to the reduction principle for strongly dependent vector random fields in Olenko and Omari (2019) it is not enough to request HrankG()=κHrankG(\cdot)=\kappa. The assumption of the existence of vNκN+v\in N_{\kappa}\cap N_{+} satisfying j=m+1m+nkj,κ=κ\sum_{j=m+1}^{m+n}k_{j,\kappa}=\kappa in Theorem 1 is essential.

Example 1.

Let m=n=1m=n=1, d=2d=2 and G(w1,w2)=w1+w221G(w_{1},w_{2})=w_{1}+w_{2}^{2}-1. In this case G(w1,w2)=H1(w1)+H2(w2)G(w_{1},w_{2})=H_{1}(w_{1})+H_{2}(w_{2}) and κ=1\kappa=1, but k2,1=0κk_{2,1}=0\neq\kappa. So, the assumption of Theorem 1 does not hold and

KrVar(Kr)Dc2(2,α)X2,r,\displaystyle\dfrac{K_{r}}{\sqrt{\textbf{Var}(K_{r})}}\stackrel{{\scriptstyle D}}{{\to}}c_{2}(2,\alpha)X_{2},\quad r\to\infty,

which is indeed different from the Gaussian limit that is expected for the case HrankG=1HrankG=1.

To address situations similar to Example 1 and investigate wider classes of vector field we introduce the following modification of Assumption 1.

Assumption 1.

Let 𝛈(x)\bm{\eta}(x), xdx\in\mathbb{R}^{d}, be a vector homogeneous isotropic Gaussian random field with independent components, E𝛈(x)=0\textbf{E}\bm{\eta}(x)=0 and a covariance matrix B(x){B}(x) such that B(0)={B}(0)=\mathcal{I} and

Bij(x)={0,ifij,1xβiL1(x),ifi=j=1,,m,2xαjL2(x),ifi=j=m+1,,m+n,B_{ij}(\|x\|)=\left\{\begin{array}[]{lr}0,\quad{\rm if}\quad i\neq j,\\ \mathcal{I}_{1}\cdot\|x\|^{-\beta_{i}}L_{1}\left(\|x\|\right),\ {\rm if}\ i=j=1,\dots,m,\\ \mathcal{I}_{2}\cdot\|x\|^{-\alpha_{j}}L_{2}\left(\|x\|\right),\ {\rm if}\ i=j=m+1,\dots,m+n,\end{array}\right.

where βi>d\beta_{i}>d, i=1,,mi=1,\dots,m and αj<d\alpha_{j}<d, j=m+1,,m+nj=m+1,\dots,m+n.

Remark 6.

Under Assumption 1 the components ηm+1(x),,ηm+n(x)\eta_{m+1}(x),\dots,\eta_{m+n}(x) are still strongly dependent, but Hκ(ηj(x))H_{\kappa}(\eta_{j}(x)), j=m+1,,m+nj=m+1,\dots,m+n, do not necessarily preserve strong dependence. If καj>d\kappa\alpha_{j}>d the Hermite polynomials of ηj(x)\eta_{j}(x) become weakly dependent.

The following modifications of γ\gamma, NlN_{l}^{*}, +\mathcal{L}_{+} and Kr,lK_{r,l}^{*} will be used to match Assumption 1:

γ~:=minvN+(j=1mβjkj,l+j=m+1m+nαjkj,l),\tilde{\gamma}:=\min_{v\in N_{+}}\bigg{(}{\sum_{j=1}^{m}\beta_{j}{k}_{j,l}}+\sum_{j=m+1}^{m+n}\alpha_{j}{k}_{j,l}\bigg{)},

N~l:={v=(k1,l,,km+n,l):vN+Nl,\tilde{N}_{l}^{*}:=\{v=(k_{1,l},\dots,k_{m+n,l}):v\in N_{+}\cap N_{l}, j=1mβjkj,l+j=m+1m+nαjkj,l=γ~},\phantom{\tilde{N}_{l}^{*}:=\ }{\sum_{j=1}^{m}\beta_{j}{k}_{j,l}}+\sum_{j=m+1}^{m+n}\alpha_{j}{k}_{j,l}=\tilde{\gamma}\},

+~:={l:N~l,lκ},\tilde{\mathcal{L}_{+}}:=\{l:\ \tilde{N}_{l}^{*}\neq\varnothing,\ l\geq\kappa\},

and

K~r,l:=vN~lCvv!Δ(r)ev(𝜼(x))𝑑x.\tilde{K}_{r,l}^{*}:=\sum_{v\in\tilde{N}_{l}^{*}}\dfrac{C_{v}}{v!}\int_{\Delta(r)}e_{v}\left(\bm{\eta}\left(x\right)\right)dx.

In the following we consider only the cases j=1mβjkj,l+j=m+1m+nαjkj,ld.{\sum_{j=1}^{m}\beta_{j}{k}_{j,l}}+\sum_{j=m+1}^{m+n}\alpha_{j}{k}_{j,l}\neq d. The case when the sum equals dd requires additional assumptions, see Section 6, and will be covered in other publications.

Now, we are ready to formulate a generalization of Theorem 1.

Theorem 3.

Suppose that a vector random field 𝛈(x)\bm{\eta}(x), xdx\in\mathbb{R}^{d}, satisfies Assumption 1 and γ~<d\tilde{\gamma}<d. If a limit distribution exists for at least one of the random variables

KrVar(Kr)andl~+K~r,lVar(l~+K~r,l),\dfrac{K_{r}}{\sqrt{\textbf{Var}(K_{r})}}\quad and\quad\dfrac{\sum_{l\in\tilde{\mathcal{L}}_{+}}\tilde{K}_{r,l}^{*}}{\sqrt{\textbf{Var}\big{(}\sum_{l\in\tilde{\mathcal{L}}_{+}}\tilde{K}_{r,l}^{*}\big{)}}},

then the limit distribution of the other random variable exists as well, and the limit distributions coincide when rr\to\infty.

Assumption 2.

Components ηj(x)\eta_{j}\left(x\right), j=m+1,,m+nj=m+1,\dots,m+n, of 𝛈(x)\bm{\eta}(x) have spectral densities fj(λ)f_{j}\left(\|\lambda\|\right), λd\lambda\in\mathbb{R}^{d}, such that

fj(λ)c2(d,αj)λαjdL2(1λ),λ0.f_{j}\left(\|\lambda\|\right)\sim c_{2}\left(d,\alpha_{j}\right)\|\lambda\|^{\alpha_{j}-d}L_{2}\left(\dfrac{1}{\|\lambda\|}\right),\quad\quad\quad\|\lambda\|\rightarrow 0.
Theorem 4.

Let Assumption 2 and conditions of Theorem 3 hold true. Suppose that N~l={vN+:kjl,l=lfor somejl=m+1,,m+n}\tilde{N}_{l}^{*}=\{v\in N_{+}:k_{j_{l},l}=l\ \mbox{for\ some}\ j_{l}=m+1,\dots,m+n\} and there exists a finite or infinite limrL2(r)\lim_{r\rightarrow\infty}L_{2}(r). Then, for rr\to\infty the random variables

Krrdγ~/2l~+L2l/2(r)\dfrac{K_{r}}{r^{d-\tilde{\gamma}/2}\sum_{l\in\tilde{\mathcal{L}}_{+}}L_{2}^{l/2}(r)}

converge in distribution to the random variable

l~+alvN~lCvv!c2l/2(d,αjl)Xv,\displaystyle\sum_{l\in\tilde{\mathcal{L}}_{+}}a_{l}\cdot\sum_{v\in\tilde{N}_{l}^{*}}\dfrac{C_{v}}{v!}c_{2}^{l/2}(d,\alpha_{j_{l}})X_{v}, (3.3)

where XvX_{v} are independent copies of random variables

dl𝒦(λ1++λl)W(dλ1)W(dλl)λ1(dαjl)/2λl(dαjl)/2,\int_{\mathbb{R}^{dl}}^{\prime}\mathcal{K}\left(\lambda_{1}+\dots+\lambda_{l}\right)\dfrac{W(d\lambda_{1})\dots W(d\lambda_{l})}{\|\lambda_{1}\|^{(d-\alpha_{j_{l}})/2}\dots\|\lambda_{l}\|^{(d-\alpha_{j_{l}})/2}},

and the coefficients ala_{l} are finite and defined by al:=limrL2l/2(r)i~+L2i/2(r).a_{l}:=\lim_{r\rightarrow\infty}\dfrac{L_{2}^{l/2}(r)}{\sum_{i\in\tilde{\mathcal{L}}_{+}}L_{2}^{i/2}(r)}.

Corollary 1.

Let Assumption 2 and conditions of Theorem 3 hold true and n=1n=1. Then, for rr\to\infty the random variable c21(d,αm+1)rγ~/2dL2l/2(r)Krc_{2}^{-1}(d,\alpha_{m+1})r^{\tilde{\gamma}/2-d}L_{2}^{-l/2}(r)K_{r} converges in distribution to the random variable (l!)1C(0,,0,l)X(0,,0,l),(l!)^{-1}C_{(0,\dots,0,l)}~{}X_{(0,\dots,0,l)}, where l=γ~αm+1l=\frac{\tilde{\gamma}}{\alpha_{m+1}}.

Remark 7.

It is possible to obtain general versions of Theorems 2 and 4 by removing the assumptions about NκN_{\kappa}^{*} and N~l\tilde{N}_{l}^{*} and requesting only +\mathcal{L}_{+}\neq\varnothing or ~+\tilde{\mathcal{L}}_{+}\neq\varnothing respectively. However, it requires an extension of the known non-central limit theorems for vector fields from the discrete to continuous settings, see Section 6. Also, in such general cases the summands in the limit random variables analogous to (3.3) would be dependent.

As an example we consider the first Minkowski functional of Student random fields. The special cases of only weakly or strongly dependent components were studied in Leonenko and Olenko (2014). It was shown that in the both cases the asymptotic distribution is N(0,1)N(0,1), but with different normalisations, see Theorems 3 and 6 in Leonenko and Olenko (2014). Figure 1 gives a two-dimensional excursion set above the level a=0.5a=0.5 for a realisation of a long-range dependent Cauchy model. The excursion set is shown in black colour. More details are provided in Section 5.

Refer to caption
Figure 1: A two-dimensional excursion set.

The next result shows that for the first Minkowski functional of t-fields obtained from vector random fields with both weakly and strongly dependent components the limit distributions can be non-Gaussian.

Theorem 5.

Let Assumption 2 hold true, m=1m=1, a0a\neq 0, α2==αm+1=α<d2\alpha_{2}=\dots=\alpha_{m+1}=\alpha<\frac{d}{2}. Then the random variable

Mr{Tn}|Δ|rd(1212(1Inn+a2(n2,12))sgn(a))rdαL(r)\frac{M_{r}\left\{T_{n}\right\}-\left|\Delta\right|r^{d}\left(\frac{1}{2}-\frac{1}{2}\left(1-I_{\frac{n}{n+a^{2}}}\left(\frac{n}{2},\frac{1}{2}\right)\right)\cdot{\rm sgn}(a)\right)}{r^{d-\alpha}L(r)}

converges in distribution to the random variable

vN2:kj,2=2,j=2,,n+1Cvv!c2(d,α)X~v,asr,\sum_{v\in N_{2}:\ k_{j,2}=2,\ j=2,\dots,n+1}\frac{C_{v}}{v!}\ c_{2}(d,\alpha)\ \tilde{X}_{v},\quad\mbox{as}\ r\to\infty,

where X~v\tilde{X}_{v} are independent copies of the random variable

2d𝒦(λ1+λ2)W(dλ1)W(dλ2)λ1(dα)/2λ2(dα)/2,\int_{\mathbb{R}^{2d}}^{\prime}\mathcal{K}\left(\lambda_{1}+\lambda_{2}\right)\dfrac{W(d\lambda_{1})W(d\lambda_{2})}{\|\lambda_{1}\|^{(d-\alpha)/2}\|\lambda_{2}\|^{(d-\alpha)/2}},

and sgn()sgn(\cdot) is the signum function.

Remark 8.

Random variables X~v\tilde{X}_{v} have the Rosenblatt-type distribution, see Anh et al. (2015).

Remark 9.

As m=1m=1, the first component η1(x)\eta_{1}(x) is weakly dependent and the remaining components ηj(x)\eta_{j}(x), j=2,,n+1j=2,\dots,n+1, are strongly dependent.

4 Proofs of the results from Section 3

Proof of Theorem 1.

First we study the behaviour of Kr,κK_{r,\kappa}. Note, that

Kr,κ\displaystyle K_{r,\kappa} =vNκCvv!Δ(r)j=1m+nHkj(ηj(x))dx.\displaystyle=\sum_{v\in N_{\kappa}}\dfrac{C_{v}}{v!}\int_{\Delta(r)}\prod_{j=1}^{m+n}H_{k_{j}}(\eta_{j}(x))dx.

Let us denote the sets Nκ(i),i=1,2,3,N_{\kappa}^{(i)},\ i=1,2,3, as follows

Nκ(1):={(k1,κ,,km+n,κ):j=1mkj,κ=κ},N_{\kappa}^{(1)}:=\{(k_{1,\kappa},\dots,k_{m+n,\kappa}):\sum_{j=1}^{m}k_{j,\kappa}=\kappa\},
Nκ(2):={(k1,κ,,km+n,κ):j=m+1m+nkj,κ=κ},N_{\kappa}^{(2)}:=\{(k_{1,\kappa},\dots,k_{m+n,\kappa}):\sum_{j=m+1}^{m+n}k_{j,\kappa}=\kappa\},

and

Nκ(3):={(k1,κ,,km+n,κ):j=1m+nkj,κ=κand 0<j=1mkj,κ<κ}.N_{\kappa}^{(3)}:=\{(k_{1,\kappa},\dots,k_{m+n,\kappa}):\sum_{j=1}^{m+n}k_{j,\kappa}=\kappa\ \mbox{and}\ 0<\sum_{j=1}^{m}k_{j,\kappa}<\kappa\}.

Then Nκ=i=1Nκ(i)N_{\kappa}=\bigcup\limits_{i=1}^{\infty}N_{\kappa}^{(i)} and Kr,κK_{r,\kappa} can be written as

Kr,κ\displaystyle K_{r,\kappa} =v1Nκ(1)Cv1v1!Δ(r)j=1mHkj,κ(ηj(x))dx\displaystyle=\sum_{v_{1}\in N_{\kappa}^{(1)}}\dfrac{C_{v_{1}}}{v_{1}!}\int_{\Delta(r)}\prod_{j=1}^{m}H_{k_{j,\kappa}}(\eta_{j}(x))dx
+v2Nκ(2)Cv2v2!Δ(r)j=m+1m+nHkj,κ(ηj(x))dx\displaystyle+\sum_{v_{2}\in N_{\kappa}^{(2)}}\dfrac{C_{v_{2}}}{v_{2}!}\int_{\Delta(r)}\prod_{j=m+1}^{m+n}H_{k_{j,\kappa}}(\eta_{j}(x))dx
+v3Nκ(3)Cv3v3!Δ(r)j=1m+nHkj,κ(ηj(x))dx=:i=13Ii.\displaystyle+\sum_{v_{3}\in N_{\kappa}^{(3)}}\dfrac{C_{v_{3}}}{v_{3}!}\int_{\Delta(r)}\prod_{j=1}^{m+n}H_{k_{j,\kappa}}(\eta_{j}(x))dx=:\sum_{i=1}^{3}I_{i}.

Note, that all components ηj(x)\eta_{j}(x), j=1,,mj=1,\dots,m, in the first term I1I_{1} are weakly dependent and the variance Var(I1)\textbf{Var}(I_{1}) is equal

Var(I1)\displaystyle\textbf{Var}(I_{1}) =Var(v1Nκ(1)Cv1v1!Δ(r)j=1mHkj,κ(ηj(x))dx)\displaystyle=\textbf{Var}\bigg{(}\sum_{v_{1}\in N_{\kappa}^{(1)}}\dfrac{C_{v_{1}}}{v_{1}!}\int_{\Delta(r)}\prod_{j=1}^{m}H_{k_{j,\kappa}}(\eta_{j}(x))dx\bigg{)}
=v1Nκ(1)Cv12(v1!)2Δ(r)Δ(r)Ej=1mHkj,κ(ηj(x))Hkj,κ(ηj(y))\displaystyle=\sum_{v_{1}\in N_{\kappa}^{(1)}}\dfrac{C_{v_{1}}^{2}}{(v_{1}!)^{2}}\int_{\Delta(r)}\int_{\Delta(r)}\textbf{E}\prod_{j=1}^{m}H_{k_{j,\kappa}}(\eta_{j}(x))H_{k_{j,\kappa}}(\eta_{j}(y))
=v1Nκ(1)Cv12v1!Δ(r)Δ(r)j=1mBjjkj,κ(xy)dxdy\displaystyle=\sum_{v_{1}\in N_{\kappa}^{(1)}}\dfrac{C_{v_{1}}^{2}}{v_{1}!}\int_{\Delta(r)}\int_{\Delta(r)}\prod_{j=1}^{m}B_{jj}^{k_{j,\kappa}}(\|x-y\|)dxdy
=v1Nκ(1)Cv12v1!Δ(r)Δ(r)B11κ(xy)𝑑x𝑑y.\displaystyle=\sum_{v_{1}\in N_{\kappa}^{(1)}}\dfrac{C_{v_{1}}^{2}}{v_{1}!}\int_{\Delta(r)}\int_{\Delta(r)}B_{11}^{\kappa}(\|x-y\|)dxdy.

Let u=xyu=x-y and v=yv=y. The Jacobian of this transformation is |J|=1|J|=1. By denoting Δ(r)Δ(r):={ud:u=xy\Delta(r)-\Delta(r):=\{u\in\mathbb{R}^{d}:u=x-y, xx, yΔ(r)}y\in\Delta(r)\} then Var(I1)\textbf{Var}(I_{1}) can be rewritten as

Var(I1)=Crdv1Nκ(1)Cv12v1!Δ(r)Δ(r)B11κ(u)𝑑u.\textbf{Var}(I_{1})=Cr^{d}\sum_{v_{1}\in N_{\kappa}^{(1)}}\dfrac{C_{v_{1}}^{2}}{v_{1}!}\int_{\Delta(r)-\Delta(r)}B_{11}^{\kappa}(\|u\|)du.

It follows from Bjjκ(u)Bjj(u)1B_{jj}^{\kappa}(\|u\|)\leq B_{jj}(\|u\|)\leq 1 and by Remark 5 that for weakly dependent components we get

Δ(r)Δ(r)B11κ(u)𝑑u<anddB11κ(u)𝑑u<.\displaystyle\int_{\Delta(r)-\Delta(r)}B_{11}^{\kappa}(\|u\|)du<\infty\quad\mbox{and}\quad\int_{\mathbb{R}^{d}}B_{11}^{\kappa}(\|u\|)du<\infty.

Noting that

Δ(r)Δ(r)Bjjκ(u)𝑑udBjjκ(u)𝑑u,r,\displaystyle\int_{\Delta(r)-\Delta(r)}B_{jj}^{\kappa}(\|u\|)du\rightarrow\int_{\mathbb{R}^{d}}B_{jj}^{\kappa}(\|u\|)du,\quad r\rightarrow\infty,

one obtains the following asymptotic behaviour of Var(I1)\textbf{Var}(I_{1})

Var(I1)Crdv1Nκ(1)Cv12v1!dBjjκ(u)𝑑u,r.\displaystyle\textbf{Var}(I_{1})\sim Cr^{d}\sum_{v_{1}\in N_{\kappa}^{(1)}}\dfrac{C_{v_{1}}^{2}}{v_{1}!}\int_{\mathbb{R}^{d}}B_{jj}^{\kappa}(\|u\|)du,\quad r\rightarrow\infty. (4.1)

In contrast, the components ηj(x)\eta_{j}(x), j=m+1,,m+nj=m+1,\dots,m+n, in the second term I2I_{2} are strongly dependent and Var(I2)\textbf{Var}(I_{2}) can be obtained as follows

Var(I2)\displaystyle\textbf{Var}(I_{2}) =Var(v2Nκ(2)Cv2v2!Δ(r)j=m+1m+nHkj,κ(ηj(x))dx)\displaystyle=\textbf{Var}\bigg{(}\sum_{v_{2}\in N_{\kappa}^{(2)}}\dfrac{C_{v_{2}}}{v_{2}!}\int_{\Delta(r)}\prod_{j=m+1}^{m+n}H_{k_{j,\kappa}}(\eta_{j}(x))dx\bigg{)}
=v2Nκ(2)Cv22(v2!)2Δ(r)Δ(r)Ej=m+1m+nHkj,κ(ηj(x))Hkj,κ(ηj(y))\displaystyle=\sum_{v_{2}\in N_{\kappa}^{(2)}}\dfrac{C_{v_{2}}^{2}}{(v_{2}!)^{2}}\int_{\Delta(r)}\int_{\Delta(r)}\textbf{E}\prod_{j=m+1}^{m+n}H_{k_{j,\kappa}}(\eta_{j}(x))H_{k_{j,\kappa}}(\eta_{j}(y))
=v2Nκ(2)Cv22v2!Δ(r)Δ(r)j=m+1m+n[xyαL2(xy)]kj,κdxdy\displaystyle=\sum_{v_{2}\in N_{\kappa}^{(2)}}\dfrac{C_{v_{2}}^{2}}{v_{2}!}\int_{\Delta(r)}\int_{\Delta(r)}\prod_{j=m+1}^{m+n}[\|x-y\|^{-\alpha}L_{2}(\|x-y\|)]^{k_{j,\kappa}}dxdy
=r2dακv2Nκ(2)Cv22v2!ΔΔxyακL2κ(rxy)𝑑x𝑑y.\displaystyle=r^{2d-\alpha\kappa}\sum_{v_{2}\in N_{\kappa}^{(2)}}\dfrac{C_{v_{2}}^{2}}{v_{2}!}\int_{\Delta}\int_{\Delta}\|x-y\|^{-\alpha\kappa}L_{2}^{\kappa}(r\|x-y\|)dxdy.

By (2) we get

Var(I2)\displaystyle\textbf{Var}(I_{2}) =|Δ|2r2dακv2Nκ(2)Cv22v2!0diam{Δ}zακL2κ(rz)ψΔ(z)𝑑z.\displaystyle=|\Delta|^{2}r^{2d-\alpha\kappa}\sum_{v_{2}\in N_{\kappa}^{(2)}}\dfrac{C_{v_{2}}^{2}}{v_{2}!}\int_{0}^{diam\{\Delta\}}z^{-\alpha\kappa}L_{2}^{\kappa}(rz)\psi_{\Delta}(z)dz.

Noting that α(0,d/κ)\alpha\in(0,d/\kappa) by Theorem 2.7 in Seneta (1976) we obtain

Var(I2)\displaystyle\textbf{Var}(I_{2}) c1(κ,α,Δ)|Δ|2v2Nκ(2)Cv22v2!r2dακL2κ(r),r,\displaystyle\sim c_{1}(\kappa,\alpha,\Delta)|\Delta|^{2}\sum_{v_{2}\in N_{\kappa}^{(2)}}\dfrac{C_{v_{2}}^{2}}{v_{2}!}r^{2d-\alpha\kappa}L_{2}^{\kappa}(r),\quad r\rightarrow\infty, (4.2)

where c1(κ,α,Δ):=\bigintsss0diam{Δ}zακψΔ(z)dzc_{1}(\kappa,\alpha,\Delta):=\bigintsss_{0}^{diam\{\Delta\}}z^{-\alpha\kappa}\psi_{\Delta}(z)dz. By (2) and the condition α<d/κ\alpha<d/\kappa the coefficient c1(κ,α,Δ)c_{1}(\kappa,\alpha,\Delta) is finite as

c1(κ,α,Δ)\displaystyle c_{1}(\kappa,\alpha,\Delta) =0diam{Δ}zακψΔ(z)𝑑z=|Δ|2ΔΔxyακ𝑑x𝑑y\displaystyle=\int_{0}^{diam\{\Delta\}}z^{-\alpha\kappa}\psi_{\Delta}(z)dz=|\Delta|^{-2}\int_{\Delta}\int_{\Delta}\|x-y\|^{-\alpha\kappa}dxdy
|Δ|10diam{Δ}ρd(1+ακ)𝑑ρ<.\displaystyle\leq|\Delta|^{-1}\int_{0}^{diam\left\{\Delta\right\}}\rho^{d-\left(1+\alpha\kappa\right)}d\rho<\infty.

There are strongly and weakly dependent components in the term I3I_{3} and its variance Var(I3)\textbf{Var}(I_{3}) can be rewritten as follows

Var (I3)=Var(v3Nκ(3)Cv3v3!Δ(r)j=1m+nHkj,κ(ηj(x))dx)\displaystyle(I_{3})=\textbf{Var}\bigg{(}\sum_{v_{3}\in N_{\kappa}^{(3)}}\dfrac{C_{v_{3}}}{v_{3}!}\int_{\Delta(r)}\prod_{j=1}^{m+n}H_{k_{j,\kappa}}(\eta_{j}(x))dx\bigg{)}
=v3Nκ(3)Cv32(v3!)2Δ(r)Δ(r)Ej=1mHkj,κ(ηj(x))Hkj,κ(ηj(y))\displaystyle=\sum_{v_{3}\in N_{\kappa}^{(3)}}\dfrac{C_{v_{3}}^{2}}{(v_{3}!)^{2}}\int_{\Delta(r)}\int_{\Delta(r)}\textbf{E}\prod_{j=1}^{m}H_{k_{j,\kappa}}(\eta_{j}(x))H_{k_{j,\kappa}}(\eta_{j}(y))
×Ej=m+1m+nHkj,κ(ηj(x))Hkj,κ(ηj(y))dxdy\displaystyle\times\textbf{E}\prod_{j=m+1}^{m+n}H_{k_{j,\kappa}}(\eta_{j}(x))H_{k_{j,\kappa}}(\eta_{j}(y))dxdy
=v3Nκ(3)Cv32v3!Δ(r)Δ(r)B11j=1mkj,κ(xy)Bm+1m+1j=m+1m+nkj,κ(xy)𝑑x𝑑y\displaystyle=\sum_{v_{3}\in N_{\kappa}^{(3)}}\dfrac{C_{v_{3}}^{2}}{v_{3}!}\int_{\Delta(r)}\int_{\Delta(r)}B_{11}^{\sum_{j=1}^{m}k_{j,\kappa}}(\|x-y\|)B_{m+1m+1}^{\sum_{j=m+1}^{m+n}k_{j,\kappa}}(\|x-y\|)dxdy
=v3Nκ(3)Cv32v3!Δ(r)Δ(r)B~(xy)𝑑x𝑑y,\displaystyle=\sum_{v_{3}\in N_{\kappa}^{(3)}}\dfrac{C_{v_{3}}^{2}}{v_{3}!}\int_{\Delta(r)}\int_{\Delta(r)}\tilde{B}(\|x-y\|)dxdy, (4.3)

where

B~(xy)\displaystyle\tilde{B}(\|x-y\|) :=B11j=1mkj,κ(xy)Bm+1m+1j=m+1m+nkj,κ(xy)\displaystyle:=B_{11}^{\sum_{j=1}^{m}k_{j,\kappa}}(\|x-y\|)B_{m+1m+1}^{\sum_{j=m+1}^{m+n}k_{j,\kappa}}(\|x-y\|)
=xy(βj=1mkj,κ+αj=m+1m+nkj,κ)L~(xy),\displaystyle=\|x-y\|^{-(\beta{\sum_{j=1}^{m}k_{j,\kappa}}+\alpha\sum_{j=m+1}^{m+n}k_{j,\kappa})}\tilde{L}(\|x-y\|), (4.4)

and

L~(xy):=L1j=1mkj,κ(xy)L2j=m+1m+nkj,κ(xy).\displaystyle\tilde{L}(\|x-y\|):=L_{1}^{\sum_{j=1}^{m}k_{j,\kappa}}(\|x-y\|)L_{2}^{\sum_{j=m+1}^{m+n}k_{j,\kappa}}(\|x-y\|).

Note, that by properties of slowly varying functions L~()\tilde{L}(\cdot) is also a slowly varying function.

If in (4) the power βj=1mkj,κ+αj=m+1m+nkj,κ\beta{\sum_{j=1}^{m}k_{j,\kappa}}+\alpha\sum_{j=m+1}^{m+n}k_{j,\kappa} is greater than dd then this case is analogous to the case of I1I_{1} with short-range dependence and similar to (4.1) one obtains

Var(I3)Crdv3Nκ(3)Cv32v3!dB~(u)𝑑u,r.\displaystyle\textbf{Var}(I_{3})\sim Cr^{d}\sum_{v_{3}\in N_{\kappa}^{(3)}}\dfrac{C_{v_{3}}^{2}}{v_{3}!}\int_{\mathbb{R}^{d}}\tilde{B}(\|u\|)du,\quad r\rightarrow\infty. (4.5)

This is indeed the case for Nκ(3)N_{\kappa}^{(3)} as j=1mkj,κ1\sum_{j=1}^{m}k_{j,\kappa}\geq 1 and β>d\beta>d.

Note, that by the conditions of the theorem Nκ(2)N_{\kappa}^{(2)}\neq\varnothing. Now, by properties of slowly varying functions (see Preposition 1.3.6 in Bingham et al. (1989)), we get

Var(I1)Var(I2)=Crdv1Nκ(1)Cv12v1!\bigintsssdB11κ(u)duc1(κ,α,Δ)|Δ|2v2Nκ(2)Cv22v2!r2dακL2κ(r)0,r.\displaystyle\dfrac{\textbf{Var}(I_{1})}{\textbf{Var}(I_{2})}=\frac{Cr^{d}\sum_{v_{1}\in N_{\kappa}^{(1)}}\frac{C_{v_{1}}^{2}}{v_{1}!}\bigintsss_{\mathbb{R}^{d}}B_{11}^{\kappa}(\|u\|)du}{c_{1}(\kappa,\alpha,\Delta)|\Delta|^{2}\sum_{v_{2}\in N_{\kappa}^{(2)}}\frac{C_{v_{2}}^{2}}{v_{2}!}r^{2d-\alpha\kappa}L_{2}^{\kappa}(r)}\rightarrow 0,\quad r\rightarrow\infty. (4.6)

By (4.2) and (4.5) we also obtain

Var(I3)Var(I2)\displaystyle\dfrac{\textbf{Var}(I_{3})}{\textbf{Var}(I_{2})} =Crdv3Nκ(3)Cv32v3!\bigintsssdB~(u)duc1(κ,α,Δ)|Δ|2v2Nκ(2)Cv22v2!r2dακL2κ(r)0,r.\displaystyle=\dfrac{Cr^{d}\sum_{v_{3}\in N_{\kappa}^{(3)}}\frac{C_{v_{3}}^{2}}{v_{3}!}\bigintsss_{\mathbb{R}^{d}}\tilde{B}(\|u\|)du}{c_{1}(\kappa,\alpha,\Delta)|\Delta|^{2}\sum_{v_{2}\in N_{\kappa}^{(2)}}\frac{C_{v_{2}}^{2}}{v_{2}!}r^{2d-\alpha\kappa}L_{2}^{\kappa}(r)}\rightarrow 0,\ \ r\rightarrow\infty. (4.7)

Note, that

Var(i=13Ii)=Var(I2)(Var(I1)Var(I2)+1+Var(I3)Var(I2)+21i<j3Cov(Ii,Ij)Var(I2)).\textbf{Var}\bigg{(}\sum_{i=1}^{3}I_{i}\bigg{)}=\textbf{Var}(I_{2})\bigg{(}\frac{\textbf{Var}(I_{1})}{\textbf{Var}(I_{2})}+1+\frac{\textbf{Var}(I_{3})}{\textbf{Var}(I_{2})}+\dfrac{2\sum_{1\leq i<j\leq 3}\textbf{Cov}(I_{i},I_{j})}{\textbf{Var}(I_{2})}\bigg{)}.

Using the Cauchy–Schwarz inequality |Cov(Ii,Ij)|Var(Ii)Var(Ij)|\textbf{Cov}(I_{i},I_{j})|\leq\sqrt{\textbf{Var}(I_{i})\textbf{Var}(I_{j})} by (4.6) and (4.7) we get for rr\to\infty that

|Cov(I1,I2)|Var(I2)Var(I1)Var(I2)0,|Cov(I2,I3)|Var(I2)Var(I3)Var(I2)0,\dfrac{|\textbf{Cov}(I_{1},I_{2})|}{\textbf{Var}(I_{2})}\leq\sqrt{\dfrac{\textbf{Var}(I_{1})}{\textbf{Var}(I_{2})}}\rightarrow 0,\quad\dfrac{|\textbf{Cov}(I_{2},I_{3})|}{\textbf{Var}(I_{2})}\leq\sqrt{\dfrac{\textbf{Var}(I_{3})}{\textbf{Var}(I_{2})}}\rightarrow 0,
|Cov(I1,I3)|Var(I2)Var(I1)Var(I2)Var(I3)Var(I2)0.\dfrac{|\textbf{Cov}(I_{1},I_{3})|}{\textbf{Var}(I_{2})}\leq\sqrt{\dfrac{\textbf{Var}(I_{1})}{\textbf{Var}(I_{2})}}\sqrt{\dfrac{\textbf{Var}(I_{3})}{\textbf{Var}(I_{2})}}\rightarrow 0. (4.8)

Therefore, combining the above results we obtain

Var(Kr,κ)=Var(i=13Ii)Var(I2)(1+o(1)),r.\displaystyle\textbf{Var}(K_{r,\kappa})=\textbf{Var}\bigg{(}\sum_{i=1}^{3}I_{i}\bigg{)}\sim\textbf{Var}(I_{2})(1+o(1)),\quad r\rightarrow\infty. (4.9)

Now, we study the behaviour of VrV_{r}. Similarly to Kr,κK_{r,\kappa}, to investigate Var(Vr)\textbf{Var}(V_{r}) we define the following sets

Nl(1)={(k1,l,,km,l):j=1mkj,l=l},N_{l}^{(1)}=\{(k_{1,l},\dots,k_{m,l}):\sum_{j=1}^{m}k_{j,l}=l\},
Nl(2)={(k1,l,,km+n,l):j=m+1m+nkj,l=l},N_{l}^{(2)}=\{(k_{1,l},\dots,k_{m+n,l}):\sum_{j=m+1}^{m+n}k_{j,l}=l\},

and

Nl(3)={(k1,l,,km+n,l):j=1m+nkj,l=land 0<j=1mkj,l<l}.N_{l}^{(3)}=\{(k_{1,l},\dots,k_{m+n,l}):\sum_{j=1}^{m+n}k_{j,l}=l\ \mbox{and}\ 0<\sum_{j=1}^{m}k_{j,l}<l\}.

Then VrV_{r} can be written as

Vr\displaystyle V_{r} =lκ+1v1Nl(1)Cv1v1!Δ(r)j=1mHkj,l(ηj(x))dx\displaystyle=\sum_{l\geq\kappa+1}\sum_{v_{1}\in N_{l}^{(1)}}\dfrac{C_{v_{1}}}{v_{1}!}\int_{\Delta(r)}\prod_{j=1}^{m}H_{k_{j,l}}(\eta_{j}(x))dx
+lκ+1v2Nl(2)Cv2v2!Δ(r)j=m+1m+nHkj,l(ηj(x))dx\displaystyle+\sum_{l\geq\kappa+1}\sum_{v_{2}\in N_{l}^{(2)}}\dfrac{C_{v_{2}}}{v_{2}!}\int_{\Delta(r)}\prod_{j=m+1}^{m+n}H_{k_{j,l}}(\eta_{j}(x))dx
+lκ+1v3Nl(3)Cv3v3!Δ(r)j=1m+nHkj,l(ηj(x))dx=:i=13Ii(l).\displaystyle+\sum_{l\geq\kappa+1}\sum_{v_{3}\in N_{l}^{(3)}}\dfrac{C_{v_{3}}}{v_{3}!}\int_{\Delta(r)}\prod_{j=1}^{m+n}H_{k_{j,l}}(\eta_{j}(x))dx=:\sum_{i=1}^{3}I_{i}^{(l)}.

Hence,

Var(Vr)=Var(i=13Ii(l))=i=13Var(Ii(l))+21i<j3Cov(Ii(l),Ij(l)).\textbf{Var}(V_{r})=\ \textbf{Var}\bigg{(}\sum_{i=1}^{3}I_{i}^{(l)}\bigg{)}=\sum_{i=1}^{3}\textbf{Var}(I_{i}^{(l)})+2\sum_{1\leq i<j\leq 3}\textbf{Cov}(I_{i}^{(l)},I_{j}^{(l)}).

The components ηj(x)\eta_{j}(x), j=1,,mj=1,\dots,m, in I1(l)I_{1}^{(l)} are weakly dependent and Var(I1(l))\textbf{Var}(I_{1}^{(l)}) is given by

Var(I1(l))\displaystyle\textbf{Var}(I_{1}^{(l)}) =lκ+1v1Nl(1)Cv12v1!Δ(r)Δ(r)j=1mBjjkj,l(xy)dxdy\displaystyle=\sum_{l\geq\kappa+1}\sum_{v_{1}\in N_{l}^{(1)}}\dfrac{C_{v_{1}}^{2}}{v_{1}!}\int_{\Delta(r)}\int_{\Delta(r)}\prod_{j=1}^{m}B_{jj}^{k_{j,l}}(\|x-y\|)dxdy
=lκ+1v1Nl(1)Cv12v1!Δ(r)Δ(r)Bjjl(xy)𝑑x𝑑y.\displaystyle=\sum_{l\geq\kappa+1}\sum_{v_{1}\in N_{l}^{(1)}}\dfrac{C_{v_{1}}^{2}}{v_{1}!}\int_{\Delta(r)}\int_{\Delta(r)}B_{jj}^{l}(\|x-y\|)dxdy. (4.10)

As Bjj()1B_{jj}(\cdot)\leq 1 and l>κl>\kappa we can estimate the expression in (4.10) by

Var(I1(l))\displaystyle\textbf{Var}\left(I_{1}^{(l)}\right) lκ+1v1Nl(1)Cv12v1!Δ(r)Δ(r)Bjjκ(xy)𝑑x𝑑y.\displaystyle\leq\sum_{l\geq\kappa+1}\sum_{v_{1}\in N_{l}^{(1)}}\dfrac{C_{v_{1}}^{2}}{v_{1}!}\int_{\Delta(r)}\int_{\Delta(r)}B_{jj}^{\kappa}(\|x-y\|)dxdy.

It follows from this estimates and the asymptotic (4.1) for Var(I1)\textbf{Var}\left(I_{1}\right) that

Var(I1(l))\displaystyle\textbf{Var}\left(I_{1}^{(l)}\right) Crdlκ+1v1Nl(1)Cv12v1!dB11κ(u)𝑑u,r.\displaystyle\leq Cr^{d}\sum_{l\geq\kappa+1}\sum_{v_{1}\in N_{l}^{(1)}}\dfrac{C_{v_{1}}^{2}}{v_{1}!}\int_{\mathbb{R}^{d}}B_{11}^{\kappa}(\|u\|)du,\quad r\rightarrow\infty. (4.11)

In the term I3(l)I_{3}^{(l)} the components are strongly and weakly dependent random fields. Similarly to the case of Var(I3)\textbf{Var}\big{(}I_{3}\big{)} we obtain that Var(I3(l))\textbf{Var}\big{(}I_{3}^{(l)}\big{)} is equal

Var(lκ+1v3Nl(3)Cv3v3!Δ(r)j=1mHkj,l(ηj(x))j=m+1m+nHkj,l(ηj(x))dx)\displaystyle\textbf{Var}\bigg{(}\sum_{l\geq\kappa+1}\sum_{v_{3}\in N_{l}^{(3)}}\dfrac{C_{v_{3}}}{v_{3}!}\int_{\Delta(r)}\prod_{j=1}^{m}H_{k_{j,l}}(\eta_{j}(x))\prod_{j=m+1}^{m+n}H_{k_{j,l}}(\eta_{j}(x))dx\bigg{)}
=lκ+1v3Nl(3)Cv32(v3!)2Δ(r)Δ(r)E(j=1mHkj,l(ηj(x))Hkj,l(ηj(y)))\displaystyle=\sum_{l\geq\kappa+1}\sum_{v_{3}\in N_{l}^{(3)}}\dfrac{C_{v_{3}}^{2}}{(v_{3}!)^{2}}\int_{\Delta(r)}\int_{\Delta(r)}\textbf{E}\bigg{(}\prod_{j=1}^{m}H_{k_{j,l}}(\eta_{j}(x))H_{k_{j,l}}(\eta_{j}(y))\bigg{)}
×E(j=m+1m+nHkj,l(ηj(x))Hkj,l(ηj(y)))dxdy\displaystyle\times\textbf{E}\bigg{(}\prod_{j=m+1}^{m+n}H_{k_{j,l}}(\eta_{j}(x))H_{k_{j,l}}(\eta_{j}(y))\bigg{)}dxdy
=lκ+1v3Nl(3)Cv32v3!Δ(r)Δ(r)B11j=1mkj,l(xy)Bm+1m+1j=m+1m+nkj,l(xy)𝑑x𝑑y\displaystyle=\sum_{l\geq\kappa+1}\sum_{v_{3}\in N_{l}^{(3)}}\dfrac{C_{v_{3}}^{2}}{v_{3}!}\int_{\Delta(r)}\int_{\Delta(r)}B_{11}^{\sum_{j=1}^{m}k_{j,l}}(\|x-y\|)B_{m+1m+1}^{\sum_{j=m+1}^{m+n}k_{j,l}}(\|x-y\|)dxdy
=lκ+1v3Nl(3)Cv32v3!Δ(r)Δ(r)B^(xy)𝑑x𝑑y,\displaystyle=\sum_{l\geq\kappa+1}\sum_{v_{3}\in N_{l}^{(3)}}\dfrac{C_{v_{3}}^{2}}{v_{3}!}\int_{\Delta(r)}\int_{\Delta(r)}\hat{B}(\|x-y\|)dxdy,

where

B^(xy):=xy(βj=1mkj,l+αj=m+1m+nkj,l)L^(xy),\displaystyle\hat{B}(\|x-y\|):=\|x-y\|^{-(\beta{\sum_{j=1}^{m}{k}_{j,l}}+\alpha\sum_{j=m+1}^{m+n}{k}_{j,l})}\hat{L}(\|x-y\|),

and

L^(xy):=L1j=1mkj,l(xy)L2j=m+1m+nkj,l(xy)\displaystyle\hat{L}(\|x-y\|):=L_{1}^{\sum_{j=1}^{m}{k}_{j,l}}(\|x-y\|)L_{2}^{\sum_{j=m+1}^{m+n}{k}_{j,l}}(\|x-y\|)

is a slowly varying function.

Now, as j=1mkj,l1\sum_{j=1}^{m}k_{j,l}\geq 1 then βj=1mkj,l+αj=m+1m+nkj,l>d\beta{\sum_{j=1}^{m}{k}_{j,l}}+\alpha\sum_{j=m+1}^{m+n}{k}_{j,l}>d and similar to (4.1) the variance Var(I3(l))\textbf{Var}\big{(}I_{3}^{(l)}\big{)} has the asymptotic behaviour

Var(I3(l))Crdlκ+1v3Nl(3)Cv32v3!dB^(u)𝑑u,r.\displaystyle\textbf{Var}\big{(}I_{3}^{(l)}\big{)}\sim Cr^{d}\sum_{l\geq\kappa+1}\sum_{v_{3}\in N_{l}^{(3)}}\dfrac{C_{v_{3}}^{2}}{v_{3}!}\int_{\mathbb{R}^{d}}\hat{B}(\|u\|)du,\quad r\rightarrow\infty. (4.12)

Note, that all assumptions of Theorem 1 in Olenko and Omari (2019) are satisfied in our case as αj=α\alpha_{j}=\alpha, j=1,,mj=1,\dots,m, and then

j=1mαjkj,κ=ακ(κ+1)min1jmαj=(κ+1)α.\sum_{j=1}^{m}\alpha_{j}k_{j,\kappa}=\alpha\kappa\leq(\kappa+1)\min_{1\leq j\leq m}\alpha_{j}=(\kappa+1)\alpha.

Therefore, by Theorem 1 in Olenko and Omari (2019) we get

Var(I2(l))Var(I2)0,r.\displaystyle\dfrac{\textbf{Var}(I_{2}^{(l)})}{\textbf{Var}(I_{2})}\to 0,\quad r\to\infty. (4.13)

Finally, combining (4.11), (4.13) (4.12) and applying the Cauchy–Schwarz inequality analogously to Var(Kr,κ)\textbf{Var}(K_{r,\kappa}) one obtains that Var(Vr)Var(Kr,κ)0,r\dfrac{\textbf{Var}(V_{r})}{\textbf{Var}(K_{r,\kappa})}\to 0,\ r\to\infty, which proves the asymptotic equivalence of KrVar(Kr)\dfrac{K_{r}}{\sqrt{Var(K_{r})}} and Kr,κVar(Kr,κ).\dfrac{K_{r,\kappa}}{\sqrt{Var(K_{r,\kappa})}}.

It follows from Assumption 1 that

βj=1mkj,l+αj=m+1m+nkj,l>αj=m+1m+nkj,κ=ακ\beta{\sum_{j=1}^{m}{k}_{j,l}}+\alpha\sum_{j=m+1}^{m+n}{k}_{j,l}>\alpha\sum_{j=m+1}^{m+n}k_{j,\kappa}=\alpha\kappa

for all v=(k1,l,,km+n,l)N+\Nκ(2)v=(k_{1,l},\dots,k_{m+n,l})\in N_{+}\backslash N_{\kappa}^{(2)} and any v2=(0,,0,km+1,κ,,v_{2}=(0,\dots,0,k_{m+1,\kappa},\dots, km+n,κ)Nκ(2)k_{m+n,\kappa})\in N_{\kappa}^{(2)}. Hence, γ=ακ\gamma=\alpha\kappa, Nκ=Nκ(2)N+={(0,,0,km+1,κ,,N_{\kappa}^{*}=N_{\kappa}^{(2)}\cap N_{+}=\{(0,\dots,0,k_{m+1,\kappa},\dots, km+n,κ)N+}k_{m+n,\kappa})\in N_{+}\}\neq\varnothing and +={κ}\mathcal{L}_{+}=\{\kappa\}. For v2Nκ(2)v_{2}\in N_{\kappa}^{(2)} the coefficient Cv20C_{v_{2}}\neq 0 only if v2Nκv_{2}\in N_{\kappa}^{*}. Thus, by (4.9) we obtain that Kr,κVar(Kr,κ)\dfrac{K_{r,\kappa}}{\sqrt{\textbf{Var}(K_{r,\kappa})}} and Kr,κVar(Kr,κ),\dfrac{K_{r,\kappa}^{*}}{\sqrt{\textbf{Var}(K_{r,\kappa}^{*})}}, have the same limit distribution, which completes the proof.∎

Proof of Theorem 2.

By Theorem 1

Xκ(r)=Var(Kr)c2κ/2(d,α)rd(κα)/2L2κ/2(r)KrVar(Kr)X_{\kappa}(r)=\dfrac{\sqrt{\textbf{Var}(K_{r})}}{c_{2}^{\kappa/2}(d,\alpha)r^{d-(\kappa\alpha)/2}L_{2}^{\kappa/2}(r)}\cdot\dfrac{K_{r}}{\sqrt{\textbf{Var}(K_{r})}}

and

Xκ(r):=Var(Kr)c2κ/2(d,α)rd(κα)/2L2κ/2(r)Kr,κVar(Kr,κ)X_{\kappa}^{*}(r):=\dfrac{\sqrt{\textbf{Var}(K_{r})}}{c_{2}^{\kappa/2}(d,\alpha)r^{d-(\kappa\alpha)/2}L_{2}^{\kappa/2}(r)}\cdot\dfrac{K_{r,\kappa}^{*}}{\sqrt{\textbf{Var}(K_{r,\kappa}^{*})}}

have the same limit distribution if it exists.

By Remark 5, Var(Kr)Var(Kr,κ)\sqrt{\textbf{Var}(K_{r})}\sim\sqrt{\textbf{Var}(K_{r,\kappa}^{*})}, rr\to\infty, and hence Xκ(r)X_{\kappa}^{*}(r) and c2κ/2(d,α)r(κα)/2dL2κ/2Kr,κc_{2}^{-\kappa/2}(d,\alpha)r^{(\kappa\alpha)/2-d}L_{2}^{-\kappa/2}K_{r,\kappa}^{*} have the same limit distribution.

Kr,kK_{r,k}^{*} is a sum of independent terms of the form

Cvv!Δ(r)Hκ(ηj(x))𝑑x,j=m+1,,m+n.\frac{C_{v}}{v!}\int_{\Delta(r)}H_{\kappa}(\eta_{j}(x))dx,\quad j=m+1,\dots,m+n.

It follows from Theorem 5 in Leonenko and Olenko (2014) that for the independent components ηj(x)\eta_{j}(x) and for each vNκv\in N_{\kappa}^{*}

c2κ/2(d,α)r(κα)/2dL2κ/2(r)Δ(r)Hκ(ηj(x))𝑑xXκ,r,c_{2}^{-\kappa/2}(d,\alpha)r^{(\kappa\alpha)/2-d}L_{2}^{-\kappa/2}(r)\int_{\Delta(r)}H_{\kappa}(\eta_{j}(x))dx\to X_{\kappa},\quad r\to\infty,

which completes the proof. ∎

Proof of Example 1.

It follows from the form of G(w1,w2)G(w_{1},w_{2}) that

Kr,1=Δ(r)η1(x)𝑑xandVr=Δ(r)η22(x)𝑑xΔ(r).K_{r,1}=\int_{\Delta(r)}\eta_{1}(x)dx\quad\ \mbox{and}\quad\ V_{r}=\int_{\Delta(r)}\eta_{2}^{2}(x)dx-\Delta(r).

Then by Theorem 1 in Leonenko and Olenko (2014)

Kr,1Var(Kr,1)DN(0,1),r,\displaystyle\dfrac{K_{r,1}}{\sqrt{\textbf{Var}(K_{r,1})}}\stackrel{{\scriptstyle D}}{{\to}}N(0,1),\quad r\to\infty, (4.14)

and by Theorem 5 in Leonenko and Olenko (2014)

VrVar(Vr)Dc2(2,α)X2,r.\displaystyle\dfrac{V_{r}}{\sqrt{\textbf{Var}(V_{r})}}\stackrel{{\scriptstyle D}}{{\to}}c_{2}(2,\alpha)X_{2},\quad r\to\infty.

Using the independence of η1()\eta_{1}(\cdot) and η2()\eta_{2}(\cdot), (4.1) and applying (4.2) to H2()H_{2}(\cdot) one obtains

Var(Kr)=Var(Kr,1)+Var(Vr)C1r2+C2r2(2α)L22(r),r.\displaystyle\textbf{Var}(K_{r})=\textbf{Var}(K_{r,1})+\textbf{Var}(V_{r})\sim C_{1}r^{2}+C_{2}r^{2(2-\alpha)}L_{2}^{2}(r),\quad r\to\infty.

Therefore, for α(0,1)\alpha\in(0,1)

Var(Kr,1)r2(2α)L22(r)0andVar(Kr)C2r2(2α)L22(r),r.\frac{\textbf{Var}(K_{r,1})}{r^{2(2-\alpha)}L_{2}^{2}(r)}\to 0\quad\ \mbox{and}\quad\ \textbf{Var}(K_{r})\sim C_{2}r^{2(2-\alpha)}L_{2}^{2}(r),\quad r\to\infty.

Hence, KrVar(Kr)Dc2(2,α)X2,r,\dfrac{K_{r}}{\sqrt{\textbf{Var}(K_{r})}}\stackrel{{\scriptstyle D}}{{\to}}c_{2}(2,\alpha)X_{2},\ r\to\infty, which is different from the limit distribution in (4.14). ∎

Proof of Theorem 3.

It follows from γ~<d\tilde{\gamma}<d that there is at least one vN+v\in N_{+} such that j=m+1m+nαjkj,l<d\sum_{j=m+1}^{m+n}\alpha_{j}{k}_{j,l}<d. Moreover, as γ~\tilde{\gamma} can be obtained only for vN+v\in N_{+} with j=1mkj,l=0\sum_{j=1}^{m}{k}_{j,l}=0 and j=m+1m+nkj,l=l\sum_{j=m+1}^{m+n}{k}_{j,l}=l then +~\tilde{\mathcal{L}_{+}} is a finite set. Hence, it holds N+=N+(1)N+(2)N+(3)N_{+}=N_{+}^{(1)}\cup N_{+}^{(2)}\cup N_{+}^{(3)}, where

N+(1)={(k1,l,,km+n,l):j=1mβjkj,l+j=m+1m+nαjkj,l>d,lκ},N_{+}^{(1)}=\{(k_{1,l},\dots,k_{m+n,l}):{\sum_{j=1}^{m}\beta_{j}{k}_{j,l}}+\sum_{j=m+1}^{m+n}\alpha_{j}{k}_{j,l}>d,\ l\geq\kappa\},
N+(2)={(k1,l,,km+n,l):j=m+1m+nαjkj,l=γ~,lκ},N_{+}^{(2)}=\{(k_{1,l},\dots,k_{m+n,l}):\sum_{j=m+1}^{m+n}\alpha_{j}{k}_{j,l}=\tilde{\gamma},\ l\geq\kappa\},

and

N+(3)={(k1,l,,km+n,l):γ~<j=1mβjkj,l+j=m+1m+nαjkj,l<d,lκ},N_{+}^{(3)}=\{(k_{1,l},\dots,k_{m+n,l}):\tilde{\gamma}<{\sum_{j=1}^{m}\beta_{j}{k}_{j,l}}+\sum_{j=m+1}^{m+n}\alpha_{j}{k}_{j,l}<d,\ l\geq\kappa\},

are disjoint sets.

Using the Hermite expantion of G()G(\cdot) we obtain

𝑲𝒓\displaystyle\bm{K_{r}} =v1N+(1)Cv1v1!Δ(r)j=1m+nHkj,l(ηj(x))dx\displaystyle=\sum_{v_{1}\in N_{+}^{(1)}}\dfrac{C_{v_{1}}}{v_{1}!}\int_{\Delta(r)}\prod_{j=1}^{m+n}H_{k_{j,l}}(\eta_{j}(x))dx
+v2N+(2)Cv2v2!Δ(r)j=m+1m+nHkj,l(ηj(x))dx\displaystyle+\sum_{v_{2}\in N_{+}^{(2)}}\dfrac{C_{v_{2}}}{v_{2}!}\int_{\Delta(r)}\prod_{j=m+1}^{m+n}H_{k_{j,l}}(\eta_{j}(x))dx
+v3N+(3)Cv3v3!Δ(r)j=1m+nHkj,l(ηj(x))dx=:i=13Ii.\displaystyle+\sum_{v_{3}\in N_{+}^{(3)}}\dfrac{C_{v_{3}}}{v_{3}!}\int_{\Delta(r)}\prod_{j=1}^{m+n}H_{k_{j,l}}(\eta_{j}(x))dx=:\sum_{i=1}^{3}I_{i}^{\prime}.

Analogously to (4) and (4) the variance of each summand in KrK_{r} has the form

CΔ(r)Δ(r)xy(j=1mβjkj,l+j=m+1m+nαjkj,l)C\int_{\Delta(r)}\int_{\Delta(r)}\|x-y\|^{-({\sum_{j=1}^{m}\beta_{j}{k}_{j,l}}+\sum_{j=m+1}^{m+n}\alpha_{j}{k}_{j,l})}
×L1j=1mkj,l(xy)L2j=m+1m+nkj,l(xy)dxdy.\times L_{1}^{\sum_{j=1}^{m}k_{j,l}}(\|x-y\|)L_{2}^{\sum_{j=m+1}^{m+n}k_{j,l}}(\|x-y\|)dxdy.

Then, similarly to (4.1) and (4.2) we obtain that Var(I1)Crd\textbf{Var}(I_{1}^{\prime})\sim Cr^{d} and Var(I2)Cr2dγ~l~+L2l(r)\textbf{Var}(I_{2}^{\prime})\sim Cr^{2d-\tilde{\gamma}}\sum_{l\in\tilde{\mathcal{L}}_{+}}L_{2}^{l}(r), rr\to\infty, and each term in I3I_{3}^{\prime} has the variance that is asymptotically equivalent to

Cr2d(j=1mβjkj,l+j=m+1m+nαjkj,l),r.Cr^{2d-({\sum_{j=1}^{m}\beta_{j}{k}_{j,l}}+\sum_{j=m+1}^{m+n}\alpha_{j}{k}_{j,l})},\quad r\to\infty.

By the definition of N+(i)N_{+}^{(i)}, i=1,2,3i=1,2,3, we get

Var(I1)Var(I2)0,Var(I3)Var(I2)0,r.\frac{\textbf{Var}(I_{1}^{\prime})}{\textbf{Var}(I_{2}^{\prime})}\to 0,\quad\quad\frac{\textbf{Var}(I_{3}^{\prime})}{\textbf{Var}(I_{2}^{\prime})}\to 0,\quad r\to\infty.

Using the Cauchy-Schwarz inequality analogously to (4.8) one obtains

Var(Kr)=Var(i=13Ii)Var(I2)(1+o(1)),r.\textbf{Var}(K_{r})=\textbf{Var}\bigg{(}\sum_{i=1}^{3}I_{i}^{\prime}\bigg{)}\sim\textbf{Var}(I_{2}^{\prime})(1+o(1)),\quad r\to\infty.

Finally, noting that N+(2)=l~+N~lN_{+}^{(2)}=\bigcup\limits_{l\in\tilde{\mathcal{L}}_{+}}\tilde{N}_{l}^{*} completes the proof. ∎

Proof of Theorem 4.

By Theorem 3

Var(Kr)rdγ~/2l~+L2l(r)KrVar(Kr)andVar(Kr)rdγ~/2l~+L2l(r)l~+K~r,lVar(Kr)\dfrac{\sqrt{\textbf{Var}(K_{r})}}{r^{d-\tilde{\gamma}/2}\sum_{l\in\tilde{\mathcal{L}}_{+}}L_{2}^{l}(r)}\cdot\dfrac{K_{r}}{\sqrt{\textbf{Var}(K_{r})}}\quad\mbox{and}\quad\dfrac{\sqrt{\textbf{Var}(K_{r})}}{r^{d-\tilde{\gamma}/2}\sum_{l\in\tilde{\mathcal{L}}_{+}}L_{2}^{l}(r)}\cdot\dfrac{\sum_{l\in\tilde{\mathcal{L}}_{+}}\tilde{K}_{r,l}^{*}}{\sqrt{\textbf{Var}(K_{r})}}

have the same limit distribution if it exists. It follows from the structure of N~l\tilde{N}_{l}^{*} that l~+K~r,l\sum_{l\in\tilde{\mathcal{L}}_{+}}\tilde{K}_{r,l}^{*} is a sum of terms

Cvv!Δ(r)Hl(ηjl(x))𝑑x,jl=m+1,,m+n.\dfrac{C_{v}}{v!}\int_{\Delta(r)}H_{l}(\eta_{j_{l}}(x))dx,\quad{j_{l}}=m+1,\dots,m+n.

By Theorem 5 in Leonenko and Olenko (2014) for vN~lv\in\tilde{N}_{l}^{*}

rγ~/2dL2l/2(r)Δ(r)Hl(ηjl(x))𝑑xc2l/2(d,αjl)Xv.\displaystyle r^{\tilde{\gamma}/2-d}L_{2}^{-l/2}(r)\int_{\Delta(r)}H_{l}(\eta_{j_{l}}(x))dx\to c_{2}^{l/2}(d,\alpha_{j_{l}})X_{v}. (4.15)

Note, that from αjl1l1αjl1l2\alpha_{j_{l_{1}}}l_{1}\neq\alpha_{j_{l_{1}}}l_{2}, if l1l2l_{1}\neq l_{2}, follows that jl1jl2j_{l_{1}}\neq j_{l_{2}}, if l1,l2+~l_{1},\ l_{2}\in\tilde{\mathcal{L}_{+}}. Therefore, the term in (4.15) are independent for different jlj_{l}.

From the existence of limrL2(r)\lim_{r\rightarrow\infty}L_{2}(r) it follows that

(i~+L2i/2(r))1=L2l/2(r)i~+L2i/2(r)L2l/2(r)alL2l/2(r),\displaystyle\bigg{(}\sum_{i\in\tilde{\mathcal{L}}_{+}}L_{2}^{i/2}(r)\bigg{)}^{-1}=\frac{L_{2}^{l/2}(r)}{\sum_{i\in\tilde{\mathcal{L}}_{+}}L_{2}^{i/2}(r)}\cdot L_{2}^{-l/2}(r)\sim a_{l}L_{2}^{-l/2}(r), (4.16)

for l+~l\in\tilde{\mathcal{L}_{+}} and rr\to\infty.

As l+~l\in\tilde{\mathcal{L}_{+}} then L2l/2(r)i~+L2i/2(r)L_{2}^{l/2}(r)\leq\sum_{i\in\tilde{\mathcal{L}}_{+}}L_{2}^{i/2}(r) and all coefficients ala_{l} are finite.

Finally, by combining (4.15), (4.16), and noting that

Var(Kr)Var(l~+K~r,l),r,\sqrt{\textbf{Var}(K_{r})}\sim\sqrt{\textbf{Var}\bigg{(}\sum_{l\in\tilde{\mathcal{L}}_{+}}\tilde{K}_{r,l}^{*}\bigg{)}},\quad r\to\infty,

we obtain the statement of the theorem. ∎

Proof of Theorem 5.

It was shown in Leonenko and Olenko (2014) that

Δ(r)(χ(Tn(x)>a)𝐄(χ(Tn(x)>a)))𝑑x=Δ(r)G(𝜼(x))𝑑x,\int_{\Delta(r)}\left(\chi\left(T_{n}(x)>a\right)-\mathbf{E}\left(\chi\left(T_{n}(x)>a\right)\right)\right)dx=\int_{\Delta(r)}{G}\left(\bm{\eta}(x)\right)\,dx,

where

G(w)=χ(w11n(w22++wn+12)>a)+12(1Inn+a2(n2,12))sgn(a)12.\displaystyle{\textstyle G(w)=\chi\bigg{(}\frac{w_{1}}{\sqrt{\frac{1}{n}\left(w_{2}^{2}+\cdots+w_{n+1}^{2}\right)}}>a\bigg{)}+\frac{1}{2}\bigg{(}1-I_{\frac{n}{n+a^{2}}}\bigg{(}\frac{n}{2},\frac{1}{2}\bigg{)}\bigg{)}\cdot{\rm sgn}(a)-\frac{1}{2}}.

Formula (24) in Leonenko and Olenko (2014) gives the Hermite coefficients of G(w)G(w) for vN1v\in N_{1}:

Cv={12π(1+a2/n)n/2,ifv=(1,0,,0),0,ifvN1\{(1,0,,0)}.C_{v}=\left\{\begin{array}[]{lr}\frac{1}{\sqrt{2\pi}\left(1+a^{2}/n\right)^{n/2}},\quad\mbox{if}\quad v=(1,0,\cdots,0),\\ 0,\quad\quad\quad\quad\quad\quad\ \mbox{if}\ \quad v\in N_{1}\backslash\{(1,0,\cdots,0)\}.\end{array}\right.

Thus, HrankG=1HrankG=1.

As G(w)G(w) is an even function of wiw_{i}, i=2,,n+1i=2,\dots,n+1, then Cv=0C_{v}=0 for all vN2v\in N_{2} such that k2,i=k2,j=1k_{2,i}=k_{2,j}=1 for some iji\neq j. For vN2v\in N_{2} such that k2,j=2k_{2,j}=2 for some j=2,,n+1j=2,\dots,n+1, we obtain

Cv\displaystyle C_{v} =n+1G(w)H2(wj)ϕ(w)𝑑w\displaystyle=\int_{\mathbb{R}^{n+1}}{G}(w)H_{2}(w_{j})\phi(\left\|w\right\|)dw
=n+1χ(w11n(w22++wn+12)>a)(wj21)ϕ(w)𝑑w\displaystyle=\int_{\mathbb{R}^{n+1}}\chi\bigg{(}\dfrac{w_{1}}{\sqrt{\frac{1}{n}\left(w_{2}^{2}+\dots+w_{n+1}^{2}\right)}}>a\bigg{)}(w_{j}^{2}-1)\phi(\left\|w\right\|)dw
+(12(1Inn+a2(n2,12))sgn(a)12)n+1(wj21)ϕ(w)𝑑w\displaystyle+\bigg{(}\dfrac{1}{2}\bigg{(}1-I_{\frac{n}{n+a^{2}}}\bigg{(}\frac{n}{2},\frac{1}{2}\bigg{)}\bigg{)}\cdot{\rm sgn}(a)-\dfrac{1}{2}\bigg{)}\int_{\mathbb{R}^{n+1}}(w_{j}^{2}-1)\phi(\left\|w\right\|)dw
=1nn+1χ(w11n(w22++wn+12)>a)(j=2n+1wj2n)ϕ(w)𝑑w\displaystyle=\dfrac{1}{n}\int_{\mathbb{R}^{n+1}}\chi\bigg{(}\dfrac{w_{1}}{\sqrt{\frac{1}{n}\left(w_{2}^{2}+\dots+w_{n+1}^{2}\right)}}>a\bigg{)}\bigg{(}\sum_{j=2}^{n+1}w_{j}^{2}-n\bigg{)}\phi(\left\|w\right\|)dw
=2πn/2n(2π)(n+1)/2Γ(n/2)0(ρ2n)ρn1eρ22aρ/new122𝑑w1𝑑ρ.\displaystyle=\frac{2\,\pi^{n/2}}{n(2\pi)^{(n+1)/2}\Gamma(n/2)}\int_{0}^{\infty}(\rho^{2}-n)\rho^{n-1}\,e^{-\frac{\rho^{2}}{2}}\int_{a\rho/\sqrt{n}}^{\infty}\,e^{-\frac{w_{1}^{2}}{2}}\,dw_{1}\,d\rho.

Now we investigate CvC_{v} as a function of aa:

ddaCv\displaystyle\dfrac{d}{da}C_{v} =(1+a2n)/(2π)n3/2 2(n2)/2Γ(n/2)1+a2n0(ρn+2nρn)eρ22(1+a2n)𝑑ρ\displaystyle=-\frac{\sqrt{\big{(}1+\frac{a^{2}}{n}\big{)}/(2\pi)}}{n^{3/2}\ 2^{(n-2)/2}\ \Gamma(n/2)\sqrt{1+\frac{a^{2}}{n}}}\cdot\int_{0}^{\infty}(\rho^{n+2}-n\rho^{n})\,e^{-\frac{\rho^{2}}{2}(1+\frac{a^{2}}{n})}\,d\rho
=1n3/2 2n/2Γ(n/2)1+a2n(𝐄|z|n+2n𝐄|z|n),\displaystyle=-\frac{1}{n^{3/2}\ 2^{n/2}\ \Gamma(n/2)\sqrt{1+\frac{a^{2}}{n}}}\big{(}\mathbf{E}|z|^{n+2}-n\mathbf{E}|z|^{n}\big{)},

where zN(0,11+a2n)z\sim N\bigg{(}0,\ \dfrac{1}{1+\frac{a^{2}}{n}}\bigg{)}.

Using the formula for the central absolute moments we obtain

ddaCv=Γ(n+12)(1n+1n+a2)nπΓ(n/2)(1+a2n)(n+1)/2.\frac{d}{da}C_{v}=\frac{\Gamma(\frac{n+1}{2})\big{(}1-\frac{n+1}{n+{a^{2}}}\big{)}}{\ \sqrt{n\pi}\ \Gamma(n/2)\big{(}{1+\frac{a^{2}}{n}}\big{)}^{(n+1)/2}}.

Thus, CvC_{v} is a strictly increasing function on (,1)(1,)(-\infty,-1)\cup(1,\infty) and it decreases on (1,1)(-1,1). Note, that limaCv=0\lim_{a\rightarrow\infty}C_{v}=0 and by the formula for the central absolute moments

Cv=C0(ρn+1nρn1)eρ22𝑑ρ=0,whena=0.C_{v}=C\ \int_{0}^{\infty}(\rho^{n+1}-n\rho^{n-1})\,e^{-\frac{\rho^{2}}{2}}\,d\rho=0,\quad\mbox{when}\quad a=0.

Therefore, Cv0C_{v}\neq 0 for a0a\neq 0 and vN2v\in N_{2} such that k2,j=2k_{2,j}=2 for some j=2,,n+1j=2,\dots,n+1. Hence, we obtain that +~={2}\tilde{\mathcal{L}_{+}}=\{2\}, N~2+={vN+N2:kj,2=2,j=2,,n+1}\tilde{N}_{2}^{+}=\{v\in N_{+}\cap N_{2}:k_{j,2}=2,\ j=2,\dots,n+1\} and al=1a_{l}=1. The application of Theorem 4 completes the proof. ∎

5 Simulation studies

In the following numerical examples we use the generalised Cauchy family covariance, see Gneiting and Schlather (2004) and Schlather et al. (2019), to model components of 𝜼(x)\bm{\eta}(x), x2x\in\mathbb{R}^{2}.

The Cauchy covariance function is

B(x)=(1+x2)z2,z>0.B(\|x\|)=(1+\|x\|^{2})^{-\frac{z}{2}},\quad z>0.

To simulate long-range dependent components we consider 0<z<10<z<1. In this range of zz the covariance function is non-integrable. For the case of weakly dependent components we use z>2z>2 which gives integrable covariance functions.

Limit distributions were investigated using the following procedure. Random fields were simulated on the plane 2,\mathbb{R}^{2}, i.e. d=2,d=2, using the square observation window Δ(r)={x2:|xi|<r,i=1,2}.\Delta(r)=\{x\in\mathbb{R}^{2}:\left|x_{i}\right|<r,\ i=1,2\}. The R software package RandomFields (see Schlather et al. (2019)) was used to simulate ηi(x)\eta_{i}(x), x2x\in\mathbb{R}^{2}, i=1,2,3,i=1,2,3, from Cauchy models.

Example 1.

Here we illustrate the results in Example 1. The Cauchy model was used to simulate ηi(x)\eta_{i}(x), x2x\in\mathbb{R}^{2}, i=1,2i=1,2, satisfying Assumption 1 with β=2.5\beta=2.5 and α=0.2\alpha=0.2 respectively. 10001000 realisations of H1(η1(x))H_{1}(\eta_{1}(x)), H2(η2(x))H_{2}(\eta_{2}(x)) and Y(x)=G(η1(x),η2(x))=H1(η1(x))+H2(η2(x))Y(x)=G(\eta_{1}(x),\eta_{2}(x))=H_{1}(\eta_{1}(x))+H_{2}(\eta_{2}(x)) were generated for the large value r=80r=80 to compute distributions of Kr,1K_{r,1}, VrV_{r} and KrK_{r} respectively.

Notice that the random field Y(x)Y(x) has skewed marginal distributions, see Figure 2. The coefficient of the skewness equals 1.621.62, i.e. the marginal distribution of Y(x)Y(x) has a heavy right-hand tail.

To compare empirical distributions, Q-Q plots of realisations of KrK_{r} versus realisations of VrV_{r} and Kr,1K_{r,1} are produced in Figure 3. As large rr and the number of realisations were selected for simulations these empirical distributions are close to the corresponding asymptotic distributions.

Refer to caption
Figure 2: The histogram of Y(x)Y(x).
Refer to caption
Figure 3: Q-Q plots of (a) KrK_{r} versus VrV_{r}, (b) KrK_{r} versus Kr,1K_{r,1}

It is clear from Figure 3(a) that asymptotic distributions of KrK_{r} and VrV_{r} are close and the reduction principle works. The Kolmogorov-Smirnov test confirms this result with pp-value =0.9937=0.9937, see also Figure 4 where the plots of empirical cdfs of KrK_{r} and VrV_{r} are almost identical. However, Figure 3(b) shows that the distributions of KrK_{r} and Kr,1K_{r,1} are different, i.e. asymptotic behaviour of functionals of vector random fields with weak-strong dependent components is not necessarily determined by their Hermite ranks. This result is also confirmed by the Kolmogorov-Smirnov pp-value =1.412×108=1.412\times 10^{-8} and Figure 4.

Refer to caption
Figure 4: Plots of empirical cdfs of KrK_{r}, VrV_{r} and Kr,1K_{r,1}.
Example 2.

This example illustrates Theorem 5. For m=1m=1, n=2n=2 and r=600,r=600, we simulated 500500 realisations of the field T2(x)=η1(x)(1/2)(η22(x)+η32(x))T_{2}(x)=\frac{\eta_{1}(x)}{\sqrt{{(1/2)(\eta_{2}^{2}(x)+\eta_{3}^{2}(x))}}}, x2.x\in\mathbb{R}^{2}. For each realisation the area of the excursion set above the level a=0.5a=0.5 was computed. Figure 5 presents the Q-Q plots with 99%99\% pointwise normal confidence bands for empirical distributions of excursion areas.

The short-range dependent Cauchy model was used to generate realisations of T2(x)T_{2}(x) with β=4\beta=4 for all ηi(x)\eta_{i}(x), i=1,2,3i=1,2,3. Figure 5(a) shows that all the quantiles lie within the confidence bands which confirms that the first Minkowski functional Mr{T2(x)}M_{r}\{T_{2}(x)\} is Gaussian.

Another set of realisations of T2(x)T_{2}(x) was generated using the long-range dependent Cauchy model with α=0.4\alpha=0.4 for all ηi(x)\eta_{i}(x), i=1,2,3i=1,2,3. Empirical distributions of Mr{T2(x)}M_{r}\{T_{2}(x)\} for the obtained realisations of this long-range dependent and the previous short-range dependent Cauchy models were compared. Figure 5(b) shows that the empirical distributions are close and hence, the asymptotic is Gaussian. It is also supported by the Kolmogorov-Smirnov test with pp-value =0.96=0.96. Note, that the Gaussianity for these two models follows from the results of Theorems 3 and 6 in Leonenko and Olenko (2014).

Refer to caption
Refer to caption
Figure 5: Q–Q plots of realisations of Mr{T2(x)}M_{r}\{T_{2}(x)\} of a short-range dependent Cauchy model versus (a) the normal distribution, (b) Mr{T2(x)}M_{r}\{T_{2}(x)\} of a long-range dependent Cauchy model and (c) Mr{T2(x)}M_{r}\{T_{2}(x)\} of a strong-weak dependent Cauchy model.

Finally, T2(x)T_{2}(x) was generated using the Cauchy fields η1(x)\eta_{1}(x) with β=4\beta=4, and η2(x)\eta_{2}(x) and η3(x)\eta_{3}(x) with α=0.4\alpha=0.4. Note, that η1(x)\eta_{1}(x) is a weakly dependent component while η2(x)\eta_{2}(x) and η3(x)\eta_{3}(x) are strongly dependent ones. The Q-Q plot analogous to Figure 5(b) presented in Figure 5(c) demonstrates that the distributions are different. The corresponding Kolmogorov-Smirnov pp-value is 0.030.03. In this case the asymptotic distribution of Mr{T2(x)}M_{r}\{T_{2}(x)\} of strong-weak dependent components is non-Gaussian and is given by Theorem 5.

6 Conclusions

The paper obtains the reduction principle for vector random fields with strong-weak dependent components. In contrast to the known scalar and vector cases with same type memory components, it is shown that terms at HrankGHrankG levels do not necessarily determine limit behaviours. Applications to Minkowski functionals of Student random fields and numerical examples that illustrate the obtained theoretical results are presented. It would be interesting to extend the obtained results to the cases of

  • (1)

    cross-correlated components by using some ideas from Theorems 10 and 11 in Leonenko and Olenko (2014). In these theorems it was assumed that the cross-correlation of components is given by some positive definite matrix 𝒜.\mathcal{A}. Then, by using the transformation η~=𝒜1/2η,\tilde{\eta}=\mathcal{A}^{-1/2}\eta, it was possible to transform the vector field to the one with non-correlated components;

  • (2)

    j=1mβjkj,l+j=m+1m+nαjkj,l=d\sum_{j=1}^{m}\beta_{j}{k}_{j,l}+\sum_{j=m+1}^{m+n}\alpha_{j}{k}_{j,l}=d. It is expected that under some additional assumptions these cases will lead to the CLT, see Remark 2.4 in Bai and Taqqu (2018);

  • (3)

    non-central limit theorems where the condition kjl,l=lfor somejl=m+1,,m+nk_{j_{l},l}=l\ \mbox{for\ some}\ j_{l}=m+1,\dots,m+n is not satisfied. Obtaining such analogous of Theorems 4 and 5, it requires an extension of Arcones-Major results, see Arcones (1994); Major (2019), to continuous settings. While the direct proof may need substantial efforts, see Major (2019), one can try the simpler strategy proposed in Alodat and Olenko (2019). Namely, to prove that discrete and continuous functionals have same limits and then to apply the known discrete result from Arcones (1994) and Major (2019);

  • (4)

    cyclically dependent components, i.e. when the spectral density has singular points outside the origin, see, for example, Klykavka et al. (2012) and Olenko (2013).

Acknowledgements

Andriy Olenko was partially supported under the Australian Research Council’s Discovery Projects funding scheme (project DP160101366). The authors also would like to thank the anonymous referees for their suggestions that helped to improve the paper.

References

  • Adler and Taylor (2009) Adler, R. and Taylor, J. (2009). Random Fields and Geometry. Milan: Springer.
  • Alodat and Olenko (2019) Alodat, T. and Olenko, A. (2019). Asymptotic behaviour of discretised functionals of long-range dependent functional data. arXiv preprint. Available at \urlarXiv:1905.10030.
  • Amiri et al. (2019) Amiri, M., Gómez, H. W., Jamalizadeh, A. and Towhidi, M. (2019). Bimodal extension based on the skew-t-normal distribution. Brazilian Journal of Probability and Statistics, 33(1), 2–23.
  • Anh et al. (2015) Anh, V., Leonenko, N. and Olenko, A. (2015). On the rate of convergence to Rosenblatt-type distribution. Journal of Mathematical Analysis and Applications, 425(1), 111–132.
  • Arcones (1994) Arcones, M. (1994). Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. The Annals of Probability, 22(4), 2242–2274.
  • Arellano-Valle and Genton (2005) Arellano-Valle, R. B., and Genton, M. G. (2005). On fundamental skew distributions. Journal of Multivariate Analysis, 96(1), 93–116.
  • Azzalini and Capitanio (2014) Azzalini, A. and Capitanio, A. (2014). The Skew-Normal and Related Families. New York: Cambridge University Press.
  • Bai and Taqqu (2013) Bai, S. and Taqqu, M. (2013). Multivariate limit theorems in the context of long-range dependence. Journal of Time Series Analysis, 34(6), 717–743.
  • Bai and Taqqu (2018) Bai, S. and Taqqu, M. (2018). How the instability of ranks under long memory affects large-sample inference. Statistical Science, 33(1), 96–116.
  • Beran et al. (2013) Beran, J., Feng, Y., Ghosh, S. and Kulik, R. (2013). Long-Memory Processes: Probabilistic Properties and Statistical Methods. Heidelberg: Springer.
  • Bingham et al. (1989) Bingham, N., Goldie, C. and Teugels, J. (1989). Regular Variation. Cambridge: Cambridge University Press.
  • Breuer and Major (1983) Breuer, P. and Major, P. (1983). Central limit theorems for non-linear functionals of Gaussian fields. Journal of Multivariate Analysis, 13(3), 425–441.
  • Bulinski et al. (2012) Bulinski, A., Spodarev, E. and Timmermann, F. (2012). Central limit theorems for the excursion set volumes of weakly dependent random fields. Bernoulli, 18(1), 100–118.
  • Chambers and Slud (1989) Chambers, D. and Slud, E. (1989). Central limit theorems for nonlinear functionals of stationary Gaussian processes. Probability Theory and Related Fields, 80(3), 323–346.
  • Coulon-Prieur and Doukhan (2000) Coulon-Prieur, C. and Doukhan, P. (2000). A triangular central limit theorem under a new weak dependence condition. Statistics and Probability Letters, 47(1), 61–68.
  • de Naranjo (1995) de Naranjo, M. (1995). A central limit theorem for non-linear functionals of stationary Gaussian vector processes. Statistics and Probability Letters, 22(3), 223–230.
  • Demichev (2015) Demichev, V. (2015). Functional central limit theorem for excursion set volumes of quasi-associated random fields. Journal of Mathematical Sciences, 204(1), 69–77.
  • Dobrushin and Major (1979) Dobrushin, R. and Major, P. (1979). Non-central limit theorems for non-linear functional of Gaussian fields. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 50(1), 27–52.
  • Doukhan and Louhichi (1999) Doukhan, P. and Louhichi, S. (1999). A new weak dependence condition and applications to moment inequalities. Stochastic Processes and their Applications, 84(2), 313–342.
  • Doukhan et al. (2002) Doukhan, P., Oppenheim, G. and Taqqu, M. (2002). Theory and Applications of Long-Range Dependence. Boston: Birkhäuser.
  • Gihman and Skorokhod (2004) Gihman, I.I, and Skorokhod, A.V. (2004). The Theory of Stochastic Processes I. Berlin: Springer.
  • Gneiting and Schlather (2004) Gneiting, T., and Schlather, M. (2004). Stochastic models that separate fractal dimension and the Hurst effect. SIAM Review, 46(2), 269–282.
  • Hariz (2002) Hariz, S. (2002). Limit theorems for the non-linear functional of stationary Gaussian processes. Journal of Multivariate Analysis, 80(2), 191–216.
  • Ivanov and Leonenko (1989) Ivanov, A. and Leonenko, N. (1989). Statistical Analysis of Random Fields. Dordrecht: Kluwer Academic.
  • Klykavka et al. (2012) Klykavka, B., Olenko, A. and Vicendese, M. (2012). Asymptotic behavior of functionals of cyclic long-range dependent random fields. Journal of Mathematical Sciences, 187(1), 35–48.
  • Kratz and Vadlamani (2018) Kratz, M. and Vadlamani, S. (2018). Central limit theorem for Lipschitz–Killing curvatures of excursion sets of Gaussian random fields. Journal of Theoretical Probability, 31(3), 1729–1758.
  • Leonenko (1999) Leonenko, N. (1989). Limit Theorems for Random Fields with Singular Spectrum. Dordrecht: Kluwer Academic.
  • Leonenko and Olenko (2013) Leonenko, N. and Olenko, A. (2013). Tauberian and Abelian theorems for long-range dependent random fields. Methodology and Computing in Applied Probability, 15(4), 715–742.
  • Leonenko and Olenko (2014) Leonenko, N. and Olenko, A. (2014). Sojourn measures of Student and Fisher–Snedecor random fields. Bernoulli, 20(3), 1454–1483.
  • Major (2019) Major, P. (2019). Non-central limit theorem for non-linear functionals of vector valued Gaussian stationary random fields. arXiv preprint. Available at \urlarXiv:1901.04086.
  • Olenko (2013) Olenko, A. (2013). Limit theorems for weighted functionals of cyclical long-range dependent random fields. Stochastic Analysis and Applications, 31(2), 199–213.
  • Olenko and Omari (2019) Olenko, A. and Omari, D. (2019). Reduction principle for functionals of vector random fields To appear in Methodology and Computing in Applied Probability. Available at \urlarXiv:1803.11271.
  • Rosenblatt (1961) Rosenblatt, M. (1961). Independence and dependence. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. 2 (J. Neyman, eds.) 431–443, University of California Press, Berkeley.
  • Schlather et al. (2019) Schlather, M., Malinowski, A., Oesting, M., Boecker, D., Strokorb, K., Engelke, S., Martini, J., Ballani, F., Moreva, O., Auel, J., Menck, P. J., Gross, S., Ober, U., Berreth, C., Burmeister, K., Manitz, J., Ribeiro, P., Singleton, R., Pfaff, B., and R Core Team (2019) RandomFields: Simulation and Analysis of Random Fields, R package version 3.3.6 \urlhttps://cran.r-project.org/package=RandomFields.
  • Seneta (1976) Seneta, E. (1976). Regularly Varying Functions. Berlin: Springer.
  • Souza (2008) Souza, L. R. (2008). Spectral properties of temporally aggregated long memory processes. Brazilian Journal of Probability and Statistics, 22(2), 135–155.
  • Spodarev (2014) Spodarev, E. (2014). Limit theorems for excursion sets of stationary random fields. In Modern Stochastics and Applications, 90, 221–241. Cham : Springer.
  • Taqqu (1975) Taqqu, M. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 31(4), 287–302.
  • Taqqu (1977) Taqqu, M. (1977). Law of the Iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 40, 203–238.
  • Taqqu (1979) Taqqu, M. (1979). Convergence of integrated processes of arbitrary Hermite rank. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 50(1), 53–83.
  • Worsley (1994) Worsley, K. (1994). Local maxima and the expected Euler characteristic of excursion sets of χ2\chi^{2}, F and t fields. Advances in Applied Probability, 26(1), 13–42.