This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Regularity of the Vlasov-Poisson-Boltzmann System without angular cutoff

Dingqun DENG email: dingqdeng2-c@my.cityu.edu.hk, Department of Mathematics, City University of Hong Kong, ORCID: 0000-0001-9678-314X
Abstract

In this paper we study the regularity of the non-cutoff Vlasov-Poisson-Boltzmann system for plasma particles of two species in the whole space 3\mathbb{R}^{3} with hard potential. The existence of global-in-time nearby Maxwellian solutions is known for soft potential from [15]. However the smoothing effect of these solutions has been a challenging open problem. We establish the global existence and regularizing effect to the Cauchy problem for hard potential with large time decay. Hence, the solutions are smooth with respect to (t,x,v)(t,x,v) for any positive time t>0t>0. This gives the regularity to Vlasov-Poisson-Boltzmann system, which enjoys a similar smoothing effect as Boltzmann equation. The proof is based on the time-weighted energy method building also upon the pseudo-differential calculus.

Keywords

Vlasov-Poisson-Boltzmann system, global existence, regularity, non-cutoff, regularizing effect, large time decay.

MSC 2020

76P05, 76X05, 35Q20, 82C40.

1 Introduction

The Vlasov-Poisson-Boltzmann system is an important physical model to describe the time evolution of plasma particles of two species (e.g. ions and electrons). This work contains two main results. The first one is the global-in-time existence of two species Vlasov-Poisson-Boltzmann system for non-cutoff hard potential, which provide a global energy control with optimal large time decay. Secondly, under this global-in-time energy control, the regularizing effect of Vlasov-Poisson-Boltzmann system is discovered at any positive time. Such smoothing effect is a long existing open problem since [15], where Duan and Liu successfully found the global solution for non-cutoff soft potential with 1/2s<11/2\leq s<1. Moreover, the smoothing method in this paper should be applicable to other kind of kinetic system with the transport term and high-order dissipation term.

Model and Equation.

We consider the Vlasov-Poisson-Boltzmann system of two species in the whole space 3\mathbb{R}^{3}, cf. [22]:

tF++vxF++EvF+=Q(F+,F+)+Q(F,F+),\displaystyle\partial_{t}F_{+}+v\cdot\nabla_{x}F_{+}+E\cdot\nabla_{v}F_{+}=Q(F_{+},F_{+})+Q(F_{-},F_{+}), (1)
tF+vxFEvF=Q(F,F)+Q(F+,F).\displaystyle\partial_{t}F_{-}+v\cdot\nabla_{x}F_{-}-E\cdot\nabla_{v}F_{-}=Q(F_{-},F_{-})+Q(F_{+},F_{-}).

The self-consistent electrostatic field is taken as E(t,x)=xϕE(t,x)=-\nabla_{x}\phi, with the electric potential ϕ\phi given by

Δxϕ=3(F+F)𝑑v,ϕ0 as |x|.\displaystyle-\Delta_{x}\phi=\int_{{\mathbb{R}^{3}}}(F_{+}-F_{-})\,dv,\quad\phi\to 0\text{ as }|x|\to\infty. (2)

The initial data of the system is

F±(0,x,v)=F±,0(x,v).\displaystyle F_{\pm}(0,x,v)=F_{\pm,0}(x,v). (3)

The unknown function F±(t,x,v)0F_{\pm}(t,x,v)\geq 0 represents the velocity distribution for the particle with position x3x\in{\mathbb{R}^{3}} and velocity v3v\in{\mathbb{R}^{3}} at time t0t\geq 0. The bilinear collision term Q(F,G)Q(F,G) on the right hand side of (1) is given by

Q(F,G)(v)=3𝕊2B(vv,σ)(FGFG)𝑑σ𝑑v,\displaystyle Q(F,G)(v)=\int_{{\mathbb{R}^{3}}}\int_{\mathbb{S}^{2}}B(v-v_{*},\sigma)\big{(}F^{\prime}_{*}G^{\prime}-F_{*}G\big{)}\,d\sigma dv_{*}, (4)

where F=F(x,v,t)F^{\prime}=F(x,v^{\prime},t), G=G(x,v,t)G^{\prime}_{*}=G(x,v^{\prime}_{*},t), F=F(x,v,t)F=F(x,v,t), G=G(x,v,t)G_{*}=G(x,v_{*},t). The more rigorous definition in the form of Carleman representation can be found in [13]. (v,v)(v,v_{*}) is the velocity before the collision and (v,v)(v^{\prime},v^{\prime}_{*}) is the velocity after the collision. They are defined by

v=v+v2+|vv|2σ,v=v+v2|vv|2σ.\displaystyle v^{\prime}=\frac{v+v_{*}}{2}+\frac{|v-v_{*}|}{2}\sigma,\ \ v^{\prime}_{*}=\frac{v+v_{*}}{2}-\frac{|v-v_{*}|}{2}\sigma.

This two pair of velocities satisfy the conservation law of momentum and energy:

v+v=v+v,|v|2+|v|2=|v|2+|v|2.\displaystyle v+v_{*}=v^{\prime}+v^{\prime}_{*},\ \ |v|^{2}+|v_{*}|^{2}=|v^{\prime}|^{2}+|v^{\prime}_{*}|^{2}.

Collision Kernel.

The Boltzmann collision kernel BB is defined as

B(vv,σ)=|vv|γb(cosθ),\displaystyle B(v-v_{*},\sigma)=|v-v_{*}|^{\gamma}b(\cos\theta),

for some function bb and γ>3\gamma>-3 determined by the intermolecular interactive mechanism with cosθ=vv|vv|σ\cos\theta=\frac{v-v_{*}}{|v-v_{*}|}\cdot\sigma. Without loss of generality, we can assume B(vv,σ)B(v-v_{*},\sigma) is supported on (vv)σ0(v-v_{*})\cdot\sigma\geq 0, which corresponds to θ(0,π/2]\theta\in(0,\pi/2], since BB can be replaced by its symmetrized form B¯(vv,σ)=B(vv,σ)+B(vv,σ)\overline{B}(v-v_{*},\sigma)=B(v-v_{*},\sigma)+B(v-v_{*},-\sigma) in Q(f,f)Q(f,f). The angular function σb(cosθ)\sigma\mapsto b(\cos\theta) is not integrable on 𝕊2\mathbb{S}^{2}. Moreover, there exists 0<s<10<s<1 such that

sinθb(cosθ)θ12s on θ(0,π/2],\displaystyle\sin\theta b(\cos\theta)\approx\theta^{-1-2s}\ \text{ on }\theta\in(0,\pi/2],

It’s convenient to call soft potential when γ+2s<0\gamma+2s<0, and hard potential when γ+2s0\gamma+2s\geq 0. In this work, we always assume

s(0,1),γ(3,) and γ+2s0.\displaystyle s\in(0,1),\quad\gamma\in(-3,\infty)\text{ and }\gamma+2s\geq 0. (5)

In this paper, we are going to establish the global existence as well as the smoothing effect of the solutions to Cauchy problem (1)-(3) of the Vlasov-Poisson-Boltzmann system near the global Maxwellian equilibrium. For global existence, Guo [19] firstly investigate hard-sphere model of the Vlasov-Poisson-Boltzmann system in a periodic box. Since then, the energy method was largely developed for Boltzmann equation with the self-consistent electric and magnetic fields; see [15, 21, 16]. For smoothing effect of Boltzmann equation, since the work [1] discover the entropy dissipation property for non-cutoff linearized Boltzmann operator, there’s been many discussion in different context. See [2, 5, 7, 18, 24] for the dissipation estimate of collision operator, and [3, 6, 8, 9, 10, 11, 14] for smoothing effect of the solution to Boltzmann equation in different aspect. These works show that the Boltzmann operator behaves locally like a fractional operator:

Q(f,g)(Δv)sg+lower order terms.\displaystyle Q(f,g)\sim(-\Delta_{v})^{s}g+\text{lower order terms}.

More precisely, according to the symbolic calculus developed by [5], the linearized Boltzmann operator behaves essentially as

Lvγ(Δv|vv|2+|v|2)s+lower order terms.\displaystyle L\sim\langle v\rangle^{\gamma}(-\Delta_{v}-|v\wedge\partial_{v}|^{2}+|v|^{2})^{s}+\text{lower order terms}.

However, until now, the smoothing effect of the solutions to Vlasov-Poisson-Boltzmann system remains open and to the best of our knowledge, this is the first paper discussing such smoothing phenomenon.

Reformulation.

We will reformulate the problem near Maxwellian as in [19]. For this we denote a normalized global Maxwellian μ\mu by

μ(v)=(2π)3/2e|v|2/2.\displaystyle\mu(v)=(2\pi)^{-3/2}e^{-|v|^{2}/2}. (6)

Set F±(t,x,v)=μ(v)+μ1/2f±(t,x,v)F_{\pm}(t,x,v)=\mu(v)+\mu^{1/2}f_{\pm}(t,x,v). Denote f=(f+,f)f=(f_{+},f_{-}) and f0=(f+,0,f,0)f_{0}=(f_{+,0},f_{-,0}). Then the Cauchy problem (1)-(3) can be reformulated as

tf±+vxf±±12xϕvf±xϕvf±±xϕvμ1/2L±f=Γ±(f,f),\partial_{t}f_{\pm}+v\cdot\nabla_{x}f_{\pm}\pm\frac{1}{2}\nabla_{x}\phi\cdot vf_{\pm}\mp\nabla_{x}\phi\cdot\nabla_{v}f_{\pm}\pm\nabla_{x}\phi\cdot v\mu^{1/2}-L_{\pm}f=\Gamma_{\pm}(f,f), (7)
Δxϕ=3(f+f)μ1/2𝑑v,ϕ0 as |x|,-\Delta_{x}\phi=\int_{{\mathbb{R}^{3}}}(f_{+}-f_{-})\mu^{1/2}\,dv,\quad\phi\to 0\text{ as }|x|\to\infty, (8)

with initial data

f±(0,x,v)=f±,0(x,v).\displaystyle f_{\pm}(0,x,v)=f_{\pm,0}(x,v). (9)

The linear operator L=(L+,L)L=(L_{+},L_{-}) and Γ=(Γ+,Γ)\Gamma=(\Gamma_{+},\Gamma_{-}) are gives as

L±f=μ1/2(2Q(μ,μ1/2f±)+Q(μ1/2(f±+f),μ)),L_{\pm}f=\mu^{-1/2}\Big{(}2Q(\mu,\mu^{1/2}f_{\pm})+Q(\mu^{1/2}(f_{\pm}+f_{\mp}),\mu)\Big{)},
Γ±(f,g)=μ1/2(Q(μ1/2f±,μ1/2g±)+Q(μ1/2f,μ1/2g±)).\Gamma_{\pm}(f,g)=\mu^{-1/2}\Big{(}Q(\mu^{1/2}f_{\pm},\mu^{1/2}g_{\pm})+Q(\mu^{1/2}f_{\mp},\mu^{1/2}g_{\pm})\Big{)}.

For later use, we introduce the bilinear operator 𝒯\mathcal{T} by

𝒯β(h1,h2)=3𝕊2B(vv,σ)β(μ1/2)(h1(v)h2(v)h1(v)h2(v))dσdv,\displaystyle\mathcal{T}_{\beta}(h_{1},h_{2})=\int_{{\mathbb{R}^{3}}}\int_{\mathbb{S}^{2}}B(v-v_{*},\sigma)\partial_{\beta}(\mu^{1/2}_{*})\big{(}h_{1}(v^{\prime}_{*})h_{2}(v^{\prime})-h_{1}(v_{*})h_{2}(v)\big{)}\,d\sigma dv_{*},

for two scalar functions h1,h2h_{1},h_{2} and especially 𝒯=𝒯0\mathcal{T}=\mathcal{T}_{0}. Thus,

L±f=2𝒯(μ1/2,f±)+𝒯(f±+f,μ1/2),L_{\pm}f=2\mathcal{T}(\mu^{1/2},f_{\pm})+\mathcal{T}(f_{\pm}+f_{\mp},\mu^{1/2}),\\
Γ±(f,g)=𝒯(f±,g±)+𝒯(f,g±).\Gamma_{\pm}(f,g)=\mathcal{T}(f_{\pm},g_{\pm})+\mathcal{T}(f_{\mp},g_{\pm}).

Notations.

Through the paper, CC denotes some positive constant (generally large) and λ\lambda denotes some positive constant (generally small), where both CC and λ\lambda may take different values in different lines. (|)(\cdot|\cdot) is the inner product in n\mathbb{C}^{n}. For any v3v\in{\mathbb{R}^{3}}, we denote v=(1+|v|2)1/2\langle v\rangle=(1+|v|^{2})^{1/2}. For multi-indices α=(α1,α2,α3)\alpha=(\alpha_{1},\alpha_{2},\alpha_{3}) and β=(β1,β2,β3)\beta=(\beta_{1},\beta_{2},\beta_{3}), write

βα=x1α1x2α2x3α3v1β1v2β2v3β3.\displaystyle\partial^{\alpha}_{\beta}=\partial^{\alpha_{1}}_{x_{1}}\partial^{\alpha_{2}}_{x_{2}}\partial^{\alpha_{3}}_{x_{3}}\partial^{\beta_{1}}_{v_{1}}\partial^{\beta_{2}}_{v_{2}}\partial^{\beta_{3}}_{v_{3}}.

The length of α\alpha is |α|=α1+α2+α3|\alpha|=\alpha_{1}+\alpha_{2}+\alpha_{3}. The notation aba\approx b (resp. aba\gtrsim b, aba\lesssim b) for positive real function aa, bb means there exists C>0C>0 not depending on possible free parameters such that C1abCaC^{-1}a\leq b\leq Ca (resp. aC1ba\geq C^{-1}b, aCba\leq Cb) on their domain. 𝒮\mathscr{S} denotes the Schwartz space. Re(a)\text{Re}(a) means the real part of complex number aa. [a,b]=abba[a,b]=ab-ba is the commutator between operators. {a(v,η),b(v,η)}=ηa1va2va1ηa2\{a(v,\eta),b(v,\eta)\}=\partial_{\eta}a_{1}\partial_{v}a_{2}-\partial_{v}a_{1}\partial_{\eta}a_{2} is the Poisson bracket. Γ=|dv|2+|dη|2\Gamma=|dv|^{2}+|d\eta|^{2} is the admissible metric and S(m)=S(m,Γ)S(m)=S(m,\Gamma) is the symbol class. For pseudo-differential calculus, we write (x,v)3×3(x,v)\in{\mathbb{R}^{3}}\times{\mathbb{R}^{3}} to be the space-velocity variable and (y,η)3×3(y,\eta)\in{\mathbb{R}^{3}}\times{\mathbb{R}^{3}} to be the corresponding variable in frequency space (the variable after Fourier transform).

(i) As in [20], the null space of LL is given by

kerL=span{(1,0)μ1/2,(0,1)μ1/2,(1,1)viμ1/2(1i3),(1,1)|v|2μ1/2}.\ker L=\text{span}\Big{\{}(1,0)\mu^{1/2},(0,1)\mu^{1/2},(1,1)v_{i}\mu^{1/2}(1\leq i\leq 3),(1,1)|v|^{2}\mu^{1/2}\Big{\}}.

We denote 𝐏±\mathbf{P}_{\pm} to be the orthogonal projection from Lv2×Lv2L^{2}_{v}\times L^{2}_{v} onto kerL\ker L, which is defined by

𝐏f=(a+(t,x)(1,0)+a(t,x)(0,1)+vb(t,x)(1,1)+(|v|23)c(t,x)(1,1))μ1/2,\mathbf{P}f=\Big{(}a_{+}(t,x)(1,0)+a_{-}(t,x)(0,1)+v\cdot b(t,x)(1,1)+(|v|^{2}-3)c(t,x)(1,1)\Big{)}\mu^{1/2}, (10)

or equivalently by

𝐏±f=(a±(t,x)+vb(t,x)+(|v|23)c(t,x))μ1/2.\mathbf{P}_{\pm}f=\Big{(}a_{\pm}(t,x)+v\cdot b(t,x)+(|v|^{2}-3)c(t,x)\Big{)}\mu^{1/2}.

Then for given ff, one can decompose ff uniquely as

f=𝐏f+(𝐈𝐏)f.f=\mathbf{P}f+(\mathbf{I}-\mathbf{P})f.

The function a±,b,ca_{\pm},b,c are given by

a±\displaystyle a_{\pm} =(μ1/2,f±)Lv2=(μ1/2,𝐏±f)Lv2,\displaystyle=(\mu^{1/2},f_{\pm})_{L^{2}_{v}}=(\mu^{1/2},\mathbf{P}_{\pm}f)_{L^{2}_{v}},
bj\displaystyle b_{j} =12(vjμ1/2,f++f)Lv2=(vjμ1/2,𝐏±f)Lv2,\displaystyle=\frac{1}{2}(v_{j}\mu^{1/2},f_{+}+f_{-})_{L^{2}_{v}}=(v_{j}\mu^{1/2},\mathbf{P}_{\pm}f)_{L^{2}_{v}},
c\displaystyle c =112((|v|23)μ1/2,f++f)Lv2=16((|v|23)μ1/2,𝐏±f)Lv2.\displaystyle=\frac{1}{12}((|v|^{2}-3)\mu^{1/2},f_{+}+f_{-})_{L^{2}_{v}}=\frac{1}{6}((|v|^{2}-3)\mu^{1/2},\mathbf{P}_{\pm}f)_{L^{2}_{v}}.

(ii) To describe the behavior of linearized Boltzmann collision operator, [4] introduce the norm |f|{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|f\right|\kern-1.07639pt\right|\kern-1.07639pt\right|} while [17] introduce the norm Nls,γN^{s,\gamma}_{l}. The previous work [5][13] give the pseudo-differential-type norm (a~1/2)wfLv2\|(\tilde{a}^{1/2})^{w}f\|_{L^{2}_{v}}. They are all equivalent and we list their results as follows.

Let 𝒮\mathscr{S}^{\prime} be the space of tempered distribution functions. Ns,γN^{s,\gamma} denotes the weighted geometric fractional Sobolev space

Ns,γ={f𝒮:|f|Ns,γ<},\displaystyle N^{s,\gamma}=\{f\in\mathscr{S}^{\prime}:|f|_{N^{s,\gamma}}<\infty\},

with the anisotropic norm

|f|Ns,γ2:\displaystyle|f|^{2}_{N^{s,\gamma}}: =vγ/2+sfL22+(vv)γ+2s+12(ff)2d(v,v)d+2s𝟏d(v,v)1,\displaystyle=\|\langle v\rangle^{\gamma/2+s}f\|^{2}_{L^{2}}+\int(\langle v\rangle\langle v^{\prime}\rangle)^{\frac{\gamma+2s+1}{2}}\frac{(f^{\prime}-f)^{2}}{d(v,v^{\prime})^{d+2s}}\mathbf{1}_{d(v,v^{\prime})\leq 1},

with d(v,v):=|vv|2+14(|v|2|v|2)2d(v,v^{\prime}):=\sqrt{|v-v^{\prime}|^{2}+\frac{1}{4}(|v|^{2}-|v^{\prime}|^{2})^{2}}. In order to describe the velocity weight v\langle v\rangle, [17] defined

|f|Nls,γ2=|wlvγ/2+sf|Lv22+3𝑑vwlvγ+2s+13𝑑v(ff)2d(v,v)d+2s𝟏d(v,v)1,\displaystyle|f|^{2}_{N^{s,\gamma}_{l}}=|w^{l}\langle v\rangle^{\gamma/2+s}f|^{2}_{L^{2}_{v}}+\int_{{\mathbb{R}^{3}}}dv\,w^{l}\langle v\rangle^{\gamma+2s+1}\int_{{\mathbb{R}^{3}}}dv^{\prime}\,\frac{(f^{\prime}-f)^{2}}{d(v,v^{\prime})^{d+2s}}\mathbf{1}_{d(v,v^{\prime})\leq 1},

which turns out to be equivalent with |wlf|Ns,γ|w^{l}f|_{N^{s,\gamma}}. This follows from the proof of Proposition 5.1 in [17] since the ψ\psi therein has a nice support.

On the other hand, as in [4], we define

|f|2:\displaystyle{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|f\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}: =B(vv,σ)(μ(ff)2+f2((μ)1/2μ1/2)2)𝑑σ𝑑v𝑑v,\displaystyle=\int B(v-v_{*},\sigma)\Big{(}\mu_{*}(f^{\prime}-f)^{2}+f^{2}_{*}((\mu^{\prime})^{1/2}-\mu^{1/2})^{2}\Big{)}\,d\sigma dv_{*}dv,

For pseudo-differential calculus as in [5, 13], one may refer to the appendix as well as [23] for more information. Let Γ=|dv|2+|dη|2\Gamma=|dv|^{2}+|d\eta|^{2} be an admissible metric. Define

a~(v,η):=vγ(1+|η|2+|ηv|2+|v|2)s+K0vγ+2s\displaystyle\tilde{a}(v,\eta):=\langle v\rangle^{\gamma}(1+|\eta|^{2}+|\eta\wedge v|^{2}+|v|^{2})^{s}+K_{0}\langle v\rangle^{\gamma+2s} (11)

to be a Γ\Gamma-admissible weight, where K0>0K_{0}>0 is chosen as the following. Applying theorem 4.2 in [5] and Lemma 2.1 and 2.2 in [12], there exists K0>0K_{0}>0 such that the Weyl quantization a~w:H(a~c)H(c)\tilde{a}^{w}:H(\tilde{a}c)\to H(c) and (a~1/2)w:H(a~1/2c)H(c)(\tilde{a}^{1/2})^{w}:H(\tilde{a}^{1/2}c)\to H(c) are invertible, with cc being any Γ\Gamma-admissible metric. The weighted Sobolev space H(c)H(c) is defined by (123). The symbol a~\tilde{a} is real and gives the formal self-adjointness of Weyl quantization a~w\tilde{a}^{w}. By the invertibility of (a~1/2)w(\tilde{a}^{1/2})^{w}, we have equivalence

(a~1/2)w()Lv2H(a~1/2)v,\displaystyle\|(\tilde{a}^{1/2})^{w}(\cdot)\|_{L^{2}_{v}}\approx\|\cdot\|_{H(\tilde{a}^{1/2})_{v}},

and hence we will equip H(a~1/2)vH(\tilde{a}^{1/2})_{v} with norm (a~1/2)w()Lv2\|(\tilde{a}^{1/2})^{w}(\cdot)\|_{L^{2}_{v}}. Also wl(a~1/2)w()Lv2(a~1/2)wwl()Lv2\|w^{l}(\tilde{a}^{1/2})^{w}(\cdot)\|_{L^{2}_{v}}\approx\|(\tilde{a}^{1/2})^{w}w^{l}(\cdot)\|_{L^{2}_{v}} due to Lemma 6.1. Notice that Lv2(a~1/2)w()Lv2\|\cdot\|_{L^{2}_{v}}\lesssim\|(\tilde{a}^{1/2})^{w}(\cdot)\|_{L^{2}_{v}} for hard potential γ+2s0\gamma+2s\geq 0 and we will use this property in our proof.

The three norms above are equivalent since for ll\in\mathbb{R},

(a~1/2)wfLv22|f|2|f|Ns,γ2(Lf,f)Lv2+vlfLv2,\displaystyle\|(\tilde{a}^{1/2})^{w}f\|^{2}_{L^{2}_{v}}\approx{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|f\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}\approx|f|^{2}_{N^{s,\gamma}}\approx(-Lf,f)_{L^{2}_{v}}+\|\langle v\rangle^{l}f\|_{L^{2}_{v}},

which follows from (2.13)(2.15) in [17], Proposition 2.1 in [4] and Theorem 1.2 in [5]. An important result from [12] is that

LS(a~),\displaystyle L\in S(\tilde{a}),

where S(a~)=S(a~,Γ)S(\tilde{a})=S(\tilde{a},\Gamma) is the pseudo-differential symbol class; see [23]. This implies that

|(Lf,f)Lv2|(a~1/2)wfL22.\displaystyle|(Lf,f)_{L^{2}_{v}}|\lesssim\|(\tilde{a}^{1/2})^{w}f\|_{L^{2}}^{2}.

The normal Lv,x2L^{2}_{v,x} is defined as Lv,x2=L2(v3×x3)L^{2}_{v,x}=L^{2}(\mathbb{R}^{3}_{v}\times\mathbb{R}^{3}_{x}). L2(BC)L^{2}(B_{C}) is the Lv2L^{2}_{v} space on Euclidean ball BCB_{C} of radius CC at the origin. For usual Sobolev space, we will use notation

fHvkHxm=|β|k,|α|mβαfLv,x2,\displaystyle\|f\|_{H^{k}_{v}H^{m}_{x}}=\sum_{|\beta|\leq k,|\alpha|\leq m}\|\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}},

for k,m0k,m\geq 0. We also define the standard velocity-space mixed Lebesgue space Z1=L2(v3;L1(x3))Z_{1}=L^{2}(\mathbb{R}^{3}_{v};L^{1}(\mathbb{R}^{3}_{x})) with the norm

fZ1=fLx1Lv2.\|f\|_{Z_{1}}=\Big{\|}\|f\|_{L^{1}_{x}}\Big{\|}_{L^{2}_{v}}.

In this paper, we write Fourier transform on xx as

f^(y)=3f(x)eixy𝑑x.\displaystyle\widehat{f}(y)=\int_{\mathbb{R}^{3}}f(x)e^{-ix\cdot y}\,dx.

Main results.

To state the result of the paper, we let K0K\geq 0 to be the total order of derivatives on v,xv,x and define the velocity weight function wlw^{l} for any l0l\geq 0 by

wl=vl.\displaystyle w^{l}=\langle v\rangle^{l}.

In order to extract the smoothing effect, we define a useful coefficient

ψk={1, if k0,ψk, if k>0,\psi_{k}=\left\{\begin{aligned} 1,\text{ if $k\leq 0$},\\ \psi^{k},\text{ if $k>0$},\end{aligned}\right.

where ψ=1\psi=1 in Section 4 and Theorem 1.1 and ψ=tN\psi=t^{N} with N>0N>0 large in Section 5 and Theorem 1.2. When the second case ψ=tN\psi=t^{N} arise, we assume 0t10\leq t\leq 1, since the regularity is local property. We will carry ψ\psi in our calculation for brevity of proving the smoothing effect. Corresponding to given f=f(t,x,v)f=f(t,x,v), we introduce the instant energy functional K,l(t)\mathcal{E}_{K,l}(t) and the instant high-order energy functional K,lh(t)\mathcal{E}^{h}_{K,l}(t) to be functionals satisfying the equivalent relations

K,l(t)\displaystyle\mathcal{E}_{K,l}(t) |α|Kψ|α|2αE(t)Lx22+|α|Kψ|α|2α𝐏fLv,x22+|α|Kψ|α|2α(𝐈𝐏)fLv,x22\displaystyle\approx\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}E(t)\|^{2}_{L^{2}_{x}}+\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}\mathbf{P}f\|^{2}_{L^{2}_{v,x}}+\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}
+|α|+|β|Kψ|α|+|β|2wl|α||β|βα(𝐈𝐏)fLv,x22.\displaystyle\qquad+\sum_{\begin{subarray}{c}|\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}. (12)
K,lh(t)\displaystyle\mathcal{E}^{h}_{K,l}(t) |α|Kψ|α|2αE(t)Lx22+1|α|Kψ|α|2α𝐏fLv,x22+|α|Kψ|α|2α(𝐈𝐏)fLv,x22\displaystyle\approx\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}E(t)\|^{2}_{L^{2}_{x}}+\sum_{1\leq|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}\mathbf{P}f\|^{2}_{L^{2}_{v,x}}+\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}
+|α|+|β|Kψ|α|+|β|2wl|α||β|βα(𝐈𝐏)fLv,x22.\displaystyle\qquad+\sum_{\begin{subarray}{c}|\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}. (13)

Also, we define the dissipation rate functional 𝒟K,l\mathcal{D}_{K,l} by

𝒟K,l(t)\displaystyle\mathcal{D}_{K,l}(t) =|α|K1ψ|α|2αE(t)Lx22+1|α|Kψ|α|2α𝐏fLv,x22+|α|Kψ|α|2(a~1/2)wα(𝐈𝐏)fLv,x22\displaystyle=\sum_{|\alpha|\leq K-1}\|\psi_{|\alpha|-2}\partial^{\alpha}E(t)\|^{2}_{L^{2}_{x}}+\sum_{1\leq|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}\mathbf{P}f\|^{2}_{L^{2}_{v,x}}+\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}(\tilde{a}^{1/2})^{w}\partial^{\alpha}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}
+|α|+|β|Kψ|α|+|β|2(a~1/2)wwl|α||β|βα(𝐈𝐏)fLv,x22.\displaystyle\qquad+\sum_{\begin{subarray}{c}|\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}. (14)

Here E=E(t,x)E=E(t,x) is determined by f(t,x,v)f(t,x,v) in terms of E=xϕE=-\nabla_{x}\phi and (8). Notice that one can change the order of (a~1/2)w(\tilde{a}^{1/2})^{w} and wl|α||β|w^{l-|\alpha|-|\beta|} due to Lemma 6.1. The main results of this paper are stated as follows.

Theorem 1.1.

Let γ+2s0\gamma+2s\geq 0, 0<s<10<s<1. Define i=1i=1 if 0<s<120<s<\frac{1}{2} and i=2i=2 if 12s<1\frac{1}{2}\leq s<1. Let Ki+1K\geq i+1, lmax{K,γ/2+s+2,γ+2s+i+1}l\geq\max\{K,\gamma/2+s+2,\gamma+2s+i+1\} and f0(x,v)=(f0,+(x,v),f0,(x,v))f_{0}(x,v)=(f_{0,+}(x,v),f_{0,-}(x,v)) satisfying F±(0,x,v)=μ(v)+(μ(v))1/2f0,±(x,v)0F_{\pm}(0,x,v)=\mu(v)+(\mu(v))^{1/2}f_{0,\pm}(x,v)\geq 0. Assume ψ=1\psi=1. If

ϵ0=(K,l(0))1/2+f0Z1+E0Lx1,\displaystyle\epsilon_{0}=(\mathcal{E}_{K,l}(0))^{1/2}+\|f_{0}\|_{Z_{1}}+\|E_{0}\|_{L^{1}_{x}},

is sufficiently small, where E0(x)=E(0,x)E_{0}(x)=E(0,x), then there exists a unique global solution f(t,x,v)f(t,x,v) to the Cauchy problem (7)-(9) of the Vlasov-Poisson-Boltzmann system such that F±(t,x,v)=μ(v)+(μ(v))1/2f±(t,x,v)0F_{\pm}(t,x,v)=\mu(v)+(\mu(v))^{1/2}f_{\pm}(t,x,v)\geq 0 and

K,l(t)\displaystyle\mathcal{E}_{K,l}(t) ϵ02(1+t)32,\displaystyle\lesssim\epsilon_{0}^{2}(1+t)^{-\frac{3}{2}}, (15)
K,lh(t)\displaystyle\mathcal{E}^{h}_{K,l}(t) ϵ02(1+t)52,\displaystyle\lesssim\epsilon_{0}^{2}(1+t)^{-\frac{5}{2}},

for any t0t\geq 0.

This gives the global existence to the Vlasov-Poisson-Boltzmann system with the optimal large time decay as in [16], where Duan and Strain discover the optimal large time decay for Vlasov-Maxwell-Boltzmann system. Notice that we only require Ki+1K\geq i+1, which improve the index K8K\geq 8 in [15]. In order to define the aa prioripriori assumption, for 0<T0<T\leq\infty and t[0,T]t\in[0,T], we define the time-weighted energy norm X(t)X(t) by

X(t)=sup0τt(1+τ)3/2K,l(τ)+sup0τt(1+τ)5/2K,lh(τ).\displaystyle X(t)=\sup_{0\leq\tau\leq t}(1+\tau)^{3/2}\mathcal{E}_{K,l}(\tau)+\sup_{0\leq\tau\leq t}(1+\tau)^{5/2}\mathcal{E}^{h}_{K,l}(\tau).

Here the high-order energy functional K,lh\mathcal{E}^{h}_{K,l} has time decay rate (1+t)5/2(1+t)^{-5/2} while K,l\mathcal{E}_{K,l} has time decay rate (1+t)3/2(1+t)^{-3/2}. They are all optimal as in the Boltzmann equation case [25] and the Vlasov-Maxwell-Boltzmann system case [16]. Let δ0>0\delta_{0}>0 and the aa prioripriori assumption to be

sup0tTX(t)δ0.\displaystyle\sup_{0\leq t\leq T}X(t)\leq\delta_{0}. (16)

Then we will obtain the following closed aa prioripriori estimate

X(t)ϵ02+X3/2(t)+X2(t).\displaystyle X(t)\lesssim\epsilon^{2}_{0}+X^{3/2}(t)+X^{2}(t).

In order to extract the smoothing effect on xx, we define a symbol b~\tilde{b} by

b~(v,y)=(1+|v|2+|y|2+|vy|2)δ1,\displaystyle\tilde{b}(v,y)=(1+|v|^{2}+|y|^{2}+|v\wedge y|^{2})^{\delta_{1}}, (17)

where δ1>0\delta_{1}>0 is defined by (110) and (111). Notice that we will require γ+2s>0\gamma+2s>0 here and in the next main result.

Theorem 1.2.

Let γ+2s>0\gamma+2s>0, 0<τ<T0<\tau<T\leq\infty. For any lK3l\geq K\geq 3, assume ψ=tN\psi=t^{N} with N>0N>0 large and lKl\geq K. Let ff to be the solution to (7)-(9) satisfying that

ϵ1=(i+1,l(0))1/2+f0Z1+E0Lx1<\displaystyle\epsilon_{1}=(\mathcal{E}_{i+1,l}(0))^{1/2}+\|f_{0}\|_{Z_{1}}+\|E_{0}\|_{L^{1}_{x}}<\infty (18)

is sufficiently small, where i=1i=1 if 0<s<120<s<\frac{1}{2} and i=2i=2 if 12s<1\frac{1}{2}\leq s<1. Then for |α|+|β|K|\alpha|+|\beta|\leq K,

supτtTwl|α||β|βαfLv,x22Cτϵ12<,\displaystyle\sup_{\tau\leq t\leq T}\|w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}\leq C_{\tau}\epsilon^{2}_{1}<\infty, (19)

where Cτ>0C_{\tau}>0 depends on τ\tau. Moreover, if additionally

supl0i+1i+1,l0(0)<,\displaystyle\sup_{l_{0}\geq i+1}\mathcal{E}_{i+1,l_{0}}(0)<\infty,

is sufficiently small, then for |α|+|β|Kl|\alpha|+|\beta|\leq K\leq l, k0k\geq 0,

supτtTwl|α||β|βαtkfLv,x22Cτ,k<,\displaystyle\sup_{\tau\leq t\leq T}\|w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}\partial^{k}_{t}f\|^{2}_{L^{2}_{v,x}}\leq C_{\tau,k}<\infty, (20)

where Cτ,kC_{\tau,k} is a constant depending on τ\tau, kk. Consequently, fC(t+;C(x3;𝒮(v3)))f\in C^{\infty}(\mathbb{R}^{+}_{t};C^{\infty}(\mathbb{R}^{3}_{x};\mathscr{S}(\mathbb{R}^{3}_{v}))).

This result is similar to the Boltzmann equation case; see [6]. That is, whenever the initial data has exponential decay, the solution ff is Schwartz in vv and smooth in (t,x)(t,x) for any positive time tt.

In what follows let us point out several technical points in the proof of Theorem 1.1 and 1.2. For Theorem 1.1, firstly, we use K2K\geq 2 because of Hx2(3)H^{2}_{x}(\mathbb{R}^{3}) is a Banach algebra when controlling (2.2) and it’s useful when dealing with the trilinear estimate. Secondly, the velocity weight wl|α||β|w^{l-|\alpha|-|\beta|} will help us deal with the term vxϕfv\cdot\nabla_{x}\phi f when bounding

(α1αvxα1ϕαα1f,e±ϕw2l2|α|2|β|αf)Lv,x2,\displaystyle\big{(}\sum_{\alpha_{1}\leq\alpha}v\cdot\nabla_{x}\partial^{\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}f,e^{\pm\phi}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}f\big{)}_{L^{2}_{v,x}},

where |α|K|\alpha|\leq K. The case α1=0\alpha_{1}=0 will be eliminated by the similar term corresponding to vxfv\cdot\nabla_{x}f as in [21]. This is what e±ϕe^{\pm\phi} designed for. The case α10\alpha_{1}\neq 0 can be bounded due to the weight wl|α||β|w^{l-|\alpha|-|\beta|}. For the term xϕvf\nabla_{x}\phi\cdot\nabla_{v}f, one will need to bound

(α1αxα1ϕαα1vf,e±ϕw2l2|α|2|β|αf)Lv,x2.\displaystyle\big{(}\sum_{\alpha_{1}\leq\alpha}\nabla_{x}\partial^{\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}\nabla_{v}f,e^{\pm\phi}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}f\big{)}_{L^{2}_{v,x}}.

This term will transfer one derivative from xx to one derivative on vv and so one should require |α|+|β|K|\alpha|+|\beta|\leq K. If α1=0\alpha_{1}=0, we can use integration by parts to move v\nabla_{v} to the weight w2l2|α|2|β|w^{2l-2|\alpha|-2|\beta|}, while if α10\alpha_{1}\neq 0, the total order on the first ff is less or equal to KK and hence can be control by our energy functional K,l\mathcal{E}_{K,l} or 𝒟K,l\mathcal{D}_{K,l}. As in [15], one has to bound the term

tϕLxK,l,\displaystyle\|\partial_{t}\phi\|_{L^{\infty}_{x}}\mathcal{E}_{K,l},

which cannot be absorbed by the energy dissipation norm. But observing that tϕLx\|\partial_{t}\phi\|_{L^{\infty}_{x}} is bounded by the high-order energy functional K,lh\mathcal{E}^{h}_{K,l} and hence integrable as shown in [21], one can use the Gronwall’s inequality to close the aa prioripriori estimate.

The second technical point concerns the choice of ψ=tN\psi=t^{N} in Theorem 1.2 and the usage of ψ|α|+|β|2\psi_{|\alpha|+|\beta|-2} is Section 5. Firstly, whenever |α|+|β|2|\alpha|+|\beta|\geq 2, ψ|α|+|β|2=tN(|α|+|β|2)\psi_{|\alpha|+|\beta|-2}=t^{N(|\alpha|+|\beta|-2)} is equal to 0 at t=0t=0. Plugging this into energy estimate, one can easily deduce the smoothing effect locally in time, since the initial data becomes zero. By using the global energy control obtained in Theorem 1.1, the local regularity becomes global-in-time regularity. Notice that we use 2-2 to eliminate the index arising from Sobolev embedding LxHx2\|\cdot\|_{L^{\infty}_{x}}\lesssim\|\cdot\|_{H^{2}_{x}}. However, after adding the term ψ|α|+|β|2\psi_{|\alpha|+|\beta|-2}, one need to deal with the term

(t(ψ|α|+|β|2)βαf,e±ϕβαf)Lv,x2.\displaystyle\big{(}\partial_{t}(\psi_{|\alpha|+|\beta|-2})\partial^{\alpha}_{\beta}f,e^{\pm\phi}\partial^{\alpha}_{\beta}f\big{)}_{L^{2}_{v,x}}.

Using the symbols (11) and (17), we can control this term by pseudo-differential norms with a little higher-order, where these pseudo-differential norms can be controlled by the functional K,l\mathcal{E}_{K,l} and 𝒟K,l\mathcal{D}_{K,l}. Hence, we can obtain a closed energy estimate locally. Together with the global energy control in Theorem 1.1, one can deduce the regularity for any positive time t>0t>0.

The rest of the paper is arranged as follows. In Section 2, we present some basic estimates for L,ΓL,\Gamma, and tricks in energy estimates. In Section 3, we list the macroscopic energy estimates. In Section 4, we use the aa prioripriori estimate to perform proof of existence. In Section 5, we present the proof for regularity.

2 Preliminaries

In this section, we list several basic lemmas corresponding to the linearized Boltzmann collision term L±L_{\pm} and the bilinear Boltzmann collision operator Γ±\Gamma_{\pm}. Recall wl=vlw^{l}=\langle v\rangle^{l}. The following lemma concerns with dissipation of L±L_{\pm}, whose proof can be found in [17, Lemma 2.6 and Theorem 8.1].

Lemma 2.1.

For any ll\in\mathbb{R}, multi-indices α,β\alpha,\beta, we have the followings.

(i) It holds that

(Lg,g)Lv2(a~1/2)w(𝐈𝐏)gLv22.(-Lg,g)_{L^{2}_{v}}\gtrsim\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})g\|^{2}_{L^{2}_{v}}.

(ii) There exists C>0C>0 such that

(w2lLg,g)Lv2(a~1/2)wwlgLv22CgLv2(BC)2.\displaystyle-(w^{2l}Lg,g)_{L^{2}_{v}}\gtrsim\|(\tilde{a}^{1/2})^{w}w^{l}g\|^{2}_{L^{2}_{v}}-C\|g\|^{2}_{L^{2}_{v}(B_{C})}.

(iii) For any η>0\eta>0,

(w2l2|α|2|β|βαLg,βαg)Lv2\displaystyle-(w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}Lg,\partial^{\alpha}_{\beta}g)_{L^{2}_{v}} (a~1/2)wwl|α||β|βαgLv22η|β1||β|(a~1/2)wwl|α||β1|β1αgLv22\displaystyle\gtrsim\|(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}g\|^{2}_{L^{2}_{v}}-\eta\sum_{|\beta_{1}|\leq|\beta|}\|(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta_{1}|}\partial^{\alpha}_{\beta_{1}}g\|^{2}_{L^{2}_{v}}
CηαgL2(BCη)2.\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad-C_{\eta}\|\partial^{\alpha}g\|^{2}_{L^{2}(B_{C_{\eta}})}.

The next lemmas concern the estimates on the nonlinear collision operator Γ±\Gamma_{\pm}. We will use the estimate in [15, Lemma 2.2] and the estimate from [25, Proposition 3.1].

Lemma 2.2.

For any l0l\geq 0, m0m\geq 0 and multi-index β\beta, we have the upper bound

|(w2l\displaystyle|(w^{2l} βαΓ±(f,g),βαh)Lv,x2|\displaystyle\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,g),\partial^{\alpha}_{\beta}h)_{L^{2}_{v,x}}|
α1+α2=αβ1+β2β3β1α1fLv2(a~1/2)wwlβ2α2gLv2(a~1/2)wwlβαhLv2𝑑x\displaystyle\lesssim\sum_{\begin{subarray}{c}\alpha_{1}+\alpha_{2}=\alpha\\ \beta_{1}+\beta_{2}\leq\beta\end{subarray}}\int_{\mathbb{R}^{3}}\|\partial^{\alpha_{1}}_{\beta_{1}}f\|_{L^{2}_{v}}\|(\tilde{a}^{1/2})^{w}w^{l}\partial^{\alpha_{2}}_{\beta_{2}}g\|_{L^{2}_{v}}\|(\tilde{a}^{1/2})^{w}w^{l}\partial^{\alpha}_{\beta}h\|_{L^{2}_{v}}\,dx
+α1+α2=αβ1+β2β3wlβ1α1fLv2(a~1/2)wβ2α2gLv2(a~1/2)wwlβαhLv2𝑑x.\displaystyle\quad+\sum_{\begin{subarray}{c}\alpha_{1}+\alpha_{2}=\alpha\\ \beta_{1}+\beta_{2}\leq\beta\end{subarray}}\int_{\mathbb{R}^{3}}\|w^{l}\partial^{\alpha_{1}}_{\beta_{1}}f\|_{L^{2}_{v}}\|(\tilde{a}^{1/2})^{w}\partial^{\alpha_{2}}_{\beta_{2}}g\|_{L^{2}_{v}}\|(\tilde{a}^{1/2})^{w}w^{l}\partial^{\alpha}_{\beta}h\|_{L^{2}_{v}}\,dx. (21)

Let i=1i=1 if 0<s<1/20<s<1/2 and i=2i=2 if 1/2s<11/2\leq s<1, then

wlΓ(f,g)Lv2wlvγ+2s2fLv2wlvγ+2sgHvi\displaystyle\|w^{l}\Gamma(f,g)\|_{L^{2}_{v}}\lesssim\|w^{l}\langle v\rangle^{\frac{\gamma+2s}{2}}f\|_{L^{2}_{v}}\|w^{l}\langle v\rangle^{\gamma+2s}g\|_{H^{i}_{v}} (22)

The estimate (22) comes from [25, Proposition 3.1], so we only give a short proof of (2.2). As in [17], we need some preparations as the followings. Notice that from Carleman representation (124), the derivative on vv will apply to f,gf,g and μ1/2\mu^{1/2} respectively. Then,

ψ|α|+|β|2βα𝒯(f,g)=α1+α2=αβ1+β2+β3=βCαα1,α2Cββ1,β2,β3ψ|α|+|β|2𝒯β3(β1α1f,β2α2g).\psi_{|\alpha|+|\beta|-2}\partial^{\alpha}_{\beta}\mathcal{T}(f,g)=\sum_{\alpha_{1}+\alpha_{2}=\alpha}\sum_{\beta_{1}+\beta_{2}+\beta_{3}=\beta}C^{\alpha_{1},\alpha_{2}}_{\alpha}C^{\beta_{1},\beta_{2},\beta_{3}}_{\beta}\psi_{|\alpha|+|\beta|-2}\mathcal{T}_{\beta_{3}}(\partial^{\alpha_{1}}_{\beta_{1}}f,\partial^{\alpha_{2}}_{\beta_{2}}g).

Let {χk}k=k=+\{\chi_{k}\}_{k=-\infty}^{k=+\infty} be a partition of unity on (0,)(0,\infty) such that |χk|1|\chi_{k}|\leq 1 and supp(χk)[2k1,2k](\chi_{k})\subset[2^{-k-1},2^{-k}]. For each kk, we define

Bk=B(vv,σ)χk(|vv|).\displaystyle B_{k}=B(v-v_{*},\sigma)\chi_{k}(|v-v^{\prime}|).

Now we denote

T+k,l(f,g,h)=3𝑑v3𝑑v𝕊2𝑑σBk(vv,σ)fghw2l(v)β3(μ1/2(v)),\displaystyle T^{k,l}_{+}(f,g,h)=\int_{\mathbb{R}^{3}}dv\int_{\mathbb{R}^{3}}dv_{*}\int_{\mathbb{S}^{2}}d\sigma\,B_{k}(v-v_{*},\sigma)f_{*}gh^{\prime}w^{2l}(v^{\prime})\partial_{\beta_{3}}(\mu^{1/2}(v_{*}^{\prime})),
Tk,l(f,g,h)=3𝑑v3𝑑v𝕊2𝑑σBk(vv,σ)fghw2l(v)β3(μ1/2(v)).\displaystyle T^{k,l}_{-}(f,g,h)=\int_{\mathbb{R}^{3}}dv\int_{\mathbb{R}^{3}}dv_{*}\int_{\mathbb{S}^{2}}d\sigma\,B_{k}(v-v_{*},\sigma)f_{*}ghw^{2l}(v)\partial_{\beta_{3}}(\mu^{1/2}(v_{*})).

On the other hand, we can express the collision operator QQ by using its dual formulation as in [17, A1]. Indeed, after a transformation, we can put cancellations on gg as

(w2l𝒯(f,g),h)Lv2\displaystyle(w^{2l}\mathcal{T}(f,g),h)_{L^{2}_{v}} =3𝑑v3𝑑v𝕊2𝑑σB~(vv,σ)fhw2l(v)(μ1/2(v)g(v)μ1/2(v)g(v))\displaystyle=\int_{\mathbb{R}^{3}}dv\int_{\mathbb{R}^{3}}dv_{*}\int_{\mathbb{S}^{2}}d\sigma\,\tilde{B}(v-v_{*},\sigma)f_{*}h^{\prime}w^{2l}(v^{\prime})\big{(}\mu^{1/2}(v_{*}^{\prime})g(v)-\mu^{1/2}(v_{*})g(v^{\prime})\big{)}
+Tl(f,g,h),\displaystyle\qquad+T^{l}_{*}(f,g,h),

where

B~(vv,σ)=4B(vv,2vvv|2vvv|)|vv||vv|\displaystyle\tilde{B}(v-v_{*},\sigma)=\frac{4B(v-v_{*},\frac{2v^{\prime}-v-v_{*}}{|2v^{\prime}-v-v_{*}|})}{|v^{\prime}-v_{*}||v-v_{*}|}

and the operator Tl(f,g,h)T^{l}_{*}(f,g,h) does not differentiate:

Tl(f,g,h)=3𝑑v3𝑑vEvv𝑑πvfghw2l(v)β3(μ1/2(v))B~(1|vv|3+γ|vv|3+γ).\displaystyle T^{l}_{*}(f,g,h)=\int_{\mathbb{R}^{3}}dv^{\prime}\int_{\mathbb{R}^{3}}dv_{*}\int_{E^{v^{\prime}}_{v_{*}}}d\pi_{v}\,f_{*}g^{\prime}h^{\prime}w^{2l}(v^{\prime})\partial_{\beta_{3}}(\mu^{1/2}(v_{*}))\tilde{B}\Big{(}1-\frac{|v^{\prime}-v_{*}|^{3+\gamma}}{|v-v_{*}|^{3+\gamma}}\Big{)}.

Here dπvd\pi_{v} is Lebesgue measure on the 22-dimensional plane EvvE^{v^{\prime}}_{v_{*}} passing through vv^{\prime} with normal vvv^{\prime}-v_{*}, i.e. Evv={v3:(vv)(vv)=0}E^{v^{\prime}}_{v_{*}}=\{v\in\mathbb{R}^{3}:(v-v^{\prime})\cdot(v_{*}-v^{\prime})=0\}, and vv is the variable of integration. With the observation above, we can use the following alternative representations for T+k,lT^{k,l}_{+} as well as a third trilinear operator Tk,lT^{k,l}_{*}:

T+k,l(f,g,h)=3𝑑v3𝑑vEvv𝑑πvB~kfghw2l(v)β3(μ1/2(v)),\displaystyle T^{k,l}_{+}(f,g,h)=\int_{\mathbb{R}^{3}}dv^{\prime}\int_{\mathbb{R}^{3}}dv_{*}\int_{E^{v^{\prime}}_{v_{*}}}d\pi_{v}\,\tilde{B}_{k}f_{*}gh^{\prime}w^{2l}(v^{\prime})\partial_{\beta_{3}}(\mu^{1/2}(v^{\prime}_{*})),
Tk,l(f,g,h)=3𝑑v3𝑑vEvv𝑑πvB~kfghw2l(v)β3(μ1/2(v)),\displaystyle T^{k,l}_{*}(f,g,h)=\int_{\mathbb{R}^{3}}dv^{\prime}\int_{\mathbb{R}^{3}}dv_{*}\int_{E^{v^{\prime}}_{v_{*}}}d\pi_{v}\,\tilde{B}_{k}f_{*}g^{\prime}h^{\prime}w^{2l}(v^{\prime})\partial_{\beta_{3}}(\mu^{1/2}(v_{*})),

where we use the notation

B~k=4B(vv,2vvv|2vvv|)|vv||vv|χk(|vv|).\displaystyle\tilde{B}_{k}=\frac{4B(v-v_{*},\frac{2v^{\prime}-v-v_{*}}{|2v^{\prime}-v-v_{*}|})}{|v^{\prime}-v_{*}||v-v_{*}|}\chi_{k}(|v-v^{\prime}|).

Then for f,g,h𝒮(3)f,g,h\in\mathscr{S}(\mathbb{R}^{3}), we can use the pre-post collisional change of variables, the dual representation, and the previous calculation guarantee that

(w2l𝒯β3(f,g),h)Lv2\displaystyle(w^{2l}\mathcal{T}_{\beta_{3}}(f,g),h)_{L^{2}_{v}} =k=(T+k,l(f,g,h)Tk,l(f,g,h))\displaystyle=\sum^{\infty}_{k=-\infty}\big{(}T^{k,l}_{+}(f,g,h)-T^{k,l}_{-}(f,g,h)\big{)}
=Tl(f,g,h)+k=(T+k,l(f,g,h)Tk,l(f,g,h)).\displaystyle=T^{l}_{*}(f,g,h)+\sum^{\infty}_{k=-\infty}\big{(}T^{k,l}_{+}(f,g,h)-T^{k,l}_{*}(f,g,h)\big{)}.

Now we collect the estimates for the operators T+k,lT^{k,l}_{+}, Tk,lT^{k,l}_{-} and Tk,lT^{k,l}_{*}, which can be used to prove (2.2).

Proposition 2.3.

Let kk be an integer, m0m\geq 0, ll\in\mathbb{R}. We have the following uniform estimates.

(i)

|Tk,l(f,g,h)|22skvmfLv2vγ/2+swlgLv2vγ/2+swlhLv2.|T^{k,l}_{-}(f,g,h)|\lesssim 2^{2sk}\|\langle v\rangle^{-m}f\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma/2+s}w^{l}g\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma/2+s}w^{l}h\|_{L^{2}_{v}}.

(ii)

|Tk,l(f,g,h)|22skvmfLv2vγ/2+swlgLv2vγ/2+swlhLv2.|T^{k,l}_{*}(f,g,h)|\lesssim 2^{2sk}\|\langle v\rangle^{-m}f\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma/2+s}w^{l}g\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma/2+s}w^{l}h\|_{L^{2}_{v}}.

(iii)

|T+k,l(f,g,h)|\displaystyle|T^{k,l}_{+}(f,g,h)| 22skfLv2vγ/2+swlgLv2vγ/2+swlhLv2\displaystyle\lesssim 2^{2sk}\|f\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma/2+s}w^{l}g\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma/2+s}w^{l}h\|_{L^{2}_{v}}
+22skwlfLv2vγ/2+sgLv2vγ/2+swlhLv2.\displaystyle\quad+2^{2sk}\|w^{l}f\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma/2+s}g\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma/2+s}w^{l}h\|_{L^{2}_{v}}.
Proof.

First of all, notice that (i) and (ii) are the same as [17, Proposition 3.1, 3.2]. So we only prove (iii). The key point is to assign the velocity weight to ff and gg in a better way. The following inequality will frequently be used:

𝕊2Bk(vv,σ)𝑑σ|vv|γ2k1|vv|12k|vv|1θ12s𝑑θ22sk|vv|γ+2s.\displaystyle\int_{\mathbb{S}^{2}}B_{k}(v-v_{*},\sigma)\,d\sigma\lesssim|v-v_{*}|^{\gamma}\int^{2^{-k}|v-v_{*}|^{-1}}_{2^{-k-1}|v-v_{*}|^{-1}}\theta^{-1-2s}\,d\theta\lesssim 2^{2sk}|v-v_{*}|^{\gamma+2s}. (23)

By Cauchy-Schwarz,

|T+k,l(f,g,h)|\displaystyle|T^{k,l}_{+}(f,g,h)| (3𝑑v3𝑑v𝕊2𝑑σBk|vv|γ2s|fg|vγ+2sw2l(v)|β3(μ1/2(v))|)1/2\displaystyle\lesssim\Big{(}\int_{\mathbb{R}^{3}}dv\int_{\mathbb{R}^{3}}dv_{*}\int_{\mathbb{S}^{2}}d\sigma\,B_{k}|v-v_{*}|^{-\gamma-2s}|f_{*}g|\langle v\rangle^{\gamma+2s}w^{2l}(v^{\prime})|\partial_{\beta_{3}}(\mu^{1/2}(v_{*}^{\prime}))|\Big{)}^{1/2}
×(3𝑑v3𝑑v𝕊2𝑑σBk|vv|γ+2s|h|vγ2sw2l(v)|β3(μ1/2(v))|)1/2\displaystyle\quad\times\Big{(}\int_{\mathbb{R}^{3}}dv\int_{\mathbb{R}^{3}}dv_{*}\int_{\mathbb{S}^{2}}d\sigma\,B_{k}|v-v_{*}|^{\gamma+2s}|h^{\prime}|\langle v\rangle^{-\gamma-2s}w^{2l}(v^{\prime})|\partial_{\beta_{3}}(\mu^{1/2}(v_{*}^{\prime}))|\Big{)}^{1/2}
:=I×J.\displaystyle:=I\times J.

For the term II, if |v|12(|v|2+|v|2)|v^{\prime}|\leq\frac{1}{2}(|v|^{2}+|v_{*}|^{2}), the collisional conservation laws imply μ1/4(v)μ1/8(v)μ1/8(v)=μ1/8(v)μ1/8(v)\mu^{1/4}(v_{*}^{\prime})\leq\mu^{1/8}(v_{*})\mu^{1/8}(v)=\mu^{1/8}(v_{*}^{\prime})\mu^{1/8}(v^{\prime}). It follows that

vγ+2sw2l(v)|β3(μ1/2(v))|μ1/16(v)μ1/16(v).\displaystyle\langle v\rangle^{\gamma+2s}w^{2l}(v^{\prime})|\partial_{\beta_{3}}(\mu^{1/2}(v_{*}^{\prime}))|\lesssim\mu^{1/16}(v_{*})\mu^{1/16}(v).

If |v|>12(|v|2+|v|2)|v^{\prime}|>\frac{1}{2}(|v|^{2}+|v_{*}|^{2}), then |v|2|v|2+|v|2|v^{\prime}|^{2}\approx|v|^{2}+|v_{*}|^{2} and w2l(v)w2l(v)+w2l(v)w^{2l}(v^{\prime})\approx w^{2l}(v)+w^{2l}(v_{*}). Hence,

vγ+2sw2l(v)|β3(μ1/2(v))|(w2l(v)+w2l(v))vγ+2s.\displaystyle\langle v\rangle^{\gamma+2s}w^{2l}(v^{\prime})|\partial_{\beta_{3}}(\mu^{1/2}(v_{*}^{\prime}))|\lesssim(w^{2l}(v)+w^{2l}(v_{*}))\langle v\rangle^{\gamma+2s}.

Thus, by using (23),

I\displaystyle I (3dv3dv22sk|fg|vγ+2s(w2l(v)+w2l(v))|)1/2\displaystyle\lesssim\Big{(}\int_{\mathbb{R}^{3}}dv\int_{\mathbb{R}^{3}}dv_{*}2^{2sk}|f_{*}g|\langle v\rangle^{\gamma+2s}(w^{2l}(v)+w^{2l}(v_{*}))|\Big{)}^{1/2}
2sk(wlfLv2vγ/2+sgLv2+fLv2vγ/2+swlgLv2).\displaystyle\lesssim 2^{sk}\Big{(}\|w^{l}f\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma/2+s}g\|_{L^{2}_{v}}+\|f\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma/2+s}w^{l}g\|_{L^{2}_{v}}\Big{)}.

For the term JJ, since |v||v||vv|=|vv|1cos(θ/2)|v|+|v||v|-|v_{*}|\leq|v-v_{*}|=|v^{\prime}-v_{*}|\frac{1}{\cos(\theta/2)}\lesssim|v^{\prime}|+|v_{*}| with θ(0,π/2]\theta\in(0,\pi/2], it follows that |v||v|+|v||v|\lesssim|v^{\prime}|+|v_{*}| and hence,

vγ+2svγ+2svγ+2s.\displaystyle\langle v\rangle^{\gamma+2s}\lesssim\langle v^{\prime}\rangle^{\gamma+2s}\langle v_{*}\rangle^{\gamma+2s}.

Thus, by using (23) and pre-post change of variable,

J\displaystyle J =(3𝑑v3𝑑v𝕊2𝑑σBk|vv|γ+2s|h|vγ2sw2l(v)|β3(μ1/2(v))|)1/2\displaystyle=\Big{(}\int_{\mathbb{R}^{3}}dv\int_{\mathbb{R}^{3}}dv_{*}\int_{\mathbb{S}^{2}}d\sigma\,B_{k}|v-v_{*}|^{\gamma+2s}|h|\langle v^{\prime}\rangle^{-\gamma-2s}w^{2l}(v)|\partial_{\beta_{3}}(\mu^{1/2}(v_{*}))|\Big{)}^{1/2}
2sk(3𝑑v3𝑑v|vv|2γ+4s|h|vγ2svγ+2sw2l(v)|β3(μ1/2(v))|)1/2\displaystyle\lesssim 2^{sk}\Big{(}\int_{\mathbb{R}^{3}}dv\int_{\mathbb{R}^{3}}dv_{*}|v-v_{*}|^{2\gamma+4s}|h|\langle v\rangle^{-\gamma-2s}\langle v_{*}\rangle^{\gamma+2s}w^{2l}(v)|\partial_{\beta_{3}}(\mu^{1/2}(v_{*}))|\Big{)}^{1/2}
2skvγ/2+swlhLv2,\displaystyle\lesssim 2^{sk}\|\langle v\rangle^{\gamma/2+s}w^{l}h\|_{L^{2}_{v}},

where we used the fact that

3𝑑vμλ(v)|vv|2γ+4sv2γ+4s,\displaystyle\int_{\mathbb{R}^{3}}\,dv_{*}\mu^{\lambda}(v_{*})|v-v_{*}|^{2\gamma+4s}\lesssim\langle v\rangle^{2\gamma+4s},

whenever γ+2s>32\gamma+2s>-\frac{3}{2} and λ>0\lambda>0. Together with the estimate of II, we complete the proof of Proposition 2.3.

Proof of (2.2).

In terms of estimates obtained in Propositions 2.3, by applying the cancellation inequalities constructed in [17, Proposition 3.6, 3.7] and carrying out the similar procedure as that of [17, Section 6.1], one can prove (2.2) and the details are omitted for brevity. This completes the proof of Lemma 2.2. ∎

In order to obtain a suitable norm estimate of Γ\Gamma on xx. We shall write the following estimate, which is also very useful throughout our analysis.

Lemma 2.4.

For any u,vHx2u,v\in H^{2}_{x}, we have

uvLx2\displaystyle\|uv\|_{L^{2}_{x}} xuHx1vLx2,\displaystyle\lesssim\|\nabla_{x}u\|_{H^{1}_{x}}\|v\|_{L^{2}_{x}}, (24)
uvLx2\displaystyle\|uv\|_{L^{2}_{x}} xuLx2vHx1.\displaystyle\lesssim\|\nabla_{x}u\|_{L^{2}_{x}}\|v\|_{H^{1}_{x}}.

Consequently,

uvHx2xuHx1xvHx1.\displaystyle\|uv\|_{H^{2}_{x}}\leq\|\nabla_{x}u\|_{H^{1}_{x}}\|\nabla_{x}v\|_{H^{1}_{x}}. (25)
Proof.

The proof is straight forward. Notice that this lemma give that Hx2H^{2}_{x} is a Banach algebra. By Gagliardo-Nirenberg interpolation inequality and Sobolev embedding, we have

uL\displaystyle\|u\|_{L^{\infty}} xu1/2x2u1/2xuH1,\displaystyle\lesssim\|\nabla_{x}u\|^{1/2}\|\nabla^{2}_{x}u\|^{1/2}\lesssim\|\nabla_{x}u\|_{H^{1}},
uvL2\displaystyle\|uv\|_{L^{2}} uL6vL3xuL2vH1.\displaystyle\lesssim\|u\|_{L^{6}}\|v\|_{L^{3}}\lesssim\|\nabla_{x}u\|_{L^{2}}\|v\|_{H^{1}}.

Then (24) follows from Hölder’s inequality. For (25),

uvHx2\displaystyle\|uv\|_{H^{2}_{x}} =|α|2α(uv)L2\displaystyle=\sum_{|\alpha|\leq 2}\|\partial^{\alpha}(uv)\|_{L^{2}}
|α|=2uαvL2+|α|=|β|=1αuβvL2+|α|=2αuvL2\displaystyle\lesssim\sum_{|\alpha|=2}\|u\partial^{\alpha}v\|_{L^{2}}+\sum_{|\alpha|=|\beta|=1}\|\partial^{\alpha}u\partial^{\beta}v\|_{L^{2}}+\sum_{|\alpha|=2}\|\partial^{\alpha}uv\|_{L^{2}}
uLxvH1+|α|=|β|=1αuL3βvL6+xuH1vL.\displaystyle\lesssim\|u\|_{L^{\infty}}\|\nabla_{x}v\|_{H^{1}}+\sum_{|\alpha|=|\beta|=1}\|\partial^{\alpha}u\|_{L^{3}}\|\partial^{\beta}v\|_{L^{6}}+\|\nabla_{x}u\|_{H^{1}}\|v\|_{L^{\infty}}.

Plugging the (24) estimate into this inequality, we have the desired control. ∎

With the help of the above lemma, we can control the trilinear term (βαΓ±(f,g),βαh)Lv,x2(\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,g),\partial^{\alpha}_{\beta}h)_{L^{2}_{v,x}}.

Lemma 2.5.

Let K2K\geq 2. For any multi-indices |α|+|β|K|\alpha|+|\beta|\leq K and real number lKl\geq K, we have

|\displaystyle\Big{|} (ψ2|α|+2|β|4w2l2|α|2|β|βαΓ±(f,g),βαh)Lv,x2|\displaystyle(\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,g),\partial^{\alpha}_{\beta}h)_{L^{2}_{v,x}}\Big{|}
(|α|+|β|Kψ|α|+|β|2βαfLv,x2|α|1|α|+|β|Kψ|α|+|β|2(a~1/2)wwl|α||β|βαgLv,x2\displaystyle\lesssim\bigg{(}\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}\sum_{\begin{subarray}{c}|\alpha|\geq 1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}g\|_{L^{2}_{v,x}}
+|α|1|α|+|β|Kψ|α|+|β|2βαfLv,x2|α|+|β|Kψ|α|+|β|2(a~1/2)wwl|α||β|βαgLv,x2\displaystyle\quad+\sum_{\begin{subarray}{c}|\alpha|\geq 1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}g\|_{L^{2}_{v,x}}
+|α|+|β|Kψ|α|+|β|2wl|α||β|βαfLv,x2|α|1|α|+|β|Kψ|α|+|β|2(a~1/2)wβαgLv,x2\displaystyle\quad+\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}\sum_{\begin{subarray}{c}|\alpha|\geq 1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}\partial^{\alpha}_{\beta}g\|_{L^{2}_{v,x}}
+|α|1|α|+|β|Kψ|α|+|β|2wl|α||β|βαfLv,x2|α|+|β|Kψ|α|+|β|2(a~1/2)wβαgLv,x2)\displaystyle\quad+\sum_{\begin{subarray}{c}|\alpha|\geq 1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}\partial^{\alpha}_{\beta}g\|_{L^{2}_{v,x}}\bigg{)}
×ψ|α|+|β|2(a~1/2)wwl|α||β|βαhLv,x2,\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\times\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}h\|_{L^{2}_{v,x}},

where we restrict t[0,1]t\in[0,1] when ψ=tN\psi=t^{N} as in Theorem 1.2.

Proof.

Using the estimate (2.2), we have

|(ψ2|α|+2|β|4w2l2|α|2|β|βαΓ±(f,g),βαh)Lv,x2|\displaystyle\quad\,\big{|}(\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,g),\partial^{\alpha}_{\beta}h)_{L^{2}_{v,x}}\big{|}
α1+α2=αβ1+β2βψ|α|+|β|2β1α1fLv2(a~1/2)wwl|α||β|β2α2gLv2Lx2ψ|α|+|β|2(a~1/2)wwl|α||β|βαhLv,x2\displaystyle\lesssim\sum_{\begin{subarray}{c}\alpha_{1}+\alpha_{2}=\alpha\\ \beta_{1}+\beta_{2}\leq\beta\end{subarray}}\Big{\|}\psi_{|\alpha|+|\beta|-2}\|\partial^{\alpha_{1}}_{\beta_{1}}f\|_{L^{2}_{v}}\|(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha_{2}}_{\beta_{2}}g\|_{L^{2}_{v}}\Big{\|}_{L^{2}_{x}}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}h\|_{L^{2}_{v,x}}
+α1+α2=αβ1+β2βψ|α|+|β|2wl|α||β|β1α1fLv2(a~1/2)wβ2α2gLv2Lx2ψ|α|+|β|2(a~1/2)wwl|α||β|βαhLv,x2,\displaystyle\quad+\sum_{\begin{subarray}{c}\alpha_{1}+\alpha_{2}=\alpha\\ \beta_{1}+\beta_{2}\leq\beta\end{subarray}}\Big{\|}\psi_{|\alpha|+|\beta|-2}\|w^{l-|\alpha|-|\beta|}\partial^{\alpha_{1}}_{\beta_{1}}f\|_{L^{2}_{v}}\|(\tilde{a}^{1/2})^{w}\partial^{\alpha_{2}}_{\beta_{2}}g\|_{L^{2}_{v}}\Big{\|}_{L^{2}_{x}}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}h\|_{L^{2}_{v,x}},

by choosing l|α||β|l-|\alpha|-|\beta| to be the ll in (2.2). Here we divide the summation into several parts. For brevity we denote the first terms in the norm Lx2\|\cdot\|_{L^{2}_{x}} inside the summation α1+α2=αβ1+β2β\sum_{\begin{subarray}{c}\alpha_{1}+\alpha_{2}=\alpha\\ \beta_{1}+\beta_{2}\leq\beta\end{subarray}} on the right hand side to be I,JI,J and discuss their value in several cases. If 2|α1|+|β1|K2\leq|\alpha_{1}|+|\beta_{1}|\leq K, then |α2|+|β2||α|+|β|2|\alpha_{2}|+|\beta_{2}|\leq|\alpha|+|\beta|-2 and l|α||β|l|α2+α||β2|l-|\alpha|-|\beta|\leq l-|\alpha_{2}+\alpha^{\prime}|-|\beta_{2}| for any 1|α|21\leq|\alpha^{\prime}|\leq 2. Notice that here we will give ψ|α1|+|β1|2\psi_{|\alpha_{1}|+|\beta_{1}|-2} to ff and ψ|α2|+|β2|\psi_{|\alpha_{2}|+|\beta_{2}|} to gg. Also, ψ|α2|+|β2|ψ|α2+α|+|β2|2\psi_{|\alpha_{2}|+|\beta_{2}|}\leq\psi_{|\alpha_{2}+\alpha^{\prime}|+|\beta_{2}|-2}. By using (24)1, we have

I\displaystyle I ψ|α|+|β|2β1α1fLv,x2(a~1/2)wwl|α||β|β2α2gLv2Lx\displaystyle\lesssim\psi_{|\alpha|+|\beta|-2}\|\partial^{\alpha_{1}}_{\beta_{1}}f\|_{L^{2}_{v,x}}\big{\|}\|(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha_{2}}_{\beta_{2}}g\|_{L^{2}_{v}}\big{\|}_{L^{\infty}_{x}}
ψ|α1|+|β1|2β1α1fLv,x21|α|2ψ|α2+α|+|β2|2(a~1/2)wwl|α2+α||β2|β2α2+αgLv,x2\displaystyle\lesssim\|\psi_{|\alpha_{1}|+|\beta_{1}|-2}\partial^{\alpha_{1}}_{\beta_{1}}f\|_{L^{2}_{v,x}}\sum_{1\leq|\alpha^{\prime}|\leq 2}\|\psi_{|\alpha_{2}+\alpha^{\prime}|+|\beta_{2}|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha_{2}+\alpha^{\prime}|-|\beta_{2}|}\partial^{\alpha_{2}+\alpha^{\prime}}_{\beta_{2}}g\|_{L^{2}_{v,x}}
|α|+|β|Kψ|α|+|β|2βαfLv,x2|α|1|α|+|β|Kψ|α|+|β|2(a~1/2)wwl|α||β|βαgLv,x2.\displaystyle\lesssim\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}\sum_{\begin{subarray}{c}|\alpha|\geq 1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}g\|_{L^{2}_{v,x}}.

Secondly, if |α1|+|β1|=1|\alpha_{1}|+|\beta_{1}|=1, then |α2|+|β2||α|+|β|1|\alpha_{2}|+|\beta_{2}|\leq|\alpha|+|\beta|-1 and by using (24)2, we have

I\displaystyle I |α|=1ψ|α1+α|+|β1|2β1α1+αfLv,x2|α|1ψ|α2+α|+|β2|2(a~1/2)wwl|α2+α||β2|β2α2+αgLv,x2\displaystyle\lesssim\sum_{|\alpha^{\prime}|=1}\|\psi_{|\alpha_{1}+\alpha^{\prime}|+|\beta_{1}|-2}\partial^{\alpha_{1}+\alpha^{\prime}}_{\beta_{1}}f\|_{L^{2}_{v,x}}\sum_{|\alpha^{\prime}|\leq 1}\|\psi_{|\alpha_{2}+\alpha^{\prime}|+|\beta_{2}|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha_{2}+\alpha^{\prime}|-|\beta_{2}|}\partial^{\alpha_{2}+\alpha^{\prime}}_{\beta_{2}}g\|_{L^{2}_{v,x}}
|α|1|α|+|β|Kψ|α|+|β|2βαfLv,x2|α|+|β|Kψ|α|+|β|2(a~1/2)wwl|α||β|βαgLv,x2.\displaystyle\lesssim\sum_{\begin{subarray}{c}|\alpha|\geq 1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}g\|_{L^{2}_{v,x}}.

Here we used ψ1\psi\leq 1 and ψ|α|+|β|2ψ|α1+α1|+|β1|2ψ|α2+α2|+|β2|2\psi_{|\alpha|+|\beta|-2}\leq\psi_{|\alpha_{1}+\alpha^{\prime}_{1}|+|\beta_{1}|-2}\psi_{|\alpha_{2}+\alpha^{\prime}_{2}|+|\beta_{2}|-2}, for any |α1|=1|\alpha^{\prime}_{1}|=1, |α2|1|\alpha^{\prime}_{2}|\leq 1. Thirdly, if |α1|+|β1|=0|\alpha_{1}|+|\beta_{1}|=0, then by (24)1, we have

I\displaystyle I 1|α|2ψ|α1+α|+|β1|2β1α1+αfLv,x2ψ|α2|+|β2|2(a~1/2)wwl|α2||β2|β2α2gLv,x2\displaystyle\lesssim\sum_{1\leq|\alpha^{\prime}|\leq 2}\|\psi_{|\alpha_{1}+\alpha^{\prime}|+|\beta_{1}|-2}\partial^{\alpha_{1}+\alpha^{\prime}}_{\beta_{1}}f\|_{L^{2}_{v,x}}\|\psi_{|\alpha_{2}|+|\beta_{2}|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha_{2}|-|\beta_{2}|}\partial^{\alpha_{2}}_{\beta_{2}}g\|_{L^{2}_{v,x}}
|α|1|α|+|β|Kψ|α|+|β|2βαfLv,x2|α|+|β|Kψ|α|+|β|2(a~1/2)wwl|α||β|βαgLv,x2.\displaystyle\lesssim\sum_{\begin{subarray}{c}|\alpha|\geq 1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}g\|_{L^{2}_{v,x}}.

Here we used ψ|α|+|β|2ψ|α1+α|+|β1|2ψ|α2|+|β2|2\psi_{|\alpha|+|\beta|-2}\leq\psi_{|\alpha_{1}+\alpha^{\prime}|+|\beta_{1}|-2}\psi_{|\alpha_{2}|+|\beta_{2}|-2}, for any |α|2|\alpha^{\prime}|\leq 2. Combining the above estimate, we have the desired result for II:

I\displaystyle I |α|+|β|Kψ|α|+|β|2βαfLv,x2|α|1|α|+|β|Kψ|α|+|β|2(a~1/2)wwl|α||β|βαgLv,x2\displaystyle\lesssim\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}\sum_{\begin{subarray}{c}|\alpha|\geq 1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}g\|_{L^{2}_{v,x}}
+|α|1|α|+|β|Kψ|α|+|β|2βαfLv,x2|α|+|β|Kψ|α|+|β|2(a~1/2)wwl|α||β|βαgLv,x2.\displaystyle\qquad+\sum_{\begin{subarray}{c}|\alpha|\geq 1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}g\|_{L^{2}_{v,x}}.

Similarly, using the same discussion on |α2|+|β2||\alpha_{2}|+|\beta_{2}| instead of |α1|+|β1||\alpha_{1}|+|\beta_{1}|, we have

J\displaystyle J |α|+|β|Kψ|α|+|β|2wl|α||β|βαfLv,x2|α|1|α|+|β|Kψ|α|+|β|2(a~1/2)wβαgLv,x2\displaystyle\lesssim\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}\sum_{\begin{subarray}{c}|\alpha|\geq 1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}\partial^{\alpha}_{\beta}g\|_{L^{2}_{v,x}}
+|α|1|α|+|β|Kψ|α|+|β|2wl|α||β|βαfLv,x2|α|+|β|Kψ|α|+|β|2(a~1/2)wβαgLv,x2.\displaystyle\qquad+\sum_{\begin{subarray}{c}|\alpha|\geq 1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}\partial^{\alpha}_{\beta}g\|_{L^{2}_{v,x}}.

Combining all the above estimate, we have the desired bound. Similar discussion on the indices |α1|+|β1||\alpha_{1}|+|\beta_{1}| will be used frequently later and will not be mentioned for brevity.

A direct consequence of Lemma 2.5 is the following estimate; see [15, Lemma 3.1].

Lemma 2.6.

Let K2K\geq 2, |α|+|β|K|\alpha|+|\beta|\leq K, lKl\geq K. Then,

|(αΓ±(f,f),αf±)Lv,x2|K,l1/2𝒟K,l(t),|(\partial^{\alpha}\Gamma_{\pm}(f,f),\partial^{\alpha}f_{\pm})_{L^{2}_{v,x}}|\lesssim\mathcal{E}^{1/2}_{K,l}\mathcal{D}_{K,l}(t),

and

|(w2l2|α|2|β|βαΓ±(f,f),βα(𝐈±𝐏±)f)Lv,x2|K,l1/2𝒟K,l(t),|(w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,f),\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)_{L^{2}_{v,x}}|\lesssim\mathcal{E}^{1/2}_{K,l}\mathcal{D}_{K,l}(t),

In particular, when |α|1|\alpha|\geq 1,

|(w2l2|α|2|β|βαΓ±(f,f),βαf)Lv,x2|K,l1/2𝒟K,l(t).|(w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,f),\partial^{\alpha}_{\beta}f)_{L^{2}_{v,x}}|\lesssim\mathcal{E}^{1/2}_{K,l}\mathcal{D}_{K,l}(t).

When 0|α|K0\leq|\alpha|\leq K,

|(w2l2|α|2|β|βαΓ±(f,f),βαf)Lv,x2|K,l1/2𝒟K,l(t)+K,l(t)𝒟K,l1/2(t)\displaystyle|(w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,f),\partial^{\alpha}_{\beta}f)_{L^{2}_{v,x}}|\lesssim\mathcal{E}^{1/2}_{K,l}\mathcal{D}_{K,l}(t)+\mathcal{E}_{K,l}(t)\mathcal{D}^{1/2}_{K,l}(t)

Also, for any function ζ(v)\zeta(v) satisfying |ζ(v)|eλ|v|2|\zeta(v)|\approx e^{-\lambda|v|^{2}} for some λ>0\lambda>0, we have

(αΓ±(f,f),ζ(v))Lv,xK,l1/2𝒟K,l1/2(t).\displaystyle(\partial^{\alpha}\Gamma_{\pm}(f,f),\zeta(v))_{L_{v,x}}\lesssim\mathcal{E}^{1/2}_{K,l}\mathcal{D}^{1/2}_{K,l}(t).
Proof.

With Lemma 2.5, these energy estimate can be verified directly by the definition of \mathcal{E} and 𝒟\mathcal{D} as in [15, Lemma 3.1], and details are omitted for brevity. Also, notice that Γ±\Gamma_{\pm} is in kerL\ker L and . ∎

3 Macroscopic Estimate

In this section, we assume ψ=1\psi=1. We will analyze the macroscopic dissipation by taking the macroscopic projection on the equation (7). Since we are dealing with Vlasov-Poisson-Boltzmann system, the idea here is similar to the Boltzmann equation case [17] and Vlasov-Maxwell-Boltzmann system case [16]. But there’s still some difference between these equations and Vlasov-Poisson-Boltzmann system and we will write a detailed proof for the sake of completeness. Notice that the calculation in this section is valid for both hard potential γ+2s0\gamma+2s\geq 0 and soft potential γ+2s<0\gamma+2s<0.

Recall the projection notation in (10). By multiplying the equation (7) with μ1/2,vjμ1/2(j=1,2,3)\mu^{1/2},v_{j}\mu^{1/2}(j=1,2,3) and 16(|v|23)μ1/2\frac{1}{6}(|v|^{2}-3)\mu^{1/2} and then integrating them over the v3\mathbb{R}^{3}_{v}, we have

{ta±+b+x(vμ1/2,(𝐈±𝐏±)f)Lv2=0,t(bj+(vjμ1/2,(𝐈±𝐏±)f)Lv2)+j(a±+2c)Ej+(vjμ1/2,vx(𝐈±𝐏±)f)Lv2=(L±f+g±,vjμ1/2)Lv2,t(c+16((|v|23)μ1/2,(𝐈±𝐏±)f)Lv2)+13xb+16((|v|23)μ1/2,v(𝐈±𝐏±)f)Lv2=16(L±f+g±,(|v|23)μ1/2)Lv2,\left\{\begin{aligned} &\partial_{t}a_{\pm}+\nabla\cdot b+\nabla_{x}\cdot(v\mu^{1/2},(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)_{L^{2}_{v}}=0,\\ &\partial_{t}\big{(}b_{j}+(v_{j}\mu^{1/2},(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)_{L^{2}_{v}}\big{)}+\partial_{j}(a_{\pm}+2c)\mp E_{j}+(v_{j}\mu^{1/2},v\cdot\nabla_{x}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)_{L^{2}_{v}}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad=(L_{\pm}f+g_{\pm},v_{j}\mu^{1/2})_{L^{2}_{v}},\\ &\partial_{t}\Big{(}c+\frac{1}{6}((|v|^{2}-3)\mu^{1/2},(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)_{L^{2}_{v}}\Big{)}+\frac{1}{3}\nabla_{x}\cdot b+\frac{1}{6}((|v|^{2}-3)\mu^{1/2},v\cdot\nabla(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)_{L^{2}_{v}}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad=\frac{1}{6}(L_{\pm}f+g_{\pm},(|v|^{2}-3)\mu^{1/2})_{L^{2}_{v}},\end{aligned}\right. (26)

where for brevity, we denote I=(I+,I)I=(I_{+},I_{-}) with I±f=f±I_{\pm}f=f_{\pm} and

g±=±xϕvf±12xϕvf±+Γ±(f,f).\displaystyle g_{\pm}=\pm\nabla_{x}\phi\cdot\nabla_{v}f_{\pm}\mp\frac{1}{2}\nabla_{x}\phi\cdot vf_{\pm}+\Gamma_{\pm}(f,f). (27)

Notice that (𝐏±f,vμ1/2)Lv2(\mathbf{P}_{\pm}f,v\mu^{1/2})_{L^{2}_{v}} and (𝐏±f,(|v|23)μ1/2)Lv2(\mathbf{P}_{\pm}f,(|v|^{2}-3)\mu^{1/2})_{L^{2}_{v}} is not 0 in general and similar for Γ±\Gamma_{\pm}. Also, we have used

(±xϕvf±12xϕvf±,μ1/2)Lv2=0,\displaystyle(\pm\nabla_{x}\phi\cdot\nabla_{v}f_{\pm}\mp\frac{1}{2}\nabla_{x}\phi\cdot vf_{\pm},\mu^{1/2})_{L^{2}_{v}}=0,

which is obtained by integration by parts on vv. In order to obtain the high-order moments, as in [16], we define for 1j,k31\leq j,k\leq 3 that

Θjk(f±)=((vivj1)μ1/2,f±)Lv2,Λj(f±)=110((|v|25)vjμ1/2,f±)Lv2.\displaystyle\Theta_{jk}(f_{\pm})=((v_{i}v_{j}-1)\mu^{1/2},f_{\pm})_{L^{2}_{v}},\ \ \Lambda_{j}(f_{\pm})=\frac{1}{10}((|v|^{2}-5)v_{j}\mu^{1/2},f_{\pm})_{L^{2}_{v}}.

Then multiplying the above high-order moments with equation (7), we have

{t(Θjj((𝐈±𝐏±)f)+2c)+2jbj=Θjj(g±+h±),tΘjk((𝐈±𝐏±)f)+jbk+kbj+x(vμ1/2,(𝐈±𝐏±)f)Lv2=Θjk(g±+h±)+(μ1/2,g±)Lv2,jk,tΛj((𝐈±𝐏±)f)+jc=Λj(g±+h±),\left\{\begin{aligned} &\partial_{t}\big{(}\Theta_{jj}((\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)+2c\big{)}+2\partial_{j}b_{j}=\Theta_{jj}(g_{\pm}+h_{\pm}),\\ &\partial_{t}\Theta_{jk}((\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)+\partial_{j}b_{k}+\partial_{k}b_{j}+\nabla_{x}\cdot(v\mu^{1/2},(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)_{L^{2}_{v}}=\Theta_{jk}(g_{\pm}+h_{\pm})+(\mu^{1/2},g_{\pm})_{L^{2}_{v}},\ j\neq k,\\ &\partial_{t}\Lambda_{j}((\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)+\partial_{j}c=\Lambda_{j}(g_{\pm}+h_{\pm}),\end{aligned}\right. (28)

where

h±=vx(𝐈±𝐏±)fL±f.\displaystyle h_{\pm}=-v\cdot\nabla_{x}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f-L_{\pm}f.

By taking the mean value of every two equations with sign ±\pm in (26), we have

{t(a++a2)+xb=0,tbj+j((a++a2)+2c)+12k=13kΘjk((𝐈𝐏)f(1,1))=12(g++g,vjμ1/2)Lv2,tc+13xb+56j=13jΛj((𝐈𝐏)f(1,1))=112(g++g,(|v|23)μ1/2)Lv2,\left\{\begin{aligned} &\partial_{t}\Big{(}\frac{a_{+}+a_{-}}{2}\Big{)}+\nabla_{x}\cdot b=0,\\ &\partial_{t}b_{j}+\partial_{j}\Big{(}\Big{(}\frac{a_{+}+a_{-}}{2}\Big{)}+2c\Big{)}+\frac{1}{2}\sum_{k=1}^{3}\partial_{k}\Theta_{jk}((\mathbf{I}-\mathbf{P})f\cdot(1,1))=\frac{1}{2}(g_{+}+g_{-},v_{j}\mu^{1/2})_{L^{2}_{v}},\\ &\partial_{t}c+\frac{1}{3}\nabla_{x}\cdot b+\frac{5}{6}\sum^{3}_{j=1}\partial_{j}\Lambda_{j}((\mathbf{I}-\mathbf{P})f\cdot(1,1))=\frac{1}{12}(g_{+}+g_{-},(|v|^{2}-3)\mu^{1/2})_{L^{2}_{v}},\end{aligned}\right. (29)

for 1j31\leq j\leq 3. Similarly, taking the mean value with ±\pm of the equation in (28), we have

{t(12Θjk((𝐈±𝐏±)f(1,1))+2cδjk)+jbk+kbj=12Θjk(g++g+h++h),12tΛj((𝐈±𝐏±)f(1,1))+jc=12Λj(g++g+h++h),\left\{\begin{aligned} &\partial_{t}\Big{(}\frac{1}{2}\Theta_{jk}((\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\cdot(1,1))+2c\delta_{jk}\Big{)}+\partial_{j}b_{k}+\partial_{k}b_{j}=\frac{1}{2}\Theta_{jk}(g_{+}+g_{-}+h_{+}+h_{-}),\\ &\frac{1}{2}\partial_{t}\Lambda_{j}((\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\cdot(1,1))+\partial_{j}c=\frac{1}{2}\Lambda_{j}(g_{+}+g_{-}+h_{+}+h_{-}),\end{aligned}\right. (30)

for 1j,k31\leq j,k\leq 3. δjk\delta_{jk} is the Kronecker delta. Moreover, for obtaining the dissipation of the electric field EE, we take the difference with sign ±\pm in the first two equations in (26), we have

{t(a+a)+xG=0,tG+x(a+a)2E+xΘ((𝐈𝐏)f(1,1))=(vμ1/2,(g+Lf)(1,1))Lv2,\left\{\begin{aligned} &\partial_{t}(a_{+}-a_{-})+\nabla_{x}\cdot G=0,\\ &\partial_{t}G+\nabla_{x}(a_{+}-a_{-})-2E+\nabla_{x}\cdot\Theta((\mathbf{I}-\mathbf{P})f\cdot(1,-1))=(v\mu^{1/2},(g+Lf)\cdot(1,-1))_{L^{2}_{v}},\end{aligned}\right. (31)

where

G=(vμ1/2,(𝐈𝐏)f(1,1))Lv2.\displaystyle G=(v\mu^{1/2},(\mathbf{I}-\mathbf{P})f\cdot(1,-1))_{L^{2}_{v}}. (32)

Recall that E=xϕE=-\nabla_{x}\phi. Then by equation (8), we have

xE=a+a.\displaystyle\nabla_{x}\cdot E=a_{+}-a_{-}. (33)

In order to extract the dissipation rate of a±,b,c,Ea_{\pm},b,c,E, we would like to take the Fourier transform on the equation (29), (30), (31) and (33) with respect to xx. Then

{t(a+^+a^2)+iyb^=0,tbj^+iyj((a+^+a^2)+2c^)+12k=13iykΘjk((𝐈𝐏)f^(1,1))=12(g+^+g^,vjμ1/2)Lv2,tc^+13iyb^+56j=13iyjΛj((𝐈𝐏)f^(1,1))=112(g+^+g^,(|v|23)μ1/2)Lv2,t(12Θjk((𝐈𝐏)f^(1,1))+2c^δjk)+iyjbk^+iykbj^=12Θjk(g+^+g^+h+^+h^),12tΛj((𝐈𝐏)f^(1,1))+iyjc^=12Λj(g+^+g^+h+^+h^),\left\{\begin{aligned} &\partial_{t}\Big{(}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{)}+iy\cdot\widehat{b}=0,\\ &\partial_{t}\widehat{b_{j}}+iy_{j}\Big{(}\Big{(}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{)}+2\widehat{c}\Big{)}+\frac{1}{2}\sum_{k=1}^{3}iy_{k}\Theta_{jk}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))=\frac{1}{2}(\widehat{g_{+}}+\widehat{g_{-}},v_{j}\mu^{1/2})_{L^{2}_{v}},\\ &\partial_{t}\widehat{c}+\frac{1}{3}iy\cdot\widehat{b}+\frac{5}{6}\sum^{3}_{j=1}iy_{j}\Lambda_{j}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))=\frac{1}{12}(\widehat{g_{+}}+\widehat{g_{-}},(|v|^{2}-3)\mu^{1/2})_{L^{2}_{v}},\\ &\partial_{t}\Big{(}\frac{1}{2}\Theta_{jk}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))+2\widehat{c}\delta_{jk}\Big{)}+iy_{j}\widehat{b_{k}}+iy_{k}\widehat{b_{j}}=\frac{1}{2}\Theta_{jk}(\widehat{g_{+}}+\widehat{g_{-}}+\widehat{h_{+}}+\widehat{h_{-}}),\\ &\frac{1}{2}\partial_{t}\Lambda_{j}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))+iy_{j}\widehat{c}=\frac{1}{2}\Lambda_{j}(\widehat{g_{+}}+\widehat{g_{-}}+\widehat{h_{+}}+\widehat{h_{-}}),\end{aligned}\right. (34)
{t(a+^a^)+iyG^=0,tG^+iy(a+^a^)2E^+iyΘ((𝐈𝐏)f^(1,1))=(vμ1/2,(g+Lf)(1,1))Lv2,iyE^=a+^a^.\left\{\begin{aligned} &\partial_{t}(\widehat{a_{+}}-\widehat{a_{-}})+iy\cdot\widehat{G}=0,\\ &\partial_{t}\widehat{G}+iy(\widehat{a_{+}}-\widehat{a_{-}})-2\widehat{E}+iy\cdot\Theta((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,-1))=(v\mu^{1/2},(g+Lf)\cdot(1,-1))_{L^{2}_{v}},\\ &iy\cdot\widehat{E}=\widehat{a_{+}}-\widehat{a_{-}}.\end{aligned}\right. (35)
Lemma 3.1.

Let (f,E)(f,E) be the solution to the Cauchy problem (7)-(9). For any K2K\geq 2, there exists a functional K(1)(t),K,h(1)(t)\mathcal{E}^{(1)}_{K}(t),\mathcal{E}^{(1)}_{K,h}(t) such that

K(1)\displaystyle\mathcal{E}^{(1)}_{K} |α|KαfLx,v22+|α|K1αELx22,\displaystyle\lesssim\sum_{|\alpha|\leq K}\|\partial^{\alpha}f\|^{2}_{L^{2}_{x,v}}+\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}E\|^{2}_{L^{2}_{x}}, (36)
K,h(1)\displaystyle\mathcal{E}^{(1)}_{K,h} 1|α|Kα𝐏fLx,v22+|α|Kα(𝐈𝐏)fLx,v22+|α|K1αELx22,\displaystyle\lesssim\sum_{1\leq|\alpha|\leq K}\|\partial^{\alpha}\mathbf{P}f\|^{2}_{L^{2}_{x,v}}+\sum_{|\alpha|\leq K}\|\partial^{\alpha}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{x,v}}+\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}E\|^{2}_{L^{2}_{x}}, (37)

and for any t0t\geq 0,

t\displaystyle\partial_{t} K(1)+λ|α|K1αx(a±,b,c)Lx22+a+aLx22+|α|K1αELx22\displaystyle\mathcal{E}^{(1)}_{K}+\lambda\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}}+\|a_{+}-a_{-}\|^{2}_{L^{2}_{x}}+\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}E\|^{2}_{L^{2}_{x}} (38)
|α|K(a~1/2)w(𝐈𝐏)αfLv,x22+K,l(t)𝒟K,l(t).\displaystyle\qquad\lesssim\sum_{|\alpha|\leq K}\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})\partial^{\alpha}{f}\|_{L^{2}_{v,x}}^{2}+\mathcal{E}_{K,l}(t)\mathcal{D}_{K,l}(t).
t\displaystyle\partial_{t} K,h(1)+λ1|α|K1αx(a±,b,c)Lx22+x(a+a)Lx22+|α|K1αELx22\displaystyle\mathcal{E}^{(1)}_{K,h}+\lambda\sum_{1\leq|\alpha|\leq K-1}\|\partial^{\alpha}\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}}+\|\nabla_{x}(a_{+}-a_{-})\|^{2}_{L^{2}_{x}}+\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}E\|^{2}_{L^{2}_{x}} (39)
|α|K(a~1/2)w(𝐈𝐏)αfLv,x22+K,lh(t)𝒟K,l(t).\displaystyle\qquad\lesssim\sum_{|\alpha|\leq K}\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})\partial^{\alpha}{f}\|_{L^{2}_{v,x}}^{2}+\mathcal{E}^{h}_{K,l}(t)\mathcal{D}_{K,l}(t).
Proof.

We only need to prove the case of |α|=0|\alpha|=0. Since equations (29), (30) and (33) are linear in a±,b,c,fa_{\pm},b,c,f, one can directly apply the derivative α\partial^{\alpha} to them. The results (38)(39) follows similarly. Let ζ(v)\zeta(v) be a function satisfying

|ζ(v)|eλ|v|2,\displaystyle|\zeta(v)|\approx e^{-\lambda|v|^{2}},

for some λ>0\lambda>0. Notice that we will use notation ζ\zeta for different function satisfying the above equivalence.

For the estimate on a+^+a^\widehat{a_{+}}+\widehat{a_{-}}, we use the equation (34)2 to get

|y|2|a+^+a^2|2\displaystyle|y|^{2}\Big{|}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{|}^{2} =j=13(iyja+^+a^2|iyja+^+a^2)\displaystyle=\sum^{3}_{j=1}\Big{(}iy_{j}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{|}iy_{j}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{)}
=j=13(iyja+^+a^2|tbj^2iyjc^12k=13iykΘjk((𝐈𝐏)f^(1,1))+12(g+^+g^,vjμ1/2)Lv2)\displaystyle=\sum^{3}_{j=1}\Big{(}iy_{j}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{|}-\partial_{t}\widehat{b_{j}}-2iy_{j}\widehat{c}-\frac{1}{2}\sum_{k=1}^{3}iy_{k}\Theta_{jk}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))+\frac{1}{2}(\widehat{g_{+}}+\widehat{g_{-}},v_{j}\mu^{1/2})_{L^{2}_{v}}\Big{)}
=tj=13(iyja+^+a^2|bj^)+j=13(iyjta+^+ta^2|bj^)\displaystyle=-\partial_{t}\sum^{3}_{j=1}\Big{(}iy_{j}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{|}\widehat{b_{j}}\Big{)}+\sum^{3}_{j=1}\Big{(}iy_{j}\frac{\partial_{t}\widehat{a_{+}}+\partial_{t}\widehat{a_{-}}}{2}\Big{|}\widehat{b_{j}}\Big{)}
+j=13(iyja+^+a^2|2iyjc^12k=13iykΘjk((𝐈𝐏)f^(1,1))+12(g+^+g^,vjμ1/2)Lv2)\displaystyle\qquad+\sum^{3}_{j=1}\Big{(}iy_{j}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{|}-2iy_{j}\widehat{c}-\frac{1}{2}\sum_{k=1}^{3}iy_{k}\Theta_{jk}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))+\frac{1}{2}(\widehat{g_{+}}+\widehat{g_{-}},v_{j}\mu^{1/2})_{L^{2}_{v}}\Big{)}

To deal with the terms ta+^+ta^\partial_{t}\widehat{a_{+}}+\partial_{t}\widehat{a_{-}}, we use the equation (34)1. Then by Cauchy-Schwarz inequality, we obtain

tj=13\displaystyle\partial_{t}\sum^{3}_{j=1} Re(iyja+^+a^2|bj^)+λ|y|2|a+^+a^2|2\displaystyle\text{Re}\Big{(}iy_{j}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{|}\widehat{b_{j}}\Big{)}+\lambda|y|^{2}\Big{|}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{|}^{2} (40)
|yb^|2+|y|2|c^|2+|y|2ζ(𝐈𝐏)f^Lv22+|(g+^+g^,ζ)Lv2|2.\displaystyle\lesssim|y\cdot\widehat{b}|^{2}+|y|^{2}|\widehat{c}|^{2}+|y|^{2}\|\zeta(\mathbf{I}-\mathbf{P})\widehat{f}\|_{L^{2}_{v}}^{2}+|(\widehat{g_{+}}+\widehat{g_{-}},\zeta)_{L^{2}_{v}}|^{2}.

For the estimate of b^\widehat{b}, we use the equation (34)4.

 2|y|2|b^|2+2|yb^|2\displaystyle\quad\,2|y|^{2}|\widehat{b}|^{2}+2|y\cdot\widehat{b}|^{2}
=j,k=13|iyjbk^+iykbj^|2\displaystyle=\sum^{3}_{j,k=1}|iy_{j}\widehat{b_{k}}+iy_{k}\widehat{b_{j}}|^{2}
=j,k=13(iyjbk^+iykbj^|t(12Θjk((𝐈𝐏)f^(1,1))+2c^δjk)+12Θjk(g+^+g^+h+^+h^))\displaystyle=\sum^{3}_{j,k=1}\Big{(}iy_{j}\widehat{b_{k}}+iy_{k}\widehat{b_{j}}\Big{|}-\partial_{t}\Big{(}\frac{1}{2}\Theta_{jk}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))+2\widehat{c}\delta_{jk}\Big{)}+\frac{1}{2}\Theta_{jk}(\widehat{g_{+}}+\widehat{g_{-}}+\widehat{h_{+}}+\widehat{h_{-}})\Big{)}
=tj,k=13(iyjbk^+iykbj^|12Θjk((𝐈𝐏)f^(1,1))+2c^δjk)\displaystyle=-\partial_{t}\sum^{3}_{j,k=1}\Big{(}iy_{j}\widehat{b_{k}}+iy_{k}\widehat{b_{j}}\Big{|}\frac{1}{2}\Theta_{jk}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))+2\widehat{c}\delta_{jk}\Big{)}
+j,k=13(iyjtbk^+iyktbj^|12Θjk((𝐈𝐏)f^(1,1))+2c^δjk)\displaystyle\qquad+\sum^{3}_{j,k=1}\Big{(}iy_{j}\partial_{t}\widehat{b_{k}}+iy_{k}\partial_{t}\widehat{b_{j}}\Big{|}\frac{1}{2}\Theta_{jk}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))+2\widehat{c}\delta_{jk}\Big{)}
+j,k=13(iyjbk^+iykbj^|12Θjk(g+^+g^+h+^+h^))\displaystyle\qquad+\sum^{3}_{j,k=1}\Big{(}iy_{j}\widehat{b_{k}}+iy_{k}\widehat{b_{j}}\Big{|}\frac{1}{2}\Theta_{jk}(\widehat{g_{+}}+\widehat{g_{-}}+\widehat{h_{+}}+\widehat{h_{-}})\Big{)}

To eliminate the terms tbk^\partial_{t}\widehat{b_{k}} and tbj^\partial_{t}\widehat{b_{j}}, we will use equation (34)2. Thus, by Cauchy-Schwarz inequality,

t\displaystyle\partial_{t} j,k=13Re(iyjbk^+iykbj^|12Θjk((𝐈𝐏)f^(1,1))+2c^δjk)+λ|y|2|b^|2+2|yb^|2\displaystyle\sum^{3}_{j,k=1}\text{Re}\Big{(}iy_{j}\widehat{b_{k}}+iy_{k}\widehat{b_{j}}\Big{|}\frac{1}{2}\Theta_{jk}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))+2\widehat{c}\delta_{jk}\Big{)}+\lambda|y|^{2}|\widehat{b}|^{2}+2|y\cdot\widehat{b}|^{2} (41)
δ|y|2|a+^+a^|2+Cδ|y|2|c^|2+Cδ|y|2ζ(𝐈𝐏)f^Lv22+|(g+^+g^+h+^+h^,ζ)Lv2|2.\displaystyle\lesssim\delta|y|^{2}|\widehat{a_{+}}+\widehat{a_{-}}|^{2}+C_{\delta}|y|^{2}|\widehat{c}|^{2}+C_{\delta}|y|^{2}\|\zeta(\mathbf{I}-\mathbf{P})\widehat{f}\|_{L^{2}_{v}}^{2}+|(\widehat{g_{+}}+\widehat{g_{-}}+\widehat{h_{+}}+\widehat{h_{-}},\zeta)_{L^{2}_{v}}|^{2}.

For the estimate of c^\widehat{c}, we use the equation (34)5.

|y|2|c^|2\displaystyle|y|^{2}|\widehat{c}|^{2} =j=13(iyjc^|iyjc^)\displaystyle=\sum^{3}_{j=1}\Big{(}iy_{j}\widehat{c}\Big{|}iy_{j}\widehat{c}\Big{)}
=j=13(iyjc^|12tΛj((𝐈𝐏)f^(1,1))+12Λj(g+^+g^+h+^+h^))\displaystyle=\sum^{3}_{j=1}\Big{(}iy_{j}\widehat{c}\Big{|}-\frac{1}{2}\partial_{t}\Lambda_{j}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))+\frac{1}{2}\Lambda_{j}(\widehat{g_{+}}+\widehat{g_{-}}+\widehat{h_{+}}+\widehat{h_{-}})\Big{)}
=12tj=13(iyjc^|Λj((𝐈𝐏)f^(1,1)))+12j=13(iyjtc^|Λj((𝐈𝐏)f^(1,1)))\displaystyle=-\frac{1}{2}\partial_{t}\sum^{3}_{j=1}\Big{(}iy_{j}\widehat{c}\Big{|}\Lambda_{j}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))\Big{)}+\frac{1}{2}\sum^{3}_{j=1}\Big{(}iy_{j}\partial_{t}\widehat{c}\Big{|}\Lambda_{j}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))\Big{)}
+12j=13(iyjc^|Λj(g+^+g^+h+^+h^)).\displaystyle\qquad+\frac{1}{2}\sum^{3}_{j=1}\Big{(}iy_{j}\widehat{c}\Big{|}\Lambda_{j}(\widehat{g_{+}}+\widehat{g_{-}}+\widehat{h_{+}}+\widehat{h_{-}})\Big{)}.

To eliminate the term tc^\partial_{t}\widehat{c}, we use the equation (34)3 to get

12t\displaystyle\frac{1}{2}\partial_{t} Rej=13(iyjc^|Λj((𝐈𝐏)f^(1,1)))+λ|y|2|c^|2\displaystyle\text{Re}\sum^{3}_{j=1}\Big{(}iy_{j}\widehat{c}\Big{|}\Lambda_{j}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))\Big{)}+\lambda|y|^{2}|\widehat{c}|^{2} (42)
δ|y|2|b^|2+|y|2ζ(𝐈𝐏)f^Lv22+|(g+^+g^+h+^+h^,ζ)Lv2|2,\displaystyle\lesssim\delta|y|^{2}|\widehat{b}|^{2}+|y|^{2}\|\zeta(\mathbf{I}-\mathbf{P})\widehat{f}\|_{L^{2}_{v}}^{2}+|(\widehat{g_{+}}+\widehat{g_{-}}+\widehat{h_{+}}+\widehat{h_{-}},\zeta)_{L^{2}_{v}}|^{2},

for any δ>0\delta>0.

To obtain the dissipation rate, we use linear combination κ1×(40)+κ2×(41)+(42)\kappa_{1}\times\eqref{25}+\kappa_{2}\times\eqref{26}+\eqref{27} and choose δ<<κ1<<κ2\delta<<\kappa_{1}<<\kappa_{2} sufficiently small to get

t(κ1Rej=13(iyja+^+a^2|bj^)+κ2Rej,k=13(iyjbk^+iykbj^|12ReΘjk((𝐈𝐏)f^(1,1))+2c^δjk)\displaystyle\quad\,\partial_{t}\Bigg{(}\kappa_{1}\text{Re}\sum^{3}_{j=1}\Big{(}iy_{j}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{|}\widehat{b_{j}}\Big{)}+\kappa_{2}\text{Re}\sum^{3}_{j,k=1}\Big{(}iy_{j}\widehat{b_{k}}+iy_{k}\widehat{b_{j}}\Big{|}\frac{1}{2}\text{Re}\Theta_{jk}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))+2\widehat{c}\delta_{jk}\Big{)} (43)
+12j=13(iyjc^|Λj((𝐈𝐏)f^(1,1))))+λ|y|2|a+^+a^2|2+λ|y|2|b^|2+λ|y|2|c^|2\displaystyle\qquad+\frac{1}{2}\sum^{3}_{j=1}\Big{(}iy_{j}\widehat{c}\Big{|}\Lambda_{j}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))\Big{)}\Bigg{)}+\lambda|y|^{2}\Big{|}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{|}^{2}+\lambda|y|^{2}|\widehat{b}|^{2}+\lambda|y|^{2}|\widehat{c}|^{2}
(1+|y|2)(a~1/2)w(𝐈𝐏)f^Lv22+|(g+^+g^,ζ)Lv2|2.\displaystyle\lesssim(1+|y|^{2})\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})\widehat{f}\|_{L^{2}_{v}}^{2}+|(\widehat{g_{+}}+\widehat{g_{-}},\zeta)_{L^{2}_{v}}|^{2}.

Here we use the fact that

|(h+^+h^,ζ)Lv2|2(1+|y|2)(a~1/2)w(𝐈𝐏)fLv22.\displaystyle|(\widehat{h_{+}}+\widehat{h_{-}},\zeta)_{L^{2}_{v}}|^{2}\lesssim(1+|y|^{2})\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v}}.

which follows from the definition of h±h_{\pm} and Lemma 2.1. Notice that a+^+a^,b^,c^\widehat{a_{+}}+\widehat{a_{-}},\widehat{b},\widehat{c} have coefficient |y||y|. It means that the above estimate has one order of derivative on xx. In order to obtain the dissipation property of a±^\widehat{a_{\pm}}, we will discuss the dissipation of a+^a^\widehat{a_{+}}-\widehat{a_{-}}, since

|a+^|2+|a^|2=|a+^a^|22+|a+^a^|22.\displaystyle|\widehat{a_{+}}|^{2}+|\widehat{a_{-}}|^{2}=\frac{|\widehat{a_{+}}-\widehat{a_{-}}|^{2}}{2}+\frac{|\widehat{a_{+}}-\widehat{a_{-}}|^{2}}{2}.

Now we observe from equation (35)3 and (35)2 that

(|y|2+2)|a+^a^|2\displaystyle(|y|^{2}+2)|\widehat{a_{+}}-\widehat{a_{-}}|^{2} =(iy(a+^a^)|iy(a+^a^)2E^)\displaystyle=\Big{(}iy(\widehat{a_{+}}-\widehat{a_{-}})\Big{|}iy(\widehat{a_{+}}-\widehat{a_{-}})-2\widehat{E}\Big{)}
=(iy(a+^a^)|tG^iyΘ((𝐈𝐏)f^(1,1))+(vμ1/2,(g^+Lf^)(1,1))Lv2)\displaystyle=\Big{(}iy(\widehat{a_{+}}-\widehat{a_{-}})\Big{|}-\partial_{t}\widehat{G}-iy\cdot\Theta((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,-1))+(v\mu^{1/2},(\widehat{g}+L\widehat{f})\cdot(1,-1))_{L^{2}_{v}}\Big{)}
=t(iy(a+^a^)|G^)+(iy(ta+^ta^)|G^)\displaystyle=-\partial_{t}\Big{(}iy(\widehat{a_{+}}-\widehat{a_{-}})\Big{|}\widehat{G}\Big{)}+\Big{(}iy(\partial_{t}\widehat{a_{+}}-\partial_{t}\widehat{a_{-}})\Big{|}\widehat{G}\Big{)}
+(iy(a+^a^)|iyΘ((𝐈𝐏)f^(1,1))+(vμ1/2,(g^+Lf^)(1,1))Lv2).\displaystyle\qquad+\Big{(}iy(\widehat{a_{+}}-\widehat{a_{-}})\Big{|}-iy\cdot\Theta((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,-1))+(v\mu^{1/2},(\widehat{g}+L\widehat{f})\cdot(1,-1))_{L^{2}_{v}}\Big{)}.

By using the (35)1, we obtain by Cauchy-Schwarz inequality that

tRe(iy(a+^a^)|G^)+λ(|y|2+2)|a+^a^|2\displaystyle\partial_{t}\text{Re}\Big{(}iy(\widehat{a_{+}}-\widehat{a_{-}})\Big{|}\widehat{G}\Big{)}+\lambda(|y|^{2}+2)|\widehat{a_{+}}-\widehat{a_{-}}|^{2} |yG^|2+|y|2(a~1/2)ζ(𝐈𝐏)f^Lv22+|(g^,ζ)Lv2|2\displaystyle\lesssim|y\cdot\widehat{G}|^{2}+|y|^{2}\|(\tilde{a}^{1/2})\zeta(\mathbf{I}-\mathbf{P})\widehat{f}\|_{L^{2}_{v}}^{2}+|(\widehat{g},\zeta)_{L^{2}_{v}}|^{2} (44)
|y|2(a~1/2)ζ(𝐈𝐏)f^Lv22+|(g^,ζ)Lv2|2,\displaystyle\lesssim|y|^{2}\|(\tilde{a}^{1/2})\zeta(\mathbf{I}-\mathbf{P})\widehat{f}\|_{L^{2}_{v}}^{2}+|(\widehat{g},\zeta)_{L^{2}_{v}}|^{2},

by using the inequality (2.5) and LS(a~)L\in S(\tilde{a}). Recall that GG is defined as G=(vμ1/2,(𝐈𝐏)f(1,1))Lv2G=(v\mu^{1/2},(\mathbf{I}-\mathbf{P})f\cdot(1,-1))_{L^{2}_{v}}. Moreover, we need the dissipation rate on E^\widehat{E}. Hence, by using equation (35)2,

2|E^|2\displaystyle 2|\widehat{E}|^{2} =(E^|2E^)\displaystyle=\big{(}\widehat{E}\big{|}2\widehat{E}\big{)}
=(E^|tG^+iy(a+^a^)+iyΘ((𝐈𝐏)f^(1,1))(vμ1/2,(g^+Lf^)(1,1))Lv2)\displaystyle=\big{(}\widehat{E}\big{|}\partial_{t}\widehat{G}+iy(\widehat{a_{+}}-\widehat{a_{-}})+iy\cdot\Theta((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,-1))-(v\mu^{1/2},(\widehat{g}+L\widehat{f})\cdot(1,-1))_{L^{2}_{v}}\big{)}
=t(E^|G^)(tE^|G^)+(E^|iy(a+^a^)+iyΘ((𝐈𝐏)f^(1,1))(vμ1/2,(g^+Lf^)(1,1))Lv2)\displaystyle=\partial_{t}\big{(}\widehat{E}\big{|}\widehat{G}\big{)}-\big{(}\partial_{t}\widehat{E}\big{|}\widehat{G}\big{)}+\big{(}\widehat{E}\big{|}iy(\widehat{a_{+}}-\widehat{a_{-}})+iy\cdot\Theta((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,-1))-(v\mu^{1/2},(\widehat{g}+L\widehat{f})\cdot(1,-1))_{L^{2}_{v}}\big{)}

Here by (8) and (35)1,

tE=txϕ=xΔx1t(a+a)=xΔx1xG.\displaystyle\partial_{t}E=-\partial_{t}\nabla_{x}\phi=-\nabla_{x}\Delta^{-1}_{x}\partial_{t}(a_{+}-a_{-})=-\nabla_{x}\Delta^{-1}_{x}\nabla_{x}\cdot G.

Thus by Fourier transform,

|tE^|2|G^|2μ1/2(𝐈𝐏)f^L22.\displaystyle|\partial_{t}\widehat{E}|^{2}\lesssim|\widehat{G}|^{2}\lesssim\|\mu^{1/2}(\mathbf{I}-\mathbf{P})\widehat{f}\|^{2}_{L^{2}}.

Plugging this into the above estimate, we have,

tRe(E^|G^)+λ|E^|2\displaystyle\partial_{t}\text{Re}\big{(}-\widehat{E}\big{|}\widehat{G}\big{)}+\lambda|\widehat{E}|^{2} |y|2|a+^a^|2+(1+|y|2)(a~1/2)w(𝐈𝐏)fLv22+|(g^,ζ)Lv2|2,\displaystyle\lesssim|y|^{2}|\widehat{a_{+}}-\widehat{a_{-}}|^{2}+(1+|y|^{2})\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v}}+|(\widehat{g},\zeta)_{L^{2}_{v}}|^{2}, (45)

where ζS(a~1/2)\zeta\in S(\tilde{a}^{1/2}) and Lemma 6.1 are applied. Taking the combination (44)+κ3×(45)\eqref{29}+\kappa_{3}\times\eqref{30}, we have

t(iy(a+^a^)κ3E^|G^)+λ(1+|y|2)|a+^a^|2+λ|E^|2\displaystyle\partial_{t}\big{(}iy(\widehat{a_{+}}-\widehat{a_{-}})-\kappa_{3}\widehat{E}\big{|}\widehat{G}\big{)}+\lambda(1+|y|^{2})|\widehat{a_{+}}-\widehat{a_{-}}|^{2}+\lambda|\widehat{E}|^{2} (1+|y|2)(a~1/2)ζ(𝐈𝐏)f^Lv22+|(g^,ζ)Lv2|2.\displaystyle\lesssim(1+|y|^{2})\|(\tilde{a}^{1/2})\zeta(\mathbf{I}-\mathbf{P})\widehat{f}\|_{L^{2}_{v}}^{2}+|(\widehat{g},\zeta)_{L^{2}_{v}}|^{2}. (46)

Now we take the integral on (43) and (46) with respect to yy, use the Plancherel’s Theorem and sum this two inequality together. Then,

t1(1)+λx(a±,b,c)Lx22+λa+aLx22+λELx22(a~1/2)ζ(𝐈𝐏)f^Lv2Hx12+|(g^,ζ)Lv2|2,\displaystyle\partial_{t}\mathcal{E}^{(1)}_{1}+\lambda\|\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}}+\lambda\|a_{+}-a_{-}\|^{2}_{L^{2}_{x}}+\lambda\|E\|^{2}_{L^{2}_{x}}\lesssim\|(\tilde{a}^{1/2})\zeta(\mathbf{I}-\mathbf{P})\widehat{f}\|_{L^{2}_{v}H^{1}_{x}}^{2}+|(\widehat{g},\zeta)_{L^{2}_{v}}|^{2},

where

1(1)\displaystyle\mathcal{E}^{(1)}_{1} =κ1j=13Re(xa++a2,b)Lx2+κ2j,k=13Re(jbk+kbj,12Θjk((𝐈±𝐏±)f(1,1))+2cδjk)Lx2\displaystyle=\kappa_{1}\sum^{3}_{j=1}\text{Re}\Big{(}\nabla_{x}\frac{{a_{+}}+{a_{-}}}{2},b\Big{)}_{L^{2}_{x}}+\kappa_{2}\sum^{3}_{j,k=1}\text{Re}\Big{(}\partial_{j}{b_{k}}+\partial_{k}{b_{j}},\frac{1}{2}\Theta_{jk}((\mathbf{I}_{\pm}-\mathbf{P}_{\pm}){f}\cdot(1,1))+2{c}\delta_{jk}\Big{)}_{L^{2}_{x}}
+12Rej=13(jc,Λj((𝐈±𝐏±)f(1,1)))Lx2+Re(x(a+a)κ3E,G)Lx2.\displaystyle\qquad+\frac{1}{2}\text{Re}\sum^{3}_{j=1}\Big{(}\partial_{j}{c},\Lambda_{j}((\mathbf{I}_{\pm}-\mathbf{P}_{\pm}){f}\cdot(1,1))\Big{)}_{L^{2}_{x}}+\text{Re}\big{(}\nabla_{x}({a_{+}}-{a_{-}})-\kappa_{3}{E},{G}\big{)}_{L^{2}_{x}}.

As we mentioned at the beginning of this proof, the equations (29) and (30) are linear in a±,b,c,fa_{\pm},b,c,f, one can directly apply the derivative α\partial^{\alpha} to (29) and (30) with |α|K1|\alpha|\leq K-1. Then we can get the high-order estimate. For any m0m\geq 0, we define

K(1)=|α|K1(κ1j=13(xαa++αa2,αb)Lx2\displaystyle\mathcal{E}^{(1)}_{K}=\sum_{|\alpha|\leq K-1}\bigg{(}\kappa_{1}\sum^{3}_{j=1}\Big{(}\nabla_{x}\frac{{\partial^{\alpha}a_{+}}+{\partial^{\alpha}a_{-}}}{2},\partial^{\alpha}b\Big{)}_{L^{2}_{x}}
+κ2j,k=13Re(αjbk+αkbj,12Θjk((𝐈±𝐏±)αf(1,1))+2αcδjk)Lx2\displaystyle+\kappa_{2}\sum^{3}_{j,k=1}\text{Re}\Big{(}\partial^{\alpha}\partial_{j}{b_{k}}+\partial^{\alpha}\partial_{k}{b_{j}},\frac{1}{2}\Theta_{jk}((\mathbf{I}_{\pm}-\mathbf{P}_{\pm})\partial^{\alpha}{f}\cdot(1,1))+2\partial^{\alpha}{c}\delta_{jk}\Big{)}_{L^{2}_{x}}
+12j=13(αjc,Λj((𝐈±𝐏±)αf(1,1)))Lx2\displaystyle+\frac{1}{2}\sum^{3}_{j=1}\Big{(}\partial^{\alpha}\partial_{j}{c},\Lambda_{j}((\mathbf{I}_{\pm}-\mathbf{P}_{\pm})\partial^{\alpha}{f}\cdot(1,1))\Big{)}_{L^{2}_{x}}
+(x(αa+αa)κ3αE,αG)Lx2).\displaystyle+\big{(}\nabla_{x}(\partial^{\alpha}{a_{+}}-\partial^{\alpha}{a_{-}})-\kappa_{3}{\partial^{\alpha}E},\partial^{\alpha}{G}\big{)}_{L^{2}_{x}}\bigg{)}.

Then,

t\displaystyle\partial_{t} K(1)+λ|α|K1αx(a±,b,c)Lx22+λa+aLx22+λ|α|K1αELx22\displaystyle\mathcal{E}^{(1)}_{K}+\lambda\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}}+\lambda\|a_{+}-a_{-}\|^{2}_{L^{2}_{x}}+\lambda\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}E\|^{2}_{L^{2}_{x}}
|α|K(a~1/2)w(𝐈𝐏)αf^Lv,x22+|α|K1(αg,ζ)Lv2Lx22.\displaystyle\qquad\lesssim\sum_{|\alpha|\leq K}\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})\partial^{\alpha}\widehat{f}\|_{L^{2}_{v,x}}^{2}+\sum_{|\alpha|\leq K-1}\|(\partial^{\alpha}g,\zeta)_{L^{2}_{v}}\|^{2}_{L^{2}_{x}}.

Also, K(1)|α|KαfLx,v22+|α|K1αELx22\mathcal{E}^{(1)}_{K}\lesssim\sum_{|\alpha|\leq K}\|\partial^{\alpha}f\|^{2}_{L^{2}_{x,v}}+\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}E\|^{2}_{L^{2}_{x}} can be easily verified by direct calculation. Finally, we only need to estimate (αg,ζ)Lv2Lx22\|(\partial^{\alpha}g,\zeta)_{L^{2}_{v}}\|^{2}_{L^{2}_{x}} for |α|K1|\alpha|\leq K-1. By Lemma 2.6,

(αg,ζ)Lv2Lx22\displaystyle\|(\partial^{\alpha}g,\zeta)_{L^{2}_{v}}\|_{L^{2}_{x}}^{2} (α(±xϕvf±12xϕvf±+Γ±(f,f)),ζ)Lv2Lx22\displaystyle\lesssim\|(\partial^{\alpha}(\pm\nabla_{x}\phi\cdot\nabla_{v}f_{\pm}\mp\frac{1}{2}\nabla_{x}\phi\cdot vf_{\pm}+\Gamma_{\pm}(f,f)),\zeta)_{L^{2}_{v}}\|_{L^{2}_{x}}^{2}
K,l(t)𝒟K,l(t).\displaystyle\lesssim\mathcal{E}_{K,l}(t)\mathcal{D}_{K,l}(t).

This completes the proof of (38). The proof of (39) is similar, which is by directly applying the derivative α\partial^{\alpha} to (29)(31)1 with 1|α|K11\leq|\alpha|\leq K-1 instead of |α|K1|\alpha|\leq K-1. On the other hand, we still apply α\partial^{\alpha} to (31)2 with |α|K1|\alpha|\leq K-1. Then we will obtain (39). ∎

Consider the homogeneous linearized system

{tf±+vxf±±μ1/2vxϕ+Lf±=0,Δxϕ=3(f+f)μ1/2𝑑v,ϕ0 as |x|,f±|t=0=f0,±,\left\{\begin{aligned} &\partial_{t}f_{\pm}+v\cdot\nabla_{x}f_{\pm}\pm\mu^{1/2}v\cdot\nabla_{x}\phi+Lf_{\pm}=0,\\ &-\Delta_{x}\phi=\int_{\mathbb{R}^{3}}(f_{+}-f_{-})\mu^{1/2}\,dv,\quad\phi\to 0\text{ as }|x|\to\infty,\\ &f_{\pm}|_{t=0}=f_{0,\pm},\end{aligned}\right. (47)

which is (7)-(9) with g±=0g_{\pm}=0 in (27). We write the formal solution to Cauchy problem (47) to be

f=etBf0,f=e^{tB}f_{0}, (48)

where etBe^{tB} denotes the solution operator. For later use, we will analyze the large time behavior of system (47). The idea here follows from [25].

Theorem 3.2.

Let f=etBf0f=e^{tB}f_{0} be the solution to (47), m0m\geq 0 be an integer and time decay rate index to be

σm=34+m2.\sigma_{m}=\frac{3}{4}+\frac{m}{2}.

Then for l0l\geq 0, t0t\geq 0,

wlxmf(t)Lv,x2+xmE(t)Lx2(1+t)σm(wlf0Z1+E0L1+wlxmf0Lv,x2).\|w^{l}\nabla^{m}_{x}f(t)\|_{L^{2}_{v,x}}+\|\nabla_{x}^{m}E(t)\|_{L^{2}_{x}}\lesssim(1+t)^{-\sigma_{m}}\big{(}\|w^{l}f_{0}\|_{Z_{1}}+\|E_{0}\|_{L_{1}}+\|w^{l}\nabla_{x}^{m}f_{0}\|_{L^{2}_{v,x}}\big{)}. (49)

Before proving this result, we shall need the following lemma.

Lemma 3.3.

Let ff be the solution to (47). Then the followings are valid.

(1) There exists a time-frequency interactive functional (2)\mathcal{E}^{(2)} such that

(2)f^Lv22+|E^|2,\mathcal{E}^{(2)}\approx\|\widehat{f}\|_{L^{2}_{v}}^{2}+|\widehat{E}|^{2},

and for t0t\geq 0, y3y\in\mathbb{R}^{3},

t(2)(t,y)+λ|y|21+|y|2((a~1/2)wf^Lv22+|E|2)0.\partial_{t}\mathcal{E}^{(2)}(t,y)+\frac{\lambda|y|^{2}}{1+|y|^{2}}(\|(\tilde{a}^{1/2})^{w}\widehat{f}\|^{2}_{L^{2}_{v}}+|E|^{2})\leq 0. (50)

(2) There exists a time-frequency interactive functional l(2)\mathcal{E}^{(2)}_{l} such that

l(2)wlf^Lv22+|E^|2,\displaystyle\mathcal{E}^{(2)}_{l}\approx\|w^{l}\widehat{f}\|_{L^{2}_{v}}^{2}+|\widehat{E}|^{2}, (51)

and for t0t\geq 0, y3y\in\mathbb{R}^{3},

tl(2)(t,y)+λ|y|21+|y|2((a~1/2)wwlf^Lv22+|E^|2)0.\displaystyle\partial_{t}\mathcal{E}^{(2)}_{l}(t,y)+\frac{\lambda|y|^{2}}{1+|y|^{2}}(\|(\tilde{a}^{1/2})^{w}w^{l}\widehat{f}\|^{2}_{L^{2}_{v}}+|\widehat{E}|^{2})\leq 0. (52)
Proof.

Using the calculation from Lemma 3.1 with g±=0g_{\pm}=0 therein, we apply the combination (43)1+|y|2+(44)1+|y|2+|y|2(45)1+|y|2\frac{\eqref{28}}{1+|y|^{2}}+\frac{\eqref{29}}{1+|y|^{2}}+\frac{|y|^{2}\eqref{30}}{1+|y|^{2}} to get

tint(2)+λ|y|21+|y|2(|a+^+a^|2+|b^|2+|c^|2+|a+^a^|2+|E^|2)\displaystyle\partial_{t}\mathcal{E}^{(2)}_{int}+\lambda\frac{|y|^{2}}{1+|y|^{2}}\big{(}|{\widehat{a_{+}}+\widehat{a_{-}}}|^{2}+|\widehat{b}|^{2}+|\widehat{c}|^{2}+|\widehat{a_{+}}-\widehat{a_{-}}|^{2}+|\widehat{E}|^{2}\big{)} (a~1/2)w(𝐈𝐏)f^Lv22.\displaystyle\lesssim\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})\widehat{f}\|_{L^{2}_{v}}^{2}. (53)

where

int(2)\displaystyle\mathcal{E}^{(2)}_{int} =(κ11+|y|2Rej=13(iyja+^+a^2|bj^)+12(1+|y|2)Rej=13(iyjc^|Λj((𝐈𝐏)f^(1,1)))\displaystyle=\Bigg{(}\frac{\kappa_{1}}{1+|y|^{2}}\text{Re}\sum^{3}_{j=1}\Big{(}iy_{j}\frac{\widehat{a_{+}}+\widehat{a_{-}}}{2}\Big{|}\widehat{b_{j}}\Big{)}+\frac{1}{2(1+|y|^{2})}\text{Re}\sum^{3}_{j=1}\Big{(}iy_{j}\widehat{c}\Big{|}\Lambda_{j}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))\Big{)}
+κ21+|y|2Rej,k=13(iyjbk^+iykbj^|12Θjk((𝐈𝐏)f^(1,1))+2c^δjk)\displaystyle\qquad+\frac{\kappa_{2}}{1+|y|^{2}}\text{Re}\sum^{3}_{j,k=1}\Big{(}iy_{j}\widehat{b_{k}}+iy_{k}\widehat{b_{j}}\Big{|}\frac{1}{2}\Theta_{jk}((\mathbf{I}-\mathbf{P})\widehat{f}\cdot(1,1))+2\widehat{c}\delta_{jk}\Big{)}
+11+|y|2Re(iy(a+^a^)|G^)+κ3|y|21+|y|2Re(E^|G^)).\displaystyle\qquad+\frac{1}{1+|y|^{2}}\text{Re}\Big{(}iy(\widehat{a_{+}}-\widehat{a_{-}})\Big{|}\widehat{G}\Big{)}+\frac{\kappa_{3}|y|^{2}}{1+|y|^{2}}\text{Re}\big{(}-\widehat{E}\big{|}\widehat{G}\big{)}\Bigg{)}.

In order to eliminate the right-hand term of (53) and obtain the f^Lv22\|\widehat{f}\|_{L^{2}_{v}}^{2} on the left hand side, we take the Fourier transform of (47) over xx and take the inner product with f±f_{\pm} over v3\mathbb{R}^{3}_{v}. Summing on ±\pm and taking the real part, we have

12tf^Lv22+Re(μ1/2ivyϕ^,f^+f^)Lv2+±(Lf^±,f^±)Lv2=0.\frac{1}{2}\partial_{t}\|\widehat{f}\|^{2}_{L^{2}_{v}}+\text{Re}(\mu^{1/2}iv\cdot y\widehat{\phi},\widehat{f}_{+}-\widehat{f}_{-})_{L^{2}_{v}}+\sum_{\pm}(L\widehat{f}_{\pm},\widehat{f}_{\pm})_{L^{2}_{v}}=0.

Recall the definition (32) and using (31)1, we have

12t|E^|2=Re(iy|y|2yG^|yϕ^)=Re(iG^|yϕ^)=Re(μ1/2ivyϕ^,f+f)Lv2.\frac{1}{2}\partial_{t}|\widehat{E}|^{2}=\text{Re}(\frac{iy}{|y|^{2}}y\cdot\widehat{G}|y\widehat{\phi})=\text{Re}(i\widehat{G}|y\widehat{\phi})=\text{Re}(\mu^{1/2}iv\cdot y\widehat{\phi},f_{+}-f_{-})_{L^{2}_{v}}.

On the other hand, by Lemma 2.1, we have

±(Lf^±,f^±)Lv2λ(a~1/2)w(𝐈𝐏)f^Lv22.\displaystyle\sum_{\pm}(L\widehat{f}_{\pm},\widehat{f}_{\pm})_{L^{2}_{v}}\geq\lambda\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})\widehat{f}\|^{2}_{L^{2}_{v}}.

Thus,

12t(f^Lv22+|E^|2)+λ(a~1/2)w(𝐈𝐏)f^Lv220.\frac{1}{2}\partial_{t}\big{(}\|\widehat{f}\|^{2}_{L^{2}_{v}}+|\widehat{E}|^{2})+\lambda\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})\widehat{f}\|^{2}_{L^{2}_{v}}\leq 0. (54)

Taking the combination κ×(53)+(54)\kappa\times\eqref{44}+\eqref{45a} with κ<<1\kappa<<1, we have

t(2)+λ|y|21+|y|2((a~1/2)w(𝐈𝐏)fLv22+|E^|2)0.\partial_{t}\mathcal{E}^{(2)}+\frac{\lambda|y|^{2}}{1+|y|^{2}}(\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v}}+|\widehat{E}|^{2})\leq 0.

where (2)=κint(2)+fLv22+|E^|2\mathcal{E}^{(2)}=\kappa\mathcal{E}^{(2)}_{int}+\|f\|^{2}_{L^{2}_{v}}+|\widehat{E}|^{2}. It’s direct to check that (2)fLv22+|E^|2\mathcal{E}^{(2)}\approx\|f\|^{2}_{L^{2}_{v}}+|\widehat{E}|^{2} by using κ<<1\kappa<<1.

In order to obtain (52), we write (47)1 to be

t(𝐈±\displaystyle\partial_{t}(\mathbf{I}_{\pm} 𝐏±)f^+ivy(𝐈±𝐏±)f^+L(𝐈±𝐏±)f^\displaystyle-\mathbf{P}_{\pm})\widehat{f}+iv\cdot y(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})\widehat{f}+L(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})\widehat{f}
=(𝐈±𝐏±)(E^v)μ1/2(𝐈±𝐏±)(ivy𝐏f^)𝐏±(ivy(𝐈𝐏)f^).\displaystyle=\mp(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})(\widehat{E}\cdot v)\mu^{1/2}-(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})(iv\cdot y\mathbf{P}\widehat{f})-\mathbf{P}_{\pm}(iv\cdot y(\mathbf{I}-\mathbf{P})\widehat{f}).

Taking inner product with w2l(𝐈𝐏)f^w^{2l}(\mathbf{I}-\mathbf{P})\widehat{f} over v3\mathbb{R}^{3}_{v} and using Lemma 2.1, one has

twl(𝐈𝐏)f^Lv22+λ(a~1/2)wwl(𝐈𝐏)f^Lv22|E^|2+|y|2(a~1/2)wf^Lv22.\displaystyle\partial_{t}\|w^{l}(\mathbf{I}-\mathbf{P})\widehat{f}\|^{2}_{L^{2}_{v}}+\lambda\|(\tilde{a}^{1/2})^{w}w^{l}(\mathbf{I}-\mathbf{P})\widehat{f}\|^{2}_{L^{2}_{v}}\lesssim|\widehat{E}|^{2}+|y|^{2}\|(\tilde{a}^{1/2})^{w}\widehat{f}\|^{2}_{L^{2}_{v}}. (55)

Using a similar argument without taking projection 𝐈±𝐏±\mathbf{I}_{\pm}-\mathbf{P}_{\pm}, one has

twlf^Lv22+λ(a~1/2)wwlf^Lv22|E^|2+f^L2(BC)2.\displaystyle\partial_{t}\|w^{l}\widehat{f}\|^{2}_{L^{2}_{v}}+\lambda\|(\tilde{a}^{1/2})^{w}w^{l}\widehat{f}\|^{2}_{L^{2}_{v}}\lesssim|\widehat{E}|^{2}+\|\widehat{f}\|^{2}_{L^{2}(B_{C})}. (56)

Taking combination (50)+κ((55)χ|y|1+(56)χ|y|1)\eqref{44a}+\kappa(\eqref{48aaa}\chi_{|y|\leq 1}+\eqref{48aab}\chi_{|y|\geq 1}) with κ<<1\kappa<<1, one has

tl(2)(t,y)+λ|y|21+|y|2((a~1/2)wf^Lv22+|E^|2)0,\displaystyle\partial_{t}\mathcal{E}^{(2)}_{l}(t,y)+\frac{\lambda|y|^{2}}{1+|y|^{2}}\big{(}\|(\tilde{a}^{1/2})^{w}\widehat{f}\|^{2}_{L^{2}_{v}}+|\widehat{E}|^{2}\big{)}\leq 0,

where

l(2)(t,y)=(2)(t,y)+κ(wl(𝐈𝐏)f^Lv22χ|y|1+wlf^Lv22χ|y|1).\displaystyle\mathcal{E}^{(2)}_{l}(t,y)=\mathcal{E}^{(2)}(t,y)+\kappa(\|w^{l}(\mathbf{I}-\mathbf{P})\widehat{f}\|^{2}_{L^{2}_{v}}\chi_{|y|\leq 1}+\|w^{l}\widehat{f}\|^{2}_{L^{2}_{v}}\chi_{|y|\geq 1}).

It’s direct to compute (51) since κ\kappa is suitably small. ∎

Now we are in a position to prove the large time behavior of the homogeneous system (47).

Proof of Theorem 3.2.

By noticing Lv2(a~1/2)w()Lv2\|\cdot\|_{L^{2}_{v}}\lesssim\|(\tilde{a}^{1/2})^{w}(\cdot)\|_{L^{2}_{v}} for hand potential, (52) gives that

tl(2)(t,y)+λ|y|21+|y|2l(2)(t,y)0.\displaystyle\partial_{t}\mathcal{E}^{(2)}_{l}(t,y)+\frac{\lambda|y|^{2}}{1+|y|^{2}}\mathcal{E}^{(2)}_{l}(t,y)\leq 0.

Then by solving this ODE, we have

l(2)(t,y)eλ|y|2t1+|y|2l(2)(0,y).\displaystyle\mathcal{E}^{(2)}_{l}(t,y)\lesssim e^{-\frac{\lambda|y|^{2}t}{1+|y|^{2}}}\mathcal{E}^{(2)}_{l}(0,y).

By using (51),

xmwlfLv,x22\displaystyle\|\nabla^{m}_{x}w^{l}f\|^{2}_{L^{2}_{v,x}} +xmELx223|y|2ml(2)(t,y)𝑑y\displaystyle+\|\nabla^{m}_{x}E\|^{2}_{L^{2}_{x}}\approx\int_{\mathbb{R}^{3}}|y|^{2m}\mathcal{E}^{(2)}_{l}(t,y)\,dy (57)
|y|1|y|2meλ|y|2tl(2)(0,y)𝑑y+eλt|y|1|y|2ml(2)(0,y)𝑑y.\displaystyle\lesssim\int_{|y|\leq 1}|y|^{2m}e^{-\lambda|y|^{2}t}\mathcal{E}^{(2)}_{l}(0,y)\,dy+e^{-\lambda t}\int_{|y|\geq 1}|y|^{2m}\mathcal{E}^{(2)}_{l}(0,y)\,dy.

By Hölder’s inequality and scaling on yy, one has

|y|1|y|2meλ|y|2tl(2)(0,y)𝑑y\displaystyle\int_{|y|\leq 1}|y|^{2m}e^{-\lambda|y|^{2}t}\mathcal{E}^{(2)}_{l}(0,y)\,dy min{1,t3/2m}l(2)(0,y)Ly.\displaystyle\lesssim\min\{1,t^{-3/2-m}\}\|\mathcal{E}^{(2)}_{l}(0,y)\|_{L^{\infty}_{y}}.

For the case |y|1|y|\geq 1, noticing (8), we have

|y|mE0^Ly2(|y|1)|y|m1f0^Ly2(|y|1)|y|mf0^Ly2(|y|1),\displaystyle\||y|^{m}\widehat{E_{0}}\|_{L^{2}_{y}(|y|\geq 1)}\lesssim\||y|^{m-1}\widehat{f_{0}}\|_{L^{2}_{y}(|y|\geq 1)}\lesssim\||y|^{m}\widehat{f_{0}}\|_{L^{2}_{y}(|y|\geq 1)},

which yields that

eλt|y|1|y|2ml(2)(0,y)𝑑yeλtwlxmf0Lv,x22.\displaystyle e^{-\lambda t}\int_{|y|\geq 1}|y|^{2m}\mathcal{E}^{(2)}_{l}(0,y)\,dy\lesssim e^{-\lambda t}\|w^{l}\nabla^{m}_{x}f_{0}\|^{2}_{L^{2}_{v,x}}.

Thus, (57) becomes

xmwlfLv,x22+xmELx22(1+t)3/2m(wlf0Z12+E0L12+wlxmf0Lv,x22)\displaystyle\|\nabla^{m}_{x}w^{l}f\|^{2}_{L^{2}_{v,x}}+\|\nabla^{m}_{x}E\|^{2}_{L^{2}_{x}}\lesssim(1+t)^{-3/2-m}\big{(}\|w^{l}f_{0}\|^{2}_{Z_{1}}+\|E_{0}\|^{2}_{L_{1}}+\|w^{l}\nabla^{m}_{x}f_{0}\|^{2}_{L^{2}_{v,x}})

This completes the proof. ∎

4 Global Existence

In this section, we are going to prove the main Theorem 1.1, the global-in-time existence of the solution to the following system.

{tf±+vieif±±12eiϕvif±eiϕeif±±eiϕviμ1/2L±f=Γ±(f,f),Δxϕ=3(f+f)μ1/2𝑑v,ϕ0 as |x|,f±|t=0=f0,±.\left\{\begin{aligned} &\partial_{t}f_{\pm}+v_{i}\partial^{e_{i}}f_{\pm}\pm\frac{1}{2}\partial^{e_{i}}\phi v_{i}f_{\pm}\mp\partial^{e_{i}}\phi\partial_{e_{i}}f_{\pm}\pm\partial^{e_{i}}\phi v_{i}\mu^{1/2}-L_{\pm}f=\Gamma_{\pm}(f,f),\\ &-\Delta_{x}\phi=\int_{{\mathbb{R}^{3}}}(f_{+}-f_{-})\mu^{1/2}\,dv,\quad\phi\to 0\text{ as }|x|\to\infty,\\ &f_{\pm}|_{t=0}=f_{0,\pm}.\end{aligned}\right. (58)

The index appearing in both superscript and subscript means the summation. Our goal is to obtain the aa prioripriori from this equation. For this, we suppose that the Cauchy problem (58) admits a smooth solution f(t,x,v)f(t,x,v) over 0tT0\leq t\leq T for 0<T0<T\leq\infty, and the solution f(t,x,v)f(t,x,v) satisfies

sup0tTK,l(t)δ0,\displaystyle\sup_{0\leq t\leq T}\mathcal{E}_{K,l}(t)\leq\delta_{0}, (59)

where δ0\delta_{0} is a suitably small constant. Under this assumption, we can derive a simple fact that

ϕLϕHx2δ0,e±ϕL1.\displaystyle\|\phi\|_{L^{\infty}}\lesssim\|\phi\|_{H^{2}_{x}}\leq\delta_{0},\quad\|e^{\pm\phi}\|_{L^{\infty}}\approx 1.

Also, by equation (31)1, we have

tϕ=Δx1t(a+a)=Δx1G,\partial_{t}\phi=-\Delta_{x}^{-1}\partial_{t}(a_{+}-a_{-})=\Delta_{x}^{-1}\nabla\cdot G, (60)
tϕLxtϕLx21/2x2tϕLx21/2xGH1(𝐈𝐏)fLv2Hx2(K,lh)1/2(t).\|\partial_{t}\phi\|_{L^{\infty}}\lesssim\|\nabla_{x}\partial_{t}\phi\|^{1/2}_{L^{2}_{x}}\|\nabla^{2}_{x}\partial_{t}\phi\|^{1/2}_{L^{2}_{x}}\lesssim\|\nabla_{x}G\|_{H^{1}}\lesssim\|(\mathbf{I}-\mathbf{P})f\|_{L^{2}_{v}H^{2}_{x}}\lesssim(\mathcal{E}^{h}_{K,l})^{1/2}(t). (61)
Theorem 4.1.

Define i=1i=1 if 0<s<120<s<\frac{1}{2} and i=2i=2 if 12s<1\frac{1}{2}\leq s<1. For any lKi+1l\geq K\geq i+1, there is K,l\mathcal{E}_{K,l} satisfying (1) such that for 0tT0\leq t\leq T,

tK,l(t)+λDK,l(t)tϕLxK,l(t),\displaystyle\partial_{t}\mathcal{E}_{K,l}(t)+\lambda D_{K,l}(t)\lesssim\|\partial_{t}\phi\|_{L^{\infty}_{x}}\mathcal{E}_{K,l}(t), (62)

where DK,lD_{K,l} is defined by (1).

Proof.

For later use and brevity of the proof, we define a useful function ψ=ψ(t)\psi=\psi(t) equal to 11 in this section and equal to tN(0t1)t^{N}(0\leq t\leq 1) in the next section. In any case, we have

0ψ1.\displaystyle 0\leq\psi\leq 1.

In this proof, we will carry the function ψ\psi for brevity of the proof in next section.

For any Ki+1K\geq i+1 being the total derivative of v,xv,x, we let |α|+|β|K|\alpha|+|\beta|\leq K. On one hand, we apply α\partial^{\alpha} to equation (7)1 to get

tαf±+viei+αf±±12α1αei+α1ϕviαα1f±\displaystyle\quad\,\partial_{t}\partial^{\alpha}f_{\pm}+v_{i}\partial^{e_{i}+\alpha}f_{\pm}\pm\frac{1}{2}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}\partial^{e_{i}+\alpha_{1}}\phi v_{i}\partial^{\alpha-\alpha_{1}}f_{\pm} (63)
α1αei+α1ϕeiαα1f±±ei+αϕviμ1/2αL±f=αΓ±(f,f).\displaystyle\qquad\mp\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}\partial^{e_{i}+\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}_{e_{i}}f_{\pm}\pm\partial^{e_{i}+\alpha}\phi v_{i}\mu^{1/2}-\partial^{\alpha}L_{\pm}f=\partial^{\alpha}\Gamma_{\pm}(f,f).

On the other hand, we apply βα\partial^{\alpha}_{\beta} to equation (7)1 and decompose f±=𝐏±f+(𝐈±𝐏±)ff_{\pm}=\mathbf{P}_{\pm}f+(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f. Then,

tβα(𝐈±𝐏±)f+β1βCββ1β1viββ1ei+α(𝐈±𝐏±)f\displaystyle\quad\,\partial_{t}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f+\sum_{\beta_{1}\leq\beta}C^{\beta_{1}}_{\beta}\partial_{\beta_{1}}v_{i}\partial^{e_{i}+\alpha}_{\beta-\beta_{1}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f
±12α1αβ1βei+α1ϕβ1viββ1αα1(𝐈±𝐏±)f\displaystyle\qquad\pm\frac{1}{2}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}\sum_{\beta_{1}\leq\beta}\partial^{e_{i}+\alpha_{1}}\phi\partial_{\beta_{1}}v_{i}\partial^{\alpha-\alpha_{1}}_{\beta-\beta_{1}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f
α1αei+α1ϕβ+eiαα1(𝐈±𝐏±)f±ei+αϕβ(viμ1/2)βαL±(𝐈𝐏)f\displaystyle\qquad\mp\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}\partial^{e_{i}+\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}_{\beta+e_{i}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\pm\partial^{e_{i}+\alpha}\phi\partial_{\beta}(v_{i}\mu^{1/2})-\partial^{\alpha}_{\beta}L_{\pm}(\mathbf{I}-\mathbf{P})f (64)
=tβα𝐏±f+β1βCββ1β1viββ1ei+α𝐏±f12α1αβ1βei+α1ϕβ1viββ1αα1𝐏±f\displaystyle=-\partial_{t}\partial^{\alpha}_{\beta}\mathbf{P}_{\pm}f+\sum_{\beta_{1}\leq\beta}C^{\beta_{1}}_{\beta}\partial_{\beta_{1}}v_{i}\partial^{e_{i}+\alpha}_{\beta-\beta_{1}}\mathbf{P}_{\pm}f\mp\frac{1}{2}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}\sum_{\beta_{1}\leq\beta}\partial^{e_{i}+\alpha_{1}}\phi\partial_{\beta_{1}}v_{i}\partial^{\alpha-\alpha_{1}}_{\beta-\beta_{1}}\mathbf{P}_{\pm}f
α1αei+α1ϕβ+eiαα1𝐏±f+βαΓ±(f,f).\displaystyle\qquad\mp\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}\partial^{e_{i}+\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}_{\beta+e_{i}}\mathbf{P}_{\pm}f+\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,f).

Step 1. Estimate without weight.

For the estimate without weight, we take the case |α|K|\alpha|\leq K and β=0\beta=0. This case is for obtaining the term αxϕLx22\|\partial^{\alpha}\nabla_{x}\phi\|^{2}_{L^{2}_{x}} on the left hand side of the energy inequality. Taking inner product of equation (LABEL:35) with ψ2|α|4e±ϕαf±\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm} over v3×x3\mathbb{R}^{3}_{v}\times\mathbb{R}^{3}_{x}, we have

(tαf±,ψ2|α|4e±ϕαf±)Lv,x2+(viei+αf±,ψ2|α|4e±ϕαf±)Lv,x2\displaystyle\quad\,\Big{(}\partial_{t}\partial^{\alpha}f_{\pm},\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}+\Big{(}v_{i}\partial^{e_{i}+\alpha}f_{\pm},\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}
±(12α1αCαα1ei+α1ϕviαα1f±,ψ2|α|4e±ϕαf±)Lv,x2\displaystyle\pm\Big{(}\frac{1}{2}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}C^{\alpha_{1}}_{\alpha}\partial^{e_{i}+\alpha_{1}}\phi v_{i}\partial^{\alpha-\alpha_{1}}f_{\pm},\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}
(α1αCαα1ei+α1ϕeiαα1f±,ψ2|α|4e±ϕαf±)Lv,x2\displaystyle\mp\Big{(}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}C^{\alpha_{1}}_{\alpha}\partial^{e_{i}+\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}_{e_{i}}f_{\pm},\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}} (65)
±(ei+αϕviμ1/2,ψ2|α|4e±ϕαf±)Lv,x2(αL±f,ψ2|α|4e±ϕαf±)Lv,x2\displaystyle\pm\Big{(}\partial^{e_{i}+\alpha}\phi v_{i}\mu^{1/2},\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}-\Big{(}\partial^{\alpha}L_{\pm}f,\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}
=(αΓ±(f,f),ψ2|α|4e±ϕαf±)Lv,x2.\displaystyle=\Big{(}\partial^{\alpha}\Gamma_{\pm}(f,f),\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}.

Now we denote these terms with summation ±\sum_{\pm} by I1I_{1} to I7I_{7} and estimate them term by term.

For the first term I1I_{1} on the left hand side.

12tψ|α|2e±ϕ2αf±Lv,x22\displaystyle\quad\,\frac{1}{2}\partial_{t}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}\partial^{\alpha}f_{\pm}\|^{2}_{L^{2}_{v,x}}
=Re(t(ψ|α|2e±ϕ2αf±),ψ|α|2e±ϕ2αf±)Lv,x2\displaystyle=\text{Re}\big{(}\partial_{t}(\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}\partial^{\alpha}f_{\pm}),\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}\partial^{\alpha}f_{\pm})_{L^{2}_{v,x}}
=Re(tαf±ψ|α|2±12tϕψ|α|2αf±+t(ψ|α|2)αf±,ψ|α|2e±ϕαf±)Lv,x2.\displaystyle=\text{Re}(\partial_{t}\partial^{\alpha}f_{\pm}\psi_{|\alpha|-2}\pm\frac{1}{2}\partial_{t}\phi\psi_{|\alpha|-2}\partial^{\alpha}f_{\pm}+\partial_{t}(\psi_{|\alpha|-2})\partial^{\alpha}f_{\pm},\psi_{|\alpha|-2}e^{\pm\phi}\partial^{\alpha}f_{\pm})_{L^{2}_{v,x}}.

Then,

I1\displaystyle I_{1} =12t±e±ϕ2ψ|α|2αf±Lv,x22Re±12(tϕe±ϕαf±,ψ2|α|4αf±)Lv,x2\displaystyle=\frac{1}{2}\partial_{t}\sum_{\pm}\|e^{\frac{\pm\phi}{2}}\psi_{|\alpha|-2}\partial^{\alpha}f_{\pm}\|^{2}_{L^{2}_{v,x}}\mp\text{Re}\sum_{\pm}\frac{1}{2}(\partial_{t}\phi e^{\pm\phi}\partial^{\alpha}f_{\pm},\psi_{2|\alpha|-4}\partial^{\alpha}f_{\pm})_{L^{2}_{v,x}} (66)
Re±(t(ψ|α|2)αf±,ψ|α|2e±ϕαf±)Lv,x2.\displaystyle\qquad-\text{Re}\sum_{\pm}(\partial_{t}(\psi_{|\alpha|-2})\partial^{\alpha}f_{\pm},\psi_{|\alpha|-2}e^{\pm\phi}\partial^{\alpha}f_{\pm})_{L^{2}_{v,x}}.

When ψ=1\psi=1, the third term on the right hand side is 0. The second term on the right hand side of (66) is estimated as

|12(tϕψ2|α|4e±ϕαf±,αf±)Lv,x2|tϕLψ|α|2αf±Lv,x22tϕLK,l(t)\displaystyle\Big{|}\frac{1}{2}(\partial_{t}\phi\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm},\partial^{\alpha}f_{\pm})_{L^{2}_{v,x}}\Big{|}\lesssim\|\partial_{t}\phi\|_{L^{\infty}}\|\psi_{|\alpha|-2}\partial^{\alpha}f_{\pm}\|^{2}_{L^{2}_{v,x}}\lesssim\|\partial_{t}\phi\|_{L^{\infty}}\mathcal{E}_{K,l}(t) (67)

For the second term I2I_{2}, we will compose it with I3I_{3} with α1=0\alpha_{1}=0 in I3I_{3}. It turns out that the sum is zero. This is what e±ϕe^{\pm\phi} designed for, cf. [21]. By taking integration by parts on xx, one has

(viei+αf±,ψ2|α|4e±ϕαf±)Lv,x2±(12eiϕviαf±,ψ2|α|4e±ϕαf±)Lv,x2=0.\displaystyle\quad\,\Big{(}v_{i}\partial^{e_{i}+\alpha}f_{\pm},\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}\pm\Big{(}\frac{1}{2}\partial^{e_{i}}\phi v_{i}\partial^{\alpha}f_{\pm},\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}=0. (68)

For the left terms in I3I_{3}, the weight will be used. In this case, α1\alpha_{1} is not zero. (If α=0\alpha=0, then there’s already no left terms in I3I_{3}.) Then |α|1|\alpha|\geq 1 and the second f±f_{\pm} in the following must have at least one order derivative. Notice that ψ1\psi\leq 1.

|±(12α1αCαα1ei+α1ϕviαα1f±,ψ2|α|4e±ϕαf±)Lv,x2|\displaystyle\quad\,\Big{|}\pm\Big{(}\frac{1}{2}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}C^{\alpha_{1}}_{\alpha}\partial^{e_{i}+\alpha_{1}}\phi v_{i}\partial^{\alpha-\alpha_{1}}f_{\pm},\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}\Big{|} (69)
α1α|(ψ|α|2ei+α1ϕwαα1f±,ψ|α|2e±ϕαf±)Lv,x2|\displaystyle\lesssim\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}\Big{|}\Big{(}\psi_{|\alpha|-2}\partial^{e_{i}+\alpha_{1}}\phi w\partial^{\alpha-\alpha_{1}}f_{\pm},\psi_{|\alpha|-2}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}\Big{|}
(|α1|Kψ|α1|2ei+α1ϕLv,x2)(1|α|K1ψ|α|2wl|α|αf±e±ϕ2Lv,x2)ψ|α|2αf±e±ϕ2Lv,x2\displaystyle\lesssim\Big{(}\sum_{|\alpha_{1}|\leq K}\|\psi_{|\alpha_{1}|-2}\partial^{e_{i}+\alpha_{1}}\phi\|_{L^{2}_{v,x}}\Big{)}\Big{(}\sum_{1\leq|\alpha|\leq K-1}\|\psi_{|\alpha|-2}w^{l-|\alpha|}\partial^{\alpha}f_{\pm}e^{\frac{\pm\phi}{2}}\|_{L^{2}_{v,x}}\Big{)}\|\psi_{|\alpha|-2}\partial^{\alpha}f_{\pm}e^{\frac{\pm\phi}{2}}\|_{L^{2}_{v,x}}
K,l1/2(t)𝒟K,l(t).\displaystyle\lesssim\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t).

Here we used (24) for ϕ\phi and the first f±f_{\pm}. When the number of derivatives on ϕ\phi and f±f_{\pm} are both less than KK, we used (24)2 to give one order of derivative to them and the total number of derivatives are less or equal to KK. When one of ϕ\phi and f±f_{\pm} has KK derivatives, then we use (24)1 to give two derivatives to the other one. Then the total number of derivatives for them are still less or equal to KK. The technique is the same as Lemma 2.5.

For the term I4I_{4}, when α1=0\alpha_{1}=0, by integration by parts on ei\partial_{e_{i}}, we have

I4\displaystyle I_{4} =±(eiϕeiαf±,ψ2|α|4e±ϕαf±)Lv,x2=0,\displaystyle=\sum_{\pm}\mp\Big{(}\partial^{e_{i}}\phi\partial^{\alpha}_{e_{i}}f_{\pm},\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}=0, (70)

When α10\alpha_{1}\neq 0, then |α|1|\alpha|\geq 1 and the total order of derivatives on the first f±f_{\pm} is less or equal to KK and is controllable.

|I4|\displaystyle|I_{4}| =|±(0α1αCαα1ei+α1ϕeiαα1f±,ψ2|α|4e±ϕαf±)Lv,x2|\displaystyle=\Big{|}\sum_{\pm}\mp\Big{(}\sum_{\begin{subarray}{c}0\neq\alpha_{1}\leq\alpha\end{subarray}}C^{\alpha_{1}}_{\alpha}\partial^{e_{i}+\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}_{e_{i}}f_{\pm},\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}\Big{|}
K,l1/2(t)𝒟K,l(t).\displaystyle\lesssim\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t). (71)

Here we used (24) for ϕ\phi and the first f±f_{\pm} as the followings. If |α1|=1|\alpha_{1}|=1, we use (24)1 to give two derivatives to ϕ\phi on xx. If |α1|=2|\alpha_{1}|=2, we use (24)2 to give one derivative to both ϕ\phi and the first f±f_{\pm} on xx. If K|α|3K\geq|\alpha|\geq 3, then we use (24)1 to give two xx derivatives to the first f±f_{\pm}. The idea is similar to the proof of Lemma 2.5. We also used that for m2m\geq 2,

ψm2xm+1ϕLx2ψm2xm+1x1(a+a)Lx22ψm3xm1(a+,a)Lx22𝒟K,l,\displaystyle\|\psi_{m-2}\nabla_{x}^{m+1}\phi\|_{L^{2}_{x}}\lesssim\|\psi_{m-2}\nabla_{x}^{m+1}\nabla_{x}^{-1}(a_{+}-a_{-})\|^{2}_{L^{2}_{x}}\lesssim\|\psi_{m-3}\nabla_{x}^{m-1}(a_{+},a_{-})\|^{2}_{L^{2}_{x}}\lesssim\mathcal{D}_{K,l},

which follows from (58)2.

For the term I5I_{5}, we will divide e±ϕe^{\pm\phi} into (e±ϕ1)(e^{\pm\phi}-1) and 11. Recall equation (33) and (31). For the part of 11,

±±(ei+αϕviμ1/2,ψ2|α|4αf±)Lv,x2\displaystyle\sum_{\pm}\pm\Big{(}\partial^{e_{i}+\alpha}\phi v_{i}\mu^{1/2},\psi_{2|\alpha|-4}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}} =(αϕ,ψ2|α|4αxG)Lx2\displaystyle=-\Big{(}\partial^{\alpha}\phi,\psi_{2|\alpha|-4}\partial^{\alpha}\nabla_{x}\cdot G\Big{)}_{L^{2}_{x}}
=(αϕ,ψ2|α|4αt(a+a))Lx2\displaystyle=\Big{(}\partial^{\alpha}\phi,\psi_{2|\alpha|-4}\partial^{\alpha}\partial_{t}(a_{+}-a_{-})\Big{)}_{L^{2}_{x}}
=12tψ|α|2αxϕLx22.\displaystyle=\frac{1}{2}\partial_{t}\|\psi_{|\alpha|-2}\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{x}}^{2}. (72)

For the part of (e±ϕ1)(e^{\pm\phi}-1), notice that

|e±ϕ1|ϕLxϕHx1.\displaystyle|e^{\pm\phi}-1|\lesssim\|\phi\|_{L^{\infty}}\lesssim\|\nabla_{x}\phi\|_{H^{1}_{x}}.

Then,

|\displaystyle\Big{|} ±±(ei+αϕviμ1/2,(e±ϕ1)ψ2|α|4αf±)Lv,x2|\displaystyle\sum_{\pm}\pm\Big{(}\partial^{e_{i}+\alpha}\phi v_{i}\mu^{1/2},(e^{\pm\phi}-1)\psi_{2|\alpha|-4}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}\Big{|}
xϕHx1|α|KαxϕLv,x2|α|Kα(𝐈±𝐏±)fLv,x2\displaystyle\lesssim\|\nabla_{x}\phi\|_{H^{1}_{x}}\sum_{|\alpha|\leq K}\|\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{v,x}}\sum_{|\alpha|\leq K}\|\partial^{\alpha}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|_{L^{2}_{v,x}} (73)
K,l1/2(t)𝒟K,l(t).\displaystyle\lesssim\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t).

For the term I6I_{6}, since L±L_{\pm} commutes with α\partial^{\alpha} and e±ϕe^{\pm\phi}, by Lemma 2.1, we have

I6=±(αL±f,ψ2|α|4e±ϕαf±)Lv,x2λ±ψ|α|2e±ϕ2(a~1/2)wα(𝐈±𝐏±)fLv,x22.\displaystyle I_{6}=-\sum_{\pm}\Big{(}\partial^{\alpha}L_{\pm}f,\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}\geq\lambda\sum_{\pm}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}\partial^{\alpha}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|_{L^{2}_{v,x}}^{2}. (74)

For the term I7I_{7}, by Lemma 2.6, we have

|I7|\displaystyle|I_{7}| =|±(αΓ±(f,f),ψ2|α|4e±ϕαf±)Lv,x2|K,l1/2(t)𝒟K,l(t).\displaystyle=\Big{|}\sum_{\pm}\Big{(}\partial^{\alpha}\Gamma_{\pm}(f,f),\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}\Big{|}\lesssim\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t). (75)

Therefore, combining all the estimate above and take the summation on ±\pm, |α|K|\alpha|\leq K, noticing that |e±ϕ2|1|e^{\frac{\pm\phi}{2}}|\approx 1, we conclude that, when ψ=1\psi=1,

12t±|α|K(ψ|α|2e±ϕ2αf±Lv,x2+ψ|α|2αxϕLx22)\displaystyle\quad\,\frac{1}{2}\partial_{t}\sum_{\pm}\sum_{|\alpha|\leq K}\Big{(}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}\partial^{\alpha}f_{\pm}\|_{L^{2}_{v,x}}+\|\psi_{|\alpha|-2}\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{x}}^{2}\Big{)} (76)
+λ±|α|Kψ|α|2e±ϕ2(a~1/2)wα(𝐈±𝐏±)fLv,x22\displaystyle\qquad+\lambda\sum_{\pm}\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}\partial^{\alpha}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|_{L^{2}_{v,x}}^{2}
tϕLK,l(t)+K,l1/2(t)𝒟K,l(t).\displaystyle\lesssim\|\partial_{t}\phi\|_{L^{\infty}}\mathcal{E}_{K,l}(t)+\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t).

Taking the combination (76)+κ×(38)\eqref{47}+\kappa\times\eqref{24} with 0<κ<<10<\kappa<<1, we have that when ψ=1\psi=1,

12t±|α|K(ψ|α|2e±ϕ2αf±Lv,x2+ψ|α|2αxϕLx22+κK(1))\displaystyle\quad\,\frac{1}{2}\partial_{t}\sum_{\pm}\sum_{|\alpha|\leq K}\Big{(}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}\partial^{\alpha}f_{\pm}\|_{L^{2}_{v,x}}+\|\psi_{|\alpha|-2}\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{x}}^{2}+\kappa\mathcal{E}^{(1)}_{K}\Big{)}
+λ±|α|Kψ|α|2e±ϕ2(a~1/2)wα(𝐈±𝐏±)fLv,x22\displaystyle\qquad+\lambda\sum_{\pm}\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}\partial^{\alpha}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|_{L^{2}_{v,x}}^{2}
+λ|α|K1αx(a±,b,c)Lx22+λa+aLx22+λ|α|K1αELx22\displaystyle\qquad+\lambda\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}}+\lambda\|a_{+}-a_{-}\|^{2}_{L^{2}_{x}}+\lambda\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}E\|^{2}_{L^{2}_{x}}
tϕLK,l(t)+(K,l1/2(t)+K,l(t))𝒟K,l(t)\displaystyle\lesssim\|\partial_{t}\phi\|_{L^{\infty}}\mathcal{E}_{K,l}(t)+(\mathcal{E}^{1/2}_{K,l}(t)+\mathcal{E}_{K,l}(t))\mathcal{D}_{K,l}(t) (77)

The term (a~1/2)ψ|α|2(𝐈𝐏)αf^Lv,x22\|(\tilde{a}^{1/2})\psi_{|\alpha|-2}(\mathbf{I}-\mathbf{P})\partial^{\alpha}\widehat{f}\|_{L^{2}_{v,x}}^{2} in (38) is eliminated.

Step 2. Estimate with weight on xx derivatives

This case is particularly for |α|=K|\alpha|=K. Let 1|α|K1\leq|\alpha|\leq K and take inner product of (LABEL:35) with ψ2|α|4e±ϕw2l2|α|αf±\psi_{2|\alpha|-4}e^{\pm\phi}w^{2l-2|\alpha|}\partial^{\alpha}f_{\pm} over v3×x3\mathbb{R}^{3}_{v}\times\mathbb{R}^{3}_{x}.

(tαf±,ψ2|α|4w2l2|α|e±ϕαf±)Lv,x2+(viei+αf±,ψ2|α|4w2l2|α|e±ϕαf±)Lv,x2\displaystyle\quad\,\Big{(}\partial_{t}\partial^{\alpha}f_{\pm},\psi_{2|\alpha|-4}w^{2l-2|\alpha|}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}+\Big{(}v_{i}\partial^{e_{i}+\alpha}f_{\pm},\psi_{2|\alpha|-4}w^{2l-2|\alpha|}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}
±(12α1αCαα1ei+α1ϕviαα1f±,ψ2|α|4w2l2|α|e±ϕαf±)Lv,x2\displaystyle\pm\Big{(}\frac{1}{2}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}C^{\alpha_{1}}_{\alpha}\partial^{e_{i}+\alpha_{1}}\phi v_{i}\partial^{\alpha-\alpha_{1}}f_{\pm},\psi_{2|\alpha|-4}w^{2l-2|\alpha|}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}
(α1αCαα1ei+α1ϕeiαα1f±,ψ2|α|4w2l2|α|e±ϕαf±)Lv,x2\displaystyle\mp\Big{(}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}C^{\alpha_{1}}_{\alpha}\partial^{e_{i}+\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}_{e_{i}}f_{\pm},\psi_{2|\alpha|-4}w^{2l-2|\alpha|}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}} (78)
±(ei+αϕviμ1/2,ψ2|α|4w2l2|α|e±ϕαf±)Lv,x2(αL±f,ψ2|α|4w2l2|α|e±ϕαf±)Lv,x2\displaystyle\pm\Big{(}\partial^{e_{i}+\alpha}\phi v_{i}\mu^{1/2},\psi_{2|\alpha|-4}w^{2l-2|\alpha|}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}-\Big{(}\partial^{\alpha}L_{\pm}f,\psi_{2|\alpha|-4}w^{2l-2|\alpha|}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}
=(αΓ±(f,f),ψ2|α|4w2l2|α|e±ϕαf±)Lv,x2.\displaystyle=\Big{(}\partial^{\alpha}\Gamma_{\pm}(f,f),\psi_{2|\alpha|-4}w^{2l-2|\alpha|}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}.

As in the Step 1, taking summation on ±\pm, we estimate it term by term. The proof is similar to I1I_{1} to I7I_{7}. The first term on the left hand is

12t±e±ϕ2wl|α|ψ|α|2αf±Lv,x2Re±12(tϕe±ϕαf±,ψ2|α|4w2l2|α|αf±)Lv,x2\displaystyle\quad\,\frac{1}{2}\partial_{t}\sum_{\pm}\|e^{\frac{\pm\phi}{2}}w^{l-|\alpha|}\psi_{|\alpha|-2}\partial^{\alpha}f_{\pm}\|_{L^{2}_{v,x}}\mp\text{Re}\sum_{\pm}\frac{1}{2}(\partial_{t}\phi e^{\pm\phi}\partial^{\alpha}f_{\pm},\psi_{2|\alpha|-4}w^{2l-2|\alpha|}\partial^{\alpha}f_{\pm})_{L^{2}_{v,x}}
Re±(t(ψ|α|2)αf±,ψ|α|2e±ϕw2l2|α|αf±)Lv,x2.\displaystyle\qquad-\text{Re}\sum_{\pm}(\partial_{t}(\psi_{|\alpha|-2})\partial^{\alpha}f_{\pm},\psi_{|\alpha|-2}e^{\pm\phi}w^{2l-2|\alpha|}\partial^{\alpha}f_{\pm})_{L^{2}_{v,x}}. (79)

The second term and the third term with α1=0\alpha_{1}=0 are canceled by using integration by parts. The left case α10\alpha_{1}\neq 0 in the third term is bounded above by K,l1/2(t)𝒟K,l(t)\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t). For the fourth term when α1=0\alpha_{1}=0, by integration by parts on ei\partial_{e_{i}}, we have

±(eiϕeiαf±,ψ2|α|4w2l2|α|e±ϕαf±)Lv,x2K,l1/2(t)𝒟K,l(t).\displaystyle\sum_{\pm}\mp\Big{(}\partial^{e_{i}}\phi\partial^{\alpha}_{e_{i}}f_{\pm},\psi_{2|\alpha|-4}w^{2l-2|\alpha|}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}\lesssim\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t).

When α10\alpha_{1}\neq 0, then |α|1|\alpha|\geq 1 and the total order of derivatives on the first f±f_{\pm} is less or equal to KK and the fourth term is bounded above by K,l1/2(t)𝒟K,l(t)\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t). For the fifth term, we write a upper bound: for any η>0\eta>0,

|(ei+αϕviμ1/2,ψ2|α|4w2l2|α|e±ϕαf±)Lv,x2|\displaystyle\Big{|}\Big{(}\partial^{e_{i}+\alpha}\phi v_{i}\mu^{1/2},\psi_{2|\alpha|-4}w^{2l-2|\alpha|}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}\Big{|} ηψ|α|2(a~1/2)wwl|α|αf±Lv,x22+CηαxϕLx22.\displaystyle\lesssim\eta\|\psi_{|\alpha|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|}\partial^{\alpha}f_{\pm}\|^{2}_{L^{2}_{v,x}}+C_{\eta}\|\partial^{\alpha}\nabla_{x}\phi\|^{2}_{L^{2}_{x}}.

For the sixth term, since L±L_{\pm} commutes with α\partial^{\alpha} and e±ϕe^{\pm\phi}, by Lemma 2.1, we have

±(αw2l2|α|L±f,ψ2|α|4e±ϕαf±)Lv,x2\displaystyle-\sum_{\pm}\Big{(}\partial^{\alpha}w^{2l-2|\alpha|}L_{\pm}f,\psi_{2|\alpha|-4}e^{\pm\phi}\partial^{\alpha}f_{\pm}\Big{)}_{L^{2}_{v,x}}
λψ|α|2e±ϕ2(a~1/2)wwl|α|αfLv,x22Cψ|α|2(a~1/2)wαfLv,x22.\displaystyle\geq\lambda\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|}\partial^{\alpha}f\|_{L^{2}_{v,x}}^{2}-C\|\psi_{|\alpha|-2}(\tilde{a}^{1/2})^{w}\partial^{\alpha}f\|^{2}_{L^{2}_{v,x}}.

By using Lemma 2.6, the first term on the right hand of (4) is bounded above by K,l1/2(t)𝒟K,l(t)\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t). Taking ψ=1\psi=1, combining the above estimate, taking summation on 1|α|K1\leq|\alpha|\leq K and letting η\eta suitably small, we have

12t±1|α|Ke±ϕ2ψ|α|2wl|α|αf±Lv,x2+λ±1|α|Kψ|α|2e±ϕ2(a~1/2)wwl|α|αf±Lv,x22\displaystyle\quad\,\frac{1}{2}\partial_{t}\sum_{\pm}\sum_{1\leq|\alpha|\leq K}\|e^{\frac{\pm\phi}{2}}\psi_{|\alpha|-2}w^{l-|\alpha|}\partial^{\alpha}f_{\pm}\|_{L^{2}_{v,x}}+\lambda\sum_{\pm}\sum_{1\leq|\alpha|\leq K}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|}\partial^{\alpha}f_{\pm}\|_{L^{2}_{v,x}}^{2}
tϕLv,x2K,l(t)+|α|KαxϕLx22+1|α|Kψ|α|2(a~1/2)wαf±Lv,x22+K,l1/2(t)𝒟K,l(t).\displaystyle\lesssim\|\partial_{t}\phi\|_{L^{2}_{v,x}}\mathcal{E}_{K,l}(t)+\sum_{|\alpha|\leq K}\|\partial^{\alpha}\nabla_{x}\phi\|^{2}_{L^{2}_{x}}+\sum_{1\leq|\alpha|\leq K}\|\psi_{|\alpha|-2}(\tilde{a}^{1/2})^{w}\partial^{\alpha}f_{\pm}\|^{2}_{L^{2}_{v,x}}+\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t). (80)

Step 3. Estimate with weight on the mixed derivatives.

Let Ki+1K\geq i+1 with i=1i=1 if 0<s<120<s<\frac{1}{2} and i=2i=2 if 12s<1\frac{1}{2}\leq s<1. |α|K1|\alpha|\leq K-1 and |α|+|β|K|\alpha|+|\beta|\leq K. Taking inner product of equation (4) with ψ2|α|+2|β|4e±ϕw2l2|α|2|β|βα(𝐈±𝐏±)f\psi_{2|\alpha|+2|\beta|-4}e^{\pm\phi}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f over v3×x3\mathbb{R}^{3}_{v}\times\mathbb{R}^{3}_{x}, one has

(tβα(𝐈±𝐏±)f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2\displaystyle\quad\,\Big{(}\partial_{t}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}
+(β1βCββ1β1viββ1ei+α(𝐈±𝐏±)f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2\displaystyle\qquad+\Big{(}\sum_{\beta_{1}\leq\beta}C^{\beta_{1}}_{\beta}\partial_{\beta_{1}}v_{i}\partial^{e_{i}+\alpha}_{\beta-\beta_{1}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}
±(12α1αβ1βei+α1ϕβ1viββ1αα1(𝐈±𝐏±)f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2\displaystyle\qquad\pm\Big{(}\frac{1}{2}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\\ \beta_{1}\leq\beta\end{subarray}}\partial^{e_{i}+\alpha_{1}}\phi\partial_{\beta_{1}}v_{i}\partial^{\alpha-\alpha_{1}}_{\beta-\beta_{1}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}
(α1αei+α1ϕβ+eiαα1(𝐈±𝐏±)f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2\displaystyle\qquad\mp\Big{(}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}\partial^{e_{i}+\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}_{\beta+e_{i}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}
±(ei+αϕβ(viμ1/2),e±ϕψ2|α|+2|β|4w2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2\displaystyle\qquad\pm\Big{(}\partial^{e_{i}+\alpha}\phi\partial_{\beta}(v_{i}\mu^{1/2}),e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}
(βαL±(𝐈𝐏)f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2\displaystyle\qquad-\Big{(}\partial^{\alpha}_{\beta}L_{\pm}(\mathbf{I}-\mathbf{P})f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}
=(tβα𝐏±f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2\displaystyle=-\Big{(}\partial_{t}\partial^{\alpha}_{\beta}\mathbf{P}_{\pm}f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}
+(β1βCββ1β1viββ1ei+α𝐏±f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2\displaystyle\qquad+\Big{(}\sum_{\beta_{1}\leq\beta}C^{\beta_{1}}_{\beta}\partial_{\beta_{1}}v_{i}\partial^{e_{i}+\alpha}_{\beta-\beta_{1}}\mathbf{P}_{\pm}f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}
(12α1αβ1βei+α1ϕβ1viββ1αα1𝐏±f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2\displaystyle\qquad\mp\Big{(}\frac{1}{2}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}\sum_{\beta_{1}\leq\beta}\partial^{e_{i}+\alpha_{1}}\phi\partial_{\beta_{1}}v_{i}\partial^{\alpha-\alpha_{1}}_{\beta-\beta_{1}}\mathbf{P}_{\pm}f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}
(α1αei+α1ϕβ+eiαα1𝐏±f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2\displaystyle\qquad\mp\Big{(}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}\partial^{e_{i}+\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}_{\beta+e_{i}}\mathbf{P}_{\pm}f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}
+(βαΓ±(f,f),e±ϕψ2|α|+2|β|4w2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2.\displaystyle\qquad+\Big{(}\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,f),e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}.

Now we denote these terms with summation ±\sum_{\pm} by J1J_{1} to J11J_{11} and estimate them term by term. The estimate of J1J_{1} to J3J_{3} are similar to I1I_{1} to I3I_{3}. That is

J1\displaystyle J_{1} t±e±ϕ2ψ|α|+|β|2wl|α||β|βα(𝐈±𝐏±)fLv,x2CtϕLK,lh(t)\displaystyle\geq\partial_{t}\sum_{\pm}\|e^{\frac{\pm\phi}{2}}\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|_{L^{2}_{v,x}}-C\|\partial_{t}\phi\|_{L^{\infty}}\mathcal{E}^{h}_{K,l}(t)
±|(t(ψ|α|+|β|2)βα(𝐈±𝐏±)f,ψ|α|+|β|2w2l2|α|2|β|e±ϕβα(𝐈±𝐏±)f)Lv,x2|\displaystyle-\sum_{\pm}\big{|}(\partial_{t}(\psi_{|\alpha|+|\beta|-2})\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f,\psi_{|\alpha|+|\beta|-2}w^{2l-2|\alpha|-2|\beta|}e^{\pm\phi}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)_{L^{2}_{v,x}}\big{|}
|J2+J3|K,l1/2(t)𝒟K,l(t).|J_{2}+J_{3}|\lesssim\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t).

For the term J4J_{4}, when α1=0\alpha_{1}=0, by integration by parts on ei\partial_{e_{i}}, we have

|±(eiϕβ+eiα(𝐈±𝐏±)f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2|\displaystyle\quad\,\big{|}\sum_{\pm}\mp(\partial^{e_{i}}\phi\partial^{\alpha}_{\beta+e_{i}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)_{L^{2}_{v,x}}\big{|}
=12|±(eiϕei(w2l2|α|2|β|)βα(𝐈±𝐏±)f,e±ϕψ2|α|+2|β|4βα(𝐈±𝐏±)f)Lv,x2|\displaystyle=\frac{1}{2}|\sum_{\pm}(\partial^{e_{i}}\phi\partial_{e_{i}}(w^{2l-2|\alpha|-2|\beta|})\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)_{L^{2}_{v,x}}|
±|xϕ|ψ|α|+|β|2wl|α||β|βα(𝐈±𝐏±)fLv,x2ψ|α|+|β|2wl|α||β|α(𝐈±𝐏±)fLv,x2\displaystyle\lesssim\sum_{\pm}\||\nabla_{x}\phi|\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|_{L^{2}_{v,x}}\|\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|_{L^{2}_{v,x}}
K,l1/2(t)𝒟K,l(t),\displaystyle\lesssim\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t),

by using (24). If α10\alpha_{1}\neq 0, then α0\alpha\neq 0 and there’s at least one derivative on xx. The order of total derivatives on the first (𝐈±𝐏±)f(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f is less or equal to KK and its order of derivatives on vv is less or equal to K1K-1, and hence J4J_{4} is bounded above by K,l1/2(t)𝒟K,l(t)\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t). For the term J5J_{5}, we only need to have a upper bound.

|J5|\displaystyle|J_{5}| =|±±(ei+αϕβ(viμ1/2),ψ2|α|+2|β|4e±ϕw2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2|\displaystyle=\Big{|}\sum_{\pm}\pm\Big{(}\partial^{e_{i}+\alpha}\phi\partial_{\beta}(v_{i}\mu^{1/2}),\psi_{2|\alpha|+2|\beta|-4}e^{\pm\phi}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}\Big{|}
|α|Kψ|α|2αxϕLv,x2|α|+|β|Kψ|α|+|β|2(a~1/2)wwl|α||β|βα(𝐈𝐏)fLv,x2\displaystyle\lesssim\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{v,x}}\sum_{\begin{subarray}{c}|\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}-\mathbf{P})f\|_{L^{2}_{v,x}}
η|α|+|β|Kψ|α|+|β|2(a~1/2)wwl|α||β|βα(𝐈𝐏)fLv,x22+Cη|α|Kψ|α|2αxϕLv,x22.\displaystyle\lesssim\eta\sum_{\begin{subarray}{c}|\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}+C_{\eta}\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{v,x}}^{2}.

For the term J6J_{6}, since L±L_{\pm} commutes with e±ϕe^{\pm\phi}, by Lemma 2.1, we have

J6\displaystyle J_{6} =±(βαL±(𝐈𝐏)f,ψ2|α|+2|β|4e±ϕw2l2|α|2|β|βα(𝐈±𝐏±)f)Lv,x2\displaystyle=-\sum_{\pm}\Big{(}\partial^{\alpha}_{\beta}L_{\pm}(\mathbf{I}-\mathbf{P})f,\psi_{2|\alpha|+2|\beta|-4}e^{\pm\phi}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}
λ±ψ|α|+|β|2e±ϕ2(a~1/2)wwl|α||β|βα(𝐈±𝐏±)fLv,x22Cη±(a~1/2)wα(𝐈±𝐏±)fLv22\displaystyle\geq\lambda\sum_{\pm}\|\psi_{|\alpha|+|\beta|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|_{L^{2}_{v,x}}^{2}-C_{\eta}\sum_{\pm}\|(\tilde{a}^{1/2})^{w}\partial^{\alpha}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|^{2}_{L^{2}_{v}}
η±|β1||β|ψ|α|+|β|2e±ϕ2(a~1/2)wwl|α||β1|β1α(𝐈±𝐏±)fLv22,\displaystyle\qquad-\eta\sum_{\pm}\sum_{|\beta_{1}|\leq|\beta|}\|\psi_{|\alpha|+|\beta|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta_{1}|}\partial^{\alpha}_{\beta_{1}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|^{2}_{L^{2}_{v}},

for any η>0\eta>0. Here we use the fact that wl|α||β|()L2(BCη)(a~1/2)w()L2\|w^{l-|\alpha|-|\beta|}(\cdot)\|_{L^{2}(B_{C_{\eta}})}\lesssim\|(\tilde{a}^{1/2})^{w}(\cdot)\|_{L^{2}}. For J7J_{7}, J8J_{8}, using the exponential decay in vv and the conservation laws (26), we have

J7+J8\displaystyle J_{7}+J_{8} η±ψ|α|+|β|2(a~1/2)wwl|α||β|βα(𝐈±𝐏±)fLv,x2+Cη(|α|KαxϕLx22\displaystyle\lesssim\eta\sum_{\pm}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|_{L^{2}_{v,x}}+C_{\eta}\Big{(}\sum_{|\alpha|\leq K}\|\partial^{\alpha}\nabla_{x}\phi\|^{2}_{L^{2}_{x}}
+|α|K1αx(a±,b,c)Lx22+|α|Kψ|α|2(a~1/2)wα(𝐈𝐏)fLv,x22+K,l(t)𝒟K,l(t)).\displaystyle\qquad+\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}}+\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}(\tilde{a}^{1/2})^{w}\partial^{\alpha}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}+\mathcal{E}_{K,l}(t)\mathcal{D}_{K,l}(t)\Big{)}.

Notice that here we used |α|K1|\alpha|\leq K-1. Similar to I3I_{3}, the term J9J_{9} can be controlled by using (24). J10J_{10} is similar, since there’s exponential decay in vv. Then one can derive

|J9+J10|K,l1/2(t)𝒟K,l(t)\displaystyle|J_{9}+J_{10}|\lesssim\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t)

For the term J11J_{11}, by Lemma 2.6, we have

|J11|\displaystyle|J_{11}| =|±(βαΓ±(f,f),ψ2|α|+2|β|4w2l2|α|2|β|e±ϕβα(𝐈±𝐏±)f)Lv,x2|K,l1/2𝒟K,l.\displaystyle=\Big{|}\sum_{\pm}\Big{(}\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,f),\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}e^{\pm\phi}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\Big{)}_{L^{2}_{v,x}}\Big{|}\lesssim\mathcal{E}^{1/2}_{K,l}\mathcal{D}_{K,l}.

Therefore, combining all the estimate above and take the summation on |α|K1|\alpha|\leq K-1, |α|+|β|K|\alpha|+|\beta|\leq K, noticing that |e±ϕ2|1|e^{\frac{\pm\phi}{2}}|\approx 1, and letting η\eta sufficiently small, we conclude that, when ψ=1\psi=1, we conclude that when ψ=1\psi=1,

t±|α|K1|α|+|β|Ke±ϕ2ψ|α|+|β|2wl|α||β|βα(𝐈±𝐏±)fLv,x22\displaystyle\quad\,\partial_{t}\sum_{\pm}\sum_{\begin{subarray}{c}|\alpha|\leq K-1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|e^{\frac{\pm\phi}{2}}\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|^{2}_{L^{2}_{v,x}}
+λ±|α|K1|α|+|β|Kψ|α|+|β|2e±ϕ2(a~1/2)wwl|α||β|βα(𝐈𝐏)fLv,x22\displaystyle\qquad+\lambda\sum_{\pm}\sum_{\begin{subarray}{c}|\alpha|\leq K-1\\ |\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}-\mathbf{P})f\|_{L^{2}_{v,x}}^{2}
|α|K1αxϕLx22+(K,l1/2(t)+K,l(t))𝒟K,l(t)+tϕLK,lh(t)\displaystyle\lesssim\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{x}}^{2}+(\mathcal{E}^{1/2}_{K,l}(t)+\mathcal{E}_{K,l}(t))\mathcal{D}_{K,l}(t)+\|\partial_{t}\phi\|_{L^{\infty}}\mathcal{E}^{h}_{K,l}(t) (81)
+|α|K1αx(a±,b,c)Lx22+|α|Kψ|α|2(a~1/2)wα(𝐈𝐏)fLv,x22.\displaystyle\qquad+\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}}+\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}(\tilde{a}^{1/2})^{w}\partial^{\alpha}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}.

The redundant terms on the right hand side will be eliminated by using (4).

Step 5.

We are able to prove this theorem by taking the proper linear combination of those estimates obtained in the above steps as follows. Taking combination C1×(4)+(4)+(4)C_{1}\times\eqref{48a}+\eqref{74}+\eqref{48} with sufficiently large C1>0C_{1}>0, we have

tK,l(t)+C1λ±|α|Kψ|α|2e±ϕ2(a~1/2)wαf±Lv,x22\displaystyle\quad\,\partial_{t}\mathcal{E}_{K,l}(t)+C_{1}\lambda\sum_{\pm}\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}\partial^{\alpha}f_{\pm}\|_{L^{2}_{v,x}}^{2}
+C1λ|α|K1αx(a±,b,c)Lx22+C1λa+aLx22+C1λ|α|K1αELx22\displaystyle\qquad+C_{1}\lambda\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}}+C_{1}\lambda\|a_{+}-a_{-}\|^{2}_{L^{2}_{x}}+C_{1}\lambda\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}E\|^{2}_{L^{2}_{x}}
+λ±|α|+|β|Kψ|α|+|β|2e±ϕ2(a~1/2)wwl|α||β|βα(𝐈±𝐏±)fLv,x22\displaystyle\qquad+\lambda\sum_{\pm}\sum_{\begin{subarray}{c}|\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|_{L^{2}_{v,x}}^{2}
tϕLK,l(t)+(K,l1/2(t)+K,l(t))𝒟K,l(t).\displaystyle\lesssim\|\partial_{t}\phi\|_{L^{\infty}}\mathcal{E}_{K,l}(t)+(\mathcal{E}^{1/2}_{K,l}(t)+\mathcal{E}_{K,l}(t))\mathcal{D}_{K,l}(t). (82)

where

K,l(t)\displaystyle\mathcal{E}_{K,l}(t) =C12±|α|Kψ|α|2e±ϕ2αf±Lv,x2+±|α|+|β|Ke±ϕ2wl|α||β|βα(𝐈±𝐏±)fLv,x22\displaystyle=\frac{C_{1}}{2}\sum_{\pm}\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}\partial^{\alpha}f_{\pm}\|_{L^{2}_{v,x}}+\sum_{\pm}\sum_{\begin{subarray}{c}|\alpha|+|\beta|\leq K\end{subarray}}\|e^{\frac{\pm\phi}{2}}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|^{2}_{L^{2}_{v,x}}
+C1|α|Kψ|α|2αxϕLx22+κK(1).\displaystyle\qquad+C_{1}\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{x}}^{2}+\kappa\mathcal{E}^{(1)}_{K}. (83)

The second to fourth terms on the left hand side of (4) is larger than DK,lD_{K,l}. Notice that here for the term |α|=Kαxϕ\sum_{|\alpha|=K}\|\partial^{\alpha}\nabla_{x}\phi\|, we use the fact that

ψK2xK+1ϕLx22\displaystyle\|\psi_{K-2}\nabla^{K+1}_{x}\phi\|^{2}_{L^{2}_{x}} ψK2xK+1Δx1(a+a)Lx22ψK3xK1(a+,a)Lx22,\displaystyle\lesssim\|\psi_{K-2}\nabla^{K+1}_{x}\Delta^{-1}_{x}(a_{+}-a_{-})\|^{2}_{L^{2}_{x}}\lesssim\|\psi_{K-3}\nabla_{x}^{K-1}(a_{+},a_{-})\|^{2}_{L^{2}_{x}}, (84)

and hence can be eliminated by using C1×(4)C_{1}\times\eqref{48a}. Noticing (36) and κ<<1\kappa<<1, it’s direct to see that

K,l(t)\displaystyle\mathcal{E}_{K,l}(t) |α|Kψ|α|2αE(t)Lx22+|α|Kψ|α|2α𝐏fLv,x22+|α|Kψ|α|2α(𝐈𝐏)fLv,x22\displaystyle\approx\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}E(t)\|^{2}_{L^{2}_{x}}+\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}\mathbf{P}f\|^{2}_{L^{2}_{v,x}}+\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}\partial^{\alpha}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}
+|α|+|β|Kψ|α|+|β|2wl|α||β|βα(𝐈𝐏)fLv,x22\displaystyle\qquad+\sum_{\begin{subarray}{c}|\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}

Recalling the aa prioripriori assumption (16), the desired estimate (62) follows directly from (4). ∎

For the higher order instant energy, we have the following theorem.

Theorem 4.2.

For any lKl\geq K, there is K,lh(t)\mathcal{E}^{h}_{K,l}(t) satisfying (1) such that for any 0tT0\leq t\leq T,

tK,lh+λ𝒟K,l(t)tϕLK,lh(t)+x(a±,b,c)Lx22,\displaystyle\partial_{t}\mathcal{E}^{h}_{K,l}+\lambda\mathcal{D}_{K,l}(t)\lesssim\|\partial_{t}\phi\|_{L^{\infty}}\mathcal{E}^{h}_{K,l}(t)+\|\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}}, (85)

where 𝒟K,l\mathcal{D}_{K,l} is defined by (1).

Proof.

By letting |α|1|\alpha|\geq 1 in (4), repeating the calculations from (4) to (76), we can instead obtain

12t±1|α|K(ψ|α|2e±ϕ2αf±Lv,x2+ψ|α|2αxϕLx22)\displaystyle\quad\,\frac{1}{2}\partial_{t}\sum_{\pm}\sum_{1\leq|\alpha|\leq K}\Big{(}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}\partial^{\alpha}f_{\pm}\|_{L^{2}_{v,x}}+\|\psi_{|\alpha|-2}\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{x}}^{2}\Big{)}
+λ±1|α|Kψ|α|2e±ϕ2(a~1/2)wα(𝐈±𝐏±)fLv,x22tϕLK,lh(t)+K,l1/2(t)𝒟K,l(t),\displaystyle\qquad+\lambda\sum_{\pm}\sum_{1\leq|\alpha|\leq K}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}\partial^{\alpha}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|_{L^{2}_{v,x}}^{2}\lesssim\|\partial_{t}\phi\|_{L^{\infty}}\mathcal{E}^{h}_{K,l}(t)+\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t), (86)

Notice that here the first right-hand term contains K,lh\mathcal{E}^{h}_{K,l} since there’s at least one derivative on xx. In order to eliminate the term (a~1/2)w(𝐈𝐏)fLv,x22\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}} in (4), we shall take the inner product of (4) with e±ϕ(𝐈±𝐏±)fe^{\pm\phi}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f over v3×x3\mathbb{R}^{3}_{v}\times\mathbb{R}^{3}_{x} and α=β=0\alpha=\beta=0.

(t(𝐈±𝐏±)f,e±ϕ(𝐈±𝐏±)f)Lv,x2+(viei(𝐈±𝐏±)f,e±ϕ(𝐈±𝐏±)f)Lv,x2\displaystyle\quad\,\big{(}\partial_{t}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f,e^{\pm\phi}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\big{)}_{L^{2}_{v,x}}+\big{(}v_{i}\partial^{e_{i}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f,e^{\pm\phi}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\big{)}_{L^{2}_{v,x}}
±(12eiϕvi(𝐈±𝐏±)f,e±ϕ(𝐈±𝐏±)f)Lv,x2(eiϕei(𝐈±𝐏±)f,e±ϕ(𝐈±𝐏±)f)Lv,x2\displaystyle\qquad\pm\big{(}\frac{1}{2}\partial^{e_{i}}\phi v_{i}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f,e^{\pm\phi}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\big{)}_{L^{2}_{v,x}}\mp\big{(}\partial^{e_{i}}\phi\partial_{e_{i}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f,e^{\pm\phi}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\big{)}_{L^{2}_{v,x}}
±(eiϕviμ1/2,e±ϕ(𝐈±𝐏±)f)Lv,x2(L±(𝐈𝐏)f,e±ϕ(𝐈±𝐏±)f)Lv,x2\displaystyle\qquad\pm\big{(}\partial^{e_{i}}\phi v_{i}\mu^{1/2},e^{\pm\phi}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\big{)}_{L^{2}_{v,x}}-\big{(}L_{\pm}(\mathbf{I}-\mathbf{P})f,e^{\pm\phi}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\big{)}_{L^{2}_{v,x}}
=(t𝐏±f,e±ϕ(𝐈±𝐏±)f)Lv,x2+(viei𝐏±f,e±ϕ(𝐈±𝐏±)f)Lv,x2(12eiϕvi𝐏±f,e±ϕ(𝐈±𝐏±)f)Lv,x2\displaystyle=-\big{(}\partial_{t}\mathbf{P}_{\pm}f,e^{\pm\phi}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\big{)}_{L^{2}_{v,x}}+\big{(}v_{i}\partial^{e_{i}}\mathbf{P}_{\pm}f,e^{\pm\phi}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\big{)}_{L^{2}_{v,x}}\mp\big{(}\frac{1}{2}\partial^{e_{i}}\phi v_{i}\mathbf{P}_{\pm}f,e^{\pm\phi}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\big{)}_{L^{2}_{v,x}}
(eiϕei𝐏±f,e±ϕ(𝐈±𝐏±)f)Lv,x2+(βαΓ±(f,f),e±ϕ(𝐈±𝐏±)f)Lv,x2.\displaystyle\qquad\mp\big{(}\partial^{e_{i}}\phi\partial_{e_{i}}\mathbf{P}_{\pm}f,e^{\pm\phi}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\big{)}_{L^{2}_{v,x}}+\big{(}\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,f),e^{\pm\phi}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\big{)}_{L^{2}_{v,x}}.

As before, we denote these terms with summation over ±\pm by L1,,L11L_{1},\dots,L_{11} and estimate them term by term.

L112t±e±ϕ2(𝐈±𝐏±)fLv,x22CtϕLxK,lh(t).L_{1}\geq\frac{1}{2}\partial_{t}\sum_{\pm}\|e^{\frac{\pm\phi}{2}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|^{2}_{L^{2}_{v,x}}-C\|\partial_{t}\phi\|_{L^{\infty}_{x}}\mathcal{E}^{h}_{K,l}(t).

The same as (68), by integration by parts on xx, L2+L3=0L_{2}+L_{3}=0. Same as (70), L4=0L_{4}=0. Similar to (4),

L5=12txϕLx22.\displaystyle L_{5}=\frac{1}{2}\partial_{t}\|\nabla_{x}\phi\|^{2}_{L^{2}_{x}}.

By Lemma 2.1,

L6λ(a~1/2)w(𝐈𝐏)fLv,x22.\displaystyle L_{6}\geq\lambda\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}.

Recalling the conservation laws (29), one has

L7λ4(a~1/2)w(𝐈𝐏)fLv,x22+C(x(a±,b,c)Lx22+xϕLx22+(a~1/2)wx(𝐈𝐏)fLv,x22+K,l𝒟K,l).\displaystyle L_{7}\leq\frac{\lambda}{4}\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}+C\big{(}\|\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}}+\|\nabla_{x}\phi\|^{2}_{L^{2}_{x}}+\|(\tilde{a}^{1/2})^{w}\nabla_{x}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}+\mathcal{E}_{K,l}\mathcal{D}_{K,l}\big{)}.

By Cauchy-Schwarz inequality,

L8λ4(a~1/2)w(𝐈𝐏)fLv,x22+Cx(a±,b,c)Lv,x22.\displaystyle L_{8}\leq\frac{\lambda}{4}\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}+C\|\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{v,x}}.

Similar to the calculation on J9,J10,J11J_{9},J_{10},J_{11}, we have that L9,L10,L11L_{9},L_{10},L_{11} are bounded above by K,l1/2𝒟K,l\mathcal{E}^{1/2}_{K,l}\mathcal{D}_{K,l}. Combining the above estimate, we have

12t±e±ϕ2(𝐈±𝐏±)fLv,x22+12txϕLx22+λ(a~1/2)w(𝐈𝐏)fLv,x22\displaystyle\frac{1}{2}\partial_{t}\sum_{\pm}\|e^{\frac{\pm\phi}{2}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|^{2}_{L^{2}_{v,x}}+\frac{1}{2}\partial_{t}\|\nabla_{x}\phi\|^{2}_{L^{2}_{x}}+\lambda\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}
tϕLxK,lh(t)+x(a±,b,c)Lv,x22+(a~1/2)wx(𝐈𝐏)fLv,x22+(K,l1/2+K,l)𝒟K,l\displaystyle\lesssim\|\partial_{t}\phi\|_{L^{\infty}_{x}}\mathcal{E}^{h}_{K,l}(t)+\|\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{v,x}}+\|(\tilde{a}^{1/2})^{w}\nabla_{x}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}+(\mathcal{E}^{1/2}_{K,l}+\mathcal{E}_{K,l})\mathcal{D}_{K,l} (87)

Now we use combination C2×(C1×((4)+κ×(39))+(4))+(4)+(4)C_{2}\times(C_{1}\times(\eqref{63}+\kappa\times\eqref{24a})+\eqref{64})+\eqref{74}+\eqref{48} with κ<<1\kappa<<1. Taking C1>>1κC_{1}>>\frac{1}{\kappa} sufficiently large then taking C2C_{2} sufficiently large, we obtain that when ψ=1\psi=1,

tK,lh(t)+C1C2κλ1|α|K1αx(a±,b,c)Lx22+C1C2κx(a+a)Lx22\displaystyle\partial_{t}\mathcal{E}^{h}_{K,l}(t)+C_{1}C_{2}\kappa\lambda\sum_{1\leq|\alpha|\leq K-1}\|\partial^{\alpha}\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}}+C_{1}C_{2}\kappa\|\nabla_{x}(a_{+}-a_{-})\|^{2}_{L^{2}_{x}}
+C1C2|α|K1αELx22+C1C2λ±1|α|Kψ|α|2e±ϕ2(a~1/2)wαf±Lv,x22\displaystyle\qquad+C_{1}C_{2}\sum_{|\alpha|\leq K-1}\|\partial^{\alpha}E\|^{2}_{L^{2}_{x}}+C_{1}C_{2}\lambda\sum_{\pm}\sum_{1\leq|\alpha|\leq K}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}\partial^{\alpha}f_{\pm}\|_{L^{2}_{v,x}}^{2}
+C2λ(a~1/2)w(𝐈𝐏)fLv,x22+λ±|α|+|β|Kψ|α|+|β|2e±ϕ2(a~1/2)wwl|α||β|βα(𝐈𝐏)fLv,x22\displaystyle\qquad+C_{2}\lambda\|(\tilde{a}^{1/2})^{w}(\mathbf{I}-\mathbf{P})f\|^{2}_{L^{2}_{v,x}}+\lambda\sum_{\pm}\sum_{\begin{subarray}{c}|\alpha|+|\beta|\leq K\end{subarray}}\|\psi_{|\alpha|+|\beta|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}-\mathbf{P})f\|_{L^{2}_{v,x}}^{2}
tϕLK,lh(t)+(K,l1/2(t)+K,l(t))𝒟K,l(t)+x(a±,b,c)Lx22,\displaystyle\lesssim\|\partial_{t}\phi\|_{L^{\infty}}\mathcal{E}^{h}_{K,l}(t)+(\mathcal{E}^{1/2}_{K,l}(t)+\mathcal{E}_{K,l}(t))\mathcal{D}_{K,l}(t)+\|\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}},

where left-hand terms except the first one adding x(a±,b,c)Lx22\|\nabla_{x}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}} is larger than 𝒟K,l\mathcal{D}_{K,l} and

K,lh(t)\displaystyle\mathcal{E}^{h}_{K,l}(t) =C1C2κK,h(1)+C1C22±1|α|K(ψ|α|2e±ϕ2αf±Lv,x2+C1C2ψ|α|2αxϕLx22)\displaystyle=C_{1}C_{2}\kappa\mathcal{E}^{(1)}_{K,h}+\frac{C_{1}C_{2}}{2}\sum_{\pm}\sum_{1\leq|\alpha|\leq K}\Big{(}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}\partial^{\alpha}f_{\pm}\|_{L^{2}_{v,x}}+C_{1}C_{2}\|\psi_{|\alpha|-2}\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{x}}^{2}\Big{)}
+C22±e±ϕ2(𝐈±𝐏±)fLv,x22+C22xϕLx22\displaystyle\qquad+\frac{C_{2}}{2}\sum_{\pm}\|e^{\frac{\pm\phi}{2}}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|^{2}_{L^{2}_{v,x}}+\frac{C_{2}}{2}\|\nabla_{x}\phi\|^{2}_{L^{2}_{x}}
+±|α|+|β|Ke±ϕ2ψ|α|+|β|2wl|α||β|βα(𝐈±𝐏±)fLv,x22.\displaystyle\qquad+\sum_{\pm}\sum_{\begin{subarray}{c}|\alpha|+|\beta|\leq K\end{subarray}}\|e^{\frac{\pm\phi}{2}}\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f\|^{2}_{L^{2}_{v,x}}.

Noticing κ<<1\kappa<<1 is sufficiently small, it’s direct to verify (1). At last, by using the aa prioripriori assumption (16), we obtain the desired estimate. ∎

The idea of the following proof is similar to the Boltzmann case [25].

Theorem 4.3.

Let T(0,]T\in(0,\infty]. Consider the solution ff to Cauchy problem (7)-(9). Let i=1i=1 if 0<s<120<s<\frac{1}{2} and i=2i=2 if 12s<1\frac{1}{2}\leq s<1. Assume Ki+1K\geq i+1, lmax{K,γ/2+s+2,γ+2s+i+1}l\geq\max\{K,\gamma/2+s+2,\gamma+2s+i+1\}. Define

X(t)=sup0τt(1+τ)3/2K,l(τ)+sup0τt(1+t)5/2K,lh(τ),X(t)=\sup_{0\leq\tau\leq t}(1+\tau)^{3/2}\mathcal{E}_{K,l}(\tau)+\sup_{0\leq\tau\leq t}(1+t)^{5/2}\mathcal{E}^{h}_{K,l}(\tau), (88)

and

ϵ0=(K,l(0))1/2+f0Z1+E0L1.\epsilon_{0}=(\mathcal{E}_{K,l}(0))^{1/2}+\|f_{0}\|_{Z_{1}}+\|E_{0}\|_{L^{1}}.

Then under the aa prioripriori assumption (16) for δ0>0\delta_{0}>0 sufficiently small, we have

X(t)ϵ02+X3/2(t)+X2(t),X(t)\lesssim\epsilon^{2}_{0}+X^{3/2}(t)+X^{2}(t), (89)

for any 0tT0\leq t\leq T.

Proof.

Step 1. From (61) and (62), we have that for l0l\geq 0,

tϕLx\displaystyle\|\partial_{t}\phi\|_{L^{\infty}_{x}} (K,lh(t))1/2(1+t)5/4X1/2(t)δ01/2(1+t)5/4,\displaystyle\lesssim(\mathcal{E}^{h}_{K,l}(t))^{1/2}\lesssim(1+t)^{-5/4}X^{1/2}(t)\lesssim\delta^{1/2}_{0}(1+t)^{-5/4}, (90)
tK,l(t)+DK,l(t)tϕLxK,l(t).\displaystyle\partial_{t}\mathcal{E}_{K,l}(t)+D_{K,l}(t)\lesssim\|\partial_{t}\phi\|_{L^{\infty}_{x}}\mathcal{E}_{K,l}(t).

By using Gronwall’s inequality, for 0tT0\leq t\leq T,

K,l(t)K,l(0)eC0ttϕ(τ)LxdτK,l(0)ϵ02.\displaystyle\mathcal{E}_{K,l}(t)\lesssim\mathcal{E}_{K,l}(0)e^{C\int^{t}_{0}\|\partial_{t}\phi(\tau)\|_{L^{\infty}_{x}}}\,d\tau\lesssim\mathcal{E}_{K,l}(0)\lesssim\epsilon_{0}^{2}. (91)

Step 2. To prove the decay of K,lh\mathcal{E}^{h}_{K,l}, we use Theorem 4.2 to get

tK,lh+λ𝒟K,l(t)tϕLK,lh(t)+x(a±,b,c)2,\displaystyle\partial_{t}\mathcal{E}^{h}_{K,l}+\lambda\mathcal{D}_{K,l}(t)\lesssim\|\partial_{t}\phi\|_{L^{\infty}}\mathcal{E}^{h}_{K,l}(t)+\|\nabla_{x}(a_{\pm},b,c)\|^{2},

We will use the trick in [25]. Noticing the term KELx22\|\partial^{K}E\|_{L^{2}_{x}}^{2} inside K,lh\mathcal{E}^{h}_{K,l} is bounded above by

xK+1ϕLx22=xK+1Δx1(a+a)Lx22xK1(a±,b,c)Lx22,\displaystyle\|\nabla^{K+1}_{x}\phi\|^{2}_{L^{2}_{x}}=\|\nabla_{x}^{K+1}\Delta^{-1}_{x}(a_{+}-a_{-})\|^{2}_{L^{2}_{x}}\leq\|\nabla_{x}^{K-1}(a_{\pm},b,c)\|^{2}_{L^{2}_{x}},

which is a term in 𝒟K,l\mathcal{D}_{K,l}. Also, for hard potential, Lv2(a~1/2)w()Lv2\|\cdot\|_{L^{2}_{v}}\lesssim\|(\tilde{a}^{1/2})^{w}(\cdot)\|_{L^{2}_{v}}. Hence,

tK,lh+λK,lh(t)tϕLK,lh(t)+x(a±,b,c)2.\displaystyle\partial_{t}\mathcal{E}^{h}_{K,l}+\lambda\mathcal{E}^{h}_{K,l}(t)\lesssim\|\partial_{t}\phi\|_{L^{\infty}}\mathcal{E}^{h}_{K,l}(t)+\|\nabla_{x}(a_{\pm},b,c)\|^{2}.

By Gronwall’s inequality,

K,lh(t)eλtK,lh(0)+0t𝑑τeλ(tτ)(tϕ(τ)LK,lh(τ)+x(a±,b,c)(τ)2).\displaystyle\mathcal{E}^{h}_{K,l}(t)\lesssim e^{-\lambda t}\mathcal{E}^{h}_{K,l}(0)+\int^{t}_{0}\,d\tau e^{-\lambda(t-\tau)}\big{(}\|\partial_{t}\phi(\tau)\|_{L^{\infty}}\mathcal{E}^{h}_{K,l}(\tau)+\|\nabla_{x}(a_{\pm},b,c)(\tau)\|^{2}\big{)}. (92)

We will need to deal with the terms inside the time integral. By (90), for 0τt0\leq\tau\leq t,

tϕ(τ)LK,lh(τ)(K,lh(t))3/2(1+t)15/4X3/2(t).\displaystyle\|\partial_{t}\phi(\tau)\|_{L^{\infty}}\mathcal{E}^{h}_{K,l}(\tau)\lesssim(\mathcal{E}^{h}_{K,l}(t))^{3/2}\lesssim(1+t)^{-15/4}X^{3/2}(t).

We claim that for 0tT0\leq t\leq T,

x(a±,b,c)(t)2(ϵ0+X(t))(1+t)5/4\displaystyle\|\nabla_{x}(a_{\pm},b,c)(t)\|^{2}\lesssim(\epsilon_{0}+X(t))(1+t)^{-5/4} (93)

Recalling (48), by Duhamel’s principle, we can write the solution to (7) as

f(t)=etBf0+0te(tτ)Bg(τ)𝑑τ,\displaystyle f(t)=e^{tB}f_{0}+\int^{t}_{0}e^{(t-\tau)B}g(\tau)\,d\tau,

where g=(g+,g)g=(g_{+},g_{-}) is defined by (27). Applying Theorem 3.2 with m=1m=1, l=0l=0, σ1=54\sigma_{1}=\frac{5}{4} therein, we have

x𝐏f(t)Lv,x2xf(t)Lv,x2ϵ0(1+t)5/4+0t(1+tτ)5/4(g(τ)Z1+xg(τ)Lv,x2)𝑑τ,\displaystyle\|\nabla_{x}\mathbf{P}f(t)\|_{L^{2}_{v,x}}\lesssim\|\nabla_{x}f(t)\|_{L^{2}_{v,x}}\lesssim\epsilon_{0}(1+t)^{-5/4}+\int^{t}_{0}(1+t-\tau)^{-5/4}\big{(}\|g(\tau)\|_{Z_{1}}+\|\nabla_{x}g(\tau)\|_{L^{2}_{v,x}}\big{)}\,d\tau, (94)

where we use the fact that (g±,μ1/2)=0(g_{\pm},\mu^{1/2})=0. By using (22) and Young’s inequality, we have

Γ(f,f)(τ)Z1\displaystyle\|\Gamma(f,f)(\tau)\|_{Z_{1}} 𝑑xvγ/2+sf(τ)Lv2vγ+2sf(τ)Hv2\displaystyle\lesssim\int\,dx\|\langle v\rangle^{\gamma/2+s}f(\tau)\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma+2s}f(\tau)\|_{H^{2}_{v}}
vγ/2+sf(τ)Lv,x2vγ+2sf(τ)HviLx2\displaystyle\lesssim\|\langle v\rangle^{\gamma/2+s}f(\tau)\|_{L^{2}_{v,x}}\|\langle v\rangle^{\gamma+2s}f(\tau)\|_{H^{i}_{v}L^{2}_{x}}
K,l(τ),\displaystyle\lesssim\mathcal{E}_{K,l}(\tau),

since li+γ+2sl\geq i+\gamma+2s. On the other hand,

xϕvf±(τ)Z1\displaystyle\|\nabla_{x}\phi\cdot\nabla_{v}f_{\pm}(\tau)\|_{Z_{1}} xϕ(τ)Lx2vf(τ)Lv,x2K,l(τ),\displaystyle\lesssim\|\nabla_{x}\phi(\tau)\|_{L^{2}_{x}}\|\nabla_{v}f(\tau)\|_{L^{2}_{v,x}}\lesssim\mathcal{E}_{K,l}(\tau),
vxϕf±(τ)Z1\displaystyle\|v\cdot\nabla_{x}\phi f_{\pm}(\tau)\|_{Z_{1}} xϕ(τ)Lx2vf±(τ)Lv,x2K,l(τ).\displaystyle\lesssim\|\nabla_{x}\phi(\tau)\|_{L^{2}_{x}}\|vf_{\pm}(\tau)\|_{L^{2}_{v,x}}\lesssim\mathcal{E}_{K,l}(\tau).

Similarly, by using (24),

xΓ(f,f)(τ)Lv,x2\displaystyle\|\nabla_{x}\Gamma(f,f)(\tau)\|_{L^{2}_{v,x}} vγ/2+sxf(τ)Lv2vγ+2sf(τ)Hvi+vγ/2+sf(τ)Lv2vγ+2sxf(τ)HviLx2\displaystyle\lesssim\Big{\|}\|\langle v\rangle^{\gamma/2+s}\nabla_{x}f(\tau)\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma+2s}f(\tau)\|_{H^{i}_{v}}+\|\langle v\rangle^{\gamma/2+s}f(\tau)\|_{L^{2}_{v}}\|\langle v\rangle^{\gamma+2s}\nabla_{x}f(\tau)\|_{H^{i}_{v}}\Big{\|}_{L^{2}_{x}}
vγ/2+sf(τ)Lv2Hx2vγ+2sf(τ)HviHx1\displaystyle\lesssim\|\langle v\rangle^{\gamma/2+s}f(\tau)\|_{L^{2}_{v}H^{2}_{x}}\|\langle v\rangle^{\gamma+2s}f(\tau)\|_{H^{i}_{v}H^{1}_{x}}
K,l(τ),\displaystyle\lesssim\mathcal{E}_{K,l}(\tau),

by (24), since Ki+1K\geq i+1, lmax{γ/2+s+2,γ+2s+i+1}l\geq\max\{\gamma/2+s+2,\gamma+2s+i+1\}.

x(xϕvf±(τ))Lv,x2\displaystyle\|\nabla_{x}(\nabla_{x}\phi\cdot\nabla_{v}f_{\pm}(\tau))\|_{L^{2}_{v,x}} xϕ(τ)Hx2f±(τ)Hv1Hx1K,l(τ)\displaystyle\lesssim\|\nabla_{x}\phi(\tau)\|_{H^{2}_{x}}\|f_{\pm}(\tau)\|_{H^{1}_{v}H^{1}_{x}}\lesssim\mathcal{E}_{K,l}(\tau)
x(vxϕf±)(τ)Lv,x2\displaystyle\|\nabla_{x}(v\cdot\nabla_{x}\phi f_{\pm})(\tau)\|_{L^{2}_{v,x}} xϕ(τ)Hx1vf±(τ)Lv2Hx1K,l(τ).\displaystyle\lesssim\|\nabla_{x}\phi(\tau)\|_{H^{1}_{x}}\|vf_{\pm}(\tau)\|_{L^{2}_{v}H^{1}_{x}}\lesssim\mathcal{E}_{K,l}(\tau).

Plugging the above estimate into (94) and using K,l(t)(1+t)3/2X(t)\mathcal{E}_{K,l}(t)\leq(1+t)^{-3/2}X(t), we have

xf(t)Lv,x2\displaystyle\|\nabla_{x}f(t)\|_{L^{2}_{v,x}} ϵ0(1+t)5/4+X(t)0t(1+tτ)5/4(1+τ)3/2𝑑τ\displaystyle\lesssim\epsilon_{0}(1+t)^{-5/4}+X(t)\int^{t}_{0}(1+t-\tau)^{-5/4}(1+\tau)^{-3/2}\,d\tau
(ϵ0+X(t))(1+t)5/4.\displaystyle\lesssim(\epsilon_{0}+X(t))(1+t)^{-5/4}. (95)

This proves the claim. Now (92) gives that for 0tT0\leq t\leq T,

K,lh(t)\displaystyle\mathcal{E}^{h}_{K,l}(t) eλtϵ0+0t𝑑τeλ(tτ)((1+τ)15/4X3/2(t)+(ϵ02+X2(t))(1+τ)5/2)\displaystyle\lesssim e^{-\lambda t}\epsilon_{0}+\int^{t}_{0}\,d\tau e^{-\lambda(t-\tau)}\big{(}(1+\tau)^{-15/4}X^{3/2}(t)+(\epsilon_{0}^{2}+X^{2}(t))(1+\tau)^{-5/2}\big{)}
(ϵ02+X3/2(t)+X2(t))(1+t)5/2.\displaystyle\lesssim(\epsilon_{0}^{2}+X^{3/2}(t)+X^{2}(t))(1+t)^{-5/2}. (96)

Step 3. By using the same way proving (4) and applying m=0m=0, σ0=34\sigma_{0}=\frac{3}{4} instead, we can obtain

fLv,x2(ϵ0+X(t))(1+t)3/4.\displaystyle\|f\|_{L^{2}_{v,x}}\lesssim(\epsilon_{0}+X(t))(1+t)^{-3/4}. (97)

Since K,l(t)𝐏fLx22+K,lh(t)\mathcal{E}_{K,l}(t)\approx\|\mathbf{P}f\|^{2}_{L^{2}_{x}}+\mathcal{E}^{h}_{K,l}(t), we have from (4) and (97) that

K,l(t)(ϵ02+X3/2(t)+X2(t))(1+t)3/2.\displaystyle\mathcal{E}_{K,l}(t)\approx(\epsilon_{0}^{2}+X^{3/2}(t)+X^{2}(t))(1+t)^{-3/2}. (98)

Now the desired estimate (89) follows from (91), (4) and (98). This completes the proof. ∎

Proof of Theorem 1.1.

It follows immediate from the aa prioripriori estimate (89) that X(t)ϵ02X(t)\lesssim\epsilon^{2}_{0} holds true for any t0t\geq 0, whenever ϵ0\epsilon_{0} is sufficiently small. The rest is to prove the local existence and uniqueness of solutions in terms of the energy norm K,l\mathcal{E}_{K,l} and the non-negativity of ±=μ+μ1/2f\mathscr{F}_{\pm}=\mu+\mu^{1/2}f. One can use the iteration on system

{tf±n+1+vxf±n+1xϕnxf±n+1±12xϕnvf±n+1±vμ1/2xϕnL±f=Γ±(fn,fn+1),Δxϕn+1=3μ1/2(f+n+1fn+1)𝑑v,fn+1|t=0=f0,\left\{\begin{aligned} &\partial_{t}f^{n+1}_{\pm}+v\cdot\nabla_{x}f^{n+1}_{\pm}\mp\nabla_{x}\phi^{n}\cdot\nabla_{x}f^{n+1}_{\pm}\pm\frac{1}{2}\nabla_{x}\phi^{n}\cdot vf^{n+1}_{\pm}\pm v\mu^{1/2}\cdot\nabla_{x}\phi^{n}-L_{\pm}f=\Gamma_{\pm}(f^{n},f^{n+1}),\\ &-\Delta_{x}\phi^{n+1}=\int_{\mathbb{R}^{3}}\mu^{1/2}(f^{n+1}_{+}-f^{n+1}_{-})\,dv,\\ &f^{n+1}|_{t=0}=f_{0},\end{aligned}\right. (99)

and the details of proof are omitted for brevity; see [21, 26] and [17]. Therefore, the unique global-in-time solution to (7)-(9) exists by using continuity argument. The estimate (15) follows from X(t)ϵ02X(t)\lesssim\epsilon^{2}_{0} directly. ∎

5 Regularity

In this section, we will prove that the global-in-time solution we found in the last section is actually smooth in v,x,tv,x,t. Let N>0N>0 be a large number chosen later. Assume T(0,1]T\in(0,1], t[0,T]t\in[0,T] and

ψ=tN,ψk={1, if k0,ψk, if k>0.\psi=t^{N},\quad\psi_{k}=\left\{\begin{aligned} 1,\text{ if $k\leq 0$},\\ \psi^{k},\text{ if $k>0$}.\end{aligned}\right. (100)

is this section. Then |tψk|ψk1/N|\partial_{t}\psi_{k}|\lesssim\psi_{k-1/N}. Let ff be the smooth solution to (7)-(9) over 0tT0\leq t\leq T and assume the aa prioripriori assumption

sup0tTK,l(t)δ0,\displaystyle\sup_{0\leq t\leq T}\mathcal{E}_{K,l}(t)\leq\delta_{0}, (101)

where δ0(0,1)\delta_{0}\in(0,1) is a suitably small constant.

Lemma 5.1.

Assume γ+2s>0\gamma+2s>0, K3K\geq 3, lKl\geq K. Let ff to be the solution to (7)-(9) satisfying

ϵ12=2,l(0)<\displaystyle\epsilon^{2}_{1}=\mathcal{E}_{2,l}(0)<\infty (102)

is sufficiently small. Then there exists t0>0t_{0}>0 independent of TT such that for 0<tt00<t\leq t_{0},

K,l(t)ϵ12.\displaystyle\mathcal{E}_{K,l}(t)\lesssim\epsilon^{2}_{1}. (103)
Proof.

Assume |α|+|β|K|\alpha|+|\beta|\leq K in this proof. The reason of choosing such ψ|α|+|β|2\psi_{|\alpha|+|\beta|-2} is that whenever lK2l\geq K\geq 2, the initial value K,l(0)=2,l(0)\mathcal{E}_{K,l}(0)=\mathcal{E}_{2,l}(0), since ψ|α|+|β|2|t=0=0\psi_{|\alpha|+|\beta|-2}|_{t=0}=0 whenever |α|+|β|3|\alpha|+|\beta|\geq 3.

Step 1. We claim that when ψ\psi is defined by (100),

tK,l(t)+λ𝒟K,l(t)tϕLxK,l(t)+K,l+|α|+|β|Kψ|α|+|β|212Nwl|α||β|βαfLv,x22.\displaystyle\partial_{t}\mathcal{E}_{K,l}(t)+\lambda\mathcal{D}_{K,l}(t)\lesssim\|\partial_{t}\phi\|_{L^{\infty}_{x}}\mathcal{E}_{K,l}(t)+\mathcal{E}_{K,l}+\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2-\frac{1}{2N}}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}. (104)

We will apply the calculation from (LABEL:35) to (4). Notice that the only difference is that ψ=tN\psi=t^{N} and the term t(ψ|α|+|β|2)\partial_{t}(\psi_{|\alpha|+|\beta|-2}) is not zero any more, which is in the third term of (66), (4). They are bounded above by

±|α|+|β|K|(t(ψ|α|+|β|2)βα(𝐈±𝐏±)f,ψ|α|+|β|2w2l2|α|2|β|e±ϕβα(𝐈±𝐏±)f)Lv,x2|\displaystyle\sum_{\pm}\sum_{|\alpha|+|\beta|\leq K}\big{|}(\partial_{t}(\psi_{|\alpha|+|\beta|-2})\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f,\psi_{|\alpha|+|\beta|-2}w^{2l-2|\alpha|-2|\beta|}e^{\pm\phi}\partial^{\alpha}_{\beta}(\mathbf{I}_{\pm}-\mathbf{P}_{\pm})f)_{L^{2}_{v,x}}\big{|}
+±|α|K|(t(ψ|α|2)αf±,ψ|α|2e±ϕw2l2|α|αf±)Lv,x2|\displaystyle\qquad+\sum_{\pm}\sum_{|\alpha|\leq K}\big{|}(\partial_{t}(\psi_{|\alpha|-2})\partial^{\alpha}f_{\pm},\psi_{|\alpha|-2}e^{\pm\phi}w^{2l-2|\alpha|}\partial^{\alpha}f_{\pm})_{L^{2}_{v,x}}\big{|} (105)
|α|+|β|Kψ|α|+|β|212Nwl|α||β|βαfLv,x22.\displaystyle\lesssim\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2-\frac{1}{2N}}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}.

Together with (76), we have

12t±|α|K(ψ|α|2e±ϕ2αf±Lv,x2+ψ|α|2αxϕLx22)\displaystyle\quad\,\frac{1}{2}\partial_{t}\sum_{\pm}\sum_{|\alpha|\leq K}\Big{(}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}\partial^{\alpha}f_{\pm}\|_{L^{2}_{v,x}}+\|\psi_{|\alpha|-2}\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{x}}^{2}\Big{)}
+λ±|α|Kψ|α|2e±ϕ2(a~1/2)wαf±Lv,x22\displaystyle\qquad+\lambda\sum_{\pm}\sum_{|\alpha|\leq K}\|\psi_{|\alpha|-2}e^{\frac{\pm\phi}{2}}(\tilde{a}^{1/2})^{w}\partial^{\alpha}f_{\pm}\|_{L^{2}_{v,x}}^{2} (106)
tϕLK,l(t)+K,l1/2(t)𝒟K,l(t)+|α|+|β|Kψ|α|+|β|212Nwl|α||β|βαfLv,x22.\displaystyle\lesssim\|\partial_{t}\phi\|_{L^{\infty}}\mathcal{E}_{K,l}(t)+\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t)+\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2-\frac{1}{2N}}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}.

Now it suffices to compute the energy estimate with weight and mixed derivatives. The idea is similar to Step 3 in Theorem 4.1. For any |α|+|β|K|\alpha|+|\beta|\leq K, we apply βα\partial^{\alpha}_{\beta} to equation (7) and take the inner product with ψ2|α|+2|β|4e±ϕw2l2|α|2|β|βαf±\psi_{2|\alpha|+2|\beta|-4}e^{\pm\phi}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}f_{\pm}. Then

(tβαf,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βαf)Lv,x2\displaystyle\quad\,\Big{(}\partial_{t}\partial^{\alpha}_{\beta}f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}f\Big{)}_{L^{2}_{v,x}}
+(β1βCββ1β1viββ1ei+αf,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βαf)Lv,x2\displaystyle\qquad+\Big{(}\sum_{\beta_{1}\leq\beta}C^{\beta_{1}}_{\beta}\partial_{\beta_{1}}v_{i}\partial^{e_{i}+\alpha}_{\beta-\beta_{1}}f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}f\Big{)}_{L^{2}_{v,x}}
±(12α1αβ1βei+α1ϕβ1viββ1αα1f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βαf)Lv,x2\displaystyle\qquad\pm\Big{(}\frac{1}{2}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\\ \beta_{1}\leq\beta\end{subarray}}\partial^{e_{i}+\alpha_{1}}\phi\partial_{\beta_{1}}v_{i}\partial^{\alpha-\alpha_{1}}_{\beta-\beta_{1}}f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}f\Big{)}_{L^{2}_{v,x}}
(α1αei+α1ϕβ+eiαα1f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βαf)Lv,x2\displaystyle\qquad\mp\Big{(}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\end{subarray}}\partial^{e_{i}+\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}_{\beta+e_{i}}f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}f\Big{)}_{L^{2}_{v,x}}
±(ei+αϕβ(viμ1/2),e±ϕψ2|α|+2|β|4w2l2|α|2|β|βαf)Lv,x2\displaystyle\qquad\pm\Big{(}\partial^{e_{i}+\alpha}\phi\partial_{\beta}(v_{i}\mu^{1/2}),e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}f\Big{)}_{L^{2}_{v,x}}
(βαL±f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βαf)Lv,x2\displaystyle\qquad-\Big{(}\partial^{\alpha}_{\beta}L_{\pm}f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}f\Big{)}_{L^{2}_{v,x}}
=(βαΓ±(f,f),e±ϕψ2|α|+2|β|4w2l2|α|2|β|βαf)Lv,x2.\displaystyle=\Big{(}\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,f),e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}f\Big{)}_{L^{2}_{v,x}}.

We denote these terms by N1N_{1} to N7N_{7}. Similar to (66) and (67), using (5), we have

N112te±ϕ2ψ|α|+|β|2βαf±Lv,x22CtϕLxK,l(t)C|α|+|β|Kψ|α|+|β|212Nwl|α||β|βαfLv,x22.\displaystyle N_{1}\geq\frac{1}{2}\partial_{t}\|e^{\frac{\pm\phi}{2}}\psi_{|\alpha|+|\beta|-2}\partial^{\alpha}_{\beta}f_{\pm}\|^{2}_{L^{2}_{v,x}}-C\|\partial_{t}\phi\|_{L^{\infty}_{x}}\mathcal{E}_{K,l}(t)-C\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2-\frac{1}{2N}}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}.

The term N2N_{2} is canceled by N3N_{3} with α1=0\alpha_{1}=0 in N3N_{3}. For the left terms in N3N_{3}, α10\alpha_{1}\neq 0 and hence |αα1|+1|α||\alpha-\alpha_{1}|+1\leq|\alpha|. Using the same argument in (69), the left terms in N3N_{3} are bounded above by K,l1/2(t)𝒟K,l(t)\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t). For N4N_{4}, as (70) and (4), by taking integration by parts and noticing the total order of derivatives, we have |N4|K,l1/2(t)𝒟K,l(t)|N_{4}|\lesssim\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t). For N5N_{5}, there’s exponential decay in vv and hence,

|N5|\displaystyle|N_{5}| ψ|α|2ei+αϕLx2ψ|α|+|β|2wl|α||β|βαfLv,x2\displaystyle\lesssim\|\psi_{|\alpha|-2}\partial^{e_{i}+\alpha}\phi\|_{L^{2}_{x}}\|\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}
ηψ|α|+|β|2(a~1/2)wwl|α||β|βαfLv,x22+Cηψ|α|2αxϕLx22.\displaystyle\lesssim\eta\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}^{2}+C_{\eta}\|\psi_{|\alpha|-2}\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{x}}^{2}. (107)

The second term on the right hand of (5) is bounded above by K,l\mathcal{E}_{K,l}. For N6N_{6}, using Lemma 2.1 and ψ1\psi\leq 1, we have

±(βαL±f,e±ϕψ2|α|+2|β|4w2l2|α|2|β|βαf)Lv,x2\displaystyle\quad\,-\sum_{\pm}\big{(}\partial^{\alpha}_{\beta}L_{\pm}f,e^{\pm\phi}\psi_{2|\alpha|+2|\beta|-4}w^{2l-2|\alpha|-2|\beta|}\partial^{\alpha}_{\beta}f\big{)}_{L^{2}_{v,x}}
ψ|α|+|β|2(a~1/2)wwl|α||β|βαfLv22η|β1||β|ψ|α|+|β1|2(a~1/2)wwl|α||β1|β1αf±Lv22\displaystyle\gtrsim\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v}}-\eta\sum_{|\beta_{1}|\leq|\beta|}\|\psi_{|\alpha|+|\beta_{1}|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta_{1}|}\partial^{\alpha}_{\beta_{1}}f_{\pm}\|^{2}_{L^{2}_{v}}
Cηψ|α|2αfL2(BCη)2\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad-C_{\eta}\|\psi_{|\alpha|-2}\partial^{\alpha}f\|^{2}_{L^{2}(B_{C_{\eta}})}

By Lemma 2.6, N7N_{7} is bounded above by K,l1/2𝒟K,l(t)+K,l(t)𝒟K,l1/2(t)K,l(t)+(K,l1/2+K,l(t))𝒟K,l(t)\mathcal{E}^{1/2}_{K,l}\mathcal{D}_{K,l}(t)+\mathcal{E}_{K,l}(t)\mathcal{D}^{1/2}_{K,l}(t)\lesssim\mathcal{E}_{K,l}(t)+(\mathcal{E}^{1/2}_{K,l}+\mathcal{E}_{K,l}(t))\mathcal{D}_{K,l}(t). Combining the above estimate, taking summation on ±\pm, |α|+|β|K|\alpha|+|\beta|\leq K and letting η\eta sufficiently small, we have

12t±|α|+|β|Ke±ϕ2ψ|α|+|β|2βαf±Lv,x22+λ±|α|+|β|Kψ|α|+|β|2(a~1/2)wwl|α||β|βαf±Lv22\displaystyle\quad\,\frac{1}{2}\partial_{t}\sum_{\pm}\sum_{|\alpha|+|\beta|\leq K}\|e^{\frac{\pm\phi}{2}}\psi_{|\alpha|+|\beta|-2}\partial^{\alpha}_{\beta}f_{\pm}\|^{2}_{L^{2}_{v,x}}+\lambda\sum_{\pm}\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2}(\tilde{a}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f_{\pm}\|^{2}_{L^{2}_{v}}
tϕLxK,l(t)+|α|+|β|Kψ|α|+|β|212Nwl|α||β|βαfLv,x22+K,l+K,l(t)𝒟K,l(t).\displaystyle\lesssim\|\partial_{t}\phi\|_{L^{\infty}_{x}}\mathcal{E}_{K,l}(t)+\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2-\frac{1}{2N}}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}+\mathcal{E}_{K,l}+\mathcal{E}_{K,l}(t)\mathcal{D}_{K,l}(t). (108)

Taking combination (5)+(5)\eqref{111}+\eqref{111a} and noticing (84)(15), we have

tK,l(t)+λ𝒟K,l(t)tϕLxK,l(t)+K,l+|α|+|β|Kψ|α|+|β|212Nwl|α||β|βαfLv,x22.\displaystyle\partial_{t}\mathcal{E}_{K,l}(t)+\lambda\mathcal{D}_{K,l}(t)\lesssim\|\partial_{t}\phi\|_{L^{\infty}_{x}}\mathcal{E}_{K,l}(t)+\mathcal{E}_{K,l}+\sum_{|\alpha|+|\beta|\leq K}\|\psi_{|\alpha|+|\beta|-2-\frac{1}{2N}}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}. (109)

This proves the claim. So it suffices to control the last term.

Step 2. To deal with it, as in [14], we define b~(v,y)\tilde{b}(v,y) and constants δ1,δ2>0\delta_{1},\delta_{2}>0 as the followings. Let c=max{0,γ2}c=\max\{0,-\frac{\gamma}{2}\}. If γ+3sc1\gamma+3s-c\leq 1, we let

δ1=s+cγ+s+c2,δ2=1γ+s+c2.\displaystyle\delta_{1}=\frac{-s+c}{\gamma+s+c-2},\qquad\delta_{2}=\frac{-1}{\gamma+s+c-2}. (110)

If γ+3sc1\gamma+3s-c\geq 1, we let

δ1=sc2s2c+1,δ2=12s2c+1.\displaystyle\delta_{1}=\frac{s-c}{2s-2c+1},\qquad\delta_{2}=\frac{1}{2s-2c+1}. (111)

Then in each case, since sc(0,1)s-c\in(0,1), by direct calculation we have the following estimates.

δ11,δ1δ2,δ112+δ220,δ1δ2+cs,δ11δ2γ+2s2.\displaystyle\delta_{1}\leq 1,\quad\delta_{1}\leq\delta_{2},\quad\delta_{1}-\frac{1}{2}+\frac{\delta_{2}}{2}\leq 0,\quad\frac{\delta_{1}}{\delta_{2}}+c\leq s,\quad\frac{\delta_{1}-1}{\delta_{2}}\leq\gamma+2s-2.

Let χ0\chi_{0} be a smooth cutoff function such that χ0(z)\chi_{0}(z) equal to 11 when |z|<12|z|<\frac{1}{2} and equal to 0 when |z|1|z|\geq 1. Define

b~(v,y)\displaystyle\tilde{b}(v,y) =(1+|v|2+|y|2+|vy|2)δ1,\displaystyle=(1+|v|^{2}+|y|^{2}+|v\wedge y|^{2})^{\delta_{1}}, (112)
χ(v,η)\displaystyle\chi(v,\eta) =χ0(1+|v|2+|η|2+|vη|2(1+|v|2+|y|2+|vy|2)δ2),\displaystyle=\chi_{0}\bigg{(}\frac{1+|v|^{2}+|\eta|^{2}+|v\wedge\eta|^{2}}{(1+|v|^{2}+|y|^{2}+|v\wedge y|^{2})^{\delta_{2}}}\bigg{)},

and

θ(v,η)=(1+|v|2+|y|2+|vy|2)δ11(yη+(vy)(vη))χ(v,η).\displaystyle\theta(v,\eta)=(1+|v|^{2}+|y|^{2}+|v\wedge y|^{2})^{\delta_{1}-1}(y\cdot\eta+(v\wedge y)\cdot(v\wedge\eta))\chi(v,\eta).

Using the definition (112) of b~\tilde{b}, by Young’s inequality, if |α|+|β|>2|\alpha|+|\beta|>2, we have

ψ|α|+|β|212N\displaystyle\psi_{|\alpha|+|\beta|-2-\frac{1}{2N}} δ((b~1/2)|α|+|β|212N|α|+|β|2ψ|α|+|β|212N)|α|+|β|2|α|+|β|212N+C0,δ((b~1/2)|α|+|β|212N|α|+|β|2)2N(|α|+|β|2)\displaystyle\lesssim\delta\big{(}(\tilde{b}^{1/2})^{\frac{|\alpha|+|\beta|-2-\frac{1}{2N}}{|\alpha|+|\beta|-2}}\psi_{|\alpha|+|\beta|-2-\frac{1}{2N}}\big{)}^{\frac{|\alpha|+|\beta|-2}{|\alpha|+|\beta|-2-\frac{1}{2N}}}+C_{0,\delta}\big{(}(\tilde{b}^{-1/2})^{\frac{|\alpha|+|\beta|-2-\frac{1}{2N}}{|\alpha|+|\beta|-2}}\big{)}^{2N(|\alpha|+|\beta|-2)}
δb~1/2ψ|α|+|β|2+C0,δvN0yN0,\displaystyle\lesssim\delta\,\tilde{b}^{1/2}\psi_{|\alpha|+|\beta|-2}+C_{0,\delta}\langle v\rangle^{-N_{0}}\langle y\rangle^{-N_{0}}, (113)

where C0,δC_{0,\delta} is a large constant depending on δ>0\delta>0, for any N0>0N_{0}>0, with N>>N0N>>N_{0} sufficiently large. If |α|+|β|2|\alpha|+|\beta|\leq 2, we have

1δb~1/2+C0,δvN0yN0.\displaystyle 1\lesssim\delta\,\tilde{b}^{1/2}+C_{0,\delta}\langle v\rangle^{-N_{0}}\langle y\rangle^{-N_{0}}.

When |β|>2|\beta|>2, noticing ψ|α|+|β|212N=ψ|α|12Nψ|β|2\psi_{|\alpha|+|\beta|-2-\frac{1}{2N}}=\psi_{|\alpha|-\frac{1}{2N}}\psi_{|\beta|-2}, we use

ψ|α|+|β|212Nδb~1/2ψ|α|+|β|2+C0,δψ|β|2vN0yN0.\displaystyle\psi_{|\alpha|+|\beta|-2-\frac{1}{2N}}\lesssim\delta\,\tilde{b}^{1/2}\psi_{|\alpha|+|\beta|-2}+C_{0,\delta}\psi_{|\beta|-2}\langle v\rangle^{-N_{0}}\langle y\rangle^{-N_{0}}.

Then by using Lemma 6.1 or more precisely by [12, Lemma 2.4], we have

ψ|α|+|β|212Nwl|α||β|βαfLv,x22δ2ψ|α|+|β|2(b~1/2)wwl|α||β|βαfLv,x22+C0,δ2ψ|β|2βfLv,x22.\displaystyle\quad\,\|\psi_{|\alpha|+|\beta|-2-\frac{1}{2N}}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}\lesssim\delta^{2}\|\psi_{|\alpha|+|\beta|-2}(\tilde{b}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}+C^{2}_{0,\delta}\|\psi_{|\beta|-2}\partial_{\beta}f\|^{2}_{L^{2}_{v,x}}. (114)

In a similar way, by noticing

1δC0,δa~1/2+CδvN0ηN0,\displaystyle 1\lesssim\frac{\delta}{C_{0,\delta}}\tilde{a}^{1/2}+C_{\delta}\langle v\rangle^{-N_{0}}\langle\eta\rangle^{-N_{0}},

where C0,δC_{0,\delta} comes from (113), we have

ψ|β|2βfLv,x22δ2C0,δ2ψ|β|2(a~1/2)wβfLv,x22+CδfLv,x22δ2C0,δ2𝒟K,l+Cδ0,0.\displaystyle\|\psi_{|\beta|-2}\partial_{\beta}f\|^{2}_{L^{2}_{v,x}}\lesssim\frac{\delta^{2}}{C^{2}_{0,\delta}}\|\psi_{|\beta|-2}(\tilde{a}^{1/2})^{w}\partial_{\beta}f\|^{2}_{L^{2}_{v,x}}+C_{\delta}\|f\|^{2}_{L^{2}_{v,x}}\lesssim\frac{\delta^{2}}{C^{2}_{0,\delta}}\mathcal{D}_{K,l}+C_{\delta}\mathcal{E}_{0,0}.

Plugging this into (114), we have

ψ|α|+|β|212Nwl|α||β|βαfLv,x22δ2ψ|α|+|β|2(b~1/2)wwl|α||β|βαfLv,x22+δ2𝒟K,l+Cδ0,0.\displaystyle\|\psi_{|\alpha|+|\beta|-2-\frac{1}{2N}}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}\lesssim\delta^{2}\|\psi_{|\alpha|+|\beta|-2}(\tilde{b}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}+\delta^{2}\mathcal{D}_{K,l}+C_{\delta}\mathcal{E}_{0,0}. (115)

Now it suffices to eliminate the first term on the right hand.

Step 3. By the calculation in [14, Theorem 3.3], we have

θS(1), and b~(v,y)={θ,vy}+R,\theta\in S(1),\ \text{ and }\ \tilde{b}(v,y)=\{\theta,v\cdot y\}+R,

where RS(a~)R\in S(\tilde{a}). Thus, θw(v,y,Dv,Dy)\theta^{w}(v,y,D_{v},D_{y}) is a bounded operator on Lv,y2L^{2}_{v,y}. Noticing b~\tilde{b} is a symbol only on vv, yy and θ\theta is a symbol on y,v,ηy,v,\eta and the second derivative of vyv\cdot y with respect to vv is zero, we have by (121) that

(b~1/2)w(v,x,Dv,Dx)gLv,x22\displaystyle\|(\tilde{b}^{1/2})^{w}(v,x,D_{v},D_{x})g\|^{2}_{L^{2}_{v,x}} =(b(v,y)g^,g^)Lv,y2\displaystyle=\big{(}b(v,y)\widehat{g},\widehat{g}\big{)}_{L^{2}_{v,y}}
=Re({θ,vy}w(v,y,Dv,Dy)g^,g^)Lv,y2+Re(Rwg^,g^)Lv,y2\displaystyle=\text{Re}\big{(}\{\theta,v\cdot y\}^{w}(v,y,D_{v},D_{y})\widehat{g},\widehat{g}\big{)}_{L^{2}_{v,y}}+\text{Re}(R^{w}\widehat{g},\widehat{g})_{L^{2}_{v,y}}
Re(𝐢vyg^,θwg^)Lv,y2+(a~1/2)wgLv,x22\displaystyle\lesssim\text{Re}\big{(}\mathbf{i}v\cdot y\widehat{g},\theta^{w}\widehat{g}\big{)}_{L^{2}_{v,y}}+\|(\tilde{a}^{1/2})^{w}g\|^{2}_{L^{2}_{v,x}}
Re(vxg,(θwg^))Lv,x2+(a~1/2)wgLv,x22,\displaystyle\lesssim\text{Re}\big{(}v\cdot\nabla_{x}{g},(\theta^{w}\widehat{g})^{\vee}\big{)}_{L^{2}_{v,x}}+\|(\tilde{a}^{1/2})^{w}g\|^{2}_{L^{2}_{v,x}}, (116)

for any gg in a suitable smooth space. Here and after, we write (b~1/2)w=(b~1/2)w(v,x,Dv,Dx)(\tilde{b}^{1/2})^{w}=(\tilde{b}^{1/2})^{w}(v,x,D_{v},D_{x}) and θw=θw(v,y,Dv,Dy)\theta^{w}=\theta^{w}(v,y,D_{v},D_{y}). Now we let g=ψ|α|+|β|2wl|α||β|βαf±e±ϕ2g=\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}} in (5), then

(b~1/2)wψ|α|+|β|2wl|α||β|βαf±e±ϕ2Lv,x2\displaystyle\quad\,\|(\tilde{b}^{1/2})^{w}\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}}\|_{L^{2}_{v,x}}
(vxψ|α|+|β|2wl|α||β|βαfe±ϕ2,(θwψ|α|+|β|2wl|α||β|(βαf±e±ϕ2)))Lv,x2+𝒟K,l.\displaystyle\lesssim\big{(}v\cdot\nabla_{x}{\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f}e^{\frac{\pm\phi}{2}},(\theta^{w}\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}+\mathcal{D}_{K,l}. (117)

We denote the first term on the right hand by MM for brevity. Then, by equation (7),

vx(βαf±e±ϕ2)\displaystyle\quad\,v\cdot\nabla_{x}(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})
=viβα+eif±e±ϕ2±12vieiϕe±ϕ2βαf±\displaystyle=v_{i}\partial^{\alpha+e_{i}}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}}\pm\frac{1}{2}v_{i}\partial^{e_{i}}\phi e^{\frac{\pm\phi}{2}}\partial^{\alpha}_{\beta}f_{\pm}
=β(viα+eif±e±ϕ2)0β1ββ1viββ1α+eif±e±ϕ2±12vieiϕe±ϕ2βαf±\displaystyle=\partial_{\beta}\big{(}v_{i}\partial^{\alpha+e_{i}}f_{\pm}e^{\frac{\pm\phi}{2}}\big{)}-\sum_{0\neq\beta_{1}\leq\beta}\partial_{\beta_{1}}v_{i}\partial^{\alpha+e_{i}}_{\beta-\beta_{1}}f_{\pm}e^{\frac{\pm\phi}{2}}\pm\frac{1}{2}v_{i}\partial^{e_{i}}\phi e^{\frac{\pm\phi}{2}}\partial^{\alpha}_{\beta}f_{\pm}
=tβαf±e±ϕ2±α1αCαα1ei+α1ϕβ+eiαα1f±e±ϕ212α1αβ1βei+α1ϕβ1viββ1αα1f±e±ϕ2\displaystyle=-\partial_{t}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}}\pm\sum_{\alpha_{1}\leq\alpha}C^{\alpha_{1}}_{\alpha}\partial^{e_{i}+\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}_{\beta+e_{i}}f_{\pm}e^{\frac{\pm\phi}{2}}\mp\frac{1}{2}\sum_{\alpha_{1}\leq\alpha}\sum_{\beta_{1}\leq\beta}\partial^{e_{i}+\alpha_{1}}\phi\partial_{\beta_{1}}v_{i}\partial^{\alpha-\alpha_{1}}_{\beta-\beta_{1}}f_{\pm}e^{\frac{\pm\phi}{2}}
ei+αϕβ(viμ1/2)e±ϕ2+βαL±fe±ϕ2+βαΓ±(f,f)e±ϕ20β1ββ1viββ1α+eif±e±ϕ2±12vieiϕe±ϕ2βαf±\displaystyle\quad\mp\partial^{e_{i}+\alpha}\phi\partial_{\beta}(v_{i}\mu^{1/2})e^{\frac{\pm\phi}{2}}+\partial^{\alpha}_{\beta}L_{\pm}fe^{\frac{\pm\phi}{2}}+\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,f)e^{\frac{\pm\phi}{2}}-\sum_{0\neq\beta_{1}\leq\beta}\partial_{\beta_{1}}v_{i}\partial^{\alpha+e_{i}}_{\beta-\beta_{1}}f_{\pm}e^{\frac{\pm\phi}{2}}\pm\frac{1}{2}v_{i}\partial^{e_{i}}\phi e^{\frac{\pm\phi}{2}}\partial^{\alpha}_{\beta}f_{\pm}

Thus,

M\displaystyle M =Re(ψ2|α|+2|β|4wl|α||β|tβαf±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2\displaystyle=\text{Re}\big{(}-\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial_{t}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}
±Re(ψ2|α|+2|β|4wl|α||β|α1αCαα1ei+α1ϕβ+eiαα1f±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2\displaystyle\quad\pm\text{Re}\big{(}\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\sum_{\alpha_{1}\leq\alpha}C^{\alpha_{1}}_{\alpha}\partial^{e_{i}+\alpha_{1}}\phi\partial^{\alpha-\alpha_{1}}_{\beta+e_{i}}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}
Re(ψ2|α|+2|β|4wl|α||β|12α1αβ1βei+α1ϕβ1viββ1αα1f±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2\displaystyle\quad\mp\text{Re}\big{(}\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\frac{1}{2}\sum_{\alpha_{1}\leq\alpha}\sum_{\beta_{1}\leq\beta}\partial^{e_{i}+\alpha_{1}}\phi\partial_{\beta_{1}}v_{i}\partial^{\alpha-\alpha_{1}}_{\beta-\beta_{1}}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}
Re(ψ2|α|+2|β|4wl|α||β|ei+αϕβ(viμ1/2)e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2\displaystyle\quad\mp\text{Re}\big{(}\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial^{e_{i}+\alpha}\phi\partial_{\beta}(v_{i}\mu^{1/2})e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}
+Re(ψ2|α|+2|β|4wl|α||β|βαL±fe±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2\displaystyle\quad+\text{Re}\big{(}\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}L_{\pm}fe^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}
+Re(ψ2|α|+2|β|4wl|α||β|βαΓ±(f,f)e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2\displaystyle\quad+\text{Re}\big{(}\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}\Gamma_{\pm}(f,f)e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}
Re(ψ2|α|+2|β|4wl|α||β|0β1ββ1viββ1α+eif±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2\displaystyle\quad-\text{Re}\big{(}\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\sum_{0\neq\beta_{1}\leq\beta}\partial_{\beta_{1}}v_{i}\partial^{\alpha+e_{i}}_{\beta-\beta_{1}}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}
±Re(ψ2|α|+2|β|4wl|α||β|12vieiϕe±ϕ2βαf±,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2.\displaystyle\quad\pm\text{Re}\big{(}\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\frac{1}{2}v_{i}\partial^{e_{i}}\phi e^{\frac{\pm\phi}{2}}\partial^{\alpha}_{\beta}f_{\pm},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}.

Denote these terms by M1M_{1} to M8M_{8}. Notice that there’s coefficient δ\delta in (115), we only need to have a upper bound for these terms. For M1M_{1}, noticing that θw\theta^{w} is self-adjoint,

Re(ψ2|α|+2|β|4wl|α||β|tβαf±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2\displaystyle\quad\,\text{Re}\big{(}-\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial_{t}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}
12t(ψ2|α|+2|β|4wl|α||β|βαf±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2\displaystyle\leq\frac{1}{2}\partial_{t}\big{(}-\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}
+C|(ψ2|α|+2|β|41Nwl|α||β|βαf±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2|\displaystyle\qquad+C\big{|}\big{(}-\psi_{2|\alpha|+2|\beta|-4-\frac{1}{N}}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}\big{|}
+C|(tϕψ2|α|+2|β|4wl|α||β|βαf±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2|.\displaystyle\qquad+C\big{|}\big{(}\partial_{t}\phi\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}\big{|}.

We denote the second and third term on the right hand side by M1,1M_{1,1} and M1,2M_{1,2}. Then noticing θw\theta^{w} is a bounded operator on Lv,y2L^{2}_{v,y} and using the trick from (113) to (115), we have

M1,1δψ|α|+|β|2(b~1/2)wwl|α||β|βαfLv,x22+δ𝒟K,l+Cδ0,0.\displaystyle M_{1,1}\lesssim\delta\|\psi_{|\alpha|+|\beta|-2}(\tilde{b}^{1/2})^{w}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}^{2}+\delta\mathcal{D}_{K,l}+C_{\delta}\mathcal{E}_{0,0}.

The boundedness of θw\theta^{w} will be frequently used in the following without further mentioned. The term M1,2M_{1,2} is similar to the case I1I_{1}, i.e.

M1,2tϕLxψ|α|+|β|2wl|α||β|βαfLv,x22tϕLxK,l(t).\displaystyle M_{1,2}\lesssim\|\partial_{t}\phi\|_{L^{\infty}_{x}}\|\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|_{L^{2}_{v,x}}^{2}\lesssim\|\partial_{t}\phi\|_{L^{\infty}_{x}}\mathcal{E}_{K,l}(t).

For M2M_{2}, when α1=0\alpha_{1}=0, noticing θw\theta^{w} is self-adjoint, we use integration by parts over vv to obtain

|M2|\displaystyle|M_{2}| =|(ψ2|α|+2|β|4wl|α||β|eiϕβ+eiαf±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2|\displaystyle=\big{|}\big{(}\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial^{e_{i}}\phi\partial^{\alpha}_{\beta+e_{i}}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}\big{|}
|(ψ2|α|+2|β|4ei(wl|α||β|)eiϕβαf±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2|\displaystyle\lesssim\big{|}\big{(}\psi_{2|\alpha|+2|\beta|-4}\partial_{e_{i}}(w^{l-|\alpha|-|\beta|})\partial^{e_{i}}\phi\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}\big{|}
+|(ψ2|α|+2|β|4wl|α||β|eiϕβαf±e±ϕ2,([ei,θw]S(1)wl|α||β|(βαf±e±ϕ2)))Lv,x2|\displaystyle\quad+\big{|}\big{(}\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial^{e_{i}}\phi\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}},(\underbrace{[\partial_{e_{i}},\theta^{w}]}_{\in S(1)}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}\big{|}
+|(ψ2|α|+2|β|4wl|α||β|eiϕβαf±e±ϕ2,(θwei(wl|α||β|)(βαf±e±ϕ2)))Lv,x2|\displaystyle\quad+\big{|}\big{(}\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial^{e_{i}}\phi\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}\partial_{e_{i}}(w^{l-|\alpha|-|\beta|}){(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}\big{|}
eiϕHx2ψ|α|+|β|2wl|α||β|βαf±Lv,x22\displaystyle\lesssim\|\partial^{e_{i}}\phi\|_{H^{2}_{x}}\|\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f_{\pm}\|_{L^{2}_{v,x}}^{2}
δ0K,l(t),\displaystyle\lesssim\delta_{0}\mathcal{E}_{K,l}(t),

by (24). When α10\alpha_{1}\neq 0, then α0\alpha\neq 0, the total number of derivatives on the first f±f_{\pm} is less or equal to KK and there’s at least one derivative on the second f±f_{\pm} with respect to xx. Thus,

|M2|K,l1/2𝒟K,l,\displaystyle|M_{2}|\lesssim\mathcal{E}^{1/2}_{K,l}\mathcal{D}_{K,l},

where (24) is applied. For the term M3M_{3} with α1=β1=0\alpha_{1}=\beta_{1}=0, a nice observation is that it’s the same as M8M_{8} except the sign and hence, they are eliminated. When α1+β10\alpha_{1}+\beta_{1}\neq 0, the derivative order for the first f±f_{\pm} is less or equal to K1K-1 and hence, the term β1vi\partial_{\beta_{1}}v_{i} can be controlled as wl|α||β|β1viwl|αα1||ββ1|w^{l-|\alpha|-|\beta|}\partial_{\beta_{1}}v_{i}\lesssim w^{l-|\alpha-\alpha_{1}|-|\beta-\beta_{1}|}. Then M3M_{3} is bounded above by

|(ψ2|α|+2|β|4\displaystyle\big{|}\big{(}\psi_{2|\alpha|+2|\beta|-4} wl|α||β|12α1αβ1β|α1|+|β1|0ei+α1ϕβ1viββ1αα1f±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2|\displaystyle w^{l-|\alpha|-|\beta|}\frac{1}{2}\sum_{\begin{subarray}{c}\alpha_{1}\leq\alpha\\ \beta_{1}\leq\beta\\ |\alpha_{1}|+|\beta_{1}|\neq 0\end{subarray}}\partial^{e_{i}+\alpha_{1}}\phi\partial_{\beta_{1}}v_{i}\partial^{\alpha-\alpha_{1}}_{\beta-\beta_{1}}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}\big{|}
K,l1/2𝒟K,l.\displaystyle\lesssim\mathcal{E}^{1/2}_{K,l}\mathcal{D}_{K,l}.

For M4M_{4}, there’s exponential decay in vv and hence |M4|K,l.|M_{4}|\lesssim\mathcal{E}_{K,l}. For M5M_{5}, recalling that we only need upper bound, using Lemma 2.5, we have |M5|K,l.|M_{5}|\lesssim\mathcal{E}_{K,l}. For M6M_{6}, we use Lemma 2.6 to obtain |M6|K,l1/2𝒟K,l.|M_{6}|\lesssim\mathcal{E}^{1/2}_{K,l}\mathcal{D}_{K,l}. For M7M_{7}, since β10\beta_{1}\neq 0, |β1vi|1|\partial_{\beta_{1}}v_{i}|\lesssim 1 and the total number of derivatives on the first f±f_{\pm} is less or equal to KK. This yields that |M7|𝒟K,l|M_{7}|\lesssim\mathcal{D}_{K,l}. Combining the above estimate with (5), we have

(b~1/2)wψ|α|+|β|2wl|α||β|βαf±e±ϕ2Lv,x2\displaystyle\quad\,\|(\tilde{b}^{1/2})^{w}\psi_{|\alpha|+|\beta|-2}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}}\|_{L^{2}_{v,x}}
δ2t(ψ2|α|+2|β|4wl|α||β|βαf±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2\displaystyle\lesssim\delta^{2}\partial_{t}\big{(}-\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}} (118)
+K,l1/2𝒟K,l+0,0+tϕLxK,l(t)+𝒟K,l+K,l.\displaystyle\qquad+\mathcal{E}^{1/2}_{K,l}\mathcal{D}_{K,l}+\mathcal{E}_{0,0}+\|\partial_{t}\phi\|_{L^{\infty}_{x}}\mathcal{E}_{K,l}(t)+\mathcal{D}_{K,l}+\mathcal{E}_{K,l}.

Substituting (5) into (115), then plugging into (5), we have that for 0<δ<10<\delta<1,

tK,l(t)+λDK,l(t)\displaystyle\partial_{t}\mathcal{E}_{K,l}(t)+\lambda D_{K,l}(t) δ2|α|+|β|Kt(ψ2|α|+2|β|4wl|α||β|βαf±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2\displaystyle\lesssim\delta^{2}\sum_{|\alpha|+|\beta|\leq K}\partial_{t}\big{(}-\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}
+tϕLxK,l(t)+δ(K,l1/2(t)𝒟K,l(t)+𝒟K,l(t)+K,l(t))+Cδ0,0(t),\displaystyle\qquad+\|\partial_{t}\phi\|_{L^{\infty}_{x}}\mathcal{E}_{K,l}(t)+\delta\big{(}\mathcal{E}^{1/2}_{K,l}(t)\mathcal{D}_{K,l}(t)+\mathcal{D}_{K,l}(t)+\mathcal{E}_{K,l}(t)\big{)}+C_{\delta}\mathcal{E}_{0,0}(t),

where we will use tϕLxK,l1/2δ01/2\|\partial_{t}\phi\|_{L^{\infty}_{x}}\lesssim\mathcal{E}^{1/2}_{K,l}\lesssim\delta^{1/2}_{0} by (61) and (101). By choosing δ>0\delta>0 sufficiently small, using the aa prioripriori assumption (101) and noticing that K,l𝒟K,l+𝐏fLx22𝒟K,l+0,0\mathcal{E}_{K,l}\lesssim\mathcal{D}_{K,l}+\|\mathbf{P}f\|^{2}_{L^{2}_{x}}\lesssim\mathcal{D}_{K,l}+\mathcal{E}_{0,0}, we have

tK,l(t)+λK,l(t)\displaystyle\quad\,\partial_{t}\mathcal{E}_{K,l}(t)+\lambda\mathcal{E}_{K,l}(t)
δ2|α|+|β|Kt(ψ2|α|+2|β|4wl|α||β|βαf±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2+K,l(t).\displaystyle\lesssim\delta^{2}\sum_{|\alpha|+|\beta|\leq K}\partial_{t}\big{(}-\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}+\mathcal{E}_{K,l}(t).

By solving this ODE, choosing δ>0\delta>0 sufficiently small and noticing

|α|+|β|K|(ψ2|α|+2|β|4wl|α||β|βαf±e±ϕ2,(θwwl|α||β|(βαf±e±ϕ2)))Lv,x2|K,l(t),\displaystyle\sum_{|\alpha|+|\beta|\leq K}\big{|}\big{(}-\psi_{2|\alpha|+2|\beta|-4}w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}},(\theta^{w}w^{l-|\alpha|-|\beta|}{(\partial^{\alpha}_{\beta}f_{\pm}e^{\frac{\pm\phi}{2}})^{\wedge}})^{\vee}\big{)}_{L^{2}_{v,x}}\big{|}\lesssim\mathcal{E}_{K,l}(t),

we have

K,l(t)\displaystyle\mathcal{E}_{K,l}(t) K,l(0)+t(K,l(t)+ϵ12),\displaystyle\lesssim\mathcal{E}_{K,l}(0)+t(\mathcal{E}_{K,l}(t)+\epsilon_{1}^{2}),
K,l(t)\displaystyle\mathcal{E}_{K,l}(t) ϵ12,\displaystyle\lesssim\epsilon^{2}_{1},

by choose t<<1t<<1, since K,l(0)2,l(0)\mathcal{E}_{K,l}(0)\leq\mathcal{E}_{2,l}(0).

Proof of Theorem 1.2.

It follows immediate from the aa prioripriori estimate (101) that sup0tt0K,lϵ12\sup_{0\leq t\leq t_{0}}\mathcal{E}_{K,l}\lesssim\epsilon^{2}_{1} holds true for some t0>0t_{0}>0 and the details are the same as obtaining the global solution as in Theorem 1.1; see also [21, 17] and [14]. The Theorem 1.1 has already proved that i+1,2(t)ϵ02Cτ\mathcal{E}_{i+1,2}(t)\lesssim\epsilon_{0}^{2}C_{\tau} for any tτ>0t\geq\tau>0. Notice that the constant in Lemma 5.1 is independent of time tt and hence, we can apply Lemma 5.1 to any time interval with length less than t0t_{0} to obtain

supt>0K,l(t)ϵ12.\displaystyle\sup_{t>0}\mathcal{E}_{K,l}(t)\lesssim\epsilon_{1}^{2}. (119)

Recalling (1) and the choice (100) of ψ\psi, we have that for any τ,T(0,]\tau,T\in(0,\infty], any l,K0l,K\geq 0,

supτtT|α|+|β|Kwl|α||β|βαfLv,x22+supτtT|α|KαxϕLx22Cτ<.\displaystyle\sup_{\tau\leq t\leq T}\sum_{|\alpha|+|\beta|\leq K}\|w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}+\sup_{\tau\leq t\leq T}\sum_{|\alpha|\leq K}\|\partial^{\alpha}\nabla_{x}\phi\|_{L^{2}_{x}}^{2}\leq C_{\tau}<\infty.

This proves (19).

If additionally supl022,l0(0)<\sup_{l_{0}\geq 2}\mathcal{E}_{2,l_{0}}(0)<\infty is sufficiently small. Then for lK3l\geq K\geq 3, by (19), we have

supτtT|α|+|β|Kwl|α||β|βαfLv,x22Cτ.\displaystyle\sup_{\tau\leq t\leq T}\sum_{|\alpha|+|\beta|\leq K}\|w^{l-|\alpha|-|\beta|}\partial^{\alpha}_{\beta}f\|^{2}_{L^{2}_{v,x}}\leq C_{\tau}.

For the regularity on tt, the technique above is not applicable and we only make a rough estimate. For any t>0t>0, applying wltkβαw^{l}\partial^{k}_{t}\partial^{\alpha}_{\beta} with k0k\geq 0, |α|+|β|K|\alpha|+|\beta|\leq K to equation (7) and taking Lv,x2L^{2}_{v,x} norms, we have

wltk+1βαf±Lv,x22\displaystyle\|w^{l}\partial^{k+1}_{t}\partial^{\alpha}_{\beta}f_{\pm}\|^{2}_{L^{2}_{v,x}} wlvxtkβαf±Lv,x22+wlk1kβα(tk1xϕvtkk1f±)Lv,x22\displaystyle\lesssim\|w^{l}v\cdot\nabla_{x}\partial^{k}_{t}\partial^{\alpha}_{\beta}f_{\pm}\|^{2}_{L^{2}_{v,x}}+\|w^{l}\sum_{k_{1}\leq k}\partial^{\alpha}_{\beta}\big{(}\partial^{k_{1}}_{t}\nabla_{x}\phi\cdot v\partial^{k-k_{1}}_{t}f_{\pm}\big{)}\|^{2}_{L^{2}_{v,x}}
+wlk1kα(tk1xϕvtkk1βf±)Lv,x22+wltkαxϕβ(vμ1/2)Lv,x22\displaystyle\qquad+\|w^{l}\sum_{k_{1}\leq k}\partial^{\alpha}\big{(}\partial^{k_{1}}_{t}\nabla_{x}\phi\cdot\nabla_{v}\partial^{k-k_{1}}_{t}\partial_{\beta}f_{\pm}\big{)}\|_{L^{2}_{v,x}}^{2}+\|w^{l}\partial^{k}_{t}\partial^{\alpha}\nabla_{x}\phi\cdot\partial_{\beta}(v\mu^{1/2})\|^{2}_{L^{2}_{v,x}} (120)
+wlβαL±tkf±Lv,x22+wlk1kβαΓ±(tk1f,tkk1f)Lv,x22.\displaystyle\qquad+\|w^{l}\partial^{\alpha}_{\beta}L_{\pm}\partial^{k}_{t}f_{\pm}\|^{2}_{L^{2}_{v,x}}+\|w^{l}\sum_{k_{1}\leq k}\partial^{\alpha}_{\beta}\Gamma_{\pm}(\partial^{k_{1}}_{t}f,\partial^{k-k_{1}}_{t}f)\|_{L^{2}_{v,x}}^{2}.

Denoting K,l,k=|α|+|β|K,k1kwlβαtk1fLv,x2\mathcal{E}_{K,l,k}=\sum_{|\alpha|+|\beta|\leq K,k_{1}\leq k}\|w^{l}\partial^{\alpha}_{\beta}\partial^{k_{1}}_{t}f\|_{L^{2}_{v,x}}, we estimate the right-hand terms one by one. The first term on the right hand is bounded above by K+1,l+1,k\mathcal{E}_{K+1,l+1,k}. For terms involving both ϕ\phi and f±f_{\pm}, we use (24) to generate one more xx derivative on ϕ\phi. Applying the trick in (84), the second term is bounded above by

|α|+|β|K+1,k1ktk1βαxϕLx22|α|+|β|K+1,k1kwl+1tk1βαf±Lv,x22K+1,l+1,k2.\displaystyle\sum_{|\alpha|+|\beta|\leq K+1,\,k_{1}\leq k}\|\partial^{k_{1}}_{t}\partial^{\alpha}_{\beta}\nabla_{x}\phi\|^{2}_{L^{2}_{x}}\sum_{|\alpha|+|\beta|\leq K+1,\,k_{1}\leq k}\|w^{l+1}\partial^{k_{1}}_{t}\partial^{\alpha}_{\beta}f_{\pm}\|^{2}_{L^{2}_{v,x}}\lesssim\mathcal{E}_{K+1,l+1,k}^{2}.

Similarly, the third term is bounded above by K+1,l+1,k2.\mathcal{E}_{K+1,l+1,k}^{2}. For the fourth term, when k=0k=0, it’s bounded above by K,l,0\mathcal{E}_{K,l,0}. When k1k\geq 1, by using (60), it’s bounded above by K,l,k1\mathcal{E}_{K,l,k-1}. For the fifth term, noticing L±S(a~)S(vγ+2sη2s)L_{\pm}\in S(\tilde{a})\subset S(\langle v\rangle^{\gamma+2s}\langle\eta\rangle^{2s}) and s(0,1)s\in(0,1), we have

wlβαL±tkf±Lv,x22wl+γ+2sDv2(Dx,Dv)Ktkf±Lv,x22K+2,l+γ+2s,k.\displaystyle\|w^{l}\partial^{\alpha}_{\beta}L_{\pm}\partial^{k}_{t}f_{\pm}\|^{2}_{L^{2}_{v,x}}\lesssim\|w^{l+\gamma+2s}\langle D_{v}\rangle^{2}\langle(D_{x},D_{v})\rangle^{K}\partial^{k}_{t}f_{\pm}\|^{2}_{L^{2}_{v,x}}\lesssim\mathcal{E}_{K+2,l+\gamma+2s,k}.

For the last term, using (22), it’s bounded above by

|α|+|β|K,k1kwl+γ+2s2βαtk1fLv,x22|α|+|β|K+2,k1kwl+γ+2sβαtk1fLv,x22K+2,l+γ+2s,k2.\displaystyle\sum_{|\alpha|+|\beta|\leq K,\,k_{1}\leq k}\|w^{l+\frac{\gamma+2s}{2}}\partial^{\alpha}_{\beta}\partial^{k_{1}}_{t}f\|^{2}_{L^{2}_{v,x}}\sum_{|\alpha|+|\beta|\leq K+2,\,k_{1}\leq k}\|w^{l+\gamma+2s}\partial^{\alpha}_{\beta}\partial^{k_{1}}_{t}f\|^{2}_{L^{2}_{v,x}}\lesssim\mathcal{E}_{K+2,l+\gamma+2s,k}^{2}.

Combining the above estimate and taking summation |α|+|β|K|\alpha|+|\beta|\leq K, kk0k\leq k_{0} for any k00k_{0}\geq 0, we have

K,l,k0+1(t)K,l,0+K,l,k01(t)+K+2,l+1+γ+2s,k02(t).\displaystyle\mathcal{E}_{K,l,k_{0}+1}(t)\lesssim\mathcal{E}_{K,l,0}+\mathcal{E}_{K,l,k_{0}-1}(t)+\mathcal{E}_{K+2,l+1+\gamma+2s,k_{0}}^{2}(t).

Hence, noticing (119), for any T>τ>0T>\tau>0, we have

supτtTK,l,k0(t)Cτ,k0.\displaystyle\sup_{\tau\leq t\leq T}\mathcal{E}_{K,l,k_{0}}(t)\leq C_{\tau,k_{0}}.

The same standard argument for obtaining the local solution gives the result of Theorem 1.2 and the details are omitted for brevity; see also [21, 17] and [14]. Consequently, by Sobolev embedding, fC(t+;C(x3;𝒮(v3)))f\in C^{\infty}(\mathbb{R}^{+}_{t};C^{\infty}(\mathbb{R}^{3}_{x};\mathscr{S}(\mathbb{R}^{3}_{v}))).

6 Appendix

Pseudo-differential calculus

We recall some notation and theorem of pseudo differential calculus. For details, one may refer to Chapter 2 in the book [23] for details. Set Γ=|dv|2+|dη|2\Gamma=|dv|^{2}+|d\eta|^{2}, but also note that the following are also valid for general admissible metric. Let MM be an Γ\Gamma-admissible weight function. That is, M:2d(0,+)M:\mathbb{R}^{2d}\to(0,+\infty) satisfies the following conditions:
(a). (slowly varying) there exists δ>0\delta>0 such that for any X,Y2dX,Y\in\mathbb{R}^{2d}, |XY|δ|X-Y|\leq\delta implies

M(X)M(Y);\displaystyle M(X)\approx M(Y);

(b) (temperance) there exists C>0C>0, NN\in\mathbb{R}, such that for X,Y2dX,Y\in\mathbb{R}^{2d},

M(X)M(Y)CXYN.\displaystyle\frac{M(X)}{M(Y)}\leq C\langle X-Y\rangle^{N}.

A direct result is that if M1,M2M_{1},M_{2} are two Γ\Gamma-admissible weight, then so is M1+M2M_{1}+M_{2} and M1M2M_{1}M_{2}. Consider symbols a(v,η,ξ)a(v,\eta,\xi) as a function of (v,η)(v,\eta) with parameters ξ\xi. We say that aS(M)=S(M,Γ)a\in S(M)=S(M,\Gamma) uniformly in ξ\xi, if for α,βd\alpha,\beta\in\mathbb{N}^{d}, v,η3v,\eta\in{\mathbb{R}^{3}},

|vαηβa(v,η,ξ)|Cα,βM,\displaystyle|\partial^{\alpha}_{v}\partial^{\beta}_{\eta}a(v,\eta,\xi)|\leq C_{\alpha,\beta}M,

with Cα,βC_{\alpha,\beta} a constant depending only on α\alpha and β\beta, but independent of ξ\xi. The space S(M,Γ)S(M,\Gamma) endowed with the seminorms

ak;S(M,Γ)=max0|α|+|β|ksup(v,η)2d|M(v,η)1vαηβa(v,η,ξ)|,\displaystyle\|a\|_{k;S(M,\Gamma)}=\max_{0\leq|\alpha|+|\beta|\leq k}\sup_{(v,\eta)\in\mathbb{R}^{2d}}|M(v,\eta)^{-1}\partial^{\alpha}_{v}\partial^{\beta}_{\eta}a(v,\eta,\xi)|,

becomes a Fréchet space. Sometimes we write ηaS(M,Γ)\partial_{\eta}a\in S(M,\Gamma) to mean that ηjaS(M,Γ)\partial_{\eta_{j}}a\in S(M,\Gamma) (1jd)(1\leq j\leq d) equipped with the same seminorms. We formally define the pseudo-differential operator by

(opta)u(x)=33e2πi(xy)ξa((1t)x+ty,ξ)u(y)𝑑y𝑑ξ,\displaystyle(op_{t}a)u(x)=\int_{\mathbb{R}^{3}}\int_{\mathbb{R}^{3}}e^{2\pi i(x-y)\cdot\xi}a((1-t)x+ty,\xi)u(y)\,dyd\xi,

for tt\in\mathbb{R}, f𝕊f\in\mathbb{S}. In particular, denote a(v,Dv)=op0aa(v,D_{v})=op_{0}a to be the standard pseudo-differential operator and aw(v,Dv)=op1/2aa^{w}(v,D_{v})=op_{1/2}a to be the Weyl quantization of symbol aa. We write AOp(M,Γ)A\in Op(M,\Gamma) to represent that AA is a Weyl quantization with symbol belongs to class S(M,Γ)S(M,\Gamma). One important property for Weyl quantization of a real-valued symbol is the self-adjoint on L2L^{2} with domain 𝕊\mathbb{S}.

For composition of pseudodifferential operator we have awbw=(a#b)wa^{w}b^{w}=(a\#b)^{w} with

a#b=ab+14πi{a,b}+2kν2k|α|+|β|=k(1)|β|α!β!DηαxβaDηβxαb+rν(a,b),\displaystyle a\#b=ab+\frac{1}{4\pi i}\{a,b\}+\sum_{2\leq k\leq\nu}2^{-k}\sum_{|\alpha|+|\beta|=k}\frac{(-1)^{|\beta|}}{\alpha!\beta!}D^{\alpha}_{\eta}\partial^{\beta}_{x}aD^{\beta}_{\eta}\partial^{\alpha}_{x}b+r_{\nu}(a,b), (121)

where X=(v,η)X=(v,\eta),

rν(a,b)(X)\displaystyle r_{\nu}(a,b)(X) =Rν(a(X)b(Y))|X=Y,\displaystyle=R_{\nu}(a(X)\otimes b(Y))|_{X=Y},
Rν\displaystyle R_{\nu} =01(1θ)ν1(ν1)!exp(θ4πiσX,Y)𝑑θ(14πiσX,Y)ν.\displaystyle=\int^{1}_{0}\frac{(1-\theta)^{\nu-1}}{(\nu-1)!}\exp\Big{(}\frac{\theta}{4\pi i}\langle\sigma\partial_{X},\partial_{Y}\rangle\Big{)}\,d\theta\Big{(}\frac{1}{4\pi i}\langle\sigma\partial_{X},\partial_{Y}\rangle\Big{)}^{\nu}.

Let a1(v,η)S(M1,Γ),a2(v,η)S(M2,Γ)a_{1}(v,\eta)\in S(M_{1},\Gamma),a_{2}(v,\eta)\in S(M_{2},\Gamma), then a1wa2w=(a1#a2)wa_{1}^{w}a_{2}^{w}=(a_{1}\#a_{2})^{w}, a1#a2S(M1M2,Γ)a_{1}\#a_{2}\in S(M_{1}M_{2},\Gamma) with

a1#a2(v,η)\displaystyle a_{1}\#a_{2}(v,\eta) =a1(v,η)a2(v,η)+01(ηa1#θva2va1#θηa2)𝑑θ,\displaystyle=a_{1}(v,\eta)a_{2}(v,\eta)+\int^{1}_{0}(\partial_{\eta}a_{1}\#_{\theta}\partial_{v}a_{2}-\partial_{v}a_{1}\#_{\theta}\partial_{\eta}a_{2})\,d\theta,
g#θh(Y):\displaystyle g\#_{\theta}h(Y): =22dθ2n33e4πiθσ(XY1)(XY2)(4πi)1σY1,Y2g(Y1)h(Y2)𝑑Y1𝑑Y2,\displaystyle=\frac{2^{2d}}{\theta^{-2n}}\int_{\mathbb{R}^{3}}\int_{\mathbb{R}^{3}}e^{-\frac{4\pi i}{\theta}\sigma(X-Y_{1})\cdot(X-Y_{2})}(4\pi i)^{-1}\langle\sigma\partial_{Y_{1}},\partial_{Y_{2}}\rangle g(Y_{1})h(Y_{2})\,dY_{1}dY_{2},

with Y=(v,η)Y=(v,\eta), σ=(0II0)\sigma=\begin{pmatrix}0&I\\ -I&0\end{pmatrix}. For any non-negative integer kk, there exists l,Cl,C independent of θ[0,1]\theta\in[0,1] such that

g#θhk;S(M1M2,Γ)Cgl,S(M1,Γ)hl,S(M2,Γ).\displaystyle\|g\#_{\theta}h\|_{k;S(M_{1}M_{2},\Gamma)}\leq C\|g\|_{l,S(M_{1},\Gamma)}\|h\|_{l,S(M_{2},\Gamma)}. (122)

Thus if ηa1,ηa2S(M1,Γ)\partial_{\eta}a_{1},\partial_{\eta}a_{2}\in S(M^{\prime}_{1},\Gamma) and va1,va2S(M2,Γ)\partial_{v}a_{1},\partial_{v}a_{2}\in S(M^{\prime}_{2},\Gamma), then [a1,a2]S(M1M2,Γ)[a_{1},a_{2}]\in S(M^{\prime}_{1}M^{\prime}_{2},\Gamma), where [,][\cdot,\cdot] is the commutator defined by [A,B]:=ABBA[A,B]:=AB-BA.

We can define a Hilbert space H(M,Γ):={u𝕊:uH(M,Γ)<}H(M,\Gamma):=\{u\in\mathbb{S}^{\prime}:\|u\|_{H(M,\Gamma)}<\infty\}, where

uH(M,Γ):=M(Y)2φYwuL22|gY|1/2𝑑Y<,\displaystyle\|u\|_{H(M,\Gamma)}:=\int M(Y)^{2}\|\varphi^{w}_{Y}u\|^{2}_{L^{2}}|g_{Y}|^{1/2}\,dY<\infty, (123)

and (φY)Y2d(\varphi_{Y})_{Y\in\mathbb{R}^{2d}} is any uniformly confined family of symbols which is a partition of unity. If aS(M)a\in S(M) is a isomorphism from H(M)H(M^{\prime}) to H(MM1)H(M^{\prime}M^{-1}), then (awu,awv)(a^{w}u,a^{w}v) is an equivalent Hilbertian structure on H(M)H(M). Moreover, the space 𝕊(3)\mathbb{S}({\mathbb{R}^{3}}) is dense in H(M)H(M) and H(1)=L2H(1)=L^{2}.

Let aS(M,Γ)a\in S(M,\Gamma), then aw:H(M1,Γ)H(M1/M,Γ)a^{w}:H(M_{1},\Gamma)\to H(M_{1}/M,\Gamma) is linear continuous, in the sense of unique bounded extension from 𝕊\mathbb{S} to H(M1,Γ)H(M_{1},\Gamma). Also the existence of bS(M1,Γ)b\in S(M^{-1},\Gamma) such that b#a=a#b=1b\#a=a\#b=1 is equivalent to the invertibility of awa^{w} as an operator from H(MM1,Γ)H(MM_{1},\Gamma) onto H(M1,Γ)H(M_{1},\Gamma) for some Γ\Gamma-admissible weight function M1M_{1}.

The following Lemmas come from [12].

Lemma 6.1.

Let m,cm,c be Γ\Gamma-admissible weight and aS(m)a\in S(m). Assume aw:H(mc)H(c)a^{w}:H(mc)\to H(c) is invertible. If bS(m)b\in S(m), then there exists C>0C>0, depending only on the seminorms of symbols to (aw)1(a^{w})^{-1} and bwb^{w}, such that for fH(mc)f\in H(mc),

b(v,Dv)fH(c)+bw(v,Dv)fH(c)Caw(v,Dv)fH(c).\displaystyle\|b(v,D_{v})f\|_{H(c)}+\|b^{w}(v,D_{v})f\|_{H(c)}\leq C\|a^{w}(v,D_{v})f\|_{H(c)}.

Consequently, if aw:H(m1)L2Op(m1)a^{w}:H(m_{1})\to L^{2}\in Op(m_{1}), bw:H(m2)L2Op(m2)b^{w}:H(m_{2})\to L^{2}\in Op(m_{2}) are invertible, then for f𝕊f\in\mathbb{S},

bwawfL2awbwfL2,\displaystyle\|b^{w}a^{w}f\|_{L^{2}}\lesssim\|a^{w}b^{w}f\|_{L^{2}},

where the constant depends only on seminorms of symbols to aw,bw,(aw)1,(bw)1a^{w},b^{w},(a^{w})^{-1},(b^{w})^{-1}.

Lemma 6.2.

Let m,cm,c be Γ\Gamma-admissible weight and a1/2S(m1/2)a^{1/2}\in S(m^{1/2}). Assume (a1/2)w:H(mc)H(c)(a^{1/2})^{w}:H(mc)\to H(c) is invertible and LS(m)L\in S(m). Then

(Lf,f)L2=(((a1/2)w)1LS(m1/2)f,(a1/2)wf)L2(a1/2)wfL22.\displaystyle(Lf,f)_{L^{2}}=(\underbrace{((a^{1/2})^{w})^{-1}L}_{\in S(m^{1/2})}f,(a^{1/2})^{w}f)_{L^{2}}\lesssim\|(a^{1/2})^{w}f\|^{2}_{L^{2}}.

Carleman representation

For measurable function F(v,v,v,v)F(v,v_{*},v^{\prime},v^{\prime}_{*}), if any sides of the following equation is well-defined, then

d𝕊d1b(cosθ)|vv|γF(v,v,v,v)𝑑σ𝑑v\displaystyle\int_{\mathbb{R}^{d}}\int_{\mathbb{S}^{d-1}}b(\cos\theta)|v-v_{*}|^{\gamma}F(v,v_{*},v^{\prime},v^{\prime}_{*})\,d\sigma dv_{*}
=hdE0,hb~(α,h)𝟏|α||h||α+h|γ+1+2s|h|d+2sF(v,v+αh,vh,v+α)𝑑α𝑑h,\displaystyle\quad=\int_{\mathbb{R}^{d}_{h}}\int_{E_{0,h}}\tilde{b}(\alpha,h)\mathbf{1}_{|\alpha|\geq|h|}\frac{|\alpha+h|^{\gamma+1+2s}}{|h|^{d+2s}}F(v,v+\alpha-h,v-h,v+\alpha)\,d\alpha dh, (124)

where b~(α,h)\tilde{b}(\alpha,h) is bounded from below and above by positive constants, and b~(α,h)=b~(|α|,|h|)\tilde{b}(\alpha,h)=\tilde{b}(|\alpha|,|h|), E0,hE_{0,h} is the hyper-plane orthogonal to hh containing the origin.

Acknowledgments:

The author would thank Prof. Tong Yang for the valuable comments on the manuscript.

References

  • [1] R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg. Entropy Dissipation and Long-Range Interactions. Archive for Rational Mechanics and Analysis, 152(4):327–355, jun 2000.
  • [2] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, and T. Yang. The boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions. Archive for Rational Mechanics and Analysis, 202(2):599–661, jun 2011.
  • [3] R. Alexandre, Y. Morimoto, S. Ukai, C. J. Xu, and T. Yang. Global existence and full regularity of the boltzmann equation without angular cutoff. Communications in Mathematical Physics, 304(2):513–581, apr 2011.
  • [4] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, and T. Yang. The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential. Journal of Functional Analysis, 262(3):915–1010, feb 2012.
  • [5] Radjesvarane Alexandre, Frédéric Hérau, and Wei-Xi Li. Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff. Journal de Mathématiques Pures et Appliquées, 126:1–71, jun 2019.
  • [6] Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, and Tong Yang. Regularizing effect and local existence for the non-cutoff boltzmann equation. Archive for Rational Mechanics and Analysis, 198(1):39–123, jan 2010.
  • [7] Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, and Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 6(4):1011–1041, 2013.
  • [8] Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, and Semjon Vugalter. Gevrey smoothing for weak solutions of the fully nonlinear homogeneous boltzmann and kac equations without cutoff for maxwellian molecules. Archive for Rational Mechanics and Analysis, 225(2):601–661, apr 2017.
  • [9] Hua Chen, Xin Hu, Wei-Xi Li, and Jinpeng Zhan. Gevrey smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off.
  • [10] Yemin Chen and Lingbing He. Smoothing estimates for boltzmann equation with full-range interactions: Spatially homogeneous case. Archive for Rational Mechanics and Analysis, 201(2):501–548, jan 2011.
  • [11] Yemin Chen and Lingbing He. Smoothing estimates for boltzmann equation with full-range interactions: Spatially inhomogeneous case. Archive for Rational Mechanics and Analysis, 203(2):343–377, jan 2012.
  • [12] Dingqun Deng. Dissipation and semigroup on $h^k_n$: Non-cutoff linearized boltzmann operator with soft potential. SIAM Journal on Mathematical Analysis, 52(3):3093–3113, jan 2020.
  • [13] Dingqun Deng. Global Existence of Non-cutoff Boltzmann Equation in Weighted Sobolev Space. Preprint, 2020.
  • [14] Dingqun Deng. Regularity of non-cutoff boltzmann equation with hard potential. Preprint, 2020.
  • [15] Renjun Duan and Shuangqian Liu. The Vlasov-Poisson-Boltzmann System without Angular Cutoff. Communications in Mathematical Physics, 324(1):1–45, oct 2013.
  • [16] Renjun Duan and Robert M. Strain. Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space. Communications on Pure and Applied Mathematics, pages n/a–n/a, 2011.
  • [17] Philip T. Gressman and Robert M. Strain. Global classical solutions of the boltzmann equation without angular cut-off. Journal of the American Mathematical Society, 24(3):771–771, sep 2011.
  • [18] Philip T. Gressman and Robert M. Strain. Sharp anisotropic estimates for the boltzmann collision operator and its entropy production. Advances in Mathematics, 227(6):2349–2384, aug 2011.
  • [19] Yan Guo. The Vlasov-Poisson-Boltzmann system near Maxwellians. Communications on Pure and Applied Mathematics, 55(9):1104–1135, jun 2002.
  • [20] Yan Guo. The vlasov-maxwell-boltzmann system near maxwellians. Inventiones Mathematicae, 153(3):593–630, sep 2003.
  • [21] Yan Guo. The Vlasov-Poisson-Landau system in a periodic box. Journal of the American Mathematical Society, 25(3):759–812, sep 2012.
  • [22] Nicholas Krall. Principles of plasma physics. McGraw-Hill, New York, 1973.
  • [23] Nicolas Lerner. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators. Birkhäuser Basel, 2010.
  • [24] Clément Mouhot and Robert M. Strain. Spectral gap and coercivity estimates for linearized boltzmann collision operators without angular cutoff. Journal de Mathématiques Pures et Appliquées, 87(5):515–535, may 2007.
  • [25] Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic & Related Models, 5(3):583–613, 2012.
  • [26] Robert M. Strain and Keya Zhu. The vlasov–poisson–landau system in $${\{\mathbb{\{r}\}^{\{3}\}_{\{x}\}}\}$$ r x 3. Archive for Rational Mechanics and Analysis, 210(2):615–671, jul 2013.